Science.gov

Sample records for alk fusion proteins

  1. Rationale for co-targeting IGF-1R and ALK in ALK fusion positive lung cancer

    PubMed Central

    Lovly, Christine M.; McDonald, Nerina T.; Chen, Heidi; Ortiz-Cuaran, Sandra; Heukamp, Lukas C.; Yan, Yingjun; Florin, Alexandra; Ozretić, Luka; Lim, Diana; Wang, Lu; Chen, Zhao; Chen, Xi; Lu, Pengcheng; Paik, Paul K.; Shen, Ronglai; Jin, Hailing; Buettner, Reinhard; Ansén, Sascha; Perner, Sven; Brockmann, Michael; Bos, Marc; Wolf, Jürgen; Gardizi, Masyar; Wright, Gavin M.; Solomon, Benjamin; Russell, Prudence A.; Rogers, Toni-Maree; Suehara, Yoshiyuki; Red-Brewer, Monica; Tieu, Rudy; de Stanchina, Elisa; Wang, Qingguo; Zhao, Zhongming; Johnson, David H.; Horn, Leora; Wong, Kwok-Kin; Thomas, Roman K.; Ladanyi, Marc; Pao, William

    2014-01-01

    The ALK tyrosine kinase inhibitor (TKI), crizotinib, shows significant activity in patients whose lung cancers harbor ALK fusions but its efficacy is limited by variable primary responses and acquired resistance. In work arising from the intriguing clinical observation of a patient with ALK fusion+ lung cancer who had an ‘exceptional response’ to an IGF-1R antibody, we define a therapeutic synergism between ALK and IGF-1R inhibitors. Similar to IGF-1R, ALK fusion proteins bind to the adaptor, IRS-1, and IRS-1 knockdown enhances the anti-tumor effects of ALK inhibitors. In models of ALK TKI resistance, the IGF-1R pathway is activated, and combined ALK/IGF-1R inhibition improves therapeutic efficacy. Consistent with this finding, IGF-1R/IRS-1 levels are increased in biopsy samples from patients progressing on crizotinib therapy. Collectively, these data support a role for the IGF-1R/IRS-1 pathway in both ALK TKI-sensitive and TKI-resistant states and provide biological rationale for further clinical development of dual ALK/IGF-1R inhibitors. PMID:25173427

  2. Proteome-wide identification of novel binding partners to the oncogenic fusion gene protein, NPM-ALK, using tandem affinity purification and mass spectrometry.

    PubMed

    Wu, Fang; Wang, Peng; Young, Leah C; Lai, Raymond; Li, Liang

    2009-02-01

    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), an oncogenic fusion gene protein that is characteristically found in a subset of anaplastic large cell lymphomas, promotes tumorigenesis through its functional and physical interactions with various biologically important proteins. The identification of these interacting proteins has proven to be useful to further our understanding of NPM-ALK-mediated tumorigenesis. For the first time, we performed a proteome-wide identification of NPM-ALK-binding proteins using tandem affinity purification and a highly sensitive mass spectrometric technique. Tandem affinity purification is a recently developed method that carries a lower background and higher sensitivity compared with the conventional immunoprecipitation-based protein purification protocols. The NPM-ALK gene was cloned into an HB-tagged vector and expressed in GP293 cells. Three independent experiments were performed and the reproducibility of the data was 68%. The vast majority of the previously reported NPM-ALK-binding proteins were detected. We also identified proteins that are involved in various cellular processes that were not previously described in association with NPM-ALK, such as MCM6 and MSH2 (DNA repair), Nup98 and importin 8 (subcellular protein transport), Stim1 (calcium signaling), 82Fip (RNA regulation), and BAG2 (proteosome degradation). We believe that these data highlight the functional diversity of NPM-ALK and provide new research directions for the study of the biology of this oncoprotein.

  3. Prognostic significance of NPM-ALK fusion transcript overexpression in ALK-positive anaplastic large-cell lymphoma.

    PubMed

    Li, Chunmei; Takino, Hisashi; Eimoto, Tadaaki; Ishida, Takashi; Inagaki, Atsushi; Ueda, Ryuzo; Suzuki, Ritsuro; Yoshino, Tadashi; Nakagawa, Atsuko; Nakamura, Shigeo; Inagaki, Hiroshi

    2007-06-01

    In anaplastic large-cell lymphomas positive for anaplastic lymphoma kinase (ALK) protein, the ALK gene is most commonly fused to the NPM gene, and less commonly to TPM3, TFG, ATIC, and other rare genes. Although this lymphoma is generally associated with a favorable clinical outcome, 25% of the patients die of the disease within 5 years. In this study, we developed three assays, all of which can be used with archival formalin-fixed, paraffin-embedded tissues: (1) a sensitive reverse transcription-polymerase chain reaction (RT-PCR) assay for various X-ALK fusion genes, (2) a 5' rapid amplification of cDNA ends (RACE) assay to identify unknown fusion partners, and (3) a real-time RT-PCR assay to quantify the amount of the NPM-ALK fusion transcript. In 26 cases of ALK(+) anaplastic large-cell lymphoma, the RT-PCR assay showed that the ALK was fused to NPM in 21 cases, to TPM3 in three, and to TFG in one. The 5' RACE assay detected ATIC-ALK fusion in the remaining case. The real-time quantitative RT-PCR assay showed that the NPM-ALK transcript was over expressed in four of 20 quantifiable cases. Patients with NPM-ALK overexpression showed a significantly unfavorable overall survival compared with those with a low expression of this transcript. The RT-PCR and 5' RACE assays developed here may be useful for identification of known and unknown gene partners fused to the ALK gene. Overexpression of the NPM-ALK fusion transcript may be associated with a poor prognosis of the patients with ALK(+) anaplastic large-cell lymphomas.

  4. SUMOylation Confers Posttranslational Stability on NPM-ALK Oncogenic Protein.

    PubMed

    Vishwamitra, Deeksha; Curry, Choladda V; Shi, Ping; Alkan, Serhan; Amin, Hesham M

    2015-09-01

    Nucleophosmin-anaplastic lymphoma kinase-expressing (NPM-ALK+) T-cell lymphoma is an aggressive form of cancer that commonly affects children and adolescents. The expression of NPM-ALK chimeric oncogene results from the chromosomal translocation t(2;5)(p23;q35) that causes the fusion of the ALK and NPM genes. This translocation generates the NPM-ALK protein tyrosine kinase that forms the constitutively activated NPM-ALK/NPM-ALK homodimers. In addition, NPM-ALK is structurally associated with wild-type NPM to form NPM/NPM-ALK heterodimers, which can translocate to the nucleus. The mechanisms that sustain the stability of NPM-ALK are not fully understood. SUMOylation is a posttranslational modification that is characterized by the reversible conjugation of small ubiquitin-like modifiers (SUMOs) with target proteins. SUMO competes with ubiquitin for substrate binding and therefore, SUMOylation is believed to protect target proteins from proteasomal degradation. Moreover, SUMOylation contributes to the subcellular distribution of target proteins. Herein, we found that the SUMOylation pathway is deregulated in NPM-ALK+ T-cell lymphoma cell lines and primary lymphoma tumors from patients. We also identified Lys24 and Lys32 within the NPM domain as the sites where NPM-ALK conjugates with SUMO-1 and SUMO-3. Importantly, antagonizing SUMOylation by the SENP1 protease decreased the accumulation of NPM-ALK and suppressed lymphoma cell viability, proliferation, and anchorage-independent colony formation. One possible mechanism for the SENP1-mediated decrease in NPM-ALK levels was the increase in NPM-ALK association with ubiquitin, which facilitates its degradation. Our findings propose a model in which aberrancies in SUMOylation contribute to the pathogenesis of NPM-ALK+ T-cell lymphoma. Unraveling such pathogenic mechanisms may lead to devising novel strategies to eliminate this aggressive neoplasm.

  5. RANBP2-ALK fusion combined with monosomy 7 in acute myelomonocytic leukemia.

    PubMed

    Lim, Ji-Hun; Jang, Seongsoo; Park, Chan-Jeoung; Cho, Young-Uk; Lee, Je-Hwan; Lee, Kyoo-Hyung; Lee, Jin-Ok; Shin, Jong-Yeon; Kim, Jong-Il; Huh, Jooryung; Seo, Eul-Ju

    2014-01-01

    Anaplastic lymphoma receptor tyrosine kinase (ALK) is located on chromosome 2p23; the chromosomal rearrangements of this gene are common genetic alterations, resulting in the creation of multiple fusion genes involved in tumorigenesis. However, the presence of an ALK fusion in myeloid malignancies is extremely rare. We report a case of acute myelomonocytic leukemia in a 31-year-old woman with an unusual rearrangement between RAN-binding protein 2 (RANBP2) and ALK and a karyotype of 45,XX,inv(2)(p23q21),-7[20]. We detected an ALK rearrangement using fluorescence in situ hybridization, identified the ALK fusion partner by using RNA transcriptome sequencing, and demonstrated the RANBP2-ALK fusion transcript by reverse transcriptase--PCR and Sanger sequencing. Immunohistochemistry for ALK showed strong staining of the nuclear membrane in leukemic cells. The patient had an unfavorable clinical course. Our results, together with a literature review, suggest the RANBP2-ALK fusion combined with monosomy 7 may be related to a unique clonal hematologic disorder of childhood and adolescence, characterized by myelomonocytic leukemia and a poor prognosis.

  6. Crizotinib resistance in acute myeloid leukemia with inv(2)(p23q13)/RAN binding protein 2 (RANBP2) anaplastic lymphoma kinase (ALK) fusion and monosomy 7.

    PubMed

    Takeoka, Kayo; Okumura, Atsuko; Maesako, Yoshitomo; Akasaka, Takashi; Ohno, Hitoshi

    2015-03-01

    This is the first report on the development of a p.G1269A mutation within the kinase domain (KD) of ALK after crizotinib treatment in RANBP2-ALK acute myeloid leukemia (AML). An elderly woman with AML with an inv(2)(p23q13)/RANBP2-ALK and monosomy 7 was treated with crizotinib. After a short-term hematological response and the restoration of normal hematopoiesis, she experienced a relapse of AML. Fluorescence in situ hybridization using the ALK break-apart probe confirmed the inv(2)(p23q13), while G-banded karyotyping revealed the deletion of a segment of the short arm of chromosome 1 [del(1)(p13p22)] after crizotinib therapy. The ALK gene carried a heterozygous mutation at the nucleotide position g.716751G>C within exon 25, causing the p.G1269A amino acid substitution within the ALK-KD. Reverse transcriptase PCR revealed that the mutated ALK allele was selectively transcribed and the mutation occurred in the ALK allele rearranged with RANBP2. As both the del(1)(p13p22) at the cytogenetic level and p.G1269A at the nucleotide level newly appeared after crizotinib treatment, it is likely that they were secondarily acquired alterations involved in crizotinib resistance. Although secondary genetic abnormalities in ALK are most frequently described in non-small cell lung cancers harboring an ALK alteration, this report suggests that an ALK-KD mutation can occur independently of the tumor cell type or fusion partner after crizotinib treatment.

  7. Development of potent ALK inhibitor and its molecular inhibitory mechanism against NSCLC harboring EML4-ALK proteins

    SciTech Connect

    Kang, Chung Hyo; Yun, Jeong In; Lee, Kwangho; Lee, Chong Ock; Lee, Heung Kyoung; Yun, Chang-Soo; Hwang, Jong Yeon; Cho, Sung Yun; Jung, Heejung; Kim, Pilho; Ha, Jae Du; Jeon, Jeong Hee; Choi, Sang Un; Jeong, Hye Gwang; Kim, Hyoung Rae; Park, Chi Hoon

    2015-08-28

    Here, we show the newly synthesized and potent ALK inhibitor having similar scaffold to KRCA-0008, which was reported previously, and its molecular mechanism against cancer cells harboring EML4-ALK fusion protein. Through ALK wild type enzyme assay, we selected two compounds, KRCA-0080 and KRCA-0087, which have trifluoromethyl instead of chloride in R2 position. We characterized these newly synthesized compounds by in vitro and in vivo assays. Enzyme assay shows that KRCA-0080 is more potent against various ALK mutants, including L1196M, G1202R, T1151-L1152insT, and C1156Y, which are seen in crizotinib-resistant patients, than KRCA-0008 is. Cell based assays demonstrate our compounds downregulate the cellular signaling, such as Akt and Erk, by suppressing ALK activity to inhibit the proliferation of the cells harboring EML4-ALK. Interestingly, our compounds induced strong G1/S arrest in H3122 cells leading to the apoptosis, which is proved by PARP-1 cleavage. In vivo H3122 xenograft assay, we found that KRCA-0080 shows significant reduction in tumor size compared to crizotinib and KRCA-0008 by 15–20%. Conclusively, we report a potent ALK inhibitor which shows significant in vivo efficacy as well as excellent inhibitory activity against various ALK mutants. - Highlights: • We synthesized KRCA-0008 derivatives having trifluoromethyl instead of chloride. • KRCA-0080 shows superior activity against several ALK mutants to KRCA-0008. • Cellular assays show our ALK inhibitors suppress only EML4-ALK positive cells. • Our ALK inhibitors induce G1/S arrest to lead apoptosis in H3122 cells. • KRCA-0080 has superior in vivo efficacy to crizotinib and KRCA-0008 by 15–20%.

  8. SUMOylation Confers Posttranslational Stability on NPM-ALK Oncogenic Protein1

    PubMed Central

    Vishwamitra, Deeksha; Curry, Choladda V.; Shi, Ping; Alkan, Serhan; Amin, Hesham M.

    2015-01-01

    Nucleophosmin-anaplastic lymphoma kinase–expressing (NPM-ALK+) T-cell lymphoma is an aggressive form of cancer that commonly affects children and adolescents. The expression of NPM-ALK chimeric oncogene results from the chromosomal translocation t(2;5)(p23;q35) that causes the fusion of the ALK and NPM genes. This translocation generates the NPM-ALK protein tyrosine kinase that forms the constitutively activated NPM-ALK/NPM-ALK homodimers. In addition, NPM-ALK is structurally associated with wild-type NPM to form NPM/NPM-ALK heterodimers, which can translocate to the nucleus. The mechanisms that sustain the stability of NPM-ALK are not fully understood. SUMOylation is a posttranslational modification that is characterized by the reversible conjugation of small ubiquitin-like modifiers (SUMOs) with target proteins. SUMO competes with ubiquitin for substrate binding and therefore, SUMOylation is believed to protect target proteins from proteasomal degradation. Moreover, SUMOylation contributes to the subcellular distribution of target proteins. Herein, we found that the SUMOylation pathway is deregulated in NPM-ALK+ T-cell lymphoma cell lines and primary lymphoma tumors from patients. We also identified Lys24 and Lys32 within the NPM domain as the sites where NPM-ALK conjugates with SUMO-1 and SUMO-3. Importantly, antagonizing SUMOylation by the SENP1 protease decreased the accumulation of NPM-ALK and suppressed lymphoma cell viability, proliferation, and anchorage-independent colony formation. One possible mechanism for the SENP1-mediated decrease in NPM-ALK levels was the increase in NPM-ALK association with ubiquitin, which facilitates its degradation. Our findings propose a model in which aberrancies in SUMOylation contribute to the pathogenesis of NPM-ALK+ T-cell lymphoma. Unraveling such pathogenic mechanisms may lead to devising novel strategies to eliminate this aggressive neoplasm. PMID:26476082

  9. Detection of EML4-ALK fusion gene and features associated with EGFR mutations in Chinese patients with non-small-cell lung cancer

    PubMed Central

    Wen, Miaomiao; Wang, Xuejiao; Sun, Ying; Xia, Jinghua; Fan, Liangbo; Xing, Hao; Zhang, Zhipei; Li, Xiaofei

    2016-01-01

    Purpose Echinoderm microtubule-associated protein-like 4–anaplastic lymphoma kinase (EML4-ALK) and epidermal growth factor receptor (EGFR) define specific molecular subsets of lung cancer with distinct clinical features. We aimed at revealing the clinical features of EML4-ALK fusion gene and EGFR mutation in non-small-cell lung cancer (NSCLC). Methods We enrolled 694 Chinese patients with NSCLC for analysis. EML4-ALK fusion gene was analyzed by real-time polymerase chain reaction, and EGFR mutations were analyzed by amplified refractory mutation system. Results Among the 694 patients, 60 (8.65%) patients had EML4-ALK fusions. In continuity correction χ2 test analysis, EML4-ALK fusion gene was correlated with sex, age, smoking status, and histology, but no significant association was observed between EML4-ALK fusion gene and clinical stage. A total of 147 (21.18%) patients had EGFR mutations. In concordance with previous reports, EGFR mutation was correlated with age, smoking status, histology, and clinical stage, whereas patient age was not significantly associated with EGFR mutation. Meanwhile, to our surprise, six (0.86%) patients had coexisting EML4-ALK fusions and EGFR mutations. Conclusion EML4-ALK fusion gene defines a new molecular subset in patients with NSCLC. Six patients who harbored both EML4-ALK fusion genes and EGFR mutations were identified in our study. The EGFR mutations and the EML4-ALK fusion genes are coexistent. PMID:27103824

  10. Anti-ALK Antibodies in Patients with ALK-Positive Malignancies Not Expressing NPM-ALK.

    PubMed

    Damm-Welk, Christine; Siddiqi, Faraz; Fischer, Matthias; Hero, Barbara; Narayanan, Vignesh; Camidge, David Ross; Harris, Michael; Burke, Amos; Lehrnbecher, Thomas; Pulford, Karen; Oschlies, Ilske; Siebert, Reiner; Turner, Suzanne; Woessmann, Wilhelm

    2016-01-01

    Patients with Nucleophosmin (NPM)- Anaplastic Lymphoma Kinase (ALK) fusion positive Anaplastic Large Cell Lymphoma produce autoantibodies against ALK indicative of an immune response against epitopes of the chimeric fusion protein. We asked whether ALK-expression in other malignancies induces specific antibodies. Antibodies against ALK were detected in sera of one of 50 analysed ALK-expressing neuroblastoma patients, 13 of 21 ALK positive non-small cell lung carcinoma (NSCLC) patients, 13 of 22 ALK translocation-positive, but NPM-ALK-negative lymphoma patients and one of one ALK-positive rhabdomyosarcoma patient, but not in 20 healthy adults. These data suggest that boosting a pre-existent anti-ALK immune response may be more feasible for patients with ALK-positive NSCLC, lymphomas and rhabdomyosarcomas than for tumours expressing wild-type ALK.

  11. Anti-ALK Antibodies in Patients with ALK-Positive Malignancies Not Expressing NPM-ALK

    PubMed Central

    Damm-Welk, Christine; Siddiqi, Faraz; Fischer, Matthias; Hero, Barbara; Narayanan, Vignesh; Camidge, David Ross; Harris, Michael; Burke, Amos; Lehrnbecher, Thomas; Pulford, Karen; Oschlies, Ilske; Siebert, Reiner; Turner, Suzanne; Woessmann, Wilhelm

    2016-01-01

    Patients with Nucleophosmin (NPM)- Anaplastic Lymphoma Kinase (ALK) fusion positive Anaplastic Large Cell Lymphoma produce autoantibodies against ALK indicative of an immune response against epitopes of the chimeric fusion protein. We asked whether ALK-expression in other malignancies induces specific antibodies. Antibodies against ALK were detected in sera of one of 50 analysed ALK-expressing neuroblastoma patients, 13 of 21 ALK positive non-small cell lung carcinoma (NSCLC) patients, 13 of 22 ALK translocation-positive, but NPM-ALK-negative lymphoma patients and one of one ALK-positive rhabdomyosarcoma patient, but not in 20 healthy adults. These data suggest that boosting a pre-existent anti-ALK immune response may be more feasible for patients with ALK-positive NSCLC, lymphomas and rhabdomyosarcomas than for tumours expressing wild-type ALK. PMID:27471553

  12. Anti-ALK Antibodies in Patients with ALK-Positive Malignancies Not Expressing NPM-ALK.

    PubMed

    Damm-Welk, Christine; Siddiqi, Faraz; Fischer, Matthias; Hero, Barbara; Narayanan, Vignesh; Camidge, David Ross; Harris, Michael; Burke, Amos; Lehrnbecher, Thomas; Pulford, Karen; Oschlies, Ilske; Siebert, Reiner; Turner, Suzanne; Woessmann, Wilhelm

    2016-01-01

    Patients with Nucleophosmin (NPM)- Anaplastic Lymphoma Kinase (ALK) fusion positive Anaplastic Large Cell Lymphoma produce autoantibodies against ALK indicative of an immune response against epitopes of the chimeric fusion protein. We asked whether ALK-expression in other malignancies induces specific antibodies. Antibodies against ALK were detected in sera of one of 50 analysed ALK-expressing neuroblastoma patients, 13 of 21 ALK positive non-small cell lung carcinoma (NSCLC) patients, 13 of 22 ALK translocation-positive, but NPM-ALK-negative lymphoma patients and one of one ALK-positive rhabdomyosarcoma patient, but not in 20 healthy adults. These data suggest that boosting a pre-existent anti-ALK immune response may be more feasible for patients with ALK-positive NSCLC, lymphomas and rhabdomyosarcomas than for tumours expressing wild-type ALK. PMID:27471553

  13. Identification of a novel HIP1-ALK fusion variant in Non-Small-Cell Lung Cancer (NSCLC) and discovery of ALK I1171 (I1171N/S) mutations in two ALK-rearranged NSCLC patients with resistance to Alectinib.

    PubMed

    Ou, Sai-Hong Ignatius; Klempner, Samuel J; Greenbowe, Joel R; Azada, Michele; Schrock, Alexa B; Ali, Siraj M; Ross, Jeffrey S; Stephens, Philip J; Miller, Vincent A

    2014-12-01

    Huntingtin-interacting protein 1 (HIP1) has recently been identified as a new fusion partner fused to anaplastic lymphoma kinase (ALK) in non-small-cell lung cancer (NSCLC). To date, two variants of HIP1-ALK (H21; A20) and (H28; A20) have been identified in NSCLC. However, the response of patients with NSCLC harboring HIP1-ALK to ALK inhibitors and potential resistance mechanisms to such remain unknown. Here, we report a patient with NSCLC harboring a novel HIP1-ALK fusion variant (H30; A20). This patient and another patient with EML4-ALK variant 3a/b initially responded sequentially to crizotinib and then alectinib, a next-generation ALK inhibitor, but developed acquired resistance to alectinib with the presence of a mutation in amino acid residue 1171 (I1171N and I1171S respectively) located in the hydrophobic regulatory spine (R-spine) of the ALK kinase in both the cases as identified by a comprehensive next-generation sequencing-based assay performed on biopsies of new liver metastases that developed during alectinib treatment.

  14. Fusion tyrosine kinase NPM-ALK Deregulates MSH2 and suppresses DNA mismatch repair function novel insights into a potent oncoprotein.

    PubMed

    Young, Leah C; Bone, Kathleen M; Wang, Peng; Wu, Fang; Adam, Benjamin A; Hegazy, Samar; Gelebart, Pascal; Holovati, Jelena; Li, Liang; Andrew, Susan E; Lai, Raymond

    2011-07-01

    The fusion tyrosine kinase NPM-ALK is central to the pathogenesis of ALK-positive anaplastic large cell lymphoma (ALK(+)ALCL). We recently identified that MSH2, a key DNA mismatch repair (MMR) protein integral to the suppression of tumorigenesis, is an NPM-ALK-interacting protein. In this study, we found in vitro evidence that enforced expression of NPM-ALK in HEK293 cells suppressed MMR function. Correlating with these findings, six of nine ALK(+)ALCL tumors displayed evidence of microsatellite instability, as opposed to none of the eight normal DNA control samples (P = 0.007, Student's t-test). Using co-immunoprecipitation, we found that increasing levels of NPM-ALK expression in HEK293 cells resulted in decreased levels of MSH6 bound to MSH2, whereas MSH2·NPM-ALK binding was increased. The NPM-ALK·MSH2 interaction was dependent on the activation/autophosphorylation of NPM-ALK, and the Y191 residue of NPM-ALK was a crucial site for this interaction and NPM-ALK-mediated MMR suppression. MSH2 was found to be tyrosine phosphorylated in the presence of NPM-ALK. Finally, NPM-ALK impeded the expected DNA damage-induced translocation of MSH2 out of the cytoplasm. To conclude, our data support a model in which the suppression of MMR by NPM-ALK is attributed to its ability to interfere with normal MSH2 biochemistry and function.

  15. Molecular characterization of WDCP, a novel fusion partner for the anaplastic lymphoma tyrosine kinase ALK

    PubMed Central

    YOKOYAMA, NORIKO; MILLER, W. TODD

    2015-01-01

    Anaplastic lymphoma kinase (ALK) is a member of the receptor tyrosine kinase superfamily. The ALK gene is a site of frequent mutation and chromosomal rearrangement in various types of human cancers. A novel chromosomal translocation was recently identified in human colorectal cancer between the ALK gene and chromosome 2, open reading frame 44 (C2orf44), a gene of unknown function. As a first step in understanding the oncogenic properties of this fusion protein, C2orf44 cDNA was cloned and the encoded protein was characterized, which was designated as WD repeat and coiled coil containing protein (WDCP). A C-terminal proline-rich segment in WDCP was shown to mediate binding to the Src homology 3 domain of the Src family kinase hematopoietic cell kinase (Hck). Co-expression with Hck lead to tyrosine phosphorylation of WDCP. Chromatographic fractionation of WDCP-containing lysates indicates that the protein exists as an oligomer in mammalian cells. These results suggest that, in the context of the ALK-C2orf44 gene fusion, WDCP imposes an oligomeric structure on ALK that results in constitutive kinase activation and signaling. PMID:25469238

  16. NPM/ALK binds and phosphorylates the RNA/DNA-binding protein PSF in anaplastic large-cell lymphoma.

    PubMed

    Galietta, Annamaria; Gunby, Rosalind H; Redaelli, Sara; Stano, Paola; Carniti, Cristiana; Bachi, Angela; Tucker, Philip W; Tartari, Carmen J; Huang, Ching-Jung; Colombo, Emanuela; Pulford, Karen; Puttini, Miriam; Piazza, Rocco G; Ruchatz, Holger; Villa, Antonello; Donella-Deana, Arianna; Marin, Oriano; Perrotti, Danilo; Gambacorti-Passerini, Carlo

    2007-10-01

    The oncogenic fusion tyrosine kinase nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) induces cellular transformation in anaplastic large-cell lymphomas (ALCLs) carrying the t(2;5) chromosomal translocation. Protein-protein interactions involving NPM/ALK are important for the activation of downstream signaling pathways. This study was aimed at identifying novel NPM/ALK-binding proteins that might contribute to its oncogenic transformation. Using a proteomic approach, several RNA/DNA-binding proteins were found to coimmunoprecipitate with NPM/ALK, including the multifunctional polypyrimidine tract binding proteinassociated splicing factor (PSF). The interaction between NPM/ALK and PSF was dependent on an active ALK kinase domain and PSF was found to be tyrosine-phosphorylated in NPM/ALK-expressing cell lines and in primary ALK(+) ALCL samples. Furthermore, PSF was shown to be a direct substrate of purified ALK kinase domain in vitro, and PSF Tyr293 was identified as the site of phosphorylation. Y293F PSF was not phosphorylated by NPM/ALK and was not delocalized in NPM/ALK(+) cells. The expression of ALK fusion proteins induced delocalization of PSF from the nucleus to the cytoplasm and forced overexpression of PSF-inhibited proliferation and induced apoptosis in cells expressing NPM/ALK. PSF phosphorylation also increased its binding to RNA and decreased the PSF-mediated suppression of GAGE6 expression. These results identify PSF as a novel NPM/ALK-binding protein and substrate, and suggest that PSF function may be perturbed in NPM/ALK-transformed cells.

  17. NPM/ALK binds and phosphorylates the RNA/DNA-binding protein PSF in anaplastic large-cell lymphoma

    PubMed Central

    Gunby, Rosalind H.; Redaelli, Sara; Stano, Paola; Carniti, Cristiana; Bachi, Angela; Tucker, Philip W.; Tartari, Carmen J.; Huang, Ching-Jung; Colombo, Emanuela; Pulford, Karen; Puttini, Miriam; Piazza, Rocco G.; Ruchatz, Holger; Villa, Antonello; Donella-Deana, Arianna; Marin, Oriano; Perrotti, Danilo; Gambacorti-Passerini, Carlo

    2007-01-01

    The oncogenic fusion tyrosine kinase nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) induces cellular transformation in anaplastic large-cell lymphomas (ALCLs) carrying the t(2;5) chromosomal translocation. Protein-protein interactions involving NPM/ALK are important for the activation of downstream signaling pathways. This study was aimed at identifying novel NPM/ALK-binding proteins that might contribute to its oncogenic transformation. Using a proteomic approach, several RNA/DNA-binding proteins were found to coimmunoprecipitate with NPM/ALK, including the multifunctional polypyrimidine tract binding proteinassociated splicing factor (PSF). The interaction between NPM/ALK and PSF was dependent on an active ALK kinase domain and PSF was found to be tyrosine-phosphorylated in NPM/ALK-expressing cell lines and in primary ALK+ ALCL samples. Furthermore, PSF was shown to be a direct substrate of purified ALK kinase domain in vitro, and PSF Tyr293 was identified as the site of phosphorylation. Y293F PSF was not phosphorylated by NPM/ALK and was not delocalized in NPM/ALK+ cells. The expression of ALK fusion proteins induced delocalization of PSF from the nucleus to the cytoplasm and forced overexpression of PSF-inhibited proliferation and induced apoptosis in cells expressing NPM/ALK. PSF phosphorylation also increased its binding to RNA and decreased the PSF-mediated suppression of GAGE6 expression. These results identify PSF as a novel NPM/ALK-binding protein and substrate, and suggest that PSF function may be perturbed in NPM/ALK-transformed cells. PMID:17537995

  18. NPM/ALK binds and phosphorylates the RNA/DNA-binding protein PSF in anaplastic large-cell lymphoma.

    PubMed

    Galietta, Annamaria; Gunby, Rosalind H; Redaelli, Sara; Stano, Paola; Carniti, Cristiana; Bachi, Angela; Tucker, Philip W; Tartari, Carmen J; Huang, Ching-Jung; Colombo, Emanuela; Pulford, Karen; Puttini, Miriam; Piazza, Rocco G; Ruchatz, Holger; Villa, Antonello; Donella-Deana, Arianna; Marin, Oriano; Perrotti, Danilo; Gambacorti-Passerini, Carlo

    2007-10-01

    The oncogenic fusion tyrosine kinase nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) induces cellular transformation in anaplastic large-cell lymphomas (ALCLs) carrying the t(2;5) chromosomal translocation. Protein-protein interactions involving NPM/ALK are important for the activation of downstream signaling pathways. This study was aimed at identifying novel NPM/ALK-binding proteins that might contribute to its oncogenic transformation. Using a proteomic approach, several RNA/DNA-binding proteins were found to coimmunoprecipitate with NPM/ALK, including the multifunctional polypyrimidine tract binding proteinassociated splicing factor (PSF). The interaction between NPM/ALK and PSF was dependent on an active ALK kinase domain and PSF was found to be tyrosine-phosphorylated in NPM/ALK-expressing cell lines and in primary ALK(+) ALCL samples. Furthermore, PSF was shown to be a direct substrate of purified ALK kinase domain in vitro, and PSF Tyr293 was identified as the site of phosphorylation. Y293F PSF was not phosphorylated by NPM/ALK and was not delocalized in NPM/ALK(+) cells. The expression of ALK fusion proteins induced delocalization of PSF from the nucleus to the cytoplasm and forced overexpression of PSF-inhibited proliferation and induced apoptosis in cells expressing NPM/ALK. PSF phosphorylation also increased its binding to RNA and decreased the PSF-mediated suppression of GAGE6 expression. These results identify PSF as a novel NPM/ALK-binding protein and substrate, and suggest that PSF function may be perturbed in NPM/ALK-transformed cells. PMID:17537995

  19. A new protein superfamily includes two novel 3-methyladenine DNA glycosylases from Bacillus cereus, AlkC and AlkD.

    PubMed

    Alseth, Ingrun; Rognes, Torbjørn; Lindbäck, Toril; Solberg, Inger; Robertsen, Kristin; Kristiansen, Knut Ivan; Mainieri, Davide; Lillehagen, Lucy; Kolstø, Anne-Brit; Bjørås, Magnar

    2006-03-01

    Soil bacteria are heavily exposed to environmental methylating agents such as methylchloride and may have special requirements for repair of alkylation damage on DNA. We have used functional complementation of an Escherichia coli tag alkA mutant to screen for 3-methyladenine DNA glycosylase genes in genomic libraries of the soil bacterium Bacillus cereus. Three genes were recovered: alkC, alkD and alkE. The amino acid sequence of AlkE is homologous to the E. coli AlkA sequence. AlkC and AlkD represent novel proteins without sequence similarity to any protein of known function. However, iterative and indirect sequence similarity searches revealed that AlkC and AlkD are distant homologues of each other within a new protein superfamily that is ubiquitous in the prokaryotic kingdom. Homologues of AlkC and AlkD were also identified in the amoebas Entamoeba histolytica and Dictyostelium discoideum, but no other eukaryotic counterparts of the superfamily were found. The alkC and alkD genes were expressed in E. coli and the proteins were purified to homogeneity. Both proteins were found to be specific for removal of N-alkylated bases, and showed no activity on oxidized or deaminated base lesions in DNA. B. cereus AlkC and AlkD thus define novel families of alkylbase DNA glycosylases within a new protein superfamily.

  20. A new protein superfamily includes two novel 3-methyladenine DNA glycosylases from Bacillus cereus, AlkC and AlkD

    PubMed Central

    Alseth, Ingrun; Rognes, Torbjørn; Lindbäck, Toril; Solberg, Inger; Robertsen, Kristin; Kristiansen, Knut Ivan; Mainieri, Davide; Lillehagen, Lucy; Kolstø, Anne-Brit; Bjørås, Magnar

    2006-01-01

    Summary Soil bacteria are heavily exposed to environmental methylating agents such as methylchloride and may have special requirements for repair of alkylation damage on DNA. We have used functional complementation of an Escherichia coli tag alkA mutant to screen for 3-methyladenine DNA glycosylase genes in genomic libraries of the soil bacterium Bacillus cereus. Three genes were recovered: alkC, alkD and alkE. The amino acid sequence of AlkE is homologous to the E. coli AlkA sequence. AlkC and AlkD represent novel proteins without sequence similarity to any protein of known function. However, iterative and indirect sequence similarity searches revealed that AlkC and AlkD are distant homologues of each other within a new protein superfamily that is ubiquitous in the prokaryotic kingdom. Homologues of AlkC and AlkD were also identified in the amoebas Entamoeba histolytica and Dictyostelium discoideum, but no other eukaryotic counterparts of the superfamily were found. The alkC and alkD genes were expressed in E. coli and the proteins were purified to homogeneity. Both proteins were found to be specific for removal of N-alkylated bases, and showed no activity on oxidized or deaminated base lesions in DNA. B. cereus AlkC and AlkD thus define novel families of alkylbase DNA glycosylases within a new protein superfamily. PMID:16468998

  1. A new protein superfamily includes two novel 3-methyladenine DNA glycosylases from Bacillus cereus, AlkC and AlkD.

    PubMed

    Alseth, Ingrun; Rognes, Torbjørn; Lindbäck, Toril; Solberg, Inger; Robertsen, Kristin; Kristiansen, Knut Ivan; Mainieri, Davide; Lillehagen, Lucy; Kolstø, Anne-Brit; Bjørås, Magnar

    2006-03-01

    Soil bacteria are heavily exposed to environmental methylating agents such as methylchloride and may have special requirements for repair of alkylation damage on DNA. We have used functional complementation of an Escherichia coli tag alkA mutant to screen for 3-methyladenine DNA glycosylase genes in genomic libraries of the soil bacterium Bacillus cereus. Three genes were recovered: alkC, alkD and alkE. The amino acid sequence of AlkE is homologous to the E. coli AlkA sequence. AlkC and AlkD represent novel proteins without sequence similarity to any protein of known function. However, iterative and indirect sequence similarity searches revealed that AlkC and AlkD are distant homologues of each other within a new protein superfamily that is ubiquitous in the prokaryotic kingdom. Homologues of AlkC and AlkD were also identified in the amoebas Entamoeba histolytica and Dictyostelium discoideum, but no other eukaryotic counterparts of the superfamily were found. The alkC and alkD genes were expressed in E. coli and the proteins were purified to homogeneity. Both proteins were found to be specific for removal of N-alkylated bases, and showed no activity on oxidized or deaminated base lesions in DNA. B. cereus AlkC and AlkD thus define novel families of alkylbase DNA glycosylases within a new protein superfamily. PMID:16468998

  2. The ALK gene, an attractive target for inhibitor development.

    PubMed

    Tartari, Carmen J; Scapozza, Leonardo; Gambacorti-Passerini, Carlo

    2011-01-01

    Anaplastic Lymphoma Kinase (ALK) is a receptor tyrosine kinase that belongs to the Insulin receptor subfamily involved as full length receptor in neural development. Even if the expression of ALK protein is down-regulated in the adults, the ALK full length is expressed in different types of tumors. Moreover, chromosomal rearrangements, involving the alk gene, can occur leading the formation of different ALK fusion proteins characterized by the kinase domain of ALK fused to several partners that determine cellular localization. Structural investigation and characterization of the ALK kinase domain in absence of its crystal structure constituted the basis of development of ALK small molecule inhibitors. Here, we described normal function of the ALK receptor and its role in tumors; formation of the constitutively activated ALK fusion proteins and we reported an update of developed small molecule inhibitors of the ALK kinase activity. PMID:21513493

  3. Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer

    PubMed Central

    Nakaoku, Takashi; Tsuta, Koji; Tsuchihara, Katsuya; Matsumoto, Shingo; Yoh, Kiyotaka; Goto, Koichi

    2015-01-01

    Fusions of the RET and ROS1 protein tyrosine kinase oncogenes with several partner genes were recently identified as new targetable genetic aberrations in cases of non-small cell lung cancer (NSCLC) lacking activating EGFR, KRAS, ALK, BRAF, or HER2 oncogene aberrations. RET and ROS1 fusion-positive tumors are mainly observed in young, female, and/or never smoking patients. Studies based on in vitro and in vivo (i.e., mouse) models and studies of several fusion-positive patients indicate that inhibiting the kinase activity of the RET and ROS1 fusion proteins is a promising therapeutic strategy. Accordingly, there are several ongoing clinical trials aimed at examining the efficacy of tyrosine kinase inhibitors (TKIs) against RET and ROS1 proteins in patients with fusion-positive lung cancer. Other gene fusions (NTRK1, NRG1, and FGFR1/2/3) that are targetable by existing TKIs have also been identified in NSCLCs. Options for personalized lung cancer therapy will be increased with the help of multiplex diagnosis systems able to detect multiple druggable gene fusions. PMID:25870798

  4. The role of the ALK receptor in cancer biology.

    PubMed

    Hallberg, B; Palmer, R H

    2016-09-01

    A vast array of oncogenic variants has been identified for anaplastic lymphoma kinase (ALK). Therefore, there is a need to better understand the role of ALK in cancer biology in order to optimise treatment strategies. This review summarises the latest research on the receptor tyrosine kinase ALK, and how this information can guide the management of patients with cancer that is ALK-positive. A variety of ALK gene alterations have been described across a range of tumour types, including point mutations, deletions and rearrangements. A wide variety of ALK fusions, in which the kinase domain of ALK and the amino-terminal portion of various protein partners are fused, occur in cancer, with echinoderm microtubule-associated protein-like 4 (EML4)-ALK being the most prevalent in non-small-cell lung cancer (NSCLC). Different ALK fusion proteins can mediate different signalling outputs, depending on properties such as subcellular localisation and protein stability. The ALK fusions found in tumours lack spatial and temporal regulation, which can also affect dimerisation and substrate specificity. Two ALK tyrosine kinase inhibitors (TKIs), crizotinib and ceritinib, are currently approved in Europe for use in ALK-positive NSCLC and several others are in development. These ALK TKIs bind slightly differently within the ATP-binding pocket of the ALK kinase domain and are associated with the emergence of different resistance mutation patterns during therapy. This emphasises the need to tailor the sequence of ALK TKIs according to the ALK signature of each patient. Research into the oncogenic functions of ALK, and fast paced development of ALK inhibitors, has substantially improved outcomes for patients with ALK-positive NSCLC. Limited data are available surrounding the physiological ligand-stimulated activation of ALK signalling and further research is needed. Understanding the role of ALK in tumour biology is key to further optimising therapeutic strategies for ALK

  5. Crizotinib (PF-2341066) induces apoptosis due to downregulation of pSTAT3 and BCL-2 family proteins in NPM-ALK(+) anaplastic large cell lymphoma.

    PubMed

    Hamedani, Farid Saei; Cinar, Munevver; Mo, Zhicheng; Cervania, Melissa A; Amin, Hesham M; Alkan, Serhan

    2014-04-01

    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) is an aberrant fusion gene product with tyrosine kinase activity and is expressed in substantial subset of anaplastic large cell lymphomas (ALCL). It has been shown that NPM-ALK binds to and activates signal transducer and activator of transcription 3 (STAT3). Although NPM-ALK(+) ALCL overall shows a better prognosis, there is a sub-group of patients who relapses and is resistant to conventional chemotherapeutic regimens. NPM-ALK is a potential target for small molecule kinase inhibitors. Crizotinib (PF-2341066) is a small, orally bioavailable molecule that inhibits growth of tumors with ALK activity as shown in a subgroup of non-small lung cancer patients with EML4-ALK expression. In this study, we have investigated the in vitro effects of Crizotinib in ALCL cell line with NPM-ALK fusion. Crizotinib induced marked downregulation of STAT3 phosphorylation, which was associated with significant apoptotic cell death. Apoptosis induction was attributed to caspase-3 cleavage and marked downregulation of the Bcl-2 family of proteins including MCL-1. These findings implicate that Crizotinib has excellent potential to treat patients with NPM-ALK(+) ALCL through induction of apoptotic cell death and downregulation of major oncogenic proteins in this aggressive lymphoma.

  6. Involvement of Grb2 adaptor protein in nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-mediated signaling and anaplastic large cell lymphoma growth.

    PubMed

    Riera, Ludovica; Lasorsa, Elena; Ambrogio, Chiara; Surrenti, Nadia; Voena, Claudia; Chiarle, Roberto

    2010-08-20

    Most anaplastic large cell lymphomas (ALCL) express oncogenic fusion proteins derived from chromosomal translocations or inversions of the anaplastic lymphoma kinase (ALK) gene. Frequently ALCL carry the t(2;5) translocation, which fuses the ALK gene to the nucleophosmin (NPM1) gene. The transforming activity mediated by NPM-ALK fusion induces different pathways that control proliferation and survival of lymphoma cells. Grb2 is an adaptor protein thought to play an important role in ALK-mediated transformation, but its interaction with NPM-ALK, as well as its function in regulating ALCL signaling pathways and cell growth, has never been elucidated. Here we show that active NPM-ALK, but not a kinase-dead mutant, bound and induced Grb2 phosphorylation in tyrosine 160. An intact SH3 domain at the C terminus of Grb2 was required for Tyr(160) phosphorylation. Furthermore, Grb2 did not bind to a single region but rather to different regions of NPM-ALK, mainly Tyr(152-156), Tyr(567), and a proline-rich region, Pro(415-417). Finally, shRNA knockdown experiments showed that Grb2 regulates primarily the NPM-ALK-mediated phosphorylation of SHP2 and plays a key role in ALCL cell growth.

  7. Imaging Characteristics in ALK Fusion-Positive Lung Adenocarcinomas by Using HRCT

    PubMed Central

    Okumura, Sakae; Kuroda, Hiroaki; Uehara, Hirofumi; Mun, Mingyon; Takeuchi, Kengo; Nakagawa, Ken

    2014-01-01

    Objectives: We aimed to identify high-resolution computed tomography (HRCT) features useful to distinguish the anaplastic lymphoma kinase gene (ALK) fusion-positive and negative lung adenocarcinomas. Methods: We included 236 surgically resected adenocarcinoma lesions, which included 27 consecutive ALK fusion-positive (AP) lesions, 115 epidermal growth factor receptor mutation-positive lesions, and 94 double-negative lesions. HRCT parameters including size, air bronchograms, pleural indentation, spiculation, and tumor disappearance rate (TDR) were compared. In addition, prevalence of small lesions (≤20 mm) and solid lesions (TDR ≤20%) were compared. Results: AP lesions were significantly smaller and had lower TDR (%) than ALK fusion-negative (AN) lesions (tumor diameter: 20.7 mm ± 14.1 mm vs. 27.4 mm ± 13.8 mm, respectively, p <0.01; TDR: 22.8% ± 24.8% vs. 44.8% ± 33.2%, respectively, p <0.01). All AP lesions >20 mm (n = 7, 25.9%) showed a solid pattern. Among all small lesions, AP lesions had lower TDR and more frequent spiculation than AN lesions (p <0.01). Among solid lesions, AP lesions were smaller than AN lesions (p = 0.01). Conclusion: AP lung lesions were significantly smaller and had a lower TDR than AN lesions. Spiculation was more frequent in small lesions. Non-solid >20 mm lesions may be ALK fusion-negative. PMID:24899136

  8. Molecular Characterization of Inflammatory Myofibroblastic Tumors with Frequent ALK and ROS1 Fusions and Rare Novel RET Gene Rearrangement

    PubMed Central

    Antonescu, Cristina R; Suurmeijer, Albert JH; Zhang, Lei; Sung, Yun-Shao; Jungbluth, Achim A; Travis, William D; Al-Ahmadie, Hikmat; Fletcher, Christopher DM; Alaggio, Rita

    2015-01-01

    Approximately 50% of conventional IMTs harbor ALK gene rearrangement and overexpress ALK. Recently gene fusions involving other kinases have been implicated in the pathogenesis of IMT, including ROS1 and in one patient PDGFRB. However, it remains uncertain if the emerging genotypes correlate with clinicopathologic characteristics of IMT. In this study we expand the molecular investigation of IMT in a large cohort of different clinical presentations and analyze for potential genotype-phenotype associations. Criteria for inclusion in the study were typical morphology and tissue availability for molecular studies. The lack of ALK immunoreactivity was not an excluding factor. As overlapping gene fusions involving actionable kinases are emerging in both IMT and lung cancer, we set out to evaluate abnormalities in ALK, ROS1, PDGFRB, NTRK1 and RET by FISH. Additionally, next generation paired-end RNA sequencing and FusionSeq algorithm was applied in 4 cases, which identified EML4-ALK fusions in 2 cases. Of the 62 IMTs (25 children and 37 adults), 35 (56%) showed ALK gene rearrangement. Of note, EML4-ALK inversion was noted in 7 (20%) cases, seen mainly in the lung and soft tissue of young children including 2 lesions from newborns. There were 6 (10%) ROS1 rearranged IMTs, all except one presenting in children, mainly in the lung and intra-abdominal and showed a distinctive fascicular growth of spindle cells with long cell processes, often positive for ROS1 IHC. Two of the cases showed TFG-ROS1 fusions. Interestingly, one adult IMT revealed a RET gene rearrangement, a previously unreported finding. Our results show that 42/62 (68%) of IMTs are characterized by kinase fusions, offering a rationale for targeted therapeutic strategies. Interestingly 90% of fusion negative IMT were seen in adults, while >90% of pediatric IMT showed gene rearrangements.EML4-ALK inversion and ROS1 fusions emerge as common fusion abnormalities in IMT, closely recapitulating the pattern seen in

  9. Detection of EML4-ALK fusion gene in Chinese non-small cell lung cancer by using a sensitive quantitative real-time reverse transcriptase PCR technique.

    PubMed

    Fu, Sha; Wang, Fang; Shao, Qiong; Zhang, Xu; Duan, Li-Ping; Zhang, Xiao; Zhang, Li; Shao, Jian-Yong

    2015-04-01

    Anaplastic lymphoma kinase (ALK) rearrangement is present in approximately 5% of lung adenocarcinoma. Clinical trials on ALK inhibitor phase I to III have shown an interesting disease control rate and acceptable tolerability in ALK rearrangement patients. In clinical application, the precise diagnostic strategy for identifying ALK rearrangements remains to be determined. In this study, ALK rearrangement was screened by using quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR), direct sequencing, 2 fluorescence in situ hybridization (FISH) assays, and immunohistochemistry in 173 lung adenocarcinomas. We identified 18 cases (10.4%) with EML4-ALK fusion-positive by qRT-PCR, and all were positive for EML4-ALK fusion gene validated by direct sequencing. The result was consistent with that of other methods. Furthermore, of the 18 EML4-ALK fusion-positive cases, 16 (9.2%) were positive by using EML4-ALK fusion probe FISH, and 15 (8.7%) were positive by using ALK break-apart probe FISH and immunohistochemistry staining. Of the 18 ALK fusion-positive lung adenocarcinomas, 8 cases (44.4%) were histologically diagnosed as subtypes of cribriform adenocarcinoma, 7 cases (38.9%) as cribriform adenocarcinoma mixed with papillary and/or mucinous pattern, 2 cases (11.1%) as papillary adenocarcinoma, and 1 case (5.6%) as mucinous adenocarcinoma. In the present study, the ALK rearrangement frequency detected by qRT-PCR in Chinese NSCLC patients was higher than that in the western populations. QRT-PCR is a rapid, sensitive technology that could be used as a screening tool for identifying EML4-ALK fusion-positive NSCLC patients who would be sensitive for receiving ALK inhibitor therapy.

  10. Clinical and Pathologic Findings of Spitz Nevi and Atypical Spitz Tumors with ALK Fusions

    PubMed Central

    Busam, Klaus J; Kutzner, Heinz; Cerroni, Lorenzo; Wiesner, Thomas

    2016-01-01

    Spitz tumors represent a group of melanocytic neoplasms that typically affects young individuals. Microscopically the lesions are composed of cytologically distinct spindle and epithelioid melanocytes, with a range in the architectural display or the cells, their nuclear features, and secondary epidermal or stromal changes. Recently, kinase fusions have been documented in a subset of Spitz tumors, but there is limited information on the clinical and pathologic features associated with those lesions. Here, we report a series of 17 patients (9 male, 8 female) with spitzoid neoplasms showing ALK fusions (5 Spitz nevi and 12 atypical Spitz tumors). The patients’ ages ranged from 2 years to 35 years (mean = 17; median = 16). Most lesions were located on the lower extremities and presented clinically as polypoid nodules. All tumors were compound melanocytic proliferations with a predominant intradermal growth. Tumor thickness ranged from 1.1 to 6 mm (mean = 2.9 mm; median = 2.5 mm). The most characteristic histopathologic feature of the tumors (seen in all but two lesions) was a plexiform dermal growth of intersecting fascicles of fusiform melanocytes. All but two tumors were amelanotic. All tumors were strongly immunoreactive for ALK. The ALK rearrangements were confirmed in all cases by fluorescence in situ hybridization (FISH) and the fusion partner was determined by quantitative polymerase chain reaction as TPM3 (tropomyosin 3) in 11 cases and DCTN1 (dynactin 1) in 6 cases. None of the eight tumors, which were analyzed by FISH for copy number changes of 6p, 6q, 9p, or 11q met criteria for melanoma. Two patients underwent a sentinel lymph node biopsy, and in both cases melanocytes nests were found in the subcapsular sinus of the node. Array comparative genomic hybridization of these two tumors revealed no chromosomal gains or losses. In conclusion, our study revealed that Spitz nevi/tumors with ALK rearrangement show a characteristic plexiform morphology and that

  11. Decoding Tumor Phenotypes for ALK, ROS1, and RET Fusions in Lung Adenocarcinoma Using a Radiomics Approach

    PubMed Central

    Yoon, Hyun Jung; Sohn, Insuk; Cho, Jong Ho; Lee, Ho Yun; Kim, Jae-Hun; Choi, Yoon-La; Kim, Hyeseung; Lee, Genehee; Lee, Kyung Soo; Kim, Jhingook

    2015-01-01

    Abstract Quantitative imaging using radiomics can capture distinct phenotypic differences between tumors and may have predictive power for certain phenotypes according to specific genetic mutations. We aimed to identify the clinicoradiologic predictors of tumors with ALK (anaplastic lymphoma kinase), ROS1 (c-ros oncogene 1), or RET (rearranged during transfection) fusions in patients with lung adenocarcinoma. A total of 539 pathologically confirmed lung adenocarcinomas were included in this retrospective study. The baseline clinicopathologic characteristics were retrieved from the patients’ medical records and the ALK/ROS1/RET fusion status was reviewed. Quantitative computed tomography (CT) and positron emission tomography imaging characteristics were evaluated using a radiomics approach. Significant features for the fusion-positive tumor prediction model were extracted from all of the clinicoradiologic features, and were used to calculate diagnostic performance for predicting 3 fusions’ positivity. The clinicoradiologic features were compared between ALK versus ROS1/RET fusion-positive tumors to identify the clinicoradiologic similarity between the 2 groups. The fusion-positive tumor prediction model was a combination of younger age, advanced tumor stage, solid tumor on CT, higher values for SUVmax and tumor mass, lower values for kurtosis and inverse variance on 3-voxel distance than those of fusion-negative tumors (sensitivity and specificity, 0.73 and 0.70, respectively). ALK fusion-positive tumors were significantly different in tumor stage, central location, SUVmax, homogeneity on 1-, 2-, and 3-voxel distances, and sum mean on 2-voxel distance compared with ROS1/RET fusion-positive tumors. ALK/ROS1/RET fusion-positive lung adenocarcinomas possess certain clinical and imaging features that enable good discrimination of fusion-positive from fusion-negative lung adenocarcinomas. PMID:26469915

  12. USP15 targets ALK3/BMPR1A for deubiquitylation to enhance bone morphogenetic protein signalling

    PubMed Central

    Herhaus, Lina; Al-Salihi, Mazin A.; Dingwell, Kevin S.; Cummins, Timothy D.; Wasmus, Lize; Vogt, Janis; Ewan, Richard; Bruce, David; Macartney, Thomas; Weidlich, Simone; Smith, James C.; Sapkota, Gopal P.

    2014-01-01

    Protein kinase ALK3/BMPR1A mediates bone morphogenetic protein (BMP) signalling through phosphorylation and activation of SMADs 1/5/8. SMAD6, a transcriptional target of BMP, negatively regulates the BMP pathway by recruiting E3 ubiquitin ligases and targeting ALK3 for ubiquitin-mediated degradation. Here, we identify a deubiquitylating enzyme USP15 as an interactor of SMAD6 and ALK3. We show that USP15 enhances BMP-induced phosphorylation of SMAD1 by interacting with and deubiquitylating ALK3. RNAi-mediated depletion of USP15 increases ALK3 K48-linked polyubiquitylation, and reduces both BMP-induced SMAD1 phosphorylation and transcription of BMP target genes. We also show that loss of USP15 expression from mouse myoblast cells inhibits BMP-induced osteoblast differentiation. Furthermore, USP15 modulates BMP-induced phosphorylation of SMAD1 and transcription during Xenopus embryogenesis. PMID:24850914

  13. USP15 targets ALK3/BMPR1A for deubiquitylation to enhance bone morphogenetic protein signalling.

    PubMed

    Herhaus, Lina; Al-Salihi, Mazin A; Dingwell, Kevin S; Cummins, Timothy D; Wasmus, Lize; Vogt, Janis; Ewan, Richard; Bruce, David; Macartney, Thomas; Weidlich, Simone; Smith, James C; Sapkota, Gopal P

    2014-05-01

    Protein kinase ALK3/BMPR1A mediates bone morphogenetic protein (BMP) signalling through phosphorylation and activation of SMADs 1/5/8. SMAD6, a transcriptional target of BMP, negatively regulates the BMP pathway by recruiting E3 ubiquitin ligases and targeting ALK3 for ubiquitin-mediated degradation. Here, we identify a deubiquitylating enzyme USP15 as an interactor of SMAD6 and ALK3. We show that USP15 enhances BMP-induced phosphorylation of SMAD1 by interacting with and deubiquitylating ALK3. RNAi-mediated depletion of USP15 increases ALK3 K48-linked polyubiquitylation, and reduces both BMP-induced SMAD1 phosphorylation and transcription of BMP target genes. We also show that loss of USP15 expression from mouse myoblast cells inhibits BMP-induced osteoblast differentiation. Furthermore, USP15 modulates BMP-induced phosphorylation of SMAD1 and transcription during Xenopus embryogenesis. PMID:24850914

  14. The proteomic signature of NPM/ALK reveals deregulation of multiple cellular pathways.

    PubMed

    Lim, Megan S; Carlson, Mary L; Crockett, David K; Fillmore, G Chris; Abbott, David R; Elenitoba-Johnson, Olaotan F; Tripp, Sheryl R; Rassidakis, George Z; Medeiros, L Jeffrey; Szankasi, Philippe; Elenitoba-Johnson, Kojo S J

    2009-08-20

    Constitutive expression of the chimeric NPM/ALK fusion protein encoded by the t(2;5)(p32;q35) is a key oncogenic event in the pathogenesis of most anaplastic large cell lymphomas (ALCLs). The proteomic network alterations produced by this aberration remain largely uncharacterized. Using a mass spectrometry (MS)-driven approach to identify changes in protein expression caused by the NPM/ALK fusion, we identified diverse NPM/ALK-induced changes affecting cell proliferation, ribosome synthesis, survival, apoptosis evasion, angiogenesis, and cytoarchitectural organization. MS-based findings were confirmed using Western blotting and/or immunostaining of NPM/ALK-transfected cells and ALK-deregulated lymphomas. A subset of the proteins distinguished NPM/ALK-positive ALCLs from NPM/ALK-negative ALCLs and Hodgkin lymphoma. The multiple NPM/ALK-deregulated pathways identified by MS analysis also predicted novel biologic effects of NPM/ALK expression. In this regard, we showed loss of cell adhesion as a consequence of NPM/ALK expression in a kinase-dependent manner, and sensitivity of NPM/ALK-positive ALCLs to inhibition of the RAS, p42/44ERK, and FRAP/mTOR signaling pathways. These findings reveal that the NPM/ALK alteration affects diverse cellular pathways, and provide novel insights into NPM/ALK-positive ALCL pathobiology. Our studies carry important implications for the use of MS-driven approaches for the elucidation of neoplastic pathobiology, the identification of novel diagnostic biomarkers, and pathogenetically relevant therapeutic targets.

  15. Activity of second-generation ALK inhibitors against crizotinib-resistant mutants in an NPM-ALK model compared to EML4-ALK.

    PubMed

    Fontana, Diletta; Ceccon, Monica; Gambacorti-Passerini, Carlo; Mologni, Luca

    2015-07-01

    Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor involved in both solid and hematological tumors. About 80% of ALK-positive anaplastic large-cell lymphoma (ALCL) cases are characterized by the t(2;5)(p23;q35) translocation, encoding for the aberrant fusion protein nucleophosmin (NPM)-ALK, whereas 5% of non-small-cell lung cancer (NSCLC) patients carry the inv(2)(p21;p23) rearrangement, encoding for the echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion. The ALK/c-MET/ROS inhibitor crizotinib successfully improved the treatment of ALK-driven diseases. However, several cases of resistance appeared in NSCLC patients, and ALK amino acid substitutions were identified as a leading cause of resistance to crizotinib. Second-generation ALK inhibitors have been developed in order to overcome crizotinib resistance. In this work, we profiled in vitro the activity of crizotinib, AP26113, ASP3026, alectinib, and ceritinib against six mutated forms of ALK associated with clinical resistance to crizotinib (C1156Y, L1196M, L1152R, G1202R, G1269A, and S1206Y) and provide a classification of mutants according to their level of sensitivity/resistance to the drugs. Since the biological activity of ALK mutations extends beyond the specific type of fusion, both NPM-ALK- and EML4-ALK-positive cellular models were used. Our data revealed that most mutants may be targeted by using different inhibitors. One relevant exception is represented by the G1202R substitution, which was highly resistant to all drugs (>10-fold increased IC50 compared to wild type) and may represent the most challenging mutation to overcome. These results provide a prediction of cross-resistance of known crizotinib-resistant mutations against all second-generation tyrosine kinase inhibitors (TKIs) clinically available, and therefore could be a useful tool to help clinicians in the management of crizotinib-resistance cases.

  16. Evidence that the lung adenocarcinoma EML4-ALK fusion gene is not caused by exposure to secondhand tobacco smoke during childhood

    PubMed Central

    Jen, Jin; Yi, Eunhee S.; Olivo-Marston, Susan; Yang, Ping; Harris, Curtis C.

    2014-01-01

    Background The EML4-ALK fusion gene is more frequently found in younger, never smoking, lung cancer patients. Meanwhile, never smokers exposed to secondhand tobacco smoke (SHS) during childhood are diagnosed at a younger age compared with never smoking lung cancer patients that are not exposed. We therefore hypothesized that SHS, which can induce DNA damage, is associated with the EML4-ALK fusion gene. Methods We compared the frequency of the EML4-ALK fusion gene among 197 never smoker lung cancer patients with and without a history of exposure to SHS during childhood at Mayo Clinic. Results The EML4-ALK fusion gene was detected in 33% of cases from never smokers with a history of SHS exposure during childhood, while 47% of never smoking lung cancer cases without a history of childhood SHS exposure tested positive for the fusion gene. Conclusions The EML4-ALK fusion gene is not enriched in tumors from individuals exposed to SHS during childhood. Impact These data suggest that childhood exposure to SHS is not a significant etiologic cause of the EML4-ALK fusion gene in lung cancer. PMID:24755712

  17. Identification of a novel crosstalk between casein kinase 2α and NPM-ALK in ALK-positive anaplastic large cell lymphoma.

    PubMed

    Armanious, Hanan; Gelebart, Pascal; Anand, Mona; Lai, Raymond

    2013-02-01

    It was previously reported that β-catenin contributes to the tumorigenesis of ALK-positive anaplastic large cell lymphoma (ALK(+)ALCL), and the oncogenic effects of β-catenin in these tumors are promoted by NPM-ALK, an abnormal fusion protein characteristic of ALK(+)ALCL. In this study, we hypothesized that NPM-ALK promotes the oncogenic activity of β-catenin via its functional interactions with the Wnt canonical pathway (WCP). To test this hypothesis, we examined if NPM-ALK modulates the gene expression of various members in the WCP. Using a Wnt pathway-specific oligonucleotide array and Western blots, we found that the expression of casein kinase 2α (CK2α) was substantially downregulated in ALK(+)ALCL cells in response to siRNA knockdown of NPM-ALK. CK2α is biologically important in ALK(+)ALCL, as its inhibition using 4,5,6,7-tetrabromobenzotriazole or siRNA resulted in a significant decrease in cell growth and a substantial decrease in the β-catenin protein level. Furthermore, CK2α co-immunoprecipitated with NPM-ALK and regulated its level of serine phosphorylation, a feature previously shown to correlate with the oncogenic potential of this fusion protein. To conclude, this study has revealed a novel crosstalk between NPM-ALK and CK2α, and our data supports the model that these two molecules work synergistically to promote the tumorigenicity of these lymphomas.

  18. A causal link from ALK to hexokinase II overexpression and hyperactive glycolysis in EML4-ALK-positive lung cancer

    PubMed Central

    Ma, Yibao; Yu, Chunrong; Mohamed, Esraa M.; Shao, Huanjie; Wang, Li; Sundaresan, Gobalakrishnan; Zweit, Jamal; Idowu, Michael; Fang, Xianjun

    2016-01-01

    A high rate of aerobic glycolysis is a hallmark of malignant transformation. Accumulating evidence suggests that diverse regulatory mechanisms mediate this cancer-associated metabolic change seen in a wide spectrum of cancer. The echinoderm microtubule associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion protein is found in approximately 3-7% of non-small cell lung carcinomas (NSCLC). Molecular evidence and therapeutic effectiveness of FDA-approved ALK inhibitors indicated that EML4-ALK is a driving factor of lung tumorigenesis. A recent clinical study showed that NSCLC harboring EML4-ALK rearrangements displayed higher glucose metabolism compared to EML4-ALK-negative NSCLC. In the current work, we presented evidence that EML4-ALK is coupled to overexpression of hexokinase II (HK2), one of the rate-limiting enzymes of the glycolytic pathway. The link from EML4-ALK to HK2 upregulation is essential for a high rate of glycolysis and proliferation of EML4-ALK-rearranged NSCLC cells. We identified hypoxia-inducible factor 1α (HIF1α) as a key transcription factor to drive HK2 gene expression in normoxia in these cells. EML4-ALK induced hypoxia-independent but glucose-dependent accumulation of HIF1α protein via both transcriptional activation of HIF1α mRNA and the PI3K-AKT pathway to enhance HIF1α protein synthesis. The EML4-ALK-mediated upregulation of HIF1α, HK2 and glycolytic metabolism was also highly active in vivo as demonstrated by FDG-PET imaging of xenografts grown from EML4-ALK-positive NSCLC cells. Our data reveal a novel EML4-ALK-HIF1α-HK2 cascade to enhance glucose metabolism in EML4-ALK-positive NSCLC. PMID:27132509

  19. Differential repair of etheno-DNA adducts by bacterial and human AlkB proteins

    PubMed Central

    Zdżalik, Daria; Domańska, Anna; Prorok, Paulina; Kosicki, Konrad; van den Born, Erwin; Falnes, Pål Ø.; Rizzo, Carmelo J.; Guengerich, F. Peter; Tudek, Barbara

    2015-01-01

    AlkB proteins are evolutionary conserved Fe(II)/2-oxoglutarate-dependent dioxygenases, which remove alkyl and highly promutagenic etheno (ε)-DNA adducts, but their substrate specificity has not been fully determined. We developed a novel assay for the repair of ε-adducts by AlkB enzymes using oligodeoxynucleotides with a single lesion and specific DNA glycosylases and AP-endonuclease for identification of the repair products. We compared the repair of three ε-adducts, 1,N6-ethenoadenine (εA), 3,N4-ethenocytosine (εC) and 1,N2-ethenoguanine (1,N2-εG) by nine bacterial and two human AlkBs, representing four different structural groups defined on the basis of conserved amino acids in the nucleotide recognition lid, engaged in the enzyme binding to the substrate. Two bacterial AlkB proteins, MT-2B (from Mycobacterium tuberculosis) and SC-2B (Streptomyces coelicolor) did not repair these lesions in either double-stranded (ds) or single-stranded (ss) DNA. Three proteins, RE-2A (Rhizobium etli), SA-2B (Streptomyces avermitilis), and XC-2B (Xanthomonas campestris) efficiently removed all three lesions from the DNA substrates. Interestingly, XC-2B and RE-2A are the first AlkB proteins shown to be specialized for ε-adducts, since they do not repair methylated bases. Three other proteins, EcAlkB (Escherichia coli), SA-1A, and XC-1B removed εA and εC from ds and ssDNA but were inactive toward 1,N2-εG. SC-1A repaired only εA with the preference for dsDNA. The human enzyme ALKBH2 repaired all three ε-adducts in dsDNA, while only εA and εC in ssDNA and repair was less efficient in ssDNA. ALKBH3 repaired only εC in ssDNA Altogether, we have shown for the first time that some AlkB proteins, namely ALKBH2, RE-2A, SA-2B and XC-2B can repair 1,N2-εG and that ALKBH3 removes only εC from ssDNA. Our results also suggest that the nucleotide recognition lid is not the sole determinant of the substrate specificity of AlkB proteins. PMID:25797601

  20. Silibinin suppresses NPM-ALK, potently induces apoptosis and enhances chemosensitivity in ALK-positive anaplastic large cell lymphoma.

    PubMed

    Molavi, Ommoleila; Samadi, Nasser; Wu, Chengsheng; Lavasanifar, Afsaneh; Lai, Raymond

    2016-05-01

    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), an oncogenic fusion protein carrying constitutively active tyrosine kinase, is known to be central to the pathogenesis of ALK-positive anaplastic large cell lymphoma (ALK+ALCL). Here, it is reported that silibinin, a non-toxic naturally-occurring compound, potently suppressed NPM-ALK and effectively inhibited the growth and soft agar colony formation of ALK+ALCL cells. By western blots, it was found that silibinin efficiently suppressed the phosphorylation/activation of NPM-ALK and its key substrates/downstream mediators (including STAT3, MEK/ERK and Akt) in a time- and dose-dependent manner. Correlating with these observations, silibinin suppressed the expression of Bcl-2, survivin and JunB, all of which are found to be upregulated by NPM-ALK and pathogenetically important in ALK+ALCL. Lastly, silibinin augmented the chemosensitivity of ALK+ALCL cells to doxorubicin, particularly the small cell sub-set expressing the transcriptional activity of Sox2, an embryonic stem cell marker. To conclude, the findings suggest that silibinin might be useful in treating ALK+ALCL.

  1. SHP1 tyrosine phosphatase negatively regulates NPM-ALK tyrosine kinase signaling.

    PubMed

    Honorat, Jean-François; Ragab, Ashraf; Lamant, Laurence; Delsol, Georges; Ragab-Thomas, Jeannie

    2006-05-15

    Anaplastic large-cell lymphoma (ALCL) is frequently associated with the 2;5 translocation and expresses the NPM-ALK fusion protein, which possesses a constitutive tyrosine kinase activity. We analyzed SHP1 tyrosine phosphatase expression and activity in 3 ALK-positive ALCL cell lines (Karpas 299, Cost, and SU-DHL1) and in lymph node biopsies (n = 40). We found an inverse correlation between the level of NPM-ALK phosphorylation and SHP1 phosphatase activity. Pull-down and coimmunoprecipitation experiments demonstrated a SHP1/NPM-ALK association. Furthermore, confocal microscopy performed on ALCL cell lines and biopsy specimens showed the colocalization of the 2 proteins in cytoplasmic bodies containing Y664-phosphorylated NPM-ALK. Dephosphorylation of NPM-ALK by SHP1 demonstrated that NPM-ALK was a SHP1 substrate. Downregulation of SHP1 expression by RNAi in Karpas cells led to hyperphosphorylation of NPM-ALK, STAT3 activation, and increase in cell proliferation. Furthermore, SHP1 overexpression in 3T3 fibroblasts stably expressing NPM-ALK led to the decrease of NPM-ALK phosphorylation, lower cell proliferation, and tumor progression in nude mice. These findings show that SHP1 is a negative regulator of NPM-ALK signaling. The use of tissue microarrays revealed that 50% of ALK-positive ALCLs were positive for SHP1. Our results suggest that SHP1 could be a critical enzyme in ALCL biology and a potential therapeutic target.

  2. A "liaison dangereuse" between AUF1/hnRNPD and the oncogenic tyrosine kinase NPM-ALK.

    PubMed

    Fawal, Mohamad; Armstrong, Florence; Ollier, Severine; Dupont, Henri; Touriol, Christian; Monsarrat, Bernard; Delsol, Georges; Payrastre, Bernard; Morello, Dominique

    2006-10-15

    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) is a chimeric protein expressed in a subset of cases of anaplastic large cell lymphoma (ALCL) for which constitutive expression represents a key oncogenic event. The ALK signaling pathway is complex and probably involves functional redundancy between various signaling substrates of ALK. Despite numerous studies on signaling mediators, the molecular mechanisms contributing to the distinct oncogenic features of NPM-ALK remain incompletely understood. The search for additional interacting partners of NPM-ALK led to the discovery of AUF1/hnRNPD, a protein implicated in AU-rich element (ARE)-directed mRNA decay. AUF1 was immunoprecipitated with ALK both in ALCL-derived cells and in NIH3T3 cells stably expressing NPM-ALK or other X-ALK fusion proteins. AUF1 and NPM-ALK were found concentrated in the same cytoplasmic foci, whose formation required NPM-ALK tyrosine kinase activity. AUF1 was phosphorylated by ALK in vitro and was hyperphosphorylated in NPM-ALK-expressing cells. Its hyperphosphorylation was correlated with increased stability of several AUF1 target mRNAs encoding key regulators of cell proliferation and with increased cell survival after transcriptional arrest. Thus, AUF1 could function in a novel pathway mediating the oncogenic effects of NPM-ALK. Our data establish an important link between oncogenic kinases and mRNA turnover, which could constitute a critical aspect of tumorigenesis.

  3. Oncogenic TPM3-ALK activation requires dimerization through the coiled-coil structure of TPM3

    SciTech Connect

    Amano, Yosuke; Ishikawa, Rie; Sakatani, Toshio; Ichinose, Junji; Sunohara, Mitsuhiro; Watanabe, Kousuke; Kage, Hidenori; Nakajima, Jun; Nagase, Takahide; Ohishi, Nobuya; Takai, Daiya

    2015-02-13

    Inflammatory myofibroblastic tumor (IMT) is a mesenchymal tumor that can arise from anywhere in the body. Anaplastic lymphoma kinase (ALK) gene rearrangements, most often resulting in the tropomyosin 3 (TPM3)-ALK fusion gene, are the main causes of IMT. However, the mechanism of malignant transformation in IMT has yet to be elucidated. The purpose of this study was to clarify the role of the TPM3 region in the transformation of IMT via TPM3-ALK. Lentivirus vectors containing a TPM3-ALK fusion gene lacking various lengths of TPM3 were constructed and expressed in HEK293T and NIH3T3 cell lines. Focus formation assay revealed loss of contact inhibition in NIH3T3 cells transfected with full-length TPM3-ALK, but not with ALK alone. Blue-native polyacrylamide gel electrophoresis (BN-PAGE) revealed that TPM3-ALK dimerization increased in proportion to the length of TPM3. Western blot showed phosphorylation of ALK, ERK1/2, and STAT3 in HEK293T cells transfected with TPM3-ALK. Thus, the coiled-coil structure of TPM3 contributes to the transforming ability of the TPM3-ALK fusion protein, and longer TPM3 region leads to higher dimer formation. - Highlights: • TPM3-ALK fusion protein dimerizes through the coiled-coil structure of TPM3. • Longer coiled-coil structure of TPM3 leads to higher TPM3-ALK dimer formation. • Presence of TPM3-ALK dimer leads to ALK, STAT3, and ERK1/2 phosphorylation. • Presence of TPM3-ALK leads to loss of contact inhibition. • BN-PAGE is a simple technique for visualizing oncogenic dimerization.

  4. The role of AlkB protein in repair of 1,N⁶-ethenoadenine in Escherichia coli cells.

    PubMed

    Maciejewska, Agnieszka M; Sokołowska, Beata; Nowicki, Adam; Kuśmierek, Jarosław T

    2011-05-01

    Etheno (ε) DNA adducts, including 1,N(6)-ethenoadenine (εA), are formed by various bifunctional agents of exogenous and endogenous origin. The AT→TA transversion, the most frequent mutation provoked by the presence of εA in DNA, is very common in critical codons of the TP53 and RAS genes in tumours induced by exposure to carcinogenic vinyl compounds. Here, using a method that allows examination of the mutagenic potency of a metabolite of vinyl chloride, chloroacetaldehyde (CAA), but eliminates its cytotoxicity, we studied the participation of alkA, alkB and mug gene products in the repair of εA in Escherichia coli cells. The test system used comprised the pIF105 plasmid bearing the lactose operon of CC105 origin, which allowed monitoring of Lac(+) revertants that arose by AT→TA substitutions due to the modification of adenine by CAA. The plasmid was CAA-modified in vitro and replicated in E.coli of various genetic backgrounds (wt, alkA, alkB, mug, alkAalkB, alkAmug and alkBmug). To modify the levels of the AlkA and AlkB proteins, mutagenesis was studied in E.coli cells induced or not in adaptive response to alkylating agents. Considering the levels of CAA-induced Lac(+) revertants in strains harbouring the CAA-modified pIF105 plasmid and induced or not in adaptive response, we conclude that the AlkB dioxygenase plays a major role in decreasing the level of AT→TA mutations, thus in the repair of εA in E.coli cells. The observed differences of mutation frequencies in the various mutant strains assayed indicate that Mug glycosylase is also engaged in the repair of εA, whereas the role the AlkA glycosylase in this repair is negligible. PMID:21193516

  5. Analysis of gene expression profile of TPM3-ALK positive anaplastic large cell lymphoma reveals overlapping and unique patterns with that of NPM-ALK positive anaplastic large cell lymphoma.

    PubMed

    Bohling, Sandra D; Jenson, Stephen D; Crockett, David K; Schumacher, Jonathan A; Elenitoba-Johnson, Kojo S J; Lim, Megan S

    2008-03-01

    Anaplastic large cell lymphoma (ALCL) comprises a group of non-Hodgkin lymphomas characterized by the expression of the CD30/Ki-1 antigen. A subset of ALCL is characterized by chromosomal translocations involving the anaplastic lymphoma kinase (ALK) gene on chromosome 2. While the most common translocation is the t(2;5)(p23;q35) involving the nucleophosmin (NPM) gene on chromosome 5, up to 12 other translocations partners of the ALK gene have been identified. One of these is the t(1;2)(q25;p23) which results in the formation of the chimeric protein TPM3-ALK. While several of the signaling pathways induced by NPM-ALK have been elucidated, those involved in ALCLs harboring TPM3-ALK are largely unknown. In order to investigate the expression profiles of ALCLs carrying the NPM-ALK and TPM3-ALK fusions, we carried out cDNA microarray analysis of two ALCL tissue samples, one expressing the NPM-ALK fusion protein and the other the TPM3-ALK fusion protein. RNA was extracted from snap-frozen tissues, labeled with fluorescent dyes and analyzed using cDNAs microarray containing approximately 9,200 genes and expressed sequence tags (ESTs). Quantitative fluorescence RT-PCR was performed to validate the cDNA microarray data on nine selected gene targets. Our results show a significant overlap of genes deregulated in the NPM-ALK and TPM-ALK positive lymphomas. These deregulated genes are involved in diverse cellular functions, such as cell cycle regulation, apoptosis, proliferation, and adhesion. Interestingly, a subset of the genes was distinct in their expression pattern in the two types of lymphomas. More importantly, many genes that were not previously associated with ALK positive lymphomas were identified. Our results demonstrate the overlapping and unique transcriptional patterns associated with the NPM-ALK and TPM3-ALK fusions in ALCL.

  6. Crizotinib-resistant NPM-ALK mutants confer differential sensitivity to unrelated Alk inhibitors.

    PubMed

    Ceccon, Monica; Mologni, Luca; Bisson, William; Scapozza, Leonardo; Gambacorti-Passerini, Carlo

    2013-02-01

    The dual ALK/MET inhibitor crizotinib was recently approved for the treatment of metastatic and late-stage ALK+ NSCLC, and is currently in clinical trial for other ALK-related diseases. As predicted after other tyrosine kinase inhibitors' clinical experience, the first mutations that confer resistance to crizotinib have been described in patients with non-small cell lung cancer (NSCLC) and in one patient inflammatory myofibroblastic tumor (IMT). Here, we focused our attention on the anaplastic large cell lymphoma (ALCL), where the oncogenic fusion protein NPM-ALK, responsible for 70% to 80% of cases, represents an ideal crizotinib target. We selected and characterized 2 human NPM-ALK+ ALCL cell lines, KARPAS-299 and SUP-M2, able to survive and proliferate at different crizotinib concentrations. Sequencing of ALK kinase domain revealed that a single mutation became predominant at high crizotinib doses in each cell line, namely L1196Q and I1171N in Karpas-299 and SUP-M2 cells, respectively. These mutations also conferred resistance to crizotinib in Ba/F3 cells expressing human NPM-ALK. The resistant cell populations, as well as mutated Ba/F3 cells, were characterized for sensitivity to two additional ALK inhibitors: the dual ALK/EGFR inhibitor AP26113 and NVP-TAE684. While L1196Q-positive cell lines were sensitive to both inhibitors, cells carrying I1171N substitution showed cross-resistance to all ALK inhibitors tested. This study provides potentially relevant information for the management of patients with ALCL that may relapse after crizotinib treatment.

  7. Novel CAD-ALK gene rearrangement is drugable by entrectinib in colorectal cancer

    PubMed Central

    Amatu, Alessio; Somaschini, Alessio; Cerea, Giulio; Bosotti, Roberta; Valtorta, Emanuele; Buonandi, Pasquale; Marrapese, Giovanna; Veronese, Silvio; Luo, David; Hornby, Zachary; Multani, Pratik; Murphy, Danielle; Shoemaker, Robert; Lauricella, Calogero; Giannetta, Laura; Maiolani, Martina; Vanzulli, Angelo; Ardini, Elena; Galvani, Arturo; Isacchi, Antonella; Sartore-Bianchi, Andrea; Siena, Salvatore

    2015-01-01

    Background: Activated anaplastic lymphoma kinase (ALK) gene fusions are recurrent events in a small fraction of colorectal cancers (CRCs), although these events have not yet been exploited as in other malignancies. Methods: We detected ALK protein expression by immunohistochemistry and gene rearrangements by fluorescence in situ hybridisation in the ALKA-372-001 phase I study of the pan-Trk, ROS1, and ALK inhibitor entrectinib. One out of 487 CRCs showed ALK positivity with a peculiar pattern that prompted further characterisation by targeted sequencing using anchored multiplex PCR. Results: A novel ALK fusion with the carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) gene (CAD-ALK fusion gene) was identified. It resulted from inversion within chromosome 2 and the fusion of exons 1–35 of CAD with exons 20–29 of ALK. After failure of previous standard therapies, treatment of this patient with the ALK inhibitor entrectinib resulted in a durable objective tumour response. Conclusions: We describe the novel CAD-ALK rearrangement as an oncogene and provide the first evidence of its drugability as a new molecular target in CRC. PMID:26633560

  8. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1).

    PubMed

    Marzec, Michal; Zhang, Qian; Goradia, Ami; Raghunath, Puthiyaveettil N; Liu, Xiaobin; Paessler, Michele; Wang, Hong Yi; Wysocka, Maria; Cheng, Mangeng; Ruggeri, Bruce A; Wasik, Mariusz A

    2008-12-30

    The mechanisms of malignant cell transformation caused by the oncogenic, chimeric nucleophosmin (NPM)/anaplastic lymphoma kinase (ALK) remain only partially understood, with most of the previous studies focusing mainly on the impact of NPM/ALK on cell survival and proliferation. Here we report that the NPM/ALK-carrying T cell lymphoma (ALK+TCL) cells strongly express the immunosuppressive cell-surface protein CD274 (PD-L1, B7-H1), as determined on the mRNA and protein level. The CD274 expression is strictly dependent on the expression and enzymatic activity of NPM/ALK, as demonstrated by inhibition of the NPM/ALK function in ALK+TCL cells by the small molecule ALK inhibitor CEP-14083 and by documenting CD274 expression in IL-3-depleted BaF3 cells transfected with the wild-type NPM/ALK, but not the kinase-inactive NPM/ALK K210R mutant or empty vector alone. NPM/ALK induces CD274 expression by activating its key signal transmitter, transcription factor STAT3. STAT3 binds to the CD274 gene promoter in vitro and in vivo, as shown in the gel electromobility shift and chromatin immunoprecipitation assays, and is required for the PD-L1 gene expression, as demonstrated by siRNA-mediated STAT3 depletion. These findings identify an additional cell-transforming property of NPM/ALK and describe a direct link between an oncoprotein and an immunosuppressive cell-surface protein. These results also provide an additional rationale to therapeutically target NPM/ALK and STAT3 in ALK+TCL. Finally, they suggest that future immunotherapeutic protocols for this type of lymphoma may need to include the inhibition of NPM/ALK and STAT3 to achieve optimal clinical efficacy.

  9. NPM-ALK and the JunB transcription factor regulate the expression of cytotoxic molecules in ALK-positive, anaplastic large cell lymphoma.

    PubMed

    Pearson, Joel D; Lee, Jason K H; Bacani, Julinor T C; Lai, Raymond; Ingham, Robert J

    2011-01-30

    Anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL) is an aggressive non-Hodgkin lymphoma of T/null immunophenotype that is most prevalent in children and young adults. The normal cellular counterpart of this malignancy is presumed to be the cytotoxic T lymphocyte (CTL), and this presumption is partly based on the observation that these tumour cells often express cytotoxic granules containing Granzyme B (GzB) and Perforin. Chromosomal translocations involving the gene encoding for the ALK tyrosine kinase are also characteristic of ALK+ ALCL, and the resulting fusion proteins (e.g. NPM-ALK) initiate signalling events important in ALK+ ALCL pathogenesis. These events include the elevated expression of JunB; an AP-1 family transcription factor that promotes ALK+ ALCL proliferation. In this report we demonstrate that JunB is a direct transcriptional activator of GzB and that GzB transcription is also promoted by NPM-ALK. We found that Perforin expression was not regulated by JunB, but was promoted by NPM-ALK in some cell lines and inhibited by it in others. In conclusion, our study makes the novel observation that signalling through NPM-ALK and JunB affect the expression of cytotoxic molecules in ALK+ ALCL. Moreover, these findings demonstrate the expression of GzB and Perforin in this lymphoma is not solely due its presumed CTL origin, but that oncogenic signalling is actively influencing the expression of these proteins.

  10. The enzymatic activity of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase is enhanced by NPM-ALK: new insights in ALK-mediated pathogenesis and the treatment of ALCL

    PubMed Central

    Boccalatte, Francesco E.; Voena, Claudia; Riganti, Chiara; Bosia, Amalia; D'Amico, Lucia; Riera, Ludovica; Cheng, Mangeng; Ruggeri, Bruce; Jensen, Ole N.; Goss, Valerie L.; Lee, Kimberly; Nardone, Julie; Rush, John; Polakiewicz, Roberto D.; Comb, Michael J.; Chiarle, Roberto

    2009-01-01

    Anaplastic large cell lymphoma represents a subset of neoplasms caused by translocations that juxtapose the anaplastic lymphoma kinase (ALK) to dimerization partners. The constitutive activation of ALK fusion proteins leads to cellular transformation through a complex signaling network. To elucidate the ALK pathways sustaining lymphomagenesis and tumor maintenance, we analyzed the tyrosine-kinase protein profiles of ALK-positive cell lines using 2 complementary proteomic-based approaches, taking advantage of a specific ALK RNA interference (RNAi) or cell-permeable inhibitors. A well-defined set of ALK-associated tyrosine phosphopeptides, including metabolic enzymes, kinases, ribosomal and cytoskeletal proteins, was identified. Validation studies confirmed that vasodilator-stimulated phosphoprotein and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC) associated with nucleophosmin (NPM)–ALK, and their phosphorylation required ALK activity. ATIC phosphorylation was documented in cell lines and primary tumors carrying ALK proteins and other tyrosine kinases, including TPR-Met and wild type c-Met. Functional analyses revealed that ALK-mediated ATIC phosphorylation enhanced its enzymatic activity, dampening the methotrexate-mediated transformylase activity inhibition. These findings demonstrate that proteomic approaches in well-controlled experimental settings allow the definition of informative proteomic profiles and the discovery of novel ALK downstream players that contribute to the maintenance of the neoplastic phenotype. Prediction of tumor responses to methotrexate may justify specific molecular-based chemotherapy. PMID:18845790

  11. STAT1 is phosphorylated and downregulated by the oncogenic tyrosine kinase NPM-ALK in ALK-positive anaplastic large-cell lymphoma.

    PubMed

    Wu, Chengsheng; Molavi, Ommoleila; Zhang, Haifeng; Gupta, Nidhi; Alshareef, Abdulraheem; Bone, Kathleen M; Gopal, Keshav; Wu, Fang; Lewis, Jamie T; Douglas, Donna N; Kneteman, Norman M; Lai, Raymond

    2015-07-16

    The tumorigenicity of most cases of ALK-positive anaplastic large-cell lymphoma (ALK+ ALCL) is driven by the oncogenic fusion protein NPM-ALK in a STAT3-dependent manner. Because it has been shown that STAT3 can be inhibited by STAT1 in some experimental models, we hypothesized that the STAT1 signaling pathway is defective in ALK+ ALCL, thereby leaving the STAT3 signaling unchecked. Compared with normal T cells, ALK+ ALCL tumors consistently expressed a low level of STAT1. Inhibition of the ubiquitin-proteasome pathway appreciably increased STAT1 expression in ALK+ ALCL cells. Furthermore, we found evidence that NPM-ALK binds to and phosphorylates STAT1, thereby promoting its proteasomal degradation in a STAT3-dependent manner. If restored, STAT1 is functionally intact in ALK+ ALCL cells, because it effectively upregulated interferon-γ, induced apoptosis/cell-cycle arrest, potentiated the inhibitory effects of doxorubicin, and suppressed tumor growth in vivo. STAT1 interfered with the STAT3 signaling by decreasing STAT3 transcriptional activity/DNA binding and its homodimerization. The importance of the STAT1/STAT3 functional interaction was further highlighted by the observation that short interfering RNA knockdown of STAT1 significantly decreased apoptosis induced by STAT3 inhibition. Thus, STAT1 is a tumor suppressor in ALK+ ALCL. Phosphorylation and downregulation of STAT1 by NPM-ALK represent other mechanisms by which this oncogenic tyrosine kinase promotes tumorigenesis.

  12. Structure of the bone morphogenetic protein receptor ALK2 and implications for fibrodysplasia ossificans progressiva.

    PubMed

    Chaikuad, Apirat; Alfano, Ivan; Kerr, Georgina; Sanvitale, Caroline E; Boergermann, Jan H; Triffitt, James T; von Delft, Frank; Knapp, Stefan; Knaus, Petra; Bullock, Alex N

    2012-10-26

    Bone morphogenetic protein (BMP) receptor kinases are tightly regulated to control development and tissue homeostasis. Mutant receptor kinase domains escape regulation leading to severely degenerative diseases and represent an important therapeutic target. Fibrodysplasia ossificans progressiva (FOP) is a rare but devastating disorder of extraskeletal bone formation. FOP-associated mutations in the BMP receptor ALK2 reduce binding of the inhibitor FKBP12 and promote leaky signaling in the absence of ligand. To establish structural mechanisms of receptor regulation and to address the effects of FOP mutation, we determined the crystal structure of the cytoplasmic domain of ALK2 in complex with the inhibitors FKBP12 and dorsomorphin. FOP mutations break critical interactions that stabilize the inactive state of the kinase, thereby facilitating structural rearrangements that diminish FKBP12 binding and promote the correct positioning of the glycine-serine-rich loop and αC helix for kinase activation. The balance of these effects accounts for the comparable activity of R206H and L196P. Kinase activation in the clinically benign mutant L196P is far weaker than R206H but yields equivalent signals due to the stronger interaction of FKBP12 with R206H. The presented ALK2 structure offers a valuable template for the further design of specific inhibitors of BMP signaling.

  13. Oncogenic kinase NPM/ALK induces expression of HIF1α mRNA.

    PubMed

    Marzec, M; Liu, X; Wong, W; Yang, Y; Pasha, T; Kantekure, K; Zhang, P; Woetmann, A; Cheng, M; Odum, N; Wasik, M A

    2011-03-17

    The mechanisms of malignant cell transformation mediated by the oncogenic anaplastic lymphoma kinase (ALK) tyrosine kinase remain only partially understood. In this study, we report that T-cell lymphoma (TCL) cells carrying the nucleophosmin (NPM)/ALK fusion protein (ALK+ TCL) strongly express hypoxia-induced factor 1α (HIF1α) mRNA, even under normoxic conditions, and markedly upregulate HIF1α protein expression under hypoxia. HIF1α expression is strictly dependent on the expression and enzymatic activity of NPM/ALK, as shown in BaF3 cells transfected with wild-type NPM/ALK and kinase-inactive NPM/ALK K210R mutant and by the inhibition of the NPM/ALK function in ALK+ TCL cells by a small-molecule ALK inhibitor. NPM/ALK induces HIF1α expression by upregulating its gene transcription through its key signal transmitter signal transducer and activator of transcription 3 (STAT3), which binds to the HIF1α gene promoter as shown by the chromatin immunoprecipitation assay and is required for HIF1α gene expression as demonstrated by its small interfering RNA-mediated depletion. In turn, depletion of HIF1α increases mammalian target of rapamycin complex 1 activation, cell growth and proliferation and decreases vascular endothelial growth factor synthesis. These results identify a novel cell-transforming property of NPM/ALK, namely its ability to induce the expression of HIF1α, a protein with an important role in carcinogenesis. These results also provide another rationale to therapeutically target NPM/ALK and STAT3 in ALK+ TCL.

  14. Targeting stemness is an effective strategy to control EML4-ALK+ non-small cell lung cancer cells.

    PubMed

    Oh, Se Jin; Noh, Kyung Hee; Lee, Young-Ho; Hong, Soon-Oh; Song, Kwon-Ho; Lee, Hyo-Jung; Kim, Soyeon; Kim, Tae Min; Jeon, Ju-Hong; Seo, Jae Hong; Kim, Dong-Wan; Kim, Tae Woo

    2015-11-24

    The fusion between anaplastic lymphoma kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) is a causative factor in a unique subset of patients with non-small cell lung carcinoma (NSCLC). Although the inhibitor crizotinib, as it blocks the kinase activity of the resulting EML4-ALK fusion protein, displays remarkable initial responses, a fraction of NSCLC cases eventually become resistant to crizotinib by acquiring mutations in the ALK domain or activating bypass pathways via EGFR, KIT, or KRAS. Cancer stem cell (CSC) theory provides a plausible explanation for acquisition of tumorigenesis and resistance. However, the question as to whether EML4-ALK-driven tumorigenesis is linked with the stem-like property and whether the stemness is an effective target in controlling EML4-ALK+ NSCLC including crizotinib-resistant NSCLC cells has not been addressed. Here, we report that stem-like properties stem from ALK activity in EML4-ALK+ NSCLC cells. Notably, treatment with rapamycin, a CSC targeting agent, attenuates stem-like phenotypes of the EML4-ALK+ cells, which increased capability of tumor formation and higher expression of stemness-associated molecules such as ALDH, NANOG, and OCT4. Importantly, combinational treatment with rapamycin and crizotinib leads to synergistic anti-tumor effects on EML4-ALK+ NSCLC cells as well as on those resistant to crizotinib. Thus, we provide a proof of principle that targeting stemness would be a novel strategy to control intractable EML4-ALK+ NSCLC.

  15. VCL-ALK Renal Cell Carcinoma in Children With Sickle-cell Trait

    PubMed Central

    Smith, Nathaniel E.; Deyrup, Andrea T.; Marinño-Enriquez, Adrian; Fletcher, Jonathan A.; Bridge, Julia A.; Illei, Peter B.; Netto, George J.; Argani, Pedram

    2015-01-01

    We report the third case of a renal cell carcinoma bearing a fusion of the vinculin (VCL) and anaplastic lymphoma kinase (ALK) genes. Like the 2 other reported cases, this neoplasm occurred in a young patient (6 y old) with sickle-cell trait and demonstrated distinctive morphologic features including medullary epicenter, discohesive polygonal or spindle-shaped cells with prominent cytoplasmic vacuoles, and prominent lymphocytic infiltrate. The neoplastic cells demonstrated focal membranous labeling for ALK protein by immunohistochemistry, ALK gene rearrangement by fluorescence in situ hybridization, and a specific VCL-ALK gene fusion by reverse transcriptase polymerase chain reaction. VCL-ALK renal cell carcinoma may represent the eighth sickle-cell nephropathy. PMID:24698962

  16. Oncogenic tyrosine kinase NPM-ALK induces expression of the growth-promoting receptor ICOS.

    PubMed

    Zhang, Qian; Wang, Hongyi; Kantekure, Kanchan; Paterson, Jennifer C; Liu, Xiaobin; Schaffer, Andras; Paulos, Chrystal; Milone, Michael C; Odum, Niels; Turner, Suzanne; Marafioti, Teresa; Wasik, Mariusz A

    2011-09-15

    Here we report that T-cell lymphoma cells carrying the NPM-ALK fusion protein (ALK(+) TCL) frequently express the cell-stimulatory receptor ICOS. ICOS expression in ALK(+) TCL is moderate and strictly dependent on the expression and enzymatic activity of NPM-ALK. NPM-ALK induces ICOS expression via STAT3, which triggers the transcriptional activity of the ICOS gene promoter. In addition, STAT3 suppresses the expression of miR-219 that, in turn, selectively inhibits ICOS expression. ALK(+) TCL cell lines display extensive DNA methylation of the CpG island located within intron 1, the putative enhancer region, of the ICOS gene, whereas cutaneous T-cell lymphoma cell lines, which strongly express ICOS, show no methylation of the island. Treatment of the ALK(+) TCL cell lines with DNA methyltransferase inhibitor reversed the CpG island methylation and augmented the expression of ICOS mRNA and protein. Stimulation of the ICOS receptor with anti-ICOS antibody or ICOS ligand-expressing B cells markedly enhanced proliferation of the ALK(+) TCL cells. These results demonstrate that NPM-ALK, acting through STAT3 as the gene transcriptional activator, induces the expression of ICOS, a cell growth promoting receptor. These data also show that the DNA methylation status of the intronic CpG island affects transcriptional activity of the ICOS gene and, consequently, modulates the concentration of the expressed ICOS protein.

  17. TKI sensitivity patterns of novel kinase-domain mutations suggest therapeutic opportunities for patients with resistant ALK+ tumors

    PubMed Central

    Rajan, Soumya S.; Gokhale, Vijay; Groysman, Matthew J.; Pongtornpipat, Praechompoo; Tapia, Edgar O.; Wang, Mengdie; Schatz, Jonathan H.

    2016-01-01

    The anaplastic lymphoma kinase (ALK) protein drives tumorigenesis in subsets of several tumors through chromosomal rearrangements that express and activate its C-terminal kinase domain. In addition, germline predisposition alleles and acquired mutations are found in the full-length protein in the pediatric tumor neuroblastoma. ALK-specific tyrosine kinase inhibitors (TKIs) have become important new drugs for ALK-driven lung cancer, but acquired resistance via multiple mechanisms including kinase-domain mutations eventually develops, limiting median progression-free survival to less than a year. Here we assess the impact of several kinase-domain mutations that arose during TKI resistance selections of ALK+ anaplastic large-cell lymphoma (ALCL) cell lines. These include novel variants with respect to ALK-fusion cancers, R1192P and T1151M, and with respect to ALCL, F1174L and I1171S. We assess the effects of these mutations on the activity of six clinical inhibitors in independent systems engineered to depend on either the ALCL fusion kinase NPM-ALK or the lung-cancer fusion kinase EML4-ALK. Our results inform treatment strategies with a likelihood of bypassing mutations when detected in resistant patient samples and highlight differences between the effects of particular mutations on the two ALK fusions. PMID:27009859

  18. The tyrosine 343 residue of nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK) is important for its interaction with SHP1, a cytoplasmic tyrosine phosphatase with tumor suppressor functions.

    PubMed

    Hegazy, Samar A; Wang, Peng; Anand, Mona; Ingham, Robert J; Gelebart, Pascal; Lai, Raymond

    2010-06-25

    The cytoplasmic tyrosine phosphatase SHP1 has been shown to inhibit the oncogenic fusion protein nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK), and loss of SHP1 contributes to NPM-ALK-mediated tumorigenesis. In this study, we aimed to further understand how SHP1 interacts and regulates NPM-ALK. We employed an in vitro model in which GP293 cells were transfected with various combinations of NPM-ALK (or mutants) and SHP1 (or mutants) expression vectors. We found that SHP1 co-immunoprecipitated with NPM-ALK, but not the enzymatically inactive NPM-ALK(K210R) mutant, or the mutant in which all three functionally important tyrosine residues (namely, Tyr(338), Tyr(342), and Tyr(343)) in the kinase activation loop (KAL) of ALK were mutated. Interestingly, whereas mutation of Tyr(338) or Tyr(342) did not result in any substantial change in the NPM-ALK/SHP1 binding (assessed by co-immunoprecipitation), mutation of Tyr(343) abrogated this interaction. Furthermore, the NPM-ALK/SHP1 binding was readily detectable when each of the remaining 8 tyrosine residues known to be phosphorylated were mutated. Although the expression of SHP1 effectively reduced the level of tyrosine phosphorylation of NPM-ALK, it did not affect that of the NPM-ALK(Y343F) mutant. In soft agar clonogenic assay, SHP1 expression significantly reduced the tumorigenicity of NPM-ALK but not that of NPM-ALK(Y343F). In conclusion, we identified Tyr(343) of NPM-ALK as the crucial site for mediating the NPM-ALK/SHP1 interaction. Our results also support the notion that the tumor suppressor effects of SHP1 on NPM-ALK are dependent on its ability to bind to this oncogenic protein.

  19. Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency.

    PubMed

    Ceccon, M; Merlo, M E Boggio; Mologni, L; Poggio, T; Varesio, L M; Menotti, M; Bombelli, S; Rigolio, R; Manazza, A D; Di Giacomo, F; Ambrogio, C; Giudici, G; Casati, C; Mastini, C; Compagno, M; Turner, S D; Gambacorti-Passerini, C; Chiarle, R; Voena, C

    2016-07-21

    Most of the anaplastic large-cell lymphoma (ALCL) cases carry the t(2;5; p23;q35) that produces the fusion protein NPM-ALK (nucleophosmin-anaplastic lymphoma kinase). NPM-ALK-deregulated kinase activity drives several pathways that support malignant transformation of lymphoma cells. We found that in ALK-rearranged ALCL cell lines, NPM-ALK was distributed in equal amounts between the cytoplasm and the nucleus. Only the cytoplasmic portion was catalytically active in both cell lines and primary ALCL, whereas the nuclear portion was inactive because of heterodimerization with NPM1. Thus, about 50% of the NPM-ALK is not active and sequestered as NPM-ALK/NPM1 heterodimers in the nucleus. Overexpression or relocalization of NPM-ALK to the cytoplasm by NPM genetic knockout or knockdown caused ERK1/2 (extracellular signal-regulated protein kinases 1 and 2) increased phosphorylation and cell death through the engagement of an ATM/Chk2- and γH2AX (phosphorylated H2A histone family member X)-mediated DNA-damage response. Remarkably, human NPM-ALK-amplified cell lines resistant to ALK tyrosine kinase inhibitors (TKIs) underwent apoptosis upon drug withdrawal as a consequence of ERK1/2 hyperactivation. Altogether, these findings indicate that an excess of NPM-ALK activation and signaling induces apoptosis via oncogenic stress responses. A 'drug holiday' where the ALK TKI treatment is suspended could represent a therapeutic option in cells that become resistant by NPM-ALK amplification.

  20. Fusion-protein-assisted protein crystallization.

    PubMed

    Kobe, Bostjan; Ve, Thomas; Williams, Simon J

    2015-07-01

    Fusion proteins can be used directly in protein crystallization to assist crystallization in at least two different ways. In one approach, the `heterologous fusion-protein approach', the fusion partner can provide additional surface area to promote crystal contact formation. In another approach, the `fusion of interacting proteins approach', protein assemblies can be stabilized by covalently linking the interacting partners. The linker connecting the proteins plays different roles in the two applications: in the first approach a rigid linker is required to reduce conformational heterogeneity; in the second, conversely, a flexible linker is required that allows the native interaction between the fused proteins. The two approaches can also be combined. The recent applications of fusion-protein technology in protein crystallization from the work of our own and other laboratories are briefly reviewed.

  1. Unique substrate specificity of anaplastic lymphoma kinase (ALK): development of phosphoacceptor peptides for the assay of ALK activity.

    PubMed

    Donella-Deana, Arianna; Marin, Oriano; Cesaro, Luca; Gunby, Rosalind H; Ferrarese, Anna; Coluccia, Addolorata M L; Tartari, Carmen J; Mologni, Luca; Scapozza, Leonardo; Gambacorti-Passerini, Carlo; Pinna, Lorenzo A

    2005-06-14

    The anaplastic lymphoma kinase (ALK), whose constitutively active fusion proteins are responsible for 5-10% of non-Hodgkin's lymphomas, shares with the other members of the insulin receptor kinase (IRK) subfamily an activation loop (A-loop) with the triple tyrosine motif Y-x-x-x-Y-Y. However, the amino acid sequence of the ALK A-loop differs significantly from the sequences of both the IRK A-loop and the consensus A-loop for this kinase subfamily. A major difference is the presence of a unique "RAS" triplet between the first and second tyrosines of the ALK A-loop, which in IRK is replaced by "ETD". Here we show that a peptide reproducing the A-loop of ALK is readily phosphorylated by ALK, while a homologous IRK A-loop peptide is not unless its "ETD" triplet is substituted by "RAS". Phosphorylation occurs almost exclusively at the first tyrosine of the Y-x-x-x-Y-Y motif, as judged by Edman analysis of the phosphoradiolabeled product. Consequently, a peptide in which the first tyrosine had been replaced by phenylalanine (FYY) was almost unaffected by ALK. In contrast, a peptide in which the second and third tyrosines had been replaced by phenylalanine (YFF) was phosphorylated more rapidly than the parent peptide (YYY). A number of substitutions in the YFF peptide outlined the importance of Ile and Arg at positions n - 1 and n + 6 in addition to the central triplet, to ensure efficient phosphorylation by ALK. Such a peculiar substrate specificity allows the specific monitoring of ALK activity in crude extracts of NPM-ALK positive cells, using the YFF peptide, which is only marginally phosphorylated by a number of other tyrosine kinases. PMID:15938644

  2. Chloroacetaldehyde-induced mutagenesis in Escherichia coli: the role of AlkB protein in repair of 3,N(4)-ethenocytosine and 3,N(4)-alpha-hydroxyethanocytosine.

    PubMed

    Maciejewska, Agnieszka M; Ruszel, Karol P; Nieminuszczy, Jadwiga; Lewicka, Joanna; Sokołowska, Beata; Grzesiuk, Elzbieta; Kuśmierek, Jarosław T

    2010-02-01

    Etheno (epsilon) adducts are formed in reaction of DNA bases with various environmental carcinogens and endogenously created products of lipid peroxidation. Chloroacetaldehyde (CAA), a metabolite of carcinogen vinyl chloride, is routinely used to generate epsilon-adducts. We studied the role of AlkB, along with AlkA and Mug proteins, all engaged in repair of epsilon-adducts, in CAA-induced mutagenesis. The test system used involved pIF102 and pIF104 plasmids bearing the lactose operon of CC102 or CC104 origin (Cupples and Miller (1989) [17]) which allowed to monitor Lac(+) revertants, the latter arose by GC-->AT or GC-->TA substitutions, respectively, as a result of modification of guanine and cytosine. The plasmids were CAA-damaged in vitro and replicated in Escherichia coli of various genetic backgrounds. To modify the levels of AlkA and AlkB proteins, mutagenesis was studied in E. coli cells induced or not in adaptive response. Formation of varepsilonC proceeds via a relatively stable intermediate, 3,N(4)-alpha-hydroxyethanocytosine (HEC), which allowed to compare repair of both adducts. The results indicate that all three genes, alkA, alkB and microg, are engaged in alleviation of CAA-induced mutagenesis. The frequency of mutation was higher in AlkA-, AlkB- and Mug-deficient strains in comparison to alkA(+), alkB(+), and microg(+) controls. Considering the levels of CAA-induced Lac(+) revertants in strains harboring the pIF plasmids and induced or not in adaptive response, we conclude that AlkB protein is engaged in the repair of epsilonC and HEC in vivo. Using the modified TTCTT 5-mers as substrates, we confirmed in vitro that AlkB protein repairs epsilonC and HEC although far less efficiently than the reference adduct 3-methylcytosine. The pH optimum for repair of HEC and epsilonC is significantly different from that for 3-methylcytosine. We propose that the protonated form of adduct interact in active site of AlkB protein. PMID:19941873

  3. Bilateral breast adenocarcinomas with EML4–ALK fusion in a patient with multiple metastases successfully treated with crizotinib: is lung the primary site?

    PubMed Central

    Liu, Chao; Ding, Lijuan; Sun, Bing; Wu, Shikai

    2016-01-01

    Breast metastases from non-mammary cancers are rare, especially when they appear synchronously. Clinically, it is vitally important to accurately diagnose these patients, as this will directly influence their treatment and survival. We present a very rare and complex case of bilateral breast adenocarcinomas with an EML4–ALK fusion, which was diagnosed as bilateral breast metastases of non-small-cell lung cancer by immunohistochemistry and comprehensive genomic investigation. The patient was successfully treated with an ALK inhibitor (crizotinib); symptoms improved quickly after initiation of crizotinib therapy, and a partial response was observed after 3 months. The experience of diagnosis and treatment of this case indicates the importance and necessity of genomic investigations in such patients, and suggests that we need to consider the rare possibility of this kind of metastasis in order to provide optimal treatment. PMID:27366096

  4. EML4-ALK induces epithelial–mesenchymal transition consistent with cancer stem cell properties in H1299 non-small cell lung cancer cells

    SciTech Connect

    Guo, Fuchun; Liu, Xiaoke Qing, Qin Sang, Yaxiong Feng, Chengjun Li, Xiaoyu Jiang, Li Su, Pei Wang, Yongsheng

    2015-04-10

    The echinoderm microtubule-associated protein-like 4(EML4) – anaplastic lymphoma kinase (ALK) fusion gene has been identified as a driver mutation in non-small-cell lung cancer (NSCLC). However, the role of EML4-ALK in malignant transformation is not entirely clear. Here, for the first time, we showed that H1299 NSCLC cells stably expressing EML4-ALK acquire EMT phenotype, associated with enhanced invasive migration and increased expression of EMT-inducing transcription factors. H1299-EML4-ALK cells also displayed cancer stem cell-like properties with a concomitant up-regulation of CD133 and enhanced ability of mammospheres formation. Moreover, we found that inhibition of ERK1/2 reversed EMT induced by EML4-ALK in H1299 cells. Taken together, these results suggested that EML4-ALK induced ERK activation is mechanistically associated with EMT phenotype. Thus, inhibition of ERK signaling pathway could be a potential strategy in treatment of NSCLC patients with EML4-ALK translocation. - Highlights: • EML4-ALK induced epithelial–mesenchymal transition in H1299 cells. • Expression of EML4-ALK promotes invasion and migration in vitro. • EML4-ALK enhanced sphere formation and stem cell-like properties in H1299 cells. • Blockage of ERK1/2 reverse Epithelial–Mesenchymal transition induced by EML4-ALK.

  5. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  6. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  7. NPM-ALK signals through glycogen synthase kinase 3β to promote oncogenesis.

    PubMed

    McDonnell, S R P; Hwang, S R; Basrur, V; Conlon, K P; Fermin, D; Wey, E; Murga-Zamalloa, C; Zeng, Z; Zu, Y; Elenitoba-Johnson, K S J; Lim, M S

    2012-08-01

    Anaplastic large cell lymphoma (ALCL) is the most common type of pediatric peripheral T-cell lymphoma. In 70-80% of cases, the chromosomal aberration t(2;5)(p23;q35) results in the juxtaposition of anaplastic lymphoma kinase (ALK) with nucleophosmin (NPM) and the subsequent expression of the NPM-ALK fusion protein. NPM-ALK is a chimeric tyrosine kinase, which induces numerous signaling pathways that drive proliferation and abrogate apoptosis. However, the mechanisms that lead to activation of downstream growth regulatory molecules have not been completely elucidated. Using a mass spectrometry-based phosphoproteomic screen, we identified GSK3β as a signaling mediator of NPM-ALK. Using a selective inhibitor of ALK, we demonstrated that the tyrosine kinase activity of ALK regulates the serine-9 phosphorylation of GSK3β. Expression of NPM-ALK in 293T cells led to an increase of pS(9)-GSK3β (glycogen synthase kinase 3 beta) compared with kinase-defective K210R mutant NPM-ALK, but did not affect total GSK3β levels. Phosphorylation of pS(9)-GSK3β by NPM-ALK was mediated by the PI3K/AKT signaling pathway. ALK inhibition resulted in degradation of GSK3β substrates Mcl-1 and CDC25A, which was recovered upon chemical inhibition of the proteasome (MG132). Furthermore, the degradation of Mcl-1 was recoverable with inhibition of GSK3β. ALK inhibition also resulted in decreased cell viability, which was rescued by GSK3β inhibition. Furthermore, stable knockdown of GSK3β conferred resistance to the growth inhibitory effects of ALK inhibition using viability and colony formation assays. pS(9)-GSK3β and CDC25A were selectively expressed in neoplastic cells of ALK+ALCL tissue biopsies, and showed a significant correlation (P<0.001). Conversely, ALK-ALCL tissue biopsies did not show significant correlation of pS(9)-GSK3β and CDC25A expression (P<0.2). Our results demonstrate that NPM-ALK regulates the phosphorylation of S(9)-GSK3β by PI3K/AKT. The subsequent inhibition of

  8. Tackling ALK in non-small cell lung cancer: the role of novel inhibitors

    PubMed Central

    Facchinetti, Francesco; Di Maio, Massimo; Graziano, Paolo; Bria, Emilio; Rossi, Giulio; Novello, Silvia

    2016-01-01

    Crizotinib is an oral inhibitor of anaplastic lymphoma kinase (ALK) with remarkable clinical activity in patients suffering from ALK-rearranged non-small cell lung cancer (NSCLC), accounting to its superiority compared to chemotherapy. Unfortunately, virtually all ALK-rearranged tumors acquire resistance to crizotinib, frequently within one year since the treatment initiation. To date, therapeutic strategies to overcome crizotinib resistance have focused on the use of more potent and structurally different compounds. Second-generation ALK inhibitors such as ceritinib (LDK378), alectinib (CH5424802/RO5424802) and brigatinib (AP26113) have shown relevant clinical activity, consequently fostering their rapid clinical development and their approval by health agencies. The third-generation inhibitor lorlatinib (PF-06463922), selectively active against ALK and ROS1, harbors impressive biological potency; its efficacy in reversing resistance to crizotinib and to other ALK inhibitors is being proven by early clinical trials. The NTRK1-3 and ROS1 inhibitor entrectinib (RXDX-101) has been reported to act against NSCLC harboring ALK fusion proteins too. Despite the quick development of these novel agents, several issues remain to be discussed in the treatment of patients suffering from ALK-rearranged NSCLC. This position paper will discuss the development, the current evidence and approvals, as long as the future perspectives of new ALK inhibitors beyond crizotinib. Clinical behaviors of ALK-rearranged NSCLC vary significantly among patients and differential molecular events responsible of crizotinib resistance account for the most important quote of this heterogeneity. The precious availability of a wide range of active anti-ALK compounds should be approached in a critical and careful perspective, in order to develop treatment strategies tailored on the disease evolution of every single patient. PMID:27413712

  9. The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration.

    PubMed

    Voena, Claudia; Conte, Chiara; Ambrogio, Chiara; Boeri Erba, Elisabetta; Boccalatte, Francesco; Mohammed, Shabaz; Jensen, Ole N; Palestro, Giorgio; Inghirami, Giorgio; Chiarle, Roberto

    2007-05-01

    Anaplastic large cell lymphomas (ALCL) are mainly characterized by the reciprocal translocation t(2;5)(p23;q35) that involves the anaplastic lymphoma kinase (ALK) gene and generates the fusion protein NPM-ALK with intrinsic tyrosine kinase activity. NPM-ALK triggers several signaling cascades, leading to increased cell growth, resistance to apoptosis, and changes in morphology and migration of transformed cells. To search for new NPM-ALK interacting molecules, we developed a mass spectrometry-based proteomic approach in HEK293 cells expressing an inducible NPM-ALK and identified the tyrosine phosphatase Shp2 as a candidate substrate. We found that NPM-ALK was able to bind Shp2 in coprecipitation experiments and to induce its phosphorylation in the tyrosine residues Y542 and Y580 both in HEK293 cells and ALCL cell lines. In primary lymphomas, antibodies against the phosphorylated tyrosine Y542 of Shp2 mainly stained ALK-positive cells. In ALCL cell lines, Shp2-constitutive phosphorylation was dependent on NPM-ALK, as it significantly decreased after short hairpin RNA (shRNA)-mediated NPM-ALK knock down. In addition, only the constitutively active NPM-ALK, but not the kinase dead NPM-ALK(K210R), formed a complex with Shp2, Gab2, and growth factor receptor binding protein 2 (Grb2), where Grb2 bound to the phosphorylated Shp2 through its SH2 domain. Shp2 knock down by specific shRNA decreased the phosphorylation of extracellular signal-regulated kinase 1/2 and of the tyrosine residue Y416 in the activation loop of Src, resulting in impaired ALCL cell proliferation and growth disadvantage. Finally, migration of ALCL cells was reduced by Shp2 shRNA. These findings show a direct involvement of Shp2 in NPM-ALK lymphomagenesis, highlighting its critical role in lymphoma cell proliferation and migration.

  10. Intrinsic Structural Disorder Confers Cellular Viability on Oncogenic Fusion Proteins

    PubMed Central

    Hegyi, Hedi; Buday, László; Tompa, Peter

    2009-01-01

    Chromosomal translocations, which often generate chimeric proteins by fusing segments of two distinct genes, represent the single major genetic aberration leading to cancer. We suggest that the unifying theme of these events is a high level of intrinsic structural disorder, enabling fusion proteins to evade cellular surveillance mechanisms that eliminate misfolded proteins. Predictions in 406 translocation-related human proteins show that they are significantly enriched in disorder (43.3% vs. 20.7% in all human proteins), they have fewer Pfam domains, and their translocation breakpoints tend to avoid domain splitting. The vicinity of the breakpoint is significantly more disordered than the rest of these already highly disordered fusion proteins. In the unlikely event of domain splitting in fusion it usually spares much of the domain or splits at locations where the newly exposed hydrophobic surface area approximates that of an intact domain. The mechanisms of action of fusion proteins suggest that in most cases their structural disorder is also essential to the acquired oncogenic function, enabling the long-range structural communication of remote binding and/or catalytic elements. In this respect, there are three major mechanisms that contribute to generating an oncogenic signal: (i) a phosphorylation site and a tyrosine-kinase domain are fused, and structural disorder of the intervening region enables intramolecular phosphorylation (e.g., BCR-ABL); (ii) a dimerisation domain fuses with a tyrosine kinase domain and disorder enables the two subunits within the homodimer to engage in permanent intermolecular phosphorylations (e.g., TFG-ALK); (iii) the fusion of a DNA-binding element to a transactivator domain results in an aberrant transcription factor that causes severe misregulation of transcription (e.g. EWS-ATF). Our findings also suggest novel strategies of intervention against the ensuing neoplastic transformations. PMID:19888473

  11. Rapamycin reverses NPM-ALK-induced glucocorticoid resistance in lymphoid tumor cells by inhibiting mTOR signaling pathway, enhancing G1 cell cycle arrest and apoptosis.

    PubMed

    Gu, L; Gao, J; Li, Q; Zhu, Y P; Jia, C S; Fu, R Y; Chen, Y; Liao, Q K; Ma, Z

    2008-11-01

    The anaplastic lymphoma kinase (ALK) is an oncogene product involved in hematopoietic and non-hematopoietic malignancies. Recent studies have demonstrated that nucleophosmin (NPM)-ALK, originated from the fusion of NPM and ALK genes, causes cell transformation through diverse mechanisms. Here, we show a novel mechanism by which NPM-ALK transforms lymphoid tumor cells to become resistant to glucocorticoid (GC) or dexamethasone (Dex) treatment. Transformed BaF3 cells by NPM-ALK were much more resistant to Dex compared with their parental cells, and concurrently had a constitutive activation of mammalian target of rapamycin (mTOR) signaling, as evidenced by hyperphosphorylation of its downstream effectors, p70 S6 kinase (p70S6K) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). The mTOR inhibitor rapamycin suppressed activation of p70S6K in BaF3/NPM-ALK cells and reversed GC resistance by synergistically inhibiting mTOR signaling pathway, enhancing cell cycle arrest at G(1) phase and promoting apoptotic cell death. In conclusion, our data indicate that the ALK fusion kinase, NPM-ALK, induces GC resistance by activating mTOR signaling, and addition of mTOR inhibitors to the chemotherapeutic regimen of ALK+ lymphomas may improve the prognosis.

  12. Alk5 inhibition increases delivery of macromolecular and protein-bound contrast agents to tumors

    PubMed Central

    Daldrup-Link, Heike E.; Mohanty, Suchismita; Ansari, Celina; Ito, Ken; Hong, Su Hyun; Hoffmann, Matthias; Pisani, Laura; Boudreau, Nancy; Gambhir, Sanjiv Sam; Coussens, Lisa M.

    2016-01-01

    Limited transendothelial permeability across tumor microvessels represents a significant bottleneck in the development of tumor-specific diagnostic agents and theranostic drugs. Here, we show an approach to increase transendothelial permeability of macromolecular and nanoparticle-based contrast agents via inhibition of the type I TGF-β receptor, activin-like kinase 5 (Alk5), in tumors. Alk5 inhibition significantly increased tumor contrast agent delivery and enhancement on imaging studies, while healthy organs remained relatively unaffected. Imaging data correlated with significantly decreased tumor interstitial fluid pressure, while tumor vascular density remained unchanged. This immediately clinically translatable concept involving Alk5 inhibitor pretreatment prior to an imaging study could be leveraged for improved tumor delivery of macromolecular and nanoparticle-based imaging probes and, thereby, facilitate development of more sensitive imaging tests for cancer diagnosis, enhanced tumor characterization, and personalized, image-guided therapies. PMID:27182558

  13. IL-2R common gamma-chain is epigenetically silenced by nucleophosphin-anaplastic lymphoma kinase (NPM-ALK) and acts as a tumor suppressor by targeting NPM-ALK.

    PubMed

    Zhang, Qian; Wang, Hong Yi; Liu, Xiaobin; Bhutani, Gauri; Kantekure, Kanchan; Wasik, Mariusz

    2011-07-19

    Anaplastic lymphoma kinase (ALK), physiologically expressed only by certain neural cells, becomes highly oncogenic, when aberrantly expressed in nonneural tissues as a fusion protein with nucleophosphin (NPM) and other partners. The reason why NPM-ALK succeeds in transforming specifically CD4(+) T lymphocytes remains unknown. The IL-2R common γ-chain (IL-2Rγ) is shared by receptors for several cytokines that play key roles in the maturation and growth of normal CD4(+) T lymphocytes and other immune cells. We show that IL-2Rγ expression is inhibited in T-cell lymphoma cells expressing NPM-ALK kinase as a result of DNA methylation of the IL-2Rγ gene promoter. IL-2Rγ promoter methylation is induced in malignant T cells by NPM-ALK. NPM-ALK acts through STAT3, a transcription factor that binds to the IL-2Rγ gene promoter and enhances binding of DNA methyltransferases (DNMTs) to the promoter. In addition, STAT3 suppresses expression of miR-21, which selectively inhibits DNMT1 mRNA expression. Reconstitution of IL-2Rγ expression leads to loss of the NPM-ALK protein and, consequently, apoptotic cell death of the lymphoma cells. These results demonstrate that the oncogenic tyrosine kinase NPM-ALK induces epigenetic silencing of the IL-2Rγ gene and that IL-2Rγ acts as a tumor suppressor by reciprocally inhibiting expression of NPM-ALK.

  14. Quantitative PCR detection of NPM/ALK fusion gene and CD30 gene expression in patients with anaplastic large cell lymphoma--residual disease monitoring and a correlation with the disease status.

    PubMed

    Kalinova, Marketa; Krskova, Lenka; Brizova, Helena; Kabickova, Edita; Kepak, Tomas; Kodet, Roman

    2008-01-01

    Anaplastic large cell lymphoma (ALCL) represents a heterogeneous group of malignant lymphoproliferative diseases with a consistent expression of the cytokine receptor CD30. ALCL is frequently associated with a NPM/ALK fusion gene which is found in up to 75% of pediatric ALCLs. Real-time quantitative RT-PCR (RQ-RT-PCR) of NPM/ALK and CD30 gene expression was employed to analyze minimal residual disease (MRD) in 10 patients with NPM/ALK positive ALCL in 79 follow-up bone marrow (BM) and/or peripheral blood (PB) samples. In all BM samples from relapses and/or closely before a relapse, BM samples revealed NPM/ALK and CD30 positivity in at least one of the iliac BM trephines. Five out of nine relapses were preceded or were accompanied by minimally half log increased NPM/ALK levels in the BM. We found that RQ-RT-PCR of the CD30 expression is not suitable for MRD detection--only two relapses were accompanied by an increase of the CD30 level above a level which was detected in BM/PB samples from healthy individuals. RQ-RT-PCR of NPM/ALK expression is a promising and rapid approach for monitoring MRD.

  15. Exocyclic carbons adjacent to the N6 of adenine are targets for oxidation by the Escherichia coli adaptive response protein AlkB.

    PubMed

    Li, Deyu; Delaney, James C; Page, Charlotte M; Yang, Xuedong; Chen, Alvin S; Wong, Cintyu; Drennan, Catherine L; Essigmann, John M

    2012-05-30

    The DNA and RNA repair protein AlkB removes alkyl groups from nucleic acids by a unique iron- and α-ketoglutarate-dependent oxidation strategy. When alkylated adenines are used as AlkB targets, earlier work suggests that the initial target of oxidation can be the alkyl carbon adjacent to N1. Such may be the case with ethano-adenine (EA), a DNA adduct formed by an important anticancer drug, BCNU, whereby an initial oxidation would occur at the carbon adjacent to N1. In a previous study, several intermediates were observed suggesting a pathway involving adduct restructuring to a form that would not hinder replication, which would match biological data showing that AlkB almost completely reverses EA toxicity in vivo. The present study uses more sensitive spectroscopic methodology to reveal the complete conversion of EA to adenine; the nature of observed additional putative intermediates indicates that AlkB conducts a second oxidation event in order to release the two-carbon unit completely. The second oxidation event occurs at the exocyclic carbon adjacent to the N(6) atom of adenine. The observation of oxidation of a carbon at N(6) in EA prompted us to evaluate N(6)-methyladenine (m6A), an important epigenetic signal for DNA replication and many other cellular processes, as an AlkB substrate in DNA. Here we show that m6A is indeed a substrate for AlkB and that it is converted to adenine via its 6-hydroxymethyl derivative. The observation that AlkB can demethylate m6A in vitro suggests a role for AlkB in regulation of important cellular functions in vivo. PMID:22512456

  16. Timely topic: anaplastic lymphoma kinase (ALK) spreads its influence.

    PubMed

    Cheuk, W; Chan, J K

    2001-02-01

    Anaplastic lymphoma kinase (ALK) is normally not expressed in human tissues except selected sites in the nervous system. Its expression and constitutive activation as a result of a chromosomal translocation involving 2p23 plays a pivotal role in the genesis of anaplastic large cell lymphoma. ALK expression has been instrumental in defining a homogeneous subset from the category of anaplastic large cell lymphoma, characterised by occurrence in young patients, primary systemic presentation, favorable prognosis, a broad morphological spectrum, nuclear and/or cytoplasmic immunostaining for ALK protein, and a number of possible fusion partner genes such as NPM, ATIC, TFG, TPM3 and CLTCL. Recently ALK has been implicated in the genesis of another tumour type, the inflammatory myofibroblastic tumours. The ALK-positive examples occur in children and young adults, involving a variety of sites, such as the abdomen, mesentery, liver, bladder, mediastinum, lung and bone. The partner genes identified in some cases are TPM3 (tropomyosin 3) and TPM4 (tropomyosin 4). These molecular findings also further support the neoplastic nature of at least a subset of inflammatory myofibroblastic tumours.

  17. The pathobiology of the oncogenic tyrosine kinase NPM-ALK: a brief update.

    PubMed

    Lai, Raymond; Ingham, Robert J

    2013-04-01

    Extensive research has been carried out in the past two decades to study the pathobiology of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), which is an oncogenic fusion protein found exclusively in a specific type of T-cell lymphoid malignancy, namely ALK-positive anaplastic large cell lymphoma. Results from these studies have provided highly useful insights into the mechanisms by which a constitutively tyrosine kinase, such as NPM-ALK, promotes tumorigenesis. Several previous publications have comprehensively summarized the advances in this field. In this review, we provide readers with a brief update on specific areas of NPM-ALK pathobiology. In the first part, the NPM-ALK/signal transducer and activator of transcription 3 (STAT3) signaling axis is discussed, with an emphasis on the existence of multiple biochemical defects that have been shown to amplify the oncogenic effects of this signaling axis. Specifically, findings regarding JAK3, SHP1 and the stimulatory effects of several cytokines including interleukin (IL)-9, IL-21 and IL-22 are summarized. New concepts stemming from recent observations regarding the functional interactions among the NPM-ALK/STAT3 axis, β catenin and glycogen synthase kinase 3β will be postulated. Lastly, new mechanisms by which the NPM-ALK/STAT3 axis promotes tumorigenesis, such as its modulations of Twist1, hypoxia-induced factor 1α, CD274, will be described. In the second part, we summarize recent data generated by mass spectrometry studies of NPM-ALK, and use MSH2 and heat shock proteins as examples to illustrate the use of mass spectrometry data in stimulating new research in this field. In the third part, the evolving field of microRNA in the context of NPM-ALK biology is discussed.

  18. Repair of DNA Alkylation Damage by the Escherichia coli Adaptive Response Protein AlkB as Studied by ESI-TOF Mass Spectrometry

    PubMed Central

    Li, Deyu; Delaney, James C.; Page, Charlotte M.; Chen, Alvin S.; Wong, Cintyu; Drennan, Catherine L.; Essigmann, John M.

    2010-01-01

    DNA alkylation can cause mutations, epigenetic changes, and even cell death. All living organisms have evolved enzymatic and non-enzymatic strategies for repairing such alkylation damage. AlkB, one of the Escherichia coli adaptive response proteins, uses an α-ketoglutarate/Fe(II)-dependent mechanism that, by chemical oxidation, removes a variety of alkyl lesions from DNA, thus affording protection of the genome against alkylation. In an effort to understand the range of acceptable substrates for AlkB, the enzyme was incubated with chemically synthesized oligonucleotides containing alkyl lesions, and the reaction products were analyzed by electrospray ionization time-of-flight (ESI-TOF) mass spectrometry. Consistent with the literature, but studied comparatively here for the first time, it was found that 1-methyladenine, 1,N 6-ethenoadenine, 3-methylcytosine, and 3-ethylcytosine were completely transformed by AlkB, while 1-methylguanine and 3-methylthymine were partially repaired. The repair intermediates (epoxide and possibly glycol) of 3,N 4-ethenocytosine are reported for the first time. It is also demonstrated that O 6-methylguanine and 5-methylcytosine are refractory to AlkB, lending support to the hypothesis that AlkB repairs only alkyl lesions attached to the nitrogen atoms of the nucleobase. ESI-TOF mass spectrometry is shown to be a sensitive and efficient tool for probing the comparative substrate specificities of DNA repair proteins in vitro. PMID:21048928

  19. Downregulation of NPM-ALK by siRNA causes anaplastic large cell lymphoma cell growth inhibition and augments the anti cancer effects of chemotherapy in vitro.

    PubMed

    Hsu, Faye Yuan-yi; Zhao, Yi; Anderson, W French; Johnston, Patrick B

    2007-06-01

    The fusion protein, nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), results from the chromosome translocation t(2;5)(p23;q25) and is present in 50-70 percent of anaplastic large-cell lymphomas (ALCLs). NPM-ALK is a constitutively activated kinase that transforms cells through stimulating several mitogenic signaling pathways. To examine if the NPM-ALK is a potential therapeutic target in ALCL, we used siRNA to specifically downregulate the expression of the NPM-ALK in ALCL cell lines. In this report, we demonstrated viability loss in t(2;5)-positive ALCL cell lines, SUDHL-1 and Karpas 299 cells, but not in lymphoma cell lines without the chromosome translocation, Jurkat and Granta 519 cells. Further study demonstrated that the downregulation of NPM-ALK resulted in decreased cell proliferation and increased cell apoptosis. When used in combination with chemotherapeutic agents, such as doxorubicin, the inhibition of the NPM-ALK augments the chemosensitivity of the tumor cells. These results revealed the importance of continuous expression of NPM-ALK in maintaining the growth of ALCL cells. Our data also suggested that the repression of the fusion gene might be a potential novel therapeutic strategy for NPM-ALK positive ALCLs.

  20. Targeting tumour vasculature by inhibiting activin receptor-like kinase (ALK)1 function.

    PubMed

    de Vinuesa, Amaya García; Bocci, Matteo; Pietras, Kristian; Ten Dijke, Peter

    2016-08-15

    Angiogenesis is a hallmark of cancer and is now a validated therapeutic target in the clinical setting. Despite the initial success, anti-angiogenic compounds impinging on the vascular endothelial growth factor (VEGF) pathway display limited survival benefits in patients and resistance often develops due to activation of alternative pathways. Thus, finding and validating new targets is highly warranted. Activin receptor-like kinase (ALK)1 is a transforming growth factor beta (TGF-β) type I receptor predominantly expressed in actively proliferating endothelial cells (ECs). ALK1 has been shown to play a pivotal role in regulating angiogenesis by binding to bone morphogenetic protein (BMP)9 and 10. Two main pharmacological inhibitors, an ALK1-Fc fusion protein (Dalantercept/ACE-041) and a fully human antibody against the extracellular domain of ALK1 (PF-03446962) are currently under clinical development. Herein, we briefly recapitulate the role of ALK1 in blood vessel formation and the current status of the preclinical and clinical studies on inhibition of ALK1 signalling as an anti-angiogenic strategy. Future directions in terms of new combination regimens will also be presented. PMID:27528762

  1. Exo-endo cellulase fusion protein

    DOEpatents

    Bower, Benjamin S.; Larenas, Edmund A.; Mitchinson, Colin

    2012-01-17

    The present invention relates to a heterologous exo-endo cellulase fusion construct, which encodes a fusion protein having cellulolytic activity comprising a catalytic domain derived from a fungal exo-cellobiohydrolase and a catalytic domain derived from an endoglucanase. The invention also relates to vectors and fungal host cells comprising the heterologous exo-endo cellulase fusion construct as well as methods for producing a cellulase fusion protein and enzymatic cellulase compositions.

  2. Evidence Suggesting That Discontinuous Dosing of ALK Kinase Inhibitors May Prolong Control of ALK+ Tumors.

    PubMed

    Amin, Amit Dipak; Rajan, Soumya S; Liang, Winnie S; Pongtornpipat, Praechompoo; Groysman, Matthew J; Tapia, Edgar O; Peters, Tara L; Cuyugan, Lori; Adkins, Jonathan; Rimsza, Lisa M; Lussier, Yves A; Puvvada, Soham D; Schatz, Jonathan H

    2015-07-15

    The anaplastic lymphoma kinase (ALK) is chromosomally rearranged in a subset of certain cancers, including 2% to 7% of non-small cell lung cancers (NSCLC) and ∼70% of anaplastic large cell lymphomas (ALCL). The ALK kinase inhibitors crizotinib and ceritinib are approved for relapsed ALK(+) NSCLC, but acquired resistance to these drugs limits median progression-free survival on average to ∼10 months. Kinase domain mutations are detectable in 25% to 37% of resistant NSCLC samples, with activation of bypass signaling pathways detected frequently with or without concurrent ALK mutations. Here we report that, in contrast to NSCLC cells, drug-resistant ALCL cells show no evidence of bypassing ALK by activating alternate signaling pathways. Instead, drug resistance selected in this setting reflects upregulation of ALK itself. Notably, in the absence of crizotinib or ceritinib, we found that increased ALK signaling rapidly arrested or killed cells, allowing a prolonged control of drug-resistant tumors in vivo with the administration of discontinuous rather than continuous regimens of drug dosing. Furthermore, even when drug resistance mutations were detected in the kinase domain, overexpression of the mutant ALK was toxic to tumor cells. We confirmed these findings derived from human ALCL cells in murine pro-B cells that were transformed to cytokine independence by ectopic expression of an activated NPM-ALK fusion oncoprotein. In summary, our results show how ALK activation functions as a double-edged sword for tumor cell viability, with potential therapeutic implications. PMID:26018086

  3. Evidence Suggesting that Discontinuous Dosing of ALK Kinase Inhibitors May Prolong Control of ALK+ Tumors

    PubMed Central

    Amin, Amit Dipak; Rajan, Soumya S.; Liang, Winnie S.; Pongtornpipat, Praechompoo; Groysman, Matthew J.; Tapia, Edgar O.; Peters, Tara L.; Cuyugan, Lori; Adkins, Jonathan; Rimsza, Lisa M.; Lussier, Yves A.; Puvvada, Soham D.; Schatz, Jonathan H.

    2015-01-01

    The anaplastic lymphoma kinase ALK is chromosomally rearranged in a subset of certain cancers, including 2–7% non-small cell lung cancers (NSCLC) and ~70% of anaplastic large cell lymphomas (ALCL). The ALK kinase inhibitors crizotinib and ceritinib are approved for relapsed ALK+ NSCLC, but acquired resistance to these drugs limits median progression-free survival on average to ~10 months. Kinase domain mutations are detectable in 25–37% of resistant NSCLC samples, with activation of bypass signaling pathways detected frequently with or without concurrent ALK mutations. Here we report that, in contrast to NSCLC cells, drug resistant ALCL cells show no evidence of bypassing ALK by activating alternate signaling pathways. Instead, drug resistance selected in this setting reflects upregulation of ALK itself. Notably, in the absence of crizotinib or ceritinib, we found that increased ALK signaling rapidly arrested or killed cells, allowing a prolonged control of drug-resistant tumors in vivo with the administration of discontinuous rather than continuous regimens of drug dosing. Furthermore, even when drug resistance mutations were detected in the kinase domain, overexpression of the mutant ALK was toxic to tumor cells. We confirmed these findings derived from human ALCL cells in murine pro-B cells that were transformed to cytokine independence by ectopic expression of an activated NPM-ALK fusion oncoprotein. In summary, our results show how ALK activation functions as a double-edged sword for tumor cell viability, with potential therapeutic implications. PMID:26018086

  4. ALK as a novel lymphoma-associated tumor antigen: identification of 2 HLA-A2.1-restricted CD8+ T-cell epitopes.

    PubMed

    Passoni, Lorena; Scardino, Antonio; Bertazzoli, Carla; Gallo, Barbara; Coluccia, Addolorata M L; Lemonnier, François A; Kosmatopoulos, Konstadinos; Gambacorti-Passerini, Carlo

    2002-03-15

    Oncogenic anaplastic lymphoma kinase (ALK) fusion proteins (NPM/ALK and associated variants) are expressed in about 60% of anaplastic large cell lymphomas (ALCLs) but are absent in normal tissues. In this study, we investigated whether ALK, which is expressed at high levels in lymphoma cells, could be a target for antigen-specific cell-mediated immunotherapy. A panel of ALK-derived peptides was tested for their binding affinity to HLA-A*0201 molecules. Binding peptides were assessed for their capacity to elicit a specific immune response mediated by cytotoxic T lymphocytes (CTLs) both in vivo, in HLA-A*0201 transgenic mice, and in vitro in the peripheral blood lymphocytes (PBLs) from healthy donors. Two HLA-A*0201-restricted CTL epitopes, p280-89 (SLAMLDLLHV) and p375-86 (GVLLWEIFSL), both located in the ALK kinase domain were identified. The p280-89- and p375-86-induced peptide-specific CTL lines were able to specifically release interferon-gamma (IFN-gamma) on stimulation with ALK peptide-pulsed autologous Epstein-Barr virus-transformed B cells (LCLs) or T2 cells. Anti-ALK CTLs lysed HLA-matched ALCL and neuroblastoma cell lines endogenously expressing ALK proteins. CTL activity was inhibited by anti-HLA-A2 monoclonal antibody CR11.351, consistent with a class I-restricted mechanism of cytotoxicity. These results show the existence of functional anti-ALK CTL precursors within the peripheral T-cell repertoire of healthy donors, clearly indicating ALK as a tumor antigen and ALK-derived peptides, p280-89 and p375-86, as suitable epitopes for the development of vaccination strategies.

  5. Activation of Rac1 and the exchange factor Vav3 are involved in NPM-ALK signaling in anaplastic large cell lymphomas.

    PubMed

    Colomba, A; Courilleau, D; Ramel, D; Billadeau, D D; Espinos, E; Delsol, G; Payrastre, B; Gaits-Iacovoni, F

    2008-04-24

    The majority of anaplastic large cell lymphomas (ALCLs) express the nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) fusion protein, which is oncogenic due to its constitutive tyrosine kinase activity. Transformation by NPM-ALK not only increases proliferation, but also modifies cell shape and motility in both lymphoid and fibroblastic cells. We report that the Rac1 GTPase, a known cytoskeletal regulator, is activated by NPM-ALK in ALCL cell lines (Karpas 299 and Cost) and transfected cells (lymphoid Ba/F3 cells, NIH-3T3 fibroblasts). We have identified Vav3 as one of the exchange factors involved in Rac1 activation. Stimulation of Vav3 and Rac1 by NPM-ALK is under the control of Src kinases. It involves formation of a signaling complex between NPM-ALK, pp60(c-src), Lyn and Vav3, in which Vav3 associates with tyrosine 343 of NPM-ALK via its SH2 domain. Moreover, Vav3 is phosphorylated in NPM-ALK positive biopsies from patients suffering from ALCL, demonstrating the pathological relevance of this observation. The use of Vav3-specific shRNA and a dominant negative Rac1 mutant demonstrates the central role of GTPases in NPM-ALK elicited motility and invasion.

  6. Protein-protein fusion catalyzed by sortase A.

    PubMed

    Levary, David A; Parthasarathy, Ranganath; Boder, Eric T; Ackerman, Margaret E

    2011-04-06

    Chimeric proteins boast widespread use in areas ranging from cell biology to drug delivery. Post-translational protein fusion using the bacterial transpeptidase sortase A provides an attractive alternative when traditional gene fusion fails. We describe use of this enzyme for in vitro protein ligation and report the successful fusion of 10 pairs of protein domains with preserved functionality--demonstrating the robust and facile nature of this reaction.

  7. Protein-Protein Fusion Catalyzed by Sortase A

    PubMed Central

    Levary, David A.; Parthasarathy, Ranganath; Boder, Eric T.; Ackerman, Margaret E.

    2011-01-01

    Chimeric proteins boast widespread use in areas ranging from cell biology to drug delivery. Post-translational protein fusion using the bacterial transpeptidase sortase A provides an attractive alternative when traditional gene fusion fails. We describe use of this enzyme for in vitro protein ligation and report the successful fusion of 10 pairs of protein domains with preserved functionality — demonstrating the robust and facile nature of this reaction. PMID:21494692

  8. Deployment of membrane fusion protein domains during fusion.

    PubMed

    Bentz, J; Mittal, A

    2000-01-01

    It is clear that both viral and intracellular membrane fusion proteins contain a minimal set of domains which must be deployed at the appropriate time during the fusion process. An account of these domains and their functions is given here for the four best-described fusion systems: influenza HA, sendai virus F1, HIV gp120/41 and the neuronal SNARE core composed of synaptobrevin (syn), syntaxin (stx) and the N- and C-termini of SNAP25 (sn25), together with the Ca(2+)binding protein synaptotagmin (syt). Membrane fusion begins with the binding of the virion or vesicle to the target membrane via receptors. The committed step in influenza HA- mediated fusion begins with an aggregate of HAs (at least eight) with some of their HA2 N-termini, a.k.a. fusion peptides, embedded into the viral bilayer (Bentz, 2000 a). The hypothesis presented in Bentz (2000 b) is that the conformational change of HA to the extended coiled coil extracts the fusion peptides from the viral bilayer. When this extraction occurs from the center of the site of restricted lipid flow, it exposes acyl chains and parts of the HA transmembrane domains to the aqueous media, i.e. a hydrophobic defect is formed. This is the 'transition state' of the committed step of fusion. It is stabilized by a 'dam' of HAs, which are inhibited from diffusing away by the rest of the HAs in the aggregate and because that would initially expose more acyl chains to water. Recruitment of lipids from the apposed target membrane can heal this hydrophobic defect, initiating lipid mixing and fusion. The HA transmembrane domains are required to be part of the hydrophobic defect, because the HA aggregate must be closely packed enough to restrict lipid flow. This hypothesis provides a simple and direct coupling between the energy released by the formation of the coiled coil to the energy needed to create and stabilize the high energy intermediates of fusion. Several of these essential domains have been described for the viral fusion

  9. Rearranged EML4-ALK fusion transcripts sequester in circulating blood platelets and enable blood-based crizotinib response monitoring in non-small-cell lung cancer

    PubMed Central

    Nilsson, R. Jonas A.; Karachaliou, Niki; Berenguer, Jordi; Gimenez-Capitan, Ana; Schellen, Pepijn; Teixido, Cristina; Tannous, Jihane; Kuiper, Justine L.; Drees, Esther; Grabowska, Magda; van Keulen, Marte; Heideman, Danielle A.M.; Thunnissen, Erik; Dingemans, Anne-Marie C.; Viteri, Santiago; Tannous, Bakhos A.; Drozdowskyj, Ana; Rosell, Rafael; Smit, Egbert F.; Wurdinger, Thomas

    2016-01-01

    Purpose: Non-small-cell lung cancers harboring EML4-ALK rearrangements are sensitive to crizotinib. However, despite initial response, most patients will eventually relapse, and monitoring EML4-ALK rearrangements over the course of treatment may help identify these patients. However, challenges associated with serial tumor biopsies have highlighted the need for blood-based assays for the monitoring of biomarkers. Platelets can sequester RNA released by tumor cells and are thus an attractive source for the non-invasive assessment of biomarkers. Methods: EML4-ALK rearrangements were analyzed by RT-PCR in platelets and plasma isolated from blood obtained from 77 patients with non-small-cell lung cancer, 38 of whom had EML4-ALK-rearranged tumors. In a subset of 29 patients with EML4-ALK-rearranged tumors who were treated with crizotinib, EML4-ALK rearrangements in platelets were correlated with progression-free and overall survival. Results: RT-PCR demonstrated 65% sensitivity and 100% specificity for the detection of EML4-ALK rearrangements in platelets. In the subset of 29 patients treated with crizotinib, progression-free survival was 3.7 months for patients with EML4-ALK+ platelets and 16 months for those with EML4-ALK− platelets (hazard ratio, 3.5; P = 0.02). Monitoring of EML4-ALK rearrangements in the platelets of one patient over a period of 30 months revealed crizotinib resistance two months prior to radiographic disease progression. Conclusions: Platelets are a valuable source for the non-invasive detection of EML4-ALK rearrangements and may prove useful for predicting and monitoring outcome to crizotinib, thereby improving clinical decisions based on radiographic imaging alone. PMID:26544515

  10. The oncoprotein NPM-ALK of anaplastic large-cell lymphoma induces JUNB transcription via ERK1/2 and JunB translation via mTOR signaling.

    PubMed

    Staber, Philipp B; Vesely, Paul; Haq, Naznin; Ott, Rene G; Funato, Kotaro; Bambach, Isabella; Fuchs, Claudia; Schauer, Silvia; Linkesch, Werner; Hrzenjak, Andelko; Dirks, Wilhelm G; Sexl, Veronika; Bergler, Helmut; Kadin, Marshall E; Sternberg, David W; Kenner, Lukas; Hoefler, Gerald

    2007-11-01

    Anaplastic large cell lymphomas (ALCLs) are highly proliferating tumors that commonly express the AP-1 transcription factor JunB. ALK fusions occur in approximately 50% of ALCLs, and among these, 80% have the t(2;5) translocation with NPM-ALK expression. We report greater activity of JunB in NPM-ALK-positive than in NPM-ALK-negative ALCLs. Specific knockdown of JUNB mRNA using small interfering RNA and small hairpin RNA in NPM-ALK-expressing cells decreases cellular proliferation as evidenced by a reduced cell count in the G2/M phase of the cell cycle. Expression of NPM-ALK results in ERK1/2 activation and transcriptional up-regulation of JUNB. Both NPM-ALK-positive and -negative ALCL tumors demonstrate active ERK1/2 signaling. In contrast to NPM-ALK-negative ALCL, the mTOR pathway is active in NPM-ALK-positive lymphomas. Pharmacological inhibition of mTOR in NPM-ALK-positive cells down-regulates JunB protein levels by shifting JUNB mRNA translation from large polysomes to monosomes and ribonucleic particles (RNPs), and decreases cellular proliferation. Thus, JunB is a critical target of mTOR and is translationally regulated in NPM-ALK-positive lymphomas. This is the first study demonstrating translational control of AP-1 transcription factors in human neoplasia. In conjunction with NPM-ALK, JunB enhances cell cycle progression and may therefore represent a therapeutic target.

  11. Novel Hydrophobin Fusion Tags for Plant-Produced Fusion Proteins

    PubMed Central

    Ritala, Anneli; Linder, Markus; Joensuu, Jussi

    2016-01-01

    Hydrophobin fusion technology has been applied in the expression of several recombinant proteins in plants. Until now, the technology has relied exclusively on the Trichoderma reesei hydrophobin HFBI. We screened eight novel hydrophobin tags, T. reesei HFBII, HFBIII, HFBIV, HFBV, HFBVI and Fusarium verticillioides derived HYD3, HYD4 and HYD5, for production of fusion proteins in plants and purification by two-phase separation. To study the properties of the hydrophobins, we used N-terminal and C-terminal GFP as a fusion partner. Transient expression of the hydrophobin fusions in Nicotiana benthamiana revealed large variability in accumulation levels, which was also reflected in formation of protein bodies. In two-phase separations, only HFBII and HFBIV were able to concentrate GFP into the surfactant phase from a plant extract. The separation efficiency of both tags was comparable to HFBI. When the accumulation was tested side by side, HFBII-GFP gave a better yield than HFBI-GFP, while the yield of HFBIV-GFP remained lower. Thus we present here two alternatives for HFBI as functional fusion tags for plant-based protein production and first step purification. PMID:27706254

  12. ALK-positive anaplastic large cell lymphoma limited to the skin: clinical, histopathological and molecular analysis of 6 pediatric cases. A report from the ALCL99 study.

    PubMed

    Oschlies, Ilske; Lisfeld, Jasmin; Lamant, Laurence; Nakazawa, Atsuko; d'Amore, Emanuele S G; Hansson, Ulrika; Hebeda, Konnie; Simonitsch-Klupp, Ingrid; Maldyk, Jadwiga; Müllauer, Leonhard; Tinguely, Marianne; Stücker, Markus; Ledeley, Marie-Cecile; Siebert, Reiner; Reiter, Alfred; Brugières, Laurence; Klapper, Wolfram; Woessmann, Wilhelm

    2013-01-01

    Anaplastic large cell lymphomas are peripheral T-cell lymphomas that are characterized by a proliferation of large anaplastic blasts expressing CD30. In children, systemic anaplastic large cell lymphomas often present at advanced clinical stage and harbor translocations involving the anaplastic lymphoma kinase (ALK) gene leading to the expression of chimeric anaplastic lymphoma kinase (ALK)-fusion proteins. Primary cutaneous anaplastic large cell lymphoma is regarded as an ALK-negative variant confined to the skin and is part of the spectrum of primary cutaneous CD30-positive T-cell lymphoproliferative disorders. Thirty-three of 487 pediatric patients registered within the Anaplastic Large Cell Lymphoma-99 trial (1999 to 2006) presented with a skin limited CD30-positive lympho-proliferative disorder. In 23 of the 33 patients, material for international histopathological review was available, and the cases were studied for histopathological, immunophenotypical and clinical features as well as for breaks within the ALK gene. Five of 23 cases and one additional case (identified after closure of the trial) expressed ALK-protein. Complete staging excluded any other organ involvement in all children. Expression of ALK proteins was demonstrated by immunohistochemistry in all cases and the presence of breaks of the ALK gene was genetically confirmed in 5 evaluable cases. The histopathological and clinical picture of these skin-restricted ALK-positive lymphomas was indistinguishable from that of cutaneous anaplastic large cell lymphoma. Five children presented with a single skin lesion that was completely resected in 4 and incompletely resected in one. Three of these patients received no further therapy, 2 additional local radiotherapy, and one chemotherapy. All children remain in complete remission with a median follow up of seven years (range 1-8 years). We present 6 pediatric cases of ALK-positive primary cutaneous anaplastic large cell lymphomas. After thorough

  13. Lumican binds ALK5 to promote epithelium wound healing.

    PubMed

    Yamanaka, Osamu; Yuan, Yong; Coulson-Thomas, Vivien Jane; Gesteira, Tarsis Ferreira; Call, Mindy K; Zhang, Yujin; Zhang, Jianhua; Chang, Shao-Hsuan; Xie, Changchun; Liu, Chia-Yang; Saika, Shizuya; Jester, James V; Kao, Winston W-Y

    2013-01-01

    Lumican (Lum), a small leucine-rich proteoglycan (SLRP) family member, has multiple matricellular functions both as an extracellular matrix component and as a matrikine regulating cell proliferation, gene expression and wound healing. To date, no cell surface receptor has been identified to mediate the matrikine functions of Lum. This study aimed to identify a perspective receptor that mediates Lum effects on promoting wound healing. Transforming growth factor-β receptor 1 (ALK5) was identified as a potential Lum-interacting protein through in silico molecular docking and molecular dynamics. This finding was verified by biochemical pull-down assays. Moreover, the Lum function on wound healing was abrogated by an ALK5-specific chemical inhibitor as well as by ALK5 shRNAi. Finally, we demonstrated that eukaryote-specific post-translational modifications are not required for the wound healing activity of Lum, as recombinant GST-Lum fusion proteins purified from E. coli and a chemically synthesized LumC13 peptide (the last C-terminal 13 amino acids of Lum) have similar effects on wound healing in vitro and in vivo.

  14. The atomic resolution structure of human AlkB homolog 7 (ALKBH7), a key protein for programmed necrosis and fat metabolism.

    PubMed

    Wang, Guoqiang; He, Qingzhong; Feng, Chong; Liu, Yang; Deng, Zengqin; Qi, Xiaoxuan; Wu, Wei; Mei, Pinchao; Chen, Zhongzhou

    2014-10-01

    ALKBH7 is the mitochondrial AlkB family member that is required for alkylation- and oxidation-induced programmed necrosis. In contrast to the protective role of other AlkB family members after suffering alkylation-induced DNA damage, ALKBH7 triggers the collapse of mitochondrial membrane potential and promotes cell death. Moreover, genetic ablation of mouse Alkbh7 dramatically increases body weight and fat mass. Here, we present crystal structures of human ALKBH7 in complex with Mn(II) and α-ketoglutarate at 1.35 Å or N-oxalylglycine at 2.0 Å resolution. ALKBH7 possesses the conserved double-stranded β-helix fold that coordinates a catalytically active iron by a conserved HX(D/E) … Xn … H motif. Self-hydroxylation of Leu-110 was observed, indicating that ALKBH7 has the potential to catalyze hydroxylation of its substrate. Unlike other AlkB family members whose substrates are DNA or RNA, ALKBH7 is devoid of the "nucleotide recognition lid" which is essential for binding nucleobases, and thus exhibits a solvent-exposed active site; two loops between β-strands β6 and β7 and between β9 and β10 create a special outer wall of the minor β-sheet of the double-stranded β-helix and form a negatively charged groove. These distinct features suggest that ALKBH7 may act on protein substrate rather than nucleic acids. Taken together, our findings provide a structural basis for understanding the distinct function of ALKBH7 in the AlkB family and offer a foundation for drug design in treating cell death-related diseases and metabolic diseases.

  15. NPM-ALK mediates phosphorylation of MSH2 at tyrosine 238, creating a functional deficiency in MSH2 and the loss of mismatch repair.

    PubMed

    Bone, K M; Wang, P; Wu, F; Wu, C; Li, L; Bacani, J T; Andrew, S E; Lai, R

    2015-05-15

    The vast majority of anaplastic lymphoma kinase-positive anaplastic large cell lymphoma (ALK+ALCL) tumors express the characteristic oncogenic fusion protein NPM-ALK, which mediates tumorigenesis by exerting its constitutive tyrosine kinase activity on various substrates. We recently identified MSH2, a protein central to DNA mismatch repair (MMR), as a novel binding partner and phosphorylation substrate of NPM-ALK. Here, using liquid chromatography-mass spectrometry, we report for the first time that MSH2 is phosphorylated by NPM-ALK at a specific residue, tyrosine 238. Using GP293 cells transfected with NPM-ALK, we confirmed that the MSH2(Y238F) mutant is not tyrosine phosphorylated. Furthermore, transfection of MSH2(Y238F) into these cells substantially decreased the tyrosine phosphorylation of endogenous MSH2. Importantly, gene transfection of MSH2(Y238F) abrogated the binding of NPM-ALK with endogenous MSH2, re-established the dimerization of MSH2:MSH6 and restored the sensitivity to DNA mismatch-inducing drugs, indicative of MMR return. Parallel findings were observed in two ALK+ALCL cell lines, Karpas 299 and SUP-M2. In addition, we found that enforced expression of MSH2(Y238F) into ALK+ALCL cells alone was sufficient to induce spontaneous apoptosis. In conclusion, our findings have identified NPM-ALK-induced phosphorylation of MSH2 at Y238 as a crucial event in suppressing MMR. Our studies have provided novel insights into the mechanism by which oncogenic tyrosine kinases disrupt MMR.

  16. Determining the contribution of NPM1 heterozygosity to NPM-ALK-induced lymphomagenesis.

    PubMed

    Mduff, Fiona K E; Hook, C Elizabeth; Tooze, Reuben M; Huntly, Brian J; Pandolfi, Pier Paolo; Turner, Suzanne D

    2011-09-01

    Heterozygous expression of Nucleophosmin (NPM1) predisposes to hematological malignancies in the mouse and cooperates with Myc in lymphomagenesis. NPM1 is therefore regarded as a haploinsufficient tumor suppressor. Heterozygous loss of NPM1 occurs as a result of the t(2;5), which generates the oncogenic fusion tyrosine kinase, NPM-anaplastic lymphoma kinase (ALK), a molecule underlying the pathogenesis of anaplastic large cell lymphoma (ALCL). Given the aforementioned role of NPM1 as a tumor suppressor, we hypothesized that NPM1 heterozygosity would cooperate with NPM-ALK in lymphomagenesis. In the event, we observed no difference in tumor latency, incidence or phenotype in NPM-ALK-transgenic mice heterozygous for NPM1 relative to transgenic mice expressing both NPM1 alleles. We propose that although the t(2;5) simultaneously reduces NPM1 allelic dosage and creates the NPM-ALK fusion protein, the two events do not cooperate in the pathogenesis of ALCL in our mouse model. These data indicate that a tumor-suppressive role for NPM1 may depend on cellular and/or genetic context.

  17. Sensitivity Analysis of the NPM-ALK Signalling Network Reveals Important Pathways for Anaplastic Large Cell Lymphoma Combination Therapy

    PubMed Central

    Buetti-Dinh, Antoine; O’Hare, Thomas

    2016-01-01

    A large subset of anaplastic large cell lymphoma (ALCL) patients harbour a somatic aberration in which anaplastic lymphoma kinase (ALK) is fused to nucleophosmin (NPM) resulting in a constitutively active signalling fusion protein, NPM-ALK. We computationally simulated the signalling network which mediates pathological cell survival and proliferation through NPM-ALK to identify therapeutically targetable nodes through which it may be possible to regain control of the tumourigenic process. The simulations reveal the predominant role of the VAV1-CDC42 (cell division control protein 42) pathway in NPM-ALK-driven cellular proliferation and of the Ras / mitogen-activated ERK kinase (MEK) / extracellular signal-regulated kinase (ERK) cascade in controlling cell survival. Our results also highlight the importance of a group of interleukins together with the Janus kinase 3 (JAK3) / signal transducer and activator of transcription 3 (STAT3) signalling in the development of NPM-ALK derived ALCL. Depending on the activity of JAK3 and STAT3, the system may also be sensitive to activation of protein tyrosine phosphatase-1 (SHP1), which has an inhibitory effect on cell survival and proliferation. The identification of signalling pathways active in tumourigenic processes is of fundamental importance for effective therapies. The prediction of alternative pathways that circumvent classical therapeutic targets opens the way to preventive approaches for countering the emergence of cancer resistance. PMID:27669408

  18. Fluorescent sensors based on bacterial fusion proteins

    NASA Astrophysics Data System (ADS)

    Prats Mateu, Batirtze; Kainz, Birgit; Pum, Dietmar; Sleytr, Uwe B.; Toca-Herrera, José L.

    2014-06-01

    Fluorescence proteins are widely used as markers for biomedical and technological purposes. Therefore, the aim of this project was to create a fluorescent sensor, based in the green and cyan fluorescent protein, using bacterial S-layers proteins as scaffold for the fluorescent tag. We report the cloning, expression and purification of three S-layer fluorescent proteins: SgsE-EGFP, SgsE-ECFP and SgsE-13aa-ECFP, this last containing a 13-amino acid rigid linker. The pH dependence of the fluorescence intensity of the S-layer fusion proteins, monitored by fluorescence spectroscopy, showed that the ECFP tag was more stable than EGFP. Furthermore, the fluorescent fusion proteins were reassembled on silica particles modified with cationic and anionic polyelectrolytes. Zeta potential measurements confirmed the particle coatings and indicated their colloidal stability. Flow cytometry and fluorescence microscopy showed that the fluorescence of the fusion proteins was pH dependent and sensitive to the underlying polyelectrolyte coating. This might suggest that the fluorescent tag is not completely exposed to the bulk media as an independent moiety. Finally, it was found out that viscosity enhanced the fluorescence intensity of the three fluorescent S-layer proteins.

  19. Fusion proteins useful for producing pinene

    DOEpatents

    Peralta-Yahya, Pamela P.; Keasling, Jay D

    2016-06-28

    The present invention provides for a modified host cell comprising a heterologous pinene synthase (PS), or enzymatically active fragment or variant thereof, and optionally a geranyl pyrophosphate synthase (GPPS), or enzymatically active fragment or variant thereof, or a fusion protein comprising: (a) a PS and (b) a GPPS linked by a linker.

  20. The use of cellular thermal shift assay (CETSA) to study Crizotinib resistance in ALK-expressing human cancers.

    PubMed

    Alshareef, Abdulraheem; Zhang, Hai-Feng; Huang, Yung-Hsing; Wu, Chengsheng; Zhang, Jing Dong; Wang, Peng; El-Sehemy, Ahmed; Fares, Mohamed; Lai, Raymond

    2016-01-01

    Various forms of oncogenic ALK proteins have been identified in various types of human cancers. While Crizotinib, an ALK inhibitor, has been found to be therapeutically useful against a subset of ALK(+) tumours, clinical resistance to this drug has been well recognized and the mechanism of this phenomenon is incompletely understood. Using the cellular thermal shift assay (CETSA), we measured the Crizotinib-ALK binding in a panel of ALK(+) cell lines, and correlated the findings with the ALK structure and its interactions with specific binding proteins. The Crizotinib IC50 significantly correlated with Crizotinib-ALK binding. The suboptimal Crizotinib-ALK binding in Crizotinib-resistant cells is not due to the cell-specific environment, since transfection of NPM-ALK into these cells revealed substantial Crizotinib-NPM-ALK binding. Interestingly, we found that the resistant cells expressed higher protein level of β-catenin and siRNA knockdown restored Crizotinib-ALK binding (correlated with a significant lowering of IC50). Computational analysis of the crystal structures suggests that β-catenin exerts steric hindrance to the Crizotinib-ALK binding. In conclusion, the Crizotinib-ALK binding measurable by CETSA is useful in predicting Crizotinib sensitivity, and Crizotinib-ALK binding is in turn dictated by the structure of ALK and some of its binding partners. PMID:27641368

  1. The use of cellular thermal shift assay (CETSA) to study Crizotinib resistance in ALK-expressing human cancers

    PubMed Central

    Alshareef, Abdulraheem; Zhang, Hai-Feng; Huang, Yung-Hsing; Wu, Chengsheng; Zhang, Jing Dong; Wang, Peng; El-Sehemy, Ahmed; Fares, Mohamed; Lai, Raymond

    2016-01-01

    Various forms of oncogenic ALK proteins have been identified in various types of human cancers. While Crizotinib, an ALK inhibitor, has been found to be therapeutically useful against a subset of ALK+ tumours, clinical resistance to this drug has been well recognized and the mechanism of this phenomenon is incompletely understood. Using the cellular thermal shift assay (CETSA), we measured the Crizotinib—ALK binding in a panel of ALK+ cell lines, and correlated the findings with the ALK structure and its interactions with specific binding proteins. The Crizotinib IC50 significantly correlated with Crizotinib—ALK binding. The suboptimal Crizotinib—ALK binding in Crizotinib-resistant cells is not due to the cell-specific environment, since transfection of NPM-ALK into these cells revealed substantial Crizotinib—NPM-ALK binding. Interestingly, we found that the resistant cells expressed higher protein level of β-catenin and siRNA knockdown restored Crizotinib—ALK binding (correlated with a significant lowering of IC50). Computational analysis of the crystal structures suggests that β-catenin exerts steric hindrance to the Crizotinib—ALK binding. In conclusion, the Crizotinib—ALK binding measurable by CETSA is useful in predicting Crizotinib sensitivity, and Crizotinib—ALK binding is in turn dictated by the structure of ALK and some of its binding partners. PMID:27641368

  2. Reversal of microRNA-150 silencing disadvantages crizotinib-resistant NPM-ALK(+) cell growth.

    PubMed

    Hoareau-Aveilla, Coralie; Valentin, Thibaud; Daugrois, Camille; Quelen, Cathy; Mitou, Géraldine; Quentin, Samuel; Jia, Jinsong; Spicuglia, Salvatore; Ferrier, Pierre; Ceccon, Monica; Giuriato, Sylvie; Gambacorti-Passerini, Carlo; Brousset, Pierre; Lamant, Laurence; Meggetto, Fabienne

    2015-09-01

    The regulatory microRNA miR-150 is involved in the development of hemopathies and is downregulated in T-lymphomas, such as anaplastic large-cell lymphoma (ALCL) tumors. ALCL is defined by the presence or absence of translocations that activate the anaplastic lymphoma kinase (ALK), with nucleophosmin-ALK (NPM-ALK) fusions being the most common. Here, we compared samples of primary NPM-ALK(+) and NPM-ALK(-) ALCL to investigate the role of miR-150 downstream of NPM-ALK. Methylation of the MIR150 gene was substantially elevated in NPM-ALK(+) biopsies and correlated with reduced miR-150 expression. In NPM-ALK(+) cell lines, DNA hypermethylation-mediated miR-150 repression required ALK-dependent pathways, as ALK inhibition restored miR-150 expression. Moreover, epigenetic silencing of miR-150 was due to the activation of STAT3, a major downstream substrate of NPM-ALK, in cooperation with DNA methyltransferase 1 (DNMT1). Accordingly, miR-150 repression was turned off following treatment with the DNMT inhibitor, decitabine. In murine NPM-ALK(+) xenograft models, miR-150 upregulation induced antineoplastic activity. Treatment of crizotinib-resistant NPM-ALK(+) KARPAS-299-CR06 cells with decitabine or ectopic miR-150 expression reduced viability and growth. Altogether, our results suggest that hypomethylating drugs, alone or in combination with other agents, may benefit ALK(+) patients harboring tumors resistant to crizotinib and other anti-ALK tyrosine kinase inhibitors (TKIs). Moreover, these results support further work on miR-150 in these and other ALK(+) malignancies.

  3. Reversal of microRNA-150 silencing disadvantages crizotinib-resistant NPM-ALK(+) cell growth

    PubMed Central

    Hoareau-Aveilla, Coralie; Valentin, Thibaud; Daugrois, Camille; Quelen, Cathy; Mitou, Géraldine; Quentin, Samuel; Jia, Jinsong; Spicuglia, Salvatore; Ferrier, Pierre; Ceccon, Monica; Giuriato, Sylvie; Gambacorti-Passerini, Carlo; Brousset, Pierre; Lamant, Laurence; Meggetto, Fabienne

    2015-01-01

    The regulatory microRNA miR-150 is involved in the development of hemopathies and is downregulated in T-lymphomas, such as anaplastic large-cell lymphoma (ALCL) tumors. ALCL is defined by the presence or absence of translocations that activate the anaplastic lymphoma kinase (ALK), with nucleophosmin-ALK (NPM-ALK) fusions being the most common. Here, we compared samples of primary NPM-ALK(+) and NPM-ALK(–) ALCL to investigate the role of miR-150 downstream of NPM-ALK. Methylation of the MIR150 gene was substantially elevated in NPM-ALK(+) biopsies and correlated with reduced miR-150 expression. In NPM-ALK(+) cell lines, DNA hypermethylation–mediated miR-150 repression required ALK-dependent pathways, as ALK inhibition restored miR-150 expression. Moreover, epigenetic silencing of miR-150 was due to the activation of STAT3, a major downstream substrate of NPM-ALK, in cooperation with DNA methyltransferase 1 (DNMT1). Accordingly, miR-150 repression was turned off following treatment with the DNMT inhibitor, decitabine. In murine NPM-ALK(+) xenograft models, miR-150 upregulation induced antineoplastic activity. Treatment of crizotinib-resistant NPM-ALK(+) KARPAS-299-CR06 cells with decitabine or ectopic miR-150 expression reduced viability and growth. Altogether, our results suggest that hypomethylating drugs, alone or in combination with other agents, may benefit ALK(+) patients harboring tumors resistant to crizotinib and other anti-ALK tyrosine kinase inhibitors (TKIs). Moreover, these results support further work on miR-150 in these and other ALK(+) malignancies. PMID:26258416

  4. Imaging multiple intermediates of single-virus membrane fusion mediated by distinct fusion proteins.

    PubMed

    Joo, Kye-Il; Tai, April; Lee, Chi-Lin; Wong, Clement; Wang, Pin

    2010-09-01

    Membrane fusion plays an essential role in the entry of enveloped viruses into target cells. The merging of viral and target cell membranes is catalyzed by viral fusion proteins, which involves multiple sequential steps in the fusion process. However, the fusion mechanisms mediated by different fusion proteins involve multiple transient intermediates that have not been well characterized. Here, we report a synthetic virus platform that allows us to better understand the different fusion mechanisms driven by the diverse types fusion proteins. The platform consists of lentiviral particles coenveloped with a surface antibody, which serves as the binding protein, along with a fusion protein derived from either influenza virus (HAmu) or Sindbis virus (SINmu). By using a single virus tracking technique, we demonstrated that both HAmu- and SINmu-bearing viruses enter cells through clathrin-dependent endocytosis, but they required different endosomal trafficking routes to initiate viral fusion. Direct observation of single viral fusion events clearly showed that hemifusion mediated by SINmu upon exposure to low pH occurs faster than that mediated by HAmu. Monitoring sequential fusion processes by dual labeling the outer and inner leaflets of viral membranes also revealed that the SINmu-mediated hemifusion intermediate is relatively long-lived as compared with that mediated by HAmu. Taken together, we have demonstrated that the combination of this versatile viral platform with the techniques of single virus tracking can be a powerful tool for revealing molecular details of fusion mediated by various fusion proteins.

  5. Alk2 regulates early chondrogenic fate in fibrodysplasia ossificans progressiva heterotopic endochondral ossification.

    PubMed

    Culbert, Andria L; Chakkalakal, Salin A; Theosmy, Edwin G; Brennan, Tracy A; Kaplan, Frederick S; Shore, Eileen M

    2014-05-01

    Bone morphogenetic protein (BMP) signaling is a critical regulator of cartilage differentiation and endochondral ossification. Gain-of-function mutations in ALK2, a type I BMP receptor, cause the debilitating disorder fibrodysplasia ossificans progressiva (FOP) and result in progressive heterotopic (extraskeletal) endochondral ossification within soft connective tissues. Here, we used murine mesenchymal progenitor cells to investigate the contribution of Alk2 during chondrogenic differentiation and heterotopic endochondral ossification (HEO). Alk2(R206H/+) (gain-of-function), Alk2(CKO) (loss-of-function), and wild-type mouse embryonic fibroblasts were evaluated for chondrogenic potential. Chondrogenic differentiation was accelerated in Alk2(R206H/+) cells, due in part to enhanced sensitivity to BMP ligand. In vivo, Alk2(R206H/+) cells initiated robust HEO and recruited wild-type cell contribution. Despite expression of other type I BMP receptors (Alk3 and Alk6), chondrogenesis of Alk2(CKO) cells was severely impaired by absence of Alk2 during early differentiation. Alk2 is therefore a direct regulator of cartilage formation and mediates chondrogenic commitment of progenitor cells. These data establish that at least one effect of ALK2 gain-of-function mutations in FOP patients is enhanced chondrogenic differentiation which supports formation of heterotopic endochondral bone. This establishes ALK2 as a plausible therapeutic target during early chondrogenic stages of lesion formation for preventing heterotopic bone formation in FOP and other conditions.

  6. Detection of novel and potentially actionable anaplastic lymphoma kinase (ALK) rearrangement in colorectal adenocarcinoma by immunohistochemistry screening

    PubMed Central

    Wang, Kai; Kim, Sun Young; Jang, Jiryeon; Kim, Seung Tae; Park, Joon Oh; Lim, Ho Yeong; Kang, Won Ki; Park, Young Suk; Lee, Jiyun; Lee, Woo Yong; Park, Yoon Ah; Huh, Jung Wook; Yun, Seong Hyeon; Do, In-Gu; Kim, Seok Hyung; Balasubramanian, Sohail; Stephens, Philip J.; Ross, Jeffrey S.; Li, Gang Gary; Hornby, Zachary; Ali, Siraj M.; Miller, Vincent A.; Kim, Kyoung-Mee; Ou, Sai-Hong Ignatius

    2015-01-01

    Purpose Anaplastic lymphoma kinase (ALK) rearrangement has been detected in colorectal carcinoma (CRC) using advanced molecular diagnostics tests including exon scanning, fluorescence in situ hybridization (FISH), and next generation sequencing (NGS). We investigated if immunohistochemistry (IHC) can be used to detect ALK rearrangement in gastrointestinal malignancies. Experimental designs Tissue microarrays (TMAs) from consecutive gastric carcinoma (GC) and CRC patients who underwent surgical resection at Samsung Medical Center, Seoul, Korea were screened by IHC using ALK monoclonal antibody 5A4. IHC positive cases were confirmed by FISH, nCounter assays, and NGS-based comprehensive genomic profiling (CGP). ALK IHC was further applied to CRC patients enrolled in a pathway-directed therapeutic trial. Results Four hundred thirty-two GC and 172 CRC cases were screened by IHC. No GC sample was ALK IHC positive. One CRC (0.6%) was ALK IHC positive (3+) that was confirmed by ALK FISH and a novel CAD-ALK (C35; A20) fusion variant that resulted from a paracentric inversion event inv(2)(p22–21p23) was identified by CGP. One out of 50 CRC patients enrolled in a pathway-directed therapeutic trial was ALK IHC positive (3+) confirmed by ALK FISH and found to harbor the EML4-ALK (E21, A20) fusion variant by CGP. Growth of a tumor cell line derived from this EML4-ALK CRC patient was inhibited by ALK inhibitors crizotinib and entrectinib. Conclusions ALK IHC is a viable screening strategy for identifying ALK rearrangement in CRC. ALK rearrangement is a potential actionable driver mutation in CRC based on survival inhibition of patient tumor-derived cell line by potent ALK inhibitors. PMID:26172300

  7. A Dose-Finding Study of OTX105/MK-8628, a Small Molecule Inhibitor of the Bromodomain and Extra-Terminal (BET) Proteins, in Adults With Selected Advanced Solid Tumors (MK-8628-003)

    ClinicalTrials.gov

    2016-09-06

    NUT Midline Carcinoma; Triple Negative Breast Cancer; Non-small Cell Lung Cancer With Rearranged ALK Gene/Fusion Protein or KRAS Mutation; Castrate-resistant Prostate Cancer (CRPC); Pancreatic Ductal Adenocarcinoma

  8. Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes.

    PubMed

    van Beilen, J B; Panke, S; Lucchini, S; Franchini, A G; Röthlisberger, M; Witholt, B

    2001-06-01

    The Pseudomonas putida GPo1 (commonly known as Pseudomonas oleovorans GPo1) alkBFGHJKL and alkST gene clusters, which encode proteins involved in the conversion of n-alkanes to fatty acids, are located end to end on the OCT plasmid, separated by 9.7 kb of DNA. This DNA segment encodes, amongst others, a methyl-accepting transducer protein (AlkN) that may be involved in chemotaxis to alkanes. In P. putida P1, the alkBFGHJKL and alkST gene clusters are flanked by almost identical copies of the insertion sequence ISPpu4, constituting a class 1 transposon. Other insertion sequences flank and interrupt the alk genes in both strains. Apart from the coding regions of the GPo1 and P1 alk genes (80-92% sequence identity), only the alkB and alkS promoter regions are conserved. Competition experiments suggest that highly conserved inverted repeats in the alkB and alkS promoter regions bind ALKS: PMID:11390693

  9. Functional characterization of the kinase activation loop in nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK) using tandem affinity purification and liquid chromatography-mass spectrometry.

    PubMed

    Wang, Peng; Wu, Fang; Ma, Yupo; Li, Liang; Lai, Raymond; Young, Leah C

    2010-01-01

    Previous studies have shown that the kinase activation loop (KAL) of the oncogenic fusion protein NPM-ALK regulates its overall tyrosine phosphorylation status and tumorigenicity. Using tandem affinity purification-mass spectrometry, we assessed how the KAL of NPM-ALK regulates the phosphorylation status of its individual tyrosines. Using the lysates of GP293 cells transfected with NPM-ALK, our highly reproducible results showed evidence of phosphorylation in all 3 tyrosines in KAL and 8 tyrosines outside KAL. We created 7 KAL mutants, each of which carried a Tyr-to-Phe mutation of >or=1 of the 3 tyrosines in KAL. A complete loss of the 8 phosphotyrosines outside KAL was found in 3 KAL mutants, and their oncogenicity (assessed by cell viability, colony formation, and the ability to phosphorylate effector proteins) was abrogated. A partial loss of the 8 phosphotyrosines was found in 4 KAL mutants, but their oncogenicity did not show simple correlation with the number of residual phosphotyrosines. Tyr-to-Phe mutations of each of the 8 phosphotyrosines outside KAL did not result in a significant decrease in the oncogenicity. In conclusion, we have provided details of how the KAL in NPM-ALK regulates its tyrosine phosphorylation pattern. Our results challenge some of the current concepts regarding the relationship between the tyrosine phosphorylation and oncogenicity of NPM-ALK.

  10. Functional Characterization of the Kinase Activation Loop in Nucleophosmin (NPM)-Anaplastic Lymphoma Kinase (ALK) Using Tandem Affinity Purification and Liquid Chromatography-Mass Spectrometry*

    PubMed Central

    Wang, Peng; Wu, Fang; Ma, Yupo; Li, Liang; Lai, Raymond; Young, Leah C.

    2010-01-01

    Previous studies have shown that the kinase activation loop (KAL) of the oncogenic fusion protein NPM-ALK regulates its overall tyrosine phosphorylation status and tumorigenicity. Using tandem affinity purification-mass spectrometry, we assessed how the KAL of NPM-ALK regulates the phosphorylation status of its individual tyrosines. Using the lysates of GP293 cells transfected with NPM-ALK, our highly reproducible results showed evidence of phosphorylation in all 3 tyrosines in KAL and 8 tyrosines outside KAL. We created 7 KAL mutants, each of which carried a Tyr-to-Phe mutation of ≥1 of the 3 tyrosines in KAL. A complete loss of the 8 phosphotyrosines outside KAL was found in 3 KAL mutants, and their oncogenicity (assessed by cell viability, colony formation, and the ability to phosphorylate effector proteins) was abrogated. A partial loss of the 8 phosphotyrosines was found in 4 KAL mutants, but their oncogenicity did not show simple correlation with the number of residual phosphotyrosines. Tyr-to-Phe mutations of each of the 8 phosphotyrosines outside KAL did not result in a significant decrease in the oncogenicity. In conclusion, we have provided details of how the KAL in NPM-ALK regulates its tyrosine phosphorylation pattern. Our results challenge some of the current concepts regarding the relationship between the tyrosine phosphorylation and oncogenicity of NPM-ALK. PMID:19887368

  11. Regulation of the ALK1 ligands, BMP9 and BMP10.

    PubMed

    Li, Wei; Salmon, Richard M; Jiang, He; Morrell, Nicholas W

    2016-08-15

    Bone morphogenetic protein (BMP)9 and BMP10 are high affinity ligands for activin receptor-like kinase 1 (ALK1), a type I BMP receptor mainly expressed on vascular endothelial cells (ECs). ALK1-mediated BMP9/BMP10 signalling pathways have emerged as essential in EC biology and in angiogenesis. Several genetic mutations in the genes encoding the ligands and receptors of this pathway have been reported in two cardiovascular diseases, pulmonary arterial hypertension (PAH) and hereditary haemorrhagic telangiectasia (HHT). Administration of recombinant BMP9 reverses experimental PAH in preclinical rodent models. Dalantercept, an Fc-fusion protein of the extracellular domain of ALK1 and a ligand trap for BMP9 and BMP10, is in phase II clinical trials for anti-tumour angiogenesis. Understanding the regulation of BMP9 and BMP10, at both gene and protein levels, under physiological and pathological conditions, will reveal essential information and potential novel prognostic markers for the BMP9/BMP10-targeted therapies. PMID:27528761

  12. Differential cholesterol binding by class II fusion proteins determines membrane fusion properties.

    PubMed

    Umashankar, M; Sánchez-San Martín, Claudia; Liao, Maofu; Reilly, Brigid; Guo, Alice; Taylor, Gwen; Kielian, Margaret

    2008-09-01

    The class II fusion proteins of the alphaviruses and flaviviruses mediate virus infection by driving the fusion of the virus membrane with that of the cell. These fusion proteins are triggered by low pH, and their structures are strikingly similar in both the prefusion dimer and the postfusion homotrimer conformations. Here we have compared cholesterol interactions during membrane fusion by these two groups of viruses. Using cholesterol-depleted insect cells, we showed that fusion and infection by the alphaviruses Semliki Forest virus (SFV) and Sindbis virus were strongly promoted by cholesterol, with similar sterol dependence in laboratory and field isolates and in viruses passaged in tissue culture. The E1 fusion protein from SFV bound cholesterol, as detected by labeling with photocholesterol and by cholesterol extraction studies. In contrast, fusion and infection by numerous strains of the flavivirus dengue virus (DV) and by yellow fever virus 17D were cholesterol independent, and the DV fusion protein did not show significant cholesterol binding. SFV E1 is the first virus fusion protein demonstrated to directly bind cholesterol. Taken together, our results reveal important functional differences conferred by the cholesterol-binding properties of class II fusion proteins.

  13. Exocytotic fusion pores are composed of both lipids and proteins

    PubMed Central

    Bao, Huan; Goldschen-Ohm, Marcel; Jeggle, Pia; Chanda, Baron; Edwardson, J Michael; Chapman, Edwin R

    2016-01-01

    During exocytosis, fusion pores form the first aqueous connection that allows escape of neurotransmitters and hormones from secretory vesicles. Although it is well established that SNARE proteins catalyze fusion, the structure and composition of fusion pores remain unknown. Here, we exploited the rigid framework and defined size of nanodiscs to interrogate the properties of reconstituted fusion pores, using the neurotransmitter glutamate as a content-mixing marker. Efficient Ca2+-stimulated bilayer fusion, and glutamate release, occurred with approximately two molecules of mouse synaptobrevin 2 reconstituted into ~6-nm nanodiscs. The transmembrane domains of SNARE proteins assumed distinct roles in lipid mixing versus content release and were exposed to polar solvent during fusion. Additionally, tryptophan substitutions at specific positions in these transmembrane domains decreased glutamate flux. Together, these findings indicate that the fusion pore is a hybrid structure composed of both lipids and proteins. PMID:26656855

  14. A novel crosstalk between Alk7 and cGMP signaling differentially regulates brown adipocyte function

    PubMed Central

    Balkow, Aileen; Jagow, Johanna; Haas, Bodo; Siegel, Franziska; Kilić, Ana; Pfeifer, Alexander

    2015-01-01

    Objective Obesity is an enormous burden for patients and health systems world-wide. Brown adipose tissue dissipates energy in response to cold and has been shown to be metabolically active in human adults. The type I transforming growth factor β (TGFβ) receptor Activin receptor-like kinase 7 (Alk7) is highly expressed in adipose tissues and is down-regulated in obese patients. Here, we studied the function of Alk7 in brown adipocytes. Methods Using pharmacological and genetic tools, Alk7 signaling pathway and its effects were studied in murine brown adipocytes. Brown adipocyte differentiation and activation was analyzed. Results Alk7 is highly upregulated during differentiation of brown adipocytes. Interestingly, Alk7 expression is increased by cGMP/protein kinase G (PKG) signaling, which enhances brown adipocyte differentiation. Activin AB effectively activates Alk7 and SMAD3 signaling. Activation of Alk7 in brown preadipocytes suppresses the master adipogenic transcription factor PPARγ and differentiation. Stimulation of Alk7 during late differentiation of brown adipocytes reduces lipid content and adipogenic marker expression but enhances UCP1 expression. Conclusions We found a so far unknown crosstalk between cGMP and Alk7 signaling pathways. Tight regulation of Alk7 is required for efficient differentiation of brown adipocytes. Alk7 has differential effects on adipogenic differentiation and the development of the thermogenic program in brown adipocytes. PMID:26266090

  15. The bHLH transcription factor Hand is regulated by Alk in the Drosophila embryonic gut

    SciTech Connect

    Varshney, Gaurav K.; Palmer, Ruth H. . E-mail: Ruth.Palmer@ucmp.umu.se

    2006-12-29

    During embryonic development the midgut visceral muscle is formed by fusion of cells within the visceral mesoderm, a process initiated by the specification of a specialised cell type, the founder cell, within this tissue. Activation of the receptor tyrosine kinase Anaplastic lymphoma kinase (Alk) in the developing visceral muscle of Drosophila melanogaster initiates a signal transduction pathway required for muscle fusion. In this paper, we have investigated downstream components which are regulated by this novel signalling pathway. Here we show that Alk-mediated signal transduction drives the expression of the bHLH transcription factor Hand in vivo. Loss of Alk function results in a complete lack of Hand expression in this tissue, whereas Alk gain of function results in an expansion of Hand expression. Finally, we have investigated the process of muscle fusion in the gut of Hand mutant animals and can find no obvious defects in this process, suggesting that Hand is not critical for visceral muscle fusion per se.

  16. Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein.

    PubMed Central

    Wahlberg, J M; Bron, R; Wilschut, J; Garoff, H

    1992-01-01

    Infection of cells with enveloped viruses is accomplished through membrane fusion. The binding and fusion processes are mediated by the spike proteins in the envelope of the virus particle and usually involve a series of conformational changes in these proteins. We have studied the low-pH-mediated fusion process of the alphavirus Semliki Forest virus (SFV). The spike protein of SFV is composed of three copies of the protein heterodimer E2E1. This structure is resistant to solubilization in mild detergents such as Nonidet P-40 (NP40). We have recently shown that the spike structure is reorganized during virus entry into acidic endosomes (J. M. Wahlberg and H. Garoff, J. Cell Biol. 116:339-348, 1992). The original NP40-resistant heterodimer is dissociated, and the E1 subunits form new NP40-resistant protein oligomers. Here, we show that the new oligomer is represented by an E1 trimer. From studies that use an in vitro assay for fusion of SFV with liposomes, we show that the E1 trimer is efficiently expressed during virus-mediated membrane fusion. Time course studies show that both E1 trimer formation and fusion are fast processes, occurring in seconds. It was also possible to inhibit virus binding and fusion with a monoclonal antibody directed toward the trimeric E1. These results give support for a model in which the E1 trimeric structure is involved in the SFV-mediated fusion reaction. Images PMID:1433520

  17. Distinct roles for key karyogamy proteins during yeast nuclear fusion.

    PubMed

    Melloy, Patricia; Shen, Shu; White, Erin; Rose, Mark D

    2009-09-01

    During yeast mating, cell fusion is followed by the congression and fusion of the two nuclei. Proteins required for nuclear fusion are found at the surface (Prm3p) and within the lumen (Kar2p, Kar5p, and Kar8p) of the nuclear envelope (NE). Electron tomography (ET) of zygotes revealed that mutations in these proteins block nuclear fusion with different morphologies, suggesting that they act in different steps of fusion. Specifically, prm3 zygotes were blocked before formation of membrane bridges, whereas kar2, kar5, and kar8 zygotes frequently contained them. Membrane bridges were significantly larger and occurred more frequently in kar2 and kar8, than in kar5 mutant zygotes. The kinetics of NE fusion in prm3, kar5, and kar8 mutants, measured by live-cell fluorescence microscopy, were well correlated with the size and frequency of bridges observed by ET. However the kar2 mutant was defective for transfer of NE lumenal GFP, but not diffusion within the lumen, suggesting that transfer was blocked at the NE fusion junction. These observations suggest that Prm3p acts before initiation of outer NE fusion, Kar5p may help dilation of the initial fusion pore, and Kar2p and Kar8p act after outer NE fusion, during inner NE fusion. PMID:19570912

  18. Distinct roles for key karyogamy proteins during yeast nuclear fusion.

    PubMed

    Melloy, Patricia; Shen, Shu; White, Erin; Rose, Mark D

    2009-09-01

    During yeast mating, cell fusion is followed by the congression and fusion of the two nuclei. Proteins required for nuclear fusion are found at the surface (Prm3p) and within the lumen (Kar2p, Kar5p, and Kar8p) of the nuclear envelope (NE). Electron tomography (ET) of zygotes revealed that mutations in these proteins block nuclear fusion with different morphologies, suggesting that they act in different steps of fusion. Specifically, prm3 zygotes were blocked before formation of membrane bridges, whereas kar2, kar5, and kar8 zygotes frequently contained them. Membrane bridges were significantly larger and occurred more frequently in kar2 and kar8, than in kar5 mutant zygotes. The kinetics of NE fusion in prm3, kar5, and kar8 mutants, measured by live-cell fluorescence microscopy, were well correlated with the size and frequency of bridges observed by ET. However the kar2 mutant was defective for transfer of NE lumenal GFP, but not diffusion within the lumen, suggesting that transfer was blocked at the NE fusion junction. These observations suggest that Prm3p acts before initiation of outer NE fusion, Kar5p may help dilation of the initial fusion pore, and Kar2p and Kar8p act after outer NE fusion, during inner NE fusion.

  19. Fusion proteins as alternate crystallization paths to difficult structure problems

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Rueker, Florian; Ho, Joseph X.; Lim, Kap; Keeling, Kim; Gilliland, Gary; Ji, Xinhua

    1994-01-01

    The three-dimensional structure of a peptide fusion product with glutathione transferase from Schistosoma japonicum (SjGST) has been solved by crystallographic methods to 2.5 A resolution. Peptides or proteins can be fused to SjGST and expressed in a plasmid for rapid synthesis in Escherichia coli. Fusion proteins created by this commercial method can be purified rapidly by chromatography on immobilized glutathione. The potential utility of using SjGST fusion proteins as alternate paths to the crystallization and structure determination of proteins is demonstrated.

  20. C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein.

    PubMed

    Popa, Andreea; Pager, Cara Teresia; Dutch, Rebecca Ellis

    2011-02-15

    The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus, and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the virus-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in the extent of cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F protein fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in the extent of fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of addition of the HA tag varied with other fusion proteins, as parainfluenza virus 5 F-HA showed a decreased level of surface expression and no stimulation of fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope-tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in the modulation of the membrane fusion reaction promoted by these viral glycoproteins.

  1. Transferrin-antibody fusion proteins are effective in brain targeting.

    PubMed Central

    Shin, S U; Friden, P; Moran, M; Olson, T; Kang, Y S; Pardridge, W M; Morrison, S L

    1995-01-01

    In the present study, the receptor binding potential of transferrin (Tf) was linked to an antibody binding specificity. Human Tf was fused to mouse-human chimeric IgG3 at three positions: at the end of heavy chain constant region 1 (CH1), after the hinge, and after CH3. The resulting Tf-antibody fusion proteins were able to bind antigen and the Tf receptor. The CH3-Tf fusion protein showed no complement-mediated cytolysis but possessed IgG receptor I (Fc gamma RI) binding activity. Most importantly, all of the fusion proteins demonstrated significant uptake into brain parenchyma, with 0.3% of the injected dose of the hinge-Tf fusion protein rapidly targeted to the brain. Recovery of iodinated CH3-Tf fusion protein from the brain parenchyma demonstrated that the fusion proteins can cross the blood-brain barrier intact. The binding specificity of these fusion proteins can be used for brain delivery of noncovalently bound ligands, such as drugs and peptides, or for targeting antigens present within the brain. Images Fig. 1 Fig. 5 PMID:7708731

  2. Rho GTPase activity modulates paramyxovirus fusion protein-mediated cell-cell fusion

    SciTech Connect

    Schowalter, Rachel M.; Wurth, Mark A.; Aguilar, Hector C.; Lee, Benhur; Moncman, Carole L.; McCann, Richard O.; Dutch, Rebecca Ellis . E-mail: rdutc2@uky.edu

    2006-07-05

    The paramyxovirus fusion protein (F) promotes fusion of the viral envelope with the plasma membrane of target cells as well as cell-cell fusion. The plasma membrane is closely associated with the actin cytoskeleton, but the role of actin dynamics in paramyxovirus F-mediated membrane fusion is unclear. We examined cell-cell fusion promoted by two different paramyxovirus F proteins in three cell types in the presence of constitutively active Rho family GTPases, major cellular coordinators of actin dynamics. Reporter gene and syncytia assays demonstrated that expression of either Rac1{sup V12} or Cdc42{sup V12} could increase cell-cell fusion promoted by the Hendra or SV5 glycoproteins, though the effect was dependent on the cell type expressing the viral glycoproteins. In contrast, RhoA{sup L63} decreased cell-cell fusion promoted by Hendra glycoproteins but had little affect on SV5 F-mediated fusion. Also, data suggested that GTPase activation in the viral glycoprotein-containing cell was primarily responsible for changes in fusion. Additionally, we found that activated Cdc42 promoted nuclear rearrangement in syncytia.

  3. The dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion

    SciTech Connect

    Huang, Claire Y.-H.; Butrapet, Siritorn; Moss, Kelly J.; Childers, Thomas; Erb, Steven M.; Calvert, Amanda E.; Silengo, Shawn J.; Kinney, Richard M.; Blair, Carol D.; Roehrig, John T.

    2010-01-20

    The flaviviral envelope (E) protein directs virus-mediated membrane fusion. To investigate membrane fusion as a requirement for virus growth, we introduced 27 unique mutations into the fusion peptide of an infectious cDNA clone of dengue 2 virus and recovered seven stable mutant viruses. The fusion efficiency of the mutants was impaired, demonstrating for the first time the requirement for specific FP AAs in optimal fusion. Mutant viruses exhibited different growth kinetics and/or genetic stabilities in different cell types and adult mosquitoes. Virus particles could be recovered following RNA transfection of cells with four lethal mutants; however, recovered viruses could not re-infect cells. These viruses could enter cells, but internalized virus appeared to be retained in endosomal compartments of infected cells, thus suggesting a fusion blockade. Mutations of the FP also resulted in reduced virus reactivity with flavivirus group-reactive antibodies, confirming earlier reports using virus-like particles.

  4. Multimeric Disintegrin Protein Polymer Fusions That Target Tumor Vasculature

    PubMed Central

    2015-01-01

    Recombinant protein therapeutics have increased in number and frequency since the introduction of human insulin, 25 years ago. Presently, proteins and peptides are commonly used in the clinic. However, the incorporation of peptides into clinically approved nanomedicines has been limited. Reasons for this include the challenges of decorating pharmaceutical-grade nanoparticles with proteins by a process that is robust, scalable, and cost-effective. As an alternative to covalent bioconjugation between a protein and nanoparticle, we report that biologically active proteins may themselves mediate the formation of small multimers through steric stabilization by large protein polymers. Unlike multistep purification and bioconjugation, this approach is completed during biosynthesis. As proof-of-principle, the disintegrin protein called vicrostatin (VCN) was fused to an elastin-like polypeptide (A192). A significant fraction of fusion proteins self-assembled into multimers with a hydrodynamic radius of 15.9 nm. The A192-VCN fusion proteins compete specifically for cell-surface integrins on human umbilical vein endothelial cells (HUVECs) and two breast cancer cell lines, MDA-MB-231 and MDA-MB-435. Confocal microscopy revealed that, unlike linear RGD-containing protein polymers, the disintegrin fusion protein undergoes rapid cellular internalization. To explore their potential clinical applications, fusion proteins were characterized using small animal positron emission tomography (microPET). Passive tumor accumulation was observed for control protein polymers; however, the tumor accumulation of A192-VCN was saturable, which is consistent with integrin-mediated binding. The fusion of a protein polymer and disintegrin results in a higher intratumoral contrast compared to free VCN or A192 alone. Given the diversity of disintegrin proteins with specificity for various cell-surface integrins, disintegrin fusions are a new source of biomaterials with potential diagnostic and

  5. Staphylokinase as a Plasminogen Activator Component in Recombinant Fusion Proteins

    PubMed Central

    Szarka, S. J.; Sihota, E. G.; Habibi, H. R.; Wong, S.-L.

    1999-01-01

    The plasminogen activator staphylokinase (SAK) is a promising thrombolytic agent for treatment of myocardial infarction. It can specifically stimulate the thrombolysis of both erythrocyte-rich and platelet-rich clots. However, SAK lacks fibrin-binding and thrombin inhibitor activities, two functions which would supplement and potentially improve its thrombolytic potency. Creating a recombinant fusion protein is one approach for combining protein domains with complementary functions. To evaluate SAK for use in a translational fusion protein, both N- and C-terminal fusions to SAK were constructed by using hirudin as a fusion partner. Recombinant fusion proteins were secreted from Bacillus subtilis and purified from culture supernatants. The rate of plasminogen activation by SAK was not altered by the presence of an additional N- or C-terminal protein sequence. However, cleavage at N-terminal lysines within SAK rendered the N-terminal fusion unstable in the presence of plasmin. The results of site-directed mutagenesis of lysine 10 and lysine 11 in SAK suggested that a plasmin-resistant variant cannot be created without interfering with the plasmin processing necessary for activation of SAK. Although putative plasmin cleavage sites are located at the C-terminal end of SAK at lysine 135 and lysine 136, these sites were resistant to plasmin cleavage in vitro. Therefore, C-terminal fusions represent stable configurations for developing improved thrombolytic agents based on SAK as the plasminogen activator component. PMID:9925575

  6. IGF-IR tyrosine kinase interacts with NPM-ALK oncogene to induce survival of T-cell ALK+ anaplastic large-cell lymphoma cells.

    PubMed

    Shi, Ping; Lai, Raymond; Lin, Quan; Iqbal, Abid S; Young, Leah C; Kwak, Larry W; Ford, Richard J; Amin, Hesham M

    2009-07-01

    Type I insulin-like growth factor receptor (IGF-IR) tyrosine kinase plays important roles in the pathogenesis of several malignancies. Although it promotes the growth of stimulated hematopoietic cells, a direct role of IGF-IR in malignant lymphoma has not been identified. Anaplastic lymphoma kinase-positive anaplastic large-cell lymphoma (ALK(+) ALCL) is a unique type of T-cell lymphoma. Approximately 85% of ALK(+) ALCL cases harbor the translocation t(2;5)(p23;q35), which generates the chimeric oncogene NPM-ALK. In the present study, we explored a possible role of IGF-IR in ALK(+) ALCL. Our results demonstrate that IGF-IR and IGF-I are widely expressed in ALK(+) ALCL cell lines and primary tumors. Importantly, we identified novel reciprocal functional interactions between IGF-IR and NPM-ALK. Antagonism of IGF-IR decreased the viability, induced apoptosis and cell-cycle arrest, and decreased proliferation and colony formation of ALK(+) ALCL cell lines. These effects could be explained by alterations of cell survival regulatory proteins downstream of IGF-IR signaling. Our findings improve current understanding of the biology of IGF-IR and NPM-ALK and have significant therapeutic implications as they identify IGF-IR signaling as a potential therapeutic target in ALK(+) ALCL and possibly other types of malignant lymphoma.

  7. IGF-IR tyrosine kinase interacts with NPM-ALK oncogene to induce survival of T-cell ALK+ anaplastic large-cell lymphoma cells

    PubMed Central

    Shi, Ping; Lai, Raymond; Lin, Quan; Iqbal, Abid S.; Young, Leah C.; Kwak, Larry W.; Ford, Richard J.

    2009-01-01

    Type I insulin-like growth factor receptor (IGF-IR) tyrosine kinase plays important roles in the pathogenesis of several malignancies. Although it promotes the growth of stimulated hematopoietic cells, a direct role of IGF-IR in malignant lymphoma has not been identified. Anaplastic lymphoma kinase-positive anaplastic large-cell lymphoma (ALK+ ALCL) is a unique type of T-cell lymphoma. Approximately 85% of ALK+ ALCL cases harbor the translocation t(2;5)(p23;q35), which generates the chimeric oncogene NPM-ALK. In the present study, we explored a possible role of IGF-IR in ALK+ ALCL. Our results demonstrate that IGF-IR and IGF-I are widely expressed in ALK+ ALCL cell lines and primary tumors. Importantly, we identified novel reciprocal functional interactions between IGF-IR and NPM-ALK. Antagonism of IGF-IR decreased the viability, induced apoptosis and cell-cycle arrest, and decreased proliferation and colony formation of ALK+ ALCL cell lines. These effects could be explained by alterations of cell survival regulatory proteins downstream of IGF-IR signaling. Our findings improve current understanding of the biology of IGF-IR and NPM-ALK and have significant therapeutic implications as they identify IGF-IR signaling as a potential therapeutic target in ALK+ ALCL and possibly other types of malignant lymphoma. PMID:19423729

  8. How Could SNARE Proteins Open a Fusion Pore?

    PubMed Central

    Fang, Qinghua

    2014-01-01

    The SNARE (Soluble NSF Attachment protein REceptor) complex, which in mammalian neurosecretory cells is composed of the proteins synaptobrevin 2 (also called VAMP2), syntaxin, and SNAP-25, plays a key role in vesicle fusion. In this review, we discuss the hypothesis that, in neurosecretory cells, fusion pore formation is directly accomplished by a conformational change in the SNARE complex via movement of the transmembrane domains. PMID:24985331

  9. Immunological Properties of Hepatitis B Core Antigen Fusion Proteins

    NASA Astrophysics Data System (ADS)

    Francis, Michael J.; Hastings, Gillian Z.; Brown, Alan L.; Grace, Ken G.; Rowlands, David J.; Brown, Fred; Clarke, Berwyn E.

    1990-04-01

    The immunogenicity of a 19 amino acid peptide from foot-and-mouth disease virus has previously been shown to approach that of the inactivated virus from which it was derived after multimeric particulate presentation as an N-terminal fusion with hepatitis B core antigen. In this report we demonstrate that rhinovirus peptide-hepatitis B core antigen fusion proteins are 10-fold more immunogenic than peptide coupled to keyhole limpet hemocyanin and 100-fold more immunogenic than uncoupled peptide with an added helper T-cell epitope. The fusion proteins can be readily administered without adjuvant or with adjuvants acceptable for human and veterinary application and can elicit a response after nasal or oral dosing. The fusion proteins can also act as T-cell-independent antigens. These properties provide further support for their suitability as presentation systems for "foreign" epitopes in the development of vaccines.

  10. ALK kinase domain mutations in primary anaplastic large cell lymphoma: consequences on NPM-ALK activity and sensitivity to tyrosine kinase inhibitors.

    PubMed

    Lovisa, Federica; Cozza, Giorgio; Cristiani, Andrea; Cuzzolin, Alberto; Albiero, Alessandro; Mussolin, Lara; Pillon, Marta; Moro, Stefano; Basso, Giuseppe; Rosolen, Angelo; Bonvini, Paolo

    2015-01-01

    ALK inhibitor crizotinib has shown potent antitumor activity in children with refractory Anaplastic Large Cell Lymphoma (ALCL) and the opportunity to include ALK inhibitors in first-line therapies is oncoming. However, recent studies suggest that crizotinib-resistance mutations may emerge in ALCL patients. In the present study, we analyzed ALK kinase domain mutational status of 36 paediatric ALCL patients at diagnosis to identify point mutations and gene aberrations that could impact on NPM-ALK gene expression, activity and sensitivity to small-molecule inhibitors. Amplicon ultra-deep sequencing of ALK kinase domain detected 2 single point mutations, R335Q and R291Q, in 2 cases, 2 common deletions of exon 23 and 25 in all the patients, and 7 splicing-related INDELs in a variable number of them. The functional impact of missense mutations and INDELs was evaluated. Point mutations were shown to affect protein kinase activity, signalling output and drug sensitivity. INDELs, instead, generated kinase-dead variants with dominant negative effect on NPM-ALK kinase, in virtue of their capacity of forming non-functional heterocomplexes. Consistently, when co-expressed, INDELs increased crizotinib inhibitory activity on NPM-ALK signal processing, as demonstrated by the significant reduction of STAT3 phosphorylation. Functional changes in ALK kinase activity induced by both point mutations and structural rearrangements were resolved by molecular modelling and dynamic simulation analysis, providing novel insights into ALK kinase domain folding and regulation. Therefore, these data suggest that NPM-ALK pre-therapeutic mutations may be found at low frequency in ALCL patients. These mutations occur randomly within the ALK kinase domain and affect protein activity, while preserving responsiveness to crizotinib.

  11. Precision medicine in NSCLC and pathology: how does ALK fit in the pathway?

    PubMed

    Kerr, K M; López-Ríos, F

    2016-09-01

    The evolution of personalised medicine in lung cancer has dramatically impacted diagnostic pathology. Current challenges centre on the growing demands placed on small tissue samples by molecular diagnostic techniques. In this review, expert recommendations are provided regarding successful identification of anaplastic lymphoma kinase (ALK)-rearranged non-small-cell lung cancer (NSCLC). Steps to correctly process and conserve tumour tissue during diagnostic testing are essential to ensure tissue availability. For example, storing extra tissue sections ready for molecular diagnostic steps allows faster testing and preserves tissue. Fluorescence in situ hybridisation (FISH) is commonly used to detect ALK rearrangements, with most laboratories favouring screening by immunohistochemistry followed by a confirmatory FISH assay. Reverse transcription-polymerase chain reaction can also identify ALK fusion gene mRNA transcripts but can be limited by the quality of RNA and the risk that rare fusion variants may not be captured. Next-generation sequencing (NGS) technology has recently provided an alternative method for detecting ALK rearrangements. While current experience is limited, NGS is set to become the most efficient approach as an increasing number of genetic abnormalities is required to be tested. Upfront, reflex testing for ALK gene rearrangement should become routine as ALK tyrosine kinase inhibitor therapy moves into the first-line setting. Guidelines recommend that EGFR and ALK tests are carried out in parallel on all confirmed and potential adenocarcinomas, and this is more efficient in terms of tissue usage and testing turnaround time for both of these actionable gene alterations. The practice of sequential testing is not recommended. Identification of ALK rearrangements is now essential for the diagnosis of NSCLC, underpinned by the benefits of ALK inhibitors. As scientific understanding and diagnostic technology develops, ALK testing will continue to be an

  12. The Yeast Cell Fusion Protein Prm1p Requires Covalent Dimerization to Promote Membrane Fusion

    PubMed Central

    Engel, Alex; Aguilar, Pablo S.; Walter, Peter

    2010-01-01

    Prm1p is a multipass membrane protein that promotes plasma membrane fusion during yeast mating. The mechanism by which Prm1p and other putative regulators of developmentally controlled cell-cell fusion events facilitate membrane fusion has remained largely elusive. Here, we report that Prm1p forms covalently linked homodimers. Covalent Prm1p dimer formation occurs via intermolecular disulfide bonds of two cysteines, Cys-120 and Cys-545. PRM1 mutants in which these cysteines have been substituted are fusion defective. These PRM1 mutants are normally expressed, retain homotypic interaction and can traffic to the fusion zone. Because prm1-C120S and prm1-C545S mutants can form covalent dimers when coexpressed with wild-type PRM1, an intermolecular C120-C545 disulfide linkage is inferred. Cys-120 is adjacent to a highly conserved hydrophobic domain. Mutation of a charged residue within this hydrophobic domain abrogates formation of covalent dimers, trafficking to the fusion zone, and fusion-promoting activity. The importance of intermolecular disulfide bonding informs models regarding the mechanism of Prm1-mediated cell-cell fusion. PMID:20485669

  13. Hantavirus Gc glycoprotein: evidence for a class II fusion protein.

    PubMed

    Tischler, Nicole D; Gonzalez, Angel; Perez-Acle, Tomas; Rosemblatt, Mario; Valenzuela, Pablo D T

    2005-11-01

    Hantavirus cell entry is promoted by its envelope glycoproteins, Gn and Gc, through cell attachment and by fusion between viral and endosomal membranes at low pH. However, the role of Gn and Gc in receptor binding and cell fusion has not yet been defined. In this work, a sequence presenting characteristics similar to those of class II fusion peptides (FPs) of alphavirus E1 and flavivirus E proteins is identified within the hantavirus Gc glycoprotein. A three-dimensional comparative molecular model based on crystallographic data of tick-borne encephalitis virus E protein is proposed for the Andes virus (ANDV) Gc ectodomain, which supports a feasible class II fusion-protein fold. In vitro experimental evidence is provided for the binding activity of the ANDV FP candidate to artificial membranes, as demonstrated by fluorescence anisotropy assays. Taken together, these results support the hypothesis that the Gc glycoprotein of hantaviruses and of other members of the family Bunyaviridae directs the viral fusion activity and that it may be classified as a class II viral fusion protein.

  14. Purification of an elastin-like fusion protein by microfiltration.

    PubMed

    Ge, Xin; Trabbic-Carlson, Kimberly; Chilkoti, Ashutosh; Filipe, Carlos D M

    2006-10-20

    This article describes a simple and potentially scalable microfiltration method for purification of recombinant proteins. This method is based on the fact that when an elastin-like polypeptide (ELP) is fused to a target protein, the inverse phase transition behavior of the ELP tag is imparted to the fusion protein. Triggering the phase transition of a solution of the ELP fusion protein by an increase in temperature, or isothermally by an increase in salt concentration, results in the formation of micron-sized aggregates of the ELP fusion protein. In this article, it is shown that these aggregates are efficiently retained by a microfiltration membrane, while contaminating E. coli proteins passed through the membrane upon washing. Upon reversing the phase transition by flow of Milli-Q water, soluble, pure, and functionally active protein is eluted from the membrane. Proof-of principle of this approach was demonstrated by purifying a fusion of thioredoxin with ELP (Trx-ELP) with greater than 95% recovery of protein and with greater than 95% purity (as estimated from SDS-PAGE gels). The simplicity of this method is demonstrated for laboratory scale purification by purifying Trx-ELP from cell lysate using a syringe and a disposable microfiltration cartridge. The potential scalability of this purification as an automated, continuous industrial-scale process is also demonstrated using a continuous stirred cell equipped with a microfiltration membrane.

  15. Intracellular Delivery of Proteins via Fusion Peptides in Intact Plants

    PubMed Central

    Ng, Kiaw Kiaw; Motoda, Yoko; Watanabe, Satoru; Sofiman Othman, Ahmad; Kigawa, Takanori; Kodama, Yutaka; Numata, Keiji

    2016-01-01

    In current plant biotechnology, the introduction of exogenous DNA encoding desired traits is the most common approach used to modify plants. However, general plant transformation methods can cause random integration of exogenous DNA into the plant genome. To avoid these events, alternative methods, such as a direct protein delivery system, are needed to modify the plant. Although there have been reports of the delivery of proteins into cultured plant cells, there are currently no methods for the direct delivery of proteins into intact plants, owing to their hierarchical structures. Here, we demonstrate the efficient fusion-peptide-based delivery of proteins into intact Arabidopsis thaliana. Bovine serum albumin (BSA, 66 kDa) was selected as a model protein to optimize conditions for delivery into the cytosol. The general applicability of our method to large protein cargo was also demonstrated by the delivery of alcohol dehydrogenase (ADH, 150 kDa) into the cytosol. The compatibility of the fusion peptide system with the delivery of proteins to specific cellular organelles was also demonstrated using the fluorescent protein Citrine (27 kDa) conjugated to either a nuclear localization signal (NLS) or a peroxisomal targeting signal (PTS). In conclusion, our designed fusion peptide system can deliver proteins with a wide range of molecular weights (27 to 150 kDa) into the cells of intact A. thaliana without interfering with the organelle-targeting peptide conjugated to the protein. We expect that this efficient protein delivery system will be a powerful tool in plant biotechnology. PMID:27100681

  16. The cytoplasmic domain of the gamete membrane fusion protein HAP2 targets the protein to the fusion site in Chlamydomonas and regulates the fusion reaction.

    PubMed

    Liu, Yanjie; Pei, Jimin; Grishin, Nick; Snell, William J

    2015-03-01

    Cell-cell fusion between gametes is a defining step during development of eukaryotes, yet we know little about the cellular and molecular mechanisms of the gamete membrane fusion reaction. HAP2 is the sole gamete-specific protein in any system that is broadly conserved and shown by gene disruption to be essential for gamete fusion. The wide evolutionary distribution of HAP2 (also known as GCS1) indicates it was present in the last eukaryotic common ancestor and, therefore, dissecting its molecular properties should provide new insights into fundamental features of fertilization. HAP2 acts at a step after membrane adhesion, presumably directly in the merger of the lipid bilayers. Here, we use the unicellular alga Chlamydomonas to characterize contributions of key regions of HAP2 to protein location and function. We report that mutation of three strongly conserved residues in the ectodomain has no effect on targeting or fusion, although short deletions that include those residues block surface expression and fusion. Furthermore, HAP2 lacking a 237-residue segment of the cytoplasmic region is expressed at the cell surface, but fails to localize at the apical membrane patch specialized for fusion and fails to rescue fusion. Finally, we provide evidence that the ancient HAP2 contained a juxta-membrane, multi-cysteine motif in its cytoplasmic region, and that mutation of a cysteine dyad in this motif preserves protein localization, but substantially impairs HAP2 fusion activity. Thus, the ectodomain of HAP2 is essential for its surface expression, and the cytoplasmic region targets HAP2 to the site of fusion and regulates the fusion reaction.

  17. The cytoplasmic domain of the gamete membrane fusion protein HAP2 targets the protein to the fusion site in Chlamydomonas and regulates the fusion reaction

    PubMed Central

    Liu, Yanjie; Pei, Jimin; Grishin, Nick; Snell, William J.

    2015-01-01

    Cell-cell fusion between gametes is a defining step during development of eukaryotes, yet we know little about the cellular and molecular mechanisms of the gamete membrane fusion reaction. HAP2 is the sole gamete-specific protein in any system that is broadly conserved and shown by gene disruption to be essential for gamete fusion. The wide evolutionary distribution of HAP2 (also known as GCS1) indicates it was present in the last eukaryotic common ancestor and, therefore, dissecting its molecular properties should provide new insights into fundamental features of fertilization. HAP2 acts at a step after membrane adhesion, presumably directly in the merger of the lipid bilayers. Here, we use the unicellular alga Chlamydomonas to characterize contributions of key regions of HAP2 to protein location and function. We report that mutation of three strongly conserved residues in the ectodomain has no effect on targeting or fusion, although short deletions that include those residues block surface expression and fusion. Furthermore, HAP2 lacking a 237-residue segment of the cytoplasmic region is expressed at the cell surface, but fails to localize at the apical membrane patch specialized for fusion and fails to rescue fusion. Finally, we provide evidence that the ancient HAP2 contained a juxta-membrane, multi-cysteine motif in its cytoplasmic region, and that mutation of a cysteine dyad in this motif preserves protein localization, but substantially impairs HAP2 fusion activity. Thus, the ectodomain of HAP2 is essential for its surface expression, and the cytoplasmic region targets HAP2 to the site of fusion and regulates the fusion reaction. PMID:25655701

  18. Subcellular localization of transiently expressed fluorescent fusion proteins.

    PubMed

    Collings, David A

    2013-01-01

    The recent and massive expansion in plant genomics data has generated a large number of gene sequences for which two seemingly simple questions need to be answered: where do the proteins encoded by these genes localize in cells, and what do they do? One widespread approach to answering the localization question has been to use particle bombardment to transiently express unknown proteins tagged with green fluorescent protein (GFP) or its numerous derivatives. Confocal fluorescence microscopy is then used to monitor the localization of the fluorescent protein as it hitches a ride through the cell. The subcellular localization of the fusion protein, if not immediately apparent, can then be determined by comparison to localizations generated by fluorescent protein fusions to known signalling sequences and proteins, or by direct comparison with fluorescent dyes. This review aims to be a tour guide for researchers wanting to travel this hitch-hiker's path, and for reviewers and readers who wish to understand their travel reports. It will describe some of the technology available for visualizing protein localizations, and some of the experimental approaches for optimizing and confirming localizations generated by particle bombardment in onion epidermal cells, the most commonly used experimental system. As the non-conservation of signal sequences in heterologous expression systems such as onion, and consequent mis-targeting of fusion proteins, is always a potential problem, the epidermal cells of the Argenteum mutant of pea are proposed as a model system.

  19. Subcellular localization of transiently expressed fluorescent fusion proteins.

    PubMed

    Collings, David A

    2013-01-01

    The recent and massive expansion in plant genomics data has generated a large number of gene sequences for which two seemingly simple questions need to be answered: where do the proteins encoded by these genes localize in cells, and what do they do? One widespread approach to answering the localization question has been to use particle bombardment to transiently express unknown proteins tagged with green fluorescent protein (GFP) or its numerous derivatives. Confocal fluorescence microscopy is then used to monitor the localization of the fluorescent protein as it hitches a ride through the cell. The subcellular localization of the fusion protein, if not immediately apparent, can then be determined by comparison to localizations generated by fluorescent protein fusions to known signalling sequences and proteins, or by direct comparison with fluorescent dyes. This review aims to be a tour guide for researchers wanting to travel this hitch-hiker's path, and for reviewers and readers who wish to understand their travel reports. It will describe some of the technology available for visualizing protein localizations, and some of the experimental approaches for optimizing and confirming localizations generated by particle bombardment in onion epidermal cells, the most commonly used experimental system. As the non-conservation of signal sequences in heterologous expression systems such as onion, and consequent mis-targeting of fusion proteins, is always a potential problem, the epidermal cells of the Argenteum mutant of pea are proposed as a model system. PMID:23996319

  20. Pleiotrophin induces neurite outgrowth and up-regulates growth-associated protein (GAP)-43 mRNA through the ALK/GSK3beta/beta-catenin signaling in developing mouse neurons.

    PubMed

    Yanagisawa, Hiroko; Komuta, Yukari; Kawano, Hitoshi; Toyoda, Masashi; Sango, Kazunori

    2010-01-01

    Pleiotrophin (PTN) is highly expressed in the nervous system during embryogenesis; however, little is known about its functional role in neural development. By using whole mount in situ hybridization, we observed that the expression pattern of PTN was similar to that of Wnt3a; PTN mRNA was abundant in the nervous tissue along the dorsal midline and in the forelimb and hindlimb buds of embryonic mice (E8.5-E12.5). Treatment with recombinant PTN (100ng/ml) induced phosphorylation of glycogen synthase kinase 3beta (GSK3beta), nuclear localization of beta-catenin and up-regulation of growth-associated protein (GAP)-43 mRNA in cultured embryonic mouse (E14.5) neurons. Furthermore, recombinant PTN enhanced neurite outgrowth from cortical explants embedded in Matrigel. These PTN-induced biochemical changes and neurite outgrowth were attenuated by the co-treatment with anti-anaplastic lymphoma kinase (ALK) antibodies, but not with anti-protein tyrosine phosphatase (PTP)zeta antibodies. These findings imply that ALK is involved in the PTN signaling on neural development.

  1. A Functional Landscape of Resistance to ALK Inhibition in Lung Cancer

    PubMed Central

    Wilson, Frederick H.; Johannessen, Cory M.; Piccioni, Federica; Tamayo, Pablo; Kim, Jong Wook; Van Allen, Eliezer M.; Corsello, Steven M.; Capelletti, Marzia; Calles, Antonio; Butaney, Mohit; Sharifnia, Tanaz; Gabriel, Stacey B.; Mesirov, Jill P.; Hahn, William C.; Engelman, Jeffrey A.; Meyerson, Matthew; Root, David E.; Jänne, Pasi A.; Garraway, Levi A.

    2015-01-01

    Summary We conducted a large-scale functional genetic study to characterize mechanisms of resistance to ALK inhibition in ALK-dependent lung cancer cells. We identify members of known resistance pathways and additional putative resistance drivers. Among the latter were members of the P2Y purinergic receptor family of G-protein coupled receptors (P2Y1, P2Y2, and P2Y6). P2Y receptors mediated resistance in part through a protein kinase C (PKC)-dependent mechanism. Moreover, PKC activation alone was sufficient to confer resistance to ALK inhibitors whereas combined ALK and PKC inhibition restored sensitivity. We observed enrichment of gene signatures associated with several resistance drivers (including P2Y receptors) in crizotinib-resistant ALK-rearranged lung tumors compared to treatment-naïve controls, supporting a role for identified resistance mechanisms in clinical resistance. PMID:25759024

  2. Treating patients with ALK-positive non-small cell lung cancer: latest evidence and management strategy

    PubMed Central

    Liao, Bin-Chi; Shih, Jin-Yuan; Yang, James Chih-Hsin

    2015-01-01

    Rearrangements in anaplastic lymphoma kinase (ALK) gene and echinoderm microtubule-associated protein-like 4 (EML4) gene were first described in a small portion of patients with non-small cell lung cancer (NSCLC) in 2007. Fluorescence in situ hybridization is used as the diagnostic test for detecting an EML4–ALK rearrangement. Crizotinib, an ALK inhibitor, is effective in treating advanced ALK-positive NSCLC, and the US Food and Drug Administration approved it for treating ALK-positive NSCLC in 2011. Several mechanisms of acquired resistance to crizotinib have recently been reported. Second-generation ALK inhibitors were designed to overcome these resistance mechanisms. Two of them, ceritinib and alectinib, were approved in 2014 for advanced ALK-positive NSCLC in the US and Japan, respectively. Heat shock protein 90 (Hsp90) inhibitors also showed activity against ALK-positive NSCLC. Here we review the recent development of crizotinib, ceritinib, alectinib and other second-generation ALK inhibitors as well as Hsp90 inhibitors. We also discuss management strategies for advanced ALK-positive NSCLC. PMID:26327925

  3. Crystal structure of EML1 reveals the basis for Hsp90 dependence of oncogenic EML4-ALK by disruption of an atypical β-propeller domain

    PubMed Central

    Richards, Mark W.; Law, Edward W. P.; Rennalls, La’Verne P.; Busacca, Sara; O’Regan, Laura; Fry, Andrew M.; Fennell, Dean A.; Bayliss, Richard

    2014-01-01

    Proteins of the echinoderm microtubule-associated protein (EMAP)-like (EML) family contribute to formation of the mitotic spindle and interphase microtubule network. They contain a unique hydrophobic EML protein (HELP) motif and a variable number of WD40 repeats. Recurrent gene rearrangements in nonsmall cell lung cancer fuse EML4 to anaplastic lymphoma kinase (ALK), causing expression of several fusion oncoprotein variants. We have determined a 2.6-Å crystal structure of the representative ∼70-kDa core of EML1, revealing an intimately associated pair of β-propellers, which we term a TAPE (tandem atypical propeller in EMLs) domain. One propeller is highly atypical, having a discontinuous subdomain unrelated to a WD40 motif in place of one of its blades. This unexpected feature shows how a propeller structure can be assembled from subdomains with distinct folds. The HELP motif is not an independent domain but forms part of the hydrophobic core that joins the two β-propellers. The TAPE domain binds α/β-tubulin via its conserved, concave surface, including part of the atypical blade. Mapping the characteristic breakpoints of each EML4-ALK variant onto our structure indicates that the EML4 TAPE domain is truncated in many variants in a manner likely to make the fusion protein structurally unstable. We found that the heat shock protein 90 (Hsp90) inhibitor ganetespib induced degradation of these variants whereas others lacking a partial TAPE domain were resistant in both overexpression models and patient-derived cell lines. The Hsp90-sensitive EML4-ALK variants are exceptions to the rule that oncogenic fusion proteins involve breakpoints in disordered regions of both partners. PMID:24706829

  4. In vivo imaging models of bone and brain metastases and pleural carcinomatosis with a novel human EML4-ALK lung cancer cell line.

    PubMed

    Nanjo, Shigeki; Nakagawa, Takayuki; Takeuchi, Shinji; Kita, Kenji; Fukuda, Koji; Nakada, Mitsutoshi; Uehara, Hisanori; Nishihara, Hiroshi; Hara, Eiji; Uramoto, Hidetaka; Tanaka, Fumihiro; Yano, Seiji

    2015-03-01

    EML4-ALK lung cancer accounts for approximately 3-7% of non-small-cell lung cancer cases. To investigate the molecular mechanism underlying tumor progression and targeted drug sensitivity/resistance in EML4-ALK lung cancer, clinically relevant animal models are indispensable. In this study, we found that the lung adenocarcinoma cell line A925L expresses an EML4-ALK gene fusion (variant 5a, E2:A20) and is sensitive to the ALK inhibitors crizotinib and alectinib. We further established highly tumorigenic A925LPE3 cells, which also have the EML4-ALK gene fusion (variant 5a) and are sensitive to ALK inhibitors. By using A925LPE3 cells with luciferase gene transfection, we established in vivo imaging models for pleural carcinomatosis, bone metastasis, and brain metastasis, all of which are significant clinical concerns of advanced EML4-ALK lung cancer. Interestingly, crizotinib caused tumors to shrink in the pleural carcinomatosis model, but not in bone and brain metastasis models, whereas alectinib showed remarkable efficacy in all three models, indicative of the clinical efficacy of these ALK inhibitors. Our in vivo imaging models of multiple organ sites may provide useful resources to analyze further the pathogenesis of EML4-ALK lung cancer and its response and resistance to ALK inhibitors in various organ microenvironments.

  5. Fusions of elastin-like polypeptides to pharmaceutical proteins

    PubMed Central

    Hassouneh, Wafa; MacEwan, Sarah R; Chilkoti, Ashutosh

    2013-01-01

    Elastin-like polypeptides (ELPs) are a class of stimulus responsive biopolymers whose physicochemical properties and biocompatibility are particularly suitable for in vivo applications, such as drug delivery and tissue engineering. The lower critical solution temperature (LCST) behavior of ELPs allows them to be utilized as soluble macromolecules below their LCST, or as self-assembled nano-scale particles such as micelles, micron-scale coacervates, or viscous gels above their LCST, depending on the ELP architecture. As each ELP sequence is specified at its genetic level, functionalization of an ELP with peptides and proteins is simple to accomplish by the fusion of a gene encoding an ELP with that of the peptide or protein of interest. Protein ELP fusions, where the appended protein serves a therapeutic or targeting function, are suitable for applications in which the ELP can improve the systemic pharmacokinetics and biodistribution of the protein, or can be used as an injectable depot for sustained, local protein delivery. Here we describe considerations in the design of therapeutic protein ELP fusions and provide details of their gene design, expression, and purification. PMID:22208987

  6. ALK and crizotinib: after the honeymoon…what else? Resistance mechanisms and new therapies to overcome it.

    PubMed

    Rolfo, Christian; Passiglia, Francesco; Castiglia, Marta; Raez, Luis E; Germonpre, Paul; Gil-Bazo, Ignacio; Zwaenepoel, Karen; De Wilde, Annemieke; Bronte, Giuseppe; Russo, Antonio; Van Meerbeeck, Jan P; Van Schil, Paul; Pauwels, Patrick

    2014-08-01

    The last few decades have witnessed a silent revolution in the war against NSCLC, thanks to the discovery of "oncogenic drivers" and the subsequent development of targeted therapies. The discovery of the EML4-ALK fusion gene in a subgroup of patients with NSCLC and the subsequent clinical development of crizotinib has been an amazing success story in lung cancer translational-research, and its accelerated approval [only 4 years from the discovery of ALK rearrangement in NSCLC to the approval by the Food and Drug Administration (FDA)] marked the beginning of the new decade of targeted therapy. However, common to all targeted therapies, despite an initial benefit, patients inevitably experience tumor progression, due to the development of resistance. Several molecular mechanisms are responsible for acquired resistance, such as secondary mutations of ALK kinase domain or amplification of ALK fusion gene, or the activation of other oncogenic drivers, which may cause resistance independently of ALK genetic alterations. Pre-clinical data and early clinical trials showed the promising efficacy of a new class of ALK-inhibitors in overcoming acquired resistance. The inhibition of the molecular chaperone, HSP90, represents another promising strategy to overcome crizotinib resistance in ALK-rearranged NSCLC. Several molecules are currently under investigation in order to establish their specific role in the treatment of ALK-rearranged NSCLC.

  7. Structure-function studies of an unusual 3-methyladenine DNA glycosylase II (AlkA) from Deinococcus radiodurans.

    PubMed

    Moe, Elin; Hall, David R; Leiros, Ingar; Monsen, Vivi Talstad; Timmins, Joanna; McSweeney, Sean

    2012-06-01

    3-Methyladenine DNA glycosylase II (AlkA) is a DNA-repair enzyme that removes alkylated bases in DNA via the base-excision repair (BER) pathway. The enzyme belongs to the helix-hairpin-helix (HhH) superfamily of DNA glycosylases and possesses broad substrate specificity. In the genome of Deinococcus radiodurans, two genes encoding putative AlkA have been identified (Dr_2074 and Dr_2584). Dr_2074 is a homologue of human AlkA (MPG or AAG) and Dr_2584 is a homologue of bacterial AlkAs. Here, the three-dimensional structure of Dr_2584 (DrAlkA2) is presented and compared with the previously determined structure of Escherichia coli AlkA (EcAlkA). The results show that the enzyme consists of two helical-bundle domains separated by a wide DNA-binding cleft and contains an HhH motif. Overall, the protein fold is similar to the two helical-bundle domains of EcAlkA, while the third N-terminal mixed α/β domain observed in EcAlkA is absent. Substrate-specificity analyses show that DrAlkA2, like EcAlkA, is able to remove both 3-methyladenine (3meA) and 7-methylguanine (7meG) from DNA; however, the enzyme possesses no activity towards 1,N(6)-ethenoadenine (ℇA) and hypoxanthine (Hx). In addition, it shows activity towards the AlkB dioxygenase substrates 3-methylcytosine (3meC) and 1-methyladenine (1meA). Thus, the enzyme seems to preferentially repair methylated bases with weakened N-glycosidic bonds; this is an unusual specificity for a bacterial AlkA protein and is probably dictated by a combination of the wide DNA-binding cleft and a highly accessible specificity pocket.

  8. Structure-function studies of an unusual 3-methyladenine DNA glycosylase II (AlkA) from Deinococcus radiodurans.

    PubMed

    Moe, Elin; Hall, David R; Leiros, Ingar; Monsen, Vivi Talstad; Timmins, Joanna; McSweeney, Sean

    2012-06-01

    3-Methyladenine DNA glycosylase II (AlkA) is a DNA-repair enzyme that removes alkylated bases in DNA via the base-excision repair (BER) pathway. The enzyme belongs to the helix-hairpin-helix (HhH) superfamily of DNA glycosylases and possesses broad substrate specificity. In the genome of Deinococcus radiodurans, two genes encoding putative AlkA have been identified (Dr_2074 and Dr_2584). Dr_2074 is a homologue of human AlkA (MPG or AAG) and Dr_2584 is a homologue of bacterial AlkAs. Here, the three-dimensional structure of Dr_2584 (DrAlkA2) is presented and compared with the previously determined structure of Escherichia coli AlkA (EcAlkA). The results show that the enzyme consists of two helical-bundle domains separated by a wide DNA-binding cleft and contains an HhH motif. Overall, the protein fold is similar to the two helical-bundle domains of EcAlkA, while the third N-terminal mixed α/β domain observed in EcAlkA is absent. Substrate-specificity analyses show that DrAlkA2, like EcAlkA, is able to remove both 3-methyladenine (3meA) and 7-methylguanine (7meG) from DNA; however, the enzyme possesses no activity towards 1,N(6)-ethenoadenine (ℇA) and hypoxanthine (Hx). In addition, it shows activity towards the AlkB dioxygenase substrates 3-methylcytosine (3meC) and 1-methyladenine (1meA). Thus, the enzyme seems to preferentially repair methylated bases with weakened N-glycosidic bonds; this is an unusual specificity for a bacterial AlkA protein and is probably dictated by a combination of the wide DNA-binding cleft and a highly accessible specificity pocket. PMID:22683793

  9. Structural changes of envelope proteins during alphavirus fusion

    SciTech Connect

    Li, Long; Jose, Joyce; Xiang, Ye; Kuhn, Richard J.; Rossmann, Michael G.

    2010-12-08

    Alphaviruses are enveloped RNA viruses that have a diameter of about 700 {angstrom} and can be lethal human pathogens. Entry of virus into host cells by endocytosis is controlled by two envelope glycoproteins, E1 and E2. The E2-E1 heterodimers form 80 trimeric spikes on the icosahedral virus surface, 60 with quasi-three-fold symmetry and 20 coincident with the icosahedral three-fold axes arranged with T = 4 quasi-symmetry. The E1 glycoprotein has a hydrophobic fusion loop at one end and is responsible for membrane fusion. The E2 protein is responsible for receptor binding and protects the fusion loop at neutral pH. The lower pH in the endosome induces the virions to undergo an irreversible conformational change in which E2 and E1 dissociate and E1 forms homotrimers, triggering fusion of the viral membrane with the endosomal membrane and then releasing the viral genome into the cytoplasm. Here we report the structure of an alphavirus spike, crystallized at low pH, representing an intermediate in the fusion process and clarifying the maturation process. The trimer of E2-E1 in the crystal structure is similar to the spikes in the neutral pH virus except that the E2 middle region is disordered, exposing the fusion loop. The amino- and carboxy-terminal domains of E2 each form immunoglobulin-like folds, consistent with the receptor attachment properties of E2.

  10. Uterine ALK3 is essential during the window of implantation.

    PubMed

    Monsivais, Diana; Clementi, Caterina; Peng, Jia; Titus, Mary M; Barrish, James P; Creighton, Chad J; Lydon, John P; DeMayo, Francesco J; Matzuk, Martin M

    2016-01-19

    The window of implantation is defined by the inhibition of uterine epithelial proliferation, structural epithelial cell remodeling, and attenuated estrogen (E2) response. These changes occur via paracrine signaling between the uterine epithelium and stroma. Because implantation defects are a major cause of infertility in women, identifying these signaling pathways will improve infertility interventions. Bone morphogenetic proteins (BMPs) are TGF-β family members that regulate the postimplantation and midgestation stages of pregnancy. In this study, we discovered that signaling via activin-like kinase 3 (ALK3/BMPR1A), a BMP type 1 receptor, is necessary for blastocyst attachment. Conditional knockout (cKO) of ALK3 in the uterus was obtained by producing Alk3(flox) (/flox)-Pgr-cre-positive females. Alk3 cKO mice are sterile and have defects in the luminal uterine epithelium, including increased microvilli density and maintenance of apical cell polarity. Moreover, Alk3 cKO mice exhibit an elevated uterine E2 response and unopposed epithelial cell proliferation during the window of implantation. We determined that dual transcriptional regulation of Kruppel-like factor 15 (Klf15), by both the transforming growth factor β (TGF-β) transcription factor SMAD family member 4 (SMAD4) and progesterone receptor (PR), is necessary to inhibit uterine epithelial cell proliferation, a key step for embryo implantation. Our findings present a convergence of BMP and steroid hormone signaling pathways in the regulation of uterine receptivity. PMID:26721398

  11. A novel Patient Derived Tumorgraft model with TRAF1-ALK Anaplastic Large Cell Lymphoma translocation

    PubMed Central

    Abate, Francesco; Todaro, Maria; van der Krogt, Jo-Anne; Boi, Michela; Landra, Indira; Machiorlatti, Rodolfo; Tabbo’, Fabrizio; Messana, Katia; Barreca, Antonella; Novero, Domenico; Gaudiano, Marcello; Aliberti, Sabrina; Di Giacomo, Filomena; Tousseyn, Thomas; Lasorsa, Elena; Crescenzo, Ramona; Bessone, Luca; Ficarra, Elisa; Acquaviva, Andrea; Rinaldi, Andrea; Ponzoni, Maurilio; Longo, Dario Livio; Aime, Silvio; Cheng, Mangeng; Ruggeri, Bruce; Piccaluga, Pier Paolo; Pileri, Stefano; Tiacci, Enrico; Falini, Brunangelo; Pera-Gresely, Benet; Cerchietti, Leandro; Iqbal, Javeed; Chan, Wing C; Shultz, Leonard D.; Kwee, Ivo; Piva, Roberto; Wlodarska, Iwona; Rabadan, Raul; Bertoni, Francesco; Inghirami, Giorgio

    2016-01-01

    Although Anaplastic Large Cell Lymphomas (ALCL) carrying Anaplastic Lymphoma Kinase (ALK) have a relatively good prognosis, aggressive forms exist. We have identified a novel translocation, causing the fusion of the TRAF1 and ALK genes, in one patient who presented with a leukemic ALK+ ALCL (ALCL-11). To uncover the mechanisms leading to high-grade ALCL, we developed a human Patient Derived Tumorgraft (hPDT) line. Molecular characterization of primary and PDT cells demonstrated the activation of ALK and of NFkB pathways. Genomic studies of ALCL-11 showed the TP53 loss and the in vivo subclonal expansion of lymphoma cells lacking PRDM1/Blimp-1 and with c-MYC gene amplification. The treatment with proteasome inhibitors of TRAF1-ALK cells led to down-regulation of p50/p52 and lymphoma growth inhibition. Moreover a NFkB gene set classifier stratified ALCL in distinct subsets with different clinical outcome. Moreover, a selective ALK inhibitor (CEP28122) resulted in a significant clinical response of hPDT mice, but the disease could not be eradicated. These data indicate that the activation of NFkB signaling contributes to the neoplastic phenotype of TRAF1-ALK ALCL. ALCL hPDTs are invaluable to validate the role of druggable molecules, predict therapeutic responses and are helpful tools for the implementation of patient specific therapies. PMID:25533804

  12. Molecular Principles of Gene Fusion Mediated Rewiring of Protein Interaction Networks in Cancer.

    PubMed

    Latysheva, Natasha S; Oates, Matt E; Maddox, Louis; Flock, Tilman; Gough, Julian; Buljan, Marija; Weatheritt, Robert J; Babu, M Madan

    2016-08-18

    Gene fusions are common cancer-causing mutations, but the molecular principles by which fusion protein products affect interaction networks and cause disease are not well understood. Here, we perform an integrative analysis of the structural, interactomic, and regulatory properties of thousands of putative fusion proteins. We demonstrate that genes that form fusions (i.e., parent genes) tend to be highly connected hub genes, whose protein products are enriched in structured and disordered interaction-mediating features. Fusion often results in the loss of these parental features and the depletion of regulatory sites such as post-translational modifications. Fusion products disproportionately connect proteins that did not previously interact in the protein interaction network. In this manner, fusion products can escape cellular regulation and constitutively rewire protein interaction networks. We suggest that the deregulation of central, interaction-prone proteins may represent a widespread mechanism by which fusion proteins alter the topology of cellular signaling pathways and promote cancer. PMID:27540857

  13. Molecular Principles of Gene Fusion Mediated Rewiring of Protein Interaction Networks in Cancer.

    PubMed

    Latysheva, Natasha S; Oates, Matt E; Maddox, Louis; Flock, Tilman; Gough, Julian; Buljan, Marija; Weatheritt, Robert J; Babu, M Madan

    2016-08-18

    Gene fusions are common cancer-causing mutations, but the molecular principles by which fusion protein products affect interaction networks and cause disease are not well understood. Here, we perform an integrative analysis of the structural, interactomic, and regulatory properties of thousands of putative fusion proteins. We demonstrate that genes that form fusions (i.e., parent genes) tend to be highly connected hub genes, whose protein products are enriched in structured and disordered interaction-mediating features. Fusion often results in the loss of these parental features and the depletion of regulatory sites such as post-translational modifications. Fusion products disproportionately connect proteins that did not previously interact in the protein interaction network. In this manner, fusion products can escape cellular regulation and constitutively rewire protein interaction networks. We suggest that the deregulation of central, interaction-prone proteins may represent a widespread mechanism by which fusion proteins alter the topology of cellular signaling pathways and promote cancer.

  14. ALK(R1275Q) perturbs extracellular matrix, enhances cell invasion and leads to the development of neuroblastoma in cooperation with MYCN.

    PubMed

    Ueda, T; Nakata, Y; Yamasaki, N; Oda, H; Sentani, K; Kanai, A; Onishi, N; Ikeda, K; Sera, Y; Honda, Z-I; Tanaka, K; Sata, M; Ogawa, S; Yasui, W; Saya, H; Takita, J; Honda, H

    2016-08-25

    Overexpression of MYCN is a hallmark of neuroblastoma (NB). ALK(R1275Q), an activating mutation of ALK (anaplastic lymphoma kinase), has been found in sporadic and familial NB patients. In this report, we demonstrated that ALK(R1275Q) knock-in, MYCN transgenic compound mice developed NB with complete penetrance. Transcriptome analysis revealed that ALK(R1275Q) globally downregulated the expression of extracellular matrix (ECM)- and basement membrane (BM)-associated genes in both primary neuronal cells and NB tumors. Accordingly, ALK(R1275Q)/MYCN tumors exhibited reduced expression of ECM/BM-related proteins as compared with MYCN tumors. In addition, on MYCN transduction, ALK(R1275Q)-expressing neuronal cells exhibited increased migratory and invasive activities. Consistently, enhanced invasion and metastasis were demonstrated in ALK(R1275Q)/MYCN mice. These results collectively indicate that ALK(R1275Q) confers a malignant potential on neuronal cells that overexpress MYCN by impairing normal ECM/BM integrity and enhancing tumor growth and dissemination. Moreover, we found that crizotinib, an ALK inhibitor, almost completely inhibited the growth of ALK(R1275Q)/MYCN tumors in an allograft model. Our findings provided insights into the cooperative mechanism of the mutated ALK and overexpressed MYCN in the pathogenesis of NB and demonstrated the effectiveness of crizotinib on ALK(R1275Q)-positive tumors. PMID:26829053

  15. Oligomerization and toxicity of A{beta} fusion proteins

    SciTech Connect

    Caine, Joanne M.; Bharadwaj, Prashant R.; Sankovich, Sonia E.; Ciccotosto, Giuseppe D.; Streltsov, Victor A.; Varghese, Jose

    2011-06-10

    Highlights: {yields} We expressed amyloid-{beta} (A{beta}) peptide as a soluble maltose binding protein fusion (MBP-A{beta}42 and MBP-A{beta}16). {yields} The full length A{beta} peptide fusion, MBP-A{beta}42, forms oligomeric species as determined by SDS-PAGE gels, gel filtration and DLS. {yields} The MBP-A{beta}42, but not MBP-A{beta}16 or MBP alone, is toxic to both yeast and mammalian cells as determined by toxicity assays. -- Abstract: This study has found that the Maltose binding protein A{beta}42 fusion protein (MBP-A{beta}42) forms soluble oligomers while the shorter MBP-A{beta}16 fusion and control MBP did not. MBP-A{beta}42, but neither MBP-A{beta}16 nor control MBP, was toxic in a dose-dependent manner in both yeast and primary cortical neuronal cells. This study demonstrates the potential utility of MBP-A{beta}42 as a reagent for drug screening assays in yeast and neuronal cell cultures and as a candidate for further A{beta}42 characterization.

  16. Alternative transcription initiation leads to expression of a novel ALK isoform in cancer

    PubMed Central

    Wiesner, Thomas; Lee, William; Obenauf, Anna C.; Ran, Leili; Murali, Rajmohan; Zhang, Qi Fan; Wong, Elissa W. P.; Hu, Wenhuo; Scott, Sasinya N.; Shah, Ronak H.; Landa, Iñigo; Button, Julia; Lailler, Nathalie; Sboner, Andrea; Gao, Dong; Murphy, Devan A.; Cao, Zhen; Shukla, Shipra; Hollmann, Travis J.; Wang, Lu; Borsu, Laetitia; Merghoub, Taha; Schwartz, Gary K.; Postow, Michael A.; Ariyan, Charlotte E.; Fagin, James A.; Zheng, Deyou; Ladanyi, Marc; Busam, Klaus J.; Berger, Michael F.; Chen, Yu; Chi, Ping

    2016-01-01

    Activation of oncogenes by mechanisms other than genetic aberrations such as mutations, translocations, or amplifications is largely undefined. Here we report a novel isoform of the anaplastic lymphoma kinase (ALK) that is expressed in ~ 11% of melanomas and sporadically in other human cancer types, but not in normal tissues. The novel ALK transcript initiates from a de novo alternative transcription initiation (ATI) site in ALK intron 19, and was termed ALKATI. In ALKATI-expressing tumours, the ATI site is enriched for H3K4me3 and RNA polymerase II, chromatin marks characteristic of active transcription initiation sites1. ALKATI is expressed from both ALK alleles, and no recurrent genetic aberrations are found at the ALK locus, indicating that the transcriptional activation is independent of genetic aberrations at the ALK locus. The ALKATI transcript encodes three proteins with molecular weights of 61.1, 60.8 and 58.7 kilodaltons, consisting primarily of the intracellular tyrosine kinase domain. ALKATI stimulates multiple oncogenic signalling pathways, drives growth-factor-independent cell proliferation in vitro, and promotes tumorigenesis in vivo in mouse models. ALK inhibitors can suppress the kinase activity of ALKATI, suggesting that patients with ALKATI-expressing tumours may benefit from ALK inhibitors. Our findings suggest a novel mechanism of oncogene activation in cancer through de novo alternative transcription initiation. PMID:26444240

  17. Identification of multiple SNT-binding sites on NPM-ALK oncoprotein and their involvement in cell transformation.

    PubMed

    Chikamori, M; Fujimoto, J; Tokai-Nishizumi, N; Yamamoto, T

    2007-05-01

    The t(2;5) chromosomal translocation occurs in anaplastic large-cell lymphoma arising from activated T lymphocytes. This genomic rearrangement generates the nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK) oncoprotein that is a chimeric protein consisting of parts of the nuclear protein NPM and ALK receptor protein-tyrosine kinase. We used yeast two-hybrid screening to identify an adaptor protein Suc1-associated neurotrophic factor-induced tyrosine-phosphorylated target (SNT)-2 as a new partner that interacted with the cytoplasmic domain of ALK. Immunoprecipitation assay revealed that SNT-1 and SNT-2 interacted with NPM-ALK and kinase-negative NPM-ALK mutant. Y156, Y567 and a 19-amino-acid sequence (aa 631-649) of NPM-ALK were essential for this interaction. The interaction through Y156 and Y567 was dependent on phosphorylation of these tyrosines, whereas the interaction through the 19-amino-acid sequence was independent of phosphorylation. NPM-ALK mutant protein mutated at these three binding sites showed significantly reduced transforming activity. This transformation-defective NPM-ALK mutant still interacted with signal transducing proteins such as phospholipase C-gamma and phosphatidylinositol 3-kinase, which were previously reported to be relevant to NPM-ALK-dependent tumorigenesis. These observations indicate that the three SNT-binding sites of NPM-ALK are important for its transforming activity. This raises a possibility that SNT family proteins play significant roles in cellular transformation triggered by NPM-ALK, which though remains to be verified.

  18. Fusion protein technologies for biopharmaceuticals: Applications and challenges

    PubMed Central

    Berger, Sven; Lowe, Peter; Tesar, Michael

    2015-01-01

    Stefan R. Schmidt consolidates the hugely diverse field of fusion proteins and their application in the creation of biopharmaceuticals. The text is replete with case studies and clinical data that inform and intrigue the reader as to the myriad possibilities available when considering the creation of a fusion protein. This valuable text will serve the novice as a broad introduction or the seasoned professional as a thorough review of the state of the art. The first marketed therapeutic recombinant protein was human insulin (Humulin® R). Its approval in 1982 was followed by other such products, including erythropoietin (EPO), interferon (IFN), and tissue plasminogen activator (tPa). Since the 1980s, the number and general availability of recombinant products that replace natural proteins harvested from animal or human sources has increased considerably. Following the initial success, researchers started de novo designs of therapeutic proteins that do not occur in nature. The first of these new drugs to be approved was etanercept (Enbrel®), a fusion portion containing a section of the tumor necrosis factor (TNF) receptor fused to the Fc portion of human IgG1.

  19. Measles Virus Fusion Protein: Structure, Function and Inhibition.

    PubMed

    Plattet, Philippe; Alves, Lisa; Herren, Michael; Aguilar, Hector C

    2016-04-01

    Measles virus (MeV), a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV)-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options. PMID:27110811

  20. Measles Virus Fusion Protein: Structure, Function and Inhibition

    PubMed Central

    Plattet, Philippe; Alves, Lisa; Herren, Michael; Aguilar, Hector C.

    2016-01-01

    Measles virus (MeV), a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV)-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options. PMID:27110811

  1. Protein design by fusion: implications for protein structure prediction and evolution

    SciTech Connect

    Skorupka, Katarzyna; Han, Seong Kyu; Nam, Hyun-Jun; Kim, Sanguk; Faham, Salem

    2013-11-19

    Domain fusion is a useful tool in protein design. Here, the structure of a fusion of the heterodimeric flagella-assembly proteins FliS and FliC is reported. Although the ability of the fusion protein to maintain the structure of the heterodimer may be apparent, threading-based structural predictions do not properly fuse the heterodimer. Additional examples of naturally occurring heterodimers that are homologous to full-length proteins were identified. These examples highlight that the designed protein was engineered by the same tools as used in the natural evolution of proteins and that heterodimeric structures contain a wealth of information, currently unused, that can improve structural predictions.

  2. Phycobiliprotein fusion proteins: versatile intensely fluorescent constructs

    NASA Astrophysics Data System (ADS)

    Glazer, Alexander N.; Cai, Yuping A.; Tooley, Aaron J.

    2004-06-01

    Since 1982, phycobiliproteins have served as fluorescent labels in a wide variety of cell and molecule analyses. The exceptional spectroscopic properties of these labels include very high absorbance coefficients and quantum yields, and large Stokes shifts. The spectroscopic diversity of these reagents is restricted to a subset of naturally occurring phycobiliproteins with stable assembly states in vitro, whose target specificity is generated by chemical conjugation to proteins or small molecules. The latter step generates heterogeneity. These limitations have been overcome by expressing various recombinant phycobiliprotein constructs in the cyanobacterium Anabaena sp. PCC7120. Modular recombinant phycobiliprotein-based labels were constructed with some or all of the following features (a) an affinity purification tag; (b) a stable oligomerization domain (to maintain stable higher order assemblies of the phycobiliprotein monomers at very low protein concentration); (c) a biospecific recognition domain. Such phycobiliprotein constructs are readily purified from crude cell extracts by affinity chromatography and used directly as fluorescent labels. To generate constructs for intracellular in vivo labeling, the entire pathways for the biosynthesis of the His-tagged holo- α (phycocyanobilin-bearing) subunit of phycocyanin (emission max. 641 nm) and of the His-tagged holo-α (phycobiliviolin-bearing) subunit of phycoerythrocyanin (emission max. 582 nm) were reconstituted in Escherichia coli.

  3. Nanodisc-cell fusion: control of fusion pore nucleation and lifetimes by SNARE protein transmembrane domains.

    PubMed

    Wu, Zhenyong; Auclair, Sarah M; Bello, Oscar; Vennekate, Wensi; Dudzinski, Natasha R; Krishnakumar, Shyam S; Karatekin, Erdem

    2016-01-01

    The initial, nanometer-sized connection between the plasma membrane and a hormone- or neurotransmitter-filled vesicle -the fusion pore- can flicker open and closed repeatedly before dilating or resealing irreversibly. Pore dynamics determine release and vesicle recycling kinetics, but pore properties are poorly known because biochemically defined single-pore assays are lacking. We isolated single flickering pores connecting v-SNARE-reconstituted nanodiscs to cells ectopically expressing cognate, "flipped" t-SNAREs. Conductance through single, voltage-clamped fusion pores directly reported sub-millisecond pore dynamics. Pore currents fluctuated, transiently returned to baseline multiple times, and disappeared ~6 s after initial opening, as if the fusion pore fluctuated in size, flickered, and resealed. We found that interactions between v- and t-SNARE transmembrane domains (TMDs) promote, but are not essential for pore nucleation. Surprisingly, TMD modifications designed to disrupt v- and t-SNARE TMD zippering prolonged pore lifetimes dramatically. We propose that the post-fusion geometry of the proteins contribute to pore stability. PMID:27264104

  4. Nanodisc-cell fusion: control of fusion pore nucleation and lifetimes by SNARE protein transmembrane domains

    PubMed Central

    Wu, Zhenyong; Auclair, Sarah M.; Bello, Oscar; Vennekate, Wensi; Dudzinski, Natasha R.; Krishnakumar, Shyam S.; Karatekin, Erdem

    2016-01-01

    The initial, nanometer-sized connection between the plasma membrane and a hormone- or neurotransmitter-filled vesicle –the fusion pore– can flicker open and closed repeatedly before dilating or resealing irreversibly. Pore dynamics determine release and vesicle recycling kinetics, but pore properties are poorly known because biochemically defined single-pore assays are lacking. We isolated single flickering pores connecting v-SNARE-reconstituted nanodiscs to cells ectopically expressing cognate, “flipped” t-SNAREs. Conductance through single, voltage-clamped fusion pores directly reported sub-millisecond pore dynamics. Pore currents fluctuated, transiently returned to baseline multiple times, and disappeared ~6 s after initial opening, as if the fusion pore fluctuated in size, flickered, and resealed. We found that interactions between v- and t-SNARE transmembrane domains (TMDs) promote, but are not essential for pore nucleation. Surprisingly, TMD modifications designed to disrupt v- and t-SNARE TMD zippering prolonged pore lifetimes dramatically. We propose that the post-fusion geometry of the proteins contribute to pore stability. PMID:27264104

  5. Accelerated Nucleation of Hydroxyapatite Using an Engineered Hydrophobin Fusion Protein.

    PubMed

    Melcher, Melanie; Facey, Sandra J; Henkes, Thorsten M; Subkowski, Thomas; Hauer, Bernhard

    2016-05-01

    Calcium phosphate mineralization is of particular interest in dental repair. A biomimetic approach using proteins or peptides is a highly promising way to reconstruct eroded teeth. In this study, the screening of several proteins is described for their binding and nucleating activities toward hydroxyapatite. Out of 27 tested candidates, only two hydrophobin fusion proteins showed binding abilities to hydroxyapatite in a mouthwash formulation and an increased nucleation in artificial saliva. Using a semirational approach, one of the two candidates (DEWA_5), a fusion protein consisting of a truncated section of the Bacillus subtilis synthase YaaD, the Aspergillus nidulans hydrophobin DEWA, and the rationally designed peptide P11-4 described in the literature, could be further engineered toward a faster mineral formation. The variants DEWA_5a (40aaYaaD-SDSDSD-DEWA) and DEWA_5b (40aaYaaD-RDRDRD-DEWA) were able to enhance the nucleation activity without losing the ability to form hydroxyapatite. In the case of variant DEWA_5b, an additional increase in the binding toward hydroxyapatite could be achieved. Especially with the variant DEWA_5a, the protein engineering of the rationally designed peptide sequence resulted in a resemblance of an amino acid motif that is found in nature. The engineered peptide resembles the amino acid motif in dentin phosphoprotein, one of the major proteins involved in dentinogenesis. PMID:27010648

  6. Using Fluorescent Protein Fusions to Study Protein Subcellular Localization and Dynamics in Plant Cells.

    PubMed

    Cui, Yong; Gao, Caiji; Zhao, Qiong; Jiang, Liwen

    2016-01-01

    Studies of protein subcellular localization and dynamics are helpful in understanding the cellular functions of proteins in an organism. In the past decade, the use of green fluorescent protein (GFP) as a fusion tag has dramatically extended our knowledge in this field. Transient expression and stable transformation of GFP-tagged proteins have been wildly used to study protein localization in vivo in different systems. Although GFP-based tags provide a fast and convenient way to characterize protein properties in living cells, several reports have demonstrated that GFP fusions might not accurately reflect the localization of the native protein as GFP tags may alter the protein properties. To facilitate proper usage of GFP tags in plant cell biology study, we describe detailed protocols to identify possible inhibitory effects of fluorescent tags on protein subcellular localization and to determine if a fluorescently tagged protein is localized to the correct subcellular compartment. Using Arabidopsis Endomembrane protein 12 (EMP12) as an example, we first show the possible inhibitory effect of GFP tags on proper protein localization and then describe the immunofluorescence labeling method to verify the correct localization of GFP fusion proteins. Next, a method is presented using the ImageJ program with the Pearson-Spearman correlation (PSC) colocalization plug-in for statistical quantification of colocalization ratios of two fluorophores. Finally we provide a detailed method for protein dynamics studies using spinning disk confocal microscopy in Arabidopsis cells. PMID:27515077

  7. Post-translational control of protein function with light using a LOV-intein fusion protein.

    PubMed

    Jones, D C; Mistry, I N; Tavassoli, A

    2016-04-01

    Methods for the post-translational control of protein function with light hold much value as tools in cell biology. To this end, we report a fusion protein that consists of DnaE split-inteins, flanking the light sensitive LOV2 domain of Avena sativa. The resulting chimera combines the activities of these two unrelated proteins to enable controlled formation of a functional protein via upregulation of intein splicing with blue light in bacterial and human cells. PMID:26940144

  8. The effect of albumin fusion patterns on the production and bioactivity of the somatostatin-14 fusion protein in Pichia pastoris.

    PubMed

    Ding, Yuedi; Fan, Jun; Li, Wenxin; Yang, Runlin; Peng, Ying; Deng, Lili; Wu, Yu; Fu, Qiang

    2013-08-01

    Somatostatin is a natural inhibitor of growth hormone, and its analogues are clinically used for the therapy of acromegaly, gigantism, thyrotropinoma, and other carcinoid syndrome. However, natural somatostatin is limited for clinical usage because of its short half-life in vivo. Albumin fusion technology was used to construct long-acting fusion proteins, and Pichia pastoris was used as an expression system. Three fusion proteins, (somatostatin (SS)14)2-human serum albumin (HSA), (SS14)3-HSA, and HSA-(SS14)3, were constructed with different fusion copies of somatostatin-14 and fusion orientations. The expression level of (SS14)3-HSA and HSA-(SS14)3 was much lower than (SS14)2-HSA due to the additional fusion of the somatostatin-14 molecule. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry revealed that severe degradation occurred in the fermentation process. Similar to the standard of somatostatin-14, all three fusion proteins were able to inhibit growth hormone secretion in the blood, with (SS14)2-HSA being the most effective one. On the whole, (SS14)2-HSA was the most effective protein in both production level and bioactivity, and increasing the number of small protein copies fused to HSA may not be a suitable method to improve the protein bioactivity. PMID:23712794

  9. The promises and challenges of fusion constructs in protein biochemistry and enzymology.

    PubMed

    Yang, Haiquan; Liu, Long; Xu, Fei

    2016-10-01

    Fusion constructs are used to improve the properties of or impart novel functionality to proteins for biotechnological applications. The biochemical characteristics of enzymes or functional proteins optimized by fusion include catalytic efficiency, stability, activity, expression, secretion, and solubility. In this review, we summarize the parameters of enzymes or functional proteins that can be modified by fusion constructs. For each parameter, fusion strategies and molecular partners are examined using examples from recent studies. Future prospects in this field are also discussed. This review is expected to increase interest in and advance fusion strategies for optimization of enzymes and other functional proteins. PMID:27541749

  10. The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond*

    PubMed Central

    Fedeles, Bogdan I.; Singh, Vipender; Delaney, James C.; Li, Deyu; Essigmann, John M.

    2015-01-01

    The AlkB family of Fe(II)- and α-ketoglutarate-dependent dioxygenases is a class of ubiquitous direct reversal DNA repair enzymes that remove alkyl adducts from nucleobases by oxidative dealkylation. The prototypical and homonymous family member is an Escherichia coli “adaptive response” protein that protects the bacterial genome against alkylation damage. AlkB has a wide variety of substrates, including monoalkyl and exocyclic bridged adducts. Nine mammalian AlkB homologs exist (ALKBH1–8, FTO), but only a subset functions as DNA/RNA repair enzymes. This minireview presents an overview of the AlkB proteins including recent data on homologs, structural features, substrate specificities, and experimental strategies for studying DNA repair by AlkB family proteins. PMID:26152727

  11. Elucidation of Resistance Mechanisms to Second-Generation ALK Inhibitors Alectinib and Ceritinib in Non-Small Cell Lung Cancer Cells.

    PubMed

    Dong, Xuyuan; Fernandez-Salas, Ester; Li, Enxiao; Wang, Shaomeng

    2016-03-01

    Crizotinib is the first anaplastic lymphoma kinase (ALK) inhibitor to have been approved for the treatment of non-small cell lung cancer (NSCLC) harboring an ALK fusion gene, but it has been found that, in the clinic, patients develop resistance to it. Alectinib and ceritinib are second-generation ALK inhibitors which show remarkable clinical responses in both crizotinib-naive and crizotinib-resistant NSCLC patients harboring an ALK fusion gene. Despite their impressive activity, clinical resistance to alectinib and ceritinib has also emerged. In the current study, we elucidated the resistance mechanisms to these second-generation ALK inhibitors in the H3122 NSCLC cell line harboring the EML4-ALK variant 1 fusion in vitro. Prolonged treatment of the parental H3122 cells with alectinib and ceritinib led to two cell lines which are 10 times less sensitive to alectinib and ceritinib than the parental H3122 cell line. Although mutations of ALK in its kinase domain are a common resistance mechanism for crizotinib, we did not detect any ALK mutation in these resistant cell lines. Rather, overexpression of phospho-ALK and alternative receptor tyrosine kinases such as phospho-EGFR, phospho-HER3, and phospho-IGFR-1R was observed in both resistant cell lines. Additionally, NRG1, a ligand for HER3, is upregulated and responsible for resistance by activating the EGFR family pathways through the NRG1-HER3-EGFR axis. Combination treatment with EGFR inhibitors, in particular afatinib, was shown to be effective at overcoming resistance. Our study provides new mechanistic insights into adaptive resistance to second-generation ALK inhibitors and suggests a potential clinical strategy to combat resistance to these second-generation ALK inhibitors in NSCLC.

  12. Elucidation of Resistance Mechanisms to Second-Generation ALK Inhibitors Alectinib and Ceritinib in Non–Small Cell Lung Cancer Cells

    PubMed Central

    Dong, Xuyuan; Fernandez-Salas, Ester; Li, Enxiao; Wang, Shaomeng

    2016-01-01

    Crizotinib is the first anaplastic lymphoma kinase (ALK) inhibitor to have been approved for the treatment of non–small cell lung cancer (NSCLC) harboring an ALK fusion gene, but it has been found that, in the clinic, patients develop resistance to it. Alectinib and ceritinib are second-generation ALK inhibitors which show remarkable clinical responses in both crizotinib-naive and crizotinib-resistant NSCLC patients harboring an ALK fusion gene. Despite their impressive activity, clinical resistance to alectinib and ceritinib has also emerged. In the current study, we elucidated the resistance mechanisms to these second-generation ALK inhibitors in the H3122 NSCLC cell line harboring the EML4-ALK variant 1 fusion in vitro. Prolonged treatment of the parental H3122 cells with alectinib and ceritinib led to two cell lines which are 10 times less sensitive to alectinib and ceritinib than the parental H3122 cell line. Although mutations of ALK in its kinase domain are a common resistance mechanism for crizotinib, we did not detect any ALK mutation in these resistant cell lines. Rather, overexpression of phospho-ALK and alternative receptor tyrosine kinases such as phospho-EGFR, phospho-HER3, and phospho-IGFR-1R was observed in both resistant cell lines. Additionally, NRG1, a ligand for HER3, is upregulated and responsible for resistance by activating the EGFR family pathways through the NRG1-HER3-EGFR axis. Combination treatment with EGFR inhibitors, in particular afatinib, was shown to be effective at overcoming resistance. Our study provides new mechanistic insights into adaptive resistance to second-generation ALK inhibitors and suggests a potential clinical strategy to combat resistance to these second-generation ALK inhibitors in NSCLC. PMID:26992917

  13. Protein function prediction based on data fusion and functional interrelationship.

    PubMed

    Meng, Jun; Wekesa, Jael-Sanyanda; Shi, Guan-Li; Luan, Yu-Shi

    2016-04-01

    One of the challenging tasks of bioinformatics is to predict more accurate and confident protein functions from genomics and proteomics datasets. Computational approaches use a variety of high throughput experimental data, such as protein-protein interaction (PPI), protein sequences and phylogenetic profiles, to predict protein functions. This paper presents a method that uses transductive multi-label learning algorithm by integrating multiple data sources for classification. Multiple proteomics datasets are integrated to make inferences about functions of unknown proteins and use a directed bi-relational graph to assign labels to unannotated proteins. Our method, bi-relational graph based transductive multi-label function annotation (Bi-TMF) uses functional correlation and topological PPI network properties on both the training and testing datasets to predict protein functions through data fusion of the individual kernel result. The main purpose of our proposed method is to enhance the performance of classifier integration for protein function prediction algorithms. Experimental results demonstrate the effectiveness and efficiency of Bi-TMF on multi-sources datasets in yeast, human and mouse benchmarks. Bi-TMF outperforms other recently proposed methods. PMID:26869536

  14. Lobatin B inhibits NPM/ALK and NF-κB attenuating anaplastic-large-cell-lymphomagenesis and lymphendothelial tumour intravasation.

    PubMed

    Kiss, Izabella; Unger, Christine; Huu, Chi Nguyen; Atanasov, Atanas Georgiev; Kramer, Nina; Chatruphonprasert, Waranya; Brenner, Stefan; McKinnon, Ruxandra; Peschel, Andrea; Vasas, Andrea; Lajter, Ildiko; Kain, Renate; Saiko, Philipp; Szekeres, Thomas; Kenner, Lukas; Hassler, Melanie R; Diaz, Rene; Frisch, Richard; Dirsch, Verena M; Jäger, Walter; de Martin, Rainer; Bochkov, Valery N; Passreiter, Claus M; Peter-Vörösmarty, Barbara; Mader, Robert M; Grusch, Michael; Dolznig, Helmut; Kopp, Brigitte; Zupko, Istvan; Hohmann, Judit; Krupitza, Georg

    2015-01-28

    An apolar extract of the traditional medicinal plant Neurolaena lobata inhibited the expression of the NPM/ALK chimera, which is causal for the majority of anaplastic large cell lymphomas (ALCLs). Therefore, an active principle of the extract, the furanoheliangolide sesquiterpene lactone lobatin B, was isolated and tested regarding the inhibition of ALCL expansion and tumour cell intravasation through the lymphendothelium. ALCL cell lines, HL-60 cells and PBMCs were treated with plant compounds and the ALK inhibitor TAE-684 to measure mitochondrial activity, proliferation and cell cycle progression and to correlate the results with protein- and mRNA-expression of selected gene products. Several endpoints indicative for cell death were analysed after lobatin B treatment. Tumour cell intravasation through lymphendothelial monolayers was measured and potential causal mechanisms were investigated analysing NF-κB- and cytochrome P450 activity, and 12(S)-HETE production. Lobatin B inhibited the expression of NPM/ALK, JunB and PDGF-Rβ, and attenuated proliferation of ALCL cells by arresting them in late M phase. Mitochondrial activity remained largely unaffected upon lobatin B treatment. Nevertheless, caspase 3 became activated in ALCL cells. Also HL-60 cell proliferation was attenuated whereas PBMCs of healthy donors were not affected by lobatin B. Additionally, tumour cell intravasation, which partly depends on NF-κB, was significantly suppressed by lobatin B most likely due to its NF-κB-inhibitory property. Lobatin B, which was isolated from a plant used in ethnomedicine, targets malignant cells by at least two properties: I) inhibition of NPM/ALK, thereby providing high specificity in combating this most prevalent fusion protein occurring in ALCL; II) inhibition of NF-κB, thereby not affecting normal cells with low constitutive NF-κB activity. This property also inhibits tumour cell intravasation into the lymphatic system and may provide an option to manage this

  15. The effect of albumin fusion structure on the production and bioactivity of the somatostatin-28 fusion protein in Pichia pastoris.

    PubMed

    Ding, Yuedi; Fan, Jun; Li, Wenxin; Peng, Ying; Yang, Runlin; Deng, Lili; Fu, Qiang

    2014-06-01

    Somatostatin, a natural inhibitor of growth hormone (GH), and its analogs have been used in clinical settings for the treatment of acromegaly, gigantism, thyrotropinoma, and other carcinoid syndromes. However, natural somatostatin is limited for clinical usage because of its short half-life in vivo. Albumin fusion technology was used to construct long-acting fusion proteins and Pichia pastoris was used as an expression system. Three fusion proteins (SS28)(2)-HSA, (SS28)(3)-HSA, and HSA-(SS28)(2), were constructed with different fusion copies of somatostatin-28 and fusion orientations. The expression level of (SS28)(3)-HSA was much lower than (SS28)(2)-HSA and HSA-(SS28)(2) due to the additional fusion of the somatostatin-28 molecule. MALDI-TOF mass spectrometry revealed that severe degradation occurred in the fermentation process. Similar to the standard, somatostatin-14, all three fusion proteins were able to inhibit GH secretion in blood, with (SS28)(2)-HSA being the most effective one. A pharmacokinetics study showed that (SS28)(2)-HSA had a prolonged half-life of 2 h. These results showed that increasing the number of small protein copies fused to HSA may not be a suitable method for improving protein bioactivity.

  16. The effect of albumin fusion structure on the production and bioactivity of the somatostatin-28 fusion protein in Pichia pastoris.

    PubMed

    Ding, Yuedi; Fan, Jun; Li, Wenxin; Peng, Ying; Yang, Runlin; Deng, Lili; Fu, Qiang

    2014-06-01

    Somatostatin, a natural inhibitor of growth hormone (GH), and its analogs have been used in clinical settings for the treatment of acromegaly, gigantism, thyrotropinoma, and other carcinoid syndromes. However, natural somatostatin is limited for clinical usage because of its short half-life in vivo. Albumin fusion technology was used to construct long-acting fusion proteins and Pichia pastoris was used as an expression system. Three fusion proteins (SS28)(2)-HSA, (SS28)(3)-HSA, and HSA-(SS28)(2), were constructed with different fusion copies of somatostatin-28 and fusion orientations. The expression level of (SS28)(3)-HSA was much lower than (SS28)(2)-HSA and HSA-(SS28)(2) due to the additional fusion of the somatostatin-28 molecule. MALDI-TOF mass spectrometry revealed that severe degradation occurred in the fermentation process. Similar to the standard, somatostatin-14, all three fusion proteins were able to inhibit GH secretion in blood, with (SS28)(2)-HSA being the most effective one. A pharmacokinetics study showed that (SS28)(2)-HSA had a prolonged half-life of 2 h. These results showed that increasing the number of small protein copies fused to HSA may not be a suitable method for improving protein bioactivity. PMID:24752560

  17. PDGFR blockade is a rational and effective therapy for NPM-ALK-driven lymphomas.

    PubMed

    Laimer, Daniela; Dolznig, Helmut; Kollmann, Karoline; Vesely, Paul W; Schlederer, Michaela; Merkel, Olaf; Schiefer, Ana-Iris; Hassler, Melanie R; Heider, Susi; Amenitsch, Lena; Thallinger, Christiane; Staber, Philipp B; Simonitsch-Klupp, Ingrid; Artaker, Matthias; Lagger, Sabine; Turner, Suzanne D; Pileri, Stefano; Piccaluga, Pier Paolo; Valent, Peter; Messana, Katia; Landra, Indira; Weichhart, Thomas; Knapp, Sylvia; Shehata, Medhat; Todaro, Maria; Sexl, Veronika; Höfler, Gerald; Piva, Roberto; Medico, Enzo; Ruggeri, Bruce A; Cheng, Mangeng; Eferl, Robert; Egger, Gerda; Penninger, Josef M; Jaeger, Ulrich; Moriggl, Richard; Inghirami, Giorgio; Kenner, Lukas

    2012-11-01

    Anaplastic large cell lymphoma (ALCL) is an aggressive non-Hodgkin's lymphoma found in children and young adults. ALCLs frequently carry a chromosomal translocation that results in expression of the oncoprotein nucleophosmin-anaplastic lymphoma kinase (NPM-ALK). The key molecular downstream events required for NPM-ALK-triggered lymphoma growth have been only partly unveiled. Here we show that the activator protein 1 family members JUN and JUNB promote lymphoma development and tumor dissemination through transcriptional regulation of platelet-derived growth factor receptor-β (PDGFRB) in a mouse model of NPM-ALK-triggered lymphomagenesis. Therapeutic inhibition of PDGFRB markedly prolonged survival of NPM-ALK transgenic mice and increased the efficacy of an ALK-specific inhibitor in transplanted NPM-ALK tumors. Notably, inhibition of PDGFRA and PDGFRB in a patient with refractory late-stage NPM-ALK(+) ALCL resulted in rapid, complete and sustained remission. Together, our data identify PDGFRB as a previously unknown JUN and JUNB target that could be a highly effective therapy for ALCL.

  18. ALK status testing in non-small cell lung carcinoma: correlation between ultrasensitive IHC and FISH.

    PubMed

    Minca, Eugen C; Portier, Bryce P; Wang, Zhen; Lanigan, Christopher; Farver, Carol F; Feng, Yan; Ma, Patrick C; Arrossi, Valeria A; Pennell, Nathan A; Tubbs, Raymond R

    2013-05-01

    ALK gene rearrangements in advanced non-small cell lung carcinomas (NSCLC) are an indication for targeted therapy with crizotinib. Fluorescence in situ hybridization (FISH) using a recently approved companion in vitro diagnostic class FISH system commonly assesses ALK status. More accessible IHC is challenged by low expression of ALK-fusion transcripts in NSCLC. We compared ultrasensitive automated IHC with FISH for detecting ALK status on 318 FFPE and 40 matched ThinPrep specimens from 296 patients with advanced NSCLC. IHC was concordant with FFPE-FISH on 229 of 231 dual-informative samples (31 positive and 198 negative) and with ThinPrep-FISH on 34 of 34 samples (5 positive and 29 negative). Two cases with negative IHC and borderline-positive FFPE-FISH (15% and 18%, respectively) were reclassified as concordant based on negative matched ThinPrep-FISH and clinical data consistent with ALK-negative status. Overall, after including ThinPrep-FISH and amending the false-positive FFPE-FISH results, IHC demonstrated 100% sensitivity and specificity (95% CI, 0.86 to 1.00 and 0.97 to 1.00, respectively) for ALK detection on 249 dual-informative NSCLC samples. IHC was informative on significantly more samples than FFPE-FISH, revealing additional ALK-positive cases. The high concordance with FISH warrants IHC's routine use as the initial component of an algorithmic approach to clinical ALK testing in NSCLC, followed by reflex FISH confirmation of IHC-positive cases. PMID:23499337

  19. Identification of a plastid protein involved in vesicle fusion and/or membrane protein translocation.

    PubMed Central

    Hugueney, P; Bouvier, F; Badillo, A; d'Harlingue, A; Kuntz, M; Camara, B

    1995-01-01

    Structural evidence has accumulated suggesting that fusion and/or translocation factors are involved in plastid membrane biogenesis. To test this hypothesis, we have developed an in vitro system in which the extent of fusion and/or translocation is monitored by the conversion of the xanthophyll epoxide (antheraxanthin) into the red ketocarotenoid (capsanthin). Only chromoplast membrane vesicles from red pepper fruits (Capsicum annuum) contain the required enzyme. Vesicles prepared from the mutant yellow cultivar are devoid of this enzyme and accumulate antheraxanthin. The fusion and/or translocation activity is characterized by complementation due to the synthesis of capsanthin and the parallel decrease of antheraxanthin when the two types of vesicles are incubated together in the presence of plastid stroma. We show that the extent of conversion is dependent upon an ATP-requiring protein that is sensitive to N-ethylmaleimide. Further purification and immunological analysis have revealed that the active factor, designated plastid fusion and/or translocation factor (Pftf), resides in a protein of 72 kDa. cDNA cloning revealed that mature Pftf has significant homology to yeast and animal (NSF) or bacterial (Ftsh) proteins involved in vesicle fusion or membrane protein translocation. Images Fig. 1 Fig. 3 Fig. 4 PMID:7777561

  20. Malignant transformation of CD4+ T lymphocytes mediated by oncogenic kinase NPM/ALK recapitulates IL-2-induced cell signaling and gene expression reprogramming.

    PubMed

    Marzec, Michal; Halasa, Krzysztof; Liu, Xiaobin; Wang, Hong Y; Cheng, Mangeng; Baldwin, Donald; Tobias, John W; Schuster, Stephen J; Woetmann, Anders; Zhang, Qian; Turner, Suzanne D; Ødum, Niels; Wasik, Mariusz A

    2013-12-15

    Anaplastic lymphoma kinase (ALK), physiologically expressed only by nervous system cells, displays a remarkable capacity to transform CD4(+) T lymphocytes and other types of nonneural cells. In this study, we report that activity of nucleophosmin (NPM)/ALK chimeric protein, the dominant form of ALK expressed in T cell lymphomas (TCLs), closely resembles cell activation induced by IL-2, the key cytokine supporting growth and survival of normal CD4(+) T lymphocytes. Direct comparison of gene expression by ALK(+) TCL cells treated with an ALK inhibitor and IL-2-dependent ALK(-) TCL cells stimulated with the cytokine revealed a very similar, albeit inverse, gene-regulation pattern. Depending on the analysis method, up to 67% of the affected genes were modulated in common by NPM/ALK and IL-2. Based on the gene expression patterns, Jak/STAT- and IL-2-signaling pathways topped the list of pathways identified as affected by both IL-2 and NPM/ALK. The expression dependence on NPM/ALK and IL-2 of the five selected genes-CD25 (IL-2Rα), Egr-1, Fosl-1, SOCS3, and Irf-4-was confirmed at the protein level. In both ALK(+) TCL and IL-2-stimulated ALK(-) TCL cells, CD25, SOCS3, and Irf-4 genes were activated predominantly by the STAT5 and STAT3 transcription factors, whereas transcription of Egr-1 and Fosl-1 was induced by the MEK-ERK pathway. Finally, we found that Egr-1, a protein not associated previously with either IL-2 or ALK, contributes to the cell proliferation. These findings indicate that NPM/ALK transforms the target CD4(+) T lymphocytes, at least in part, by using the pre-existing, IL-2-dependent signaling pathways.

  1. Novel channel enzyme fusion proteins confer arsenate resistance.

    PubMed

    Wu, Binghua; Song, Jie; Beitz, Eric

    2010-12-17

    Steady exposure to environmental arsenic has led to the evolution of vital cellular detoxification mechanisms. Under aerobic conditions, a two-step process appears most common among microorganisms involving reduction of predominant, oxidized arsenate (H(2)As(V)O(4)(-)/HAs(V)O(4)(2-)) to arsenite (As(III)(OH)(3)) by a cytosolic enzyme (ArsC; Escherichia coli type arsenate reductase) and subsequent extrusion via ArsB (E. coli type arsenite transporter)/ACR3 (yeast type arsenite transporter). Here, we describe novel fusion proteins consisting of an aquaglyceroporin-derived arsenite channel with a C-terminal arsenate reductase domain of phosphotyrosine-phosphatase origin, providing transposable, single gene-encoded arsenate resistance. The fusion occurred in actinobacteria from soil, Frankia alni, and marine environments, Salinispora tropica; Mycobacterium tuberculosis encodes an analogous ACR3-ArsC fusion. Mutations rendered the aquaglyceroporin channel more polar resulting in lower glycerol permeability and enhanced arsenite selectivity. The arsenate reductase domain couples to thioredoxin and can complement arsenate-sensitive yeast strains. A second isoform with a nonfunctional channel may use the mycothiol/mycoredoxin cofactor pool. These channel enzymes constitute prototypes of a novel concept in metabolism in which a substrate is generated and compartmentalized by the same molecule. Immediate diffusion maintains the dynamic equilibrium and prevents toxic accumulation of metabolites in an energy-saving fashion.

  2. Novel channel enzyme fusion proteins confer arsenate resistance.

    PubMed

    Wu, Binghua; Song, Jie; Beitz, Eric

    2010-12-17

    Steady exposure to environmental arsenic has led to the evolution of vital cellular detoxification mechanisms. Under aerobic conditions, a two-step process appears most common among microorganisms involving reduction of predominant, oxidized arsenate (H(2)As(V)O(4)(-)/HAs(V)O(4)(2-)) to arsenite (As(III)(OH)(3)) by a cytosolic enzyme (ArsC; Escherichia coli type arsenate reductase) and subsequent extrusion via ArsB (E. coli type arsenite transporter)/ACR3 (yeast type arsenite transporter). Here, we describe novel fusion proteins consisting of an aquaglyceroporin-derived arsenite channel with a C-terminal arsenate reductase domain of phosphotyrosine-phosphatase origin, providing transposable, single gene-encoded arsenate resistance. The fusion occurred in actinobacteria from soil, Frankia alni, and marine environments, Salinispora tropica; Mycobacterium tuberculosis encodes an analogous ACR3-ArsC fusion. Mutations rendered the aquaglyceroporin channel more polar resulting in lower glycerol permeability and enhanced arsenite selectivity. The arsenate reductase domain couples to thioredoxin and can complement arsenate-sensitive yeast strains. A second isoform with a nonfunctional channel may use the mycothiol/mycoredoxin cofactor pool. These channel enzymes constitute prototypes of a novel concept in metabolism in which a substrate is generated and compartmentalized by the same molecule. Immediate diffusion maintains the dynamic equilibrium and prevents toxic accumulation of metabolites in an energy-saving fashion. PMID:20947511

  3. Novel Channel Enzyme Fusion Proteins Confer Arsenate Resistance*

    PubMed Central

    Wu, Binghua; Song, Jie; Beitz, Eric

    2010-01-01

    Steady exposure to environmental arsenic has led to the evolution of vital cellular detoxification mechanisms. Under aerobic conditions, a two-step process appears most common among microorganisms involving reduction of predominant, oxidized arsenate (H2AsVO4−/HAsVO42−) to arsenite (AsIII(OH)3) by a cytosolic enzyme (ArsC; Escherichia coli type arsenate reductase) and subsequent extrusion via ArsB (E. coli type arsenite transporter)/ACR3 (yeast type arsenite transporter). Here, we describe novel fusion proteins consisting of an aquaglyceroporin-derived arsenite channel with a C-terminal arsenate reductase domain of phosphotyrosine-phosphatase origin, providing transposable, single gene-encoded arsenate resistance. The fusion occurred in actinobacteria from soil, Frankia alni, and marine environments, Salinispora tropica; Mycobacterium tuberculosis encodes an analogous ACR3-ArsC fusion. Mutations rendered the aquaglyceroporin channel more polar resulting in lower glycerol permeability and enhanced arsenite selectivity. The arsenate reductase domain couples to thioredoxin and can complement arsenate-sensitive yeast strains. A second isoform with a nonfunctional channel may use the mycothiol/mycoredoxin cofactor pool. These channel enzymes constitute prototypes of a novel concept in metabolism in which a substrate is generated and compartmentalized by the same molecule. Immediate diffusion maintains the dynamic equilibrium and prevents toxic accumulation of metabolites in an energy-saving fashion. PMID:20947511

  4. Localization of a Region in the Fusion Protein of Avian Metapneumovirus That Modulates Cell-Cell Fusion

    PubMed Central

    Wei, Yongwei; Feng, Kurtis; Yao, Xiangjie; Cai, Hui; Li, Junan; Mirza, Anne M.; Iorio, Ronald M.

    2012-01-01

    The genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae includes two members, human metapneumovirus (hMPV) and avian metapneumovirus (aMPV), causing respiratory tract infections in humans and birds, respectively. Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Membrane fusion of hMPV appears to be unique, in that fusion of some hMPV strains requires low pH. Here, we show that the fusion (F) proteins of aMPV promote fusion in the absence of the attachment protein and low pH is not required. Furthermore, there are notable differences in cell-cell fusion among aMPV subtypes. Trypsin was required for cell-cell fusion induced by subtype B but not subtypes A and C. The F protein of aMPV subtype A was highly fusogenic, whereas those from subtypes B and C were not. By construction and evaluation of chimeric F proteins composed of domains from the F proteins of subtypes A and B, we localized a region composed of amino acid residues 170 to 338 in the F protein that is responsible for the hyperfusogenic phenotype of the F from subtype A. Further mutagenesis analysis revealed that residues R295, G297, and K323 in this region collectively contributed to the hyperfusogenicity. Taken together, we have identified a region in the aMPV F protein that modulates the extent of membrane fusion. A model for fusion consistent with these data is presented. PMID:22915815

  5. Live Salmonella recruits N-ethylmaleimide-sensitive fusion protein on phagosomal membrane and promotes fusion with early endosome.

    PubMed

    Mukherjee, K; Siddiqi, S A; Hashim, S; Raje, M; Basu, S K; Mukhopadhyay, A

    2000-02-21

    To understand intracellular trafficking modulations by live Salmonella, we investigated the characteristics of in vitro fusion between endosomes and phagosomes containing live (LSP) or dead Salmonella (DSP). We observed that fusion of both DSP and LSP were time, temperature and cytosol dependent. GTPgammaS and treatment of the phagosomes with Rab-GDI inhibited fusion, indicating involvement of Rab-GTPases. LSP were rich in rab5, alpha-SNAP, and NSF, while DSP mainly contained rab7. Fusion of endosomes with DSP was inhibited by ATP depletion, N-ethylmaleimide (NEM) treatment, and in NEM-sensitive factor (NSF)-depleted cytosol. In contrast, fusion of endosomes with LSP was not inhibited by ATP depletion or NEM treatment, and occurred in NSF-depleted cytosol. However, ATPgammaS inhibited both fusion events. Fusion of NEM-treated LSP with endosomes was abrogated in NSF- depleted cytosol and was restored by adding purified NSF, whereas no fusion occurred with NEM-treated DSP, indicating that NSF recruitment is dependent on continuous signals from live Salmonella. Binding of NSF with LSP required prior presence of rab5 on the phagosome. We have also shown that rab5 specifically binds with Sop E, a protein from Salmonella. Our results indicate that live Salmonella help binding of rab5 on the phagosomes, possibly activate the SNARE which leads to further recruitment of alpha-SNAP for subsequent binding with NSF to promote fusion of the LSP with early endosomes and inhibition of their transport to lysosomes.

  6. Protein fold recognition using geometric kernel data fusion

    PubMed Central

    Zakeri, Pooya; Jeuris, Ben; Vandebril, Raf; Moreau, Yves

    2014-01-01

    Motivation: Various approaches based on features extracted from protein sequences and often machine learning methods have been used in the prediction of protein folds. Finding an efficient technique for integrating these different protein features has received increasing attention. In particular, kernel methods are an interesting class of techniques for integrating heterogeneous data. Various methods have been proposed to fuse multiple kernels. Most techniques for multiple kernel learning focus on learning a convex linear combination of base kernels. In addition to the limitation of linear combinations, working with such approaches could cause a loss of potentially useful information. Results: We design several techniques to combine kernel matrices by taking more involved, geometry inspired means of these matrices instead of convex linear combinations. We consider various sequence-based protein features including information extracted directly from position-specific scoring matrices and local sequence alignment. We evaluate our methods for classification on the SCOP PDB-40D benchmark dataset for protein fold recognition. The best overall accuracy on the protein fold recognition test set obtained by our methods is ∼86.7%. This is an improvement over the results of the best existing approach. Moreover, our computational model has been developed by incorporating the functional domain composition of proteins through a hybridization model. It is observed that by using our proposed hybridization model, the protein fold recognition accuracy is further improved to 89.30%. Furthermore, we investigate the performance of our approach on the protein remote homology detection problem by fusing multiple string kernels. Availability and implementation: The MATLAB code used for our proposed geometric kernel fusion frameworks are publicly available at http://people.cs.kuleuven.be/∼raf.vandebril/homepage/software/geomean.php?menu=5/ Contact: pooyapaydar@gmail.com or yves

  7. Side chain packing below the fusion peptide strongly modulates triggering of the Hendra virus F protein.

    PubMed

    Smith, Everett Clinton; Dutch, Rebecca Ellis

    2010-10-01

    Triggering of the Hendra virus fusion (F) protein is required to initiate the conformational changes which drive membrane fusion, but the factors which control triggering remain poorly understood. Mutation of a histidine predicted to lie near the fusion peptide to alanine greatly reduced fusion despite wild-type cell surface expression levels, while asparagine substitution resulted in a moderate restoration in fusion levels. Slowed kinetics of six-helix bundle formation, as judged by sensitivity to heptad repeat B-derived peptides, was observed for all H372 mutants. These data suggest that side chain packing beneath the fusion peptide is an important regulator of Hendra virus F triggering.

  8. A New Type of Fusion Analysis Applicable to Many Organisms: Protein Fusions to the URA3 Gene of Yeast

    PubMed Central

    Alani, Eric; Kleckner, Nancy

    1987-01-01

    We have made constructs that join the promoter sequences and a portion of the coding region of the Saccharomyces cerevisiae HIS4 and GAL1 genes and the E. coli lacZ gene to the sixth codon of the S. cerevisiae URA3 gene (encodes orotidine-5'-phosphate (OMP) decarboxylase) to form three in frame protein fusions. In each case the fusion protein has OMP decarboxylase activity as assayed by complementation tests and this activity is properly regulated. A convenient cassette consisting of the URA3 segment plus some immediately proximal amino acids of HIS4C is available for making URA3 fusions to other proteins of interest. URA3 fusions offer several advantages over other systems for gene fusion analysis: the URA3 specified protein is small and cytosolic; genetic selections exist to identify mutants with either increased or decreased URA3 function in both yeast (S. cerevisiae and Schizosaccharomyces pombe) and bacteria (Escherichia coli and Salmonella typhimurium); and a sensitive OMP decarboxylase enzyme assay is available. Also, OMP decarboxylase activity is present in mammals, Drosophila and plants, so URA3 fusions may eventually be applicable in these other organisms as well. PMID:3311876

  9. Pooled-matrix protein interaction screens using Barcode Fusion Genetics.

    PubMed

    Yachie, Nozomu; Petsalaki, Evangelia; Mellor, Joseph C; Weile, Jochen; Jacob, Yves; Verby, Marta; Ozturk, Sedide B; Li, Siyang; Cote, Atina G; Mosca, Roberto; Knapp, Jennifer J; Ko, Minjeong; Yu, Analyn; Gebbia, Marinella; Sahni, Nidhi; Yi, Song; Tyagi, Tanya; Sheykhkarimli, Dayag; Roth, Jonathan F; Wong, Cassandra; Musa, Louai; Snider, Jamie; Liu, Yi-Chun; Yu, Haiyuan; Braun, Pascal; Stagljar, Igor; Hao, Tong; Calderwood, Michael A; Pelletier, Laurence; Aloy, Patrick; Hill, David E; Vidal, Marc; Roth, Frederick P

    2016-04-01

    High-throughput binary protein interaction mapping is continuing to extend our understanding of cellular function and disease mechanisms. However, we remain one or two orders of magnitude away from a complete interaction map for humans and other major model organisms. Completion will require screening at substantially larger scales with many complementary assays, requiring further efficiency gains in proteome-scale interaction mapping. Here, we report Barcode Fusion Genetics-Yeast Two-Hybrid (BFG-Y2H), by which a full matrix of protein pairs can be screened in a single multiplexed strain pool. BFG-Y2H uses Cre recombination to fuse DNA barcodes from distinct plasmids, generating chimeric protein-pair barcodes that can be quantified via next-generation sequencing. We applied BFG-Y2H to four different matrices ranging in scale from ~25 K to 2.5 M protein pairs. The results show that BFG-Y2H increases the efficiency of protein matrix screening, with quality that is on par with state-of-the-art Y2H methods. PMID:27107012

  10. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells

    PubMed Central

    Kim, Dae In; Raida, Manfred; Burke, Brian

    2012-01-01

    We have developed a new technique for proximity-dependent labeling of proteins in eukaryotic cells. Named BioID for proximity-dependent biotin identification, this approach is based on fusion of a promiscuous Escherichia coli biotin protein ligase to a targeting protein. BioID features proximity-dependent biotinylation of proteins that are near-neighbors of the fusion protein. Biotinylated proteins may be isolated by affinity capture and identified by mass spectrometry. We apply BioID to lamin-A (LaA), a well-characterized intermediate filament protein that is a constituent of the nuclear lamina, an important structural element of the nuclear envelope (NE). We identify multiple proteins that associate with and/or are proximate to LaA in vivo. The most abundant of these include known interactors of LaA that are localized to the NE, as well as a new NE-associated protein named SLAP75. Our results suggest BioID is a useful and generally applicable method to screen for both interacting and neighboring proteins in their native cellular environment. PMID:22412018

  11. Novel nanocomposites from spider silk–silica fusion (chimeric) proteins

    PubMed Central

    Wong Po Foo, Cheryl; Patwardhan, Siddharth V.; Belton, David J.; Kitchel, Brandon; Anastasiades, Daphne; Huang, Jia; Naik, Rajesh R.; Perry, Carole C.; Kaplan, David L.

    2006-01-01

    Silica skeletal architectures in diatoms are characterized by remarkable morphological and nanostructural details. Silk proteins from spiders and silkworms form strong and intricate self-assembling fibrous biomaterials in nature. We combined the features of silk with biosilica through the design, synthesis, and characterization of a novel family of chimeric proteins for subsequent use in model materials forming reactions. The domains from the major ampullate spidroin 1 (MaSp1) protein of Nephila clavipes spider dragline silk provide control over structural and morphological details because it can be self-assembled through diverse processing methods including film casting and fiber electrospinning. Biosilica nanostructures in diatoms are formed in aqueous ambient conditions at neutral pH and low temperatures. The R5 peptide derived from the silaffin protein of Cylindrotheca fusiformis induces and regulates silica precipitation in the chimeric protein designs under similar ambient conditions. Whereas mineralization reactions performed in the presence of R5 peptide alone form silica particles with a size distribution of 0.5–10 μm in diameter, reactions performed in the presence of the new fusion proteins generate nanocomposite materials containing silica particles with a narrower size distribution of 0.5–2 μm in diameter. Furthermore, we demonstrate that composite morphology and structure could be regulated by controlling processing conditions to produce films and fibers. These results suggest that the chimeric protein provides new options for processing and control over silica particle sizes, important benefits for biomedical and specialty materials, particularly in light of the all aqueous processing and the nanocomposite features of these new materials. PMID:16769898

  12. Mutant Fusion Proteins with Enhanced Fusion Activity Promote Measles Virus Spread in Human Neuronal Cells and Brains of Suckling Hamsters

    PubMed Central

    Shirogane, Yuta; Suzuki, Satoshi O.; Ikegame, Satoshi; Koga, Ritsuko

    2013-01-01

    Subacute sclerosing panencephalitis (SSPE) is a fatal degenerative disease caused by persistent measles virus (MV) infection in the central nervous system (CNS). From the genetic study of MV isolates obtained from SSPE patients, it is thought that defects of the matrix (M) protein play a crucial role in MV pathogenicity in the CNS. In this study, we report several notable mutations in the extracellular domain of the MV fusion (F) protein, including those found in multiple SSPE strains. The F proteins with these mutations induced syncytium formation in cells lacking SLAM and nectin 4 (receptors used by wild-type MV), including human neuronal cell lines, when expressed together with the attachment protein hemagglutinin. Moreover, recombinant viruses with these mutations exhibited neurovirulence in suckling hamsters, unlike the parental wild-type MV, and the mortality correlated with their fusion activity. In contrast, the recombinant MV lacking the M protein did not induce syncytia in cells lacking SLAM and nectin 4, although it formed larger syncytia in cells with either of the receptors. Since human neuronal cells are mainly SLAM and nectin 4 negative, fusion-enhancing mutations in the extracellular domain of the F protein may greatly contribute to MV spread via cell-to-cell fusion in the CNS, regardless of defects of the M protein. PMID:23255801

  13. pH responsive Janus-like supramolecular fusion proteins for functional protein delivery.

    PubMed

    Kuan, Seah Ling; Ng, David Y W; Wu, Yuzhou; Förtsch, Christina; Barth, Holger; Doroshenko, Mikheil; Koynov, Kaloian; Meier, Christoph; Weil, Tanja

    2013-11-20

    A facile, noncovalent solid-phase immobilization platform is described to assemble Janus-like supramolecular fusion proteins that are responsive to external stimuli. A chemically postmodified transporter protein, DHSA, is fused with (imino)biotinylated cargo proteins via an avidin adaptor with a high degree of spatial control. Notably, the derived heterofusion proteins are able to cross cellular membranes, dissociate at acidic pH due to the iminobiotin linker and preserve the enzymatic activity of the cargo proteins β-galactosidase and the enzymatic subunit of Clostridium botulinum C2 toxin. The mix-and-match strategy described herein opens unique opportunities to access macromolecular architectures of high structural definition and biological activity, thus complementing protein ligation and recombinant protein expression techniques. PMID:24156787

  14. Recombinant fusion protein of albumin-retinol binding protein inactivates stellate cells

    SciTech Connect

    Choi, Soyoung; Park, Sangeun; Kim, Suhyun; Lim, Chaeseung; Kim, Jungho; Cha, Dae Ryong; Oh, Junseo

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer We designed novel recombinant albumin-RBP fusion proteins. Black-Right-Pointing-Pointer Expression of fusion proteins inactivates pancreatic stellate cells (PSCs). Black-Right-Pointing-Pointer Fusion proteins are successfully internalized into and inactivate PSCs. Black-Right-Pointing-Pointer RBP moiety mediates cell specific uptake of fusion protein. -- Abstract: Quiescent pancreatic- (PSCs) and hepatic- (HSCs) stellate cells store vitamin A (retinol) in lipid droplets via retinol binding protein (RBP) receptor and, when activated by profibrogenic stimuli, they transform into myofibroblast-like cells which play a key role in the fibrogenesis. Despite extensive investigations, there is, however, currently no appropriate therapy available for tissue fibrosis. We previously showed that the expression of albumin, composed of three homologous domains (I-III), inhibits stellate cell activation, which requires its high-affinity fatty acid-binding sites asymmetrically distributed in domain I and III. To attain stellate cell-specific uptake, albumin (domain I/III) was coupled to RBP; RBP-albumin{sup domain} {sup III} (R-III) and albumin{sup domain} {sup I}-RBP-albumin{sup III} (I-R-III). To assess the biological activity of fusion proteins, cultured PSCs were used. Like wild type albumin, expression of R-III or I-R-III in PSCs after passage 2 (activated PSCs) induced phenotypic reversal from activated to fat-storing cells. On the other hand, R-III and I-R-III, but not albumin, secreted from transfected 293 cells were successfully internalized into and inactivated PSCs. FPLC-purified R-III was found to be internalized into PSCs via caveolae-mediated endocytosis, and its efficient cellular uptake was also observed in HSCs and podocytes among several cell lines tested. Moreover, tissue distribution of intravenously injected R-III was closely similar to that of RBP. Therefore, our data suggest that albumin-RBP fusion protein comprises

  15. Conditional TPM3-ALK and NPM-ALK transgenic mice develop reversible ALK-positive early B-cell lymphoma/leukemia.

    PubMed

    Giuriato, Sylvie; Foisseau, Marianne; Dejean, Emilie; Felsher, Dean W; Al Saati, Talal; Demur, Cécile; Ragab, Ashraf; Kruczynski, Anna; Schiff, Claudine; Delsol, Georges; Meggetto, Fabienne

    2010-05-20

    NPM-ALK (nucleophosmin-anaplastic lymphoma kinase) and TPM3-ALK (nonmuscular tropomyosin 3-anaplastic lymphoma kinase) are oncogenic tyrosine kinases implicated in the pathogenesis of human ALK-positive lymphoma. We report here the development of novel conditional mouse models for ALK-induced lymphomagenesis, with the use of the tetracycline regulatory system under the control of the EmuSRalpha enhancer/promoter. The expression of either oncogene resulted in the arrest of the differentiation of early B cells and lymphomagenesis. We also observed the development of skin keratoacanthoma lesions, probably because of aberrant ALK expression in keratinocytes. The inactivation of the ALK oncogene on doxycycline treatment was sufficient to induce sustained regression of both hematopoietic tumors and skin disease. Importantly, treatment with the specific ALK inhibitor (PF-2341066) also reversed the pathologic states, showing the value of these mouse models for the validation of ALK tyrosine kinase inhibitors. Thus, our results show (1) that NPM-ALK and TPM3-ALK oncogenes are sufficient for lymphoma/leukemia development and required for tumor maintenance, hence validating ALK as potentially effective therapeutic target; and (2) for the first time, in vivo, the equal tumorigenic potential of the NPM-ALK and TPM3-ALK oncogenic tyrosine kinases. Our models offer a new tool to investigate in vivo the molecular mechanisms associated with ALK-induced lymphoproliferative disorders.

  16. Premature activation of the paramyxovirus fusion protein before target cell attachment with corruption of the viral fusion machinery.

    PubMed

    Farzan, Shohreh F; Palermo, Laura M; Yokoyama, Christine C; Orefice, Gianmarco; Fornabaio, Micaela; Sarkar, Aurijit; Kellogg, Glen E; Greengard, Olga; Porotto, Matteo; Moscona, Anne

    2011-11-01

    Paramyxoviruses, including the childhood pathogen human parainfluenza virus type 3, enter host cells by fusion of the viral and target cell membranes. This fusion results from the concerted action of its two envelope glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion protein (F). The receptor-bound HN triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We proposed that, if the fusion process could be activated prematurely before the virion reaches the target host cell, infection could be prevented. We identified a small molecule that inhibits paramyxovirus entry into target cells and prevents infection. We show here that this compound works by an interaction with HN that results in F-activation prior to receptor binding. The fusion process is thereby prematurely activated, preventing fusion of the viral membrane with target cells and precluding viral entry. This first evidence that activation of a paramyxovirus F can be specifically induced before the virus contacts its target cell suggests a new strategy with broad implications for the design of antiviral agents.

  17. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia.

    PubMed

    Grembecka, Jolanta; He, Shihan; Shi, Aibin; Purohit, Trupta; Muntean, Andrew G; Sorenson, Roderick J; Showalter, Hollis D; Murai, Marcelo J; Belcher, Amalia M; Hartley, Thomas; Hess, Jay L; Cierpicki, Tomasz

    2012-03-01

    Translocations involving the mixed lineage leukemia (MLL) gene result in human acute leukemias with very poor prognosis. The leukemogenic activity of MLL fusion proteins is critically dependent on their direct interaction with menin, a product of the multiple endocrine neoplasia (MEN1) gene. Here we present what are to our knowledge the first small-molecule inhibitors of the menin-MLL fusion protein interaction that specifically bind menin with nanomolar affinities. These compounds effectively reverse MLL fusion protein-mediated leukemic transformation by downregulating the expression of target genes required for MLL fusion protein oncogenic activity. They also selectively block proliferation and induce both apoptosis and differentiation of leukemia cells harboring MLL translocations. Identification of these compounds provides a new tool for better understanding MLL-mediated leukemogenesis and represents a new approach for studying the role of menin as an oncogenic cofactor of MLL fusion proteins. Our findings also highlight a new therapeutic strategy for aggressive leukemias with MLL rearrangements.

  18. Measles virus attachment proteins with impaired ability to bind CD46 interact more efficiently with the homologous fusion protein

    SciTech Connect

    Corey, Elizabeth A.; Iorio, Ronald M.

    2009-01-05

    Fusion promotion by measles virus (MV) depends on an interaction between the hemagglutinin (H) and fusion (F) glycoproteins. Amino acid substitutions in MV H that drastically reduce hemagglutinating activity result in an increase in the amount of H (primarily the 74 kDa isoform) detectable in a complex with F at the cell surface. This is in direct contrast to the loss of the ability to detect a complex between the fusion protein of Newcastle disease virus and most attachment proteins that lack receptor binding activity. These opposing results provide support for the existence of different mechanisms for the regulation of fusion by these two paramyxoviruses.

  19. Generation of New M2e-HA2 Fusion Chimeric Peptide to Development of a Recombinant Fusion Protein Vaccine

    PubMed Central

    Ameghi, Ali; Baradaran, Behzad; Aghaiypour, Khosrow; Barzegar, Abolfazl; Pilehvar-Soltanahmadi, Yones; Moghadampour, Masood; Taghizadeh, Morteza; Zarghami, Nosratollah

    2015-01-01

    Purpose: The purpose was to design a new construction containing influenza virus (H1N1) M2e gene and HA2 gene by bioinformatics approach, cloning the construct in to Escherichia coli and produce M2e-HA2 peptide. Methods: The procedure was done by virus cultivation in SPF eggs, hemagglutination assay (HA), RNA isolation, RT-PCR, primers designed (DNAMAN 4 and Oligo7), virtual fusion construction translation (ExPASy), N-Glycosylated sites prediction (Ensemblegly-Iowa), complete open reading frame (ORF), stop codon studied (NCBI ORF Finder), rare codon determination (GenScript), Solvent accessibility of epitopes (Swiss-PdbViewer), antigenic sites prediction (Protean), fusion PCR of M2e-HA2 gene, sequence analysis, nested PCR, gel electrophoresis, double digestion of pET22b(+) plasmid and the fusion construct, ligation of them, transformation of the ligated vector (pET22b-M2e-HA2) to E.coli (BL21), mass culture the cloned bacterium ,induction the expression by isopropyl-beta-D-thiogalactopyranoside (IPTG), sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), purification the fusion peptide by Ni-NTA column, western blot to verify the purification. Results: In this study we developed a new approach for fusion of Influenza virus M2e (96 nucleotides) and HA2 (663 nucleotides) genes based on fusion PCR strategy and produced a fused fragment with 793 nucleotides. The construct was successfully cloned and expressed. Conclusion: This construct is a 261 amino acid chimeric fusion peptide with about 30 KD molecular weight. According on the latest information; this is the first case of expression and purification M2e-HA2 fusion chimeric peptide, which could be used for development of a recombinant M2e-HA2 fusion protein vaccine. PMID:26793615

  20. Antigenicity of Recombinant Maltose Binding Protein-Mycobacterium avium subsp. paratuberculosis Fusion Proteins with and without Factor Xa Cleaving

    PubMed Central

    Begg, Douglas J.; Purdie, Auriol C.; Bannantine, John P.; Whittington, Richard J.

    2013-01-01

    Mycobacterium avium subsp. paratuberculosis causes Johne's disease (JD) in ruminants. Proteomic studies have shown that M. avium subsp. paratuberculosis expresses certain proteins when exposed to in vitro physiological stress conditions similar to the conditions experienced within a host during natural infection. Such proteins are hypothesized to be expressed in vivo, are recognized by the host immune system, and may be of potential use in the diagnosis of JD. In this study, 50 recombinant maltose binding protein (MBP)-M. avium subsp. paratuberculosis fusion proteins were evaluated using serum samples from sheep infected with M. avium subsp. paratuberculosis, and 29 (58%) were found to be antigenic. Among 50 fusion proteins, 10 were evaluated in MBP fusion and factor Xa-cleaved forms. A total of 31 proteins (62%) were found to be antigenic in either MBP fusion or factor Xa-cleaved forms. Antigenicity after cleavage and removal of the MBP tag was marginally enhanced. PMID:24132604

  1. Graphene Biosensor Programming with Genetically Engineered Fusion Protein Monolayers.

    PubMed

    Soikkeli, Miika; Kurppa, Katri; Kainlauri, Markku; Arpiainen, Sanna; Paananen, Arja; Gunnarsson, David; Joensuu, Jussi J; Laaksonen, Päivi; Prunnila, Mika; Linder, Markus B; Ahopelto, Jouni

    2016-03-01

    We demonstrate a label-free biosensor concept based on specific receptor modules, which provide immobilization and selectivity to the desired analyte molecules, and on charge sensing with a graphene field effect transistor. The receptor modules are fusion proteins in which small hydrophobin proteins act as the anchor to immobilize the receptor moiety. The functionalization of the graphene sensor is a single-step process based on directed self-assembly of the receptor modules on a hydrophobic surface. The modules are produced separately in fungi or plants and purified before use. The modules form a dense and well-oriented monolayer on the graphene transistor channel and the receptor module monolayer can be removed, and a new module monolayer with a different selectivity can be assembled in situ. The receptor module monolayers survive drying, showing that the functionalized devices can be stored and have a reasonable shelf life. The sensor is tested with small charged peptides and large immunoglobulin molecules. The measured sensitivities are in the femtomolar range, and the response is relatively fast, of the order of one second. PMID:26960769

  2. Aequorin fusion proteins as bioluminescent tracers for competitive immunoassays

    NASA Astrophysics Data System (ADS)

    Mirasoli, Mara; Michelini, Elisa; Deo, Sapna K.; Dikici, Emre; Roda, Aldo; Daunert, Sylvia

    2004-06-01

    The use of bio- and chemiluminescence for the development of quantitative binding assays offers undoubted advantages over other detection systems, such as spectrophotometry, fluorescence, or radioactivity. Indeed, bio- and chemiluminescence detection provides similar, or even better, sensitivity and detectability than radioisotopes, while avoiding the problems of health hazards, waste disposal, and instability associated with the use of radioisotopes. Among bioluminescent labels, the calcium-activated photoprotein aequorin, originally isolated from Aequorea victoria and today available as a recombinant product, is characterized by very high detectability, down to attomole levels. It has been used as a bioluminescent label for developing a variety of highly sensitive immunoassays, using various analyte-aequorin conjugation strategies. When the analyte is a protein or a peptide, genetic engineering techniques can be used to produce protein fusions where the analyte is in-frame fused with aequorin, thus producing homogeneous one-to-one conjugation products, available in virtually unlimited amount. Various assays were developed using this strategy: a short review of the most interesting applications is presented, as well as the cloning, purification and initial characterization of an endothelin-1-aequorin conjugate suitable for developing a competitive immunoassay for endothelin-1, a potent vasoconstrictor peptide, involved in hypertension.

  3. Bone morphogenetic protein in pediatric spine fusion surgery

    PubMed Central

    Kerr, Christine; Kerr, Danielle

    2016-01-01

    Background There is a paucity of literature describing the use of bone graft substitutes to achieve fusion in the pediatric spine. Outcomes and complications involving the off-label use of bone morphogenetic protein 2 (BMP-2) in the pediatric spine are not clearly defined. The purpose of this study is to review the existing literature with respect to reported outcomes and complications involving the use of low-dose BMP-2 in pediatric patients. Methods A Medline and PubMed literature search was conducted using the words bone morphogenetic protein, BMP, rh-BMP-2, bone graft substitutes, and pediatric spine. Results To date, there are few published reports on this topic. Complications and appropriate BMP-2 dosage application in the pediatric spine remain unknown. Conclusions This report describes the potential for BMP-2 to achieve successful arthrodesis of the spine in pediatric patients. Usage should be judicious as complications and long-term outcomes of pediatric BMP-2 usage remain undefined in the existing literature.

  4. LAMP proteins are required for fusion of lysosomes with phagosomes.

    PubMed

    Huynh, Kassidy K; Eskelinen, Eeva-Liisa; Scott, Cameron C; Malevanets, Anatoly; Saftig, Paul; Grinstein, Sergio

    2007-01-24

    Lysosome-associated membrane proteins 1 and 2 (LAMP-1 and LAMP-2) are delivered to phagosomes during the maturation process. We used cells from LAMP-deficient mice to analyze the role of these proteins in phagosome maturation. Macrophages from LAMP-1- or LAMP-2-deficient mice displayed normal fusion of lysosomes with phagosomes. Because ablation of both the lamp-1 and lamp-2 genes yields an embryonic-lethal phenotype, we were unable to study macrophages from double knockouts. Instead, we reconstituted phagocytosis in murine embryonic fibroblasts (MEFs) by transfection of FcgammaIIA receptors. Phagosomes formed by FcgammaIIA-transfected MEFs obtained from LAMP-1- or LAMP-2- deficient mice acquired lysosomal markers. Remarkably, although FcgammaIIA-transfected MEFs from double-deficient mice ingested particles normally, phagosomal maturation was arrested. LAMP-1 and LAMP-2 double-deficient phagosomes acquired Rab5 and accumulated phosphatidylinositol 3-phosphate, but failed to recruit Rab7 and did not fuse with lysosomes. We attribute the deficiency to impaired organellar motility along microtubules. Time-lapse cinematography revealed that late endosomes/lysosomes as well as phagosomes lacking LAMP-1 and LAMP-2 had reduced ability to move toward the microtubule-organizing center, likely precluding their interaction with each other. PMID:17245426

  5. Protein body formation in stable transgenic tobacco expressing elastin-like polypeptide and hydrophobin fusion proteins

    PubMed Central

    2013-01-01

    Background Plants are recognized as an efficient and inexpensive system to produce valuable recombinant proteins. Two different strategies have been commonly used for the expression of recombinant proteins in plants: transient expression mediated by Agrobacterium; or stable transformation of the plant genome. However, the use of plants as bioreactors still faces two main limitations: low accumulation levels of some recombinant proteins and lack of efficient purification methods. Elastin-like polypeptide (ELP), hydrophobin I (HFBI) and Zera® are three fusion partners found to increase the accumulation levels of recombinant proteins and induce the formation of protein bodies (PBs) in leaves when targeted to the endoplasmic reticulum (ER) in transient expression assays. In this study the effects of ELP and HFBI fusion tags on recombinant protein accumulation levels and PB formation was examined in stable transgenic Nicotiana tabacum. Results The accumulation of recombinant protein and PB formation was evaluated in two cultivars of Nicotiana tabacum transformed with green fluorescent protein (GFP) fused to ELP or HFBI, both targeted and retrieved to the ER. The ELP and HFBI tags increased the accumulation of the recombinant protein and induced the formation of PBs in leaves of stable transgenic plants from both cultivars. Furthermore, these tags induced the formation of PBs in a concentration-dependent manner, where a specific level of recombinant protein accumulation was required for PBs to appear. Moreover, agro-infiltration of plants accumulating low levels of recombinant protein with p19, a suppressor of post-transcriptional gene silencing (PTGS), increased accumulation levels in four independent transgenic lines, suggesting that PTGS might have caused the low accumulation levels in these plants. Conclusion The use of ELP and HFBI tags as fusion partners in stable transgenic plants of tobacco is feasible and promising. In a constitutive environment, these tags

  6. ALK-positive inflammatory myofibroblastic tumor of the abdomen with widespread microscopic multifocality.

    PubMed

    Lorenzi, Luisa; Cigognetti, Marta; Medicina, Daniela; Pellegrini, Vilma; Balzarini, Piera; Cestari, Renzo; Facchetti, Fabio

    2014-10-01

    Inflammatory myofibroblastic tumor (IMT) is a locally aggressive neoplasm, most frequently occurring in the abdominal cavity as multiple recurrent nodules. We report a case of IMT in a 24-year-old male presenting as multiple nodules involving the omentum, the liver, and the colon. Spindle tumor cells expressed ALK with a cytoplasmic granular distribution, the CLTC-ALK fusion gene was demonstrated by reverse-transcriptase polymerase chain reaction analysis, and break-apart fluorescence in situ hybridization (FISH) probes for the ALK gene showed a pathological pattern (single red signal associated with 1/2 normal fused signals) highly suggestive for combined gene fusion and deletion. To reduce the surgically unresectable liver mass, the patient was treated with crizotinib, and after 4 months of treatment the disease was defined stable according to RECIST criteria. Interestingly, ALK and FISH/FICTION analysis revealed that tumor cells were widely dispersed as multiple microscopic foci or as single cells beneath the omental mesothelium. These findings indicate that IMT multifocality might result either from dissemination from the main tumor mass or development of multiple independent neoplastic foci; furthermore, they underline the need of omentectomy in abdominal IMT to obtain surgical radicality.

  7. Viral fusion protein transmembrane domain adopts β-strand structure to facilitate membrane topological changes for virus-cell fusion.

    PubMed

    Yao, Hongwei; Lee, Michelle W; Waring, Alan J; Wong, Gerard C L; Hong, Mei

    2015-09-01

    The C-terminal transmembrane domain (TMD) of viral fusion proteins such as HIV gp41 and influenza hemagglutinin (HA) is traditionally viewed as a passive α-helical anchor of the protein to the virus envelope during its merger with the cell membrane. The conformation, dynamics, and lipid interaction of these fusion protein TMDs have so far eluded high-resolution structure characterization because of their highly hydrophobic nature. Using magic-angle-spinning solid-state NMR spectroscopy, we show that the TMD of the parainfluenza virus 5 (PIV5) fusion protein adopts lipid-dependent conformations and interactions with the membrane and water. In phosphatidylcholine (PC) and phosphatidylglycerol (PG) membranes, the TMD is predominantly α-helical, but in phosphatidylethanolamine (PE) membranes, the TMD changes significantly to the β-strand conformation. Measured order parameters indicate that the strand segments are immobilized and thus oligomerized. (31)P NMR spectra and small-angle X-ray scattering (SAXS) data show that this β-strand-rich conformation converts the PE membrane to a bicontinuous cubic phase, which is rich in negative Gaussian curvature that is characteristic of hemifusion intermediates and fusion pores. (1)H-(31)P 2D correlation spectra and (2)H spectra show that the PE membrane with or without the TMD is much less hydrated than PC and PG membranes, suggesting that the TMD works with the natural dehydration tendency of PE to facilitate membrane merger. These results suggest a new viral-fusion model in which the TMD actively promotes membrane topological changes during fusion using the β-strand as the fusogenic conformation.

  8. Establishment of a novel model of chondrogenesis using murine embryonic stem cells carrying fibrodysplasia ossificans progressiva-associated mutant ALK2.

    PubMed

    Fujimoto, Mai; Ohte, Satoshi; Shin, Masashi; Yoneyama, Katsumi; Osawa, Kenji; Miyamoto, Arei; Tsukamoto, Sho; Mizuta, Takato; Kokabu, Shoichiro; Machiya, Aiko; Okuda, Akihiko; Suda, Naoto; Katagiri, Takenobu

    2014-12-12

    Fibrodysplasia ossificans progressiva (FOP) is a genetic disorder characterized by heterotopic endochondral ossification in soft tissue. A mutation in the bone morphogenetic protein (BMP) receptor ALK2, R206H, has been identified in patients with typical FOP. In the present study, we established murine embryonic stem (ES) cells that express wild-type human ALK2 or typical mutant human ALK2 [ALK2(R206H)] under the control of the Tet-Off system. Although wild-type ALK2 and mutant ALK2(R206H) were expressed in response to a withdrawal of doxycycline (Dox), BMP signaling was activated only in the mutant ALK2(R206H)-expressing cells without the addition of exogenous BMPs. The Dox-dependent induction of BMP signaling was blocked by a specific kinase inhibitor of the BMP receptor. The mutant ALK2(R206H)-carrying cells showed Dox-regulated chondrogenesis in vitro, which occurred in co-operation with transforming growth factor-β1 (TGF-β1). Overall, our ES cells are useful for studying the molecular mechanisms of heterotopic ossification in FOP in vitro and for developing novel inhibitors of chondrogenesis induced by mutant ALK2(R206H) associated with FOP.

  9. New strategies in neuroblastoma: Therapeutic targeting of MYCN and ALK.

    PubMed

    Barone, Giuseppe; Anderson, John; Pearson, Andrew D J; Petrie, Kevin; Chesler, Louis

    2013-11-01

    Clinical outcome remains poor in patients with high-risk neuroblastoma, in which chemoresistant relapse is common following high-intensity conventional multimodal therapy. Novel treatment approaches are required. Although recent genomic profiling initiatives have not revealed a high frequency of mutations in any significant number of therapeutically targeted genes, two exceptions, amplification of the MYCN oncogene and somatically acquired tyrosine kinase domain point mutations in anaplastic lymphoma kinase (ALK), present exciting possibilities for targeted therapy. In contrast with the situation with ALK, in which a robust pipeline of pharmacologic agents is available from early clinical use in adult malignancy, therapeutic targeting of MYCN (and MYC oncoproteins in general) represents a significant medicinal chemistry challenge that has remained unsolved for two decades. We review the latest approaches envisioned for blockade of ALK activity in neuroblastoma, present a classification of potential approaches for therapeutic targeting of MYCN, and discuss how recent developments in targeting of MYC proteins seem to make therapeutic inhibition of MYCN a reality in the clinic.

  10. Surface density of the Hendra G protein modulates Hendra F protein-promoted membrane fusion: role for Hendra G protein trafficking and degradation.

    PubMed

    Whitman, Shannon D; Dutch, Rebecca Ellis

    2007-07-01

    Hendra virus, like most paramyxoviruses, requires both a fusion (F) and attachment (G) protein for promotion of cell-cell fusion. Recent studies determined that Hendra F is proteolytically processed by the cellular protease cathepsin L after endocytosis. This unique cathepsin L processing results in a small percentage of Hendra F on the cell surface. To determine how the surface densities of the two Hendra glycoproteins affect fusion promotion, we performed experiments that varied the levels of glycoproteins expressed in transfected cells. Using two different fusion assays, we found a marked increase in fusion when expression of the Hendra G protein was increased, with a 1:1 molar ratio of Hendra F:G on the cell surface resulting in optimal membrane fusion. Our results also showed that Hendra G protein levels are modulated by both more rapid protein turnover and slower protein trafficking than is seen for Hendra F.

  11. Surface density of the Hendra G protein modulates Hendra F protein-promoted membrane fusion: Role for Hendra G protein trafficking and degradation

    SciTech Connect

    Whitman, Shannon D.; Dutch, Rebecca Ellis . E-mail: rdutc2@uky.edu

    2007-07-05

    Hendra virus, like most paramyxoviruses, requires both a fusion (F) and attachment (G) protein for promotion of cell-cell fusion. Recent studies determined that Hendra F is proteolytically processed by the cellular protease cathepsin L after endocytosis. This unique cathepsin L processing results in a small percentage of Hendra F on the cell surface. To determine how the surface densities of the two Hendra glycoproteins affect fusion promotion, we performed experiments that varied the levels of glycoproteins expressed in transfected cells. Using two different fusion assays, we found a marked increase in fusion when expression of the Hendra G protein was increased, with a 1:1 molar ratio of Hendra F:G on the cell surface resulting in optimal membrane fusion. Our results also showed that Hendra G protein levels are modulated by both more rapid protein turnover and slower protein trafficking than is seen for Hendra F.

  12. Cell fusion assay by expression of respiratory syncytial virus (RSV) fusion protein to analyze the mutation of palivizumab-resistant strains.

    PubMed

    Yasui, Yosuke; Yamaji, Yoshiaki; Sawada, Akihito; Ito, Takashi; Nakayama, Tetsuo

    2016-05-01

    Respiratory syncytial virus (RSV) consists of fusion (F), glyco (G), and small hydrophobic (SH) proteins as envelope proteins, and infects through cell fusion. F protein is expressed on the surface of infected cells, and induces cell fusion. In the present report, expression plasmids of the F, G and SH proteins were constructed and cell fusion activity was investigated under T7 RNA polymerase. F protein alone induced cell fusion at a lower concentration than previously reported, and co-expression of F and SH proteins induced cell fusion more efficiently than F protein alone. Palivizumab is the only prophylactic agent against RSV infection. Palivizumab-resistant strains having mutations of the F protein of K272E and S275F were reported. These mutations were introduced into an F-expression plasmid, and exhibited no inhibition of cell fusion with palivizumab. Among the RSV F protein mutants, N276S has been reported to have partial resistance against palivizumab, but the F expression plasmid with the N276S mutation showed a reduction in cell fusion in the presence of palivizumab, showing no resistance to palivizumab. The present expression system was useful for investigating the mechanisms of RSV cell fusion. PMID:26794681

  13. Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway.

    PubMed

    Marzec, M; Kasprzycka, M; Liu, X; El-Salem, M; Halasa, K; Raghunath, P N; Bucki, R; Wlodarski, P; Wasik, M A

    2007-08-16

    The mechanisms of cell transformation mediated by the nucleophosmin (NPM)/anaplastic lymphoma kinase (ALK) tyrosine kinase are only partially understood. Here, we report that cell lines and native tissues derived from the NPM/ALK-expressing T-cell lymphoma display persistent activation of mammalian target of rapamycin (mTOR) as determined by phosphorylation of mTOR targets S6rp and 4E-binding protein 1 (4E-BP1). The mTOR activation is serum growth factor-independent but nutrient-dependent. It is also dependent on the expression and enzymatic activity of NPM/ALK as demonstrated by cell transfection with wild-type and functionally deficient NPM/ALK, small interfering RNA (siRNA)-mediated NPM/ALK depletion and kinase activity suppression using the inhibitor WHI-P154. The NPM/ALK-induced mTOR activation is transduced through the mitogen-induced extracellular kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway and, to a much lesser degree, through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. Accordingly, whereas the low-dose PI3K inhibitor wortmannin and Akt inhibitor III profoundly inhibited Akt phosphorylation, they had a very modest effect on S6rp and 4E-BP1 phosphorylation. In turn, MEK inhibitors U0126 and PD98059 and siRNA-mediated depletion of either ERK1 or ERK2 inhibited S6rp phosphorylation much more effectively. Finally, the mTOR inhibitor rapamycin markedly decreased proliferation and increased the apoptotic rate of ALK+TCL cells. These findings identify mTOR as a novel key target of NPM/ALK and suggest that mTOR inhibitors may prove effective in therapy of ALK-induced malignancies.

  14. The immunogenicity of MUC1 peptides and fusion protein.

    PubMed

    Apostolopoulos, V; Pietersz, G A; Xing, P X; Lees, C J; Michael, M; Bishop, J; McKenzie, I F

    1995-03-23

    Mucin 1 (MUC1) is highly expressed in breast cancer, has an ubiquitous distribution and, due to altered glycosylation, peptides within the VNTR are exposed. These peptides are the target for anti-MUC1 antibodies, which give a differential reaction on cancer compared with normal tissue. The amino acids, APDTR or adjacent amino acids, are highly immunogenic in mice for antibody production (after immunisation with either breast cancer cells, human milk fat globule (HMFG) or the VNTR peptide). In addition, human studies show that this region of the MUC1 VNTR functions as target epitopes for cytotoxic T cells. We have performed preclinical and clinical studies to examine the immune responses to MUC1 in mice and humans: (a) MUC1+ 3T3 or P815+ 3T3 cells in syngeneic mice are rejected, with the generation of both cytotoxic T lymphocyte (CTL) and DTH responses and a weak antibody response and a weak antibody responses; this type of immunity gives rise to total resistance to re-challenge with high doses of these tumors; (b) immunisation with peptides (VNTR x 2), a fusion protein (VNTR x 5), or HMFG leads to no CTLs, DTH, good antibody production and weak tumour protection (to 10(6) cells, but not 5 x 10(6) cells) (possibly a TH2 type response); (c) immunisation with mannan-fusion protein (MFP) gives rise to good protection (resistance to 50 x 10(6) cells), CTL and DTH responses and weak antibody responses (possibly a TH1 type response, similar in magnitude to that obtained after tumor rejection); (d) established tumors can be rapidly rejected by delayed treatment of MFP; (e) the CTL responses are MHC restricted (in contrast to the human studies); (f) APDTR appears not to be the T cell reactive epitope in mice. On the basis of these findings, two clinical trials are in progress: (a) VNTR x 2 (diphtheria toxoid) which gives rise to some T cell proliferation, DTH and antibody responses in some patients and (b) an MFP trial. The ability to alter the immune response towards

  15. Expression and purification of recombinant antibody formats and antibody fusion proteins.

    PubMed

    Siegemund, Martin; Richter, Fabian; Seifert, Oliver; Unverdorben, Felix; Kontermann, Roland E

    2014-01-01

    In the laboratory-scale production of antibody fragments or antibody fusion proteins, it is often difficult to keep track on the most suitable affinity tags for protein purification from either prokaryotic or eukaryotic host systems. Here, we describe how such recombinant proteins derived from Escherichia coli lysates as well as HEK293 cell culture supernatants are purified by IMAC and by different affinity chromatography methods based on fusions to FLAG-tag, Strep-tag, and Fc domains. PMID:24515473

  16. Development of new fusion proteins for visualizing amyloid-β oligomers in vivo.

    PubMed

    Ochiishi, Tomoyo; Doi, Motomichi; Yamasaki, Kazuhiko; Hirose, Keiko; Kitamura, Akira; Urabe, Takao; Hattori, Nobutaka; Kinjo, Masataka; Ebihara, Tatsuhiko; Shimura, Hideki

    2016-01-01

    The intracellular accumulation of amyloid-β (Aβ) oligomers critically contributes to disease progression in Alzheimer's disease (AD) and can be the potential target of AD therapy. Direct observation of molecular dynamics of Aβ oligomers in vivo is key for drug discovery research, however, it has been challenging because Aβ aggregation inhibits the fluorescence from fusion proteins. Here, we developed Aβ1-42-GFP fusion proteins that are oligomerized and visualize their dynamics inside cells even when aggregated. We examined the aggregation states of Aβ-GFP fusion proteins using several methods and confirmed that they did not assemble into fibrils, but instead formed oligomers in vitro and in live cells. By arranging the length of the liker between Aβ and GFP, we generated two fusion proteins with "a long-linker" and "a short-linker", and revealed that the aggregation property of fusion proteins can be evaluated by measuring fluorescence intensities using rat primary culture neurons transfected with Aβ-GFP plasmids and Aβ-GFP transgenic C. elegans. We found that Aβ-GFP fusion proteins induced cell death in COS7 cells. These results suggested that novel Aβ-GFP fusion proteins could be utilized for studying the physiological functions of Aβ oligomers in living cells and animals, and for drug screening by analyzing Aβ toxicity. PMID:26982553

  17. Development of new fusion proteins for visualizing amyloid-β oligomers in vivo

    PubMed Central

    Ochiishi, Tomoyo; Doi, Motomichi; Yamasaki, Kazuhiko; Hirose, Keiko; Kitamura, Akira; Urabe, Takao; Hattori, Nobutaka; Kinjo, Masataka; Ebihara, Tatsuhiko; Shimura, Hideki

    2016-01-01

    The intracellular accumulation of amyloid-β (Aβ) oligomers critically contributes to disease progression in Alzheimer’s disease (AD) and can be the potential target of AD therapy. Direct observation of molecular dynamics of Aβ oligomers in vivo is key for drug discovery research, however, it has been challenging because Aβ aggregation inhibits the fluorescence from fusion proteins. Here, we developed Aβ1-42-GFP fusion proteins that are oligomerized and visualize their dynamics inside cells even when aggregated. We examined the aggregation states of Aβ-GFP fusion proteins using several methods and confirmed that they did not assemble into fibrils, but instead formed oligomers in vitro and in live cells. By arranging the length of the liker between Aβ and GFP, we generated two fusion proteins with “a long-linker” and “a short-linker”, and revealed that the aggregation property of fusion proteins can be evaluated by measuring fluorescence intensities using rat primary culture neurons transfected with Aβ-GFP plasmids and Aβ-GFP transgenic C. elegans. We found that Aβ-GFP fusion proteins induced cell death in COS7 cells. These results suggested that novel Aβ-GFP fusion proteins could be utilized for studying the physiological functions of Aβ oligomers in living cells and animals, and for drug screening by analyzing Aβ toxicity. PMID:26982553

  18. Generation of monoclonal antibodies specific of the postfusion conformation of the Pneumovirinae fusion (F) protein.

    PubMed

    Rodríguez, Laura; Olmedillas, Eduardo; Mas, Vicente; Vázquez, Mónica; Cano, Olga; Terrón, María C; Luque, Daniel; Palomo, Concepción; Melero, José A

    2015-11-01

    Paramyxovirus entry into cells requires fusion of the viral and cell membranes mediated by one of the major virus glycoproteins, the fusion (F) glycoprotein which transits from a metastable pre-fusion conformation to a highly stable post-fusion structure during the membrane fusion process. F protein refolding involves large conformational changes of the protein trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) from each protomer into a six-helix bundle (6HB) motif. To assist in distinguishing pre- and post-fusion conformations of the Pneumovirinae F proteins, and as extension of previous work (Palomo et al., 2014), a general strategy was designed to obtain polyclonal and particularly monoclonal antibodies specific of the 6HB motif of the Pneumovirinae fusion protein. The antibodies reported here should assist in the characterization of the structural changes that the F protein of human metapneumovirus or respiratory syncytial virus experiences during the process of membrane fusion. PMID:26275682

  19. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations.

    PubMed

    Sun, Tianjun; Gauthier, Sherry Y; Campbell, Robert L; Davies, Peter L

    2015-10-01

    Antifreeze proteins (AFPs) adsorb to ice through an extensive, flat, relatively hydrophobic surface. It has been suggested that this ice-binding site (IBS) organizes surface waters into an ice-like clathrate arrangement that matches and fuses to the quasi-liquid layer on the ice surface. On cooling, these waters join the ice lattice and freeze the AFP to its ligand. Evidence for the generality of this binding mechanism is limited because AFPs tend to crystallize with their IBS as a preferred protein-protein contact surface, which displaces some bound waters. Type III AFP is a 7 kDa globular protein with an IBS made up two adjacent surfaces. In the crystal structure of the most active isoform (QAE1), the part of the IBS that docks to the primary prism plane of ice is partially exposed to solvent and has clathrate waters present that match this plane of ice. The adjacent IBS, which matches the pyramidal plane of ice, is involved in protein-protein crystal contacts with few surface waters. Here we have changed the protein-protein contacts in the ice-binding region by crystallizing a fusion of QAE1 to maltose-binding protein. In this 1.9 Å structure, the IBS that fits the pyramidal plane of ice is exposed to solvent. By combining crystallography data with MD simulations, the surface waters on both sides of the IBS were revealed and match well with the target ice planes. The waters on the pyramidal plane IBS were loosely constrained, which might explain why other isoforms of type III AFP that lack the prism plane IBS are less active than QAE1. The AFP fusion crystallization method can potentially be used to force the exposure to solvent of the IBS on other AFPs to reveal the locations of key surface waters.

  20. Effects of changes in intracellular iron pool on AlkB-dependent and AlkB-independent mechanisms protecting E.coli cells against mutagenic action of alkylating agent.

    PubMed

    Sikora, Anna; Maciejewska, Agnieszka M; Poznański, Jarosław; Pilżys, Tomasz; Marcinkowski, Michał; Dylewska, Małgorzata; Piwowarski, Jan; Jakubczak, Wioletta; Pawlak, Katarzyna; Grzesiuk, Elżbieta

    2015-08-01

    An Escherichia coli hemH mutant accumulates protoporphyrin IX, causing photosensitivity of cells to visible light. Here, we have shown that intracellular free iron in hemH mutants is double that observed in hemH(+) strain. The aim of this study was to recognize the influence of this increased free iron concentration on AlkB-directed repair of alkylated DNA by analyzing survival and argE3 → Arg(+) reversion induction after λ>320 nm light irradiation and MMS-treatment in E. coli AB1157 hemH and alkB mutants. E.coli AlkB dioxygenase constitutes a direct single-protein repair system using non-hem Fe(II) and cofactors 2-oxoglutarate (2OG) and oxygen (O2) to initiate oxidative dealkylation of DNA/RNA bases. We have established that the frequency of MMS-induced Arg(+) revertants in AB1157 alkB(+)hemH(-)/pMW1 strain was 40 and 26% reduced comparing to the alkB(+)hemH(-) and alkB(+)hemH(+)/pMW1, respectively. It is noteworthy that the effect was observed only when bacteria were irradiated with λ>320 nm light prior MMS-treatment. This finding indicates efficient repair of alkylated DNA in photosensibilized cells in the presence of higher free iron pool and AlkB concentrations. Interestingly, a 31% decrease in the level of Arg(+) reversion was observed in irradiated and MMS-treated hemH(-)alkB(-) cells comparing to the hemH(+)alkB(-) strain. Also, the level of Arg(+) revertants in the irradiated and MMS treated hemH(-) alkB(-) mutant was significantly lower (by 34%) in comparison to the same strain but MMS-treated only. These indicate AlkB-independent repair involving Fe ions and reactive oxygen species. According to our hypothesis it may be caused by non-enzymatic dealkylation of alkylated dNTPs in E. coli cells. In in vitro studies, the absence of AlkB protein in the presence of iron ions allowed etheno(ϵ) dATP and ϵdCTP to spontaneously convert to dAMP and dCMP, respectively. Thus, hemH(-) intra-cellular conditions may favor Fe-dependent dealkylation of modified dNTPs.

  1. Kinase fusions are frequent in Spitz tumors and spitzoid melanomas

    PubMed Central

    Esteve-Puig, Rosaura; Botton, Thomas; Yeh, Iwei; Lipson, Doron; Otto, Geoff; Brennan, Kristina; Murali, Rajmohan; Garrido, Maria; Miller, Vincent A.; Ross, Jeffrey S; Berger, Michael F.; Sparatta, Alyssa; Palmedo, Gabriele; Cerroni, Lorenzo; Busam, Klaus J.; Kutzner, Heinz; Cronin, Maureen T; Stephens, Philip J; Bastian, Boris C.

    2014-01-01

    Spitzoid neoplasms are a group of melanocytic tumors with distinctive histopathologic features. They include benign tumors (Spitz nevi), malignant tumors (spitzoid melanomas), and tumors with borderline histopathologic features and uncertain clinical outcome (atypical Spitz tumors). Their genetic underpinnings are poorly understood, and alterations in common melanoma-associated oncogenes are typically absent. Here we show that spitzoid neoplasms harbor kinase fusions of ROS1 (17%), NTRK1 (16%), ALK (10%), BRAF (5%), and RET (3%) in a mutually exclusive pattern. The chimeric proteins are constitutively active, stimulate oncogenic signaling pathways, are tumorigenic, and are found in the entire biologic spectrum of spitzoid neoplasms, including 55% of Spitz nevi, 56% of atypical Spitz tumors, and 39% of spitzoid melanomas. Kinase inhibitors suppress the oncogenic signaling of the fusion proteins in vitro. In summary, kinase fusions account for the majority of oncogenic aberrations in spitzoid neoplasms, and may serve as therapeutic targets for metastatic spitzoid melanomas. PMID:24445538

  2. Kinase fusions are frequent in Spitz tumours and spitzoid melanomas

    NASA Astrophysics Data System (ADS)

    Wiesner, Thomas; He, Jie; Yelensky, Roman; Esteve-Puig, Rosaura; Botton, Thomas; Yeh, Iwei; Lipson, Doron; Otto, Geoff; Brennan, Kristina; Murali, Rajmohan; Garrido, Maria; Miller, Vincent A.; Ross, Jeffrey S.; Berger, Michael F.; Sparatta, Alyssa; Palmedo, Gabriele; Cerroni, Lorenzo; Busam, Klaus J.; Kutzner, Heinz; Cronin, Maureen T.; Stephens, Philip J.; Bastian, Boris C.

    2014-01-01

    Spitzoid neoplasms are a group of melanocytic tumours with distinctive histopathological features. They include benign tumours (Spitz naevi), malignant tumours (spitzoid melanomas) and tumours with borderline histopathological features and uncertain clinical outcome (atypical Spitz tumours). Their genetic underpinnings are poorly understood, and alterations in common melanoma-associated oncogenes are typically absent. Here we show that spitzoid neoplasms harbour kinase fusions of ROS1 (17%), NTRK1 (16%), ALK (10%), BRAF (5%) and RET (3%) in a mutually exclusive pattern. The chimeric proteins are constitutively active, stimulate oncogenic signalling pathways, are tumourigenic and are found in the entire biologic spectrum of spitzoid neoplasms, including 55% of Spitz naevi, 56% of atypical Spitz tumours and 39% of spitzoid melanomas. Kinase inhibitors suppress the oncogenic signalling of the fusion proteins in vitro. In summary, kinase fusions account for the majority of oncogenic aberrations in spitzoid neoplasms and may serve as therapeutic targets for metastatic spitzoid melanomas.

  3. Kits and methods of detection using cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.

    1998-04-14

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  4. Kits and methods of detection using cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  5. A capsid protein of nonenveloped Bluetongue virus exhibits membrane fusion activity.

    PubMed

    Forzan, Mario; Wirblich, Christoph; Roy, Polly

    2004-02-17

    The outer capsid layer of Bluetongue virus, a member of the nonenveloped Reoviridae family, is composed of two proteins, a receptor-binding protein, VP2, and a second protein, VP5, which shares structural features with class I fusion proteins of enveloped viruses. In the replication cycle of Bluetongue virus VP5 acts as a membrane permeabilization protein that mediates release of viral particles from endosomal compartments into the cytoplasm. Here, we show that VP5 can also act as a fusion protein and induce syncytium formation when it is fused to a transmembrane anchor and expressed on the cell surface. Fusion activity is strictly pH-dependent and is triggered by short exposure to low pH. No cell-cell fusion is observed at neutral pH. Deletion of the first 40 amino acids, which can fold into two amphipathic helices, abolishes fusion activity. Syncytium formation by VP5 is inhibited in the presence of VP2 when it is expressed in a membrane-anchored form. The data indicate an interaction between the outer capsid protein VP2 and VP5 and show that VP5 undergoes pH-dependent conformational changes that render it capable of interacting with cellular membranes. More importantly, our data show that a membrane permeabilization protein of a nonenveloped virus can evolve into a fusion protein by the addition of an appropriate transmembrane anchor. The results strongly suggest that the mechanism of membrane permeabilization by VP5 and membrane fusion by viral fusion proteins require similar structural features and conformational changes.

  6. Increased oral availability and brain accumulation of the ALK inhibitor crizotinib by coadministration of the P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar.

    PubMed

    Tang, Seng Chuan; Nguyen, Luan N; Sparidans, Rolf W; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H

    2014-03-15

    Crizotinib is an oral tyrosine kinase inhibitor approved for treating patients with non-small cell lung cancer (NSCLC) containing an anaplastic lymphoma kinase (ALK) rearrangement. We used knockout mice to study the roles of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) in plasma pharmacokinetics and brain accumulation of oral crizotinib, and the feasibility of improving crizotinib kinetics using coadministration of the dual ABCB1/ABCG2 inhibitor elacridar. In vitro, crizotinib was a good transport substrate of human ABCB1, but not of human ABCG2 or murine Abcg2. With low-dose oral crizotinib (5 mg/kg), Abcb1a/1b(-/-) and Abcb1a/1b;Abcg2(-/-) mice had an approximately twofold higher plasma AUC than wild-type mice, and a markedly (~40-fold) higher brain accumulation at 24 hr. Also at 4 hr, crizotinib brain concentrations were ∼25-fold, and brain-to-plasma ratios ~14-fold higher in Abcb1a/1b(-/-) and Abcb1a/1b;Abcg2(-/-) mice than in wild-type mice. High-dose oral crizotinib (50 mg/kg) resulted in comparable plasma pharmacokinetics between wild-type and Abcb1a/1b(-/-) mice, suggesting saturation of intestinal Abcb1. Nonetheless, brain accumulation at 24 hr was still ~70-fold higher in Abcb1a/1b(-/-) than in wild-type mice. Importantly, oral elacridar coadministration increased the plasma and brain concentrations and brain-to-plasma ratios of crizotinib in wild-type mice, equaling the levels in Abcb1a/1b;Abcg2(-/-) mice. Our results indicate that crizotinib oral availability and brain accumulation were primarily restricted by Abcb1 at a non-saturating dose, and that coadministration of elacridar with crizotinib could substantially increase crizotinib oral availability and delivery to the brain. This principle might be used to enhance therapeutic efficacy of crizotinib against brain metastases in NSCLC patients.

  7. CRKL mediates EML4-ALK signaling and is a potential therapeutic target for ALK-rearranged lung adenocarcinoma

    PubMed Central

    Voeller, Donna; Gower, Arjan; Kim, In-Kyu; Zhang, Yu-Wen; Giaccone, Giuseppe

    2016-01-01

    Anaplastic lymphoma kinase (ALK) gene rearrangements are oncogenic drivers in a small subset of patients with non-small-cell lung cancer (NSCLC). The ALK inhibitors are highly effective in NSCLC patients harboring ALK rearrangements; however, most patients acquire resistance to the therapy following an initial response. Mechanisms of acquired resistance are complex. We used LC-MS/MS-based phosphotyrosine-peptide profiling in the EML4-ALK rearranged H3122 and H2228 cells treated with ALK inhibitors, to identify downstream effectors of ALK. We then used Western blot, siRNA experiments, cell proliferation, viability and migration assays to validate our findings. We identified CRKL as a novel downstream effector of ALK signaling. We demonstrated that CRKL tyrosine phosphorylation was repressed by pharmacological inhibition or small interfering RNA (siRNA) knockdown of ALK in the ALK-rearranged cells. More importantly, CRKL knockdown attenuated their cell proliferation, viability, and migration, but it had no effect on ALK phosphorylation and expression in these cells. Furthermore, CRKL tyrosine phosphorylation was inhibited by dasatinib (an inhibitor of ABL and SRC kinases), which in combination with the ALK inhibitor crizotinib displayed a synergistic inhibitory effect in vitro. In conclusion, our study suggests that CRKL is a key downstream effector of ALK, and combined inhibition of ALK and CRKL may represent an effective strategy for treating ALK-rearranged NSCLC patients. PMID:27078848

  8. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  9. Oncogenic tyrosine kinase NPM/ALK induces activation of the MEK/ERK signaling pathway independently of c-Raf.

    PubMed

    Marzec, M; Kasprzycka, M; Liu, X; Raghunath, P N; Wlodarski, P; Wasik, M A

    2007-02-01

    The mechanisms of cell transformation mediated by the highly oncogenic, chimeric NPM/ALK tyrosine kinase remain only partially understood. Here we report that cell lines and native tissues derived from the NPM/ALK-expressing T-cell lymphoma (ALK+ TCL) display phosphorylation of the extracellular signal-regulated protein kinase (ERK) 1/2 complex. Transfection of BaF3 cells with NPM/ALK induces phosphorylation of EKR1/2 and of its direct activator mitogen-induced extracellular kinase (MEK) 1/2. Depletion of NPM/ALK by small interfering RNA (siRNA) or its inhibition by WHI-154 abrogates the MEK1/2 and ERK1/2 phosphorylation. The NPM/ALK-induced MEK/ERK activation is independent of c-Raf as evidenced by the lack of MEK1/2 and ERK1/2 phosphorylation upon c-Raf inactivation by two different inhibitors, RI and ZM336372, and by its siRNA-mediated depletion. In contrast, ERK1/2 activation is strictly MEK1/2 dependent as shown by suppression of the ERK1/2 phosphorylation by the MEK1/2 inhibitor U0126. The U0126-mediated inhibition of ERK1/2 activation impaired proliferation and viability of the ALK+ TCL cells and expression of antiapoptotic factor Bcl-xL and cell cycle-promoting CDK4 and phospho-RB. Finally, siRNA-mediated depletion of both ERK1 and ERK2 inhibited cell proliferation, whereas depletion of ERK 1 (but not ERK2) markedly increased cell apoptosis. These findings identify MEK/ERK as a new signaling pathway activated by NPM/ALK and indicate that the pathway represents a novel therapeutic target in the ALK-induced malignancies.

  10. A Stable Prefusion Intermediate of the Alphavirus Fusion Protein Reveals Critical Features of Class II Membrane Fusion

    PubMed Central

    Martín, Claudia Sánchez-San; Sosa, Hernando

    2009-01-01

    Summary Alphaviruses infect cells via a low-pH-triggered membrane fusion reaction mediated by the class II virus fusion protein E1, an elongated molecule with three extramembrane domains (DI–III). E1 drives fusion by inserting its fusion peptide loop into the target membrane and refolding to a hairpin-like trimer in which DIII moves toward the target membrane and packs against the central trimer. Three-dimensional structures provide static pictures of prefusion and postfusion E1 but do not explain this transition. Using truncated forms of E1, we reconstituted a low-pH-dependent intermediate composed of trimers of DI/II. Unexpectedly, DI/II trimers were stable in the absence of DIII. Once formed at a low pH, DI/II trimers efficiently and specifically bound recombinant DIII through a pH-independent reaction. Even in the absence of DIII, DI/II trimers interacted to form hexagonal lattices and to cause membrane deformation and tubulation. These studies identify a prefusion intermediate in class II membrane fusion. PMID:19064260

  11. Role of protein disulfide isomerase and other thiol-reactive proteins in HIV-1 envelope protein-mediated fusion

    SciTech Connect

    Ou Wu . E-mail: wou@niaid.nih.gov; Silver, Jonathan . E-mail: jsilver@nih.gov

    2006-07-05

    Cell-surface protein disulfide isomerase (PDI) has been proposed to promote disulfide bond rearrangements in HIV-1 envelope protein (Env) that accompany Env-mediated fusion. We evaluated the role of PDI in ways that have not been previously tested by downregulating PDI with siRNA and by overexpressing wild-type or variant forms of PDI in transiently and stably transfected cells. These manipulations, as well as treatment with anti-PDI antibodies, had only small effects on infection or cell fusion mediated by NL4-3 or AD8 strains of HIV-1. However, the cell-surface thiol-reactive reagent 5, 5'-dithiobis(2-nitrobenzoic acid) (DTNB) had a much stronger inhibitory effect in our system, suggesting that cell-surface thiol-containing molecules other than PDI, acting alone or in concert, have a greater effect than PDI on HIV-1 Env-mediated fusion. We evaluated one such candidate, thioredoxin, a PDI family member reported to reduce a labile disulfide bond in CD4. We found that the ability of thioredoxin to reduce the disulfide bond in CD4 is enhanced in the presence of HIV-1 Env gp120 and that thioredoxin also reduces disulfide bonds in gp120 directly in the absence of CD4. We discuss the implications of these observations for identification of molecules involved in disulfide rearrangements in Env during fusion.

  12. Serine phosphorylation of NPM-ALK, which is dependent on the auto-activation of the kinase activation loop, contributes to its oncogenic potential.

    PubMed

    Wang, Peng; Wu, Fang; Zhang, Jingdong; McMullen, Todd; Young, Leah C; Ingham, Robert J; Li, Liang; Lai, Raymond

    2011-02-01

    It is well established that the tumorigenic potential of nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK), an oncogenic tyrosine kinase, is dependent on its tyrosine phosphorylation. Using tandem affinity purification-mass spectrometry, we found evidence of phosphorylation of three serine residues of NPM-ALK (Serine¹³⁵, Serine¹⁶⁴ and Serine⁴⁹⁷) ectopically expressed in GP293 cells. Using a specific anti-phosphoserine antibody and immunoprecipitation, we confirmed the presence of serine phosphorylation of NPM-ALK in all three NPM-ALK-expressing cell lines examined. Similar to the tyrosine phosphorylation, phosphorylation of these serine residues was dependent on the activation status of the kinase activation loop of ALK. All of these three serine residues are biologically important as mutation of any one of these residues resulted in a significant reduction in the tumorigenicity of NPM-ALK (assessed by cell viability and clonogenic assay), which correlated with a substantial reduction in the phosphorylation of extracellular signal-regulated kinase 1/2, c-jun N-terminal kinase and signal transducer and activator of transcription 6. Serine phosphorylation of NPM-ALK appears to be regulated by multiple serine kinases since it was markedly reduced by pharmacologic inhibitors for glycogen synthase kinase-3, casein kinase I or mitogen-activated protein kinases. In summary, our study is the first to identify serine phosphorylation of NPM-ALK and to provide evidence that it enhances the tumorigenic potential of this oncogenic protein.

  13. Structure–Activity Relationship of 3,5-Diaryl-2-aminopyridine ALK2 Inhibitors Reveals Unaltered Binding Affinity for Fibrodysplasia Ossificans Progressiva Causing Mutants

    PubMed Central

    2015-01-01

    There are currently no effective therapies for fibrodysplasia ossificans progressiva (FOP), a debilitating and progressive heterotopic ossification disease caused by activating mutations of ACVR1 encoding the BMP type I receptor kinase ALK2. Recently, a subset of these same mutations of ACVR1 have been identified in diffuse intrinsic pontine glioma (DIPG) tumors. Here we describe the structure–activity relationship for a series of novel ALK2 inhibitors based on the 2-aminopyridine compound K02288. Several modifications increased potency in kinase, thermal shift, or cell-based assays of BMP signaling and transcription, as well as selectivity for ALK2 versus closely related BMP and TGF-β type I receptor kinases. Compounds in this series exhibited a wide range of in vitro cytotoxicity that was not correlated with potency or selectivity, suggesting mechanisms independent of BMP or TGF-β inhibition. The study also highlights a potent 2-methylpyridine derivative 10 (LDN-214117) with a high degree of selectivity for ALK2 and low cytotoxicity that could provide a template for preclinical development. Contrary to the notion that activating mutations of ALK2 might alter inhibitor efficacy due to potential conformational changes in the ATP-binding site, the compounds demonstrated consistent binding to a panel of mutant and wild-type ALK2 proteins. Thus, BMP inhibitors identified via activity against wild-type ALK2 signaling are likely to be of clinical relevance for the diverse ALK2 mutant proteins associated with FOP and DIPG. PMID:25101911

  14. Structure-activity relationship of 3,5-diaryl-2-aminopyridine ALK2 inhibitors reveals unaltered binding affinity for fibrodysplasia ossificans progressiva causing mutants.

    PubMed

    Mohedas, Agustin H; Wang, You; Sanvitale, Caroline E; Canning, Peter; Choi, Sungwoon; Xing, Xuechao; Bullock, Alex N; Cuny, Gregory D; Yu, Paul B

    2014-10-01

    There are currently no effective therapies for fibrodysplasia ossificans progressiva (FOP), a debilitating and progressive heterotopic ossification disease caused by activating mutations of ACVR1 encoding the BMP type I receptor kinase ALK2. Recently, a subset of these same mutations of ACVR1 have been identified in diffuse intrinsic pontine glioma (DIPG) tumors. Here we describe the structure-activity relationship for a series of novel ALK2 inhibitors based on the 2-aminopyridine compound K02288. Several modifications increased potency in kinase, thermal shift, or cell-based assays of BMP signaling and transcription, as well as selectivity for ALK2 versus closely related BMP and TGF-β type I receptor kinases. Compounds in this series exhibited a wide range of in vitro cytotoxicity that was not correlated with potency or selectivity, suggesting mechanisms independent of BMP or TGF-β inhibition. The study also highlights a potent 2-methylpyridine derivative 10 (LDN-214117) with a high degree of selectivity for ALK2 and low cytotoxicity that could provide a template for preclinical development. Contrary to the notion that activating mutations of ALK2 might alter inhibitor efficacy due to potential conformational changes in the ATP-binding site, the compounds demonstrated consistent binding to a panel of mutant and wild-type ALK2 proteins. Thus, BMP inhibitors identified via activity against wild-type ALK2 signaling are likely to be of clinical relevance for the diverse ALK2 mutant proteins associated with FOP and DIPG.

  15. [Preparation and the biological effect of fusion protein GLP-1-exendin-4/ IgG4(Fc) fusion protein as long acting GLP-1 receptor agonist].

    PubMed

    Zheng, Yun-cheng

    2015-12-01

    GLP-1 has a variety of anti-diabetic effects. However, native GLP-1 is not suitable for treatment of diabetes due to its short half-life (t½, 2-5 min). Exendin-4 is a polypeptide isolated from lizard saliva, which can bind to GLP-1 receptor, produce physiological effects similar to GLP-1, t½ up to 2.5 h, therefore, we developed a long-lasting GLP-1 receptor agonists and GLP-1-exendin-4 fusion IgG4 Fc [GLP-1-exendin-4/ IgG4(Fc)]. We constructed the eukaryotic expression vector of human GLP-1-exendin-4/IgG4(Fc)-pOptiVEC- TOPO by gene recombination technique and expressed the fusion protein human GLP-1-IgG4 (Fc) in CHO/DG44 cells. The fusion protein stimulated the INS-1 cells secretion of insulin, GLP-1, exendin-4 and fusion protein in CD1 mice pharmacokinetic experiments, as well as GLP-1, exendin-4 and fusion protein did anti-diabetic effect on streptozotocin induced mice. Results demonstrated that the GLP-1-exendin-4/IgG4(Fc) positive CHO/DG44 clones were chosen and the media from these positive clones. Western blotting showed that one protein band was found to match well with the predicted relative molecular mass of human GLP-1-exendin-4/IgG4(Fc). Insulin RIA showed that GLP-1-exendin-4/IgG4(Fc) dose-dependently stimulated insulin secretion from INS-1 cells. Pharmacokinetic studies in CD1 mice showed that with intraperitoneal injection (ip), the fusion protein peaked at 30 min in circulation and maintained a plateau for 200 h. Natural biological half-life of exendin-4 was (1.39 ± 0.28) h, GLP-1 in vivo t½ 4 min, indicating that fusion protein has long-lasting effects on the modulation of glucose homeostasis. GLP-1-exendin-4/IgG4(Fc) was found to be effective in reducing the incidence of diabetes in multiple-low-dose streptozotocin-induced diabetes in mice, longer duration of the biological activity of the fusion protein. The biological activity was significantly higher than that of GLP-1 and exendin-4. GLP-1-exendin-4/IgG4(Fc) has good anti-diabetic activity

  16. Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein

    PubMed Central

    Yin, Hsien-Sheng; Paterson, Reay G.; Wen, Xiaolin; Lamb, Robert A.; Jardetzky, Theodore S.

    2005-01-01

    Class I viral fusion proteins share common mechanistic and structural features but little sequence similarity. Structural insights into the protein conformational changes associated with membrane fusion are based largely on studies of the influenza virus hemagglutinin in pre- and postfusion conformations. Here, we present the crystal structure of the secreted, uncleaved ectodomain of the paramyxovirus, human parainfluenza virus 3 fusion (F) protein, a member of the class I viral fusion protein group. The secreted human parainfluenza virus 3 F forms a trimer with distinct head, neck, and stalk regions. Unexpectedly, the structure reveals a six-helix bundle associated with the postfusion form of F, suggesting that the anchor-minus ectodomain adopts a conformation largely similar to the postfusion state. The transmembrane anchor domains of F may therefore profoundly influence the folding energetics that establish and maintain a metastable, prefusion state. PMID:15964978

  17. Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein

    SciTech Connect

    Yin, Hsien-Sheng; Paterson, Reay G.; Wen, Xiaolin; Lamb, Robert A.; Jardetzky, Theodore S.

    2010-03-08

    Class I viral fusion proteins share common mechanistic and structural features but little sequence similarity. Structural insights into the protein conformational changes associated with membrane fusion are based largely on studies of the influenza virus hemagglutinin in pre- and postfusion conformations. Here, we present the crystal structure of the secreted, uncleaved ectodomain of the paramyxovirus, human parainfluenza virus 3 fusion (F) protein, a member of the class I viral fusion protein group. The secreted human parainfluenza virus 3 F forms a trimer with distinct head, neck, and stalk regions. Unexpectedly, the structure reveals a six-helix bundle associated with the postfusion form of F, suggesting that the anchor-minus ectodomain adopts a conformation largely similar to the postfusion state. The transmembrane anchor domains of F may therefore profoundly influence the folding energetics that establish and maintain a metastable, prefusion state.

  18. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system

    PubMed Central

    Costa, Sofia; Almeida, André; Castro, António; Domingues, Lucília

    2014-01-01

    Proteins are now widely produced in diverse microbial cell factories. The Escherichia coli is still the dominant host for recombinant protein production but, as a bacterial cell, it also has its issues: the aggregation of foreign proteins into insoluble inclusion bodies is perhaps the main limiting factor of the E. coli expression system. Conversely, E. coli benefits of cost, ease of use and scale make it essential to design new approaches directed for improved recombinant protein production in this host cell. With the aid of genetic and protein engineering novel tailored-made strategies can be designed to suit user or process requirements. Gene fusion technology has been widely used for the improvement of soluble protein production and/or purification in E. coli, and for increasing peptide’s immunogenicity as well. New fusion partners are constantly emerging and complementing the traditional solutions, as for instance, the Fh8 fusion tag that has been recently studied and ranked among the best solubility enhancer partners. In this review, we provide an overview of current strategies to improve recombinant protein production in E. coli, including the key factors for successful protein production, highlighting soluble protein production, and a comprehensive summary of the latest available and traditionally used gene fusion technologies. A special emphasis is given to the recently discovered Fh8 fusion system that can be used for soluble protein production, purification, and immunogenicity in E. coli. The number of existing fusion tags will probably increase in the next few years, and efforts should be taken to better understand how fusion tags act in E. coli. This knowledge will undoubtedly drive the development of new tailored-made tools for protein production in this bacterial system. PMID:24600443

  19. The heads of the measles virus attachment protein move to transmit the fusion-triggering signal

    PubMed Central

    Navaratnarajah, Chanakha K; Oezguen, Numan; Rupp, Levi; Kay, Leah; Leonard, Vincent HJ; Braun, Werner; Cattaneo, Roberto

    2010-01-01

    The measles virus entry system, constituted of attachment (hemagglutinin, H) and fusion proteins, operates based on a variety of natural and targeted receptors. However, the mechanism triggering fusion of the viral envelope with the plasma membrane is not understood. Here we tested a model considering that the two heads of an H-dimer, which are covalently linked at their base, after binding two receptor molecules, move relative to each other to transmit the fusion-triggering signal. Indeed, stabilizing the H-dimer interface by additional inter-molecular disulfide bonds prevented membrane fusion, an effect reversed by a reducing agent. Moreover, a membrane-anchored designated receptor efficiently triggered fusion, provided it engaged the H-dimer at locations proximal to where the natural receptors bind, and distal to the H-dimer interface. We discuss how receptors may force H-heads to switch partners and transmit the fusion-triggering signal. PMID:21217701

  20. The distribution and apoptotic function of outer membrane proteins depend on mitochondrial fusion

    PubMed Central

    Weaver, David; Eisner, Verónica; Liu, Xingguo; Várnai, Péter; Hunyady, László; Gross, Atan; Hajnóczky, György

    2014-01-01

    Summary Cells deficient in mitochondrial fusion have been shown to have defects linked to the exchange of innermembrane and matrix components. Because outer-mitochondrial membrane (OMM) constituents insert directly from the cytoplasm, a role for fusion in their inter-mitochondrial transfer was unanticipated. Here we show that fibroblasts lacking the GTPases responsible for OMM fusion, Mitofusins1/2 (MFN1/2), display more heterogeneous distribution of OMM proteins. Proteins with different modes of OMM association display varying degrees of heterogeneity in Mfn1/2−/− cells and different kinetics of transfer during fusion in fusion-competent cells. Pro-apoptotic Bak exhibits marked heterogeneity, which is normalized upon expression of MFN2. Bak is critical for Bid-induced OMM permeabilization and cytochrome c release and Mfn1/2−/− cells show dysregulation of Bid-dependent apoptotic signaling. Bid sensitivity of Bak-deficient mitochondria is regained upon fusion with Bak-containing mitochondria. Thus, OMM protein distribution depends on mitochondrial fusion and is a locus of apoptotic dysfunction in conditions of fusion deficiency. PMID:24813948

  1. Bacteriophage membrane protein P9 as a fusion partner for the efficient expression of membrane proteins in Escherichia coli.

    PubMed

    Jung, Yuna; Jung, Hyeim; Lim, Dongbin

    2015-12-01

    Despite their important roles and economic values, studies of membrane proteins have been hampered by the difficulties associated with obtaining sufficient amounts of protein. Here, we report a novel membrane protein expression system that uses the major envelope protein (P9) of phage φ6 as an N-terminal fusion partner. Phage membrane protein P9 facilitated the synthesis of target proteins and their integration into the Escherichia coli cell membrane. This system was used to produce various multi-pass transmembrane proteins, including G-protein-coupled receptors, transporters, and ion channels of human origin. Green fluorescent protein fusion was used to confirm the correct folding of the expressed proteins. Of the 14 membrane proteins tested, eight were highly expressed, three were moderately expressed, and three were barely expressed in E. coli. Seven of the eight highly expressed proteins could be purified after extraction with the mild detergent lauryldimethylamine-oxide. Although a few proteins have previously been developed as fusion partners to augment membrane protein production, we believe that the major envelope protein P9 described here is better suited to the efficient expression of eukaryotic transmembrane proteins in E. coli.

  2. Fusion Proteins for Half-Life Extension of Biologics as a Strategy to Make Biobetters.

    PubMed

    Strohl, William R

    2015-08-01

    The purpose of making a "biobetter" biologic is to improve on the salient characteristics of a known biologic for which there is, minimally, clinical proof of concept or, maximally, marketed product data. There already are several examples in which second-generation or biobetter biologics have been generated by improving the pharmacokinetic properties of an innovative drug, including Neulasta(®) [a PEGylated, longer-half-life version of Neupogen(®) (filgrastim)] and Aranesp(®) [a longer-half-life version of Epogen(®) (epoetin-α)]. This review describes the use of protein fusion technologies such as Fc fusion proteins, fusion to human serum albumin, fusion to carboxy-terminal peptide, and other polypeptide fusion approaches to make biobetter drugs with more desirable pharmacokinetic profiles.

  3. Structural and Mutational Analysis of Escherichia coli AlkB Provides Insight into Substrate Specificity and DNA Damage Searching

    SciTech Connect

    Holland, P.; Hollis, T

    2010-01-01

    In Escherichia coli, cytotoxic DNA methyl lesions on the N1 position of purines and N3 position of pyrimidines are primarily repaired by the 2-oxoglutarate (2-OG) iron(II) dependent dioxygenase, AlkB. AlkB repairs 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) lesions, but it also repairs 1-methylguanine (1-meG) and 3-methylthymine (3-meT) at a much less efficient rate. How the AlkB enzyme is able to locate and identify methylated bases in ssDNA has remained an open question. We determined the crystal structures of the E. coli AlkB protein holoenzyme and the AlkB-ssDNA complex containing a 1-meG lesion. We coupled this to site-directed mutagenesis of amino acids in and around the active site, and tested the effects of these mutations on the ability of the protein to bind both damaged and undamaged DNA, as well as catalyze repair of a methylated substrate. A comparison of our substrate-bound AlkB-ssDNA complex with our unliganded holoenzyme reveals conformational changes of residues within the active site that are important for binding damaged bases. Site-directed mutagenesis of these residues reveals novel insight into their roles in DNA damage recognition and repair. Our data support a model that the AlkB protein utilizes at least two distinct conformations in searching and binding methylated bases within DNA: a 'searching' mode and 'repair' mode. Moreover, we are able to functionally separate these modes through mutagenesis of residues that affect one or the other binding state. Finally, our mutagenesis experiments show that amino acid D135 of AlkB participates in both substrate specificity and catalysis.

  4. Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins

    PubMed Central

    Brunger, Axel T.; Cipriano, Daniel J.; Diao, Jiajie

    2015-01-01

    Abstract Proteoliposomes have been widely used for in vitro studies of membrane fusion mediated by synaptic proteins. Initially, such studies were made with large unsynchronized ensembles of vesicles. Such ensemble assays limited the insights into the SNARE-mediated fusion mechanism that could be obtained from them. Single particle microscopy experiments can alleviate many of these limitations but they pose significant technical challenges. Here we summarize various approaches that have enabled studies of fusion mediated by SNAREs and other synaptic proteins at a single-particle level. Currently available methods are described and their advantages and limitations are discussed. PMID:25788028

  5. Purification of inclusion body-forming peptides and proteins in soluble form by fusion to Escherichia coli thermostable proteins.

    PubMed

    Thapa, Arjun; Shahnawaz, Md; Karki, Pratap; Raj Dahal, Giri; Sharoar, Md Golam; Yub Shin, Song; Sup Lee, Jung; Cho, Byungyun; Park, Il-Seon

    2008-05-01

    Proteins and peptides expressed in the prokaryotic system often form inclusion bodies. Solubilization and refolding procedures can be used for their recovery, but this process remains difficult. One strategy for improving the solubility of a protein of interest is to fuse it to a highly soluble protein. To select a suitable fusion partner capable of solubilizing the aggregation-prone (inclusion body-forming) proteins and peptides, Escherichia coli thermostable proteins were identified and tested. Among them, trigger factor (TF) protein was selected because of its high expression and stability. Using an expression system based on fusion to TF, selected proteins and peptides that otherwise form inclusion bodies were expressed in soluble state and were purified like other soluble proteins. This system provides a convenient method for production of aggregation-prone proteins and peptides. PMID:18476832

  6. Polymeric human Fc-fusion proteins with modified effector functions

    NASA Astrophysics Data System (ADS)

    Mekhaiel, David N. A.; Czajkowsky, Daniel M.; Andersen, Jan Terje; Shi, Jianguo; El-Faham, Marwa; Doenhoff, Michael; McIntosh, Richard S.; Sandlie, Inger; He, Jianfeng; Hu, Jun; Shao, Zhifeng; Pleass, Richard J.

    2011-10-01

    The success of Fc-fusion bio-therapeutics has spurred the development of other Fc-fusion products for treating and/or vaccinating against a range of diseases. We describe a method to modulate their function by converting them into well-defined stable polymers. This strategy resulted in cylindrical hexameric structures revealed by tapping mode atomic force microscopy (AFM). Polymeric Fc-fusions were significantly less immunogenic than their dimeric or monomeric counterparts, a result partly owing to their reduced ability to interact with critical Fc-receptors. However, in the absence of the fusion partner, polymeric IgG1-Fc molecules were capable of binding selectively to FcγRs, with significantly increased affinity owing to their increased valency, suggesting that these reagents may prove of immediate utility in the development of well-defined replacements for intravenous immunoglobulin (IVIG) therapy. Overall, these findings establish an effective IgG Fc-fusion based polymeric platform with which the therapeutic and vaccination applications of Fc-fusion immune-complexes can now be explored.

  7. Polyclonal and monoclonal antibodies specific for the six-helix bundle of the human respiratory syncytial virus fusion glycoprotein as probes of the protein post-fusion conformation

    SciTech Connect

    Palomo, Concepción; Mas, Vicente; Vázquez, Mónica; Cano, Olga; Luque, Daniel; Terrón, María C.; Calder, Lesley J.; Melero, José A.

    2014-07-15

    Human respiratory syncytial virus (hRSV) has two major surface glycoproteins (G and F) anchored in the lipid envelope. Membrane fusion promoted by hRSV{sub F} occurs via refolding from a pre-fusion form to a highly stable post-fusion state involving large conformational changes of the F trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) into a six-helix bundle (6HB) motif. To assist in distinguishing pre- and post-fusion conformations of hRSV{sub F}, we have prepared polyclonal (α-6HB) and monoclonal (R145) rabbit antibodies specific for the 6HB. Among other applications, these antibodies were used to explore the requirements of 6HB formation by isolated protein segments or peptides and by truncated mutants of the F protein. Site-directed mutagenesis and electron microscopy located the R145 epitope in the post-fusion hRSV{sub F} at a site distantly located from previously mapped epitopes, extending the repertoire of antibodies that can decorate the F molecule. - Highlights: • Antibodies specific for post-fusion respiratory syncytial virus fusion protein are described. • Polyclonal antibodies were obtained in rabbit inoculated with chimeric heptad repeats. • Antibody binding required assembly of a six-helix bundle in the post-fusion protein. • A monoclonal antibody with similar structural requirements is also described. • Binding of this antibody to the post-fusion protein was visualized by electron microscopy.

  8. Characterization of the fusion core in zebrafish endogenous retroviral envelope protein.

    PubMed

    Shi, Jian; Zhang, Huaidong; Gong, Rui; Xiao, Gengfu

    2015-05-01

    Zebrafish endogenous retrovirus (ZFERV) is the unique endogenous retrovirus in zebrafish, as yet, containing intact open reading frames of its envelope protein gene in zebrafish genome. Similarly, several envelope proteins of endogenous retroviruses in human and other mammalian animal genomes (such as syncytin-1 and 2 in human, syncytin-A and B in mouse) were identified and shown to be functional in induction of cell-cell fusion involved in placental development. ZFERV envelope protein (Env) gene appears to be also functional in vivo because it is expressible. After sequence alignment, we found ZFERV Env shares similar structural profiles with syncytin and other type I viral envelopes, especially in the regions of N- and C-terminal heptad repeats (NHR and CHR) which were crucial for membrane fusion. We expressed the regions of N + C protein in the ZFERV Env (residues 459-567, including predicted NHR and CHR) to characterize the fusion core structure. We found N + C protein could form a stable coiled-coil trimer that consists of three helical NHR regions forming a central trimeric core, and three helical CHR regions packing into the grooves on the surface of the central core. The structural characterization of the fusion core revealed the possible mechanism of fusion mediated by ZFERV Env. These results gave comprehensive explanation of how the ancient virus infects the zebrafish and integrates into the genome million years ago, and showed a rational clue for discovery of physiological significance (e.g., medicate cell-cell fusion). PMID:25804638

  9. Mitochondrial Fusion and ERK Activity Regulate Steroidogenic Acute Regulatory Protein Localization in Mitochondria

    PubMed Central

    Duarte, Alejandra; Castillo, Ana Fernanda; Podestá, Ernesto J.; Poderoso, Cecilia

    2014-01-01

    The rate-limiting step in the biosynthesis of steroid hormones, known as the transfer of cholesterol from the outer to the inner mitochondrial membrane, is facilitated by StAR, the Steroidogenic Acute Regulatory protein. We have described that mitochondrial ERK1/2 phosphorylates StAR and that mitochondrial fusion, through the up-regulation of a fusion protein Mitofusin 2, is essential during steroidogenesis. Here, we demonstrate that mitochondrial StAR together with mitochondrial active ERK and PKA are necessary for maximal steroid production. Phosphorylation of StAR by ERK is required for the maintenance of this protein in mitochondria, observed by means of over-expression of a StAR variant lacking the ERK phosphorylation residue. Mitochondrial fusion regulates StAR levels in mitochondria after hormone stimulation. In this study, Mitofusin 2 knockdown and mitochondrial fusion inhibition in MA-10 Leydig cells diminished StAR mRNA levels and concomitantly mitochondrial StAR protein. Together our results unveil the requirement of mitochondrial fusion in the regulation of the localization and mRNA abundance of StAR. We here establish the relevance of mitochondrial phosphorylation events in the correct localization of this key protein to exert its action in specialized cells. These discoveries highlight the importance of mitochondrial fusion and ERK phosphorylation in cholesterol transport by means of directing StAR to the outer mitochondrial membrane to achieve a large number of steroid molecules per unit of StAR. PMID:24945345

  10. Targeted expression, purification, and cleavage of fusion proteins from inclusion bodies in Escherichia coli.

    PubMed

    Hwang, Peter M; Pan, Jonathan S; Sykes, Brian D

    2014-01-21

    Today, proteins are typically overexpressed using solubility-enhancing fusion tags that allow for affinity chromatographic purification and subsequent removal by site-specific protease cleavage. In this review, we present an alternative approach to protein production using fusion partners specifically designed to accumulate in insoluble inclusion bodies. The strategy is appropriate for the mass production of short peptides, intrinsically disordered proteins, and proteins that can be efficiently refolded in vitro. There are many fusion protein systems now available for insoluble expression: TrpLE, ketosteroid isomerase, PurF, and PagP, for example. The ideal fusion partner is effective at directing a wide variety of target proteins into inclusion bodies, accumulates in large quantities in a highly pure form, and is readily solubilized and purified in commonly used denaturants. Fusion partner removal under denaturing conditions is biochemically challenging, requiring harsh conditions (e.g., cyanogen bromide in 70% formic acid) that can result in unwanted protein modifications. Recent advances in metal ion-catalyzed peptide bond cleavage allow for more mild conditions, and some methods involving nickel or palladium will likely soon appear in more biological applications.

  11. Enhanced protein expression in the baculovirus/insect cell system using engineered SUMO fusions.

    PubMed

    Liu, Li; Spurrier, Joshua; Butt, Tauseef R; Strickler, James E

    2008-11-01

    Recombinant protein expression in insect cells varies greatly from protein to protein. A fusion tag that is not only a tool for detection and purification, but also enhances expression and/or solubility would greatly facilitate both structure/function studies and therapeutic protein production. We have shown that fusion of SUMO (small ubiquitin-related modifier) to several test proteins leads to enhanced expression levels in Escherichia coli. In eukaryotic expression systems, however, the SUMO tag could be cleaved by endogenous desumoylase. In order to adapt SUMO-fusion technology to these systems, we have developed an alternative SUMO-derived tag, designated SUMOstar, which is not processed by native SUMO proteases. In the present study, we tested the SUMOstar tag in a baculovirus/insect cell system with several proteins, i.e. mouse UBP43, human tryptase beta II, USP4, USP15, and GFP. Our results demonstrate that fusion to SUMOstar enhanced protein expression levels at least 4-fold compared to either the native or His(6)-tagged proteins. We isolated active SUMOstar tagged UBP43, USP4, USP15, and GFP. Tryptase was active following cleavage with a SUMOstar specific protease. The SUMOstar system will make significant impact in difficult-to-express proteins and especially to those proteins that require the native N-terminal residue for function.

  12. Connecting two proteins using a fusion alpha helix stabilized by a chemical cross linker

    NASA Astrophysics Data System (ADS)

    Jeong, Woo Hyeon; Lee, Haerim; Song, Dong Hyun; Eom, Jae-Hoon; Kim, Sun Chang; Lee, Hee-Seung; Lee, Hayyoung; Lee, Jie-Oh

    2016-03-01

    Building a sophisticated protein nano-assembly requires a method for linking protein components in a predictable and stable structure. Most of the cross linkers available have flexible spacers. Because of this, the linked hybrids have significant structural flexibility and the relative structure between their two components is largely unpredictable. Here we describe a method of connecting two proteins via a `fusion α helix' formed by joining two pre-existing helices into a single extended helix. Because simple ligation of two helices does not guarantee the formation of a continuous helix, we used EY-CBS, a synthetic cross linker that has been shown to react selectively with cysteines in α-helices, to stabilize the connecting helix. Formation and stabilization of the fusion helix was confirmed by determining the crystal structures of the fusion proteins with and without bound EY-CBS. Our method should be widely applicable for linking protein building blocks to generate predictable structures.

  13. Continuous Flow Separation of Hydrophobin Fusion Proteins from Plant Cell Culture Extract.

    PubMed

    Reuter, Lauri J; Conley, Andrew J; Joensuu, Jussi J

    2016-01-01

    Fusion to fungal hydrophobins has proven to be a useful tool to enhance accumulation and recovery of recombinant proteins in plants. Aqueous two-phase separation (ATPS) is an attractive system to capture hydrophobin fusion proteins from plant extracts. The process can simultaneously purify and concentrate target protein with minimal background. ATPS avoids the use of chromatographic column steps, can be carried out in a short time frame, and is amenable to industrial-scale protein purification. A drawback of performing ATPS in large volumes is the lengthy time required for phase separation; however, this can be avoided by incorporating continuous systems, which are often preferred by the processing industry. This method chapter illustrates the capture of GFP-HFBI hydrophobin fusion protein from BY-2 plant cell suspension extract using a semi-continuous ATPS method. PMID:26614291

  14. Connecting two proteins using a fusion alpha helix stabilized by a chemical cross linker

    PubMed Central

    Jeong, Woo Hyeon; Lee, Haerim; Song, Dong Hyun; Eom, Jae-Hoon; Kim, Sun Chang; Lee, Hee-Seung; Lee, Hayyoung; Lee, Jie-Oh

    2016-01-01

    Building a sophisticated protein nano-assembly requires a method for linking protein components in a predictable and stable structure. Most of the cross linkers available have flexible spacers. Because of this, the linked hybrids have significant structural flexibility and the relative structure between their two components is largely unpredictable. Here we describe a method of connecting two proteins via a ‘fusion α helix' formed by joining two pre-existing helices into a single extended helix. Because simple ligation of two helices does not guarantee the formation of a continuous helix, we used EY-CBS, a synthetic cross linker that has been shown to react selectively with cysteines in α-helices, to stabilize the connecting helix. Formation and stabilization of the fusion helix was confirmed by determining the crystal structures of the fusion proteins with and without bound EY-CBS. Our method should be widely applicable for linking protein building blocks to generate predictable structures. PMID:26980593

  15. Expression of Leukemia-Associated Nup98 Fusion Proteins Generates an Aberrant Nuclear Envelope Phenotype

    PubMed Central

    Fahrenkrog, Birthe; Martinelli, Valérie; Nilles, Nadine; Fruhmann, Gernot; Chatel, Guillaume; Juge, Sabine; Sauder, Ursula; Di Giacomo, Danika; Mecucci, Cristina; Schwaller, Jürg

    2016-01-01

    Chromosomal translocations involving the nucleoporin NUP98 have been described in several hematopoietic malignancies, in particular acute myeloid leukemia (AML). In the resulting chimeric proteins, Nup98's N-terminal region is fused to the C-terminal region of about 30 different partners, including homeodomain (HD) transcription factors. While transcriptional targets of distinct Nup98 chimeras related to immortalization are relatively well described, little is known about other potential cellular effects of these fusion proteins. By comparing the sub-nuclear localization of a large number of Nup98 fusions with HD and non-HD partners throughout the cell cycle we found that while all Nup98 chimeras were nuclear during interphase, only Nup98-HD fusion proteins exhibited a characteristic speckled appearance. During mitosis, only Nup98-HD fusions were concentrated on chromosomes. Despite the difference in localization, all tested Nup98 chimera provoked morphological alterations in the nuclear envelope (NE), in particular affecting the nuclear lamina and the lamina-associated polypeptide 2α (LAP2α). Importantly, such aberrations were not only observed in transiently transfected HeLa cells but also in mouse bone marrow cells immortalized by Nup98 fusions and in cells derived from leukemia patients harboring Nup98 fusions. Our findings unravel Nup98 fusion-associated NE alterations that may contribute to leukemogenesis. PMID:27031510

  16. Expression of Leukemia-Associated Nup98 Fusion Proteins Generates an Aberrant Nuclear Envelope Phenotype.

    PubMed

    Fahrenkrog, Birthe; Martinelli, Valérie; Nilles, Nadine; Fruhmann, Gernot; Chatel, Guillaume; Juge, Sabine; Sauder, Ursula; Di Giacomo, Danika; Mecucci, Cristina; Schwaller, Jürg

    2016-01-01

    Chromosomal translocations involving the nucleoporin NUP98 have been described in several hematopoietic malignancies, in particular acute myeloid leukemia (AML). In the resulting chimeric proteins, Nup98's N-terminal region is fused to the C-terminal region of about 30 different partners, including homeodomain (HD) transcription factors. While transcriptional targets of distinct Nup98 chimeras related to immortalization are relatively well described, little is known about other potential cellular effects of these fusion proteins. By comparing the sub-nuclear localization of a large number of Nup98 fusions with HD and non-HD partners throughout the cell cycle we found that while all Nup98 chimeras were nuclear during interphase, only Nup98-HD fusion proteins exhibited a characteristic speckled appearance. During mitosis, only Nup98-HD fusions were concentrated on chromosomes. Despite the difference in localization, all tested Nup98 chimera provoked morphological alterations in the nuclear envelope (NE), in particular affecting the nuclear lamina and the lamina-associated polypeptide 2α (LAP2α). Importantly, such aberrations were not only observed in transiently transfected HeLa cells but also in mouse bone marrow cells immortalized by Nup98 fusions and in cells derived from leukemia patients harboring Nup98 fusions. Our findings unravel Nup98 fusion-associated NE alterations that may contribute to leukemogenesis.

  17. Gene fusion detection in formalin-fixed paraffin-embedded benign fibrous histiocytomas using fluorescence in situ hybridization and RNA sequencing.

    PubMed

    Walther, Charles; Hofvander, Jakob; Nilsson, Jenny; Magnusson, Linda; Domanski, Henryk A; Gisselsson, David; Tayebwa, Johnbosco; Doyle, Leona A; Fletcher, Christopher D M; Mertens, Fredrik

    2015-09-01

    Benign fibrous histiocytomas (FH) can be subdivided into several morphological and clinical subgroups. Recently, gene fusions involving either one of two protein kinase C genes (PRKCB and PRKCD) or the ALK gene were described in FH. We here wanted to evaluate the frequency of PRKCB and PRKCD gene fusions in FH. Using interphase fluorescence in situ hybridization on sections from formalin-fixed paraffin-embedded (FFPE) tumors, 36 cases could be analyzed. PRKCB or PRKCD rearrangements were seen in five tumors: 1/7 regular, 0/3 aneurysmal, 0/6 cellular, 2/7 epithelioid, 0/1 atypical, 2/10 deep, and 0/2 metastatic lesions. We also evaluated the status of the ALK gene in selected cases, finding rearrangements in 3/7 epithelioid and 0/1 atypical lesions. To assess the gene fusion status of FH further, deep sequencing of RNA (RNA-Seq) was performed on FFPE tissue from eight cases with unknown gene fusion status, as well as on two FH and six soft tissue sarcomas with known gene fusions; of the latter eight positive controls, the expected fusion transcript was found in all but one, while 2/8 FH with unknown genetic status showed fusion transcripts, including a novel KIRREL/PRKCA chimera. Thus, also a third member of the PRKC family is involved in FH tumorigenesis. We conclude that gene fusions involving PRKC genes occur in several morphological (regular, cellular, aneurysmal, epithelioid) and clinical (cutaneous, deep) subsets of FH, but they seem to account for only a minority of the cases. In epithelioid lesions, however, rearrangements of PRKC or ALK were seen, as mutually exclusive events, in the majority (5/7) of cases. Finally, the study also shows that RNA-Seq is a promising tool for identifying gene fusions in FFPE tissues.

  18. Gene fusion detection in formalin-fixed paraffin-embedded benign fibrous histiocytomas using fluorescence in situ hybridization and RNA sequencing.

    PubMed

    Walther, Charles; Hofvander, Jakob; Nilsson, Jenny; Magnusson, Linda; Domanski, Henryk A; Gisselsson, David; Tayebwa, Johnbosco; Doyle, Leona A; Fletcher, Christopher D M; Mertens, Fredrik

    2015-09-01

    Benign fibrous histiocytomas (FH) can be subdivided into several morphological and clinical subgroups. Recently, gene fusions involving either one of two protein kinase C genes (PRKCB and PRKCD) or the ALK gene were described in FH. We here wanted to evaluate the frequency of PRKCB and PRKCD gene fusions in FH. Using interphase fluorescence in situ hybridization on sections from formalin-fixed paraffin-embedded (FFPE) tumors, 36 cases could be analyzed. PRKCB or PRKCD rearrangements were seen in five tumors: 1/7 regular, 0/3 aneurysmal, 0/6 cellular, 2/7 epithelioid, 0/1 atypical, 2/10 deep, and 0/2 metastatic lesions. We also evaluated the status of the ALK gene in selected cases, finding rearrangements in 3/7 epithelioid and 0/1 atypical lesions. To assess the gene fusion status of FH further, deep sequencing of RNA (RNA-Seq) was performed on FFPE tissue from eight cases with unknown gene fusion status, as well as on two FH and six soft tissue sarcomas with known gene fusions; of the latter eight positive controls, the expected fusion transcript was found in all but one, while 2/8 FH with unknown genetic status showed fusion transcripts, including a novel KIRREL/PRKCA chimera. Thus, also a third member of the PRKC family is involved in FH tumorigenesis. We conclude that gene fusions involving PRKC genes occur in several morphological (regular, cellular, aneurysmal, epithelioid) and clinical (cutaneous, deep) subsets of FH, but they seem to account for only a minority of the cases. In epithelioid lesions, however, rearrangements of PRKC or ALK were seen, as mutually exclusive events, in the majority (5/7) of cases. Finally, the study also shows that RNA-Seq is a promising tool for identifying gene fusions in FFPE tissues. PMID:26121314

  19. ETV6-NTRK3 Is Expressed in a Subset of ALK-Negative Inflammatory Myofibroblastic Tumors.

    PubMed

    Alassiri, Ali H; Ali, Rola H; Shen, Yaoqing; Lum, Amy; Strahlendorf, Caron; Deyell, Rebecca; Rassekh, Rod; Sorensen, Poul H; Laskin, Janessa; Marra, Marco; Yip, Stephen; Lee, Cheng-Han; Ng, Tony L

    2016-08-01

    Inflammatory myofibroblastic tumor (IMT) is a genetically heterogenous tumor of the viscera and soft tissues, with multiple molecular features having been demonstrated in this tumor type. About 50% of cases harbor an anaplastic lymphoma kinase (ALK) gene rearrangement, and recent studies have described novel fusions involving the ROS1 and PDGFRβ genes in a subset of ALK-negative cases. However, the molecular features of the remaining subset of cases are not yet defined. We report a case of a large, highly aggressive IMT of the lung in a 17-year-old girl. This case was molecularly characterized through whole-genome and transcriptome sequencing. Subsequently, we investigated a cohort of 15 ALK-negative IMTs of various anatomic sites. All cases were screened using fluorescence in situ hybridization (FISH) for rearrangement of the ETV6 locus and with reverse transcription polymerase chain reaction (RT-PCR) for the ETV6-NTRK3 fusion transcript. Whole-genome and transcriptome sequencing revealed an ETV6-NTRK3 fusion transcript in our index case. This was confirmed by FISH studies for ETV6 gene rearrangement, as well as by RT-PCR. In addition, 2 additional cases in our cohort demonstrated ETV6 rearrangement by FISH. The presence of ETV6-NTRK3 fusion transcript was demonstrated by RT-PCR in one of these additional cases. In summary, we demonstrate the expression of the ETV6-NTRK3 fusion oncogene in a small subset of IMTs, lending further support to the role of oncogenic tyrosine kinases in the pathophysiology of this tumor type. Our data also further expand the growing spectrum of tumor types expressing the ETV6-NTRK3 fusion. PMID:27259007

  20. Cellular localization and trafficking of vascular adhesion protein-1 as revealed by an N-terminal GFP fusion protein.

    PubMed

    Weston, Chris J; Shepherd, Emma L; Adams, David H

    2013-06-01

    Recent studies of vascular adhesion protein-1 (VAP-1) have greatly advanced our understanding of the important role this protein plays in the establishment and progression of inflammatory disease. To facilitate more detailed studies on the function of VAP-1, we developed a GFP-fusion protein that enabled us to monitor the trafficking of the protein in three selected cell types: hepatic sinusoidal endothelial cells, liver myofibroblasts and an hepatic stellate cell line (LX-2). The fusion protein was detected as punctate cytoplasmic GFP staining, but was present only at low levels at the cell surface in all cell types studied. The subcellular distribution of the protein was not altered in a catalytically inactive mutant form of the protein (Tyr471Phe) or in the presence of exogenous VAP-1 substrate (methylamine) or inhibitor (semicarbazide). The GFP-VAP-1 protein was localized to the Golgi apparatus (GM-130), endoplasmic reticulum (GRP94) and early endosomes (EEA-1). Additional staining for VAP-1 revealed that the overexpressed protein was also present in vesicles that were negative for GFP fluorescent signal and did not express EEA-1. We propose that these vesicles are responsible for recycling the fusion protein and that the fluorescence of the GFP moiety is quenched at the low pH within these vesicles. This feature of the protein makes it well suited for live cell imaging studies where we wish to track protein that is being actively trafficked within the cell in preference to that which is being recycled.

  1. Purification of CD47-streptavidin fusion protein from bacterial lysate using biotin-agarose affinity chromatography.

    PubMed

    Salehi, Nasrin; Peng, Ching-An

    2016-07-01

    CD47 is a widely expressed transmembrane glycoprotein that modulates the activity of a plethora of immune cells via its extracellular domain. Therefore, CD47 plays important roles in the regulation of immune responses and may serve as targets for the development of immunotherapeutic agents. To make sure CD47 functionality is intact under the process of protein conjugation, CD47-streptavidin fusion protein was expressed and purified because it can easily bind to biotin-tagged materials via the unique biotin-streptavidin affinity. In this study, gene sequences of CD47 extracellular domain (CD47ECD) and core streptavidin (coreSA) with a total 834 bp were inserted into pET20b plasmid to construct recombinant plasmid encoding CD47-SA fusion gene. After bacteria transformation, the CD47-SA fusion protein was expressed by isopropyl-β-d-thiogalactopyranoside (IPTG) induction. The collected bacteria lysate was loaded on biotinylated agarose to proceed the purification of CD47-SA fusion protein. Due to the unexpected high affinity between biotin and coreSA, standard washing and elution approaches (e.g., varying pH, using biotin, and applying guanidine hydrochloride) reported for biotin-streptavidin affinity chromatography were not able to separate the target fusion protein. Instead, using low concentration of the non-ionic detergent Triton X-100 followed with alkaline buffer could efficiently weaken the binding between biotin and coreSA, thereby eluting out CD47-SA fusion protein from the biotin agarose column. The purified CD47-SA fusion protein was further characterized by molecular biology methods and its antiphagocytic functionality was confirmed by the phagocytosis assay. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:949-958, 2016. PMID:27110670

  2. Antibody-independent Targeted Quantification of TMPRSS2-ERG Fusion Protein Products in Prostate Cancer

    SciTech Connect

    He, Jintang; Sun, Xuefei; Shi, Tujin; Schepmoes, Athena A.; Fillmore, Thomas L.; Petyuk, Vladislav A.; Xie, Fang; Zhao, Rui; Gritsenko, Marina A.; Yang, Feng; Kitabayashi, Naoki; Chae, Sung Suk; Rubin, Mark; Siddiqui, Javed; Wei, John; Chinnaiyan, Arul M.; Qian, Weijun; Smith, Richard D.; Kagan, Jacob; Srivastava, Sudhir; Rodland, Karin D.; Liu, Tao; Camp, David G.

    2014-10-01

    Fusions between the transmembrane protease serine 2 (TMPRSS2) and ETS related gene (ERG) represent one of the most specific biomarkers that define a distinct molecular subtype of prostate cancer. The studies on TMPRSS2-ERG gene fusions have seldom been performed at the protein level, primarily due to the lack of high-quality antibodies or an antibody-independent method that is sufficiently sensitive for detecting the truncated ERG protein products resulting from TMPRSS2-ERG gene fusions and alternative splicing. Herein, we applied a recently developed PRISM (high-pressure high-resolution separations with intelligent selection and multiplexing)-SRM (selected reaction monitoring) strategy for quantifying ERG protein in prostate cancer cell lines and tumors. The highly sensitive PRISM-SRM assays led to confident detection of 6 unique ERG peptides in either the TMPRSS2-ERG positive cell lines or tissues but not in the negative controls, indicating that ERG protein expression is highly correlated with TMPRSS2-ERG gene rearrangements. Significantly, our results demonstrated for the first time that at least two groups of ERG protein isoforms were simultaneously expressed at variable levels in TMPRSS2-ERG positive samples as evidenced by concomitant detection of two mutually exclusive peptides. Three peptides shared across almost all fusion protein products were determined to be the most abundant peptides, and hence can be used as “signature” peptides for detecting ERG overexpression resulting from TMPRSS2-ERG gene fusion. These PRISM-SRM assays provide valuable tools for studying TMPRSS2-ERG gene fusion protein products, thus improving our understanding of the role of TMPRSS2-ERG gene fusion in the biology of prostate cancer.

  3. The cowpox virus fusion regulator proteins SPI-3 and hemagglutinin interact in infected and uninfected cells.

    PubMed

    Turner, Peter C; Moyer, Richard W

    2006-03-30

    The serpin SPI-3 and the hemagglutinin (HA) encoded by cowpox virus (CPV) block cell-cell fusion, and colocalize at the cell surface. wtCPV does not fuse cells, but inactivation of either gene leads to fusion. SPI-3 mAb added to wtCPV-infected cells caused fusion, confirming that SPI-3 protein at the cell surface prevents fusion. The SPI-3 mAb epitope mapped to an 85-amino acid region at the C-terminus. Removal of either 44 residues from the SPI-3 C-terminus or 48 residues following the N-terminal signal sequence resulted in fusion. Interaction between SPI-3 and HA proteins in infected cells was shown by coimmunoprecipitation. SPI-3/HA was not associated with the A27L "fusion" protein. SPI-3 and HA were able to associate in uninfected cells in the absence of other viral proteins. The HA-binding domain in SPI-3 resided in the C-terminal 229 residues, and did not include helix D, which mediates cofactor interaction in many other serpins.

  4. Fusions involving protein kinase C and membrane-associated proteins in benign fibrous histiocytoma.

    PubMed

    Płaszczyca, Anna; Nilsson, Jenny; Magnusson, Linda; Brosjö, Otte; Larsson, Olle; Vult von Steyern, Fredrik; Domanski, Henryk A; Lilljebjörn, Henrik; Fioretos, Thoas; Tayebwa, Johnbosco; Mandahl, Nils; Nord, Karolin H; Mertens, Fredrik

    2014-08-01

    Benign fibrous histiocytoma (BFH) is a mesenchymal tumor that most often occurs in the skin (so-called dermatofibroma), but may also appear in soft tissues (so-called deep BFH) and in the skeleton (so-called non-ossifying fibroma). The origin of BFH is unknown, and it has been questioned whether it is a true neoplasm. Chromosome banding, fluorescence in situ hybridization, single nucleotide polymorphism arrays, RNA sequencing, RT-PCR and quantitative real-time PCR were used to search for recurrent somatic mutations in a series of BFH. BFHs were found to harbor recurrent fusions of genes encoding membrane-associated proteins (podoplanin, CD63 and LAMTOR1) with genes encoding protein kinase C (PKC) isoforms PRKCB and PRKCD. PKCs are serine-threonine kinases that through their many phosphorylation targets are implicated in a variety of cellular processes, as well as tumor development. When inactive, the amino-terminal, regulatory domain of PKCs suppresses the activity of their catalytic domain. Upon activation, which requires several steps, they typically translocate to cell membranes, where they interact with different signaling pathways. The detected PDPN-PRKCB, CD63-PRKCD and LAMTOR1-PRKCD gene fusions are all predicted to result in chimeric proteins consisting of the membrane-binding part of PDPN, CD63 or LAMTOR1 and the entire catalytic domain of the PKC. This novel pathogenetic mechanism should result in constitutive kinase activity at an ectopic location. The results show that BFH indeed is a true neoplasm, and that distorted PKC activity is essential for tumorigenesis. The findings also provide means to differentiate BFH from other skin and soft tissue tumors. This article is part of a Directed Issue entitled: Rare cancers.

  5. A Betabaculovirus-Encoded gp64 Homolog Codes for a Functional Envelope Fusion Protein

    PubMed Central

    Ardisson-Araújo, Daniel M. P.; Melo, Fernando L.; Clem, Rollie J.; Wolff, José L. C.

    2015-01-01

    The GP64 envelope fusion protein is a hallmark of group I alphabaculoviruses. However, the Diatraea saccharalis granulovirus genome sequence revealed the first betabaculovirus species harboring a gp64 homolog (disa118). In this work, we have shown that this homolog encodes a functional envelope fusion protein and could enable the infection and fusogenic abilities of a gp64-null prototype baculovirus. Therefore, GP64 may complement or may be in the process of replacing F protein activity in this virus lineage. PMID:26537678

  6. Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion

    PubMed Central

    Diao, Jiajie; Grob, Patricia; Cipriano, Daniel J; Kyoung, Minjoung; Zhang, Yunxiang; Shah, Sachi; Nguyen, Amie; Padolina, Mark; Srivastava, Ankita; Vrljic, Marija; Shah, Ankita; Nogales, Eva; Chu, Steven; Brunger, Axel T

    2012-01-01

    The molecular underpinnings of synaptic vesicle fusion for fast neurotransmitter release are still unclear. Here, we used a single vesicle–vesicle system with reconstituted SNARE and synaptotagmin-1 proteoliposomes to decipher the temporal sequence of membrane states upon Ca2+-injection at 250–500 μM on a 100-ms timescale. Furthermore, detailed membrane morphologies were imaged with cryo-electron microscopy before and after Ca2+-injection. We discovered a heterogeneous network of immediate and delayed fusion pathways. Remarkably, all instances of Ca2+-triggered immediate fusion started from a membrane–membrane point-contact and proceeded to complete fusion without discernible hemifusion intermediates. In contrast, pathways that involved a stable hemifusion diaphragm only resulted in fusion after many seconds, if at all. When complexin was included, the Ca2+-triggered fusion network shifted towards the immediate pathway, effectively synchronizing fusion, especially at lower Ca2+-concentration. Synaptic proteins may have evolved to select this immediate pathway out of a heterogeneous network of possible membrane fusion pathways. DOI: http://dx.doi.org/10.7554/eLife.00109.001 PMID:23240085

  7. Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion.

    PubMed

    Diao, Jiajie; Grob, Patricia; Cipriano, Daniel J; Kyoung, Minjoung; Zhang, Yunxiang; Shah, Sachi; Nguyen, Amie; Padolina, Mark; Srivastava, Ankita; Vrljic, Marija; Shah, Ankita; Nogales, Eva; Chu, Steven; Brunger, Axel T

    2012-12-13

    The molecular underpinnings of synaptic vesicle fusion for fast neurotransmitter release are still unclear. Here, we used a single vesicle-vesicle system with reconstituted SNARE and synaptotagmin-1 proteoliposomes to decipher the temporal sequence of membrane states upon Ca(2+)-injection at 250-500 μM on a 100-ms timescale. Furthermore, detailed membrane morphologies were imaged with cryo-electron microscopy before and after Ca(2+)-injection. We discovered a heterogeneous network of immediate and delayed fusion pathways. Remarkably, all instances of Ca(2+)-triggered immediate fusion started from a membrane-membrane point-contact and proceeded to complete fusion without discernible hemifusion intermediates. In contrast, pathways that involved a stable hemifusion diaphragm only resulted in fusion after many seconds, if at all. When complexin was included, the Ca(2+)-triggered fusion network shifted towards the immediate pathway, effectively synchronizing fusion, especially at lower Ca(2+)-concentration. Synaptic proteins may have evolved to select this immediate pathway out of a heterogeneous network of possible membrane fusion pathways.DOI:http://dx.doi.org/10.7554/eLife.00109.001.

  8. Tandem SUMO fusion vectors for improving soluble protein expression and purification.

    PubMed

    Guerrero, Fernando; Ciragan, Annika; Iwaï, Hideo

    2015-12-01

    Availability of highly purified proteins in quantity is crucial for detailed biochemical and structural investigations. Fusion tags are versatile tools to facilitate efficient protein purification and to improve soluble overexpression of proteins. Various purification and fusion tags have been widely used for overexpression in Escherichia coli. However, these tags might interfere with biological functions and/or structural investigations of the protein of interest. Therefore, an additional purification step to remove fusion tags by proteolytic digestion might be required. Here, we describe a set of new vectors in which yeast SUMO (SMT3) was used as the highly specific recognition sequence of ubiquitin-like protease 1, together with other commonly used solubility enhancing proteins, such as glutathione S-transferase, maltose binding protein, thioredoxin and trigger factor for optimizing soluble expression of protein of interest. This tandem SUMO (T-SUMO) fusion system was tested for soluble expression of the C-terminal domain of TonB from different organisms and for the antiviral protein scytovirin.

  9. Beyond anchoring: the expanding role of the hendra virus fusion protein transmembrane domain in protein folding, stability, and function.

    PubMed

    Smith, Everett Clinton; Culler, Megan R; Hellman, Lance M; Fried, Michael G; Creamer, Trevor P; Dutch, Rebecca Ellis

    2012-03-01

    While work with viral fusion proteins has demonstrated that the transmembrane domain (TMD) can affect protein folding, stability, and membrane fusion promotion, the mechanism(s) remains poorly understood. TMDs could play a role in fusion promotion through direct TMD-TMD interactions, and we have recently shown that isolated TMDs from three paramyxovirus fusion (F) proteins interact as trimers using sedimentation equilibrium (SE) analysis (E. C. Smith, et al., submitted for publication). Immediately N-terminal to the TMD is heptad repeat B (HRB), which plays critical roles in fusion. Interestingly, addition of HRB decreased the stability of the trimeric TMD-TMD interactions. This result, combined with previous findings that HRB forms a trimeric coiled coil in the prefusion form of the whole protein though HRB peptides fail to stably associate in isolation, suggests that the trimeric TMD-TMD interactions work in concert with elements in the F ectodomain head to stabilize a weak HRB interaction. Thus, changes in TMD-TMD interactions could be important in regulating F triggering and refolding. Alanine insertions between the TMD and HRB demonstrated that spacing between these two regions is important for protein stability while not affecting TMD-TMD interactions. Additional mutagenesis of the C-terminal end of the TMD suggests that β-branched residues within the TMD play a role in membrane fusion, potentially through modulation of TMD-TMD interactions. Our results support a model whereby the C-terminal end of the Hendra virus F TMD is an important regulator of TMD-TMD interactions and show that these interactions help hold HRB in place prior to the triggering of membrane fusion.

  10. [The actions of nucleating proteins in vesicle aggregation and fusion: a preliminary study].

    PubMed

    Chen, Y; Zhang, Y; Cai, D

    1997-03-01

    After investigation of the effects of Con A-binding proteins, the major biliary pronucleating effectors system on the figures and lipid composition of model biliary vesicles, the authors found that Con A-binding proteins accelerate aggregation and fusion of vesicles as a result of increased vesicular cholesterol and decreased vesicular phospholipids as well as cholesterol-saturated vesicles. We also found that vesicular proteins though in small quantity are potent in pronucleating effects. The distribution of several known nucleating proteins between the vesicles and micelles is quite different, and there are higher content and more potent pronucleating effectors in patients with cholesterol gallstone than those with pigment stone. By affinity staining method, con A-binding proteins were shown in native biliary vesicles as lipid-protein complex. These results suggest that the existence and changes in their quantity and quality of vesicular nucleating proteins play an important role in vesicle aggregation and fusion.

  11. Construction and evaluation of novel fusion proteins for targeted delivery of micro particles to cellulose surfaces.

    PubMed

    Lewis, William; Keshavarz-Moore, Eli; Windust, John; Bushell, Donna; Parry, Neil

    2006-07-01

    The use of IgG antibodies and fragments has been limited to specific sectors of the biotechnology industry due to the high cost of producing large batches of product necessary for alternative applications. A novel class of Camelid antibodies, known as V(HH) offer a more economical opportunity to meet a wider application in industry. In this study, we report the evaluation of four llama V(HH)-cellulose binding domain fusion proteins displaying varying formats of V(HH) and CBD domains. Proteins were characterized in a targeted particle delivery system as a method of delivering agents such as perfume to laundry in the wash cycle. Fusion proteins were shown to be stable at high pH and in the presence of a detergent base. They were also shown to bind effectively to both the designated antigen, the azo-dye reactive-red 6 (either conjugated to BSA or attached to coacervate microparticles), and cellulose. Binding strength differences were observed between the different fusion protein formats using surface plasmon resonance. The effect of key laundry ingredients was also studied. Combining the fusion proteins and particles into a delivery and deposition study generated clear microscopy evidence for bifunctionality. Confirmation of this was validated by GC-MS analysis of retained fragrance. This research, reporting the construction and characterization of a variety of fusion proteins, illustrates that the single multidomain fusion protein route offers a new technology for successful targeted delivery of encapsulated benefit agents. Furthermore, the potential to modify or select for proteins to recognize a wide range of surfaces is also possible.

  12. Characterization of the fusion core in zebrafish endogenous retroviral envelope protein

    SciTech Connect

    Shi, Jian; Zhang, Huaidong; Gong, Rui; Xiao, Gengfu

    2015-05-08

    Zebrafish endogenous retrovirus (ZFERV) is the unique endogenous retrovirus in zebrafish, as yet, containing intact open reading frames of its envelope protein gene in zebrafish genome. Similarly, several envelope proteins of endogenous retroviruses in human and other mammalian animal genomes (such as syncytin-1 and 2 in human, syncytin-A and B in mouse) were identified and shown to be functional in induction of cell–cell fusion involved in placental development. ZFERV envelope protein (Env) gene appears to be also functional in vivo because it is expressible. After sequence alignment, we found ZFERV Env shares similar structural profiles with syncytin and other type I viral envelopes, especially in the regions of N- and C-terminal heptad repeats (NHR and CHR) which were crucial for membrane fusion. We expressed the regions of N + C protein in the ZFERV Env (residues 459–567, including predicted NHR and CHR) to characterize the fusion core structure. We found N + C protein could form a stable coiled-coil trimer that consists of three helical NHR regions forming a central trimeric core, and three helical CHR regions packing into the grooves on the surface of the central core. The structural characterization of the fusion core revealed the possible mechanism of fusion mediated by ZFERV Env. These results gave comprehensive explanation of how the ancient virus infects the zebrafish and integrates into the genome million years ago, and showed a rational clue for discovery of physiological significance (e.g., medicate cell–cell fusion). - Highlights: • ZFERV Env shares similar structural profiles with syncytin and other type I viral envelopes. • The fusion core of ZFERV Env forms stable coiled-coil trimer including three NHRs and three CHRs. • The structural mechanism of viral entry mediated by ZFERV Env is disclosed. • The results are helpful for further discovery of physiological function of ZFERV Env in zebrafish.

  13. Hyperactivation of Alk induces neonatal lethality in knock-in AlkF1178L mice

    PubMed Central

    Lopez-Delisle, Lucille; Pierre-Eugène, Cécile; Bloch-Gallego, Evelyne; Birling, Marie-Christine; Duband, Jean-Loup; Durand, Estelle; Bourgeois, Thomas; Matrot, Boris; Sorg, Tania; Huerre, Michel; Meziane, Hamid; Roux, Michel J.; Champy, Marie-France; Gallego, Jorge; Delattre, Olivier; Janoueix-Lerosey, Isabelle

    2014-01-01

    The ALK (Anaplastic Lymphoma Kinase) gene encodes a tyrosine kinase receptor preferentially expressed in the central and peripheral nervous systems. A syndromic presentation associating congenital neuroblastoma with severe encephalopathy and an abnormal shape of the brainstem has been described in patients harbouring de novo germline F1174V and F1245V ALK mutations. Here, we investigated the phenotype of knock-in (KI) mice bearing the AlkF1178L mutation (F1174L in human). Although heterozygous KI mice did not reproduce the severe breathing and feeding difficulties observed in human patients, behavioral tests documented a reduced activity during dark phases and an increased anxiety of mutated mice. Matings of heterozygotes yielded the expected proportions of wild-type, heterozygotes and homozygotes at birth but a high neonatal lethality was noticed for homozygotes. We documented Alk expression in several motor nuclei of the brainstem involved in the control of sucking and swallowing. Evaluation of basic physiological functions 12 hours after birth revealed slightly more apneas but a dramatic reduced milk intake for homozygotes compared to control littermates. Overall, our data demonstrate that Alk activation above a critical threshold is not compatible with survival in mice, in agreement with the extremely severe phenotype of patients carrying aggressive de novo ALK germline mutations. PMID:24811761

  14. The ALK inhibitor PF-06463922 is effective as a single agent in neuroblastoma driven by expression of ALK and MYCN.

    PubMed

    Guan, J; Tucker, E R; Wan, H; Chand, D; Danielson, L S; Ruuth, K; El Wakil, A; Witek, B; Jamin, Y; Umapathy, G; Robinson, S P; Johnson, T W; Smeal, T; Martinsson, T; Chesler, L; Palmer, R H; Hallberg, B

    2016-09-01

    The first-in-class inhibitor of ALK, c-MET and ROS1, crizotinib (Xalkori), has shown remarkable clinical efficacy in treatment of ALK-positive non-small cell lung cancer. However, in neuroblastoma, activating mutations in the ALK kinase domain are typically refractory to crizotinib treatment, highlighting the need for more potent inhibitors. The next-generation ALK inhibitor PF-06463922 is predicted to exhibit increased affinity for ALK mutants prevalent in neuroblastoma. We examined PF-06463922 activity in ALK-driven neuroblastoma models in vitro and in vivo In vitro kinase assays and cell-based experiments examining ALK mutations of increasing potency show that PF-06463922 is an effective inhibitor of ALK with greater activity towards ALK neuroblastoma mutants. In contrast to crizotinib, single agent administration of PF-06463922 caused dramatic tumor inhibition in both subcutaneous and orthotopic xenografts as well as a mouse model of high-risk neuroblastoma driven by Th-ALK(F1174L)/MYCN Taken together, our results suggest PF-06463922 is a potent inhibitor of crizotinib-resistant ALK mutations, and highlights an important new treatment option for neuroblastoma patients. PMID:27483357

  15. Inhibition of angiogenesis by a synthetic fusion protein VTF derived from vasostatin and tumstatin.

    PubMed

    Gu, Quliang; Sun, Cihuang; Luo, Jinxian; Zhang, Tianyuan; Wang, Lijing

    2014-10-01

    The inhibition of angiogenesis represents a potential strategy for antitumor therapy. A novel synthetic fusion protein VTF, composed of bioactive fragments from two different angiogenesis inhibitors, vasostatin and tumstatin with a (Gly-Ser-Gly)2 bridge, was generated using the pET-15b expression vector. The fusion protein VTF showed significantly enhanced efficacy in inhibiting human endothelial cell proliferation and tube formation and neovascularization on chick embryo chorioallantoic membrane. Moreover, VTF suppressed the growth of B16 melanoma and the formation of tumor blood vessels potently in vivo. These results indicated that the fusion protein containing the bioactive fragments of multiple angiogenesis inhibitors might be a promising therapeutic agent for tumor treatment. PMID:24942148

  16. Production of bifunctional single-chain antibody-based fusion proteins in Pichia pastoris supernatants.

    PubMed

    Panjideh, Hossein; Coelho, Vânia; Dernedde, Jens; Fuchs, Hendrik; Keilholz, Ulrich; Thiel, Eckhard; Deckert, P Markus

    2008-10-01

    Recombinant antibody fusion constructs with heterologous functional domains are a promising approach to new therapeutic targeting strategies. However, expression of such constructs is mostly limited to cost and labor-intensive mammalian expression systems. Here we report on the employment of Pichia pastoris for the expression of heterologous antibody fusion constructs with green fluorescent protein, A33scFv::GFP, or with cytosine deaminase, A33scFv::CDy, their production in a biofermenter and a modified purification strategy. Combined, these approaches improved production yields by about thirty times over established standard protocols, with extracellular secretion of the fusion construct reaching 12.0 mg/l. Bifunctional activity of the fusion proteins was demonstrated by flow cytometry and an in-vitro cytotoxicity assay. With equal amounts of purified protein, the modified purification method lead to higher functional results. Our results demonstrate the suitability of methylotrophic Pichia expression systems and laboratory-scale bioreactors for the production of high quantities of bifunctionally active heterologous single-chain fusion proteins.

  17. The Drosophila Midkine/Pleiotrophin Homologues Miple1 and Miple2 Affect Adult Lifespan but Are Dispensable for Alk Signaling during Embryonic Gut Formation

    PubMed Central

    Hugosson, Fredrik; Sjögren, Camilla; Birve, Anna; Hedlund, Ludmilla; Eriksson, Therese; Palmer, Ruth H.

    2014-01-01

    Midkine (MDK) and Pleiotrophin (PTN) are small heparin-binding cytokines with closely related structures. The Drosophila genome harbours two genes encoding members of the MDK/PTN family of proteins, known as miple1 and miple2. We have investigated the role of Miple proteins in vivo, in particular with regard to their proposed role as ligands for the Alk receptor tyrosine kinase (RTK). Here we show that Miple proteins are neither required to drive Alk signaling during Drosophila embryogenesis, nor are they essential for development in the fruit fly. Additionally we show that neither MDK nor PTN can activate hALK in vivo when ectopically co-expressed in the fly. In conclusion, our data suggest that Alk is not activated by MDK/PTN related growth factors Miple1 and Miple 2 in vivo. PMID:25380037

  18. Atractylodin Inhibits Interleukin-6 by Blocking NPM-ALK Activation and MAPKs in HMC-1.

    PubMed

    Chae, Hee-Sung; Kim, Young-Mi; Chin, Young-Won

    2016-09-02

    Atractylodin is one of the major constituents of the rhizome of Atractylodes lancea, which is widely used in Korean traditional medicine as a remedy for the treatment of gastritis and gastric ulcers. Despite of a major constituent of widely used botanical to treat inflammatory responses little is known about anti-inflammatory effect of atractylodin in the human mast cell (HMC-1). Hence, we evaluated the effect of atractylodin on the release of IL-6, the involvement of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) and mitogen-activated protein kinases (MAPKs) in phorbol-12-myristate-13-acetate and A23187-induced HMC-1. In addition, Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), phospholipase C (PLC) gamma 1, and AKT phosphorylation relevant to NPM-ALK signal pathway were assessed. IL-6 levels in the HMC-1 stimulated by phorbol-12-myristate-13-acetate and A23187 were apparently decreased by the treatment of atractylodin. Concurrently, atractylodin not only inhibited the phosphorylation of NPM-ALK, but also suppressed the phosphorylation of JAK2, STAT3, PLC gamma 1, and AKT. Furthermore, the activated mitogen-activated protein kinases (MAPKs) by phorbol-12-myristate-13-acetate and A23187 were inhibited by atractylodin. These results suggested that atractylodin might have a potential regulatory effect on inflammatory mediator expression through blockade of both the phosphorylation of MAPKs and the NPM-ALK signaling pathway.

  19. Atractylodin Inhibits Interleukin-6 by Blocking NPM-ALK Activation and MAPKs in HMC-1.

    PubMed

    Chae, Hee-Sung; Kim, Young-Mi; Chin, Young-Won

    2016-01-01

    Atractylodin is one of the major constituents of the rhizome of Atractylodes lancea, which is widely used in Korean traditional medicine as a remedy for the treatment of gastritis and gastric ulcers. Despite of a major constituent of widely used botanical to treat inflammatory responses little is known about anti-inflammatory effect of atractylodin in the human mast cell (HMC-1). Hence, we evaluated the effect of atractylodin on the release of IL-6, the involvement of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) and mitogen-activated protein kinases (MAPKs) in phorbol-12-myristate-13-acetate and A23187-induced HMC-1. In addition, Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), phospholipase C (PLC) gamma 1, and AKT phosphorylation relevant to NPM-ALK signal pathway were assessed. IL-6 levels in the HMC-1 stimulated by phorbol-12-myristate-13-acetate and A23187 were apparently decreased by the treatment of atractylodin. Concurrently, atractylodin not only inhibited the phosphorylation of NPM-ALK, but also suppressed the phosphorylation of JAK2, STAT3, PLC gamma 1, and AKT. Furthermore, the activated mitogen-activated protein kinases (MAPKs) by phorbol-12-myristate-13-acetate and A23187 were inhibited by atractylodin. These results suggested that atractylodin might have a potential regulatory effect on inflammatory mediator expression through blockade of both the phosphorylation of MAPKs and the NPM-ALK signaling pathway. PMID:27598116

  20. In vivo immobilization of fusion proteins on bioplastics by the novel tag BioF.

    PubMed

    Moldes, Cristina; García, Pedro; García, José L; Prieto, María A

    2004-06-01

    A new protein immobilization and purification system has been developed based on the use of polyhydroxyalkanoates (PHAs, or bioplastics), which are biodegradable polymers accumulated as reserve granules in the cytoplasm of certain bacteria. The N-terminal domain of the PhaF phasin (a PHA-granule-associated protein) from Pseudomonas putida GPo1 was used as a polypeptide tag (BioF) to anchor fusion proteins to PHAs. This tag provides a novel way to immobilize proteins in vivo by using bioplastics as supports. The granules carrying the BioF fusion proteins can be isolated by a simple centrifugation step and used directly for some applications. Moreover, when required, a practically pure preparation of the soluble BioF fusion protein can be obtained by a mild detergent treatment of the granule. The efficiency of this system has been demonstrated by constructing two BioF fusion products, including a functional BioF-beta-galactosidase. This is the first example of an active bioplastic consisting of a biodegradable matrix carrying an active enzyme. PMID:15184113

  1. The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion.

    PubMed

    Hackstadt, T; Scidmore-Carlson, M A; Shaw, E I; Fischer, E R

    1999-09-01

    Chlamydiae replicate within an intracellular vacuole, termed an inclusion, that is non-fusogenic with vesicles of the endosomal or lysosomal compartments. Instead, the inclusion appears to intersect an exocytic pathway from which chlamydiae intercept sphingomyelin en route from the Golgi apparatus to the plasma membrane. Chlamydial protein synthesis is required to establish this interaction. In an effort to identify those chlamydial proteins controlling vesicle fusion, we have prepared polyclonal antibodies against several Chlamydia trachomatis inclusion membrane proteins. Microinjection of polyclonal antibodies against three C. trachomatis inclusion membrane proteins, IncA, F and G, into the cytosol of cells infected with C. trachomatis demonstrates reactivity with antigens on the cytoplasmic face of the inclusion membrane, without apparent inhibition of chlamydial multiplication. Microinjection of antibodies against the C. trachomatis IncA protein, however, results in the development of an aberrant multilobed inclusion structure remarkably similar to that of C. psittaci GPIC. These results suggest that the C. trachomatis IncA protein is involved in homotypic vesicle fusion and/or septation of the inclusion membrane that is believed to accompany bacterial cell division in C. psittaci. This proposal is corroborated by the expression of C. trachomatis and C. psittaci IncA in a yeast two-hybrid system to demonstrate C. trachomatis, but not C. psittaci, IncA interactions. Despite the inhibition of homotypic fusion of C. trachomatis inclusions, fusion of sphingomyelin-containing vesicles with the inclusion was not suppressed.

  2. Affinity Purification of a Recombinant Protein Expressed as a Fusion with the Maltose-Binding Protein (MBP) Tag

    PubMed Central

    Duong-Ly, Krisna C.; Gabelli, Sandra B.

    2015-01-01

    Expression of fusion proteins such as MBP fusions can be used as a way to improve the solubility of the expressed protein in E. coli (Fox and Waugh, 2003; Nallamsetty et al., 2005; Nallamsetty and Waugh, 2006) and as a way to introduce an affinity purification tag. The protocol that follows was designed by the authors as a first step in the purification of a recombinant protein fused with MBP, using fast protein liquid chromatography (FPLC). Cells should have been thawed, resuspended in binding buffer, and lysed by sonication or microfluidization before mixing with the amylose resin or loading on the column. Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment. PMID:26096500

  3. Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion

    SciTech Connect

    Mukai, Atsushi; Hashimoto, Naohiro

    2008-01-15

    Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a 'myosheet,' was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and the lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells.

  4. Residue-level resolution of alphavirus envelope protein interactions in pH-dependent fusion.

    PubMed

    Zeng, Xiancheng; Mukhopadhyay, Suchetana; Brooks, Charles L

    2015-02-17

    Alphavirus envelope proteins, organized as trimers of E2-E1 heterodimers on the surface of the pathogenic alphavirus, mediate the low pH-triggered fusion of viral and endosomal membranes in human cells. The lack of specific treatment for alphaviral infections motivates our exploration of potential antiviral approaches by inhibiting one or more fusion steps in the common endocytic viral entry pathway. In this work, we performed constant pH molecular dynamics based on an atomic model of the alphavirus envelope with icosahedral symmetry. We have identified pH-sensitive residues that cause the largest shifts in thermodynamic driving forces under neutral and acidic pH conditions for various fusion steps. A series of conserved interdomain His residues is identified to be responsible for the pH-dependent conformational changes in the fusion process, and ligand binding sites in their vicinity are anticipated to be potential drug targets aimed at inhibiting viral infections.

  5. Association of the fusion protein NSF with clathrin-coated vesicle membranes.

    PubMed Central

    Steel, G J; Tagaya, M; Woodman, P G

    1996-01-01

    N-ethylmaleimide-sensitive fusion protein (NSF) is a component of intracellular transport reactions. In order to understand the role of NSF during the fusion of endocytic transport vesicles with the endosome, we have investigated the binding of NSF to purified clathrin-coated vesicle components. First, we have examined whether detergent-solubilized coated vesicle membranes will support formation of NSF-containing 'fusion complexes'. Our results show that these membranes are substantially enriched in components capable of driving formation of these complexes, when compared with membranes from other sources. Secondly, we have analysed coated vesicle preparations for their NSF content. Coated vesicle preparations contain significant amounts of NSF. This was shown to be associated with coated vesicles rather than contaminating membranes by a number of criteria, and was found to be bound in an ATP-independent manner. These findings are discussed in the light of current models for vesicle fusion. Images PMID:8631296

  6. Outcomes for Single-Level Lumbar Fusion: The Role of Bone Morphogenetic Protein

    PubMed Central

    Cahill, Kevin S.; Chi, John H.; Groff, Michael W.; McGuire, Kevin; Afendulis, Christopher C.; Claus, Elizabeth B.

    2011-01-01

    Study Design Retrospective analysis of a population-based insurance claims dataset. Objective To determine the risk of repeat fusion and total costs associated with bone morphogenetic protein (BMP) use in single-level lumbar fusion for degenerative spinal disease. Summary of Background Data The use of BMP has been proposed to reduce overall costs of spinal fusion through prevention of repeat fusion procedures. Although radiographic fusion rates associated with BMP use have been examined in clinical trials, little data exists regarding outcomes associated with BMP use in the general population. Methods Using the MarketScan© claims dataset, 15,862 patients that underwent single-level lumbar fusion from 2003 to 2007 for degenerative disease were identified. Propensity scores were used to match 2,372 patients that underwent fusion with BMP to patients that underwent fusion without BMP. Logistic regression models, Kaplan-Meier estimates, and Cox proportional hazards models were used to examine risk of repeat fusion, length of stay, and 30-day readmission by BMP use. Cost comparisons were evaluated with linear regression models using logarithmic transformed data. Results At one year from surgery, BMP was associated with a 1.1% absolute decrease in the risk of repeat fusion (2.3% with BMP vs 3.4% without BMP, p=.03) and an odds ratio for repeat fusion of 0.66 (95% confidence interval 0.47-0.94) after multivariate adjustment. BMP was also associated with a decreased hazards for long-term repeat fusion (adjusted hazards ratio =0.74, 95% confidence interval 0.58-0.93). Cost analysis indicated that BMP was associated with initial increased costs for the surgical procedure (13.9% adjusted increase, 95% confidence interval 9.9%-17.9%) as well as total one year costs (10.1% adjusted increase, 95% confidence interval 6.2%-14.0%). Conclusions At one year, BMP use was associated with a decreased risk of repeat fusion but also increased healthcare costs. PMID:21311404

  7. Fusion protein of retinol-binding protein and albumin domain III reduces liver fibrosis.

    PubMed

    Lee, Hongsik; Jeong, Hyeyeun; Park, Sangeun; Yoo, Wonbaek; Choi, Soyoung; Choi, Kyungmin; Lee, Min-Goo; Lee, Mihwa; Cha, DaeRyong; Kim, Young-Sik; Han, Jeeyoung; Kim, Wonkon; Park, Sun-Hwa; Oh, Junseo

    2015-04-11

    Activated hepatic stellate cells (HSCs) play a key role in liver fibrosis, and inactivating HSCs has been considered a promising therapeutic approach. We previously showed that albumin and its derivative designed for stellate cell-targeting, retinol-binding protein-albumin domain III fusion protein (referred to as R-III), inactivate cultured HSCs. Here, we investigated the mechanism of action of albumin/R-III in HSCs and examined the anti-fibrotic potential of R-III in vivo. R-III treatment and albumin expression downregulated retinoic acid (RA) signaling which was involved in HSC activation. RA receptor agonist and retinaldehyde dehydrogenase overexpression abolished the anti-fibrotic effect of R-III and albumin, respectively. R-III uptake into cultured HSCs was significantly decreased by siRNA-STRA6, and injected R-III was localized predominantly in HSCs in liver. Importantly, R-III administration reduced CCl4- and bile duct ligation-induced liver fibrosis. R-III also exhibited a preventive effect against CCl4-inducd liver fibrosis. These findings suggest that the anti-fibrotic effect of albumin/R-III is, at least in part, mediated by downregulation of RA signaling and that R-III is a good candidate as a novel anti-fibrotic drug.

  8. Inhibition of CRM1-mediated nuclear export of transcription factors by leukemogenic NUP98 fusion proteins.

    PubMed

    Takeda, Akiko; Sarma, Nayan J; Abdul-Nabi, Anmaar M; Yaseen, Nabeel R

    2010-05-21

    NUP98 is a nucleoporin that plays complex roles in the nucleocytoplasmic trafficking of macromolecules. Rearrangements of the NUP98 gene in human leukemia result in the expression of numerous fusion oncoproteins whose effect on nucleocytoplasmic trafficking is poorly understood. The present study was undertaken to determine the effects of leukemogenic NUP98 fusion proteins on CRM1-mediated nuclear export. NUP98-HOXA9, a prototypic NUP98 fusion, inhibited the nuclear export of two known CRM1 substrates: mutated cytoplasmic nucleophosmin and HIV-1 Rev. In vitro binding assays revealed that NUP98-HOXA9 binds CRM1 through the FG repeat motif in a Ran-GTP-dependent manner similar to but stronger than the interaction between CRM1 and its export substrates. Two NUP98 fusions, NUP98-HOXA9 and NUP98-DDX10, whose fusion partners are structurally and functionally unrelated, interacted with endogenous CRM1 in myeloid cells as shown by co-immunoprecipitation. These leukemogenic NUP98 fusion proteins interacted with CRM1, Ran, and the nucleoporin NUP214 in a manner fundamentally different from that of wild-type NUP98. NUP98-HOXA9 and NUP98-DDX10 formed characteristic aggregates within the nuclei of a myeloid cell line and primary human CD34+ cells and caused aberrant localization of CRM1 to these aggregates. These NUP98 fusions caused nuclear accumulation of two transcription factors, NFAT and NFkappaB, that are regulated by CRM1-mediated export. The nuclear entrapment of NFAT and NFkappaB correlated with enhanced transcription from promoters responsive to these transcription factors. Taken together, the results suggest a new mechanism by which NUP98 fusions dysregulate transcription and cause leukemia, namely, inhibition of CRM1-mediated nuclear export with aberrant nuclear retention of transcriptional regulators.

  9. Chemokines derived from soluble fusion proteins expressed in Escherichia coli are biologically active

    SciTech Connect

    Magistrelli, Giovanni; Gueneau, Franck; Muslmani, Machadiya; Ravn, Ulla; Kosco-Vilbois, Marie; Fischer, Nicolas . E-mail: nfischer@novimmune.com

    2005-08-26

    Chemokines are a class of low molecular weight proteins that are involved in leukocytes trafficking. Due to their involvement in recruiting immune cells to sites of inflammation, chemokines, and chemokine receptors have become an attractive class of therapeutic targets. However, when expressed in Escherichia coli chemokines are poorly soluble and accumulate in inclusion bodies. Several purification methods have been described but involve time-consuming refolding, buffer exchange, and purification steps that complicate expression of these proteins. Here, we describe a simple and reliable method to express chemokines as fusions to the protein NusA. The fusion proteins were largely found in the soluble fraction and could be readily purified in a single step. Proteolytic cleavage was used to obtain soluble recombinant chemokines that were found to be very active in a novel in vitro chemotaxis assays. This method could be applied to several {alpha} and {beta} human chemokines, suggesting that it is generally applicable to this class of proteins.

  10. The Endocytic Recycling Protein EHD2 Interacts with Myoferlin to Regulate Myoblast Fusion*

    PubMed Central

    Doherty, Katherine R.; Demonbreun, Alexis R.; Wallace, Gregory Q.; Cave, Andrew; Posey, Avery D.; Heretis, Konstantina; Pytel, Peter; McNally, Elizabeth M.

    2008-01-01

    Skeletal muscle is a multinucleated syncytium that develops and is maintained by the fusion of myoblasts to the syncytium. Myoblast fusion involves the regulated coalescence of two apposed membranes. Myoferlin is a membrane-anchored, multiple C2 domain-containing protein that is highly expressed in fusing myoblasts and required for efficient myoblast fusion to myotubes. We found that myoferlin binds directly to the eps15 homology domain protein, EHD2. Members of the EHD family have been previously implicated in endocytosis as well as endocytic recycling, a process where membrane proteins internalized by endocytosis are returned to the plasma membrane. EHD2 binds directly to the second C2 domain of myoferlin, and EHD2 is reduced in myoferlin null myoblasts. In contrast to normal myoblasts, myoferlin null myoblasts accumulate labeled transferrin and have delayed recycling. Introduction of dominant negative EHD2 into myoblasts leads to the sequestration of myoferlin and inhibition of myoblast fusion. The interaction of myoferlin with EHD2 identifies molecular overlap between the endocytic recycling pathway and the machinery that regulates myoblast membrane fusion. PMID:18502764

  11. Differences in dispersion of influenza virus lipids and proteins during fusion.

    PubMed

    Lowy, R J; Sarkar, D P; Whitnall, M H; Blumenthal, R

    1995-02-01

    Digitally enhanced low-light-level fluorescence video microscopy and immunochemical staining were used to examine influenza virus envelope lipid and protein redistribution during pH-induced fusion. Video microscopy was performed using viruses labeled with either the lipid analogue octadecylrhodamine B (R18) or fluorescein isothiocyanate (FITC) covalently linked to envelope proteins. Viruses were bound to human red blood cells, and the pattern and intensity of fluorescence were monitored for 30 min while cell-virus complexes were perfused with pH 7.4 or 4.8 media at temperatures either above or below 20 degrees C. R18 showed complete redistribution and dequenching by 30 min at all incubation temperatures, confirming reports that viral fusion occurs at subphysiological temperatures. FITC-labeled protein showed spatial redistribution at 28 degrees C but no change at low temperature. Electron microscopy observations of immunochemical staining of viral proteins confirmed both that protein redistribution at 37 degrees C was slower than R18 and the failure of movement within 30 min at 16 degrees C. Video microscopy monitoring of RNA staining by acridine orange of virus-cell complexes showed redistribution to the RBCs at all temperatures but only after low pH-induced fusion. The results are consistent with differential dispersion of viral components into the RBC and the existence of relatively long-lived barriers to diffusion subsequent to fusion pore formation.

  12. Autoprotease N(pro): analysis of self-cleaving fusion protein.

    PubMed

    Wellhoefer, Martin; Sprinzl, Wolfgang; Hahn, Rainer; Jungbauer, Alois

    2013-08-23

    A reversed phase high pressure liquid chromatography method was developed for determination of in vitro refolding and cleavage kinetics for the N(pro) autoprotease fusion peptide EDDIE-pep6His using a TSK Super-Octyl column with a segmented acetonitrile gradient. Self-cleaving fusion proteins such as N(pro) autoprotease fusion proteins consist of the single autoprotease N(pro) and a target peptide or a target protein as fusion partner. Hence, three protein species are present after self-cleavage: the target peptide or protein, the single N(pro) autoprotease and, in case of incomplete cleavage, residual N(pro) fusion protein. Thus, for an accurate analysis the method must be standardized for three components in the presence of host cell impurities. For method validation, protein standards of EDDIE-pep6His and the single N(pro) autoprotease EDDIE were prepared from inclusion bodies (IBs) by ion exchange, immobilized metal ion affinity, size exclusion, and reversed phase chromatography. A linear correlation was obtained for EDDIE-pep6His and EDDIE in the range from 95 to 730μg/ml with a lower limit of quantification (LLOQ) and a lower limit of detection (LLOD) of 34.5 and 11.4μg/ml, respectively, for EDDIE-pep6His and 39.6 and 13.1μg/ml, respectively, for EDDIE. Finally, a fully automated batch refolding of EDDIE-pep6His from IBs was performed to demonstrate the applicability of this method. It was shown that the initial EDDIE-pep6His concentration in the refolding solution decreased from 194.3 to 83.8μg/ml over a refolding time of 385min resulting in a final refolding and cleavage yield of 50%.

  13. Design and characterization of novel recombinant listeriolysin O-protamine fusion proteins for enhanced gene delivery.

    PubMed

    Kim, Na Hyung; Provoda, Chester; Lee, Kyung-Dall

    2015-02-01

    To improve the efficiency of gene delivery for effective gene therapy, it is essential that the vector carries functional components that can promote overcoming barriers in various steps leading to the transport of DNA from extracellular to ultimately nuclear compartment. In this study, we designed genetically engineered fusion proteins as a platform to incorporate multiple functionalities in one chimeric protein. Prototypes of such a chimera tested here contain two domains: one that binds to DNA; the other that can facilitate endosomal escape of DNA. The fusion proteins are composed of listeriolysin O (LLO), the endosomolytic pore-forming protein from Listeria monocytogenes, and a 22 amino acid sequence of the DNA-condensing polypeptide protamine (PN), singly or as a pair: LLO-PN and LLO-PNPN. We demonstrate dramatic enhancement of the gene delivery efficiency of protamine-condensed DNA upon incorporation of a small amount of LLO-PN fusion protein and further improvement with LLO-PNPN in vitro using cultured cells. Additionally, the association of anionic liposomes with cationic LLO-PNPN/protamine/DNA complexes, yielding a net negative surface charge, resulted in better in vitro transfection efficiency in the presence of serum. An initial, small set of data in mice indicated that the observed enhancement in gene expression could also be applicable to in vivo gene delivery. This study suggests that incorporation of a recombinant fusion protein with multiple functional components, such as LLO-protamine fusion protein, in a nonviral vector is a promising strategy for various nonviral gene delivery systems.

  14. Gene Fusions in Soft Tissue Tumors: Recurrent and Overlapping Pathogenetic Themes

    PubMed Central

    Mertens, Fredrik; Antonescu, Cristina R.; Mitelman, Felix

    2016-01-01

    Gene fusions have been described in approximately one-third of soft tissue tumors (STT); of the 142 different fusions that have been reported, more than half are recurrent in the same histologic subtype. These gene fusions constitute pivotal driver mutations, and detailed studies of their cellular effects have provided important knowledge about pathogenetic mechanisms in STT. Furthermore, most fusions are strongly associated with a particular histotype, serving as ideal molecular diagnostic markers. In recent years, it has also become apparent that some chimeric proteins, directly or indirectly, constitute excellent treatment targets, making the detection of gene fusions in STT ever more important. Indeed, pharmacological treatment of STT displaying fusions that activate protein kinases, such as ALK and ROS1, or growth factors, such as PDGFB, is already in clinical use. However, the vast majority (52/78) of recurrent gene fusions create structurally altered and/or deregulated transcription factors, and a small but growing subset develops through rearranged chromatin regulators. The present review provides an overview of the spectrum of currently recognized gene fusions in STT, and, on the basis of the protein class involved, the mechanisms by which they exert their oncogenic effect are discussed. PMID:26684580

  15. Expression, purification, and immobilization of recombinant tamavidin 2 fusion proteins.

    PubMed

    Takakura, Yoshimitsu; Oka, Naomi; Tsunashima, Masako

    2014-01-01

    Tamavidin 2 is a fungal avidin-like protein that binds biotin with high affinity. Unlike avidin or streptavidin, tamavidin 2 in soluble form is produced at high levels in Escherichia coli. In this chapter, we describe a method for immobilization and purification of recombinant proteins with the use of tamavidin 2 as an affinity tag. The protein fused to tamavidin 2 is tightly immobilized and simultaneously purified on biotinylated magnetic microbeads without loss of activity. PMID:24943317

  16. Identification of C/EBPβ Target Genes in ALK+ Anaplastic Large Cell Lymphoma (ALCL) by Gene Expression Profiling and Chromatin Immunoprecipitation

    PubMed Central

    Bonzheim, Irina; Irmler, Martin; Klier-Richter, Margit; Steinhilber, Julia; Anastasov, Nataša; Schäfer, Sabine; Adam, Patrick; Beckers, Johannes; Raffeld, Mark; Fend, Falko; Quintanilla-Martinez, Leticia

    2013-01-01

    C/EBPβ (CCAAT enhancer binding protein) is a transcription factor that plays a crucial role in survival and transformation of ALK+ anaplastic large cell lymphoma (ALCL). The aim of this study was to identify the downstream targets of C/EBPβ responsible for ALK-mediated oncogenesis. C/EBPβ was knocked down in ALK+ ALCL cell lines with a C/EBPβ-shRNA, followed by gene expression profiling (GEP). GEP analysis revealed a reproducible signature of genes that were significantly regulated by C/EBPβ. Classification into biological categories revealed overrepresentation of genes involved in the immune response, apoptosis and cell proliferation. Transcriptional regulation by C/EBPβ was found in 6 of 11 (BCL2A1, G0S2, TRIB1, S100A9, DDX21 and DDIT4) genes investigated by chromatin immunoprecipitation. We demonstrated that BCL2A1, G0S2 and DDX21 play a crucial role in survival and proliferation of ALK+ ALCL cells. DDX21, a gene involved in rRNA biogenesis, was found differentially overexpressed in primary ALK+ ALCL cases. All three candidate genes were validated in primary ALCL cases by either immunohistochemistry or RT-qPCR. In conclusion, we identified and validated several key C/EBPβ-regulated genes with major impact on survival and cell growth in ALK+ ALCL, supporting the central role of C/EBPβ in ALK-mediated oncogenesis. PMID:23741337

  17. The ALK inhibitor PF-06463922 is effective as a single agent in neuroblastoma driven by expression of ALK and MYCN

    PubMed Central

    Guan, J.; Tucker, E. R.; Wan, H.; Chand, D.; Danielson, L. S.; Ruuth, K.; El Wakil, A.; Witek, B.; Jamin, Y.; Umapathy, G.; Robinson, S. P.; Johnson, T. W.; Smeal, T.; Martinsson, T.; Chesler, L.; Palmer, R. H.

    2016-01-01

    ABSTRACT The first-in-class inhibitor of ALK, c-MET and ROS1, crizotinib (Xalkori), has shown remarkable clinical efficacy in treatment of ALK-positive non-small cell lung cancer. However, in neuroblastoma, activating mutations in the ALK kinase domain are typically refractory to crizotinib treatment, highlighting the need for more potent inhibitors. The next-generation ALK inhibitor PF-06463922 is predicted to exhibit increased affinity for ALK mutants prevalent in neuroblastoma. We examined PF-06463922 activity in ALK-driven neuroblastoma models in vitro and in vivo. In vitro kinase assays and cell-based experiments examining ALK mutations of increasing potency show that PF-06463922 is an effective inhibitor of ALK with greater activity towards ALK neuroblastoma mutants. In contrast to crizotinib, single agent administration of PF-06463922 caused dramatic tumor inhibition in both subcutaneous and orthotopic xenografts as well as a mouse model of high-risk neuroblastoma driven by Th-ALKF1174L/MYCN. Taken together, our results suggest PF-06463922 is a potent inhibitor of crizotinib-resistant ALK mutations, and highlights an important new treatment option for neuroblastoma patients. PMID:27483357

  18. Integrin αvβ1 Modulation Affects Subtype B Avian Metapneumovirus Fusion Protein-mediated Cell-Cell Fusion and Virus Infection.

    PubMed

    Yun, Bing-Ling; Guan, Xiao-Lu; Liu, Yong-Zhen; Zhang, Yao; Wang, Yong-Qiang; Qi, Xiao-Le; Cui, Hong-Yu; Liu, Chang-Jun; Zhang, Yan-Ping; Gao, Hong-Lei; Gao, Li; Li, Kai; Gao, Yu-Long; Wang, Xiao-Mei

    2016-07-01

    Avian metapneumovirus (aMPV) fusion (F) protein mediates virus-cell membrane fusion to initiate viral infection, which requires F protein binding to its receptor(s) on the host cell surface. However, the receptor(s) for aMPV F protein is still not identified. All known subtype B aMPV (aMPV/B) F proteins contain a conserved Arg-Asp-Asp (RDD) motif, suggesting that the aMPV/B F protein may mediate membrane fusion via the binding of RDD to integrin. When blocked with integrin-specific peptides, aMPV/B F protein fusogenicity and viral replication were significantly reduced. Specifically we identified integrin αv and/or β1-mediated F protein fusogenicity and viral replication using antibody blocking, small interfering RNAs (siRNAs) knockdown, and overexpression. Additionally, overexpression of integrin αv and β1 in aMPV/B non-permissive cells conferred aMPV/B F protein binding and aMPV/B infection. When RDD was altered to RAE (Arg-Ala-Glu), aMPV/B F protein binding and fusogenic activity were profoundly impaired. These results suggest that integrin αvβ1 is a functional receptor for aMPV/B F protein-mediated membrane fusion and virus infection, which will provide new insights on the fusogenic mechanism and pathogenesis of aMPV. PMID:27226547

  19. A single vesicle-vesicle fusion assay for in vitro studies of SNAREs and accessory proteins

    PubMed Central

    Diao, Jiajie; Ishitsuka, Yuji; Lee, Hanki; Joo, Chirlmin; Su, Zengliu; Syed, Salman; Shin, Yeon-Kyun; Yoon, Tae-Young; Ha, Taekjip

    2015-01-01

    SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins are a highly regulated class of membrane proteins that drive the efficient merger of two distinct lipid bilayers into one interconnected structure. This protocol describes our fluorescence resonance energy transfer (FRET)-based single vesicle-vesicle fusion assays for SNAREs and accessory proteins. Both lipid-mixing (with FRET pairs acting as lipophilic dyes in the membranes) and content-mixing assays (with FRET pairs present on a DNA hairpin that becomes linear via hybridization to a complementary DNA) are described. These assays can be used to detect substages such as docking, hemifusion, and pore expansion and full fusion. The details of flow cell preparation, protein-reconstituted vesicle preparation, data acquisition and analysis are described. These assays can be used to study the roles of various SNARE proteins, accessory proteins and effects of different lipid compositions on specific fusion steps. The total time required to finish one round of this protocol is 3–6 d. PMID:22582418

  20. Enhanced SUMOylation of proteins containing a SUMO-interacting motif by SUMO-Ubc9 fusion

    SciTech Connect

    Kim, Eui Tae; Kim, Kyeong Kyu; Matunis, Mike J.; Ahn, Jin-Hyun

    2009-10-09

    Identifying new targets for SUMO and understanding the function of protein SUMOylation are largely limited by low level of SUMOylation. It was found recently that Ubc9, the SUMO E2 conjugating enzyme, is covalently modified by SUMO at a lysine 14 in the N-terminal alpha helix, and that SUMO-modified Ubc9 has enhanced conjugation activity for certain target proteins containing a SUMO-interacting motif (SIM). Here, we show that, compared to intact Ubc9, the SUMO-Ubc9 fusion protein has higher conjugating activity for SIM-containing targets such as Sp100 and human cytomegalovirus IE2. Assays using an IE2 SIM mutant revealed the requirement of SIM for the enhanced IE2 SUMOylation by SUMO-Ubc9. In pull-down assays with cell extracts, the SUMO-Ubc9 fusion protein bound to more diverse cellular proteins and interacted with some SIM-containing proteins with higher affinities than Ubc9. Therefore, the devised SUMO-Ubc9 fusion will be useful for identifying SIM-containing SUMO targets and producing SUMO-modified proteins.

  1. Studies to Prevent Degradation of Recombinant Fc-Fusion Protein Expressed in Mammalian Cell Line and Protein Characterization

    PubMed Central

    Chakrabarti, Sanjukta; Barrow, Colin J.; Kanwar, Rupinder K.; Ramana, Venkata; Kanwar, Jagat R.

    2016-01-01

    Clipping of recombinant proteins is a major issue in animal cell cultures. A recombinant Fc-fusion protein, VEGFR1(D1–D3)-Fc expressed in CHOK1SV GS-KO cells was observed to be undergoing clippings in lab scale cultures. Partial cleaving of expressed protein initiated early on in cell culture and was observed to increase over time in culture and also on storage. In this study, a few parameters were explored in a bid to inhibit clipping in the fusion protein The effects of culture temperature, duration of culture, the addition of an anti-clumping agent, ferric citrate and use of protease inhibitor cocktail on inhibition of proteolysis of the Fc fusion were studied. Lowering of culture temperature from 37 to 30 °C alone appears to be the best solution for reducing protein degradation from the quality, cost and regulatory points of view. The obtained Fc protein was characterized and found to be in its stable folded state, exhibiting a high affinity for its ligand and also biological and functional activities. PMID:27294920

  2. Studies to Prevent Degradation of Recombinant Fc-Fusion Protein Expressed in Mammalian Cell Line and Protein Characterization.

    PubMed

    Chakrabarti, Sanjukta; Barrow, Colin J; Kanwar, Rupinder K; Ramana, Venkata; Kanwar, Jagat R

    2016-06-09

    Clipping of recombinant proteins is a major issue in animal cell cultures. A recombinant Fc-fusion protein, VEGFR1(D1-D3)-Fc expressed in CHOK1SV GS-KO cells was observed to be undergoing clippings in lab scale cultures. Partial cleaving of expressed protein initiated early on in cell culture and was observed to increase over time in culture and also on storage. In this study, a few parameters were explored in a bid to inhibit clipping in the fusion protein The effects of culture temperature, duration of culture, the addition of an anti-clumping agent, ferric citrate and use of protease inhibitor cocktail on inhibition of proteolysis of the Fc fusion were studied. Lowering of culture temperature from 37 to 30 °C alone appears to be the best solution for reducing protein degradation from the quality, cost and regulatory points of view. The obtained Fc protein was characterized and found to be in its stable folded state, exhibiting a high affinity for its ligand and also biological and functional activities.

  3. Protein delivery to vacuole requires SAND protein-dependent Rab GTPase conversion for MVB-vacuole fusion.

    PubMed

    Singh, Manoj K; Krüger, Falco; Beckmann, Hauke; Brumm, Sabine; Vermeer, Joop E M; Munnik, Teun; Mayer, Ulrike; Stierhof, York-Dieter; Grefen, Christopher; Schumacher, Karin; Jürgens, Gerd

    2014-06-16

    Plasma-membrane proteins such as ligand-binding receptor kinases, ion channels, or nutrient transporters are turned over by targeting to a lytic compartment--lysosome or vacuole--for degradation. After their internalization, these proteins arrive at an early endosome, which then matures into a late endosome with intraluminal vesicles (multivesicular body, MVB) before fusing with the lysosome/vacuole in animals or yeast. The endosomal maturation step involves a SAND family protein mediating Rab5-to-Rab7 GTPase conversion. Vacuolar trafficking is much less well understood in plants. Here we analyze the role of the single-copy SAND gene of Arabidopsis. In contrast to its animal or yeast counterpart, Arabidopsis SAND protein is not required for early-to-late endosomal maturation, although its role in mediating Rab5-to-Rab7 conversion is conserved. Instead, Arabidopsis SAND protein is essential for the subsequent fusion of MVBs with the vacuole. The inability of sand mutant to mediate MVB-vacuole fusion is not caused by the continued Rab5 activity but rather reflects the failure to activate Rab7. In conclusion, regarding the endosomal passage of cargo proteins for degradation, a major difference between plants and nonplant organisms might result from the relative timing of endosomal maturation and SAND-dependent Rab GTPase conversion as a prerequisite for the fusion of late endosomes/MVBs with the lysosome/vacuole.

  4. Anti-Diabetic Effects of CTB-APSL Fusion Protein in Type 2 Diabetic Mice

    PubMed Central

    Liu, Yunlong; Gao, Zhangzhao; Guo, Qingtuo; Wang, Tao; Lu, Conger; Chen, Ying; Sheng, Qing; Chen, Jian; Nie, Zuoming; Zhang, Yaozhou; Wu, Wutong; Lv, Zhengbing; Shu, Jianhong

    2014-01-01

    To determine whether cholera toxin B subunit and active peptide from shark liver (CTB-APSL) fusion protein plays a role in treatment of type 2 diabetic mice, the CTB-APSL gene was cloned and expressed in silkworm (Bombyx mori) baculovirus expression vector system (BEVS), then the fusion protein was orally administrated at a dose of 100 mg/kg for five weeks in diabetic mice. The results demonstrated that the oral administration of CTB-APSL fusion protein can effectively reduce the levels of both fasting blood glucose (FBG) and glycosylated hemoglobin (GHb), promote insulin secretion and improve insulin resistance, significantly improve lipid metabolism, reduce triglycerides (TG), total cholesterol (TC) and low density lipoprotein (LDL) levels and increase high density lipoprotein (HDL) levels, as well as effectively improve the inflammatory response of type 2 diabetic mice through the reduction of the levels of inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Histopathology shows that the fusion protein can significantly repair damaged pancreatic tissue in type 2 diabetic mice, significantly improve hepatic steatosis and hepatic cell cloudy swelling, reduce the content of lipid droplets in type 2 diabetic mice, effectively inhibit renal interstitial inflammatory cells invasion and improve renal tubular epithelial cell nucleus pyknosis, thus providing an experimental basis for the development of a new type of oral therapy for type 2 diabetes. PMID:24633252

  5. Transgenic Carrot Expressing Fusion Protein Comprising M. tuberculosis Antigens Induces Immune Response in Mice

    PubMed Central

    Permyakova, Natalia V.; Zagorskaya, Alla A.; Belavin, Pavel A.; Uvarova, Elena A.; Nosareva, Olesya V.; Nesterov, Andrey E.; Novikovskaya, Anna A.; Zav'yalov, Evgeniy L.; Moshkin, Mikhail P.; Deineko, Elena V.

    2015-01-01

    Tuberculosis remains one of the major infectious diseases, which continues to pose a major global health problem. Transgenic plants may serve as bioreactors to produce heterologous proteins including antibodies, antigens, and hormones. In the present study, a genetic construct has been designed that comprises the Mycobacterium tuberculosis genes cfp10, esat6 and dIFN gene, which encode deltaferon, a recombinant analog of the human γ-interferon designed for expression in plant tissues. This construct was transferred to the carrot (Daucus carota L.) genome by Agrobacterium-mediated transformation. This study demonstrates that the fusion protein CFP10-ESAT6-dIFN is synthesized in the transgenic carrot storage roots. The protein is able to induce both humoral and cell-mediated immune responses in laboratory animals (mice) when administered either orally or by injection. It should be emphasized that M. tuberculosis antigens contained in the fusion protein have no cytotoxic effect on peripheral blood mononuclear cells. PMID:25949997

  6. Concurrent progress of reprogramming and gene correction to overcome therapeutic limitation of mutant ALK2-iPSC

    PubMed Central

    Kim, Bu-Yeo; Jeong, SangKyun; Lee, Seo-Young; Lee, So Min; Gweon, Eun Jeong; Ahn, Hyunjun; Kim, Janghwan; Chung, Sun-Ku

    2016-01-01

    Fibrodysplasia ossificans progressiva (FOP) syndrome is caused by mutation of the gene ACVR1, encoding a constitutive active bone morphogenetic protein type I receptor (also called ALK2) to induce heterotopic ossification in the patient. To genetically correct it, we attempted to generate the mutant ALK2-iPSCs (mALK2-iPSCs) from FOP-human dermal fibroblasts. However, the mALK2 leads to inhibitory pluripotency maintenance, or impaired clonogenic potential after single-cell dissociation as an inevitable step, which applies gene-correction tools to induced pluripotent stem cells (iPSCs). Thus, current iPSC-based gene therapy approach reveals a limitation that is not readily applicable to iPSCs with ALK2 mutation. Here we developed a simplified one-step procedure by simultaneously introducing reprogramming and gene-editing components into human fibroblasts derived from patient with FOP syndrome, and genetically treated it. The mixtures of reprogramming and gene-editing components are composed of reprogramming episomal vectors, CRISPR/Cas9-expressing vectors and single-stranded oligodeoxynucleotide harboring normal base to correct ALK2 c.617G>A. The one-step-mediated ALK2 gene-corrected iPSCs restored global gene expression pattern, as well as mineralization to the extent of normal iPSCs. This procedure not only helps save time, labor and costs but also opens up a new paradigm that is beyond the current application of gene-editing methodologies, which is hampered by inhibitory pluripotency-maintenance requirements, or vulnerability of single-cell-dissociated iPSCs. PMID:27256111

  7. C-E1 fusion protein synthesized by rubella virus DI RNAs maintained during serial passage

    SciTech Connect

    Tzeng, W.-P.; Frey, Teryl K. . E-mail: tfrey@gsu.edu

    2006-12-20

    Rubella virus (RUB) replicons are derivatives of the RUB infectious cDNA clone that retain the nonstructural open reading frame (NS-ORF) that encodes the replicase proteins but not the structural protein ORF (SP-ORF) that encodes the virion proteins. RUB defective interfering (DI) RNAs contain deletions within the SP-ORF and thus resemble replicons. DI RNAs often retain the 5' end of the capsid protein (C) gene that has been shown to modulate virus-specific RNA synthesis. However, when replicons either with or without the C gene were passaged serially in the presence of wt RUB as a source of the virion proteins, it was found that neither replicon was maintained and DI RNAs were generated. The majority DI RNA species contained in-frame deletions in the SP-ORF leading to a fusion between the 5' end of the C gene and the 3' end of the E1 glycoprotein gene. DI infectious cDNA clones were constructed and transcripts from these DI infectious cDNA clones were maintained during serial passage with wt RUB. The C-E1 fusion protein encoded by the DI RNAs was synthesized and was required for maintenance of the DI RNA during serial passage. This is the first report of a functional novel gene product resulting from deletion during DI RNA generation. Thus far, the role of the C-E1 fusion protein in maintenance of DI RNAs during serial passage remained elusive as it was found that the fusion protein diminished rather than enhanced DI RNA synthesis and was not incorporated into virus particles.

  8. Transgenic plants expressing ω-ACTX-Hv1a and snowdrop lectin (GNA) fusion protein show enhanced resistance to aphids.

    PubMed

    Nakasu, Erich Y T; Edwards, Martin G; Fitches, Elaine; Gatehouse, John A; Gatehouse, Angharad M R

    2014-01-01

    Recombinant fusion proteins containing arthropod toxins have been developed as a new class of biopesticides. The recombinant fusion protein Hv1a/GNA, containing the spider venom toxin ω-ACTX-Hv1a linked to snowdrop lectin (GNA) was shown to reduce survival of the peach-potato aphid Myzus persicae when delivered in artificial diet, with survival <10% after 8 days exposure to fusion protein at 1 mg/ml. Although the fusion protein was rapidly degraded by proteases in the insect, Hv1a/GNA oral toxicity to M. persicae was significantly greater than GNA alone. A construct encoding the fusion protein, including the GNA leader sequence, under control of the constitutive CaMV 35S promoter was transformed into Arabidopsis; the resulting plants contained intact fusion protein in leaf tissues at an estimated level of 25.6 ± 4.1 ng/mg FW. Transgenic Arabidopsis expressing Hv1a/GNA induced up to 40% mortality of M. persicae after 7 days exposure in detached leaf bioassays, demonstrating that transgenic plants can deliver fusion proteins to aphids. Grain aphids (Sitobion avenae) were more susceptible than M. persicae to the Hv1a/GNA fusion protein in artificial diet bioassays (LC50 = 0.73 mg/ml after 2 days against LC50 = 1.81 mg/ml for M. persicae), as they were not able to hydrolyze the fusion protein as readily as M. persicae. Expression of this fusion protein in suitable host plants for the grain aphid is likely to confer higher levels of resistance than that shown with the M. persicae/Arabidopsis model system.

  9. A general method for the covalent labeling of fusion proteins with small molecules in vivo.

    PubMed

    Keppler, Antje; Gendreizig, Susanne; Gronemeyer, Thomas; Pick, Horst; Vogel, Horst; Johnsson, Kai

    2003-01-01

    Characterizing the movement, interactions, and chemical microenvironment of a protein inside the living cell is crucial to a detailed understanding of its function. Most strategies aimed at realizing this objective are based on genetically fusing the protein of interest to a reporter protein that monitors changes in the environment of the coupled protein. Examples include fusions with fluorescent proteins, the yeast two-hybrid system, and split ubiquitin. However, these techniques have various limitations, and considerable effort is being devoted to specific labeling of proteins in vivo with small synthetic molecules capable of probing and modulating their function. These approaches are currently based on the noncovalent binding of a small molecule to a protein, the formation of stable complexes between biarsenical compounds and peptides containing cysteines, or the use of biotin acceptor domains. Here we describe a general method for the covalent labeling of fusion proteins in vivo that complements existing methods for noncovalent labeling of proteins and that may open up new ways of studying proteins in living cells.

  10. Purification of recombinant protein by cold-coacervation of fusion constructs incorporating resilin-inspired polypeptides.

    PubMed

    Lyons, Russell E; Elvin, Christopher M; Taylor, Karin; Lekieffre, Nicolas; Ramshaw, John A M

    2012-12-01

    Polypeptides containing between 4 and 32 repeats of a resilin-inspired sequence AQTPSSYGAP, derived from the mosquito Anopheles gambiae, have been used as tags on recombinant fusion proteins. These repeating polypeptides were inspired by the repeating structures that are found in resilins and sequence-related proteins from various insects. Unexpectedly, an aqueous solution of a recombinant resilin protein displays an upper critical solution temperature (cold-coacervation) when held on ice, leading to a separation into a protein rich phase, typically exceeding 200 mg/mL, and a protein-poor phase. We show that purification of recombinant proteins by cold-coacervation can be performed when engineered as a fusion partner to a resilin-inspired repeat sequence. In this study, we demonstrate the process by the recombinant expression and purification of enhanced Green fluorescent protein (EGFP) in E. coli. This facile purification system can produce high purity, concentrated protein solutions without the need for affinity chromatography or other time-consuming or expensive purification steps, and that it can be used with other bulk purification steps such as low concentration ammonium sulfate precipitation. Protein purification by cold-coacervation also minimizes the exposure of the target protein to enhanced proteolysis at higher temperature.

  11. Immunization with a pentameric L1 fusion protein protects against papillomavirus infection.

    PubMed

    Yuan, H; Estes, P A; Chen, Y; Newsome, J; Olcese, V A; Garcea, R L; Schlegel, R

    2001-09-01

    The prophylactic papillomavirus vaccines currently in clinical trials are composed of viral L1 capsid protein that is synthesized in eukaryotic expression systems and purified in the form of virus-like particles (VLPs). To evaluate whether VLPs are necessary for effective vaccination, we expressed the L1 protein as a glutathione S-transferase (GST) fusion protein in Escherichia coli and assayed its immunogenic activity in an established canine oral papillomavirus (COPV) model that previously validated the efficacy of VLP vaccines. The GST-COPV L1 fusion protein formed pentamers, but these capsomere-like structures did not assemble into VLPs. Despite the lack of VLP formation, the GST-COPV L1 protein retained its native conformation as determined by reactivity with conformation-specific anti-COPV antibodies. Most importantly, the GST-COPV L1 pentamers completely protected dogs from high-dose viral infection of their oral mucosa. L1 fusion proteins expressed in bacteria represent an economical alternative to VLPs as a human papillomavirus vaccine. PMID:11483728

  12. Construction of a linker library with widely controllable flexibility for fusion protein design.

    PubMed

    Li, Gang; Huang, Ziliang; Zhang, Chong; Dong, Bo-Jun; Guo, Ruo-Hai; Yue, Hong-Wei; Yan, Li-Tang; Xing, Xin-Hui

    2016-01-01

    Flexibility or rigidity of the linker between two fused proteins is an important parameter that affects the function of fusion proteins. In this study, we constructed a linker library with five elementary units based on the combination of the flexible (GGGGS) and the rigid (EAAAK) units. Molecular dynamics (MD) simulation showed that more rigid units in the linkers lead to more helical conformation and hydrogen bonds, and less distance fluctuation between the N- and C-termini of the linker. The diversity of linker flexibility of the linker library was then studied by fluorescence resonance energy transfer (FRET) of cyan fluorescent protein (CFP)-yellow fluorescent protein (YFP) fusion proteins, which showed that there is a wide range of distribution of the FRET efficiency. Dissipative particle dynamics (DPD) simulation of CFP-YFP with different linkers also gave identical results with that of FRET efficiency analysis, and we further found that the combination manner of the linker peptide had a remarkable effect on the orientation of CFP and YFP domains. Our studies demonstrated that the construction of the linker library with the widely controllable flexibility could provide appropriate linkers with the desirable characteristics to engineer the fusion proteins with the expected functions. PMID:26394862

  13. Impaired telomerase activity in human cells expressing GFP-Ku86 fusion proteins.

    PubMed

    Badie, C; Yáñez-Muñoz, R J; Muller, C; Salles, B; Porter, A C G

    2008-01-01

    The Ku heterodimer is a DNA end-binding protein that promotes the non-homologous end joining (NHEJ) pathway of DNA double strand break (DSB) repair by recruiting the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs). Ku is also a normal component of telomeres where it is required for telomere maintenance, interacting not only with the DNA but also with various telomere proteins including telomerase. The way in which Ku simultaneously plays such distinct roles, end-joining at DSBs and end-maintenance at telomeres, is unclear. One way to address this is to study cells in which the NHEJ and telomeric roles of Ku have been separated. Here we describe human cells that express fusions between the large human Ku subunit (Ku86) and a fluorescent protein tag. These cells have reduced telomerase activity and increased sensitivity to ionizing radiation (IR) but no change in their DNA-PK activity or in the DNA end-binding of endogenous Ku. Cells with particularly large amounts of one fusion protein undergo progressive telomere shortening and cellular senescence. These data are consistent with models in which Ku recruits telomerase to telomeres or activates recruited telomerase and suggest that the Ku86 fusion proteins specifically block this role. PMID:19188702

  14. An Efficient Genome-Wide Fusion Partner Screening System for Secretion of Recombinant Proteins in Yeast

    PubMed Central

    Bae, Jung-Hoon; Hyun Sung, Bong; Kim, Hyun-Jin; Park, Soon-Ho; Lim, Kwang-Mook; Kim, Mi-Jin; Lee, Cho-Ryong; Sohn, Jung-Hoon

    2015-01-01

    To produce rarely secreted recombinant proteins in the yeast Saccharomyces cerevisiae, we developed a novel genome-wide optimal translational fusion partner (TFP) screening system that involves recruitment of an optimal secretion signal and fusion partner. A TFP library was constructed from a genomic and truncated cDNA library by using the invertase-based signal sequence trap technique. The efficiency of the system was demonstrated using two rarely secreted proteins, human interleukin (hIL)-2 and hIL-32. Optimal TFPs for secretion of hIL-2 and hIL-32 were easily selected, yielding secretion of these proteins up to hundreds of mg/L. Moreover, numerous uncovered yeast secretion signals and fusion partners were identified, leading to efficient secretion of various recombinant proteins. Selected TFPs were found to be useful for the hypersecretion of other recombinant proteins at yields of up to several g/L. This screening technique could provide new methods for the production of various types of difficult-to-express proteins. PMID:26195161

  15. Construction of a linker library with widely controllable flexibility for fusion protein design.

    PubMed

    Li, Gang; Huang, Ziliang; Zhang, Chong; Dong, Bo-Jun; Guo, Ruo-Hai; Yue, Hong-Wei; Yan, Li-Tang; Xing, Xin-Hui

    2016-01-01

    Flexibility or rigidity of the linker between two fused proteins is an important parameter that affects the function of fusion proteins. In this study, we constructed a linker library with five elementary units based on the combination of the flexible (GGGGS) and the rigid (EAAAK) units. Molecular dynamics (MD) simulation showed that more rigid units in the linkers lead to more helical conformation and hydrogen bonds, and less distance fluctuation between the N- and C-termini of the linker. The diversity of linker flexibility of the linker library was then studied by fluorescence resonance energy transfer (FRET) of cyan fluorescent protein (CFP)-yellow fluorescent protein (YFP) fusion proteins, which showed that there is a wide range of distribution of the FRET efficiency. Dissipative particle dynamics (DPD) simulation of CFP-YFP with different linkers also gave identical results with that of FRET efficiency analysis, and we further found that the combination manner of the linker peptide had a remarkable effect on the orientation of CFP and YFP domains. Our studies demonstrated that the construction of the linker library with the widely controllable flexibility could provide appropriate linkers with the desirable characteristics to engineer the fusion proteins with the expected functions.

  16. Recombinant Human Bone Morphogenetic Protein-2 in Posterolateral Spinal Fusion: What's the Right Dose?

    PubMed Central

    Jones, Clifford Barry; Sietsema, Debra Lynn

    2016-01-01

    Study Design Single center retrospective cohort analysis. Purpose The goal was to evaluate the influence of varying amount of recombinant human bone morphogenetic protein 2 (rhBMP-2) per level on fusion rates and complications in posterolateral spinal fusions. Overview of Literature rhBMP-2 has been utilized for lumbar posterolateral fusions for many years. Initial rhBMP-2 recommendations were 20 mg/level of fusion. Dose and concentration per level in current studies vary from 4.2 to 40 mg and 1.5 to 2.0 mg/mL, respectively. Variable fusion and complication rates have been reported. Methods Patients (n=1,610) undergoing instrumented lumbar spinal fusion (2003–2009) with utilization of rhBMP-2 were retrospectively evaluated. Patient demographics, body mass index (BMI), comorbidities, number of levels, associated interbody fusion, and types of bone void filler were analyzed. Fusions rates and nonunions were subdivided into number of levels and amount of rhBMP-2 used per level. Results Patients (n=559) were evaluated with 58.5% females having an average age of 63 years, BMI of 31 kg/m2. Number of levels fused ranged from 1 to 8. rhBMP-2 averaged 7.3 mg/level (range, 1.5–24 mg/level) based upon length of collagen sponge in relation to length of fusion levels. Patients with non-union formation had lower rhBMP-2 dose per level (p=0.016). A significant difference in non-union rate was found between patients undergoing fusion with <6 mg/level compared to those with >6 mg/level (9.1% vs. 2.4%, χ2=0.012). No significant differences were noted between 6–11.9 mg/level and ≥12 mg/level. No threshold was found for seroma formation or bone overgrowth. Conclusions Previous recommendation of 20 mg/level of rhBMP-2 is more than what is required for predictable fusion rates of 98%. No dose related increase of infection, seroma formation, and bone overgrowth has been found. In order to provide variable dosing and cost reduction, industry generated rhBMP-2 kit size should be

  17. A novel acquired ALK F1245C mutation confers resistance to crizotinib in ALK-positive NSCLC but is sensitive to ceritinib.

    PubMed

    Kodityal, Sandeep; Elvin, Julia A; Squillace, Rachel; Agarwal, Nikita; Miller, Vincent A; Ali, Siraj M; Klempner, Samuel J; Ou, Sai-Hong Ignatius

    2016-02-01

    The emergence of acquired anaplastic lymphoma kinase (ALK) resistant mutations is a common molecular mechanism underpinning disease progression during crizotinib treatment of ALK-positive (ALK+) non-small cell lung cancer (NSCLC) patients. Identifying acquired resistance mutations in ALK is paramount for tailoring future therapy with second generation ALK inhibitors and beyond. Comprehensive genomic profiling using hybrid-capture next generation sequencing has been successful in identifying acquired ALK resistance mutations. Here we described the emergence of an ALK F1245C mutation in an advanced ALK+ NSCLC patient (EML4-ALK variant 3a/b) who developed slow disease progression after a durable response to crizotinib. The patient was eventually switched to ceritinib with on-going clinical response. This is the first patient report that ALK F1245C is an acquired resistance mutation to crizotinib that can be overcome by ceritinib. PMID:26775591

  18. Safety assessment of Cry1Ab/Ac fusion protein.

    PubMed

    Xu, Wentao; Cao, Sishuo; He, Xiaoyun; Luo, Yunbo; Guo, Xing; Yuan, Yanfang; Huang, Kunlun

    2009-07-01

    Cry1ab/ac gene was fused by both the cry1ab gene (GenBank Accession No. X54939) and the cry1ac gene (GenBank Accession No. Y09787), which was widely used in genetically modified (GM) rice, cotton, maize and so on. In order to support the safety assessment of GM food or feed products containing Cry1Ab/Ac protein, sufficient quantities of Cry1Ab/Ac protein were produced in Escherichia coli for in vitro evaluation and animal studies. The Cry1Ab/Ac protein does not possess the characteristics associated with food toxins or allergens, i.e., it has no sequence homology with any known allergens or toxins, and no N-glycosylation sites, can be rapidly degraded in gastric and intestinal fluids, and is devoid of adverse effects in mice by gavage at a high dose level of 5g (Cry1Ab/Ac protein)/kg body weight. In conclusion, there is a reasonable certainty of no harm resulting from the inclusion of the Cry1Ab/Ac protein in human food or animal feed.

  19. The BAR domain proteins: molding membranes in fission, fusion, and phagy.

    PubMed

    Ren, Gang; Vajjhala, Parimala; Lee, Janet S; Winsor, Barbara; Munn, Alan L

    2006-03-01

    The Bin1/amphiphysin/Rvs167 (BAR) domain proteins are a ubiquitous protein family. Genes encoding members of this family have not yet been found in the genomes of prokaryotes, but within eukaryotes, BAR domain proteins are found universally from unicellular eukaryotes such as yeast through to plants, insects, and vertebrates. BAR domain proteins share an N-terminal BAR domain with a high propensity to adopt alpha-helical structure and engage in coiled-coil interactions with other proteins. BAR domain proteins are implicated in processes as fundamental and diverse as fission of synaptic vesicles, cell polarity, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, signal transduction, apoptosis, secretory vesicle fusion, excitation-contraction coupling, learning and memory, tissue differentiation, ion flux across membranes, and tumor suppression. What has been lacking is a molecular understanding of the role of the BAR domain protein in each process. The three-dimensional structure of the BAR domain has now been determined and valuable insight has been gained in understanding the interactions of BAR domains with membranes. The cellular roles of BAR domain proteins, characterized over the past decade in cells as distinct as yeasts, neurons, and myocytes, can now be understood in terms of a fundamental molecular function of all BAR domain proteins: to sense membrane curvature, to bind GTPases, and to mold a diversity of cellular membranes. PMID:16524918

  20. The BAR Domain Proteins: Molding Membranes in Fission, Fusion, and Phagy

    PubMed Central

    Ren, Gang; Vajjhala, Parimala; Lee, Janet S.; Winsor, Barbara; Munn, Alan L.

    2006-01-01

    The Bin1/amphiphysin/Rvs167 (BAR) domain proteins are a ubiquitous protein family. Genes encoding members of this family have not yet been found in the genomes of prokaryotes, but within eukaryotes, BAR domain proteins are found universally from unicellular eukaryotes such as yeast through to plants, insects, and vertebrates. BAR domain proteins share an N-terminal BAR domain with a high propensity to adopt α-helical structure and engage in coiled-coil interactions with other proteins. BAR domain proteins are implicated in processes as fundamental and diverse as fission of synaptic vesicles, cell polarity, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, signal transduction, apoptosis, secretory vesicle fusion, excitation-contraction coupling, learning and memory, tissue differentiation, ion flux across membranes, and tumor suppression. What has been lacking is a molecular understanding of the role of the BAR domain protein in each process. The three-dimensional structure of the BAR domain has now been determined and valuable insight has been gained in understanding the interactions of BAR domains with membranes. The cellular roles of BAR domain proteins, characterized over the past decade in cells as distinct as yeasts, neurons, and myocytes, can now be understood in terms of a fundamental molecular function of all BAR domain proteins: to sense membrane curvature, to bind GTPases, and to mold a diversity of cellular membranes. PMID:16524918

  1. Nuclear localization and hepatic zonation of rat "spot 14" protein: immunohistochemical investigation employing anti-fusion protein antibodies.

    PubMed

    Kinlaw, W B; Tron, P; Friedmann, A S

    1992-12-01

    S14 protein and mRNA levels are rapidly regulated by hormones and diet. We have purified a 45-Kd fusion protein from lysates of transformed E. coli that includes the entire S14 polypeptide. Affinity-purified rabbit anti-fusion protein antibodies were used in immunohistochemistry to determine the distribution of S14 protein across the hepatic lobule, and to reassess its intracellular location. In hyperthyroid liver, S14 protein clustered near the central venous zone, and was not detectable in the periportal area of the acinus. The signal in perivenous hepatocytes was primarily nuclear in location, in stark contrast to previous subcellular fractionation studies. Visualization of identical hepatic distribution and subcellular localization employing anti-synthetic peptide antiserum provided evidence for the specificity of the immunostaining, as did attenuation of the signal by preincubation of the antibody with its antigen. No staining was observed in sections of heart or hypothyroid liver, as expected from the low levels of S14 protein in those tissues. The data indicate that induction of S14 protein expression by T3 occurs through enhanced expression by perivenous hepatocytes, rather than by recruitment of cells in more peripheral zones of the lobule. Nuclear localization of the S14 protein by immunohistochemistry suggests that it is lost from nuclei during standard fractionation procedures, and prompts consideration of a role for S14 in regulation of nuclear structure and/or function.

  2. Preparation of λN-GST fusion protein for affinity immobilization of RNA.

    PubMed

    Di Tomasso, Geneviève; Lampron, Philipe; Omichinski, James G; Legault, Pascale

    2012-01-01

    Affinity purification of in vitro transcribed RNA is becoming an attractive alternative to purification using standard denaturing gel electrophoresis. Affinity purification is particularly advantageous because it can be performed in a few hours under non-denaturing conditions. However, the performance of affinity purification methods can vary tremendously depending on the RNA immobilization matrix. It was previously shown that RNA immobilization via an optimized λN-GST fusion protein bound to glutathione-Sepharose resin allows affinity purification of RNA with very high purity and yield. This Chapter outlines the experimental procedure employed to prepare the λN-GST fusion protein used for RNA immobilization in successful affinity purifications of RNA. It describes the details of protein expression and purification as well as routine quality control analyses. PMID:23065558

  3. Sorting of growth hormone-erythropoietin fusion proteins in rat salivary glands

    SciTech Connect

    Samuni, Yuval Zheng Changyu; Cawley, Niamh X.; Cotrim, Ana P.; Loh, Y. Peng; Baum, Bruce J.

    2008-08-15

    Neuroendocrine and exocrine cells secrete proteins in either a constitutive manner or via the regulated secretory pathway (RSP), but the specific sorting mechanisms involved are not fully understood. After gene transfer to rat salivary glands, the transgenic model proteins human growth hormone (hGH) and erythropoietin (hEpo) are secreted primarily into saliva (RSP; exocrine) and serum (constitutive; endocrine), respectively. We hypothesized that fusion of hGH at either the C-terminus or the N-terminus of hEpo would re-direct hEpo from the bloodstream into saliva. We constructed and expressed two fusion proteins, hEpo-hGH and hGH-hEpo, using serotype 5-adenoviral vectors, and delivered them to rat submandibular glands in vivo via retroductal cannulation. Both the hEpo-hGH and hGH-hEpo fusion proteins, but not hEpo alone, were secreted primarily into saliva (p < 0.0001 and p = 0.0083, respectively). These in vivo studies demonstrate for the first time that hGH, in an N- as well as C-terminal position, influences the secretion of a constitutive pathway protein.

  4. Domain fusion analysis by applying relational algebra to protein sequence and domain databases

    PubMed Central

    Truong, Kevin; Ikura, Mitsuhiko

    2003-01-01

    Background Domain fusion analysis is a useful method to predict functionally linked proteins that may be involved in direct protein-protein interactions or in the same metabolic or signaling pathway. As separate domain databases like BLOCKS, PROSITE, Pfam, SMART, PRINTS-S, ProDom, TIGRFAMs, and amalgamated domain databases like InterPro continue to grow in size and quality, a computational method to perform domain fusion analysis that leverages on these efforts will become increasingly powerful. Results This paper proposes a computational method employing relational algebra to find domain fusions in protein sequence databases. The feasibility of this method was illustrated on the SWISS-PROT+TrEMBL sequence database using domain predictions from the Pfam HMM (hidden Markov model) database. We identified 235 and 189 putative functionally linked protein partners in H. sapiens and S. cerevisiae, respectively. From scientific literature, we were able to confirm many of these functional linkages, while the remainder offer testable experimental hypothesis. Results can be viewed at . Conclusion As the analysis can be computed quickly on any relational database that supports standard SQL (structured query language), it can be dynamically updated along with the sequence and domain databases, thereby improving the quality of predictions over time. PMID:12734020

  5. The NPM-ALK tyrosine kinase mimics TCR signalling pathways, inducing NFAT and AP-1 by RAS-dependent mechanisms.

    PubMed

    Turner, Suzanne D; Yeung, Debra; Hadfield, Kathryn; Cook, Simon J; Alexander, Denis R

    2007-04-01

    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) expression is associated with the lymphoid malignancy anaplastic large cell lymphoma (ALCL) and results from a t(2;5) chromosomal translocation. We show that NPM-ALK induces Ras activation and phosphorylation of the ERK MAP Kinase consistent with activation of the Ras-MAP Kinase pathway. Furthermore, we demonstrate that activation of Ras is necessary for inducing transcription via NFAT/AP-1 composite transcriptional binding sites. This activity is dependent on NPM-ALK forming complexes with proteins that bind to autophosphorylated tyrosine residues at positions 156, 567 and 664, associated with binding to IRS-1, Shc and PLCgamma, respectively. Specifically, NPM-ALK activates transcription from the TRE promoter element, an AP-1 binding region, an activity dependent on both Ras and Shc activity. Our results show that NPM-ALK mimics activated T-cell receptor signalling by inducing pathways associated with the activation of NFAT/AP-1 transcription factors that bind to promoter elements found in a broad array of cytokine genes.

  6. GPo1 alkB gene expression for improvement of the degradation of diesel oil by a bacterial consortium

    PubMed Central

    Luo, Qun; He, Ying; Hou, Deng-Yong; Zhang, Jian-Guo; Shen, Xian-Rong

    2015-01-01

    To facilitate the biodegradation of diesel oil, an oil biodegradation bacterial consortium was constructed. The alkane hydroxylase (alkB) gene of Pseudomonas putida GPo1 was constructed in a pCom8 expression vector, and the pCom8-GPo1 alkB plasmid was transformed into Escherichia coli DH5α. The AlkB protein was expressed by diesel oil induction and detected through SDS-polyacrylamide gel electrophoresis. The culture of the recombinant (pCom8-GPo1 alkB/E. coli DH5α) with the oil biodegradation bacterial consortium increased the degradation ratio of diesel oil at 24 h from 31% to 50%, and the facilitation rates were increased as the proportion of pCom8-GPo1 alkB/E. coli DH5α to the consortium increased. The results suggested that the expression of the GPo1 gene in E. coli DH5α could enhance the function of diesel oil degradation by the bacterial consortium. PMID:26413044

  7. Identification of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts.

    PubMed

    Scarfò, Irene; Pellegrino, Elisa; Mereu, Elisabetta; Kwee, Ivo; Agnelli, Luca; Bergaggio, Elisa; Garaffo, Giulia; Vitale, Nicoletta; Caputo, Manuel; Machiorlatti, Rodolfo; Circosta, Paola; Abate, Francesco; Barreca, Antonella; Novero, Domenico; Mathew, Susan; Rinaldi, Andrea; Tiacci, Enrico; Serra, Sara; Deaglio, Silvia; Neri, Antonino; Falini, Brunangelo; Rabadan, Raul; Bertoni, Francesco; Inghirami, Giorgio; Piva, Roberto

    2016-01-14

    Anaplastic large-cell lymphoma (ALCL) is a clinical and biological heterogeneous disease that includes systemic anaplastic lymphoma kinase (ALK)-positive and ALK-negative entities. To discover biomarkers and/or genes involved in ALK-negative ALCL pathogenesis, we applied the cancer outlier profile analysis algorithm to a gene expression profiling data set including 249 cases of T-cell non-Hodgkin lymphoma and normal T cells. Ectopic coexpression of ERBB4 and COL29A1 genes was detected in 24% of ALK-negative ALCL patients. RNA sequencing and 5' RNA ligase-mediated rapid amplification of complementary DNA ends identified 2 novel ERBB4-truncated transcripts displaying intronic transcription start sites. By luciferase assays, we defined that the expression of ERBB4-aberrant transcripts is promoted by endogenous intronic long terminal repeats. ERBB4 expression was confirmed at the protein level by western blot analysis and immunohistochemistry. Lastly, we demonstrated that ERBB4-truncated forms show oncogenic potentials and that ERBB4 pharmacologic inhibition partially controls ALCL cell growth and disease progression in an ERBB4-positive patient-derived tumorgraft model. In conclusion, we identified a new subclass of ALK-negative ALCL characterized by aberrant expression of ERBB4-truncated transcripts carrying intronic 5' untranslated regions. PMID:26463425

  8. Targeting antitumor effect of rhTNF-α fusion protein mediated by matrix metalloproteinase-2.

    PubMed

    Shao, Xin; Ren, Hui; Wang, Yue-Li; Wang, Fa; Hou, Gan; Huang, Di-Nan

    2015-02-01

    The aim of this study was to examine the tumor therapy, targeting effects and side effects of tumor-targeting rhTNF-α fusion protein mediated by matrix metalloproteinase-2 in an animal model in order to provide experimental data for future development of drugs. The median lethal dose (LD50) was obtained from acute toxicity experiments. The A549 lung cancer xenograft model was established, and then randomly divided into the saline, standard substance, and low-, middle- and high-dose fusion protein experiment groups. Each group was administered drugs for 18 days. The length and width of the xenografts were measured every three days, after which the xenograft growth curve was drawn. The mice were sacrificed in each group following treatment and the tumor volume and weight were measured. The targeting, effectiveness and toxicity of the transformed fusion protein, and pathological changes of tumor and organ tissues were examined by hematoxylin and eosin (H&E) staining. Additionally, biochemical markers were used to detect damage of various organs after protein processing. Cell apoptosis and angiogenesis were determined using terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling (TUNEL) testing and immunohistochemistry, respectively, in different dose groups. Tumor growth was markedly retarded in the high-dose experimental and standard hTNF-α groups with antitumor rates of 85.91 and 72.25%, respectively, as compared with the control group. Furthermore, the tumor tissue showed obvious apoptosis (the apoptotic index was 78.78 and 66.65%, respectively) and pathological changes in the high-dose experimental and standard hTNF-α groups. Tumor angiogenesis in each fusion protein group was inhibited (P<0.01) and the biochemical markers of various organs were greatly reduced in the high-dose experimental group (P<0.05). This finding indicated that slight toxic effects of fusion proteins were evident for the heart, liver and kidney. The reforming fusion protein

  9. ALK F1174V mutation confers sensitivity while ALK I1171 mutation confers resistance to alectinib. The importance of serial biopsy post progression.

    PubMed

    Ou, Sai-Hong; Milliken, Jeffrey C; Azada, Michele C; Miller, Vincent A; Ali, Siraj M; Klempner, Samuel J

    2016-01-01

    Many acquired resistant mutations to the anaplastic lymphoma kinase (ALK) gene have been identified during treatment of ALK-rearranged non-small cell lung cancer (NSCLC) patients with crizotinib, ceritinib, and alectinib. These various acquired resistant ALK mutations confer differential sensitivities to various ALK inhibitors and may provide guidance on how to sequence the use of many of the second generation ALK inhibitors. We described a patient who developed an acquired ALK F1174V resistant mutation on progression from crizotinib that responded to alectinib for 18 months but then developed an acquired ALK I1171S mutation to alectinib. Both tumor samples had essentially the same genomic profile by comprehensive genomic profiling otherwise. This is the first patient report that demonstrates ALK F1174V mutation is sensitive to alectinib and further confirms missense acquired ALK I1171 mutation is resistant to alectinib. Sequential tumor re-biopsy for comprehensive genomic profiling (CGP) is important to appreciate the selective pressure during treatment with various ALK inhibitors underpinning the evolution of the disease course of ALK+NSCLC patients while on treatment with the various ALK inhibitors. This approach will likely help inform the optimal sequencing strategy as more ALK inhibitors become available. This case report also validates the importance of developing structurally distinct ALK inhibitors for clinical use to overcome non-cross resistant ALK mutations. PMID:26464158

  10. ALK F1174V mutation confers sensitivity while ALK I1171 mutation confers resistance to alectinib. The importance of serial biopsy post progression.

    PubMed

    Ou, Sai-Hong; Milliken, Jeffrey C; Azada, Michele C; Miller, Vincent A; Ali, Siraj M; Klempner, Samuel J

    2016-01-01

    Many acquired resistant mutations to the anaplastic lymphoma kinase (ALK) gene have been identified during treatment of ALK-rearranged non-small cell lung cancer (NSCLC) patients with crizotinib, ceritinib, and alectinib. These various acquired resistant ALK mutations confer differential sensitivities to various ALK inhibitors and may provide guidance on how to sequence the use of many of the second generation ALK inhibitors. We described a patient who developed an acquired ALK F1174V resistant mutation on progression from crizotinib that responded to alectinib for 18 months but then developed an acquired ALK I1171S mutation to alectinib. Both tumor samples had essentially the same genomic profile by comprehensive genomic profiling otherwise. This is the first patient report that demonstrates ALK F1174V mutation is sensitive to alectinib and further confirms missense acquired ALK I1171 mutation is resistant to alectinib. Sequential tumor re-biopsy for comprehensive genomic profiling (CGP) is important to appreciate the selective pressure during treatment with various ALK inhibitors underpinning the evolution of the disease course of ALK+NSCLC patients while on treatment with the various ALK inhibitors. This approach will likely help inform the optimal sequencing strategy as more ALK inhibitors become available. This case report also validates the importance of developing structurally distinct ALK inhibitors for clinical use to overcome non-cross resistant ALK mutations.

  11. [Construction of cTnC-linker-TnI (P) Genes, Expression of Fusion Protein and Preparation of Lyophilized Protein].

    PubMed

    Song, Xiaoli; Liu, Xiaoyun; Cai, Lei; Wu, Jianwei; Wang, Jihua

    2015-12-01

    In order to construct and express human cardiac troponin C-linker-troponin I(P) [ cTnC-linker-TnI(P)] fusion protein, detect its activity and prepare lyophilized protein, we searched the CDs of human cTnC and cTnI from GenBank, synthesized cTnC and cTnI(30-110aa) into cloning vector by a short DNA sequence coding for 15 neutral amino acid residues. pCold I-cTnC-linker-TnI(P) was constructed and transformed into E. coli BL21(DE3). Then, cTnC-linker-TnI(P) fusion protein was induced by isopropyl-β-D-thiogalactopyranoside (IPTG). Soluable expression of cTnC-linker-TnI(P) in prokaryotic system was successfully obtained. The fusion protein was purified by Ni²⁺ Sepharose 6 Fast Flow affinity chromatography with over 95% purity and prepared into lyophilized protein. The activity of purified cTnC-linker-TnI(P) and its lyophilized protein were detected by Wondfo Finecare™ cTnI Test. Lyophilized protein of cTnC-linker-TnI(P) was stable for 10 or more days at 37 °C and 4 or more months at 25 °C and 4 °C. The expression system established in this research is feasible and efficient. Lyophilized protein is stable enough to be provided as biological raw materials for further research. PMID:27079099

  12. MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age.

    PubMed

    Ferree, Andrew W; Trudeau, Kyle; Zik, Eden; Benador, Ilan Y; Twig, Gilad; Gottlieb, Roberta A; Shirihai, Orian S

    2013-11-01

    To study mitochondrial protein age dynamics, we targeted a time-sensitive fluorescent protein, MitoTimer, to the mitochondrial matrix. Mitochondrial age was revealed by the integrated portions of young (green) and old (red) MitoTimer protein. Mitochondrial protein age was dependent on turnover rates as pulsed synthesis, decreased import, or autophagic inhibition all increased the proportion of aged MitoTimer protein. Mitochondrial fusion promotes the distribution of young mitochondrial protein across the mitochondrial network as cells lacking essential fusion genes Mfn1 and Mfn2 displayed increased heterogeneity in mitochondrial protein age. Experiments in hippocampal neurons illustrate that the distribution of older and younger mitochondrial protein within the cell is determined by subcellular spatial organization and compartmentalization of mitochondria into neurites and soma. This effect was altered by overexpression of mitochondrial transport protein, RHOT1/MIRO1. Collectively our data show that distribution of young and old protein in the mitochondrial network is dependent on turnover, fusion, and transport.

  13. Effects of polycystin‑1 N‑terminal fragment fusion protein on the proliferation and apoptosis of rat mesangial cells.

    PubMed

    Guan, Tianjun; Gao, Qing; Chen, Ping; Fu, Lili; Zhao, Haidan; Zou, Zhuying; Mei, Changlin

    2014-09-01

    Mesangial proliferative glomerulonephritis (MsPGN) is characterized by widespread mesangial cell proliferation and an accumulation of extracellular matrix (ECM) in the mesangial area. In a previous study we developed a polycystin‑1 N‑terminal fragment (PC‑1 NF) fusion protein that inhibits the proliferation of cyst‑lining epithelial cells in autosomal dominant polycystic kidney disease. In addition, the PC‑1 NF fusion protein arrests the cell cycle of cancer cells at the G0/G1 phase, inhibiting their proliferation. In the present study, the effect of the PC‑1 NF fusion protein on MsPGN was investigated. It was found that the PC‑1 NF fusion protein inhibited the proliferation of rat mesangial cells and induced G0/G1 phase arrest and apoptosis in vitro. PC‑1 NF fusion protein treatment also resulted in a decrease in mRNA expression levels of proliferating cell nuclear antigen, cyclin D1 and B‑cell lymphoma‑2 (Bcl‑2) and an increase in mRNA expression levels of Bcl‑2‑associated X protein (Bax) and p21Waf1. Furthermore, a decrease in Bcl‑2, c‑fos, c‑jun and protein kinase C‑α protein levels was observed, whereas Bax protein levels increased. Additionally, PC‑1 NF fusion protein induced ECM degradation and inhibited ECM expansion. The results also demonstrated that PC‑1 NF fusion protein treatment resulted in a decrease in type IV collagen and tissue inhibitor of metalloproteinase mRNA levels but an increase in matrix metalloproteinase 2 mRNA levels. In combination, these results suggest that the PC‑1 NF fusion protein inhibits proliferation, promotes apoptosis and induces ECM degradation in MsPGN rats. This study offers novel perspectives for the treatment of MsPGN.

  14. Effect of COR proteins on the freeze-induced fusion of liposomes

    SciTech Connect

    Uemura, M.; Steponkus, P.L. ); Gilmour, S.J.; Thomashow, M.F. )

    1993-05-01

    Although substantial progress has been made in identifying genes that are regulated during cold acclimation, with few exceptions, the function of the COR proteins encoded by these genes is not known. The objectives of this study were to determine if COR6.6 and COR15am, which are synthesized in Arabidopsis thaliana, influence the freeze-induced fusion of lipid bilayers. When small unilamellar vesicles (SUVs) composed of either POPC (16:0/18:1) or DOPC (18:1/18:1) were frozen to temperatures over the range of [minus]2[degrees]C to [minus]30[degrees]C liposome fusion occurred at temperatures below [minus]2[degrees]C, with a substantial increase occurring at temperatures below the T[sub m] of the lipids ([minus]3[degrees]C for POPC and [minus]18[degrees]C for DOPC). Freeze-induced fusion was not observed SUVs composed of BL[sub 2]PC (18:2/18:2), which has a t[sub m] of [minus]55[degrees]C. Addition of either COR6.6 or COR15am significantly decreased the incidence of fusion of large unilamellar vesicles of DOPC if proteins were added to the liposome suspension before freezing; there was no effect if the COR proteins were only encapsulated within the liposomes. With SUVs formed from the total lipid extract of the plasma membrane of either non-acclimated (NA) or cold-acclimated (ACC) rye leave, there was differential response to freezing. In NA-SUVs, the incidence of fusion increased after freezing to [minus]5[degrees]C and reached a maximum at [minus]10[degrees]C; in ACC-SUVs, the maximum incidence of fusion occurred at [minus]20[degrees]C. The difference in cryostability reflects differences in the lipid composition of the plasma membrane after cold acclimation. But there was a significant decrease in the incidence of fusion in both NA- and ACC-SUVs when frozen in the presence of either COR6.6 or COR15am. Thus, although the cryostability of lipid bilayers is primarily influenced by the lipid composition of the bilayers, there is an additive effect of the COR proteins.

  15. Combining random gene fission and rational gene fusion to discover near-infrared fluorescent protein fragments that report on protein-protein interactions.

    PubMed

    Pandey, Naresh; Nobles, Christopher L; Zechiedrich, Lynn; Maresso, Anthony W; Silberg, Jonathan J

    2015-05-15

    Gene fission can convert monomeric proteins into two-piece catalysts, reporters, and transcription factors for systems and synthetic biology. However, some proteins can be challenging to fragment without disrupting function, such as near-infrared fluorescent protein (IFP). We describe a directed evolution strategy that can overcome this challenge by randomly fragmenting proteins and concomitantly fusing the protein fragments to pairs of proteins or peptides that associate. We used this method to create libraries that express fragmented IFP as fusions to a pair of associating peptides (IAAL-E3 and IAAL-K3) and proteins (CheA and CheY) and screened for fragmented IFP with detectable near-infrared fluorescence. Thirteen novel fragmented IFPs were identified, all of which arose from backbone fission proximal to the interdomain linker. Either the IAAL-E3 and IAAL-K3 peptides or CheA and CheY proteins could assist with IFP fragment complementation, although the IAAL-E3 and IAAL-K3 peptides consistently yielded higher fluorescence. These results demonstrate how random gene fission can be coupled to rational gene fusion to create libraries enriched in fragmented proteins with AND gate logic that is dependent upon a protein-protein interaction, and they suggest that these near-infrared fluorescent protein fragments will be suitable as reporters for pairs of promoters and protein-protein interactions within whole animals.

  16. Insertion element analysis and mapping of the Pseudomonas plasmid alk regulon.

    PubMed Central

    Fennewald, M; Benson, S; Oppici, M; Shapiro, J

    1979-01-01

    We characterized and mapped new mutations of the alk (alkane utilization) genes found on Pseudomonas plasmids of the Inc P-2 group. These mutations were isolated after (i) nitrosoguanidine mutagenesis, (ii) transposition of the Tn7 trimethoprim and streptomycin resistance determinant, and (iii) reversion of polarity effects of alk::Tn7 insertion mutations. Our results indicate the existence of two alk loci not previously described--alkD, whose product is required for synthesis of membrane alkane-oxidizing activities, and alkE, whose product is required for synthesis of inducible membrane alcohol dehydrogenase activity. Polarity of alk::Tn7 insertion mutations indicates the existence of an alkBAE operon. Mapping of alk loci by transduction in P. aeruginosa shows that there are at least three alk clusters in the CAM-OCT plasmid--alkRD, containing regulatory genes; alkBAE, containing genes for specific biochemical activities; and alkC, containing one or more genes needed for normal synthesis of membrane alcohol dehydrogenase. The alkRD and alkBAE clusters are linked but separated by about 42 kilobases. The alkC cluster is not linked to either of the other two alk regions. Altogether, these results indicate a complex genetic control of the alkane utilization phenotype in P. putida and P. aeruginosa involving at least six separate genes. Images PMID:479111

  17. Intercellular delivery of a herpes simplex virus VP22 fusion protein from cells infected with lentiviral vectors

    PubMed Central

    Lai, Zhennan; Han, Ina; Zirzow, Gregory; Brady, Roscoe O.; Reiser, Jakob

    2000-01-01

    Effective gene therapy depends on the efficient transfer of therapeutic genes and their protein products to target cells. Lentiviral vectors appear promising for virus-mediated gene delivery and long-term expression in nondividing cells. The herpes simplex virus type 1 tegument protein VP22 has recently been shown to mediate intercellular transport of proteins, raising the possibility that it may be helpful in a setting where the global delivery of therapeutic proteins is desired. To investigate the effectiveness of lentiviral vectors to deliver genes encoding proteins fused to VP22, and to test whether the system is sufficiently potent to allow protein delivery from transduced cells in vitro and in vivo, fusion constructs of VP22 and the enhanced green fluorescent protein (EGFP) were prepared and delivered into target cells by using HIV-1-based lentiviral vectors. To follow the spread of VP22-EGFP to other cells, transduced COS-7 cells were coplated with a number of different cell types, including brain choroid plexus cells, human endothelial cells, H9 cells, and HeLa cells. We found that VP22-EGFP fusion proteins were transported from transduced cells to recipient cells and that such fusion proteins accumulated in the nucleus and in the cytoplasm of such cells. To determine the ability to deliver fusion proteins in vivo, we injected transduced H9 cells as well as the viral vector directly into the brain of mice. We present evidence that VP22-EGFP fusion proteins were transported effectively from lentivirus transduced cells in vivo. We also show that the VP22-EGFP fusion protein encoded by the lentivirus is transported between cells. Our data indicate that such fusion proteins are present in the nucleus and in the cytoplasm of neighboring cells. Therefore, lentiviral vectors may provide a potent biological system for delivering genes encoding therapeutic proteins fused to VP22. PMID:11027330

  18. rDNA-directed integration by an HIV-1 integrase--I-PpoI fusion protein.

    PubMed

    Schenkwein, Diana; Turkki, Vesa; Ahlroth, Mervi K; Timonen, Oskari; Airenne, Kari J; Ylä-Herttuala, Seppo

    2013-03-01

    Integrating viral vectors are efficient gene transfer tools, but their integration patterns have been associated with genotoxicity and oncogenicity. The recent development of highly specific designer nucleases has enabled target DNA modification and site-specific gene insertion at desired genomic loci. However, a lack of consensus exists regarding a perfect genomic safe harbour (GSH) that would allow transgenes to be stably and reliably expressed without adversely affecting endogenous gene structure and function. Ribosomal DNA (rDNA) has many advantages as a GSH, but efficient means to target integration to this locus are currently lacking. We tested whether lentivirus vector integration can be directed to rDNA by using fusion proteins consisting of the Human Immunodeficiency Virus 1 (HIV-1) integrase (IN) and the homing endonuclease I-PpoI, which has natural cleavage sites in the rDNA. A point mutation (N119A) was introduced into I-PpoI to abolish unwanted DNA cleavage by the endonuclease. The vector-incorporated IN-I-PpoIN119A fusion protein targeted integration into rDNA significantly more than unmodified lentivirus vectors, with an efficiency of 2.7%. Our findings show that IN-fusion proteins can be used to modify the integration pattern of lentivirus vectors, and to package site-specific DNA-recognizing proteins into vectors to obtain safer transgene integration.

  19. Transient fusion and selective secretion of vesicle proteins in Phytophthora nicotianae zoospores

    PubMed Central

    Zhang, Weiwei; Blackman, Leila M.

    2013-01-01

    Secretion of pathogen proteins is crucial for the establishment of disease in animals and plants. Typically, early interactions between host and pathogen trigger regulated secretion of pathogenicity factors that function in pathogen adhesion and host penetration. During the onset of plant infection by spores of the Oomycete, Phytophthora nicotianae, proteins are secreted from three types of cortical vesicles. Following induction of spore encystment, two vesicle types undergo full fusion, releasing their entire contents onto the cell surface. However, the third vesicle type, so-called large peripheral vesicles, selectively secretes a small Sushi domain-containing protein, PnCcp, while retaining a large glycoprotein, PnLpv, before moving away from the plasma membrane. Selective secretion of PnCcp is associated with its compartmentalization within the vesicle periphery. Pharmacological inhibition of dynamin function, purportedly in vesicle fission, by dynasore treatment provides evidence that selective secretion of PnCcp requires transient fusion of the large peripheral vesicles. This is the first report of selective protein secretion via transient fusion outside mammalian cells. Selective secretion is likely to be an important aspect of plant infection by this destructive pathogen. PMID:24392285

  20. Proteolytic Activation of the Porcine Epidemic Diarrhea Coronavirus Spike Fusion Protein by Trypsin in Cell Culture

    PubMed Central

    Wicht, Oliver; Li, Wentao; Willems, Lione; Meuleman, Tom J.; Wubbolts, Richard W.; van Kuppeveld, Frank J. M.; Rottier, Peter J. M.

    2014-01-01

    ABSTRACT Isolation of porcine epidemic diarrhea coronavirus (PEDV) from clinical material in cell culture requires supplementation of trypsin. This may relate to the confinement of PEDV natural infection to the protease-rich small intestine of pigs. Our study focused on the role of protease activity on infection by investigating the spike protein of a PEDV isolate (wtPEDV) using a reverse genetics system based on the trypsin-independent cell culture-adapted strain DR13 (caPEDV). We demonstrate that trypsin acts on the wtPEDV spike protein after receptor binding. We mapped the genetic determinant for trypsin-dependent cell entry to the N-terminal region of the fusion subunit of this class I fusion protein, revealing a conserved arginine just upstream of the putative fusion peptide as the potential cleavage site. Whereas coronaviruses are typically processed by endogenous proteases of the producer or target cell, PEDV S protein activation strictly required supplementation of a protease, enabling us to study mechanistic details of proteolytic processing. IMPORTANCE Recurring PEDV epidemics constitute a serious animal health threat and an economic burden, particularly in Asia but, as of recently, also on the North-American subcontinent. Understanding the biology of PEDV is critical for combatting the infection. Here, we provide new insight into the protease-dependent cell entry of PEDV. PMID:24807723

  1. Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture.

    PubMed

    Wicht, Oliver; Li, Wentao; Willems, Lione; Meuleman, Tom J; Wubbolts, Richard W; van Kuppeveld, Frank J M; Rottier, Peter J M; Bosch, Berend Jan

    2014-07-01

    Isolation of porcine epidemic diarrhea coronavirus (PEDV) from clinical material in cell culture requires supplementation of trypsin. This may relate to the confinement of PEDV natural infection to the protease-rich small intestine of pigs. Our study focused on the role of protease activity on infection by investigating the spike protein of a PEDV isolate (wtPEDV) using a reverse genetics system based on the trypsin-independent cell culture-adapted strain DR13 (caPEDV). We demonstrate that trypsin acts on the wtPEDV spike protein after receptor binding. We mapped the genetic determinant for trypsin-dependent cell entry to the N-terminal region of the fusion subunit of this class I fusion protein, revealing a conserved arginine just upstream of the putative fusion peptide as the potential cleavage site. Whereas coronaviruses are typically processed by endogenous proteases of the producer or target cell, PEDV S protein activation strictly required supplementation of a protease, enabling us to study mechanistic details of proteolytic processing. Importance: Recurring PEDV epidemics constitute a serious animal health threat and an economic burden, particularly in Asia but, as of recently, also on the North-American subcontinent. Understanding the biology of PEDV is critical for combatting the infection. Here, we provide new insight into the protease-dependent cell entry of PEDV. PMID:24807723

  2. Transient fusion and selective secretion of vesicle proteins in Phytophthora nicotianae zoospores.

    PubMed

    Zhang, Weiwei; Blackman, Leila M; Hardham, Adrienne R

    2013-01-01

    Secretion of pathogen proteins is crucial for the establishment of disease in animals and plants. Typically, early interactions between host and pathogen trigger regulated secretion of pathogenicity factors that function in pathogen adhesion and host penetration. During the onset of plant infection by spores of the Oomycete, Phytophthora nicotianae, proteins are secreted from three types of cortical vesicles. Following induction of spore encystment, two vesicle types undergo full fusion, releasing their entire contents onto the cell surface. However, the third vesicle type, so-called large peripheral vesicles, selectively secretes a small Sushi domain-containing protein, PnCcp, while retaining a large glycoprotein, PnLpv, before moving away from the plasma membrane. Selective secretion of PnCcp is associated with its compartmentalization within the vesicle periphery. Pharmacological inhibition of dynamin function, purportedly in vesicle fission, by dynasore treatment provides evidence that selective secretion of PnCcp requires transient fusion of the large peripheral vesicles. This is the first report of selective protein secretion via transient fusion outside mammalian cells. Selective secretion is likely to be an important aspect of plant infection by this destructive pathogen. PMID:24392285

  3. The construction of a bifunctional fusion protein consisting of SEC2 and EGFP.

    PubMed

    Liu, Yanli; Xu, Mingkai; Li, Xu; Sun, Jian; Zhang, Chenggang; Zhang, Huiwen

    2014-01-01

    The aim of this study was to construct a bifunctional fusion protein consisting of staphylococcal enterotoxin C2 (SEC2) and enhanced green fluorescent protein (EGFP). We inserted EGFP and SEC2 fragments into the pET-28a(+) vector to create the expression plasmid vector, pET-28a(+)-SEC2-EGFP, using a two-step method. After verification of the plasmid, successful isolation of the fusion protein, SEC2-EGFP, was achieved by Ni+-affinity chromatography. Fluorescence microscopy, methylthiazol tetrazolium, and flow cytometry assays demonstrated that the constructed fusion protein not only retained the fluorescence signal of EGFP but also exhibited SEC2 bioactivity. Therefore, SEC2-EGFP is a promising tool for the study of the detailed temporal and spatial distributions of SEC2 in cells. Future studies with this vector may help uncover novel therapeutic strategies to treat or manage SEC2-associated diseases and be a new clinical tool for exploiting SEC2 in immunotherapy.

  4. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication?

    PubMed Central

    Imhof, Simon; Fragoso, Cristina; Hemphill, Andrew; von Schubert, Conrad; Li, Dong; Legant, Wesley; Betzig, Eric; Roditi, Isabel

    2016-01-01

    Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes.  Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed. The formation of double-positive cells was dependent on the presence of extracellular calcium and was enhanced by placing cells in medium supplemented with fresh bovine serum. Time-lapse microscopy revealed that double-positive cells arose by bidirectional protein exchange in the absence of nuclear transfer.  Furthermore, super-resolution microscopy showed that this process occurred in ≤1 minute, the limit of temporal resolution in these experiments. Both cytoplasmic and membrane proteins could be transferred provided they gained access to the flagellum. Intriguingly, a component of the RNAi machinery (Argonaute) was able to move between cells, raising the possibility that small interfering RNAs are transported as cargo. Transmission electron microscopy showed that shared flagella contained two axonemes and two paraflagellar rods bounded by a single membrane. In some cases flagellar fusion was partial and interactions between cells were transient. In other cases fusion occurred along the entire length of the flagellum, was stable for several hours and might be irreversible. Fusion did not appear to be deleterious for cell function: paired cells were motile and could give rise to progeny while fused. The motile flagella of unicellular organisms are related to the sensory cilia of higher eukaryotes, raising the possibility that protein transfer between cells via cilia or flagella occurs more widely in nature. PMID:27239276

  5. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication?

    PubMed

    Imhof, Simon; Fragoso, Cristina; Hemphill, Andrew; von Schubert, Conrad; Li, Dong; Legant, Wesley; Betzig, Eric; Roditi, Isabel

    2016-01-01

    Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes.  Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed. The formation of double-positive cells was dependent on the presence of extracellular calcium and was enhanced by placing cells in medium supplemented with fresh bovine serum. Time-lapse microscopy revealed that double-positive cells arose by bidirectional protein exchange in the absence of nuclear transfer.  Furthermore, super-resolution microscopy showed that this process occurred in ≤1 minute, the limit of temporal resolution in these experiments. Both cytoplasmic and membrane proteins could be transferred provided they gained access to the flagellum. Intriguingly, a component of the RNAi machinery (Argonaute) was able to move between cells, raising the possibility that small interfering RNAs are transported as cargo. Transmission electron microscopy showed that shared flagella contained two axonemes and two paraflagellar rods bounded by a single membrane. In some cases flagellar fusion was partial and interactions between cells were transient. In other cases fusion occurred along the entire length of the flagellum, was stable for several hours and might be irreversible. Fusion did not appear to be deleterious for cell function: paired cells were motile and could give rise to progeny while fused. The motile flagella of unicellular organisms are related to the sensory cilia of higher eukaryotes, raising the possibility that protein transfer between cells via cilia or flagella occurs more widely in nature.

  6. Analysis of nuclear export using photoactivatable GFP fusion proteins and interspecies heterokaryons.

    PubMed

    Nakrieko, Kerry-Ann; Ivanova, Iordanka A; Dagnino, Lina

    2010-01-01

    In this chapter, we review protocols for the analysis of nucleocytoplasmic shuttling of transcription factors and nuclear proteins, using two different approaches. The first involves the use of photoactivatable forms of the protein of interest by fusion to photoactivatable green fluorescent protein to follow its movement out of the nucleus by live-cell confocal microscopy. This methodology allows for the kinetic characterization of protein movements as well as measurement of steady-state levels. In a second procedure to assess the ability of a nuclear protein to move into and out of the nucleus, we describe the use of interspecies heterokaryon assays, which provide a measurement of steady-state distribution. These technologies are directly applicable to the analysis of nucleocytoplasmic movements not only of transcription factors, but also other nuclear proteins.

  7. Vaccinia mature virus fusion regulator A26 protein binds to A16 and G9 proteins of the viral entry fusion complex and dissociates from mature virions at low pH.

    PubMed

    Chang, Shu-Jung; Shih, Ao-Chun; Tang, Yin-Liang; Chang, Wen

    2012-04-01

    Vaccinia mature virus enters cells through either endocytosis or plasma membrane fusion, depending on virus strain and cell type. Our previous results showed that vaccinia virus mature virions containing viral A26 protein enter HeLa cells preferentially through endocytosis, whereas mature virions lacking A26 protein enter through plasma membrane fusion, leading us to propose that A26 acts as an acid-sensitive fusion suppressor for mature virus (S. J. Chang, Y. X. Chang, R. Izmailyan R, Y. L. Tang, and W. Chang, J. Virol. 84:8422-8432, 2010). In the present study, we investigated the fusion suppression mechanism of A26 protein. We found that A26 protein was coimmunoprecipitated with multiple components of the viral entry-fusion complex (EFC) in infected HeLa cells. Transient expression of viral EFC components in HeLa cells revealed that vaccinia virus A26 protein interacted directly with A16 and G9 but not with G3, L5 and H2 proteins of the EFC components. Consistently, a glutathione S-transferase (GST)-A26 fusion protein, but not GST, pulled down A16 and G9 proteins individually in vitro. Together, our results supported the idea that A26 protein binds to A16 and G9 protein at neutral pH contributing to suppression of vaccinia virus-triggered membrane fusion from without. Since vaccinia virus extracellular envelope proteins A56/K2 were recently shown to bind to the A16/G9 subcomplex to suppress virus-induced fusion from within, our results also highlight an evolutionary convergence in which vaccinia viral fusion suppressor proteins regulate membrane fusion by targeting the A16 and G9 components of the viral EFC complex. Finally, we provide evidence that acid (pH 4.7) treatment induced A26 protein and A26-A27 protein complexes of 70 kDa and 90 kDa to dissociate from mature virions, suggesting that the structure of A26 protein is acid sensitive.

  8. Construction of human LRIG1-TAT fusions and TAT-mediated LRIG1 protein delivery.

    PubMed

    Wang, Yuchun; Fu, Liqi; Liu, Bo; Wang, Xiaomin; Wang, Kai; Ye, Ming

    2015-02-01

    Human leucine-rich repeats and immunoglobulin-like domains (LRIG1) is a tumor suppressor in animals and also functions as an endogenous suppressor in human tumor. The level of LRIG1 expression is highly associated with patient survival in clinic. The exploration of LRIG1 as a protein drug is an important task. HIV-1 transactivator of transcription peptide (TAT) is an excellent candidate for protein transduction. In this study, human LRIG1 was cloned and LRIG1-TAT fusion gene was constructed. The fusion proteins were produced by an Escherichia coli strain and purified by Ni(2+)-resin. Western blot assay and immunofluorescence microscopy were employed for monitoring LRIG1-TAT protein transduction into human neuroblastoma cells. Cell proliferation and invasion were measured for evaluating the effect of LRIG1-TAT on neuroblastoma cell. Our data showed that LRIG1 protein can be delivered into cells or organs in living animals by TAT. One-time transduction of LRIG1 proteins into human neuroblastoma cells enhanced cell proliferation and increased cell invasion. In vivo transduction showed that LRIG1-TAT protein can be presented in living animal organs. Our experiments provide a new vision on LRIG1 applications and also offer a therapy window for revealing the intrinsic function of LRIG1 on cells.

  9. Construction of human LRIG1-TAT fusions and TAT-mediated LRIG1 protein delivery.

    PubMed

    Wang, Yuchun; Fu, Liqi; Liu, Bo; Wang, Xiaomin; Wang, Kai; Ye, Ming

    2015-02-01

    Human leucine-rich repeats and immunoglobulin-like domains (LRIG1) is a tumor suppressor in animals and also functions as an endogenous suppressor in human tumor. The level of LRIG1 expression is highly associated with patient survival in clinic. The exploration of LRIG1 as a protein drug is an important task. HIV-1 transactivator of transcription peptide (TAT) is an excellent candidate for protein transduction. In this study, human LRIG1 was cloned and LRIG1-TAT fusion gene was constructed. The fusion proteins were produced by an Escherichia coli strain and purified by Ni(2+)-resin. Western blot assay and immunofluorescence microscopy were employed for monitoring LRIG1-TAT protein transduction into human neuroblastoma cells. Cell proliferation and invasion were measured for evaluating the effect of LRIG1-TAT on neuroblastoma cell. Our data showed that LRIG1 protein can be delivered into cells or organs in living animals by TAT. One-time transduction of LRIG1 proteins into human neuroblastoma cells enhanced cell proliferation and increased cell invasion. In vivo transduction showed that LRIG1-TAT protein can be presented in living animal organs. Our experiments provide a new vision on LRIG1 applications and also offer a therapy window for revealing the intrinsic function of LRIG1 on cells. PMID:25661388

  10. Autographa californica Multiple Nucleopolyhedrovirus GP64 Protein: Roles of Histidine Residues in Triggering Membrane Fusion and Fusion Pore Expansion▿†

    PubMed Central

    Li, Zhaofei; Blissard, Gary W.

    2011-01-01

    The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) GP64 protein mediates membrane fusion during entry. Fusion results from a low-pH-triggered conformational change in GP64 and subsequent interactions with the membrane bilayers. The low-pH sensor and trigger of the conformational change are not known, but histidine residues are implicated because the pKa of histidine is near the threshold for triggering fusion by GP64. We used alanine substitutions to examine the roles of all individual and selected clusters of GP64 histidine residues in triggering and mediating fusion by GP64. Three histidine residues (H152, H155, and H156), located in fusion loop 2, were identified as important for membrane fusion. These three histidine residues were important for efficient pore expansion but were not required for the pH-triggered conformational change. In contrast, a cluster of three histidine residues (H245, H304, and H430) located near the base of the central coiled coil was identified as a putative sensor for low pH. Three alanine substitutions in cluster H245/H304/H430 resulted in dramatically reduced membrane fusion and the apparent loss of the prefusion conformation at neutral pH. Thus, the H245/H304/H430 cluster of histidines may function or participate as a pH sensor by stabilizing the prefusion structure of GP64. PMID:21937651

  11. Full-length trimeric influenza virus hemagglutinin II membrane fusion protein and shorter constructs lacking the fusion peptide or transmembrane domain: Hyperthermostability of the full-length protein and the soluble ectodomain and fusion peptide make significant contributions to fusion of membrane vesicles.

    PubMed

    Ratnayake, Punsisi U; Prabodha Ekanayaka, E A; Komanduru, Sweta S; Weliky, David P

    2016-01-01

    Influenza virus is a class I enveloped virus which is initially endocytosed into a host respiratory epithelial cell. Subsequent reduction of the pH to the 5-6 range triggers a structural change of the viral hemagglutinin II (HA2) protein, fusion of the viral and endosomal membranes, and release of the viral nucleocapsid into the cytoplasm. HA2 contains fusion peptide (FP), soluble ectodomain (SE), transmembrane (TM), and intraviral domains with respective lengths of ∼ 25, ∼ 160, ∼ 25, and ∼ 10 residues. The present work provides a straightforward protocol for producing and purifying mg quantities of full-length HA2 from expression in bacteria. Biophysical and structural comparisons are made between full-length HA2 and shorter constructs including SHA2 ≡ SE, FHA2 ≡ FP+SE, and SHA2-TM ≡ SE+TM constructs. The constructs are helical in detergent at pH 7.4 and the dominant trimer species. The proteins are highly thermostable in decylmaltoside detergent with Tm>90 °C for HA2 with stabilization provided by the SE, FP, and TM domains. The proteins are likely in a trimer-of-hairpins structure, the final protein state during fusion. All constructs induce fusion of negatively-charged vesicles at pH 5.0 with much less fusion at pH 7.4. Attractive protein/vesicle electrostatics play a role in fusion, as the proteins are positively-charged at pH 5.0 and negatively-charged at pH 7.4 and the pH-dependence of fusion is reversed for positively-charged vesicles. Comparison of fusion between constructs supports significant contributions to fusion from the SE and the FP with little effect from the TM.

  12. Targeting ALK in neuroblastoma--preclinical and clinical advancements.

    PubMed

    Carpenter, Erica L; Mossé, Yael P

    2012-07-01

    Despite improvements in cancer therapies in the past 50 years, neuroblastoma remains a devastating clinical problem and a leading cause of childhood cancer deaths. Advances in treatments for children with high-risk neuroblastoma have, until recently, involved addition of cytotoxic therapy to dose-intensive regimens. In this era of targeted therapies, substantial efforts have been made to identify optimal targets for different types of cancer. The discovery of hereditary and somatic activating mutations in the oncogene ALK has now placed neuroblastoma among other cancers, such as melanoma and non-small-cell lung cancer (NSCLC), which benefit from therapies with oncogene-specific small-molecule tyrosine kinase inhibitors. Crizotinib, a small-molecule inhibitor of ALK, has transformed the landscape for the treatment of NSCLC harbouring ALK translocations and has demonstrated activity in preclinical models of ALK-driven neuroblastomas. However, inhibition of mutated ALK is complex when compared with translocated ALK and remains a therapeutic challenge. This Review discusses the biology of ALK in the development of neuroblastoma, preclinical and clinical progress with the use of ALK inhibitors and immunotherapy, challenges associated with resistance to such therapies and the steps being taken to overcome some of these hurdles.

  13. Purification method for recombinant proteins based on a fusion between the target protein and the C-terminus of calmodulin

    NASA Technical Reports Server (NTRS)

    Schauer-Vukasinovic, Vesna; Deo, Sapna K.; Daunert, Sylvia

    2002-01-01

    Calmodulin (CaM) was used as an affinity tail to facilitate the purification of the green fluorescent protein (GFP), which was used as a model target protein. The protein GFP was fused to the C-terminus of CaM, and a factor Xa cleavage site was introduced between the two proteins. A CaM-GFP fusion protein was expressed in E. coli and purified on a phenothiazine-derivatized silica column. CaM binds to the phenothiazine on the column in a Ca(2+)-dependent fashion and it was, therefore, used as an affinity tail for the purification of GFP. The fusion protein bound to the affinity column was then subjected to a proteolytic digestion with factor Xa. Pure GFP was eluted with a Ca(2+)-containing buffer, while CaM was eluted later with a buffer containing the Ca(2+)-chelating agent EGTA. The purity of the isolated GFP was verified by SDS-PAGE, and the fluorescence properties of the purified GFP were characterized.

  14. High-yield membrane protein expression from E. coli using an engineered outer membrane protein F fusion.

    PubMed

    Su, Pin-Chuan; Si, William; Baker, Deidre L; Berger, Bryan W

    2013-04-01

    Obtaining high yields of membrane proteins necessary to perform detailed structural study is difficult due to poor solubility and variability in yields from heterologous expression systems. To address this issue, an Escherichia coli-based membrane protein overexpression system utilizing an engineered bacterial outer membrane protein F (pOmpF) fusion has been developed. Full-length human receptor activity-modifying protein 1 (RAMP1) was expressed using pOmpF, solubilized in FC15 and purified to homogeneity. Using circular dichroism and fluorescence spectroscopy, purified full-length RAMP1 is composed of approximately 90% α-helix, and retains its solubility and structure in FC15 over a wide range of temperatures (20-60°C). Thus, our approach provides a useful, complementary approach to achieve high-yield, full-length membrane protein overexpression for biophysical studies.

  15. Delivery of membrane proteins into small and giant unilamellar vesicles by charge-mediated fusion.

    PubMed

    Biner, Olivier; Schick, Thomas; Müller, Yannic; von Ballmoos, Christoph

    2016-07-01

    One of the current challenges in synthetic biology is the production of stable membrane mimetic systems and the insertion of components in these systems. Here, we employ fusion of oppositely charged liposomes to deliver separately reconstituted membrane proteins into a common lipid bilayer. After a systematic evaluation of different lipid compositions by lipid mixing and size distribution analysis, suitable conditions were further investigated for proteoliposome fusion. With this technique, we functionally coreconstituted bo3 oxidase and ATP synthase from Escherichia coli into unilamellar liposomes ranging from 100 nm to 50 μm in size. The presented method is a simple and versatile tool for oriented membrane protein reconstitution to produce biomimetic systems with increased complexity. PMID:27264202

  16. Inhibitory effects of a peptide-fusion protein (Latarcin-PAP1-Thanatin) against chikungunya virus.

    PubMed

    Rothan, Hussin A; Bahrani, Hirbod; Shankar, Esaki M; Rahman, Noorsaadah Abd; Yusof, Rohana

    2014-08-01

    Chikungunya virus (CHIKV) outbreaks have led to a serious economic burden, as the available treatment strategies can only alleviate disease symptoms, and no effective therapeutics or vaccines are currently available for human use. Here, we report the use of a new cost-effective approach involving production of a recombinant antiviral peptide-fusion protein that is scalable for the treatment of CHIKV infection. A peptide-fusion recombinant protein LATA-PAP1-THAN that was generated by joining Latarcin (LATA) peptide with the N-terminus of the PAP1 antiviral protein, and the Thanatin (THAN) peptide to the C-terminus, was produced in Escherichia coli as inclusion bodies. The antiviral LATA-PAP1-THAN protein showed 89.0% reduction of viral plaque formation compared with PAP1 (46.0%), LATA (67.0%) or THAN (79.3%) peptides alone. The LATA-PAP1-THAN protein reduced the viral RNA load that was 0.89-fold compared with the untreated control cells. We also showed that PAP1 resulted in 0.44-fold reduction, and THAN and LATA resulting in 0.78-fold and 0.73-fold reductions, respectively. The LATA-PAP1-THAN protein inhibited CHIKV replication in the Vero cells at an EC50 of 11.2μg/ml, which is approximately half of the EC50 of PAP1 (23.7μg/ml) and protected the CHIKV-infected mice at the dose of 0.75mg/ml. We concluded that production of antiviral peptide-fusion protein in E. coli as inclusion bodies could accentuate antiviral activities, enhance cellular internalisation, and could reduce product toxicity to host cells and is scalable to epidemic response quantities.

  17. Reconstitution of membrane proteins into giant unilamellar vesicles via peptide-induced fusion.

    PubMed Central

    Kahya, N; Pécheur, E I; de Boeij, W P; Wiersma, D A; Hoekstra, D

    2001-01-01

    In this work, we present a protocol to reconstitute membrane proteins into giant unilamellar vesicles (GUV) via peptide-induced fusion. In principle, GUV provide a well-defined lipid matrix, resembling a close-to-native state for biophysical studies, including optical microspectroscopy, of transmembrane proteins at the molecular level. Furthermore, reconstitution in this manner would also eliminate potential artifacts arising from secondary interactions of proteins, when reconstituted in planar membranes supported on solid surfaces. However, assembly procedures of GUV preclude direct reconstitution. Here, for the first time, a method is described that allows the controlled incorporation of membrane proteins into GUV. We demonstrate that large unilamellar vesicles (LUV, diameter 0.1 microm), to which the small fusogenic peptide WAE has been covalently attached, readily fuse with GUV, as revealed by monitoring lipid and contents mixing by fluorescence microscopy. To monitor contents mixing, a new fluorescence-based enzymatic assay was devised. Fusion does not introduce changes in the membrane morphology, as shown by fluorescence correlation spectroscopy. Analysis of fluorescence confocal imaging intensity revealed that approximately 6 to 10 LUV fused per microm(2) of GUV surface. As a model protein, bacteriorhodopsin (BR) was reconstituted into GUV, using LUV into which BR was incorporated via detergent dialysis. BR did not affect GUV-LUV fusion and the protein was stably inserted into the GUV and functionally active. Fluorescence correlation spectroscopy experiments show that BR inserted into GUV undergoes unrestricted Brownian motion with a diffusion coefficient of 1.2 microm(2)/s. The current procedure offers new opportunities to address issues related to membrane-protein structure and dynamics in a close-to-native state. PMID:11509360

  18. Genetic conjugation of components in two pneumococcal fusion protein vaccines enhances paediatric mucosal immune responses.

    PubMed

    Pope, Caroline; Oliver, Elizabeth H; Ma, Jiangtao; Langton Hewer, Claire; Mitchell, Tim J; Finn, Adam

    2015-03-30

    Streptococcus pneumoniae colonises the upper respiratory tract and can cause pneumonia, meningitis and otitis media. Existing pneumococcal conjugate vaccines are expensive to produce and only protect against 13 of the 90+ pneumococcal serotypes; hence there is an urgent need for the development of new vaccines. We have shown previously in mice that pneumolysin (Ply) and a non-toxic variant (Δ6Ply) enhance antibody responses when genetically fused to pneumococcal surface adhesin A (PsaA), a potentially valuable effect for future vaccines. We investigated this adjuvanticity in human paediatric mucosal primary immune cell cultures. Adenoidal mononuclear cells (AMNC) from children aged 0-15 years (n=46) were stimulated with conjugated, admixed or individual proteins, cell viability and CD4+ T-cell proliferative responses were assessed using flow cytometry and cytokine secretion was measured using multiplex technology. Proliferation of CD4+ T-cells in response to PsaAPly, was significantly higher than responses to individual or admixed proteins (p=0.002). In contrast, an enhanced response to PsaAΔ6Ply compared to individual or admixed proteins only occurred at higher concentrations (p<0.01). Evaluation of cytotoxicity suggested that responses occurred when Ply-induced cytolysis was inhibited, either by fusion or mutation, but importantly an additional toxicity independent immune enhancing effect was also apparent as a result of fusion. Responses were MHC class II dependent and had a Th1/Th17 profile. Genetic fusion of Δ6Ply to PsaA significantly modulates and enhances pro-inflammatory CD4+ T-cell responses without the cytolytic effects of some other pneumolysoids. Membrane binding activity of such proteins may confer valuable adjuvant properties as fusion may assist Δ6Ply to deliver PsaA to the APC surface effectively, contributing to the initiation of anti-pneumococcal CD4+ T-cell immunity.

  19. TALE-PvuII fusion proteins--novel tools for gene targeting.

    PubMed

    Yanik, Mert; Alzubi, Jamal; Lahaye, Thomas; Cathomen, Toni; Pingoud, Alfred; Wende, Wolfgang

    2013-01-01

    Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity.

  20. Sequential conformational changes in the morbillivirus attachment protein initiate the membrane fusion process.

    PubMed

    Ader-Ebert, Nadine; Khosravi, Mojtaba; Herren, Michael; Avila, Mislay; Alves, Lisa; Bringolf, Fanny; Örvell, Claes; Langedijk, Johannes P; Zurbriggen, Andreas; Plemper, Richard K; Plattet, Philippe

    2015-05-01

    Despite large vaccination campaigns, measles virus (MeV) and canine distemper virus (CDV) cause major morbidity and mortality in humans and animals, respectively. The MeV and CDV cell entry system relies on two interacting envelope glycoproteins: the attachment protein (H), consisting of stalk and head domains, co-operates with the fusion protein (F) to mediate membrane fusion. However, how receptor-binding by the H-protein leads to F-triggering is not fully understood. Here, we report that an anti-CDV-H monoclonal antibody (mAb-1347), which targets the linear H-stalk segment 126-133, potently inhibits membrane fusion without interfering with H receptor-binding or F-interaction. Rather, mAb-1347 blocked the F-triggering function of H-proteins regardless of the presence or absence of the head domains. Remarkably, mAb-1347 binding to headless CDV H, as well as standard and engineered bioactive stalk-elongated CDV H-constructs treated with cells expressing the SLAM receptor, was enhanced. Despite proper cell surface expression, fusion promotion by most H-stalk mutants harboring alanine substitutions in the 126-138 "spacer" section was substantially impaired, consistent with deficient receptor-induced mAb-1347 binding enhancement. However, a previously reported F-triggering defective H-I98A variant still exhibited the receptor-induced "head-stalk" rearrangement. Collectively, our data spotlight a distinct mechanism for morbillivirus membrane fusion activation: prior to receptor contact, at least one of the morbillivirus H-head domains interacts with the membrane-distal "spacer" domain in the H-stalk, leaving the F-binding site located further membrane-proximal in the stalk fully accessible. This "head-to-spacer" interaction conformationally stabilizes H in an auto-repressed state, which enables intracellular H-stalk/F engagement while preventing the inherent H-stalk's bioactivity that may prematurely activate F. Receptor-contact disrupts the "head

  1. Sequential Conformational Changes in the Morbillivirus Attachment Protein Initiate the Membrane Fusion Process

    PubMed Central

    Ader-Ebert, Nadine; Khosravi, Mojtaba; Herren, Michael; Avila, Mislay; Alves, Lisa; Bringolf, Fanny; Örvell, Claes; Langedijk, Johannes P.; Zurbriggen, Andreas; Plemper, Richard K.; Plattet, Philippe

    2015-01-01

    Despite large vaccination campaigns, measles virus (MeV) and canine distemper virus (CDV) cause major morbidity and mortality in humans and animals, respectively. The MeV and CDV cell entry system relies on two interacting envelope glycoproteins: the attachment protein (H), consisting of stalk and head domains, co-operates with the fusion protein (F) to mediate membrane fusion. However, how receptor-binding by the H-protein leads to F-triggering is not fully understood. Here, we report that an anti-CDV-H monoclonal antibody (mAb-1347), which targets the linear H-stalk segment 126-133, potently inhibits membrane fusion without interfering with H receptor-binding or F-interaction. Rather, mAb-1347 blocked the F-triggering function of H-proteins regardless of the presence or absence of the head domains. Remarkably, mAb-1347 binding to headless CDV H, as well as standard and engineered bioactive stalk-elongated CDV H-constructs treated with cells expressing the SLAM receptor, was enhanced. Despite proper cell surface expression, fusion promotion by most H-stalk mutants harboring alanine substitutions in the 126-138 “spacer” section was substantially impaired, consistent with deficient receptor-induced mAb-1347 binding enhancement. However, a previously reported F-triggering defective H-I98A variant still exhibited the receptor-induced “head-stalk” rearrangement. Collectively, our data spotlight a distinct mechanism for morbillivirus membrane fusion activation: prior to receptor contact, at least one of the morbillivirus H-head domains interacts with the membrane-distal “spacer” domain in the H-stalk, leaving the F-binding site located further membrane-proximal in the stalk fully accessible. This “head-to-spacer” interaction conformationally stabilizes H in an auto-repressed state, which enables intracellular H-stalk/F engagement while preventing the inherent H-stalk’s bioactivity that may prematurely activate F. Receptor-contact disrupts the

  2. Sequence motifs and prokaryotic expression of the reptilian paramyxovirus fusion protein

    USGS Publications Warehouse

    Franke, J.; Batts, W.N.; Ahne, W.; Kurath, G.; Winton, J.R.

    2006-01-01

    Fourteen reptilian paramyxovirus isolates were chosen to represent the known extent of genetic diversity among this novel group of viruses. Selected regions of the fusion (F) gene were sequenced, analyzed and compared. The F gene of all isolates contained conserved motifs homologous to those described for other members of the family Paramyxoviridae including: signal peptide, transmembrane domain, furin cleavage site, fusion peptide, N-linked glycosylation sites, and two heptad repeats, the second of which (HRB-LZ) had the characteristics of a leucine zipper. Selected regions of the fusion gene of isolate Gono-GER85 were inserted into a prokaryotic expression system to generate three recombinant protein fragments of various sizes. The longest recombinant protein was cleaved by furin into two fragments of predicted length. Western blot analysis with virus-neutralizing rabbit-antiserum against this isolate demonstrated that only the longest construct reacted with the antiserum. This construct was unique in containing 30 additional C-terminal amino acids that included most of the HRB-LZ. These results indicate that the F genes of reptilian paramyxoviruses contain highly conserved motifs typical of other members of the family and suggest that the HRB-LZ domain of the reptilian paramyxovirus F protein contains a linear antigenic epitope. ?? Springer-Verlag 2005.

  3. Senescence induction in human fibroblasts and hematopoietic progenitors by leukemogenic fusion proteins

    PubMed Central

    Wang, Shu-Zong; Serra, Ryan W.; Solomon, Peter D.; Nagarajan, Arvindhan; Zhu, Xiaochun

    2010-01-01

    Hematologic malignancies are typically associated with leukemogenic fusion proteins, which are required to maintain the oncogenic state. Previous studies have shown that certain oncogenes that promote solid tumors, such as RAS and BRAF, can induce senescence in primary cells, which is thought to provide a barrier to tumorigenesis. In these cases, the activated oncogene elicits a DNA damage response (DDR), which is essential for the senescence program. Here we show that 3 leukemogenic fusion proteins, BCR-ABL, CBFB-MYH11, and RUNX1-ETO, can induce senescence in primary fibroblasts and hematopoietic progenitors. Unexpectedly, we find that senescence induction by BCR-ABL and CBFB-MYH11 occurs through a DDR-independent pathway, whereas RUNX1-ETO induces senescence in a DDR-dependent manner. All 3 fusion proteins activate the p38 MAPK pathway, which is required for senescence induction. Our results reveal diverse pathways for oncogene-induced senescence and further suggest that leukemias harbor genetic or epigenetic alterations that inactivate senescence induction genes. PMID:20421454

  4. The recombinant expression and activity detection of MAF-1 fusion protein

    PubMed Central

    Fu, Ping; Wu, Jianwei; Gao, Song; Guo, Guo; Zhang, Yong; Liu, Jian

    2015-01-01

    This study establishes the recombinant expression system of MAF-1 (Musca domestica antifungal peptide-1) and demonstrates the antifungal activity of the expression product and shows the relationship between biological activity and structure. The gene segments on mature peptide part of MAF-1 were cloned, based on the primers designed according to the cDNA sequence of MAF-1. We constructed the recombinant prokaryotic expression plasmid using prokaryotic expression vector (pET-28a(+)) and converted it to the competent cell of BL21(DE3) to gain recombinant MAF-1 fusion protein with His tag sequence through purifying affinity chromatographic column of Ni-NTA. To conduct the Western Blotting test, recombinant MAF-1 fusion protein was used to produce the polyclonal antibody of rat. The antifungal activity of the expression product was detected using Candida albicans (ATCC10231) as the indicator. The MAF-1 recombinant fusion protein was purified to exhibit obvious antifungal activity, which lays the foundation for the further study of MAF-1 biological activity, the relationship between structure and function, as well as control of gene expression. PMID:26423137

  5. IQCJ-SCHIP1, a novel fusion transcript encoding a calmodulin-binding IQ motif protein

    SciTech Connect

    Kwasnicka-Crawford, Dorota A. . E-mail: dakc@yorku.ca; Carson, Andrew R.; Scherer, Stephen W.

    2006-12-01

    The existence of transcripts that span two adjacent, independent genes is considered rare in the human genome. This study characterizes a novel human fusion gene named IQCJ-SCHIP1. IQCJ-SCHIP1 is the longest isoform of a complex transcriptional unit that bridges two separate genes that encode distinct proteins, IQCJ, a novel IQ motif containing protein and SCHIP1, a schwannomin interacting protein that has been previously shown to interact with the Neurofibromatosis type 2 (NF2) protein. IQCJ-SCHIP1 is located on the chromosome 3q25 and comprises a 1692-bp transcript encompassing 11 exons spanning 828 kb of the genomic DNA. We show that IQCJ-SCHIP1 mRNA is highly expressed in the brain. Protein encoded by the IQCJ-SCHIP1 gene was localized to cytoplasm and actin-rich regions and in differentiated PC12 cells was also seen in neurite extensions.

  6. Determination of the topology of endoplasmic reticulum membrane proteins using redox-sensitive green-fluorescence protein fusions.

    PubMed

    Tsachaki, Maria; Birk, Julia; Egert, Aurélie; Odermatt, Alex

    2015-07-01

    Membrane proteins of the endoplasmic reticulum (ER) are involved in a wide array of essential cellular functions. Identification of the topology of membrane proteins can provide significant insight into their mechanisms of action and biological roles. This is particularly important for membrane enzymes, since their topology determines the subcellular site where a biochemical reaction takes place and the dependence on luminal or cytosolic co-factor pools and substrates. The methods currently available for the determination of topology of proteins are rather laborious and require post-lysis or post-fixation manipulation of cells. In this work, we have developed a simple method for defining intracellular localization and topology of ER membrane proteins in living cells, based on the fusion of the respective protein with redox-sensitive green-fluorescent protein (roGFP). We validated the method and demonstrated that roGFP fusion proteins constitute a reliable tool for the study of ER membrane protein topology, using as control microsomal 11β-hydroxysteroid dehydrogenase (11β-HSD) proteins whose topology has been resolved, and comparing with an independent approach. We then implemented this method to determine the membrane topology of six microsomal members of the 17β-hydroxysteroid dehydrogenase (17β-HSD) family. The results revealed a luminal orientation of the catalytic site for three enzymes, i.e. 17β-HSD6, 7 and 12. Knowledge of the intracellular location of the catalytic site of these enzymes will enable future studies on their biological functions and on the role of the luminal co-factor pool.

  7. Functional NifD-K fusion protein in Azotobacter vinelandii is a homodimeric complex equivalent to the native heterotetrameric MoFe protein

    SciTech Connect

    Lahiri, Surobhi; Pulakat, Lakshmi; Gavini, Nara . E-mail: gavini@biology.msstate.edu

    2005-11-18

    The MoFe protein of the complex metalloenzyme nitrogenase folds as a heterotetramer containing two copies each of the homologous {alpha} and {beta} subunits, encoded by the nifD and the nifK genes respectively. Recently, the functional expression of a fusion NifD-K protein of nitrogenase was demonstrated in Azotobacter vinelandii, strongly implying that the MoFe protein is flexible as it could accommodate major structural changes, yet remain functional [M.H. Suh, L. Pulakat, N. Gavini, J. Biol. Chem. 278 (2003) 5353-5360]. This finding led us to further explore the type of interaction between the fused MoFe protein units. We aimed to determine whether an interaction exists between the two fusion MoFe proteins to form a homodimer that is equivalent to native heterotetrameric MoFe protein. Using the Bacteriomatch Two-Hybrid System, translationally fused constructs of NifD-K (fusion) with the full-length {lambda}CI of the pBT bait vector and also NifD-K (fusion) with the N-terminal {alpha}-RNAP of the pTRG target vector were made. To compare the extent of interaction between the fused NifD-K proteins to that of the {beta}-{beta} interactions in the native MoFe protein, we proceeded to generate translationally fused constructs of NifK with the {alpha}-RNAP of the pTRG vector and {lambda}CI protein of the pBT vector. The strength of the interaction between the proteins in study was determined by measuring the {beta}-galactosidase activity and extent of ampicillin resistance of the colonies expressing these proteins. This analysis demonstrated that direct protein-protein interaction exists between NifD-K fusion proteins, suggesting that they exist as homodimers. As the interaction takes place at the {beta}-interfaces of the NifD-K fusion proteins, we propose that these homodimers of NifD-K fusion protein may function in a similar manner as that of the heterotetrameric native MoFe protein. The observation that the extent of protein-protein interaction between the {beta

  8. Immobilization of the N-terminal helix stabilizes prefusion paramyxovirus fusion proteins.

    PubMed

    Song, Albert S; Poor, Taylor A; Abriata, Luciano A; Jardetzky, Theodore S; Dal Peraro, Matteo; Lamb, Robert A

    2016-07-01

    Parainfluenza virus 5 (PIV5) is an enveloped, single-stranded, negative-sense RNA virus of the Paramyxoviridae family. PIV5 fusion and entry are mediated by the coordinated action of the receptor-binding protein, hemagglutinin-neuraminidase (HN), and the fusion protein (F). Upon triggering by HN, F undergoes an irreversible ATP- and pH-independent conformational change, going down an energy gradient from a metastable prefusion state to a highly stable postfusion state. Previous studies have highlighted key conformational changes in the F-protein refolding pathway, but a detailed understanding of prefusion F-protein metastability remains elusive. Here, using two previously described F-protein mutations (S443D or P22L), we examine the capacity to modulate PIV5 F stability and the mechanisms by which these point mutants act. The S443D mutation destabilizes prefusion F proteins by disrupting a hydrogen bond network at the base of the F-protein globular head. The introduction of a P22L mutation robustly rescues destabilized F proteins through a local hydrophobic interaction between the N-terminal helix and a hydrophobic pocket. Prefusion stabilization conferred by a P22L-homologous mutation is demonstrated in the F protein of Newcastle disease virus, a paramyxovirus of a different genus, suggesting a conserved stabilizing structural element within the paramyxovirus family. Taken together, the available data suggest that movement of the N-terminal helix is a necessary early step for paramyxovirus F-protein refolding and presents a novel target for structure-based drug design. PMID:27335462

  9. A recombinant antibody-interleukin 2 fusion protein suppresses growth of hepatic human neuroblastoma metastases in severe combined immunodeficiency mice.

    PubMed

    Sabzevari, H; Gillies, S D; Mueller, B M; Pancook, J D; Reisfeld, R A

    1994-09-27

    A genetically engineered fusion protein consisting of a human/mouse chimeric anti-ganglioside GD2 antibody (ch14.18) and recombinant human interleukin 2 (rhIL-2) was tested for its ability to target rhIL-2 to tumor sites and stimulate immune effector cells sufficiently to achieve effective tumor cell lysis in vivo. The ch14.18-IL-2 fusion protein proved more effective than equivalent doses of rhIL-2 in suppressing dissemination and growth of human neuroblastoma in an experimental hepatic metastases model of scid (severe combined immunodeficiency) mice reconstituted with human lymphokine-activated killer cells. The ch14.18-IL-2 fusion protein was also more proficient than equivalent doses of rhIL-2 in prolonging the life-span of these animals. This recombinant antibody-cytokine fusion protein may prove useful for future treatment of GD2-expressing human tumors in an adjuvant setting.

  10. The ham-2 locus, encoding a putative transmembrane protein, is required for hyphal fusion in Neurospora crassa.

    PubMed Central

    Xiang, Qijun; Rasmussen, Carolyn; Glass, N Louise

    2002-01-01

    Somatic cell fusion is common during organogenesis in multicellular eukaryotes, although the molecular mechanism of cell fusion is poorly understood. In filamentous fungi, somatic cell fusion occurs during vegetative growth. Filamentous fungi grow as multinucleate hyphal tubes that undergo frequent hyphal fusion (anastomosis) during colony expansion, resulting in the formation of a hyphal network. The molecular mechanism of the hyphal fusion process and the role of networked hyphae in the growth and development of these organisms are unexplored questions. We use the filamentous fungus Neurospora crassa as a model to study the molecular mechanism of hyphal fusion. In this study, we identified a deletion mutant that was restricted in its ability to undergo both self-hyphal fusion and fusion with a different individual to form a heterokaryon. This deletion mutant displayed pleiotropic defects, including shortened aerial hyphae, altered conidiation pattern, female sterility, slow growth rate, lack of hyphal fusion, and suppression of vegetative incompatibility. Complementation with a single open reading frame (ORF) within the deletion region in this mutant restored near wild-type growth rates, female fertility, aerial hyphae formation, and hyphal fusion, but not vegetative incompatibility and wild-type conidiation pattern. This ORF, which we named ham-2 (for hyphal anastomosis), encodes a putative transmembrane protein that is highly conserved, but of unknown function among eukaryotes. PMID:11805054

  11. The destructive effect of botulinum neurotoxins on the SNARE protein: SNAP-25 and synaptic membrane fusion.

    PubMed

    Lu, Bin

    2015-01-01

    Synaptic exocytosis requires the assembly of syntaxin 1A and SNAP-25 on the plasma membrane and synaptobrevin 2 (VAMP2) on the vesicular membrane to bridge the two opposite membranes. It is believed that the three SNARE proteins assemble in steps along the dynamic assembly pathway. The C-terminus of SNAP-25 is known to be the target of botulinum neurotoxins (BoNT/A and BoNT/E) that block neurotransmitters release in vivo. In this study, we employed electron paramagnetic resonance (EPR) spectroscopy to investigate the conformation of the SNAP-25 C-terminus in binary and ternary SNARE complexes. The fluorescence lipid mixing assay shows that the C-terminal of SNAP-25 is essential for membrane fusion, and that the truncated SNAP-25 mutants cleaved by BoNT/A and BoNT/E display different inhibition effects on membrane fusion: SNAP-25E (Δ26) abolishes the fusion activity of the SNARE complex, while SNAP-25A (Δ9) loses most of its function, although it can still form a SDS-resistant SNARE complex as the wild-type SNAP-25. CW-EPR spectra validate the unstable structures of the SNARE complex formed by SNAP-25 mutants. We propose that the truncated SNAP-25 mutants will disrupt the assembly of the SNARE core complex, and then inhibit the synaptic membrane fusion accordingly.

  12. The destructive effect of botulinum neurotoxins on the SNARE protein: SNAP-25 and synaptic membrane fusion

    PubMed Central

    2015-01-01

    Synaptic exocytosis requires the assembly of syntaxin 1A and SNAP-25 on the plasma membrane and synaptobrevin 2 (VAMP2) on the vesicular membrane to bridge the two opposite membranes. It is believed that the three SNARE proteins assemble in steps along the dynamic assembly pathway. The C-terminus of SNAP-25 is known to be the target of botulinum neurotoxins (BoNT/A and BoNT/E) that block neurotransmitters release in vivo. In this study, we employed electron paramagnetic resonance (EPR) spectroscopy to investigate the conformation of the SNAP-25 C-terminus in binary and ternary SNARE complexes. The fluorescence lipid mixing assay shows that the C-terminal of SNAP-25 is essential for membrane fusion, and that the truncated SNAP-25 mutants cleaved by BoNT/A and BoNT/E display different inhibition effects on membrane fusion: SNAP-25E (Δ26) abolishes the fusion activity of the SNARE complex, while SNAP-25A (Δ9) loses most of its function, although it can still form a SDS-resistant SNARE complex as the wild-type SNAP-25. CW-EPR spectra validate the unstable structures of the SNARE complex formed by SNAP-25 mutants. We propose that the truncated SNAP-25 mutants will disrupt the assembly of the SNARE core complex, and then inhibit the synaptic membrane fusion accordingly. PMID:26157630

  13. Effects of protein transduction domain (PTD) selection and position for improved intracellular delivery of PTD-Hsp27 fusion protein formulations.

    PubMed

    Ul Ain, Qurrat; Lee, Jong Hwan; Woo, Young Sun; Kim, Yong-Hee

    2016-09-01

    Protein drugs have attracted considerable attention as therapeutic agents due to their diversity and biocompatibility. However, hydrophilic proteins possess difficulty in penetrating lipophilic cell membrane. Although protein transduction domains (PTDs) have shown effectiveness in protein delivery, the importance of selection and position of PTDs in recombinant protein vector constructs has not been investigated. This study intends to investigate the significance of PTD selection and position for therapeutic protein delivery. Heat shock protein 27 (Hsp27) would be a therapeutic protein for the treatment of ischemic heart diseases, but itself is insufficient to prevent systemic degradation and overcoming biochemical barriers during cellular transport. Among all PTD-Hsp27 fusion proteins we cloned, Tat-Hsp27 fusion protein showed the highest efficacy. Nona-arginine (9R) conjugation to the N-terminal of Hsp27 (Hsp27-T) showed higher efficacy than C-terminal. To test the synergistic effect of two PTDs, Tat was inserted to the N-terminal of Hsp27-9R. Tat-Hsp27-9R exhibited enhanced transduction efficiency and significant improvement against oxidative stress and apoptosis. PTD-Hsp27 fusion proteins have strong potential to be developed as therapeutic proteins for the treatment of ischemic heart diseases and selection and position of PTDs for improved efficacy of PTD-fusion proteins need to be optimized considering protein's nature, transduction efficiency and stability.

  14. Roles of the Putative Integrin-Binding Motif of the Human Metapneumovirus Fusion (F) Protein in Cell-Cell Fusion, Viral Infectivity, and Pathogenesis

    PubMed Central

    Wei, Yongwei; Zhang, Yu; Cai, Hui; Mirza, Anne M.; Iorio, Ronald M.; Peeples, Mark E.; Niewiesk, Stefan

    2014-01-01

    ABSTRACT Human metapneumovirus (hMPV) is a relatively recently identified paramyxovirus that causes acute upper and lower respiratory tract infection. Entry of hMPV is unusual among the paramyxoviruses, in that fusion is accomplished by the fusion (F) protein without the attachment glycoprotein (G protein). It has been suggested that hMPV F protein utilizes integrin αvβ1 as a cellular receptor. Consistent with this, the F proteins of all known hMPV strains possess an integrin-binding motif (329RGD331). The role of this motif in viral entry, infectivity, and pathogenesis is poorly understood. Here, we show that α5β1 and αv integrins are essential for cell-cell fusion and hMPV infection. Mutational analysis found that residues R329 and G330 in the 329RGD331 motif are essential for cell-cell fusion, whereas mutations at D331 did not significantly impact fusion activity. Furthermore, fusion-defective RGD mutations were either lethal to the virus or resulted in recombinant hMPVs that had defects in viral replication in cell culture. In cotton rats, recombinant hMPV with the R329K mutation in the F protein (rhMPV-R329K) and rhMPV-D331A exhibited significant defects in viral replication in nasal turbinates and lungs. Importantly, inoculation of cotton rats with these mutants triggered a high level of neutralizing antibodies and protected against hMPV challenge. Taken together, our data indicate that (i) α5β1 and αv integrins are essential for cell-cell fusion and viral replication, (ii) the first two residues in the RGD motif are essential for fusion activity, and (iii) inhibition of the interaction of the integrin-RGD motif may serve as a new target to rationally attenuate hMPV for the development of live attenuated vaccines. IMPORTANCE Human metapneumovirus (hMPV) is one of the major causative agents of acute respiratory disease in humans. Currently, there is no vaccine or antiviral drug for hMPV. hMPV enters host cells via a unique mechanism, in that viral

  15. Effects of retroviral envelope-protein cleavage upon trafficking, incorporation, and membrane fusion

    SciTech Connect

    Apte, Swapna; Sanders, David Avram

    2010-09-15

    Retroviral envelope glycoproteins undergo proteolytic processing by cellular subtilisin-like proprotein convertases at a polybasic amino-acid site in order to produce the two functional subunits, SU and TM. Most previous studies have indicated that envelope-protein cleavage is required for rendering the protein competent for promoting membrane fusion and for virus infectivity. We have investigated the role of proteolytic processing of the Moloney murine leukemia virus envelope-protein through site-directed mutagenesis of the residues near the SU-TM cleavage site and have established that uncleaved glycoprotein is unable either to be incorporated into virus particles efficiently or to induce membrane fusion. Additionally, the results suggest that cleavage of the envelope protein plays an important role in intracellular trafficking of protein via the cellular secretory pathway. Based on our results it was concluded that a positively charged residue located at either P2 or P4 along with the arginine at P1 is essential for cleavage.

  16. Endocytosis plays a critical role in proteolytic processing of the Hendra virus fusion protein.

    PubMed

    Meulendyke, Kelly Ann; Wurth, Mark Allen; McCann, Richard O; Dutch, Rebecca Ellis

    2005-10-01

    The Hendra virus fusion (F) protein is synthesized as a precursor protein, F(0), which is proteolytically processed to the mature form, F(1) + F(2). Unlike the case for the majority of paramyxovirus F proteins, the processing event is furin independent, does not require the addition of exogenous proteases, is not affected by reductions in intracellular Ca(2+), and is strongly affected by conditions that raise the intracellular pH (C. T. Pager, M. A. Wurth, and R. E. Dutch, J. Virol. 78:9154-9163, 2004). The Hendra virus F protein cytoplasmic tail contains a consensus motif for endocytosis, YXXPhi. To analyze the potential role of endocytosis in the processing and membrane fusion promotion of the Hendra virus F protein, mutation of tyrosine 525 to alanine (Hendra virus F Y525A) or phenylalanine (Hendra virus F Y525F) was performed. The rate of endocytosis of Hendra virus F Y525A was significantly reduced compared to that of the wild-type (wt) F protein, confirming the functional importance of the endocytosis motif. An intermediate level of endocytosis was observed for Hendra virus F Y525F. Surprisingly, dramatic reductions in the rate of proteolytic processing were observed for Hendra virus F Y525A, although initial transport to the cell surface was not affected. The levels of surface expression for both Hendra virus F Y525A and Hendra virus F Y525F were higher than that of the wt protein, and these mutants displayed enhanced syncytium formation. These results suggest that endocytosis is critically important for Hendra virus F protein cleavage, representing a new paradigm for proteolytic processing of paramyxovirus F proteins.

  17. BMP type I receptor ALK2 is required for angiotensin II-induced cardiac hypertrophy.

    PubMed

    Shahid, Mohd; Spagnolli, Ester; Ernande, Laura; Thoonen, Robrecht; Kolodziej, Starsha A; Leyton, Patricio A; Cheng, Juan; Tainsh, Robert E T; Mayeur, Claire; Rhee, David K; Wu, Mei X; Scherrer-Crosbie, Marielle; Buys, Emmanuel S; Zapol, Warren M; Bloch, Kenneth D; Bloch, Donald B

    2016-04-15

    Bone morphogenetic protein (BMP) signaling contributes to the development of cardiac hypertrophy. However, the identity of the BMP type I receptor involved in cardiac hypertrophy and the underlying molecular mechanisms are poorly understood. By using quantitative PCR and immunoblotting, we demonstrated that BMP signaling increased during phenylephrine-induced hypertrophy in cultured neonatal rat cardiomyocytes (NRCs), as evidenced by increased phosphorylation of Smads 1 and 5 and induction of Id1 gene expression. Inhibition of BMP signaling with LDN193189 or noggin, and silencing of Smad 1 or 4 using small interfering RNA diminished the ability of phenylephrine to induce hypertrophy in NRCs. Conversely, activation of BMP signaling with BMP2 or BMP4 induced hypertrophy in NRCs. Luciferase reporter assay further showed that BMP2 or BMP4 treatment of NRCs repressed atrogin-1 gene expression concomitant with an increase in calcineurin protein levels and enhanced activity of nuclear factor of activated T cells, providing a mechanism by which BMP signaling contributes to cardiac hypertrophy. In a model of cardiac hypertrophy, C57BL/6 mice treated with angiotensin II (A2) had increased BMP signaling in the left ventricle. Treatment with LDN193189 attenuated A2-induced cardiac hypertrophy and collagen deposition in left ventricles. Cardiomyocyte-specific deletion of BMP type I receptor ALK2 (activin-like kinase 2), but not ALK1 or ALK3, inhibited BMP signaling and mitigated A2-induced cardiac hypertrophy and left ventricular fibrosis in mice. The results suggest that BMP signaling upregulates the calcineurin/nuclear factor of activated T cell pathway via BMP type I receptor ALK2, contributing to cardiac hypertrophy and fibrosis. PMID:26873969

  18. Trans-splicing as a novel method to rapidly produce antibody fusion proteins

    SciTech Connect

    Iwasaki, Ryohei; Kiuchi, Hiroki; Ihara, Masaki; Mori, Toshihiro; Kawakami, Masayuki; Ueda, Hiroshi

    2009-07-03

    To cultivate the use of trans-splicing as a novel means to rapidly express various antibody fusion proteins, we tried to express antibody-reporter enzyme fusions in a COS-1 co-transfection model. When a vector designed to induce trans-splicing with IgH pre-mRNA was co-transfected with a vector encoding the mouse IgM locus, the expression of V{sub H}-secreted human placental alkaline phosphatase (SEAP) as well as Fab-SEAP were successfully expressed both in mRNA and protein levels. Especially, the vectors encoding complementary sequence to S{mu} as a binding domain was accurate and efficient, producing trans-spliced mRNA of up to 2% of cis-spliced one. Since S{mu} sequence should exist in every IgH pre-mRNA, our finding will lead to the rapid production and analysis of various antibody-enzyme fusions suitable for enzyme-linked immunosorbent assay (ELISA) or antibody-dependent enzyme prodrug therapy (ADEPT).

  19. Eradication of Human Hepatic and Pulmonary Melanoma Metastases in SCID Mice by Antibody--Interleukin 2 Fusion Proteins

    NASA Astrophysics Data System (ADS)

    Becker, Jurgen C.; Pancook, James D.; Gillies, Stephen D.; Mendelsohn, John; Reisfeld, Ralph A.

    1996-04-01

    Antibody--cytokine fusion proteins combine the unique targeting ability of antibodies with the multifunctional activity of cytokines. Here, we demonstrate the therapeutic efficacy of such constructs for the treatment of hepatic and pulmonary metastases of different melanoma cell lines. Two antibody--interleukin 2 (IL-2) fusion proteins, ch225-IL2 and ch14.18-IL2, constructed by fusion of a synthetic sequence coding for human IL-2 to the carboxyl end of the Cγ 1 gene of the corresponding antibodies, were tested for their therapeutic efficacy against xenografted human melanoma in vivo. Tumorspecific fusion proteins completely inhibited the growth of hepatic and pulmonary metastases in C.B-17 scid/scid mice previously reconstituted with human lymphokine-activated killer cells, whereas treatment with combinations of the corresponding antibodies plus recombinant IL-2 only reduced the tumor load. Even when treatment with fusion proteins was delayed up to 8 days after inoculation of tumor cells, it still resulted in complete eradication of micrometastases that were established at that time point. Selection of tumor cell lines expressing or lacking the targeted antigen of the administered fusion protein proved the specificity of the observed antitumor effect. Biodistribution analysis demonstrated that the tumorspecific fusion protein accumulated not only in subcutaneous tumors but also in lungs and livers affected with micrometastases. Survival times of animals treated with the fusion protein were more than doubled as compared to those treated with the combination of the corresponding antibody plus IL-2. Our data demonstrate that an immunotherapeutic approach using cytokines targeted by antibodies to tumor sites has potent effects against disseminated human melanoma.

  20. Cathepsin L is involved in proteolytic processing of the Hendra virus fusion protein.

    PubMed

    Pager, Cara Theresia; Dutch, Rebecca Ellis

    2005-10-01

    Proteolytic processing of paramyxovirus fusion (F) proteins is essential for the generation of a mature and fusogenic form of the F protein. Although many paramyxovirus F proteins are proteolytically processed by the cellular protease furin at a multibasic cleavage motif, cleavage of the newly emerged Hendra virus F protein occurs by a previously unidentified cellular protease following a single lysine at residue 109. We demonstrate here that the cellular protease cathepsin L is involved in converting the Hendra virus precursor F protein (F(0)) to the active F(1) + F(2) disulfide-linked heterodimer. To initially identify the class of protease involved in Hendra virus F protein cleavage, Vero cells transfected with pCAGGS-Hendra F or pCAGGS-SV5 F (known to be proteolytically processed by furin) were metabolically labeled and chased in the absence or presence of serine, cysteine, aspartyl, and metalloprotease inhibitors. Nonspecific and specific protease inhibitors known to decrease cathepsin activity inhibited proteolytic processing of Hendra virus F but had no effect on simian virus 5 F processing. We next designed shRNA oligonucleotides to cathepsin L which dramatically reduced cathepsin L protein expression and enzyme activity. Cathepsin L shRNA-expressing Vero cells transfected with pCAGGS-Hendra F demonstrated a nondetectable amount of cleavage of the Hendra virus F protein and significantly decreased membrane fusion activity. Additionally, we found that purified human cathepsin L processed immunopurified Hendra virus F(0) into F(1) and F(2) fragments. These studies introduce a novel mechanism for primary proteolytic processing of viral glycoproteins and also suggest a previously unreported biological role for cathepsin L.

  1. Putative sperm fusion protein IZUMO and the role of N-glycosylation

    SciTech Connect

    Inoue, Naokazu; Ikawa, Masahito; Okabe, Masaru

    2008-12-19

    IZUMO is the mouse sperm protein proven to be essential for fusion with eggs. It contains one immunoglobulin-like domain with a conserved glycosylation site within. In the present paper, we produced transgenic mouse lines expressing unglycosylated IZUMO (N204Q-IZUMO) in Izumo1 -/- background. The expression of N204Q-IZUMO rescued the infertile phenotype of IZUMO disrupted mice, indicating glycosylation is not essential for fusion-facilitating activity of IZUMO. The N204Q-IZUMO was produced in testis in comparable amounts to wild-type IZUMO, but the amount of N204Q-IZUMO on sperm was significantly decreased by the time sperm reached the cauda epididymis. These data suggest that glycosylation is not essential for the function of IZUMO, but has a role in protecting it from fragmentation in cauda epididymis.

  2. Characterization of Aggregation Propensity of a Human Fc-Fusion Protein Therapeutic by Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Richard Y.-C.; Iacob, Roxana E.; Krystek, Stanley R.; Jin, Mi; Wei, Hui; Tao, Li; Das, Tapan K.; Tymiak, Adrienne A.; Engen, John R.; Chen, Guodong

    2016-08-01

    Aggregation of protein therapeutics has long been a concern across different stages of manufacturing processes in the biopharmaceutical industry. It is often indicative of aberrant protein therapeutic higher-order structure. In this study, the aggregation propensity of a human Fc-fusion protein therapeutic was characterized. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) was applied to examine the conformational dynamics of dimers collected from a bioreactor. HDX-MS data combined with spatial aggregation propensity calculations revealed a potential aggregation interface in the Fc domain. This study provides a general strategy for the characterization of the aggregation propensity of Fc-fusion proteins at the molecular level.

  3. Midkine and Alk signaling in sympathetic neuron proliferation and neuroblastoma predisposition.

    PubMed

    Reiff, Tobias; Huber, Leslie; Kramer, Marco; Delattre, Olivier; Janoueix-Lerosey, Isabelle; Rohrer, Hermann

    2011-11-01

    Neuroblastoma (NB) is the most common extracranial solid tumor in childhood and arises from cells of the developing sympathoadrenergic lineage. Activating mutations in the gene encoding the ALK tyrosine kinase receptor predispose for NB. Here, we focus on the normal function of Alk signaling in the control of sympathetic neuron proliferation, as well as on the effects of mutant ALK. Forced expression of wild-type ALK and NB-related constitutively active ALK mutants in cultures of proliferating immature sympathetic neurons results in a strong proliferation increase, whereas Alk knockdown and pharmacological inhibition of Alk activity decrease proliferation. Alk activation upregulates NMyc and trkB and maintains Alk expression by an autoregulatory mechanism involving Hand2. The Alk-ligand Midkine (Mk) is expressed in immature sympathetic neurons and in vivo inhibition of Alk signaling by virus-mediated shRNA knockdown of Alk and Mk leads to strongly reduced sympathetic neuron proliferation. Taken together, these results demonstrate that the extent and timing of sympathetic neurogenesis is controlled by Mk/Alk signaling. The predisposition for NB caused by activating ALK mutations may thus be explained by aberrations of normal neurogenesis, i.e. elevated and sustained Alk signaling and increased NMyc expression. PMID:21989914

  4. Transposon assisted gene insertion technology (TAGIT): a tool for generating fluorescent fusion proteins.

    PubMed

    Gregory, James A; Becker, Eric C; Jung, James; Tuwatananurak, Ida; Pogliano, Kit

    2010-01-01

    We constructed a transposon (transposon assisted gene insertion technology, or TAGIT) that allows the random insertion of gfp (or other genes) into chromosomal loci without disrupting operon structure or regulation. TAGIT is a modified Tn5 transposon that uses Kan(R) to select for insertions on the chromosome or plasmid, beta-galactosidase to identify in-frame gene fusions, and Cre recombinase to excise the kan and lacZ genes in vivo. The resulting gfp insertions maintain target gene reading frame (to the 5' and 3' of gfp) and are integrated at the native chromosomal locus, thereby maintaining native expression signals. Libraries can be screened to identify GFP insertions that maintain target protein function at native expression levels, allowing more trustworthy localization studies. We here use TAGIT to generate a library of GFP insertions in the Escherichia coli lactose repressor (LacI). We identified fully functional GFP insertions and partially functional insertions that bind DNA but fail to repress the lacZ operon. Several of these latter GFP insertions localize to lacO arrays integrated in the E. coli chromosome without producing the elongated cells frequently observed when functional LacI-GFP fusions are used in chromosome tagging experiments. TAGIT thereby faciliates the isolation of fully functional insertions of fluorescent proteins into target proteins expressed from the native chromosomal locus as well as potentially useful partially functional proteins. PMID:20090956

  5. Antigen Binding and Site-Directed Labeling of Biosilica-Immobilized Fusion Proteins Expressed in Diatoms.

    PubMed

    Ford, Nicole R; Hecht, Karen A; Hu, DeHong; Orr, Galya; Xiong, Yijia; Squier, Thomas C; Rorrer, Gregory L; Roesijadi, Guritno

    2016-03-18

    The diatom Thalassiosira pseudonana was genetically modified to express biosilica-targeted fusion proteins comprising either enhanced green fluorescent protein (EGFP) or single chain antibodies engineered with a tetracysteine tagging sequence. Of interest were the site-specific binding of (1) the fluorescent biarsenical probe AsCy3 and AsCy3e to the tetracysteine tagged fusion proteins and (2) high and low molecular mass antigens, the Bacillus anthracis surface layer protein EA1 or small molecule explosive trinitrotoluene (TNT), to biosilica-immobilized single chain antibodies. Analysis of biarsenical probe binding using fluorescence and structured illumination microscopy indicated differential colocalization with EGFP in nascent and mature biosilica, supporting the use of either EGFP or bound AsCy3 and AsCy3e in studying biosilica maturation. Large increases in the lifetime of a fluorescent analogue of TNT upon binding single chain antibodies provided a robust signal capable of discriminating binding to immobilized antibodies in the transformed frustule from nonspecific binding to the biosilica matrix. In conclusion, our results demonstrate an ability to engineer diatoms to create antibody-functionalized mesoporous silica able to selectively bind chemical and biological agents for the development of sensing platforms.

  6. Structure and expression of the Drosophila ubiquitin-80-amino-acid fusion-protein gene.

    PubMed Central

    Barrio, R; del Arco, A; Cabrera, H L; Arribas, C

    1994-01-01

    In the fruitfly Drosophila, as in all eukaryotes examined so far, some ubiquitin-coding sequences appear fused to unrelated open reading frames. Two of these fusion genes have been previously described (the homologues of UBI1-UBI2 and UBI4 in yeast), and we report here the organization and expression of a third one, the DUb80 gene (the homologue of UBI3 in yeast). This gene encodes a ubiquitin monomer fused to an 80-amino-acid extension which is homologous with the ribosomal protein encoded by the UB13 gene. The 5' regulatory region of DUb80 shares common features with another ubiquitin fusion gene, DUb52, and with the ribosomal protein genes of Drosophila, Xenopus and mouse. We also find helix-loop-helix protein-binding sequences (E-boxes). The DUb80 gene is transcribed to a 0.9 kb mRNA which is particularly abundant under conditions of high protein synthesis, such as in ovaries and exponentially growing cells. Images Figure 3 Figure 4 PMID:8068011

  7. DELIVERY OF siRNA INTO BREAST CANCER CELLS VIA PHAGE FUSION PROTEIN-TARGETED LIPOSOMES

    PubMed Central

    Bedi, Deepa; Musacchio, Tiziana; Fagbohun, Olusegun A.; Gillespie, James W.; Deinnocentes, Patricia; Bird, R. Curtis; Bookbinder, Lonnie; Torchilin, Vladimir P.; Petrenko, Valery A.

    2011-01-01

    Efficacy of siRNAs as potential anticancer therapeutics can be increased by their targeted delivery into cancer cells via tumor-specific ligands. Phage display offers an unique approach to identify highly specific and selective ligands that can deliver nanocarriers to the site of disease. In this study, we proved a novel approach for intracellular delivery of siRNAs into breast cancer cells through their encapsulation into liposomes targeted to the tumor cells with preselected intact phage proteins. The targeted siRNA liposomes were obtained by a fusion of two parental liposomes containing spontaneously inserted siRNA and fusion phage proteins. The presence of pVIII coat protein fused to a MCF-7 cell-targeting peptide DMPGTVLP in the liposomes was confirmed by Western blotting. The novel phage-targeted siRNA-nanopharmaceuticals demonstrate significant down-regulation of PRDM14 gene expression and PRDM14 protein synthesis in the target MCF- 7 cells. This approach offers the potential for development of new anticancer siRNA-based targeted nanomedicines. PMID:21050894

  8. A Novel p19 Fusion Protein as a Delivery Agent for Short-interfering RNAs

    PubMed Central

    Danielson, Dana C; Sachrajda, Natalie; Wang, Wei; Filip, Roxana; Pezacki, John Paul

    2016-01-01

    RNA interference (RNAi) is the biological mechanism that allows targeted gene knockdown through the addition of exogenous short-interfering RNAs (siRNAs) to cells and organisms. RNAi has revolutionized cell biology and holds enormous potential for human therapy. One of the major challenges facing RNAi as a therapy is achieving efficient and nontoxic delivery of siRNAs into the cell cytoplasm, since their highly anionic character precludes their passage across the cell membrane unaided. Herein, we report a novel fusion protein between the tombusviral p19 protein, which binds siRNAs with picomolar affinity, and the “TAT” peptide (RKKRRQRRRR), which is derived from the transactivator of transcription (TAT) protein of the human immunodeficiency virus and acts as a cell-penetrating peptide. We demonstrate that this fusion protein, 2x-p19-TAT, delivers siRNAs into the cytoplasm of human hepatoma cells where they elicit potent and sustained gene knockdown activity without toxic effects. PMID:27045207

  9. Adhesion and fusion efficiencies of human immunodeficiency virus type 1 (HIV-1) surface proteins

    NASA Astrophysics Data System (ADS)

    Dobrowsky, Terrence M.; Rabi, S. Alireza; Nedellec, Rebecca; Daniels, Brian R.; Mullins, James I.; Mosier, Donald E.; Siliciano, Robert F.; Wirtz, Denis

    2013-10-01

    In about half of patients infected with HIV-1 subtype B, viral populations shift from utilizing the transmembrane protein CCR5 to CXCR4, as well as or instead of CCR5, during late stage progression of the disease. How the relative adhesion efficiency and fusion competency of the viral Env proteins relate to infection during this transition is not well understood. Using a virus-cell fusion assay and live-cell single-molecule force spectroscopy, we compare the entry competency of viral clones to tensile strengths of the individual Env-receptor bonds of Env proteins obtained from a HIV-1 infected patient prior to and during coreceptor switching. The results suggest that the genetic determinants of viral entry were predominantly enriched in the C3, HR1 and CD regions rather than V3. Env proteins can better mediate entry into cells after coreceptor switch; this effective entry capacity does not correlate with the bond strengths between viral Env and cellular receptors.

  10. Protein Sub-Nuclear Localization Based on Effective Fusion Representations and Dimension Reduction Algorithm LDA.

    PubMed

    Wang, Shunfang; Liu, Shuhui

    2015-12-19

    An effective representation of a protein sequence plays a crucial role in protein sub-nuclear localization. The existing representations, such as dipeptide composition (DipC), pseudo-amino acid composition (PseAAC) and position specific scoring matrix (PSSM), are insufficient to represent protein sequence due to their single perspectives. Thus, this paper proposes two fusion feature representations of DipPSSM and PseAAPSSM to integrate PSSM with DipC and PseAAC, respectively. When constructing each fusion representation, we introduce the balance factors to value the importance of its components. The optimal values of the balance factors are sought by genetic algorithm. Due to the high dimensionality of the proposed representations, linear discriminant analysis (LDA) is used to find its important low dimensional structure, which is essential for classification and location prediction. The numerical experiments on two public datasets with KNN classifier and cross-validation tests showed that in terms of the common indexes of sensitivity, specificity, accuracy and MCC, the proposed fusing representations outperform the traditional representations in protein sub-nuclear localization, and the representation treated by LDA outperforms the untreated one.

  11. Preferential expression and immunogenicity of HIV-1 Tat fusion protein expressed in tomato plant.

    PubMed

    Cueno, Marni E; Hibi, Yurina; Karamatsu, Katsuo; Yasutomi, Yasuhiro; Imai, Kenichi; Laurena, Antonio C; Okamoto, Takashi

    2010-10-01

    HIV-1 Tat plays a major role in viral replication and is essential for AIDS development making it an ideal vaccine target providing that both humoral and cellular immune responses are induced. Plant-based antigen production, due to its cheaper cost, appears ideal for vaccine production. In this study, we created a plant-optimized tat and mutant (Cys30Ala/Lys41Ala) tat (mtat) gene and ligated each into a pBI121 expression vector with a stop codon and a gusA gene positioned immediately downstream. The vector construct was bombarded into tomato leaf calli and allowed to develop. We thus generated recombinant tomato plants preferentially expressing a Tat-GUS fusion protein over a Tat-only protein. In addition, plants bombarded with either tat or mtat genes showed no phenotypic difference and produced 2-4 microg Tat-GUS fusion protein per milligram soluble plant protein. Furthermore, tomato extracts intradermally inoculated into mice were found to induce a humoral and, most importantly, cellular immunity. PMID:20072815

  12. Resolution of Disulfide Heterogeneity in Nogo Receptor 1 Fusion Proteins by Molecular Engineering

    SciTech Connect

    P Weinreb; D Wen; F Qian; C Wildes; E Garber; L Walus; M Jung; J Wang; J Relton; et al.

    2011-12-31

    NgRI (Nogo-66 receptor) is part of a signalling complex that inhibits axon regeneration in the central nervous system. Truncated soluble versions of NgRI have been used successfully to promote axon regeneration in animal models of spinal-cord injury, raising interest in this protein as a potential therapeutic target. The LRR (leucine-rich repeat) regions in NgRI are flanked by N- and C-terminal disulfide-containing 'cap' domains (LRRNT and LRRCT respectively). In the present work we show that, although functionally active, the NgRI(310)-Fc fusion protein contains mislinked and heterogeneous disulfide patterns in the LRRCT domain, and we report the generation of a series of variant molecules specifically designed to prevent this heterogeneity. Using these variants we explored the effects of modifying the NgRI truncation site or the spacing between the NgRI and Fc domains, or replacing cysteines within the NgRI or IgG hinge regions. One variant, which incorporates replacements of Cys{sup 266} and Cys{sup 309} with alanine residues, completely eliminated disulfide scrambling while maintaining functional in vitro and in vivo efficacy. This modified NgRI-Fc molecule represents a significantly improved candidate for further pharmaceutical development, and may serve as a useful model for the optimization of other IgG fusion proteins made from LRR proteins.

  13. Protein Sub-Nuclear Localization Based on Effective Fusion Representations and Dimension Reduction Algorithm LDA

    PubMed Central

    Wang, Shunfang; Liu, Shuhui

    2015-01-01

    An effective representation of a protein sequence plays a crucial role in protein sub-nuclear localization. The existing representations, such as dipeptide composition (DipC), pseudo-amino acid composition (PseAAC) and position specific scoring matrix (PSSM), are insufficient to represent protein sequence due to their single perspectives. Thus, this paper proposes two fusion feature representations of DipPSSM and PseAAPSSM to integrate PSSM with DipC and PseAAC, respectively. When constructing each fusion representation, we introduce the balance factors to value the importance of its components. The optimal values of the balance factors are sought by genetic algorithm. Due to the high dimensionality of the proposed representations, linear discriminant analysis (LDA) is used to find its important low dimensional structure, which is essential for classification and location prediction. The numerical experiments on two public datasets with KNN classifier and cross-validation tests showed that in terms of the common indexes of sensitivity, specificity, accuracy and MCC, the proposed fusing representations outperform the traditional representations in protein sub-nuclear localization, and the representation treated by LDA outperforms the untreated one. PMID:26703574

  14. The evolutionary analysis reveals domain fusion of proteins with Frizzled-like CRD domain.

    PubMed

    Yan, Jun; Jia, Haibo; Ma, Zhaowu; Ye, Huashan; Zhou, Mi; Su, Li; Liu, Jianfeng; Guo, An-Yuan

    2014-01-01

    Frizzleds (FZDs) are transmembrane receptors in the Wnt signaling pathway and they play pivotal roles in developments. The Frizzled-like extracellular Cysteine-rich domain (Fz-CRD) has been identified in FZDs and other proteins. The origin and evolution of these proteins with Fz-CRD is the main interest of this study. We found that the Fz-CRD exists in FZD, SFRP, RTK, MFRP, CPZ, CORIN, COL18A1 and other proteins. Our systematic analysis revealed that the Fz-CRD domain might have originated in protists and then fused with the Frizzled-like seven-transmembrane domain (7TM) to form the FZD receptors, which duplicated and diversified into about 11 members in Vertebrates. The SFRPs and RTKs with the Fz-CRD were found in sponge and expanded in Vertebrates. Other proteins with Fz-CRD may have emerged during Vertebrate evolution through domain fusion. Moreover, we found a glycosylation site and several conserved motifs in FZDs, which may be related to Wnt interaction. Based on these results, we proposed a model showing that the domain fusion and expansion of Fz-CRD genes occurred in Metazoa and Vertebrates. Our study may help to pave the way for further research on the conservation and diversification of Wnt signaling functions during evolution.

  15. Targeted codon optimization improves translational fidelity for an Fc fusion protein.

    PubMed

    Hutterer, Katariina M; Zhang, Zhongqi; Michaels, Mark Leo; Belouski, Ed; Hong, Robert W; Shah, Bhavana; Berge, Mark; Barkhordarian, Hedieh; Le, Eleanor; Smith, Steve; Winters, Dwight; Abroson, Frank; Hecht, Randy; Liu, Jennifer

    2012-11-01

    High levels of translational errors, both truncation and misincorporation in an Fc-fusion protein were observed. Here, we demonstrate the impact of several commercially available codon optimization services, and compare to a targeted strategy. Using the targeted strategy, only codons known to have translational errors are modified. For an Fc-fusion protein expressed in Escherichia coli, the targeted strategy, in combination with appropriate fermentation conditions, virtually eliminated misincorporation (proteins produced with a wrong amino acid sequence), and reduced the level of truncation. The use of full optimization using commercially available strategies reduced the initial errors, but introduced different misincorporations. However, truncation was higher using the targeted strategy than for most of the full optimization strategies. This targeted approach, along with monitoring of translation fidelity and careful attention to fermentation conditions is key to minimizing translational error and ensuring high-quality expression. These findings should be useful for other biopharmaceutical products, as well as any other transgenic constructs where protein quality is important.

  16. Regioselective alkane hydroxylation with a mutant AlkB enzyme

    DOEpatents

    Koch, Daniel J.; Arnold, Frances H.

    2012-11-13

    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  17. Probing the paramyxovirus fusion (F) protein-refolding event from pre- to postfusion by oxidative footprinting

    PubMed Central

    Poor, Taylor A.; Jones, Lisa M.; Sood, Amika; Leser, George P.; Plasencia, Manolo D.; Rempel, Don L.; Jardetzky, Theodore S.; Woods, Robert J.; Gross, Michael L.; Lamb, Robert A.

    2014-01-01

    To infect a cell, the Paramyxoviridae family of enveloped viruses relies on the coordinated action of a receptor-binding protein (variably HN, H, or G) and a more conserved metastable fusion protein (F) to effect membrane fusion and allow genomic transfer. Upon receptor binding, HN (H or G) triggers F to undergo an extensive refolding event to form a stable postfusion state. Little is known about the intermediate states of the F refolding process. Here, a soluble form of parainfluenza virus 5 F was triggered to refold using temperature and was footprinted along the refolding pathway using fast photochemical oxidation of proteins (FPOP). Localization of the oxidative label to solvent-exposed side chains was determined by high-resolution MS/MS. Globally, metastable prefusion F is oxidized more extensively than postfusion F, indicating that the prefusion state is more exposed to solvent and is more flexible. Among the first peptides to be oxidatively labeled after temperature-induced triggering is the hydrophobic fusion peptide. A comparison of peptide oxidation levels with the values of solvent-accessible surface area calculated from molecular dynamics simulations of available structural data reveals regions of the F protein that lie at the heart of its prefusion metastability. The strong correlation between the regions of F that experience greater-than-expected oxidative labeling and epitopes for neutralizing antibodies suggests that FPOP has a role in guiding the development of targeted therapeutics. Analysis of the residue levels of labeled F intermediates provides detailed insights into the mechanics of this critical refolding event. PMID:24927585

  18. Effect of protein aggregates on characterization of FcRn binding of Fc-fusion therapeutics.

    PubMed

    Bajardi-Taccioli, Adriana; Blum, Andrew; Xu, Chongfeng; Sosic, Zoran; Bergelson, Svetlana; Feschenko, Marina

    2015-10-01

    Recycling of antibodies and Fc containing therapeutic proteins by the neonatal Fc receptor (FcRn) is known to prolong their persistence in the bloodstream. Fusion of Fc fragment of IgG1 to other proteins is one of the strategies to improve their pharmacokinetic properties. Accurate measurement of Fc-FcRn binding provides information about the strength of this interaction, which in most cases correlates with serum half-life of the protein. It can also offer insight into functional integrity of Fc region. We investigated FcRn binding activity of a large set of Fc-fusion samples after thermal stress by the method based on AlphaScreen technology. An unexpected significant increase in FcR binding was found to correlate with formation of aggregates in these samples. Monomer purified from a thermally-stressed sample had normal FcRn binding, confirming that its Fc portion was intact. Experiments with aggregates spiked into a sample with low initial aggregation level, demonstrated strong correlation between the level of aggregates and FcRn binding. This correlation varied significantly in different methods. By introducing modifications to the assay format we were able to minimize the effects of aggregated species on FcRn binding, which should prevent masking functional changes of Fc-fusion protein. Biolayer interferometry (BLI) was used as an alternative method to measure FcRn binding. Both optimized AlphaScreen- and BLI-based assays were sensitive to structural changes in Fc portion of the molecule, such as oxidation of methionines 252 and 428, and therefore suitable for characterization of FcRn binding.

  19. Mitochondrial remodeling following fission inhibition by 15d-PGJ2 involves molecular changes in mitochondrial fusion protein OPA1

    SciTech Connect

    Kar, Rekha; Mishra, Nandita; Singha, Prajjal K.; Venkatachalam, Manjeri A.; Saikumar, Pothana

    2010-09-03

    Research highlights: {yields} Chemical inhibition of fission protein Drp1 leads to mitochondrial fusion. {yields} Increased fusion stimulates molecular changes in mitochondrial fusion protein OPA1. {yields} Proteolysis of larger isoforms, new synthesis and ubiquitination of OPA1 occur. {yields} Loss of mitochondrial tubular rigidity and disorganization of cristae. {yields} Generation of large swollen dysfunctional mitochondria. -- Abstract: We showed earlier that 15 deoxy {Delta}{sup 12,14} prostaglandin J2 (15d-PGJ2) inactivates Drp1 and induces mitochondrial fusion . However, prolonged incubation of cells with 15d-PGJ2 resulted in remodeling of fused mitochondria into large swollen mitochondria with irregular cristae structure. While initial fusion of mitochondria by 15d-PGJ2 required the presence of both outer (Mfn1 and Mfn2) and inner (OPA1) mitochondrial membrane fusion proteins, later mitochondrial changes involved increased degradation of the fusion protein OPA1 and ubiquitination of newly synthesized OPA1 along with decreased expression of Mfn1 and Mfn2, which likely contributed to the loss of tubular rigidity, disorganization of cristae, and formation of large swollen degenerated dysfunctional mitochondria. Similar to inhibition of Drp1 by 15d-PGJ2, decreased expression of fission protein Drp1 by siRNA also resulted in the loss of fusion proteins. Prevention of 15d-PGJ2 induced mitochondrial elongation by thiol antioxidants prevented not only loss of OPA1 isoforms but also its ubiquitination. These findings provide novel insights into unforeseen complexity of molecular events that modulate mitochondrial plasticity.

  20. Influence of silk-silica fusion protein design on silica condensation in vitro and cellular calcification

    PubMed Central

    Plowright, Robyn; Dinjaski, Nina; Zhou, Shun; Belton, David J.; Kaplan, David L.; Perry, Carole C.

    2016-01-01

    Biomaterial design via genetic engineering can be utilized for the rational functionalization of proteins to promote biomaterial integration and tissue regeneration. Spider silk has been extensively studied for its biocompatibility, biodegradability and extraordinary material properties. As a protein-based biomaterial, recombinant DNA derived derivatives of spider silks have been modified with biomineralization domains which lead to silica deposition and potentially accelerated bone regeneration. However, the influence of the location of the R5 (SSKKSGSYSGSKGSKRRIL) silicifying domain fused with the spider silk protein sequence on the biosilicification process remains to be determined. Here we designed two silk-R5 fusion proteins that differed in the location of the R5 peptide, C- vs. N-terminus, where the spider silk domain consisted of a 15mer repeat of a 33 amino acid consensus sequence of the major ampullate dragline Spidroin 1 from Nephila clavipes (SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQGT). The chemical, physical and silica deposition properties of these recombinant proteins were assessed and compared to a silk 15mer control without the R5 present. The location of the R5 peptide did not have a significant effect on wettability and surface energies, while the C-terminal location of the R5 promoted more controlled silica precipitation, suggesting differences in protein folding and possibly different access to charged amino acids that drive the silicification process. Further, cell compatibility in vitro, as well as the ability to promote human bone marrow derived mesenchymal stem cell (hMSC) differentiation were demonstrated for both variants of the fusion proteins. PMID:26989487

  1. Contraceptive efficacy of recombinant fusion protein comprising zona pellucida glycoprotein-3 fragment and gonadotropin releasing hormone.

    PubMed

    Arukha, Ananta Prasad; Minhas, Vidisha; Shrestha, Abhinav; Gupta, Satish Kumar

    2016-04-01

    Contraceptive vaccines have been used for the management of wildlife population. In the present study, we have examined the contraceptive potential of Escherichia coli-expressed recombinant fusion protein comprising of 'promiscuous' T cell epitope of tetanus toxoid [TT; amino acid (aa) residues 830-844] followed by dilysine linker (KK), dog ZP3 fragment (aa residues 307-346), triglycine spacer (GGG), T cell epitope of bovine RNase (bRNase; aa residues 94-104), GnRH, T cell epitope of circumsporozoite protein of Plasmodium falciparum (CSP; aa residues 362-383), and GnRH. SDS-PAGE analysis of the purified refolded protein revealed a dominant ∼12 kDa band, which in Western blot reacted with mouse polyclonal antibodies against dog ZP3 fragment and mouse monoclonal antibodies against GnRH. Immunization of female FvB/J mice following two booster schedule with the above recombinant protein supplemented with alum led to high antibody titres against the immunogen as well as ZP3 and GnRH as determined by ELISA. The immune sera reacted with zona pellucida of mouse oocyte and also inhibited in-vitro fertilization. The qRT-PCR studies showed decrease in the ovarian GnRH receptor in mice immunized with the recombinant fusion protein. Mating studies revealed high contraceptive efficacy of the recombinant protein as in two independent experiments, 90% of the immunized female mice failed to conceive. Following one booster immunization schedule, 50% of the immunized female mice failed to conceive. However, in adjuvanted controls, all the female mice became pregnant. To conclude, the recombinant protein described herein has a good potential to be developed as candidate contraceptive vaccine. PMID:26859695

  2. Prm3p is a pheromone-induced peripheral nuclear envelope protein required for yeast nuclear fusion.

    PubMed

    Shen, Shu; Tobery, Cynthia E; Rose, Mark D

    2009-05-01

    Nuclear membrane fusion is the last step in the mating pathway of the yeast Saccharomyces cerevisiae. We adapted a bioinformatics approach to identify putative pheromone-induced membrane proteins potentially required for nuclear membrane fusion. One protein, Prm3p, was found to be required for nuclear membrane fusion; disruption of PRM3 caused a strong bilateral defect, in which nuclear congression was completed but fusion did not occur. Prm3p was localized to the nuclear envelope in pheromone-responding cells, with significant colocalization with the spindle pole body in zygotes. A previous report, using a truncated protein, claimed that Prm3p is localized to the inner nuclear envelope. Based on biochemistry, immunoelectron microscopy and live cell microscopy, we find that functional Prm3p is a peripheral membrane protein exposed on the cytoplasmic face of the outer nuclear envelope. In support of this, mutations in a putative nuclear localization sequence had no effect on full-length protein function or localization. In contrast, point mutations and deletions in the highly conserved hydrophobic carboxy-terminal domain disrupted both protein function and localization. Genetic analysis, colocalization, and biochemical experiments indicate that Prm3p interacts directly with Kar5p, suggesting that nuclear membrane fusion is mediated by a protein complex.

  3. The potent oncogene NPM-ALK mediates malignant transformation of normal human CD4(+) T lymphocytes.

    PubMed

    Zhang, Qian; Wei, Fang; Wang, Hong Yi; Liu, Xiaobin; Roy, Darshan; Xiong, Qun-Bin; Jiang, Shuguang; Medvec, Andrew; Danet-Desnoyers, Gwenn; Watt, Christopher; Tomczak, Ewa; Kalos, Michael; Riley, James L; Wasik, Mariusz A

    2013-12-01

    With this study we have demonstrated that in vitro transduction of normal human CD4(+) T lymphocytes with NPM-ALK results in their malignant transformation. The transformed cells become immortalized and display morphology and immunophenotype characteristic of patient-derived anaplastic large-cell lymphomas. These unique features, which are strictly dependent on NPM-ALK activity and expression, include perpetual cell growth, proliferation, and survival; activation of the key signal transduction pathways STAT3 and mTORC1; and expression of CD30 (the hallmark of anaplastic large-cell lymphoma) and of immunosuppressive cytokine IL-10 and cell-surface protein PD-L1/CD274. Implantation of NPM-ALK-transformed CD4(+) T lymphocytes into immunodeficient mice resulted in formation of tumors indistinguishable from patients' anaplastic large-cell lymphomas. Our findings demonstrate that the key aspects of human carcinogenesis closely recapitulating the features of the native tumors can be faithfully reproduced in vitro when an appropriate oncogene is used to transform its natural target cells; this in turn points to the fundamental role in malignant cell transformation of potent oncogenes expressed in the relevant target cells. Such transformed cells should permit study of the early stages of carcinogenesis, and in particular the initial oncogene-host cell interactions. This experimental design could also be useful for studies of the effects of early therapeutic intervention and likely also the mechanisms of malignant progression.

  4. ALK5-dependent TGF-β signaling is a major determinant of late stage adult neurogenesis

    PubMed Central

    He, Yingbo; Zhang, Hui; Yung, Andrea; Villeda, Saul A; Jaeger, Philipp A; Olayiwola, Oluwatobi; Fainberg, Nina; Wyss-Coray, Tony

    2014-01-01

    The transforming growth factor-β (TGF-β) signaling pathway serves critical functions in central nervous system (CNS) development, but apart from its proposed neuroprotective actions, its physiological role in the adult brain is unclear. We observed a prominent activation of TGF-β signaling in the adult dentate gyrus and expression of downstream Smad proteins in this neurogenic zone. Consistent with a function of TGF-β signaling in adult neurogenesis, genetic deletion of the TGF-β receptor ALK5 reduced the number, migration, and dendritic arborization of newborn neurons. Conversely, constitutive activation of neuronal ALK5 in forebrain caused a striking increase in these aspects of neurogenesis and was associated with higher expression of c-fos in newborn neurons and with stronger memory function. Our findings describe a new and unexpected role for ALK5-dependent TGF-β signaling as a regulator of the late stages of adult hippocampal neurogenesis which may have implications for changes in neurogenesis during aging and disease. PMID:24859199

  5. Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein.

    PubMed

    Silas, Sukrit; Mohr, Georg; Sidote, David J; Markham, Laura M; Sanchez-Amat, Antonio; Bhaya, Devaki; Lambowitz, Alan M; Fire, Andrew Z

    2016-02-26

    CRISPR systems mediate adaptive immunity in diverse prokaryotes. CRISPR-associated Cas1 and Cas2 proteins have been shown to enable adaptation to new threats in type I and II CRISPR systems by the acquisition of short segments of DNA (spacers) from invasive elements. In several type III CRISPR systems, Cas1 is naturally fused to a reverse transcriptase (RT). In the marine bacterium Marinomonas mediterranea (MMB-1), we showed that a RT-Cas1 fusion protein enables the acquisition of RNA spacers in vivo in a RT-dependent manner. In vitro, the MMB-1 RT-Cas1 and Cas2 proteins catalyze the ligation of RNA segments into the CRISPR array, which is followed by reverse transcription. These observations outline a host-mediated mechanism for reverse information flow from RNA to DNA. PMID:26917774

  6. RESOLFT Nanoscopy of Fixed Cells Using a Z-Domain Based Fusion Protein for Labelling

    PubMed Central

    Kilisch, Markus; Hell, Stefan W.; Jakobs, Stefan

    2015-01-01

    RESOLFT super-resolution microscopy allows subdiffraction resolution imaging of living cells using low intensities of light. It relies on the light-driven switching of reversible switchable fluorescent proteins (RSFPs). So far, RESOLFT imaging was restricted to living cells, because chemical fixation typically affects the switching characteristics of RSFPs. In this study we created a fusion construct (FLASR) consisting of the RSFP rsEGFP2 and the divalent form of the antibody binding Z domain from protein A. FLASR can be used analogous to secondary antibodies in conventional immunochemistry, facilitating simple and robust sample preparation. We demonstrate RESOLFT super-resolution microscopy on chemically fixed mammalian cells. The approach may be extended to other super-resolution approaches requiring fluorescent proteins in an aqueous environment. PMID:26375606

  7. Rational Design of a Fusion Protein to Exhibit Disulfide-Mediated Logic Gate Behavior

    PubMed Central

    2015-01-01

    Synthetic cellular logic gates are primarily built from gene circuits owing to their inherent modularity. Single proteins can also possess logic gate functions and offer the potential to be simpler, quicker, and less dependent on cellular resources than gene circuits. However, the design of protein logic gates that are modular and integrate with other cellular components is a considerable challenge. As a step toward addressing this challenge, we describe the design, construction, and characterization of AND, ORN, and YES logic gates built by introducing disulfide bonds into RG13, a fusion of maltose binding protein and TEM-1 β-lactamase for which maltose is an allosteric activator of enzyme activity. We rationally designed these disulfide bonds to manipulate RG13’s allosteric regulation mechanism such that the gating had maltose and reducing agents as input signals, and the gates could be toggled between different gating functions using redox agents, although some gates performed suboptimally. PMID:25144732

  8. F-18 Labeled Diabody-Luciferase Fusion Proteins for Optical-ImmunoPET

    SciTech Connect

    Wu, Anna M

    2013-01-18

    The goal of the proposed work is to develop novel dual-labeled molecular imaging probes for multimodality imaging. Based on small, engineered antibodies called diabodies, these probes will be radioactively tagged with Fluorine-18 for PET imaging, and fused to luciferases for optical (bioluminescence) detection. Performance will be evaluated and validated using a prototype integrated optical-PET imaging system, OPET. Multimodality probes for optical-PET imaging will be based on diabodies that are dually labeled with 18F for PET detection and fused to luciferases for optical imaging. 1) Two sets of fusion proteins will be built, targeting the cell surface markers CEA or HER2. Coelenterazine-based luciferases and variant forms will be evaluated in combination with native substrate and analogs, in order to obtain two distinct probes recognizing different targets with different spectral signatures. 2) Diabody-luciferase fusion proteins will be labeled with 18F using amine reactive [18F]-SFB produced using a novel microwave-assisted, one-pot method. 3) Sitespecific, chemoselective radiolabeling methods will be devised, to reduce the chance that radiolabeling will inactivate either the target-binding properties or the bioluminescence properties of the diabody-luciferase fusion proteins. 4) Combined optical and PET imaging of these dual modality probes will be evaluated and validated in vitro and in vivo using a prototype integrated optical-PET imaging system, OPET. Each imaging modality has its strengths and weaknesses. Development and use of dual modality probes allows optical imaging to benefit from the localization and quantitation offered by the PET mode, and enhances the PET imaging by enabling simultaneous detection of more than one probe.

  9. Adenoviral-mediated imaging of gene transfer using a somatostatin receptor-cytosine deaminase fusion protein.

    PubMed

    Lears, K A; Parry, J J; Andrews, R; Nguyen, K; Wadas, T J; Rogers, B E

    2015-03-01

    Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy owing to the enzyme's ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that both the SSTR2 and yCD were functional in binding assays, conversion assays and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy. PMID:25837665

  10. Efficient killing of CD22{sup +} tumor cells by a humanized diabody-RNase fusion protein

    SciTech Connect

    Krauss, Juergen . E-mail: juergen.krauss@uni-essen.de; Arndt, Michaela A.E.; Vu, Bang K.; Newton, Dianne L.; Seeber, Siegfried; Rybak, Susanna M.

    2005-06-03

    We report on the generation of a dimeric immunoenzyme capable of simultaneously delivering two ribonuclease (RNase) effector domains on one molecule to CD22{sup +} tumor cells. As targeting moiety a diabody derived from the previously humanized scFv SGIII with grafted specificity of the murine anti-CD22 mAb RFB4 was constructed. Further engineering the interface of this construct (V{sub L}36{sub Leu{yields}}{sub Tyr}) resulted in a highly robust bivalent molecule that retained the same high affinity as the murine mAb RFB4 (K{sub D} 0.2 nM). A dimeric immunoenzyme comprising this diabody and Rana pipiens liver ribonuclease I (rapLRI) was generated, expressed as soluble protein in bacteria, and purified to homogeneity. The dimeric fusion protein killed several CD22{sup +} tumor cell lines with high efficacy (IC{sub 50} = 3-20 nM) and exhibited 9- to 48-fold stronger cytotoxicity than a monovalent rapLRI-scFv counterpart. Our results demonstrate that engineering of dimeric antibody-ribonuclease fusion proteins can markedly enhance their biological efficacy.

  11. Dendritic-tumor fusion cells derived heat shock protein70-peptide complex has enhanced immunogenicity.

    PubMed

    Zhang, Yunfei; Zhang, Yong; Chen, Jun; Liu, Yunyan; Luo, Wen

    2015-01-01

    Tumor-derived heat shock protein70-peptide complexes (HSP70.PC-Tu) have shown great promise in tumor immunotherapy due to numerous advantages. However, large-scale phase III clinical trials showed that the limited immunogenicity remained to be enhanced. In previous research, we demonstrated that heat shock protein 70-peptide complexes (HSP70.PC-Fc) derived from dendritic cell (DC)-tumor fusions exhibit enhanced immunogenicity compared with HSP70.PCs from tumor cells. However, the DCs used in our previous research were obtained from healthy donors and not from the patient population. In order to promote the clinical application of these complexes, HSP70.PC-Fc was prepared from patient-derived DC fused directly with patient-derived tumor cells in the current study. Our results showed that compared with HSP70.PC-Tu, HSP70.PC-Fc elicited much more powerful immune responses against the tumor from which the HSP70 was derived, including enhanced T cell activation, and CTL responses that were shown to be antigen specific and HLA restricted. Our results further indicated that the enhanced immunogenicity is related to the activation of CD4+ T cells and increased association with other heat shock proteins, such as HSP90. Therefore, the current study confirms the enhanced immunogenicity of HSP70.PC derived from DC-tumor fusions and may provide direct evidence promoting their future clinical use.

  12. Adenoviral-Mediated Imaging of Gene Transfer Using a Somatostatin Receptor-Cytosine Deaminase Fusion Protein

    PubMed Central

    Lears, Kimberly A.; Parry, Jesse J.; Andrews, Rebecca; Nguyen, Kim; Wadas, Thaddeus J.; Rogers, Buck E.

    2015-01-01

    Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy due to the enzyme’s ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that the both the SSTR2 and yCD were functional in binding assays, conversion assays, and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies, and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy. PMID:25837665

  13. Refolding and purification of non-fusion HPT protein expressed in Escherichia coli as inclusion bodies.

    PubMed

    Zhuo, Qin; Piao, Jian-hua; Wang, Rui; Yang, Xiao-guang

    2005-05-01

    The gene encoding hygromycin B phosphotransferase (hpt) is a widely used selectable marker in the production of genetically engineered crops. To facilitate the safety assessment of this protein, the non-fusion hpt expression plasmid was constructed and introduced into Escherichia coli to produce enough quantity of the HPT protein. High level expressed HPT was achieved but most of the expressed protein aggregated as inclusion bodies. The inclusion bodies were washed, separated from the cells, and solubilized by 0.3% Sarkosyl. The protein was renatured by dilution and dialysis, and then purified by anion-exchange chromatography. The activity is 8 U/mg protein and the purity is about 95%. Further studies showed that the microbially produced HPT protein had comparable molecular weight, immuno-reactivities, N-terminal amino acid sequences, and biological activities with those of the HPT produced by transgenic rice harboring hpt gene. All these results demonstrated the validity of utilizing the microbially produced HPT to assess the safety of the HPT protein produced in genetically engineered rice.

  14. Evaluation of a Novel Methacrylate-Based Protein A Resin for the Purification of Immunoglobulins and Fc-Fusion Proteins

    PubMed Central

    McCaw, Tyler R; Koepf, Edward K; Conley, Lynn

    2014-01-01

    Protein A affinity chromatography is a central part of most commercial monoclonal antibody and Fc-fusion protein purification processes. In the last couple years an increasing number of new Protein A technologies have emerged. One of these new Protein A technologies consists of a novel, alkaline-tolerant, Protein A ligand coupled to a macroporous polymethacrylate base matrix that has been optimized for immunoglobulin (Ig) G capture. The resin is interesting from a technology perspective because the particle size and pore distribution of the base beads are reported to have been optimized for high IgG binding and fast mass transfer, while the Protein A ligand has been engineered for enhanced alkaline tolerance. This resin was subjected to a number of technical studies including evaluating dynamic and static binding capacities, alkaline stability, Protein A leachate propensity, impurity clearance, and pressure–flow behavior. The results demonstrated similar static binding capacities as those achieved with industry standard agarose Protein A resins, but marginally lower dynamic binding capacities. Removal of impurities from the process stream, particularly host cell proteins, was molecule dependent, but in most instances matched the performance of the agarose resins. This resin was stable in 0.1 M NaOH for at least 100 h with little loss in binding capacity, with Protein A ligand leakage levels comparable to values for the agarose resins. Pressure–flow experiments in lab-scale chromatography columns demonstrated minimal resin compression at typical manufacturing flow rates. Prediction of resin compression in manufacturing scale columns did not suggest any pressure limitations upon scale up. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1125–1136, 2014 PMID:25045034

  15. Design and analysis of post-fusion 6-helix bundle of heptad repeat regions from Newcastle disease virus F protein.

    PubMed

    Zhu, Jieqing; Li, Pengyun; Wu, Tinghe; Gao, Feng; Ding, Yi; Zhang, Catherine W-H; Rao, Zihe; Gao, George F; Tien, Po

    2003-05-01

    Fusion of paramyxovirus to the cell involves receptor binding of the HN glycoprotein and a number of conformational changes of F glycoprotein. The F protein is expressed as a homotrimer on the virus surface. In the present model, there are at least three conformations of F protein, i.e. native form, pre-hairpin intermediate and the post-fusion state. In the post-fusion state, the two highly conserved heptad repeat (HR) regions of F protein form a stable 6-helix coiled-coil bundle. However, no crystal structure is known for this state for the Newcastle disease virus, although the crystal structure of the F protein native form has been solved recently. Here we deployed an Escherichia coli in vitro expression system to engineer this 6-helix bundle by fusion of either the two HR regions (HR1, linker and HR2) or linking the 6-helix [3 x (HR1, linker and HR2)] together as a single chain. Subsequently, both of them form a stable 6-helix bundle in vitro judging by gel filtration and chemical cross-linking and the proteins show salient features of an alpha-helix structure. Crystals diffracting X-rays have been obtained from both protein preparations and the structure determination is under way. This method could be used for crystallization of the post-fusion state HR structures of other viruses.

  16. Production of Hev b5 as a fluorescent biotin-binding tripartite fusion protein in insect cells

    SciTech Connect

    Nordlund, Henri R. . E-mail: henri.nordlund@uta.fi; Laitinen, Olli H.; Uotila, Sanna T.H.; Kulmala, Minna; Kalkkinen, Nisse; Kulomaa, Markku S.

    2005-10-14

    The presented green fluorescent protein and streptavidin core-based tripartite fusion system provides a simple and efficient way for the production of proteins fused to it in insect cells. This fusion protein forms a unique tag, which serves as a multipurpose device enabling easy optimization of production, one-step purification via streptavidin-biotin interaction, and visualization of the fusion protein during downstream processing and in applications. In the present study, we demonstrate the successful production, purification, and detection of a natural rubber latex allergen Hev b5 with this system. We also describe the production of another NRL allergen with the system, Hev b1, which formed large aggregates and gave small yields in purification. The aggregates were detected at early steps by microscopical inspection of the infected insect cells producing this protein. Therefore, this fusion system can also be utilized as a fast indicator of the solubility of the expressed fusion proteins and may therefore be extremely useful in high-throughput expression approaches.

  17. Mutagenesis and nuclear magnetic resonance analyses of the fusion peptide of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus F protein.

    PubMed

    Tan, Ying; Jiang, Ling; Wang, Manli; Yin, Feifei; Deng, Fei; Liu, Maili; Hu, Zhihong; Wang, Hualin

    2008-08-01

    The entry of enveloped viruses into cells is normally mediated by fusion between viral and cellular membranes, in which the fusion peptide plays a crucial role. The fusion peptides of group II nucleopolyhedrovirus (NPV) F proteins are quite conserved, with a hydrophobic region located at the N terminal of the F(1) fragment. For this report, we used mutagenesis and nuclear magnetic resonance (NMR) to study the structure and function of the fusion peptide of the Helicoverpa armigera single-nucleocapsid NPV (HearNPV) F protein (HaF). Five mutations in the fusion peptide of HaF, N(1)G, N(1)L, I(2)N, G(3)L, and D(11)L, were generated separately, and the mutated f genes were transformed into the f-null HearNPV bacmid. The mutations N(1)L, I(2)N, and D(11)L were found to completely abolish the ability of the recombinant bacmids to produce infectious budded virus, while the mutations N(1)G and G(3)L did not. The low-pH-induced envelope fusion assay demonstrated that the N(1)G substitution increased the fusogenicity of HaF, while the G(3)L substitution reduced its fusogenicity. NMR spectroscopy was used to determine the structure of a synthetic fusion peptide of HaF in the presence of sodium dodecyl sulfate micelles at pH 5.0. The fusion peptide appeared to be an amphiphilic structure composed of a flexible coil in the N terminus from N(1) to N(5), a 3(10)-helix from F(6) to G(8), a turn at S(9), and a regular alpha-helix from V(10) to D(19). The data provide the first NMR structure of a baculovirus fusion peptide and allow us to further understand the relationship of structure and function of the fusion peptide.

  18. Identifying subcellular protein localization with fluorescent protein fusions after transient expression in onion epidermal cells.

    PubMed

    Nebenführ, Andreas

    2014-01-01

    Most biochemical functions of plant cells are carried out by proteins which act at very specific places within these cells, for example, within different organelles. Identifying the subcellular localization of proteins is therefore a useful tool to narrow down the possible functions that a novel or unknown protein may carry out. The discovery of genetically encoded fluorescent markers has made it possible to tag specific proteins and visualize them in vivo under a variety of conditions. This chapter describes a simple method to use transient expression of such fluorescently tagged proteins in onion epidermal cells to determine their subcellular localization relative to known markers.

  19. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L

    SciTech Connect

    Pager, Cara Theresia; Craft, Willie Warren; Patch, Jared; Dutch, Rebecca Ellis . E-mail: rdutc2@uky.edu

    2006-03-15

    The Nipah virus fusion (F) protein is proteolytically processed to F{sub 1} + F{sub 2} subunits. We demonstrate here that cathepsin L is involved in this important maturation event. Cathepsin inhibitors ablated cleavage of Nipah F. Proteolytic processing of Nipah F and fusion activity was dramatically reduced in cathepsin L shRNA-expressing Vero cells. Additionally, Nipah virus F-mediated fusion was inhibited in cathepsin L-deficient cells, but coexpression of cathepsin L restored fusion activity. Both purified cathepsin L and B could cleave immunopurified Nipah F protein, but only cathepsin L produced products of the correct size. Our results suggest that endosomal cathepsins can cleave Nipah F, but that cathepsin L specifically converts Nipah F to a mature and fusogenic form.

  20. The human ubiquitin-52 amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes.

    PubMed Central

    Baker, R T; Board, P G

    1991-01-01

    Complementary DNA clones encoding ubiquitin fused to a 52 amino acid tail protein were isolated from human placental and adrenal gland cDNA libraries. The deduced human 52 amino acid tail protein is very similar to the homologous protein from other species, including the conservation of the putative metal-binding, nucleic acid-binding domain observed in these proteins. Northern blot analysis with a tail-specific probe indicated that the previously identified UbA mRNA species most likely represents comigrating transcripts of the 52 amino acid tail (UbA52) and 80 amino acid tail (UbA80) ubiquitin fusion genes. The UbA52 gene was isolated from a human genomic library and consists of five exons distributed over 3400 base pairs. One intron is in the 5' non-coding region, two interrupt the single ubiquitin coding unit, and the fourth intron is within the tail coding region. Several members of the Alu family of repetitive DNA are associated with the gene. The UbA52 promoter has several features in common with mammalian ribosomal protein genes, including its location in a CpG-rich island, initiation of transcription within a polypyrimidine tract, the lack of a consensus TATA motif, and the presence of Sp1 binding sites, observations that are consistent with the recent identification of the ubiquitin-free tail proteins as ribosomal proteins. Thus, in spite of its unusual feature of being translationally fused to ubiquitin, the 52 amino acid tail ribosomal protein is expressed from a structurally typical ribosomal protein gene. Images PMID:1850507

  1. Different sets of ER-resident J-proteins regulate distinct polar nuclear-membrane fusion events in Arabidopsis thaliana.

    PubMed

    Maruyama, Daisuke; Yamamoto, Masaya; Endo, Toshiya; Nishikawa, Shuh-ichi

    2014-11-01

    Angiosperm female gametophytes contain a central cell with two polar nuclei. In many species, including Arabidopsis thaliana, the polar nuclei fuse during female gametogenesis. We previously showed that BiP, an Hsp70 in the endoplasmic reticulum (ER), was essential for membrane fusion during female gametogenesis. Hsp70 function requires partner proteins for full activity. J-domain containing proteins (J-proteins) are the major Hsp70 functional partners. A. thaliana ER contains three soluble J-proteins, AtERdj3A, AtERdj3B, and AtP58(IPK). Here, we analyzed mutants of these proteins and determined that double-mutant ovules lacking AtP58(IPK) and AtERdj3A or AtERdj3B were defective in polar nuclear fusion. Electron microscopy analysis identified that polar nuclei were in close contact, but no membrane fusion occurred in mutant ovules lacking AtP58(IPK) and AtERdj3A. The polar nuclear outer membrane appeared to be connected via the ER remaining at the inner unfused membrane in mutant ovules lacking AtP58(IPK) and AtERdj3B. These results indicate that ER-resident J-proteins, AtP58(IPK)/AtERdj3A and AtP58(IPK)/AtERdj3B, function at distinct steps of polar nuclear-membrane fusion. Similar to the bip1 bip2 double mutant female gametophytes, the aterdj3a atp58(ipk) double mutant female gametophytes defective in fusion of the outer polar nuclear membrane displayed aberrant endosperm proliferation after fertilization with wild-type pollen. However, endosperm proliferated normally after fertilization of the aterdj3b atp58(ipk) double mutant female gametophytes defective in fusion of the inner membrane. Our results indicate that the polar nuclear fusion defect itself does not cause an endosperm proliferation defect.

  2. Combating autophagy is a strategy to increase cytotoxic effects of novel ALK inhibitor entrectinib in neuroblastoma cells

    PubMed Central

    Aveic, Sanja; Pantile, Marcella; Seydel, Anke; Esposito, Maria Rosaria; Zanon, Carlo; Li, Gary; Tonini, Gian Paolo

    2016-01-01

    Neuroblastoma (NB) is a threatening childhood malignancy. Its prognosis is affected by several morphological, and biological characteristics, including the constitutive expression of ALK tyrosine kinase. In this study we examined the therapeutic potential of a novel ALK inhibitor, entrectinib, in obliterating NB tumor cells. Entrectinib showed the growth-inhibitory effects on NB cells with a 50% inhibitory concentration range of 0.03–5 μM. In the ALK-dependent cells, entrectinib mediated G1-arrest, which was associated with modified expression of multiple cell-cycle regulators. Down-regulation of Ki-67, and attenuated phosphorylation of ERK1/2, and STAT3, correlated with observed antiproliferative capacity of entrectinib. Initial cytostatic activity of entrectinib was followed by concentration-dependent apoptotic cell death, and Caspase-3 activation. However, we delineated a reduced sensitivity of ALK mutated NB cells to entrectinib, and demonstrated strong activation of autophagy in SH-SY5YF1174L NB cell line. Abrogation of autophagy by chloroquine increased significantly the toxicity of entrectinib, as confirmed by enhanced death rate, and PARP protein cleavage in SH-SY5YF1174L cells. In aggregate, our data show that entrectinib inhibits proliferation, and induces G1-arrest, and apoptosis in NB cells. We propose entrectinib for further consideration in treatment of NB, and recommend pharmacological inhibition of autophagy to be explored for a combined therapeutic approach in NB patients that might develop resistance to entrectinib. PMID:26735175

  3. Hereditary haemorrhagic telangiectasia: a questionnaire based study to delineate the different phenotypes caused by endoglin and ALK1 mutations

    PubMed Central

    Berg, J; Porteous, M; Reinhardt, D; Gallione, C; Holloway, S; Umasunthar, T; Lux, A; McKinnon, W; Marchuk, D; Guttmacher, A

    2003-01-01

    Background: Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominant vascular dysplasia characterised by mucocutaneous telangiectasis, epistaxis, gastrointestinal haemorrhage, and arteriovenous malformations in the lung and brain. Causative mutations for HHT have been identified in two genes, endoglin and ALK1, which encode proteins involved in serine-threonine kinase signalling in the endothelial cell. Methods: A number of people affected with HHT had completed a postal questionnaire as part of an international study to delineate the HHT phenotype. We identified questionnaires completed by subjects in whom we had identified a mutation in endoglin or ALK1. Further questionnaires were sent to families with known mutations. Data were only included from questionnaires returned by people known to carry disease causing mutations. Results: Questionnaires were completed by 83 subjects with known mutations. Of these, 49 had endoglin mutations (HHT1) and 34 had ALK1 mutations (HHT2). Subjects with HHT1 reported an earlier onset of epistaxis (p=0.01) and telangiectasis (p=0.0001) than those with HHT2. Pulmonary arteriovenous malformations were only reported in the endoglin mutation group in our study (p<0.001). Conclusions: Our questionnaire based study provides evidence that the HHT phenotype caused by mutations in endoglin (HHT1) is distinct from, and more severe than, HHT caused by mutations in ALK1 (HHT2). This has significant implications for diagnosis, screening, and treatment in the two different forms of HHT, as well as for understanding the pathogenesis of the disease. PMID:12920067

  4. Identification of canine helper T-cell epitopes from the fusion protein of canine distemper virus

    PubMed Central

    Ghosh, Souravi; Walker, John; Jackson, David C

    2001-01-01

    The fusion protein of canine distemper virus (CDV-F), a 662 amino-acid envelope protein, was used as the target molecule for identification of canine T helper (Th) epitopes. A library of 94 peptides, each 17 residues in length overlapping by 10 residues and covering the entire sequence of CDV-F, was screened using a lymphocyte proliferation assay with peripheral blood mononuclear cells (PBMC) obtained from dogs inoculated with canine distemper virus (CDV) vaccine. Initially we observed low and inconsistent proliferation of PBMC in response to these peptides, even when using cells obtained from dogs that had received multiple doses of CDV. Subsequently, the use of expanded cell populations derived by in vitro stimulation of canine PBMC with pools of peptides allowed the identification of a number of putative canine Th-epitopes within the protein sequence of CDV-F. There were two major clusters of Th-epitopes identified close to the cleavage site of the F0 fusion protein, while some others were scattered in both the F1 and F2 fragments of the protein. Some of these peptides, in particular peptide 35 (p35), were stimulatory in dogs of different breeds and ages. The identification of such promiscuous canine Th-epitopes encouraged us to assemble p35 in tandem with luteinising hormone releasing hormone (LHRH) a 10 amino-acid residue synthetic peptide representing a B-cell epitope which alone induces no antibody in dogs. The totally synthetic immunogen was able to induce the production of very high titres of antibodies against LHRH in all dogs tested. These results indicate that p35 could be an ideal candidate for use as a Th-epitope for use in outbred dogs. PMID:11576221

  5. Structure and function of photosystem I–[FeFe] hydrogenase protein fusions: An all-atom molecular dynamics study

    SciTech Connect

    Harris, Bradley J.; Cheng, Xiaolin; Frymier, Paul

    2015-12-15

    All-atom molecular dynamics (MD) simulation was used to study the solution dynamics and protein protein interactions of protein fusions of photosystem I (PSI) from Thermosynechococcus elongatus and an [FeFe]-hydrogenase (FeFe H2ase) from Clostridium pasteurianum, a unique complex capable of photocatalytic hydrogen production. This study involved fusions of these two proteins via dithiol linkers of different length including decanedithiol, octanedithiol, and hexanedithiol, for which experimental data had previously been obtained. Evaluation of root-mean-squared deviations (RMSDs) relative to the respective crystal structures of PSI and the FeFe H2ase shows that these fusion complexes approach stable equilibrium conformations during the MD simulations. Investigating protein mobility via root-mean-squared fluctuations (RMSFs) reveals that tethering via the shortest hexanedithiol linker results in increased atomic fluctuations of both PSI and the hydrogenase in these fusion complexes. Furthermore, evaluation of the inter- and intraprotein electron transfer distances in these fusion complexes indicates that the structural changes in the FeFe H2ase arising from ligation to PSI via the shortest hexanedithiol linker may hinder electron transport in the hydrogenase, thus providing a molecular level explanation for the observation that the medium-length octanedithiol linker gives the highest hydrogen production rate.

  6. Structure and function of photosystem I–[FeFe] hydrogenase protein fusions: An all-atom molecular dynamics study

    DOE PAGES

    Harris, Bradley J.; Cheng, Xiaolin; Frymier, Paul

    2015-12-15

    All-atom molecular dynamics (MD) simulation was used to study the solution dynamics and protein protein interactions of protein fusions of photosystem I (PSI) from Thermosynechococcus elongatus and an [FeFe]-hydrogenase (FeFe H2ase) from Clostridium pasteurianum, a unique complex capable of photocatalytic hydrogen production. This study involved fusions of these two proteins via dithiol linkers of different length including decanedithiol, octanedithiol, and hexanedithiol, for which experimental data had previously been obtained. Evaluation of root-mean-squared deviations (RMSDs) relative to the respective crystal structures of PSI and the FeFe H2ase shows that these fusion complexes approach stable equilibrium conformations during the MD simulations. Investigatingmore » protein mobility via root-mean-squared fluctuations (RMSFs) reveals that tethering via the shortest hexanedithiol linker results in increased atomic fluctuations of both PSI and the hydrogenase in these fusion complexes. Furthermore, evaluation of the inter- and intraprotein electron transfer distances in these fusion complexes indicates that the structural changes in the FeFe H2ase arising from ligation to PSI via the shortest hexanedithiol linker may hinder electron transport in the hydrogenase, thus providing a molecular level explanation for the observation that the medium-length octanedithiol linker gives the highest hydrogen production rate.« less

  7. Structural and kinetic analysis of the unnatural fusion protein 4-coumaroyl-CoA ligase::stilbene synthase

    SciTech Connect

    Wang, Yechun; Yi, Hankuil; Wang, Melissa; Yu, Oliver; Jez, Joseph M.

    2012-10-24

    To increase the biochemical efficiency of biosynthetic systems, metabolic engineers have explored different approaches for organizing enzymes, including the generation of unnatural fusion proteins. Previous work aimed at improving the biosynthesis of resveratrol, a stilbene associated a range of health-promoting activities, in yeast used an unnatural engineered fusion protein of Arabidopsis thaliana (thale cress) 4-coumaroyl-CoA ligase (At4CL1) and Vitis vinifera (grape) stilbene synthase (VvSTS) to increase resveratrol levels 15-fold relative to yeast expressing the individual enzymes. Here we present the crystallographic and biochemical analysis of the 4CL::STS fusion protein. Determination of the X-ray crystal structure of 4CL::STS provides the first molecular view of an artificial didomain adenylation/ketosynthase fusion protein. Comparison of the steady-state kinetic properties of At4CL1, VvSTS, and 4CL::STS demonstrates that the fusion protein improves catalytic efficiency of either reaction less than 3-fold. Structural and kinetic analysis suggests that colocalization of the two enzyme active sites within 70 {angstrom} of each other provides the basis for enhanced in vivo synthesis of resveratrol.

  8. Complications of Anterior Cervical Fusion using a Low-dose Recombinant Human Bone Morphogenetic Protein-2

    PubMed Central

    Kukreja, Sunil; Ahmed, Osama I; Haydel, Justin; Nanda, Anil

    2015-01-01

    Objective There are several reports, which documented a high incidence of complications following the use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in anterior cervical fusions (ACFs). The objective of this study is to share our experience with low-dose rhBMP-2 in anterior cervical spine. Methods We performed a retrospective analysis of 197 patients who underwent anterior cervical fusion (ACF) with the use of recombinant human bone morphogenetic protein-2 (rhBMP-2) during 2007-2012. A low-dose rhBMP-2 (0.7mg/level) sponge was placed exclusively within the cage. In 102 patients demineralized bone matrix (DBM) was filled around the BMP sponge. Incidence and severity of dysphagia was determined by 5 points SWAL-QOL scale. Results Two patients had prolonged hospitalization due to BMP unrelated causes. Following the discharge, 13.2%(n=26) patients developed dysphagia and 8.6%(n=17) patients complained of neck swelling. More than half of the patients (52.9%, n=9) with neck swelling also had associated dysphagia; however, only 2 of these patients necessitated readmission. Both of these patients responded well to the intravenous dexamethasone. The use of DBM did not affect the incidence and severity of complications (p>0.05). Clinico-radiological evidence of fusion was not observed in 2 patients. Conclusion A low-dose rhBMP-2 in ACFs is not without risk. However, the incidence and severity of complications seem to be lower with low-dose BMP placed exclusively inside the cage. Packing DBM putty around the BMP sponge does not affect the safety profile of rhBMP-2 in ACFs. PMID:26217385

  9. AcrB-AcrA Fusion Proteins That Act as Multidrug Efflux Transporters

    PubMed Central

    Nakashima, Ryosuke; Sakurai, Keisuke; Kitagawa, Kimie; Yamasaki, Seiji; Nishino, Kunihiko

    2015-01-01

    ABSTRACT The AcrAB-TolC system in Escherichia coli is an intrinsic RND-type multidrug efflux transporter that functions as a tripartite complex of the inner membrane transporter AcrB, the outer membrane channel TolC, and the adaptor protein AcrA. Although the crystal structures of each component of this system have been elucidated, the crystal structure of the whole complex has not been solved. The available crystal structures have shown that AcrB and TolC function as trimers, but the number of AcrA molecules in the complex is now under debate. Disulfide chemical cross-linking experiments have indicated that the stoichiometry of AcrB-AcrA-TolC is 1:1:1; on the other hand, recent cryo-electron microscopy images of AcrAB-TolC suggested a 1:2:1 stoichiometry. In this study, we constructed 1:1-fixed AcrB-AcrA fusion proteins using various linkers. Surprisingly, all the 1:1-fixed linker proteins showed drug export activity under both acrAB-deficient conditions and acrAB acrEF double-pump-knockout conditions regardless of the lengths of the linkers. Finally, we optimized a shorter linker lacking the conformational freedom imparted by the AcrB C terminus. These results suggest that a complex with equal amounts of AcrA and AcrB is sufficient for drug export function. IMPORTANCE The structure and stoichiometry of the RND-type multidrug exporter AcrB-AcrA-TolC complex are still under debate. Recently, electron microscopic images of the AcrB-AcrA-TolC complex have been reported, suggesting a 1:2:1 stoichiometry. However, we report here that the AcrB-AcrA 1:1 fusion protein is active for drug export under acrAB-deficient conditions and also under acrAB acrEF double-deficient conditions, which eliminate the aid of free AcrA and its close homolog AcrE, indicating that the AcrB-AcrA 1:1 stoichiometry is enough for drug export function. In addition, the AcrB-AcrA fusion protein can function without the aid of free AcrA. We believe that these results are very important for

  10. Feeding transgenic plants that express a tolerogenic fusion protein effectively protects against arthritis.

    PubMed

    Hansson, Charlotta; Schön, Karin; Kalbina, Irina; Strid, Åke; Andersson, Sören; Bokarewa, Maria I; Lycke, Nils Y

    2016-04-01

    Although much explored, oral tolerance for treatment of autoimmune diseases still awaits the establishment of novel and effective vectors. We investigated whether the tolerogenic CTA1(R7K)-COL-DD fusion protein can be expressed in edible plants, to induce oral tolerance and protect against arthritis. The fusion protein was recombinantly expressed in Arabidopsis thaliana plants, which were fed to H-2(q) -restricted DBA/1 mice to assess the preventive effect on collagen-induced arthritis (CIA). The treatment resulted in fewer mice exhibiting disease and arthritis scores were significantly reduced. Immune suppression was evident in treated mice, and serum biomarkers for inflammation as well as anticollagen IgG responses were reduced. In spleen and draining lymph nodes, CD4(+) T-cell responses were reduced. Concomitant with a reduced effector T-cell activity with lower IFNγ, IL-13 and IL-17A production, we observed an increase in IL-10 production to recall antigen stimulation in vitro, suggesting reduced Th1, Th2 and Th17 activity subsequent to up-regulated IL-10 and regulatory T-cell (Treg) functions. This study shows that edible plants expressing a tolerogen were effective at stimulating CD4 T-cell tolerance and in protecting against CIA disease. Our study conveys optimism as to the potential of using edible plants for oral treatment of rheumatoid arthritis. PMID:26403330

  11. Coexpression of cellulases in Pichia pastoris as a self-processing protein fusion.

    PubMed

    de Amorim Araújo, Juliana; Ferreira, Túlio César; Rubini, Marciano Régis; Duran, Ana Gilhema Gomez; De Marco, Janice Lisboa; de Moraes, Lidia Maria Pepe; Torres, Fernando Araripe Gonçalves

    2015-12-01

    The term cellulase refers to any component of the enzymatic complex produced by some fungi, bacteria and protozoans which act serially or synergistically to catalyze the cleavage of cellulosic materials. Cellulases have been widely used in many industrial applications ranging from food industry to the production of second generation ethanol. In an effort to develop new strategies to minimize the costs of enzyme production we describe the development of a Pichia pastoris strain able to coproduce two different cellulases. For that purpose the eglII (endoglucanase II) and cbhII (cellobiohydrolase II) genes from Trichoderma reesei were fused in-frame separated by the self-processing 2A peptide sequence from the foot-and-mouth disease virus. The protein fusion construct was placed under the control of the strong inducible AOX1 promoter. Analysis of culture supernatants from methanol-induced yeast transformants showed that the protein fusion was effectively processed. Enzymatic assay showed that the processed enzymes were fully functional with the same catalytic properties of the individual enzymes produced separately. Furthermore, when combined both enzymes acted synergistically on filter paper to produce cellobiose as the main end-product. Based on these results we propose that P. pastoris should be considered as an alternative platform for the production of cellulases at competitive costs.

  12. Enhanced HIV-1 neutralization by a CD4-VH3-IgG1 fusion protein

    SciTech Connect

    Meyuhas, Ronit; Noy, Hava; Fishman, Sigal; Margalit, Alon; Montefiori, David C.; Gross, Gideon

    2009-08-21

    HIV-1 gp120 is an alleged B cell superantigen, binding certain VH3+ human antibodies. We reasoned that a CD4-VH3 fusion protein could possess higher affinity for gp120 and improved HIV-1 inhibitory capacity. To test this we produced several human IgG1 immunoligands harboring VH3. Unlike VH3-IgG1 or VH3-CD4-IgG1, CD4-VH3-IgG1 bound gp120 considerably stronger than CD4-IgG1. CD4-VH3-IgG1 exhibited {approx}1.5-2.5-fold increase in neutralization of two T-cell laboratory-adapted strains when compared to CD4-IgG1. CD4-VH3-IgG1 improved neutralization of 7/10 clade B primary isolates or pseudoviruses, exceeding 20-fold for JR-FL and 13-fold for Ba-L. It enhanced neutralization of 4/8 clade C viruses, and had negligible effect on 1/4 clade A pseudoviruses. We attribute this improvement to possible pairing of VH3 with CD4 D1 and stabilization of an Ig Fv-like structure, rather than to superantigen interactions. These novel findings support the current notion that CD4 fusion proteins can act as better HIV-1 entry inhibitors with potential clinical implications.

  13. Coexpression of cellulases in Pichia pastoris as a self-processing protein fusion.

    PubMed

    de Amorim Araújo, Juliana; Ferreira, Túlio César; Rubini, Marciano Régis; Duran, Ana Gilhema Gomez; De Marco, Janice Lisboa; de Moraes, Lidia Maria Pepe; Torres, Fernando Araripe Gonçalves

    2015-12-01

    The term cellulase refers to any component of the enzymatic complex produced by some fungi, bacteria and protozoans which act serially or synergistically to catalyze the cleavage of cellulosic materials. Cellulases have been widely used in many industrial applications ranging from food industry to the production of second generation ethanol. In an effort to develop new strategies to minimize the costs of enzyme production we describe the development of a Pichia pastoris strain able to coproduce two different cellulases. For that purpose the eglII (endoglucanase II) and cbhII (cellobiohydrolase II) genes from Trichoderma reesei were fused in-frame separated by the self-processing 2A peptide sequence from the foot-and-mouth disease virus. The protein fusion construct was placed under the control of the strong inducible AOX1 promoter. Analysis of culture supernatants from methanol-induced yeast transformants showed that the protein fusion was effectively processed. Enzymatic assay showed that the processed enzymes were fully functional with the same catalytic properties of the individual enzymes produced separately. Furthermore, when combined both enzymes acted synergistically on filter paper to produce cellobiose as the main end-product. Based on these results we propose that P. pastoris should be considered as an alternative platform for the production of cellulases at competitive costs. PMID:26698316

  14. Recombinant GDNF: Tetanus toxin fragment C fusion protein produced from insect cells

    SciTech Connect

    Li, Jianhong; Chian, Ru-Ju; Ay, Ilknur; Celia, Samuel A.; Kashi, Brenda B.; Tamrazian, Eric; Matthews, Jonathan C.; Remington, Mary P.; Pepinsky, R. Blake; Fishman, Paul S.; Brown, Robert H.; Francis, Jonathan W.

    2009-07-31

    Glial cell line-derived neurotrophic factor (GDNF) has potent survival-promoting effects on CNS motor neurons in experimental animals. Its therapeutic efficacy in humans, however, may have been limited by poor bioavailability to the brain and spinal cord. With a view toward improving delivery of GDNF to CNS motor neurons in vivo, we generated a recombinant fusion protein comprised of rat GDNF linked to the non-toxic, neuron-binding fragment of tetanus toxin. Recombinant GDNF:TTC produced from insect cells was a soluble homodimer like wild-type GDNF and was bi-functional with respect to GDNF and TTC activity. Like recombinant rat GDNF, the fusion protein increased levels of immunoreactive phosphoAkt in treated NB41A3-hGFR{alpha}-1 neuroblastoma cells. Like TTC, GDNF:TTC bound to immobilized ganglioside GT1b in vitro with high affinity and selectivity. These results support further testing of recombinant GDNF:TTC as a non-viral vector to improve delivery of GDNF to brain and spinal cord in vivo.

  15. Chemokines, costimulatory molecules and fusion proteins for the immunotherapy of solid tumors.

    PubMed

    Lechner, Melissa G; Russell, Sarah M; Bass, Rikki S; Epstein, Alan L

    2011-11-01

    In this article, the role of chemokines and costimulatory molecules in the immunotherapy of experimental murine solid tumors and immunotherapy used in ongoing clinical trials are presented. Chemokine networks regulate physiologic cell migration that may be disrupted to inhibit antitumor immune responses or co-opted to promote tumor growth and metastasis in cancer. Recent studies highlight the potential use of chemokines in cancer immunotherapy to improve innate and adaptive cell interactions and to recruit immune effector cells into the tumor microenvironment. Another critical component of antitumor immune responses is antigen priming and activation of effector cells. Reciprocal expression and binding of costimulatory molecules and their ligands by antigen-presenting cells and naive lymphocytes ensures robust expansion, activity and survival of tumor-specific effector cells in vivo. Immunotherapy approaches using agonist antibodies or fusion proteins of immunomodulatory molecules significantly inhibit tumor growth and boost cell-mediated immunity. To localize immune stimulation to the tumor site, a series of fusion proteins consisting of a tumor-targeting monoclonal antibody directed against tumor necrosis and chemokines or costimulatory molecules were generated and tested in tumor-bearing mice. While several of these reagents were initially shown to have therapeutic value, combination therapies with methods to delete suppressor cells had the greatest effect on tumor growth. In conclusion, a key conclusion that has emerged from these studies is that successful immunotherapy will require both advanced methods of immunostimulation and the removal of immunosuppression in the host.

  16. A long-acting GH receptor antagonist through fusion to GH binding protein

    PubMed Central

    Wilkinson, Ian R.; Pradhananga, Sarbendra L.; Speak, Rowena; Artymiuk, Peter J.; Sayers, Jon R.; Ross, Richard J.

    2016-01-01

    Acromegaly is a human disease of growth hormone (GH) excess with considerable morbidity and increased mortality. Somatostatin analogues are first line medical treatment but the disease remains uncontrolled in up to 40% of patients. GH receptor (GHR) antagonist therapy is more effective but requires frequent high-dose injections. We have developed an alternative technology for generating a long acting potent GHR antagonist through translational fusion of a mutated GH linked to GH binding protein and tested three candidate molecules. All molecules had the amino acid change (G120R), creating a competitive GHR antagonist and we tested the hypothesis that an amino acid change in the GH binding domain (W104A) would increase biological activity. All were antagonists in bioassays. In rats all antagonists had terminal half-lives >20 hours. After subcutaneous administration in rabbits one variant displayed a terminal half-life of 40.5 hours. A single subcutaneous injection of the same variant in rabbits resulted in a 14% fall in IGF-I over 7 days. In conclusion: we provide proof of concept that a fusion of GHR antagonist to its binding protein generates a long acting GHR antagonist and we confirmed that introducing the W104A amino acid change in the GH binding domain enhances antagonist activity. PMID:27731358

  17. Direct CRISPR spacer acquisition from RNA by a natural reverse-transcriptase-Cas1 fusion protein

    PubMed Central

    Sidote, David J.; Markham, Laura M.; Sanchez-Amat, Antonio; Bhaya, Devaki; Lambowitz, Alan M.; Fire, Andrew Z.

    2016-01-01

    CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) systems mediate adaptive immunity in diverse prokaryotes. CRISPR-associated Cas1 and Cas2 proteins have been shown to enable adaptation to new threats in Type I and II CRISPR systems by the acquisition of short segments of DNA (“spacers”) from invasive elements. In several Type III CRISPR systems, Cas1 is naturally fused to a reverse transcriptase (RT). In the marine bacterium Marinomonas mediterranea (MMB-1), we show that an RT-Cas1 fusion enables the acquisition of RNA spacers in vivo in an RT-dependent manner. In vitro, the MMB-1 RT-Cas1 and Cas2 proteins catalyze ligation of RNA segments into the CRISPR array, followed by reverse transcription. These observations outline a host-mediated mechanism for reverse information flow from RNA to DNA. PMID:26917774

  18. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes

    PubMed Central

    Gannagé, Monique; Schmid, Dorothee; Albrecht, Randy; Dengjel, Jörn; Torossi, Tania; Rämer, Patrick C.; Lee, Monica; Strowig, Till; Arrey, Frida; Conenello, Gina; Pypaert, Marc; Andersen, Jens; García-Sastre, Adolfo;