Science.gov

Sample records for alk kinase domain

  1. De novo ALK kinase domain mutations are uncommon in kinase inhibitor-naïve ALK rearranged lung cancers.

    PubMed

    Lucena-Araujo, Antonio R; Moran, Jason P; VanderLaan, Paul A; Dias-Santagata, Dora; Folch, Erik; Majid, Adnan; Kent, Michael S; Gangadharan, Sidharta P; Rangachari, Deepa; Huberman, Mark S; Kobayashi, Susumu S; Costa, Daniel B

    2016-09-01

    Anaplastic lymphoma kinase (ALK) rearranged lung adenocarcinomas are responsive to the multitargeted ALK inhibitor crizotinib. One of the common mechanisms of resistance to crizotinib is the acquisition of ALK kinase domain mutations. However, the presence of ALK mutations in crizotinib-naïve tumors has not been widely reported and it is unclear if de novo ALK mutations affect the response to crizotinib. We analyzed preclinical models of ALK rearranged lung cancers that were sensitive/resistant to ALK inhibitors, probed our institutional and other lung cancer databases for tumors with ALK kinase domain mutations, and evaluated tumor response to crizotinib. ALK rearranged cell lines with ALK kinase domain mutations were heterogeneously less inhibited by increasing concentrations of crizotinib than cells driven solely by EML4-ALK fusions. Previous ALK rearranged lung cancer cohorts did not report ALK kinase mutations in inhibitor-naïve tumors. We identified one TKI-naïve ALK rearranged tumor with an ALK kinase domain mutation: ALK-S1206F (mutations at ALK-S1206 shifted crizotinib inhibitory curves only minimally in preclinical models). The never smoker whose tumor harbored de novo EML4-ALK-E5;A20+ALK-S1206F only achieved a 4-month radiographic response to crizotinib 250mg twice daily. Combining data from our and prior cohorts, ALK kinase domain mutations were uncommon events (<3% of cases) in ALK inhibitor-naïve ALK rearranged lung adenocarcinomas but their effect on intrinsic resistance to ALK inhibitors should be better evaluated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Anaplastic lymphoma kinase (ALK) inhibitors in the treatment of ALK-driven lung cancers.

    PubMed

    Roskoski, Robert

    2017-03-01

    Anaplastic lymphoma kinase is expressed in two-thirds of the anaplastic large-cell lymphomas as an NPM-ALK fusion protein. Physiological ALK is a receptor protein-tyrosine kinase within the insulin receptor superfamily of proteins that participates in nervous system development. The EML4-ALK fusion protein and four other ALK-fusion proteins play a fundamental role in the development in about 5% of non-small cell lung cancers. The amino-terminal portions of the ALK fusion proteins result in dimerization and subsequent activation of the ALK protein kinase domain that plays a key role in the pathogenesis of various tumors. Downstream signaling from the ALK fusion protein leads to the activation of the Ras/Raf/MEK/ERK1/2 cell proliferation module and the JAK/STAT cell survival pathways. Moreover, nearly two dozen ALK activating mutations are involved in the pathogenesis of childhood neuroblastomas. The occurrence of oncogenic ALK-fusion proteins, particularly in non-small cell lung cancer, has fostered considerable interest in the development of ALK inhibitors. Crizotinib was the first such inhibitor approved by the US Food and Drug Administration for the treatment of ALK-positive non-small cell lung cancer in 2011. The median time for the emergence of crizotinib drug resistance is 10.5 months after the initiation of therapy. Such resistance prompted the development of second-generation drugs including ceritinib and alectinib, which are approved for the treatment of non-small cell lung cancer. Unlike the single gatekeeper mutation that occurs in drug-resistant epidermal growth factor receptor in lung cancer, nearly a dozen different mutations in the catalytic domain of ALK fusion proteins have been discovered that result in crizotinib resistance. Crizotinib, ceritinib, and alectinib form a complex within the front cleft between the small and large lobes of an inactive ALK protein-kinase domain with a compact activation segment. These drugs are classified as type I½ B

  3. An interaction map of small-molecule kinase inhibitors with anaplastic lymphoma kinase (ALK) mutants in ALK-positive non-small cell lung cancer.

    PubMed

    Ai, Xinghao; Shen, Shengping; Shen, Lan; Lu, Shun

    2015-05-01

    Human anaplastic lymphoma kinase (ALK) has become a well-established target for the treatment of ALK-positive non-small cell lung cancer (NSCLC). Here, we have profiled seven small-molecule inhibitors, including 2 that are approved drugs, against a panel of clinically relevant mutations in ALK tyrosine kinase (TK) domain, aiming at a comprehensive understanding of molecular mechanism and biological implication underlying inhibitor response to ALK TK mutation. We find that (i) the gatekeeper mutation L1196M causes crizotinib resistance by simultaneously increasing and decreasing the binding affinities of, respectively, ATP and inhibitor to ALK, whereas the secondary mutation C1156Y, which is located far away from the ATP-binding site of ALK TK domain, causes the resistance by inducing marked allosteric effect on the site, (ii) the 2nd and 3rd generation kinase inhibitors exhibit relatively high sensitivity towards ALK mutants as compared to 1st generation inhibitors, (iii) the pan-kinase inhibitor staurosporine is insensitive for most mutations due to its high structural compatibility, and (iv) ATP affinity to ALK is generally reduced upon most clinically relevant mutations. Furthermore, we also identify six novel mutation-inhibitor pairs that are potentially associated with drug resistance. In addition, the G1202R and C1156Y mutations are expected to generally cause resistance for many existing inhibitors, since they can address significant effect on the geometric shape and physicochemical property of ALK active pocket.

  4. ALK: a tyrosine kinase target for cancer therapy

    PubMed Central

    Holla, Vijaykumar R.; Elamin, Yasir Y.; Bailey, Ann Marie; Johnson, Amber M.; Litzenburger, Beate C.; Khotskaya, Yekaterina B.; Sanchez, Nora S.; Zeng, Jia; Shufean, Md Abu; Shaw, Kenna R.; Mendelsohn, John; Mills, Gordon B.; Meric-Bernstam, Funda; Simon, George R.

    2017-01-01

    The anaplastic lymphoma kinase (ALK) gene plays an important physiologic role in the development of the brain and can be oncogenically altered in several malignancies, including non-small-cell lung cancer (NSCLC) and anaplastic large cell lymphomas (ALCL). Most prevalent ALK alterations are chromosomal rearrangements resulting in fusion genes, as seen in ALCL and NSCLC. In other tumors, ALK copy-number gains and activating ALK mutations have been described. Dramatic and often prolonged responses are seen in patients with ALK alterations when treated with ALK inhibitors. Three of these—crizotinib, ceritinib, and alectinib—are now FDA approved for the treatment of metastatic NSCLC positive for ALK fusions. However, the emergence of resistance is universal. Newer ALK inhibitors and other targeting strategies are being developed to counteract the newly emergent mechanism(s) of ALK inhibitor resistance. This review outlines the recent developments in our understanding and treatment of tumors with ALK alterations. PMID:28050598

  5. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer

    PubMed Central

    Koivunen, Jussi P.; Mermel, Craig; Zejnullahu, Kreshnik; Murphy, Carly; Lifshits, Eugene; Holmes, Alison J.; Choi, Hwan Geun; Kim, Jhingook; Chiang, Derek; Thomas, Roman; Lee, Jinseon; Richards, William G.; Sugarbaker, David J.; Ducko, Christopher; Lindeman, Neal; Marcoux, J. Paul; Engelman, Jeffrey A.; Gray, Nathanael S.; Lee, Charles; Meyerson, Matthew; Jänne, Pasi A.

    2011-01-01

    Purpose The EML4-ALK fusion gene has been detected in ~7% of Japanese non-small cell lung cancers (NSCLC). We determined the frequency of EML4-ALK in Caucasian NSCLCs and in NSCLC cell lines. We also determined whether TAE684, a specific ALK kinase inhibitor, would inhibit the growth of EML4-ALK containing cell lines in vitro and in vivo. Experimental Design We screened 305 primary NSCLCs (both US (n=138) and Korean (n=167) patients) and 83 NSCLC cell lines using RT-PCR and by exon array analyses. We evaluated the efficacy of TAE684 against NSCLC cell lines in vitro and in vivo. Results We detected 4 different variants, including two novel variants, of EML4-ALK using RT-PCR in 8/305 tumors (3%) and in 3/83 (3.6%) NSCLC cell lines. All EML4-ALK containing tumors and cell lines were adenocarcinomas. EML4-ALK was detected more frequently in NSCLC patients who were never or light (< 10 pack years) cigarette smokers compared to current/former smokers (6% vs. 1%; p=0.049). TAE684 inhibited the growth of 1 of 3 (H3122) EML4-ALK containing cell lines in vitro and in vivo, inhibited Akt phosphorylation and caused apoptosis. In another EML4-ALK cell line, DFCI032, TAE684 was ineffective due to co-activation of EGFR and ERBB2. The combination of TAE684 and CL-387,785 (EGFR/ERBB2 kinase inhibitor), inhibited growth and Akt phosphorylation and led to apoptosis in the DFCI032 cell line. Conclusions EML4-ALK is found in the minority of NSCLCs. ALK kinase inhibitors alone or in combination may nevertheless be clinically effective treatments for NSCLC patients whose tumors contain EML4-ALK. PMID:18594010

  6. Activation of the orphan receptor tyrosine kinase ALK by zinc.

    PubMed

    Bennasroune, Aline; Mazot, Pierre; Boutterin, Marie-Claude; Vigny, Marc

    2010-08-06

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase essentially and transiently expressed during development of the central and peripheral nervous system. The nature of the cognate ligand of this receptor in Vertebrates is still a matter of debate. During synaptic transmission the release of ionic zinc found in vesicles of certain glutamatergic and gabaergic terminals may act as a neuromodulator by binding to pre- or post-synaptic receptors. Recently, zinc has been shown to activate the receptor tyrosine kinase, TrkB, independently of neurotrophins. This activation occurs via increasing the Src family kinase activity. In the present study, we investigated whether the ALK activity could be modulated by extracellular zinc. We first showed that zinc alone rapidly activates ALK. This activation is dependent of ALK tyrosine kinase activity and dimerization of the receptor but is independent of Src family kinase activity. In contrast, addition of sodium pyrithione, a zinc ionophore, led to a further activation of ALK. This stronger activation is dependent of Src family kinase but independent of ALK activity and dimerization. In conclusion, zinc could constitute an endogenous ligand of ALK in vertebrates.

  7. Model of inhibition of the NPM-ALK kinase activity by herbimycin A.

    PubMed

    Turturro, Francesco; Arnold, Marilyn D; Frist, Audrey Y; Pulford, Karen

    2002-01-01

    Anaplastic large cell lymphoma (ALCL) exhibiting the t(2;5) translocation is characterized by the resulting expression of the oncogenic fusion protein nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) gene product. The ALK domain of NPM-ALK contains kinase activity, which is responsible for the autophosphorylation of tyrosine residues of the oncogenic protein and phosphorylation of SH2-protein substrates. Herbimycin A is a general protein tyrosine kinase inhibitor active as an antiproliferative compound against different types of mammalian cells. Herbimycin A inhibited the NPM-ALK-associated autophosphorylating activity in an in vitro cell-free kinase assay. The inhibition was specific when tested against other kinase inhibitors and extended to other cell lines derived from t(2;5)-ALCL. SUDHL-1 cells showed increasing percentage of cells in G(1) after 18 h of incubation with a dose of herbimycin A. NPM-ALK, Akt, and pAkt were down-regulated after 24 h of incubation with herbimycin A. Apoptosis was observed only if the dose of inhibitor was given every 12 h for prolonged time. Our results show that herbimycin A interferes with NPM-ALK and Akt pathways in SUDHL-1 cells. It seems that prolonged inhibition of these biochemical pathways may lead to cell cycle arrest and apoptosis. This study supports the idea of investigating protein kinase inhibitors as therapeutic compounds for t(2;5)-ALCL.

  8. Atypical Carcinoid Tumor with Anaplastic Lymphoma Kinase (ALK) Rearrangement Successfully Treated by an ALK Inhibitor.

    PubMed

    Nakajima, Masayuki; Uchiyama, Naoki; Shigemasa, Rie; Matsumura, Takeshi; Matsuoka, Ryota; Nomura, Akihiro

    This is the first report in which crizotinib, an anaplastic lymphoma kinase (ALK) inhibitor, reduced an atypical carcinoid tumor with ALK rearrangement. A 70-year-old man developed a tumor in the left lung and multiple metastases to the lung and brain. The pathology of transbronchial biopsied specimens demonstrated an atypical carcinoid pattern. Combined with immunohistochemical findings, we diagnosed the tumor as atypical carcinoid. ALK gene rearrangement was observed by both immunohistochemical (IHC) and fluorescence in situ hybridization. He was treated with chemotherapy as first-line therapy, however, the tumor did not respond to chemotherapy. Thereafter, he was treated with crizotinib, which successfully reduced the tumors.

  9. Detection of anaplastic lymphoma kinase (ALK) gene rearrangement in non-small cell lung cancer and related issues in ALK inhibitor therapy: a literature review.

    PubMed

    Yi, Eunhee S; Chung, Jin-Haeng; Kulig, Kimary; Kerr, Keith M

    2012-06-01

    Anaplastic lymphoma kinase (ALK) encodes a receptor tyrosine kinase, and ALK gene rearrangement (ALK+) is implicated in the oncogenesis of non-small cell lung carcinomas (NSCLCs), especially adenocarcinomas. The ALK inhibitor crizotinib was approved in August 2011 by the US Food and Drug Administration (FDA) for treating late-stage NSCLCs that are ALK+, with a companion fluorescent in situ hybridization (FISH) test using the Vysis ALK Break Apart FISH Probe Kit. This review covers pertinent issues in ALK testing, including approaches to select target patients for the test, pros and cons of different detection methods, and mechanisms as well as monitoring of acquired crizotinib resistance in ALK+ NSCLCs.

  10. Therapeutic strategies and mechanisms of drug resistance in Anaplastic Lymphoma Kinase (ALK)-rearranged lung cancer.

    PubMed

    Katayama, Ryohei

    2017-02-06

    Anaplastic lymphoma kinase (ALK) gene encoding the receptor tyrosine kinase ALK is expressed as a fusion gene in a variety of carcinomas. The expression of ALK is nearly undetectable in adults, and its activation is normally regulated by its ligands, FAM150A/B. However, ALK gene rearrangements result in different ALK fusion proteins that are constitutively expressed via the active promoter of fusion partner genes. ALK fusion proteins dimerize in a ligand-independent manner and lead to the dysregulation of cell proliferation via abnormal constitutive activation of ALK tyrosine kinase. Many ALK tyrosine kinase inhibitors (TKIs) have been developed to date, are three of which are currently in clinical use for the treatment of ALK-rearranged non-small cell lung cancer (NSCLC). ALK TKIs often achieve marked tumor regression in NSCLC patients with ALK rearrangements; however, ALK TKI-resistant tumors inevitably emerge within a few years in most cases. In this review, we summarize diverse ALK TKI resistance mechanisms identified in NSCLC with ALK rearrangements, and review potential therapeutic strategies to overcome ALK TKI resistance in these patients.

  11. Specificity and Structure of a High Affinity Activin Receptor-like Kinase 1 (ALK1) Signaling Complex

    PubMed Central

    Townson, Sharon A.; Martinez-Hackert, Erik; Greppi, Chloe; Lowden, Patricia; Sako, Dianne; Liu, June; Ucran, Jeffrey A.; Liharska, Katia; Underwood, Kathryn W.; Seehra, Jasbir; Kumar, Ravindra; Grinberg, Asya V.

    2012-01-01

    Activin receptor-like kinase 1 (ALK1), an endothelial cell-specific type I receptor of the TGF-β superfamily, is an important regulator of normal blood vessel development as well as pathological tumor angiogenesis. As such, ALK1 is an important therapeutic target. Thus, several ALK1-directed agents are currently in clinical trials as anti-angiogenic cancer therapeutics. Given the biological and clinical importance of the ALK1 signaling pathway, we sought to elucidate the biophysical and structural basis underlying ALK1 signaling. The TGF-β family ligands BMP9 and BMP10 as well as the three type II TGF-β family receptors ActRIIA, ActRIIB, and BMPRII have been implicated in ALK1 signaling. Here, we provide a kinetic and thermodynamic analysis of BMP9 and BMP10 interactions with ALK1 and type II receptors. Our data show that BMP9 displays a significant discrimination in type II receptor binding, whereas BMP10 does not. We also report the crystal structure of a fully assembled ternary complex of BMP9 with the extracellular domains of ALK1 and ActRIIB. The structure reveals that the high specificity of ALK1 for BMP9/10 is determined by a novel orientation of ALK1 with respect to BMP9, which leads to a unique set of receptor-ligand interactions. In addition, the structure explains how BMP9 discriminates between low and high affinity type II receptors. Taken together, our findings provide structural and mechanistic insights into ALK1 signaling that could serve as a basis for novel anti-angiogenic therapies. PMID:22718755

  12. Activity of EGFR-tyrosine kinase and ALK inhibitors for EML4-ALK-rearranged non-small-cell lung cancer harbored coexisting EGFR mutation.

    PubMed

    Miyanaga, Akihiko; Shimizu, Kumi; Noro, Rintaro; Seike, Masahiro; Kitamura, Kazuhiro; Kosaihira, Seiji; Minegishi, Yuji; Shukuya, Takehito; Yoshimura, Akinobu; Kawamoto, Masashi; Tsuchiya, Shinichi; Hagiwara, Koichi; Soda, Manabu; Takeuchi, Kengo; Yamamoto, Nobuyuki; Mano, Hiroyuki; Ishikawa, Yuichi; Gemma, Akihiko

    2013-05-29

    The EML4-ALK (echinoderm microtubule-associated protein-like 4 gene and the anaplastic lymphoma kinase gene) fusion oncogene represents a novel molecular target in a small subset of non-small-cell lung cancers (NSCLCs). The EML4-ALK fusion gene occurs generally in NSCLC without mutations in epidermal growth factor receptor (EGFR) and KRAS. We report that a case of EML4-ALK-positive NSCLC with EGFR mutation had a response of stable disease to both an EGFR tyrosine kinase inhibitor (EGFR-TKI) and ALK inhibitor. We described the first clinical report of a patient with EML4-ALK-positive NSCLC with EGFR mutation that had a response of stable disease to both single-agent EGFR-TKI and ALK inhibitor. EML4-ALK translocation may be associated with resistance to EGFR-TKI, and EGFR signaling may contribute to resistance to ALK inhibitor in EML4-ALK-positive NSCLC.

  13. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells.

    PubMed

    Wilson, T; Wu, X Y; Juengel, J L; Ross, I K; Lumsden, J M; Lord, E A; Dodds, K G; Walling, G A; McEwan, J C; O'Connell, A R; McNatty, K P; Montgomery, G W

    2001-04-01

    The Booroola fecundity gene (FecB) increases ovulation rate and litter size in sheep and is inherited as a single autosomal locus. The effect of FecB is additive for ovulation rate (increasing by about 1.6 corpora lutea per cycle for each copy) and has been mapped to sheep chromosome 6q23-31, which is syntenic to human chromosome 4q21-25. Bone morphogenetic protein IB (BMP-IB) receptor (also known as ALK-6), which binds members of the transforming growth factor-beta (TGF-beta) superfamily, is located in the region containing the FecB locus. Booroola sheep have a mutation (Q249R) in the highly conserved intracellular kinase signaling domain of the BMP-IB receptor. The mutation segregated with the FecB phenotype in the Booroola backcross and half-sib flocks of sheep with no recombinants. The mutation was not found in individuals from a number of sheep breeds not derived from the Booroola strain. BMPR-IB was expressed in the ovary and in situ hybridization revealed its specific location to the oocyte and the granulosa cell. Expression of mRNA encoding the BMP type II receptor was widespread throughout the ovary. The mutation in BMPR-IB found in Booroola sheep is the second reported defect in a gene from the TGF-beta pathway affecting fertility in sheep following the recent discovery of mutations in the growth factor, GDF9b/BMP15.

  14. Analysis of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-reactive CD8(+) T cell responses in children with NPM-ALK(+) anaplastic large cell lymphoma.

    PubMed

    K Singh, V; Werner, S; Hackstein, H; Lennerz, V; Reiter, A; Wölfel, T; Damm-Welk, C; Woessmann, W

    2016-10-01

    Cellular immune responses against the oncoantigen anaplastic lymphoma kinase (ALK) in patients with ALK-positive anaplastic large cell lymphoma (ALCL) have been detected using peptide-based approaches in individuals preselected for human leucocyte antigen (HLA)-A*02:01. In this study, we aimed to evaluate nucleophosmin (NPM)-ALK-specific CD8(+) T cell responses in ALCL patients ensuring endogenous peptide processing of ALK antigens and avoiding HLA preselection. We also examined the HLA class I restriction of ALK-specific CD8(+) T cells. Autologous dendritic cells (DCs) transfected with in-vitro-transcribed RNA (IVT-RNA) encoding NPM-ALK were used as antigen-presenting cells for T cell stimulation. Responder T lymphocytes were tested in interferon-gamma enzyme-linked immunospot (ELISPOT) assays with NPM-ALK-transfected autologous DCs as well as CV-1 in Origin with SV40 genes (COS-7) cells co-transfected with genes encoding the patients' HLA class I alleles and with NPM-ALK encoding cDNA to verify responses and define the HLA restrictions of specific T cell responses. NPM-ALK-specific CD8(+) T cell responses were detected in three of five ALK-positive ALCL patients tested between 1 and 13 years after diagnosis. The three patients had also maintained anti-ALK antibody responses. No reactivity was detected in samples from five healthy donors. The NPM-ALK-specific CD8(+) T cell responses were restricted by HLA-C-alleles (C*06:02 and C*12:02) in all three cases. This approach allowed for the detection of NPM-ALK-reactive T cells, irrespective of the individual HLA status, up to 9 years after ALCL diagnosis.

  15. Conditional knockout of activin like kinase-1 (ALK-1) leads to heart failure without maladaptive remodeling.

    PubMed

    Morine, Kevin J; Qiao, Xiaoying; Paruchuri, Vikram; Aronovitz, Mark J; Mackey, Emily E; Buiten, Lyanne; Levine, Jonathan; Ughreja, Keshan; Nepali, Prerna; Blanton, Robert M; Karas, Richard H; Oh, S Paul; Kapur, Navin K

    2017-05-01

    Activin like kinase-1 (AlK-1) mediates signaling via the transforming growth factor beta (TGFβ) family of ligands. AlK-1 activity promotes endothelial proliferation and migration. Reduced AlK-1 activity is associated with arteriovenous malformations. No studies have examined the effect of global AlK-1 deletion on indices of cardiac remodeling. We hypothesized that reduced levels of AlK-1 promote maladaptive cardiac remodeling. To test this hypothesis, we employed AlK-1 conditional knockout mice (cKO) harboring the ROSA26-CreER knock-in allele, whereby a single dose of intraperitoneal tamoxifen triggered ubiquitous Cre recombinase-mediated excision of floxed AlK-1 alleles. Tamoxifen treated wild-type (WT-TAM; n = 5) and vehicle treated AlK-1-cKO mice (cKO-CON; n = 5) served as controls for tamoxifen treated AlK-1-cKO mice (cKO-TAM; n = 15). AlK-1 cKO-TAM mice demonstrated reduced 14-day survival compared to cKO-CON controls (13 vs 100%, respectively, p < 0.01). Seven days after treatment, cKO-TAM mice exhibited reduced left ventricular (LV) fractional shortening, progressive LV dilation, and gastrointestinal bleeding. After 14 days total body mass was reduced, but LV and lung mass increased in cKO-TAM not cKO-CON mice. Peak LV systolic pressure, contractility, and arterial elastance were reduced, but LV end-diastolic pressure and stroke volume were increased in cKO-TAM, not cKO-CON mice. LV AlK-1 mRNA levels were reduced in cKO-TAM, not cKO-CON mice. LV levels of other TGFβ-family ligands and receptors (AlK5, TBRII, BMPRII, Endoglin, BMP7, BMP9, and TGFβ1) were unchanged between groups. Cardiomyocyte area and LV levels of BNP were increased in cKO-TAM mice, but LV levels of β-MHC and SERCA were unchanged. No increase in markers of cardiac fibrosis, Type I collagen, CTGF, or PAI-1, were observed between groups. No differences were observed for any variable studied between cKO-CON and WT-TAM mice. Global deletion of AlK-1 is associated with the

  16. Alectinib: a novel second generation anaplastic lymphoma kinase (ALK) inhibitor for overcoming clinically-acquired resistance

    PubMed Central

    Song, Zilan; Wang, Meining; Zhang, Ao

    2015-01-01

    The development of inhibitors for the tyrosine anaplastic lymphoma kinase (ALK) has advanced rapidly, driven by biology and medicinal chemistry. The first generation ALK inhibitor crizotinib was granted US FDA approval with only four years of preclinical and clinical testing. Although this drug offers significant clinical benefit to the ALK-positive patients, resistance has been developed through a variety of mechanisms. In addition to ceritinib, alectinib is another second-generation ALK inhibitor launched in 2014 in Japan. This drug has a unique chemical structure bearing a 5H-benzo[b]carbazol-11(6H)-one structural scaffold with an IC50 value of 1.9 nmol/L, and is highly potent against ALK bearing the gatekeeper mutation L1196M with an IC50 of 1.56 nmol/L. In the clinic, alectinib is highly efficacious in treatment of ALK-positive non-small cell lung cancer (NSCLC), and retains potency to combat crizotinib-resistant ALK mutations L1196M, F1174L, R1275Q and C1156Y. PMID:26579422

  17. Detection of novel and potentially actionable anaplastic lymphoma kinase (ALK) rearrangement in colorectal adenocarcinoma by immunohistochemistry screening

    PubMed Central

    Wang, Kai; Kim, Sun Young; Jang, Jiryeon; Kim, Seung Tae; Park, Joon Oh; Lim, Ho Yeong; Kang, Won Ki; Park, Young Suk; Lee, Jiyun; Lee, Woo Yong; Park, Yoon Ah; Huh, Jung Wook; Yun, Seong Hyeon; Do, In-Gu; Kim, Seok Hyung; Balasubramanian, Sohail; Stephens, Philip J.; Ross, Jeffrey S.; Li, Gang Gary; Hornby, Zachary; Ali, Siraj M.; Miller, Vincent A.; Kim, Kyoung-Mee; Ou, Sai-Hong Ignatius

    2015-01-01

    Purpose Anaplastic lymphoma kinase (ALK) rearrangement has been detected in colorectal carcinoma (CRC) using advanced molecular diagnostics tests including exon scanning, fluorescence in situ hybridization (FISH), and next generation sequencing (NGS). We investigated if immunohistochemistry (IHC) can be used to detect ALK rearrangement in gastrointestinal malignancies. Experimental designs Tissue microarrays (TMAs) from consecutive gastric carcinoma (GC) and CRC patients who underwent surgical resection at Samsung Medical Center, Seoul, Korea were screened by IHC using ALK monoclonal antibody 5A4. IHC positive cases were confirmed by FISH, nCounter assays, and NGS-based comprehensive genomic profiling (CGP). ALK IHC was further applied to CRC patients enrolled in a pathway-directed therapeutic trial. Results Four hundred thirty-two GC and 172 CRC cases were screened by IHC. No GC sample was ALK IHC positive. One CRC (0.6%) was ALK IHC positive (3+) that was confirmed by ALK FISH and a novel CAD-ALK (C35; A20) fusion variant that resulted from a paracentric inversion event inv(2)(p22–21p23) was identified by CGP. One out of 50 CRC patients enrolled in a pathway-directed therapeutic trial was ALK IHC positive (3+) confirmed by ALK FISH and found to harbor the EML4-ALK (E21, A20) fusion variant by CGP. Growth of a tumor cell line derived from this EML4-ALK CRC patient was inhibited by ALK inhibitors crizotinib and entrectinib. Conclusions ALK IHC is a viable screening strategy for identifying ALK rearrangement in CRC. ALK rearrangement is a potential actionable driver mutation in CRC based on survival inhibition of patient tumor-derived cell line by potent ALK inhibitors. PMID:26172300

  18. New therapeutic strategies in neuroblastoma: combined targeting of a novel tyrosine kinase inhibitor and liposomal siRNAs against ALK

    PubMed Central

    Di Paolo, Daniela; Yang, D.; Pastorino, Fabio; Emionite, Laura; Cilli, Michele; Daga, Antonio; Destefanis, Elisa; Di Fiore, Annarita; Piaggio, Francesca; Brignole, Chiara; Xu, Xiaobao; Liang, Chris; Gibbons, James

    2015-01-01

    Many different aberrations in the Anaplastic Lymphoma Kinase (ALK) were found to be oncogenic drivers in several cancers including neuroblastoma (NB), therefore ALK is now considered a critical player in NB oncogenesis and a promising therapeutic target. The ALK-inhibitor crizotinib has a limited activity against the various ALK mutations identified in NB patients. We tested: the activity of the novel ALK-inhibitor X-396 administered alone or in combination with Targeted Liposomes carrying ALK-siRNAs (TL[ALK-siRNA]) that are active irrespective of ALK gene mutational status; the pharmacokinetic profiles and the biodistribution of X-396; the efficacy of X-396 versus crizotinib treatment in NB xenografts; whether the combination of X-396 with the TL[ALK-siRNA] could promote long-term survival in NB mouse models. X-396 revealed good bioavailability, moderate half-life, high mean plasma and tumor concentrations. X-396 was more effective than crizotinib in inhibiting in vitro cell proliferation of NB cells and in reducing tumor volume in subcutaneous NB models in a dose-dependent manner. In orthotopic NB xenografts, X-396 significantly increased life span independently of the ALK mutation status. In combination studies, all effects were significantly improved in the mice treated with TL[ALK-siRNA] and X-396 compared to mice receiving the single agents. Our findings provide a rational basis to design innovative molecular-based treatment combinations for clinical application in ALK-driven NB tumors. PMID:26299615

  19. New therapeutic strategies in neuroblastoma: combined targeting of a novel tyrosine kinase inhibitor and liposomal siRNAs against ALK.

    PubMed

    Di Paolo, Daniela; Yang, D; Pastorino, Fabio; Emionite, Laura; Cilli, Michele; Daga, Antonio; Destafanis, Elisa; Di Fiore, Annarita; Piaggio, Francesca; Brignole, Chiara; Xu, Xiaobao; Liang, Chris; Gibbons, James; Ponzoni, Mirco; Perri, Patrizia

    2015-10-06

    Many different aberrations in the Anaplastic Lymphoma Kinase (ALK) were found to be oncogenic drivers in several cancers including neuroblastoma (NB), therefore ALK is now considered a critical player in NB oncogenesis and a promising therapeutic target. The ALK-inhibitor crizotinib has a limited activity against the various ALK mutations identified in NB patients. We tested: the activity of the novel ALK-inhibitor X-396 administered alone or in combination with Targeted Liposomes carrying ALK-siRNAs (TL[ALK-siRNA]) that are active irrespective of ALK gene mutational status; the pharmacokinetic profiles and the biodistribution of X-396; the efficacy of X-396 versus crizotinib treatment in NB xenografts; whether the combination of X-396 with the TL[ALK-siRNA] could promote long-term survival in NB mouse models. X-396 revealed good bioavailability, moderate half-life, high mean plasma and tumor concentrations. X-396 was more effective than crizotinib in inhibiting in vitro cell proliferation of NB cells and in reducing tumor volume in subcutaneous NB models in a dose-dependent manner. In orthotopic NB xenografts, X-396 significantly increased life span independently of the ALK mutation status. In combination studies, all effects were significantly improved in the mice treated with TL[ALK-siRNA] and X-396 compared to mice receiving the single agents. Our findings provide a rational basis to design innovative molecular-based treatment combinations for clinical application in ALK-driven NB tumors.

  20. Overcoming resistance to first/second generation epidermal growth factor receptor tyrosine kinase inhibitors and ALK inhibitors in oncogene-addicted advanced non-small cell lung cancer

    PubMed Central

    Romanidou, Ourania; Landi, Lorenza; Cappuzzo, Federico; Califano, Raffaele

    2016-01-01

    Epidermal growth factor receptor (EGFR) activating mutations and anaplastic lymphoma kinase (ALK) gene rearrangement in advanced non-small cell lung cancer (NSCLC) represent the two oncogenic events with an impact on current clinical practice. EGFR tyrosine kinase inhibitors (TKIs) and crizotinib are the standard of care for the treatment of EGFR mutant and ALK gene rearranged advanced NSCLC patients. Unfortunately, despite initial clinical benefit, acquired resistance to EGFR-TKIs or crizotinib usually develops after an average of 10–12 months of treatment. The aim of this review is to describe the mechanisms of resistance to first/second generation EGFR-TKIs and crizotinib. In particular, we focus on strategies to overcome resistance due to secondary EGFR T790M mutation and mutations of the ALK domain. PMID:27239236

  1. Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3

    PubMed Central

    Kasprzycka, Monika; Marzec, Michal; Liu, Xiaobin; Zhang, Qian; Wasik, Mariusz A.

    2006-01-01

    The mechanisms of malignant cell transformation mediated by the oncogenic, chimeric nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) tyrosine kinase remain only partially understood. Here we report that the NPM/ALK-carrying T cell lymphoma (ALK+TCL) cells secrete IL-10 and TGF-β and express FoxP3, indicating their T regulatory (Treg) cell phenotype. The secreted IL-10 suppresses proliferation of normal immune, CD3/CD28-stimulated peripheral blood mononuclear cells and enhances viability of the ALK+TCL cells. The Treg phenotype of the affected cells is strictly dependent on NPM/ALK expression and function as demonstrated by transfection of the kinase into BaF3 cells and inhibition of its enzymatic activity and expression in ALK+TCL cells. NPM/ALK, in turn, induces the phenotype through activation of its key signal transmitter, signal transducer and activator of transcription 3 (STAT3). These findings identify a mechanism of NPM/ALK-mediated oncogenesis based on induction of the Treg phenotype of the transformed CD4+ T cells. These results also provide an additional rationale to therapeutically target the chimeric kinase and/or STAT3 in ALK+TCL. PMID:16766651

  2. Anaplastic lymphoma kinase (ALK) gene alteration in signet ring cell carcinoma of the gastrointestinal tract.

    PubMed

    Alese, Olatunji B; El-Rayes, Bassel F; Sica, Gabriel; Zhang, Guojing; Alexis, Dianne; La Rosa, Francisco G; Varella-Garcia, Marileila; Chen, Zhengjia; Rossi, Michael R; Adsay, Nazim V; Khuri, Fadlo R; Owonikoko, Taofeek K

    2015-03-01

    ALK-EML4 translocation is an established driver aberration in non-small cell lung cancer (NSCLC), with reported predilection for cases with signet ring histology. We assessed the presence of anaplastic lymphoma kinase (ALK) gene rearrangements in signet ring cancers arising in the stomach and colon. Histologically confirmed cases of signet ring adenocarcinoma of the stomach or the colon were identified. The presence of the classic ALK and EML4 fusion gene was initially determined by fluorescence in-situ hybridization (FISH) technique. Immunohistochemistry (IHC) was performed using two previously validated antibodies, ALK1 clone (1:100; DAKO) and 5A4 (Novocastra, Leica Biosystems) along with positive controls of ALK-translocated lung cancer. We employed 42 cases of signet ring carcinoma diagnosed between 2001 and 2011; 25 gastric and 17 colon cancer. Median age 63.3 years; male/female 17/25; race, black 47.5%, white 47.5%, others, 5%; stage I, 21.4%; stage II, 31%; stage III, 26.2%; stage IV, 21.4%. One of 42 cases (2.3%) was positive for ALK translocation by FISH using the standard criteria of at least 15% positive cells for the break-apart signal (50-70 cells enumerated per case). Using a less restrictive cut-off of 10% positive cells, 7 cases (16%) were considered possibly positive. None of the 'possibly positive' cases was found to harbor ALK translocation by another molecular testing approach (IHC). IHC with two previously validated monoclonal antibodies showed 0 of 42 (0%) cases positive. ALK gene rearrangement is very rare in gastrointestinal cancers and enrichment strategy focusing on signet ring cell histology did not significantly improve the detection rate.

  3. Design, synthesis and pharmacological evaluation of 2-(thiazol-2-amino)-4-arylaminopyrimidines as potent anaplastic lymphoma kinase (ALK) inhibitors.

    PubMed

    Liu, Zhiqing; Yue, Xihua; Song, Zilan; Peng, Xia; Guo, Junfeng; Ji, Yinchun; Cheng, Zhen; Ding, Jian; Ai, Jing; Geng, Meiyu; Zhang, Ao

    2014-10-30

    A series of new 2,4-diarylaminopyrimidine analogues (DAAPalogues) was developed by incorporation of a substituted 2-aminothiazole component as the C-2 substituent of the center pyrimidine core. Compound 5i showed highest potency of 12.4 nM against ALK and 24.1 nM against ALK gatekeeper mutation L1196M. Although only having moderate cellular potency in the SUP-M2 cells harboring NPM-ALK, compound 5i showed good kinase selectivity and dose-dependently inhibited phosphorylation of ALK and its down-stream signaling pathways.

  4. Activin Receptor-Like Kinase Receptors ALK5 and ALK1 Are Both Required for TGFβ-Induced Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    de Kroon, Laurie M. G.; Narcisi, Roberto; Blaney Davidson, Esmeralda N.; Cleary, Mairéad A.; van Beuningen, Henk M.; Koevoet, Wendy J. L. M.; van Osch, Gerjo J. V. M.; van der Kraan, Peter M.

    2015-01-01

    Introduction Bone marrow-derived mesenchymal stem cells (BMSCs) are promising for cartilage regeneration because BMSCs can differentiate into cartilage tissue-producing chondrocytes. Transforming Growth Factor β (TGFβ) is crucial for inducing chondrogenic differentiation of BMSCs and is known to signal via Activin receptor-Like Kinase (ALK) receptors ALK5 and ALK1. Since the specific role of these two TGFβ receptors in chondrogenesis is unknown, we investigated whether ALK5 and ALK1 are expressed in BMSCs and whether both receptors are required for chondrogenic differentiation of BMSCs. Materials & Methods ALK5 and ALK1 gene expression in human BMSCs was determined with RT-qPCR. To induce chondrogenesis, human BMSCs were pellet-cultured in serum-free chondrogenic medium containing TGFβ1. Chondrogenesis was evaluated by aggrecan and collagen type IIα1 RT-qPCR analysis, and histological stainings of proteoglycans and collagen type II. To overexpress constitutively active (ca) receptors, BMSCs were transduced either with caALK5 or caALK1. Expression of ALK5 and ALK1 was downregulated by transducing BMSCs with shRNA against ALK5 or ALK1. Results ALK5 and ALK1 were expressed in in vitro-expanded as well as in pellet-cultured BMSCs from five donors, but mRNA levels of both TGFβ receptors did not clearly associate with chondrogenic induction. TGFβ increased ALK5 and decreased ALK1 gene expression in chondrogenically differentiating BMSC pellets. Neither caALK5 nor caALK1 overexpression induced cartilage matrix formation as efficient as that induced by TGFβ. Moreover, short hairpin-mediated downregulation of either ALK5 or ALK1 resulted in a strong inhibition of TGFβ-induced chondrogenesis. Conclusion ALK5 as well as ALK1 are required for TGFβ-induced chondrogenic differentiation of BMSCs, and TGFβ not only directly induces chondrogenesis, but also modulates ALK5 and ALK1 receptor signaling in BMSCs. These results imply that optimizing cartilage formation by

  5. Effect of single-chain antibody targeting of the ligand-binding domain in the anaplastic lymphoma kinase receptor

    PubMed Central

    Stylianou, DC; Auf der Maur, A; Kodack, DP; Henke, RT; Hohn, S; Toretsky, JA; Riegel, AT; Wellstein, A

    2013-01-01

    The tyrosine kinase receptor anaplastic lymphoma kinase (ALK) and its ligand, the growth factor pleiotrophin (PTN), are highly expressed during the development of the nervous system and have been implicated in the malignant progression of different tumor types. Here, we describe human single-chain variable fragment (scFv) antibodies that target the ligand-binding domain (LBD) in ALK and show the effect in vitro and in vivo. The ALK LBD was used as a bait in a yeast two-hybdrid system to select human scFv from a library with randomized complementarity-determining region 3 domains. Surface plasmon resonance showed high-affinity binding of the selected scFv. The anti-ALK scFv competed for binding of PTN to ALK in intact cells and inhibited PTN-dependent signal transduction through endogenous ALK. Invasion of an intact endothelial cell monolayer by U87MG human glioblastoma cells was inhibited by the anti-ALK scFv. In addition, the growth of established tumor xenografts in mice was reversed after the induction of the conditional expression of the anti-ALK scFv. In archival malignant brain tumors expression levels of ALK and PTN were found elevated and appear correlated with poor patient survival. This suggests a rate-limiting function of the PTN/ALK interaction that may be exploited therapeutically. PMID:19633684

  6. Structural insights into the interaction between the Cripto CFC domain and the ALK4 receptor.

    PubMed

    Calvanese, Luisa; Saporito, Angela; Oliva, Romina; D' Auria, Gabriella; Pedone, Carlo; Paolillo, Livio; Ruvo, Menotti; Marasco, Daniela; Falcigno, Lucia

    2009-03-01

    The protein Cripto is the founding member of the extra-cellular EGF-CFC growth factors, which are composed of two adjacent cysteine-rich domains: the EGF-like and the CFC. Members of the EGF-CFC family play key roles in embryonic development and are also implicated in tumourigenesis. Cripto is highly over-expressed in many tumours, while it is poorly detectable in normal tissues. Although both Cripto domains are involved in its tumourigenic activity, the CFC domain appears to play a crucial role. Indeed, through this domain, Cripto interferes with the onco-suppressive activity of Activins, either by blocking the Activin receptor ALK4 or by antagonising proteins of the TGF-beta family. We have undertaken the chemical synthesis and the structural characterisation of human CFC Cripto domain. Using a combined NMR and computational approach, supported by binding studies by SPR, we have investigated the molecular basis of the interaction between h-CFC and ALK4. Binding studies indicate that the synthetic h-CFC interacts with the ALK4 receptor with a K(D) in micro M range, whereas it does not recognise the ActRIIB receptor. The NMR study shows that the h-CFC overall topology is determined by the presence of three disulfide bridges and that residues H120 and W124 are located between the first strand and the first loop with the side chains externally exposed. A model of the CFC-ALK4 complex has also been obtained by molecular docking and shows that all residues indicated by prior mutagenesis studies can contribute to the ALK4-CFC interaction at the protein-protein interface.

  7. Structure Based Drug Design of Crizotinib (PF-02341066), a Potent and Selective Dual Inhibitor of Mesenchymal-Epithelial Transition Factor (c-MET) Kinase and Anaplastic Lymphoma Kinase (ALK)

    SciTech Connect

    Cui, J Jean; Tran-Dube,; #769; Michelle,; Shen, Hong; Nambu, Mitchell; Kung, Pei-Pei; Pairish, Mason; Jia, Lei; Meng, Jerry; Funk, Lee; Botrous, Iriny; McTigue, Michele; Grodsky, Neil; Ryan, Kevin; Padrique, Ellen; Alton, Gordon; Timofeevski, Sergei; Yamazaki, Shinji; Li, Qiuhua; Zou, Helen; Christensen, James; Mroczkowski, Barbara; Bender, Steve; Kania, Robert S; Edwards, Martin P

    2011-08-03

    Because of the critical roles of aberrant signaling in cancer, both c-MET and ALK receptor tyrosine kinases are attractive oncology targets for therapeutic intervention. The cocrystal structure of 3 (PHA-665752), bound to c-MET kinase domain, revealed a novel ATP site environment, which served as the target to guide parallel, multiattribute drug design. A novel 2-amino-5-aryl-3-benzyloxypyridine series was created to more effectively make the key interactions achieved with 3. In the novel series, the 2-aminopyridine core allowed a 3-benzyloxy group to reach into the same pocket as the 2,6-dichlorophenyl group of 3 via a more direct vector and thus with a better ligand efficiency (LE). Further optimization of the lead series generated the clinical candidate crizotinib (PF-02341066), which demonstrated potent in vitro and in vivo c-MET kinase and ALK inhibition, effective tumor growth inhibition, and good pharmaceutical properties.

  8. A novel fusion of TPR and ALK in lung adenocarcinoma.

    PubMed

    Choi, Yoon-La; Lira, Maruja E; Hong, Mineui; Kim, Ryong Nam; Choi, So-Jung; Song, Ji-Young; Pandy, Kinnari; Mann, Derrick L; Stahl, Joshua A; Peckham, Heather E; Zheng, Zongli; Han, Joungho; Mao, Mao; Kim, Jhingook

    2014-04-01

    Anaplastic lymphoma kinase (ALK) fusion is the most common mechanism for overexpression and activation in non-small-cell lung carcinoma. Several fusion partners of ALK have been reported, including echinoderm microtubule-associated protein-like 4, TRK-fused gene, kinesin family member 5B, kinesin light chain 1 (KLC1), protein tyrosine phosphatase and nonreceptor type 3, and huntingtin interacting protein 1 (HIP1). A 60-year-old Korean man had a lung mass which was a poorly differentiated adenocarcinoma with ALK overexpression. By using an Anchored Multiplex polymerase chain reaction assay and sequencing, we found that tumor had a novel translocated promoter region (TPR)-ALK fusion. The fusion transcript was generated from an intact, in-frame fusion of TPR exon 15 and ALK exon 20 (t(1;2)(q31.1;p23)). The TPR-ALK fusion encodes a predicted protein of 1192 amino acids with a coiled-coil domain encoded by the 5'-2 of the TPR and juxtamembrane and kinase domains encoded by the 3'-end of the ALK. The novel fusion gene and its protein TRP-ALK, harboring coiled-coil and kinase domains, could possess transforming potential and responses to treatment with ALK inhibitors. This case is the first report of TPR-ALK fusion transcript in clinical tumor samples and could provide a novel diagnostic and therapeutic candidate target for patients with cancer, including non-small-cell lung carcinoma.

  9. Augmentor α and β (FAM150) are ligands of the receptor tyrosine kinases ALK and LTK: Hierarchy and specificity of ligand–receptor interactions

    PubMed Central

    Reshetnyak, Andrey V.; Murray, Phillip B.; Shi, Xiarong; Mo, Elizabeth S.; Mohanty, Jyotidarsini; Tome, Francisco; Bai, Hanwen; Gunel, Murat; Lax, Irit; Schlessinger, Joseph

    2015-01-01

    Receptor tyrosine kinases (RTKs) are a class of cell surface receptors that, upon ligand binding, stimulate a variety of critical cellular functions. The orphan receptor anaplastic lymphoma kinase (ALK) is one of very few RTKs that remain without a firmly established protein ligand. Here we present a novel cytokine, FAM150B, which we propose naming augmentor-α (AUG-α), as a ligand for ALK. AUG-α binds ALK with high affinity and activates ALK in cells with subnanomolar potency. Detailed binding experiments using cells expressing ALK or the related receptor leukocyte tyrosine kinase (LTK) demonstrate that AUG-α binds and robustly activates both ALK and LTK. We show that the previously established LTK ligand FAM150A (AUG-β) is specific for LTK and only weakly binds to ALK. Furthermore, expression of AUG-α stimulates transformation of NIH/3T3 cells expressing ALK, induces IL-3 independent growth of Ba/F3 cells expressing ALK, and is expressed in neuroblastoma, a cancer partly driven by ALK. These experiments reveal the hierarchy and specificity of two cytokines as ligands for ALK and LTK and set the stage for elucidating their roles in development and disease states. PMID:26630010

  10. Molecular Testing Guideline for Selection of Lung Cancer Patients for EGFR and ALK Tyrosine Kinase Inhibitors

    PubMed Central

    Lindeman, Neal I.; Cagle, Philip T.; Beasley, Mary Beth; Chitale, Dhananjay Arun; Dacic, Sanja; Giaccone, Giuseppe; Jenkins, Robert Brian; Kwiatkowski, David J.; Saldivar, Juan-Sebastian; Squire, Jeremy; Thunnissen, Erik; Ladanyi, Marc

    2014-01-01

    Objective To establish evidence-based recommendations for the molecular analysis of lung cancers that are that are required to guide EGFR- and ALK-directed therapies, addressing which patients and samples should be tested, and when and how testing should be performed. Participants Three cochairs without conflicts of interest were selected, one from each of the 3 sponsoring professional societies: College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Writing and advisory panels were constituted from additional experts from these societies. Evidence Three unbiased literature searches of electronic databases were performed to capture articles published published from January 2004 through February 2012, yielding 1533 articles whose abstracts were screened to identify 521 pertinent articles that were then reviewed in detail for their relevance to the recommendations. Evidence was formally graded for each recommendation. Consensus Process Initial recommendations were formulated by the cochairs and panel members at a public meeting. Each guideline section was assigned to at least 2 panelists. Drafts were circulated to the writing panel (version 1), advisory panel (version 2), and the public (version 3) before submission (version 4). Conclusions The 37 guideline items address 14 subjects, including 15 recommendations (evidence grade A/B). The major recommendations are to use testing for EGFR mutations and ALK fusions to guide patient selection for therapy with an epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) inhibitor, respectively, in all patients with advanced-stage adenocarcinoma, regardless of sex, race, smoking history, or other clinical risk factors, and to prioritize EGFR and ALK testing over other molecular predictive tests. As scientific discoveries and clinical practice outpace the completion of randomized clinical trials, evidence-based guidelines developed

  11. Molecular Testing Guideline for Selection of Lung Cancer Patients for EGFR and ALK Tyrosine Kinase Inhibitors

    PubMed Central

    Lindeman, Neal I.; Cagle, Philip T.; Beasley, Mary Beth; Chitale, Dhananjay Arun; Dacic, Sanja; Giaccone, Giuseppe; Jenkins, Robert Brian; Kwiatkowski, David J.; Saldivar, Juan-Sebastian; Squire, Jeremy; Thunnissen, Erik; Ladanyi, Marc

    2014-01-01

    Objective To establish evidence-based recommendations for the molecular analysis of lung cancers that are required to guide EGFR- and ALK-directed therapies, addressing which patients and samples should be tested, and when and how testing should be performed. Participants Three cochairs without conflicts of interest were selected, one from each of the 3 sponsoring professional societies: College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Writing and advisory panels were constituted from additional experts from these societies. Evidence Three unbiased literature searches of electronic databases were performed to capture articles published from January 2004 through February 2012, yielding 1533 articles whose abstracts were screened to identify 521 pertinent articles that were then reviewed in detail for their relevance to the recommendations. Evidence was formally graded for each recommendation. Consensus Process Initial recommendations were formulated by the cochairs and panel members at a public meeting. Each guideline section was assigned to at least 2 panelists. Drafts were circulated to the writing panel (version 1), advisory panel (version 2), and the public (version 3) before submission (version 4). Conclusions The 37 guideline items address 14 subjects, including 15 recommendations (evidence grade A/B). The major recommendations are to use testing for EGFR mutations and ALK fusions to guide patient selection for therapy with an epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) inhibitor, respectively, in all patients with advanced-stage adenocarcinoma, regardless of sex, race, smoking history, or other clinical risk factors, and to prioritize EGFR and ALK testing over other molecular predictive tests. As scientific discoveries and clinical practice outpace the completion of randomized clinical trials, evidence-based guidelines developed by expert

  12. Structural basis for the potent and selective binding of LDN-212854 to the BMP receptor kinase ALK2.

    PubMed

    Williams, Eleanor; Bullock, Alex N

    2017-09-12

    Individuals with the rare developmental disorder fibrodysplasia ossificans progressiva (FOP) experience disabling heterotopic ossification caused by a gain of function mutation in the intracellular region of the BMP type I receptor kinase ALK2, encoded by the gene ACVR1. Small molecule BMP type I receptor inhibitors that block this ossification in FOP mouse models have been derived from the pyrazolo[1,5-a]pyrimidine scaffold of dorsomorphin. While the first derivative LDN-193189 exhibited pan inhibition of BMP receptors, the more recent compound LDN-212854 has shown increased selectivity for ALK2. Here we solved the crystal structure of ALK2 in complex with LDN-212854 to define how its binding interactions compare to previously reported BMP and TGFβ receptor inhibitors. LDN-212854 bound to the kinase hinge region as a typical type I ATP-competitive inhibitor with a single hydrogen bond to ALK2 His286. Specificity arising from the 5-quinoline moiety was associated with a distinct pattern of water-mediated hydrogen bonds involving Lys235 and Glu248 in the inactive conformation favoured by ALK2. The structure of this complex provides a template for the design of future ALK2 inhibitors under development for the treatment of FOP and other related conditions of heterotopic ossification. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1)

    PubMed Central

    Marzec, Michal; Zhang, Qian; Goradia, Ami; Raghunath, Puthiyaveettil N.; Liu, Xiaobin; Paessler, Michele; Wang, Hong Yi; Wysocka, Maria; Cheng, Mangeng; Ruggeri, Bruce A.; Wasik, Mariusz A.

    2008-01-01

    The mechanisms of malignant cell transformation caused by the oncogenic, chimeric nucleophosmin (NPM)/anaplastic lymphoma kinase (ALK) remain only partially understood, with most of the previous studies focusing mainly on the impact of NPM/ALK on cell survival and proliferation. Here we report that the NPM/ALK-carrying T cell lymphoma (ALK+TCL) cells strongly express the immunosuppressive cell-surface protein CD274 (PD-L1, B7-H1), as determined on the mRNA and protein level. The CD274 expression is strictly dependent on the expression and enzymatic activity of NPM/ALK, as demonstrated by inhibition of the NPM/ALK function in ALK+TCL cells by the small molecule ALK inhibitor CEP-14083 and by documenting CD274 expression in IL-3-depleted BaF3 cells transfected with the wild-type NPM/ALK, but not the kinase-inactive NPM/ALK K210R mutant or empty vector alone. NPM/ALK induces CD274 expression by activating its key signal transmitter, transcription factor STAT3. STAT3 binds to the CD274 gene promoter in vitro and in vivo, as shown in the gel electromobility shift and chromatin immunoprecipitation assays, and is required for the PD-L1 gene expression, as demonstrated by siRNA-mediated STAT3 depletion. These findings identify an additional cell-transforming property of NPM/ALK and describe a direct link between an oncoprotein and an immunosuppressive cell-surface protein. These results also provide an additional rationale to therapeutically target NPM/ALK and STAT3 in ALK+TCL. Finally, they suggest that future immunotherapeutic protocols for this type of lymphoma may need to include the inhibition of NPM/ALK and STAT3 to achieve optimal clinical efficacy. PMID:19088198

  14. Variant translocation partners of the anaplastic lymphoma kinase (ALK) gene in two cases of anaplastic large cell lymphoma, identified by inverse cDNA polymerase chain reaction.

    PubMed

    Takeoka, Kayo; Okumura, Atsuko; Honjo, Gen; Ohno, Hitoshi

    2014-01-01

    In anaplastic large cell lymphoma (ALCL), the anaplastic lymphoma kinase (ALK) gene is rearranged with diverse partners due to variant translocations/inversions. Case 1 was a 39-year-old man who developed multiple tumors in the mediastinum, psoas muscle, lung, and lymph nodes. A biopsy specimen of the inguinal node was effaced by large tumor cells expressing CD30, epithelial membrane antigen, and cytoplasmic ALK, which led to a diagnosis of ALK(+) ALCL. Case 2 was a 51-year-old man who was initially diagnosed with undifferentiated carcinoma. He developed multiple skin tumors eight years after his initial presentation, and was finally diagnosed with ALK(+) ALCL. He died of therapy-related acute myeloid leukemia. G-banding and fluorescence in situ hybridization using an ALK break-apart probe revealed the rearrangement of ALK and suggested variant translocation in both cases. We applied an inverse cDNA polymerase chain reaction (PCR) strategy to identify the partner of ALK. Nucleotide sequencing of the PCR products and a database search revealed that the sequences of ATIC in case 1 and TRAF1 in case 2 appeared to follow those of ALK. We subsequently confirmed ATIC-ALK and TRAF1-ALK fusions by reverse transcriptase PCR and nucleotide sequencing. We successfully determined the partner gene of ALK in two cases of ALK(+) ALCL. ATIC is the second most common partner of variant ALK rearrangements, while the TRAF1-ALK fusion gene was first reported in 2013, and this is the second reported case of ALK(+) ALCL carrying TRAF1-ALK.

  15. Rearranged Anaplastic Lymphoma Kinase (ALK) Gene in Adult-Onset Papillary Thyroid Cancer Amongst Atomic Bomb Survivors

    PubMed Central

    Mukai, Mayumi; Takahashi, Keiko; Hayashi, Yuzo; Nakachi, Kei; Kusunoki, Yoichiro

    2012-01-01

    Background We previously noted that among atomic bomb survivors (ABS), the relative frequency of cases of adult papillary thyroid cancer (PTC) with chromosomal rearrangements (mainly RET/PTC) was significantly greater in those with relatively higher radiation exposure than those with lower radiation exposure. In contrast, the frequency of PTC cases with point mutations (mainly BRAFV600E) was significantly lower in patients with relatively higher radiation exposure than those with lower radiation exposure. We also found that among ABS, the frequency of PTC cases with no detectable gene alterations in RET, neurotrophic tyrosine kinase receptor 1 (NTRK1), BRAF, or RAS was significantly higher in patients with relatively higher radiation exposure than those with lower radiation exposure. However, in ABS with PTC, the relationship between the presence of the anaplastic lymphoma kinase (ALK) gene fused with other gene partners and radiation exposure has received little study. In this study, we tested the hypothesis that the relative frequency of rearranged ALK in ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, would be greater in those having relatively higher radiation exposures. Methods The 105 subjects in the study were drawn from the Life Span Study cohort of ABS of Hiroshima and Nagasaki who were diagnosed with PTC between 1956 and 1993. Seventy-nine were exposed (>0 mGy), and 26 were not exposed to A-bomb radiation. In the 25 ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, we examined archival, formalin-fixed, paraffin-embedded PTC specimens for rearrangement of ALK using reverse transcription–polymerase chain reaction and 5′ rapid amplification of cDNA ends (5′ RACE). Results We found rearranged ALK in 10 of 19 radiation-exposed PTC cases, but none among 6 patients with PTC with no radiation exposure. In addition, solid/trabecular-like architecture in PTC was closely associated with ALK

  16. Rearranged anaplastic lymphoma kinase (ALK) gene in adult-onset papillary thyroid cancer amongst atomic bomb survivors.

    PubMed

    Hamatani, Kiyohiro; Mukai, Mayumi; Takahashi, Keiko; Hayashi, Yuzo; Nakachi, Kei; Kusunoki, Yoichiro

    2012-11-01

    We previously noted that among atomic bomb survivors (ABS), the relative frequency of cases of adult papillary thyroid cancer (PTC) with chromosomal rearrangements (mainly RET/PTC) was significantly greater in those with relatively higher radiation exposure than those with lower radiation exposure. In contrast, the frequency of PTC cases with point mutations (mainly BRAF(V600E)) was significantly lower in patients with relatively higher radiation exposure than those with lower radiation exposure. We also found that among ABS, the frequency of PTC cases with no detectable gene alterations in RET, neurotrophic tyrosine kinase receptor 1 (NTRK1), BRAF, or RAS was significantly higher in patients with relatively higher radiation exposure than those with lower radiation exposure. However, in ABS with PTC, the relationship between the presence of the anaplastic lymphoma kinase (ALK) gene fused with other gene partners and radiation exposure has received little study. In this study, we tested the hypothesis that the relative frequency of rearranged ALK in ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, would be greater in those having relatively higher radiation exposures. The 105 subjects in the study were drawn from the Life Span Study cohort of ABS of Hiroshima and Nagasaki who were diagnosed with PTC between 1956 and 1993. Seventy-nine were exposed (>0 mGy), and 26 were not exposed to A-bomb radiation. In the 25 ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, we examined archival, formalin-fixed, paraffin-embedded PTC specimens for rearrangement of ALK using reverse transcription-polymerase chain reaction and 5' rapid amplification of cDNA ends (5' RACE). We found rearranged ALK in 10 of 19 radiation-exposed PTC cases, but none among 6 patients with PTC with no radiation exposure. In addition, solid/trabecular-like architecture in PTC was closely associated with ALK rearrangements, being observed in

  17. Expanding the portfolio of anti-ALK weapons.

    PubMed

    Mologni, Luca

    2015-02-01

    The anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase involved in the onset of several malignancies. In particular, ALK is the driving oncogenic lesion in a small but significant fraction of non-small cell lung cancer (NSCLC) patients. ALK+ NSCLCs can be treated with the dual ALK/MET inhibitor crizotinib, with better outcome compared to standard chemotherapy. However, relapses frequently occur, due to various mechanisms, limiting overall efficacy of the treatment. Point mutations within the ALK catalytic domain or ALK gene amplification account for approximately 30-40% of crizotinib-resistant cases, suggesting that the diseases still relies on ALK activity and that more potent inhibitors could be useful in this setting. Ceritinib is a novel selective ALK inhibitor with preclinical activity against crizotinib-resistant ALK mutants. A recent article in the New England Journal of Medicine reports on clinical evaluation of ceritinib. Response rate and progression-free survival (PFS) were comparable to crizotinib, but most importantly, crizotinib-resistant patients were successfully treated, with efficacy similar to crizotinib-naïve patients. The study extends the array of available anti-ALK drugs. Based on these data, ceritinib was approved by FDA in April 2014.

  18. The ALK inhibitor PF-06463922 is effective as a single agent in neuroblastoma driven by expression of ALK and MYCN

    PubMed Central

    Guan, J.; Tucker, E. R.; Wan, H.; Chand, D.; Danielson, L. S.; Ruuth, K.; El Wakil, A.; Witek, B.; Jamin, Y.; Umapathy, G.; Robinson, S. P.; Johnson, T. W.; Smeal, T.; Martinsson, T.; Chesler, L.; Palmer, R. H.

    2016-01-01

    ABSTRACT The first-in-class inhibitor of ALK, c-MET and ROS1, crizotinib (Xalkori), has shown remarkable clinical efficacy in treatment of ALK-positive non-small cell lung cancer. However, in neuroblastoma, activating mutations in the ALK kinase domain are typically refractory to crizotinib treatment, highlighting the need for more potent inhibitors. The next-generation ALK inhibitor PF-06463922 is predicted to exhibit increased affinity for ALK mutants prevalent in neuroblastoma. We examined PF-06463922 activity in ALK-driven neuroblastoma models in vitro and in vivo. In vitro kinase assays and cell-based experiments examining ALK mutations of increasing potency show that PF-06463922 is an effective inhibitor of ALK with greater activity towards ALK neuroblastoma mutants. In contrast to crizotinib, single agent administration of PF-06463922 caused dramatic tumor inhibition in both subcutaneous and orthotopic xenografts as well as a mouse model of high-risk neuroblastoma driven by Th-ALKF1174L/MYCN. Taken together, our results suggest PF-06463922 is a potent inhibitor of crizotinib-resistant ALK mutations, and highlights an important new treatment option for neuroblastoma patients. PMID:27483357

  19. PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to 1st and 2nd generation ALK inhibitors in pre-clinical models

    PubMed Central

    Zou, Helen Y.; Friboulet, Luc; Kodack, David P.; Engstrom, Lars D.; Li, Qiuhua; West, Melissa; Tang, Ruth W.; Wang, Hui; Tsaparikos, Konstantinos; Wang, Jinwei; Timofeevski, Sergei; Katayama, Ryohei; Dinh, Dac M.; Lam, Hieu; Lam, Justine L.; Yamazaki, Shinji; Hu, Wenyue; Patel, Bhushankumar; Bezwada, Divya; Frias, Rosa L.; Lifshits, Eugene; Mahmood, Sidra; Gainor, Justin F.; Affolter, Timothy; Lappin, Patrick B.; Gukasyan, Hovhannes; Lee, Nathan; Deng, Shibing; Jain, Rakesh K; Johnson, Ted W.; Shaw, Alice T.; Fantin, Valeria R.; Smeal, Tod

    2015-01-01

    SUMMARY We report the preclinical evaluation of PF-06463922, a potent and brain penetrant ALK/ROS1 inhibitor. Compared to other clinically available ALK inhibitors, PF-06463922 displayed superior potency against all known clinically acquired ALK mutations, including the highly resistant G1202R mutant. Furthermore, PF-06463922 treatment led to regression of EML4-ALK driven brain metastases, leading to prolonged mouse survival, in a superior manner. Finally, PF-06463922 demonstrated high selectivity and safety margins in a variety of preclinical studies. These results suggest that PF-06463922 will be highly effective for the treatment of patients with ALK-driven lung cancers, including those who relapsed on clinically available ALK inhibitors due to secondary ALK kinase domain mutations and/or due to the failed control of brain metastases. PMID:26144315

  20. ALK and ROS1 as a joint target for the treatment of lung cancer: a review.

    PubMed

    Puig de la Bellacasa, Raimon; Karachaliou, Niki; Estrada-Tejedor, Roger; Teixidó, Jordi; Costa, Carlota; Borrell, José I

    2013-04-01

    Rearrangements of the anaplastic lymphoma kinase (ALK) have been described in multiple malignancies, including non-small cell lung cancer (NSCLC). ALK fusions have gain of function properties while activating mutations in wild-type ALK can also occur within the tyrosine kinase domain. ALK rearrangements define a new molecular subtype of NSCLC that is exquisitely sensitive to ALK inhibition. Crizotinib, an orally available small molecule ATP-mimetic compound which was originally designed as a MET inhibitor, was recognized to have "off-target" anti-ALK activity and has been approved in the USA for the treatment of patients with ALK-positive NSCLC. Chromosomal rearrangements involving the ROS1 receptor tyrosine kinase have also been recently described in NSCLC, while crizotinib is currently under clinical trial in this molecular subset of NSCLC patients. The basic approaches of any computer aided drug design work in terms of structure and ligand based drug design. Details of each of these approaches should be covered with an emphasis on utilizing both in order to develop multi-targeted small-molecule kinase inhibitors. Such multi-targeted tyrosine kinase inhibitors can have antiproliferative activity against both ROS1and ALK rearranged NSCLC. Herein, we highlight the importance of targeting these proteins and the advances in optimizing more potent and selective ALK and ROS1 kinase inhibitors.

  1. ALK and ROS1 as a joint target for the treatment of lung cancer: a review

    PubMed Central

    Puig de la Bellacasa, Raimon; Karachaliou, Niki; Estrada-Tejedor, Roger; Teixidó, Jordi; Costa, Carlota

    2013-01-01

    Rearrangements of the anaplastic lymphoma kinase (ALK) have been described in multiple malignancies, including non-small cell lung cancer (NSCLC). ALK fusions have gain of function properties while activating mutations in wild-type ALK can also occur within the tyrosine kinase domain. ALK rearrangements define a new molecular subtype of NSCLC that is exquisitely sensitive to ALK inhibition. Crizotinib, an orally available small molecule ATP-mimetic compound which was originally designed as a MET inhibitor, was recognized to have “off-target” anti-ALK activity and has been approved in the USA for the treatment of patients with ALK-positive NSCLC. Chromosomal rearrangements involving the ROS1 receptor tyrosine kinase have also been recently described in NSCLC, while crizotinib is currently under clinical trial in this molecular subset of NSCLC patients. The basic approaches of any computer aided drug design work in terms of structure and ligand based drug design. Details of each of these approaches should be covered with an emphasis on utilizing both in order to develop multi-targeted small-molecule kinase inhibitors. Such multi-targeted tyrosine kinase inhibitors can have antiproliferative activity against both ROS1and ALK rearranged NSCLC. Herein, we highlight the importance of targeting these proteins and the advances in optimizing more potent and selective ALK and ROS1 kinase inhibitors. PMID:25806218

  2. Kinase impact assessment in the landscape of fusion genes that retain kinase domains: a pan-cancer study.

    PubMed

    Kim, Pora; Jia, Peilin; Zhao, Zhongming

    2016-12-24

    Assessing the impact of kinase in gene fusion is essential for both identifying driver fusion genes (FGs) and developing molecular targeted therapies. Kinase domain retention is a crucial factor in kinase fusion genes (KFGs), but such a systematic investigation has not been done yet. To this end, we analyzed kinase domain retention (KDR) status in chimeric protein sequences of 914 KFGs covering 312 kinases across 13 major cancer types. Based on 171 kinase domain-retained KFGs including 101 kinases, we studied their recurrence, kinase groups, fusion partners, exon-based expression depth, short DNA motifs around the break points and networks. Our results, such as more KDR than 5'-kinase fusion genes, combinatorial effects between 3'-KDR kinases and their 5'-partners and a signal transduction-specific DNA sequence motif in the break point intronic sequences, supported positive selection on 3'-kinase fusion genes in cancer. We introduced a degree-of-frequency (DoF) score to measure the possible number of KFGs of a kinase. Interestingly, kinases with high DoF scores tended to undergo strong gene expression alteration at the break points. Furthermore, our KDR gene fusion network analysis revealed six of the seven kinases with the highest DoF scores (ALK, BRAF, MET, NTRK1, NTRK3 and RET) were all observed in thyroid carcinoma. Finally, we summarized common features of 'effective' (highly recurrent) kinases in gene fusions such as expression alteration at break point, redundant usage in multiple cancer types and 3'-location tendency. Collectively, our findings are useful for prioritizing driver kinases and FGs and provided insights into KFGs' clinical implications. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. In contrast to agonist monoclonal antibodies, both C-terminal truncated form and full length form of Pleiotrophin failed to activate vertebrate ALK (anaplastic lymphoma kinase)?

    PubMed

    Mathivet, Thomas; Mazot, Pierre; Vigny, Marc

    2007-12-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase essentially and transiently expressed during development in specific regions of the central and peripheral nervous system. ALK expression persists at a lower level in the adult brain. Thus, it might play an important role in both the normal development and function of the nervous system. The nature of the cognate ligand of this receptor in vertebrates is still a matter of debate. Pleiotrophin and midkine have been proposed as ligands of ALK but several independent studies do not confirm this hypothesis. Interestingly, a recent study proposed that a C-terminal truncated form of Pleiotrophin (Pleiotrophin.15) and not the full length form (Pleiotrophin.18) promotes glioblastoma proliferation in an ALK-dependent fashion. These data were obviously a strong basis to conciliate the conflicting results so far reported in the literature. In the present study, we first purified to homogeneity the two forms of Pleiotrophin secreted by HEK 293 cells. In contrast to agonist monoclonal antibodies, both Pleiotrophin.15 and Pleiotrophin.18 failed to activate ALK in neuroblastoma and glioblastoma cells expressing this receptor. Thus, for our point of view, ALK is still an orphan receptor in vertebrates.

  4. Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer

    PubMed Central

    Kelly, Lindsey M.; Barila, Guillermo; Liu, Pengyuan; Evdokimova, Viktoria N.; Trivedi, Sumita; Panebianco, Federica; Gandhi, Manoj; Carty, Sally E.; Hodak, Steven P.; Luo, Jianhua; Dacic, Sanja; Yu, Yan P.; Nikiforova, Marina N.; Ferris, Robert L.; Altschuler, Daniel L.; Nikiforov, Yuri E.

    2014-01-01

    Thyroid cancer is a common endocrine malignancy that encompasses well-differentiated as well as dedifferentiated cancer types. The latter tumors have high mortality and lack effective therapies. Using a paired-end RNA-sequencing approach, we report the discovery of rearrangements involving the anaplastic lymphoma kinase (ALK) gene in thyroid cancer. The most common of these involves a fusion between ALK and the striatin (STRN) gene, which is the result of a complex rearrangement involving the short arm of chromosome 2. STRN-ALK leads to constitutive activation of ALK kinase via dimerization mediated by the coiled-coil domain of STRN and to a kinase-dependent, thyroid-stimulating hormone–independent proliferation of thyroid cells. Moreover, expression of STRN-ALK transforms cells in vitro and induces tumor formation in nude mice. The kinase activity of STRN-ALK and the ALK-induced cell growth can be blocked by the ALK inhibitors crizotinib and TAE684. In addition to well-differentiated papillary cancer, STRN-ALK was found with a higher prevalence in poorly differentiated and anaplastic thyroid cancers, and it did not overlap with other known driver mutations in these tumors. Our data demonstrate that STRN-ALK fusion occurs in a subset of patients with highly aggressive types of thyroid cancer and provide initial evidence suggesting that it may represent a therapeutic target for these patients. PMID:24613930

  5. Constitutively Active ALK2 Receptor Mutants Require Type II Receptor Cooperation

    PubMed Central

    Bagarova, Jana; Vonner, Ashley J.; Armstrong, Kelli A.; Börgermann, Jan; Lai, Carol S. C.; Deng, Donna Y.; Beppu, Hideyuki; Alfano, Ivan; Filippakopoulos, Panagis; Morrell, Nicholas W.; Bullock, Alex N.; Knaus, Petra; Mishina, Yuji

    2013-01-01

    Constitutively activating mutations in receptor kinases recruit downstream effector pathways independently of upstream signaling, with consequences ranging from developmental syndromes to cancer. Classic fibrodysplasia ossificans progressiva (FOP) is a congenital syndrome resulting from highly conserved activating mutations of the glycine-serine-rich (GS) regulatory domain of ACVR1, encoding bone morphogenetic protein (BMP) type I receptor ALK2, which lead to inappropriate signaling and heterotopic ossification of soft tissues. It is unclear if constitutively active mutant ALK2 receptors (caALK2) can function independently of signaling complexes with type II receptors and ligands. We found that ablation of BmpRII and ActRIIa abrogated BMP ligand-mediated and caALK2-mediated signaling and transcription in cells and disrupted caALK2-induced heterotopic ossification in mice. Signaling via GS domain ALK2 mutants could be restored by the expression of either BMP type II receptor. The contribution of BMP type II receptors was independent of their ligand-binding or kinase function but was dependent upon an intact cytoplasmic domain. These data demonstrate that GS domain ALK2 mutants act independently of upstream signaling but may require a nonenzymatic scaffolding function provided by type II receptors to form functional, apparently ligand-independent signaling complexes. These findings define the minimal requirements for signaling of GS domain ALK2 mutants, with implications for the therapeutic targeting of their activity in disease. PMID:23572558

  6. Clinicopathological features and relation between anaplastic lymphoma kinase (ALK) mutation and histological subtype of lung adenocarcinoma in Eastern European Caucasian population

    PubMed Central

    Zaric, Bojan; Stojsic, Vladimir; Panjkovic, Milana; Tegeltija, Dragana; Stepanov, Vanesa; Kovacevic, Tomi; Sarcev, Tatjana; Radosavljevic, Davorin; Milovancev, Aleksandar; Adamidis, Vasilis; Zarogoulidis, Paul; Hohenforst-Schmidt, Wolfgang; Trakada, Georgia; Rapti, Aggeliki; Perin, Branislav

    2016-01-01

    Introduction: The incidence of echinoderm microtubule-associated protein-like4-anaplastic lymphoma kinase (EML4-ALK) mutation among surgically treated patients with adenocarcinoma of the lung of the Eastern European ethnicity is underreported. The aim of this trial was the determination of EML4-ALK mutation frequency in investigated population, and the evaluation of correlations between lung adenocarcinoma subtype and clinical characteristics with mutation status. Patients and methods: This was a prospective trial which included 195 patients with adenocarcinoma of the lung who underwent surgical treatment. ALK mutation screening was performed by immunohistochemistry (IHC). IHC scores of 2+ and 3+ were regarded as positive. Confirmatory FISH was performed in all IHC positive and in 2:1 ratio in negative patients. Results: Overall ALK mutation rate established by IHC was 6.2%, while FISH confirmed rate of 5.1%. The FISH confirmed ALK positivity in 7.6% Hungarians, 5.5% Serbians, and 6.6% Slovakians. Acinar subtype of adenocarcinoma of the lung was significantly (p=0.02) related to EML4-ALK positive mutation status. Most of the patients were males (56.9%), smokers (50.8%), or former smokers (28.7%) with acinar (55.4%) or solid (35.9%) adenocarcinoma of the lung. Sensitivity and specificity of IHC were 100% and 98.9% respectively. Conclusions: ALK mutation rate in surgically treated patients with adenocarcinoma of the lung was found to be 6.2% by IHC and 5.1% by FISH. Acinar subtype of the adenocarcinoma of the lung was significantly related to ALK positive mutation. PMID:27994656

  7. Crizotinib-Resistant Mutants of EML4-ALK Identified Through an Accelerated Mutagenesis Screen

    PubMed Central

    Zhang, Sen; Wang, Frank; Keats, Jeffrey; Zhu, Xiaotian; Ning, Yaoyu; Wardwell, Scott D; Moran, Lauren; Mohemmad, Qurish K; Anjum, Rana; Wang, Yihan; Narasimhan, Narayana I; Dalgarno, David; Shakespeare, William C; Miret, Juan J; Clackson, Tim; Rivera, Victor M

    2011-01-01

    Activating gene rearrangements of anaplastic lymphoma kinase (ALK) have been identified as driver mutations in non-small-cell lung cancer, inflammatory myofibroblastic tumors, and other cancers. Crizotinib, a dual MET/ALK inhibitor, has demonstrated promising clinical activity in patients with non-small-cell lung cancer and inflammatory myofibroblastic tumors harboring ALK translocations. Inhibitors of driver kinases often elicit kinase domain mutations that confer resistance, and such mutations have been successfully predicted using in vitro mutagenesis screens. Here, this approach was used to discover an extensive set of ALK mutations that can confer resistance to crizotinib. Mutations at 16 residues were identified, structurally clustered into five regions around the kinase active site, which conferred varying degrees of resistance. The screen successfully predicted the L1196M, C1156Y, and F1174L mutations, recently identified in crizotinib-resistant patients. In separate studies, we demonstrated that crizotinib has relatively modest potency in ALK-positive non-small-cell lung cancer cell lines. A more potent ALK inhibitor, TAE684, maintained substantial activity against mutations that conferred resistance to crizotinib. Our study identifies multiple novel mutations in ALK that may confer clinical resistance to crizotinib, suggests that crizotinib's narrow selectivity window may underlie its susceptibility to such resistance and demonstrates that a more potent ALK inhibitor may be effective at overcoming resistance. PMID:22034911

  8. Identification of ALK germline mutation (3605delG) in pediatric anaplastic medulloblastoma.

    PubMed

    Coco, Simona; De Mariano, Marilena; Valdora, Francesca; Servidei, Tiziana; Ridola, Vita; Andolfo, Immacolata; Oberthuer, André; Tonini, Gian Paolo; Longo, Luca

    2012-10-01

    The anaplastic lymphoma kinase (ALK) gene has been found either rearranged or mutated in several neoplasms such as anaplastic large-cell lymphoma, non-small-cell lung cancer, neuroblastoma and anaplastic thyroid cancer. Medulloblastoma (MB) is an embryonic pediatric cancer arising from nervous system, a tissue in which ALK is expressed during embryonic development. We performed an ALK mutation screening in 52 MBs and we found a novel heterozygous germline deletion of a single base in exon 23 (3605delG) in a case with marked anaplasia. This G deletion results in a frameshift mutation producing a premature stop codon in exon 25 of ALK tyrosine kinase domain. We also screened three human MB cell lines without finding any mutation of ALK gene. Quantitative expression analysis of 16 out of 52 samples showed overexpression of ALK mRNA in three MBs. In the present study, we report the first mutation of ALK found in MB. Moreover, a deletion of ALK gene producing a stop codon has not been detected in human tumors up to now. Further investigations are now required to elucidate whether the truncated form of ALK may have a role in signal transduction.

  9. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors.

    PubMed

    Davare, Monika A; Vellore, Nadeem A; Wagner, Jacob P; Eide, Christopher A; Goodman, James R; Drilon, Alexander; Deininger, Michael W; O'Hare, Thomas; Druker, Brian J

    2015-09-29

    Oncogenic ROS1 fusion proteins are molecular drivers in multiple malignancies, including a subset of non-small cell lung cancer (NSCLC). The phylogenetic proximity of the ROS1 and anaplastic lymphoma kinase (ALK) catalytic domains led to the clinical repurposing of the Food and Drug Administration (FDA)-approved ALK inhibitor crizotinib as a ROS1 inhibitor. Despite the antitumor activity of crizotinib observed in both ROS1- and ALK-rearranged NSCLC patients, resistance due to acquisition of ROS1 or ALK kinase domain mutations has been observed clinically, spurring the development of second-generation inhibitors. Here, we profile the sensitivity and selectivity of seven ROS1 and/or ALK inhibitors at various levels of clinical development. In contrast to crizotinib's dual ROS1/ALK activity, cabozantinib (XL-184) and its structural analog foretinib (XL-880) demonstrate a striking selectivity for ROS1 over ALK. Molecular dynamics simulation studies reveal structural features that distinguish the ROS1 and ALK kinase domains and contribute to differences in binding site and kinase selectivity of the inhibitors tested. Cell-based resistance profiling studies demonstrate that the ROS1-selective inhibitors retain efficacy against the recently reported CD74-ROS1(G2032R) mutant whereas the dual ROS1/ALK inhibitors are ineffective. Taken together, inhibitor profiling and stringent characterization of the structure-function differences between the ROS1 and ALK kinase domains will facilitate future rational drug design for ROS1- and ALK-driven NSCLC and other malignancies.

  10. Targeting stemness is an effective strategy to control EML4-ALK+ non-small cell lung cancer cells.

    PubMed

    Oh, Se Jin; Noh, Kyung Hee; Lee, Young-Ho; Hong, Soon-Oh; Song, Kwon-Ho; Lee, Hyo-Jung; Kim, Soyeon; Kim, Tae Min; Jeon, Ju-Hong; Seo, Jae Hong; Kim, Dong-Wan; Kim, Tae Woo

    2015-11-24

    The fusion between anaplastic lymphoma kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) is a causative factor in a unique subset of patients with non-small cell lung carcinoma (NSCLC). Although the inhibitor crizotinib, as it blocks the kinase activity of the resulting EML4-ALK fusion protein, displays remarkable initial responses, a fraction of NSCLC cases eventually become resistant to crizotinib by acquiring mutations in the ALK domain or activating bypass pathways via EGFR, KIT, or KRAS. Cancer stem cell (CSC) theory provides a plausible explanation for acquisition of tumorigenesis and resistance. However, the question as to whether EML4-ALK-driven tumorigenesis is linked with the stem-like property and whether the stemness is an effective target in controlling EML4-ALK+ NSCLC including crizotinib-resistant NSCLC cells has not been addressed. Here, we report that stem-like properties stem from ALK activity in EML4-ALK+ NSCLC cells. Notably, treatment with rapamycin, a CSC targeting agent, attenuates stem-like phenotypes of the EML4-ALK+ cells, which increased capability of tumor formation and higher expression of stemness-associated molecules such as ALDH, NANOG, and OCT4. Importantly, combinational treatment with rapamycin and crizotinib leads to synergistic anti-tumor effects on EML4-ALK+ NSCLC cells as well as on those resistant to crizotinib. Thus, we provide a proof of principle that targeting stemness would be a novel strategy to control intractable EML4-ALK+ NSCLC.

  11. Vascular Injury Triggers Krüppel-Like Factor 6 (KLF6) Mobilization and Cooperation with Sp1 to Promote Endothelial Activation through Upregulation of the Activin Receptor-Like Kinase 1 (ALK1) Gene

    PubMed Central

    Garrido-Martín, Eva M.; Blanco, Francisco J.; Roquè, Mercé; Novensà, Laura; Tarocchi, Mirko; Lee, Ursula E.; Suzuki, Toru; Friedman, Scott L.; Botella, Luisa M.; Bernabéu, Carmelo

    2012-01-01

    Rationale Activin receptor-Like Kinase-1 (ALK1) is an endothelial TGF-β receptor involved in angiogenesis. ALK1 expression is high in the embryo vasculature, becoming less detectable in the quiescent endothelium of adult stages. However, ALK1 expression becomes rapidly increased after angiogenic stimuli such as vascular injury. Objective To characterize the molecular mechanisms underlying the regulation of ALK1 upon vascular injury. Methods and Results Alk1 becomes strongly upregulated in endothelial (EC) and vascular smooth muscle cells (vSMC) of mouse femoral arteries after wire-induced endothelial denudation. In vitro, denudation of monolayers of Human Umbilical Vein Endothelial Cells (HUVEC) also leads to an increase in ALK1. Interestingly, a key factor in tissue remodeling, Krüppel-like factor 6 (KLF6), translocates to the cell nucleus during wound healing, concomitantly with an increase in the ALK1 gene transcriptional rate. KLF6 knock down in HUVECs promotes ALK1 mRNA downregulation. Moreover, Klf6+/− mice have lower levels of Alk1 in their vasculature compared with their wild type siblings. Chromatin immunoprecipitation assays show that KLF6 interacts with ALK1 promoter in ECs, and this interaction is enhanced during wound healing. We demonstrate that KLF6 is transactivating ALK1 gene, and this transactivation occurs by a synergistic cooperative mechanism with Sp1. Finally, Alk1 levels in vSMCs are not directly upregulated in response to damage, but in response to soluble factors, such as IL-6, released from ECs after injury. Conclusions ALK1 is upregulated in ECs during vascular injury by a synergistic cooperative mechanism between KLF6 and Sp1, and in vSMCs by an EC-vSMC paracrine communication during vascular remodeling. PMID:23048070

  12. Crizotinib and testing for ALK.

    PubMed

    Shaw, Alice T; Solomon, Benjamin; Kenudson, Mari Mino

    2011-12-01

    Crizotinib was recently approved by the US FDA for the treatment of advanced non-small cell lung cancer (NSCLC) harboring the ALK (anaplastic lymphoma kinase) gene rearrangement. To ensure identification of patients most likely to benefit, the FDA approved crizotinib concurrently with a companion diagnostic test-the Vysis ALK Break Apart FISH Probe Kit. This kit was used in 1 of the 2 pivotal trials leading to the FDA approval of crizotinib and has become the gold standard for detecting ALK rearrangement in NSCLC. Although ALK FISH is clinically validated, the assay can be technically challenging and costly. Therefore, other diagnostic modalities are being explored, including immunohistochemistry (IHC) and reverse transcriptase-polymerase chain reaction. This article provides an overview of the diagnostic assays available for detecting ALK rearrangement. Each assay, including ALK FISH, has its strengths and weaknesses. Recent work with commercially available ALK antibodies suggests that IHC-based tests may represent a reliable and cost-effective screening strategy; however, large multicenter studies comparing IHC with FISH are needed to validate ALK IHC. While ALK FISH remains the current standard for diagnosing ALK positivity, large-scale screening of patients with newly diagnosed advanced NSCLC, as recommended by NCCN, may require development and validation of alternative screening strategies, such as combination IHC and FISH.

  13. Design, synthesis, and biological activity of urea derivatives as anaplastic lymphoma kinase inhibitors.

    PubMed

    af Gennäs, Gustav Boije; Mologni, Luca; Ahmed, Shaheen; Rajaratnam, Mohanathas; Marin, Oriano; Lindholm, Niko; Viltadi, Michela; Gambacorti-Passerini, Carlo; Scapozza, Leonardo; Yli-Kauhaluoma, Jari

    2011-09-05

    In anaplastic large-cell lymphomas, chromosomal translocations involving the kinase domain of anaplastic lymphoma kinase (ALK), generally fused to the 5' part of the nucleophosmin gene, produce highly oncogenic ALK fusion proteins that deregulate cell cycle, apoptosis, and differentiation in these cells. Other fusion oncoproteins involving ALK, such as echinoderm microtubule-associated protein-like 4-ALK, were recently found in patients with non-small-cell lung, breast, and colorectal cancers. Recent research has focused on the development of inhibitors for targeted therapy of these ALK-positive tumors. Because kinase inhibitors that target the inactive conformation are thought to be more specific than ATP-targeted inhibitors, we investigated the possibility of using two known inhibitors, doramapimod and sorafenib, which target inactive kinases, to design new urea derivatives as ALK inhibitors. We generated a homology model of ALK in its inactive conformation complexed with doramapimod or sorafenib in its active site. The results elucidated why doramapimod is a weak inhibitor and why sorafenib does not inhibit ALK. Virtual screening of commercially available compounds using the homology model of ALK yielded candidate inhibitors, which were tested using biochemical assays. Herein we present the design, synthesis, biological activity, and structure-activity relationships of a novel series of urea compounds as potent ALK inhibitors. Some compounds showed inhibition of purified ALK in the high nanomolar range and selective antiproliferative activity on ALK-positive cells.

  14. Anaplastic lymphoma kinase (ALK 1) staining and molecular analysis in inflammatory myofibroblastic tumours of the bladder: a preliminary clinicopathological study of nine cases and review of the literature.

    PubMed

    Freeman, Alex; Geddes, Nicola; Munson, Philippa; Joseph, Jean; Ramani, Pramila; Sandison, Ann; Fisher, Cyril; Parkinson, M Connie

    2004-07-01

    Inflammatory myofibroblastic tumours (IMFT) may arise at any anatomical site, including lung, soft tissues, retroperitoneum and bladder. Although morphologically similar, these lesions encompass a spectrum of entities with differing aetiology, ranging from reactive/regenerative proliferations to low-grade neoplasms with a risk of local recurrence, but no significant metastatic potential. Vesical IMFT usually presents as a polypoid mass with a pale firm cut surface and can be of considerable size, mimicking a malignant tumour clinically and radiologically. Its good outcome, however, warrants conservative surgical excision, emphasising the importance of identification and distinction from malignant tumours of the bladder that may require more radical surgery and/or adjuvant therapy. We conducted a preliminary retrospective, comparative immunocytochemical study of 20 bladder tumours, including nine IMFTs, five spindle cell (sarcomatoid) carcinomas, two rhabdomyosarcomas, two leiomyosarcomas and two neurofibromas. The results confirmed IMFT positivity for smooth muscle actin, desmin and cytokeratin in 78-89% cases, resulting in potential confusion with sarcomatoid carcinoma or leiomyosarcoma. In contrast, cytoplasmic anaplastic lymphoma kinase (ALK 1) staining was present in eight IMFT (89%), but was not seen in any other lesion examined. The ALK 1 staining was confirmed by fluorescence in situ hybridisation, with translocation of the ALK gene present in 15-60% tumour cells in four of six IMFT examined, but not in four cases of sarcomatoid carcinoma or three of leiomyosarcoma. In conclusion, ALK 1 staining may be of value in the distinction of vesical IMFT from morphologically similar entities, and often reflects ALK gene translocations in these lesions.

  15. Resensitization to Crizotinib by the Lorlatinib ALK Resistance Mutation L1198F.

    PubMed

    Shaw, Alice T; Friboulet, Luc; Leshchiner, Ignaty; Gainor, Justin F; Bergqvist, Simon; Brooun, Alexei; Burke, Benjamin J; Deng, Ya-Li; Liu, Wei; Dardaei, Leila; Frias, Rosa L; Schultz, Kate R; Logan, Jennifer; James, Leonard P; Smeal, Tod; Timofeevski, Sergei; Katayama, Ryohei; Iafrate, A John; Le, Long; McTigue, Michele; Getz, Gad; Johnson, Ted W; Engelman, Jeffrey A

    2016-01-07

    In a patient who had metastatic anaplastic lymphoma kinase (ALK)-rearranged lung cancer, resistance to crizotinib developed because of a mutation in the ALK kinase domain. This mutation is predicted to result in a substitution of cysteine by tyrosine at amino acid residue 1156 (C1156Y). Her tumor did not respond to a second-generation ALK inhibitor, but it did respond to lorlatinib (PF-06463922), a third-generation inhibitor. When her tumor relapsed, sequencing of the resistant tumor revealed an ALK L1198F mutation in addition to the C1156Y mutation. The L1198F substitution confers resistance to lorlatinib through steric interference with drug binding. However, L1198F paradoxically enhances binding to crizotinib, negating the effect of C1156Y and resensitizing resistant cancers to crizotinib. The patient received crizotinib again, and her cancer-related symptoms and liver failure resolved. (Funded by Pfizer and others; ClinicalTrials.gov number, NCT01970865.).

  16. Resensitization to Crizotinib by the Lorlatinib ALK Resistance Mutation L1198F

    PubMed Central

    Shaw, Alice T.; Friboulet, Luc; Leshchiner, Ignaty; Gainor, Justin F.; Bergqvist, Simon; Brooun, Alexei; Burke, Benjamin J.; Deng, Ya-Li; Liu, Wei; Dardaei, Leila; Frias, Rosa L.; Schultz, Kate R.; Logan, Jennifer; James, Leonard P.; Smeal, Tod; Timofeevski, Sergei; Katayama, Ryohei; Iafrate, A. John; Le, Long; McTigue, Michele; Getz, Gad

    2016-01-01

    Summary In a patient who had metastatic anaplastic lymphoma kinase (ALK)-rearranged lung cancer, resistance to crizotinib developed because of a mutation in the ALK kinase domain. This mutation is predicted to result in a substitution of cysteine by tyrosine at amino acid residue 1156 (C1156Y). Her tumor did not respond to a second-generation ALK inhibitor, but it did respond to lorlatinib (PF-06463922), a third-generation inhibitor. When her tumor relapsed, sequencing of the resistant tumor revealed an ALK L1198F mutation in addition to the C1156Y mutation. The L1198F substitution confers resistance to lorlatinib through steric interference with drug binding. However, L1198F paradoxically enhances binding to crizotinib, negating the effect of C1156Y and resensitizing resistant cancers to crizotinib. The patient received crizotinib again, and her cancer-related symptoms and liver failure resolved. PMID:26698910

  17. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK

    PubMed Central

    Katayama, Ryohei; Khan, Tahsin M.; Benes, Cyril; Lifshits, Eugene; Ebi, Hiromichi; Rivera, Victor M.; Shakespeare, William C.; Iafrate, A. John; Engelman, Jeffrey A.; Shaw, Alice T.

    2011-01-01

    The echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion oncogene represents a molecular target in a small subset of non-small cell lung cancers (NSCLCs). This fusion leads to constitutive ALK activation with potent transforming activity. In a pivotal phase 1 clinical trial, the ALK tyrosine kinase inhibitor (TKI) crizotinib (PF-02341066) demonstrated impressive antitumor activity in the majority of patients with NSCLC harboring ALK fusions. However, despite these remarkable initial responses, cancers eventually develop resistance to crizotinib, usually within 1 y, thereby limiting the potential clinical benefit. To determine how cancers acquire resistance to ALK inhibitors, we established a model of acquired resistance to crizotinib by exposing a highly sensitive EML4-ALK–positive NSCLC cell line to increasing doses of crizotinib until resistance emerged. We found that cells resistant to intermediate doses of crizotinib developed amplification of the EML4-ALK gene. Cells resistant to higher doses (1 μM) also developed a gatekeeper mutation, L1196M, within the kinase domain, rendering EML4-ALK insensitive to crizotinib. This gatekeeper mutation was readily detected using a unique and highly sensitive allele-specific PCR assay. Although crizotinib was ineffectual against EML4-ALK harboring the gatekeeper mutation, we observed that two structurally different ALK inhibitors, NVP-TAE684 and AP26113, were highly active against the resistant cancer cells in vitro and in vivo. Furthermore, these resistant cells remained highly sensitive to the Hsp90 inhibitor 17-AAG. Thus, we have developed a model of acquired resistance to ALK inhibitors and have shown that second-generation ALK TKIs or Hsp90 inhibitors are effective in treating crizotinib-resistant tumors harboring secondary gatekeeper mutations. PMID:21502504

  18. CRKL mediates EML4-ALK signaling and is a potential therapeutic target for ALK-rearranged lung adenocarcinoma

    PubMed Central

    Voeller, Donna; Gower, Arjan; Kim, In-Kyu; Zhang, Yu-Wen; Giaccone, Giuseppe

    2016-01-01

    Anaplastic lymphoma kinase (ALK) gene rearrangements are oncogenic drivers in a small subset of patients with non-small-cell lung cancer (NSCLC). The ALK inhibitors are highly effective in NSCLC patients harboring ALK rearrangements; however, most patients acquire resistance to the therapy following an initial response. Mechanisms of acquired resistance are complex. We used LC-MS/MS-based phosphotyrosine-peptide profiling in the EML4-ALK rearranged H3122 and H2228 cells treated with ALK inhibitors, to identify downstream effectors of ALK. We then used Western blot, siRNA experiments, cell proliferation, viability and migration assays to validate our findings. We identified CRKL as a novel downstream effector of ALK signaling. We demonstrated that CRKL tyrosine phosphorylation was repressed by pharmacological inhibition or small interfering RNA (siRNA) knockdown of ALK in the ALK-rearranged cells. More importantly, CRKL knockdown attenuated their cell proliferation, viability, and migration, but it had no effect on ALK phosphorylation and expression in these cells. Furthermore, CRKL tyrosine phosphorylation was inhibited by dasatinib (an inhibitor of ABL and SRC kinases), which in combination with the ALK inhibitor crizotinib displayed a synergistic inhibitory effect in vitro. In conclusion, our study suggests that CRKL is a key downstream effector of ALK, and combined inhibition of ALK and CRKL may represent an effective strategy for treating ALK-rearranged NSCLC patients. PMID:27078848

  19. Dickkopf-3 Upregulates VEGF in Cultured Human Endothelial Cells by Activating Activin Receptor-Like Kinase 1 (ALK1) Pathway

    PubMed Central

    Busceti, Carla L.; Marchitti, Simona; Bianchi, Franca; Di Pietro, Paola; Riozzi, Barbara; Stanzione, Rosita; Cannella, Milena; Battaglia, Giuseppe; Bruno, Valeria; Volpe, Massimo; Fornai, Francesco; Nicoletti, Ferdinando; Rubattu, Speranza

    2017-01-01

    Dkk-3 is a member of the dickkopf protein family of secreted inhibitors of the Wnt pathway, which has been shown to enhance angiogenesis. The mechanism underlying this effect is currently unknown. Here, we used cultured HUVECs to study the involvement of the TGF-β and VEGF on the angiogenic effect of Dkk-3. Addition of hrDkk-3 peptide (1 or 10 ng/ml) to HUVECs for 6 or 12 h enhanced the intracellular and extracellular VEGF protein levels, as assessed by RTPCR, immunoblotting, immunocytochemistry and ELISA. The increase in the extracellular VEGF levels was associated to the VEGFR2 activation. Pharmacological blockade of VEGFR2 abrogated Dkk-3-induced endothelial cell tubes formation, indicating that VEGF is a molecular player of the angiogenic effects of Dkk-3. Moreover, Dkk-3 enhanced Smad1/5/8 phosphorylation and recruited Smad4 to the VEGF gene promoter, suggesting that Dkk-3 activated ALK1 receptor leading to a transcriptional activation of VEGF. This mechanism was instrumental to the increased VEGF expression and endothelial cell tubes formation mediated by Dkk-3, because both effects were abolished by siRNA-mediated ALK1 knockdown. In summary, we have found that Dkk-3 activates ALK1 to stimulate VEGF production and induce angiogenesis in HUVECs. PMID:28352232

  20. Structure of the pseudokinase-kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition.

    PubMed

    Lupardus, Patrick J; Ultsch, Mark; Wallweber, Heidi; Bir Kohli, Pawan; Johnson, Adam R; Eigenbrot, Charles

    2014-06-03

    Janus kinases (JAKs) are receptor-associated multidomain tyrosine kinases that act downstream of many cytokines and interferons. JAK kinase activity is regulated by the adjacent pseudokinase domain via an unknown mechanism. Here, we report the 2.8-Å structure of the two-domain pseudokinase-kinase module from the JAK family member TYK2 in its autoinhibited form. We find that the pseudokinase and kinase interact near the kinase active site and that most reported mutations in cancer-associated JAK alleles cluster in or near this interface. Mutation of residues near the TYK2 interface that are analogous to those in cancer-associated JAK alleles, including the V617F and "exon 12" JAK2 mutations, results in increased kinase activity in vitro. These data indicate that JAK pseudokinases are autoinhibitory domains that hold the kinase domain inactive until receptor dimerization stimulates transition to an active state.

  1. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors

    PubMed Central

    Davare, Monika A.; Vellore, Nadeem A.; Wagner, Jacob P.; Eide, Christopher A.; Goodman, James R.; Drilon, Alexander; Deininger, Michael W.; O’Hare, Thomas; Druker, Brian J.

    2015-01-01

    Oncogenic ROS1 fusion proteins are molecular drivers in multiple malignancies, including a subset of non-small cell lung cancer (NSCLC). The phylogenetic proximity of the ROS1 and anaplastic lymphoma kinase (ALK) catalytic domains led to the clinical repurposing of the Food and Drug Administration (FDA)-approved ALK inhibitor crizotinib as a ROS1 inhibitor. Despite the antitumor activity of crizotinib observed in both ROS1- and ALK-rearranged NSCLC patients, resistance due to acquisition of ROS1 or ALK kinase domain mutations has been observed clinically, spurring the development of second-generation inhibitors. Here, we profile the sensitivity and selectivity of seven ROS1 and/or ALK inhibitors at various levels of clinical development. In contrast to crizotinib’s dual ROS1/ALK activity, cabozantinib (XL-184) and its structural analog foretinib (XL-880) demonstrate a striking selectivity for ROS1 over ALK. Molecular dynamics simulation studies reveal structural features that distinguish the ROS1 and ALK kinase domains and contribute to differences in binding site and kinase selectivity of the inhibitors tested. Cell-based resistance profiling studies demonstrate that the ROS1-selective inhibitors retain efficacy against the recently reported CD74-ROS1G2032R mutant whereas the dual ROS1/ALK inhibitors are ineffective. Taken together, inhibitor profiling and stringent characterization of the structure–function differences between the ROS1 and ALK kinase domains will facilitate future rational drug design for ROS1- and ALK-driven NSCLC and other malignancies. PMID:26372962

  2. Structure of the kinase domain of Gilgamesh from Drosophila melanogaster.

    PubMed

    Han, Ni; Chen, CuiCui; Shi, Zhubing; Cheng, Dianlin

    2014-04-01

    The CK1 family kinases regulate multiple cellular aspects and play important roles in Wnt/Wingless and Hedgehog signalling. The kinase domain of Drosophila Gilgamesh isoform I (Gilgamesh-I), a homologue of human CK1-γ, was purified and crystallized. Crystals of methylated Gilgamesh-I kinase domain with a D210A mutation diffracted to 2.85 Å resolution and belonged to space group P43212, with unit-cell parameters a = b = 52.025, c = 291.727 Å. The structure of Gilgamesh-I kinase domain, which was determined by molecular replacement, has conserved catalytic elements and an active conformation. Structural comparison indicates that an extended loop between the α1 helix and the β4 strand exists in the Gilgamesh-I kinase domain. This extended loop may regulate the activity and function of Gilgamesh-I.

  3. Structure of the kinase domain of Gilgamesh from Drosophila melanogaster

    PubMed Central

    Han, Ni; Chen, CuiCui; Shi, Zhubing; Cheng, Dianlin

    2014-01-01

    The CK1 family kinases regulate multiple cellular aspects and play important roles in Wnt/Wingless and Hedgehog signalling. The kinase domain of Drosophila Gilgamesh isoform I (Gilgamesh-I), a homologue of human CK1-γ, was purified and crystallized. Crystals of methylated Gilgamesh-I kinase domain with a D210A mutation diffracted to 2.85 Å resolution and belonged to space group P43212, with unit-cell parameters a = b = 52.025, c = 291.727 Å. The structure of Gilgamesh-I kinase domain, which was determined by molecular replacement, has conserved catalytic elements and an active conformation. Structural comparison indicates that an extended loop between the α1 helix and the β4 strand exists in the Gilgamesh-I kinase domain. This extended loop may regulate the activity and function of Gilgamesh-I. PMID:24699734

  4. Molecular Mechanisms of Resistance to First- and Second-Generation ALK Inhibitors in ALK-Rearranged Lung Cancer.

    PubMed

    Gainor, Justin F; Dardaei, Leila; Yoda, Satoshi; Friboulet, Luc; Leshchiner, Ignaty; Katayama, Ryohei; Dagogo-Jack, Ibiayi; Gadgeel, Shirish; Schultz, Katherine; Singh, Manrose; Chin, Emily; Parks, Melissa; Lee, Dana; DiCecca, Richard H; Lockerman, Elizabeth; Huynh, Tiffany; Logan, Jennifer; Ritterhouse, Lauren L; Le, Long P; Muniappan, Ashok; Digumarthy, Subba; Channick, Colleen; Keyes, Colleen; Getz, Gad; Dias-Santagata, Dora; Heist, Rebecca S; Lennerz, Jochen; Sequist, Lecia V; Benes, Cyril H; Iafrate, A John; Mino-Kenudson, Mari; Engelman, Jeffrey A; Shaw, Alice T

    2016-10-01

    Advanced, anaplastic lymphoma kinase (ALK)-positive lung cancer is currently treated with the first-generation ALK inhibitor crizotinib followed by more potent, second-generation ALK inhibitors (e.g., ceritinib and alectinib) upon progression. Second-generation inhibitors are generally effective even in the absence of crizotinib-resistant ALK mutations, likely reflecting incomplete inhibition of ALK by crizotinib in many cases. Herein, we analyzed 103 repeat biopsies from ALK-positive patients progressing on various ALK inhibitors. We find that each ALK inhibitor is associated with a distinct spectrum of ALK resistance mutations and that the frequency of one mutation, ALK(G1202R), increases significantly after treatment with second-generation agents. To investigate strategies to overcome resistance to second-generation ALK inhibitors, we examine the activity of the third-generation ALK inhibitor lorlatinib in a series of ceritinib-resistant, patient-derived cell lines, and observe that the presence of ALK resistance mutations is highly predictive for sensitivity to lorlatinib, whereas those cell lines without ALK mutations are resistant. Secondary ALK mutations are a common resistance mechanism to second-generation ALK inhibitors and predict for sensitivity to the third-generation ALK inhibitor lorlatinib. These findings highlight the importance of repeat biopsies and genotyping following disease progression on targeted therapies, particularly second-generation ALK inhibitors. Cancer Discov; 6(10); 1118-33. ©2016 AACRSee related commentary by Qiao and Lovly, p. 1084This article is highlighted in the In This Issue feature, p. 1069. ©2016 American Association for Cancer Research.

  5. Rationale for co-targeting IGF-1R and ALK in ALK fusion positive lung cancer

    PubMed Central

    Lovly, Christine M.; McDonald, Nerina T.; Chen, Heidi; Ortiz-Cuaran, Sandra; Heukamp, Lukas C.; Yan, Yingjun; Florin, Alexandra; Ozretić, Luka; Lim, Diana; Wang, Lu; Chen, Zhao; Chen, Xi; Lu, Pengcheng; Paik, Paul K.; Shen, Ronglai; Jin, Hailing; Buettner, Reinhard; Ansén, Sascha; Perner, Sven; Brockmann, Michael; Bos, Marc; Wolf, Jürgen; Gardizi, Masyar; Wright, Gavin M.; Solomon, Benjamin; Russell, Prudence A.; Rogers, Toni-Maree; Suehara, Yoshiyuki; Red-Brewer, Monica; Tieu, Rudy; de Stanchina, Elisa; Wang, Qingguo; Zhao, Zhongming; Johnson, David H.; Horn, Leora; Wong, Kwok-Kin; Thomas, Roman K.; Ladanyi, Marc; Pao, William

    2014-01-01

    The ALK tyrosine kinase inhibitor (TKI), crizotinib, shows significant activity in patients whose lung cancers harbor ALK fusions but its efficacy is limited by variable primary responses and acquired resistance. In work arising from the intriguing clinical observation of a patient with ALK fusion+ lung cancer who had an ‘exceptional response’ to an IGF-1R antibody, we define a therapeutic synergism between ALK and IGF-1R inhibitors. Similar to IGF-1R, ALK fusion proteins bind to the adaptor, IRS-1, and IRS-1 knockdown enhances the anti-tumor effects of ALK inhibitors. In models of ALK TKI resistance, the IGF-1R pathway is activated, and combined ALK/IGF-1R inhibition improves therapeutic efficacy. Consistent with this finding, IGF-1R/IRS-1 levels are increased in biopsy samples from patients progressing on crizotinib therapy. Collectively, these data support a role for the IGF-1R/IRS-1 pathway in both ALK TKI-sensitive and TKI-resistant states and provide biological rationale for further clinical development of dual ALK/IGF-1R inhibitors. PMID:25173427

  6. Equivocal ALK fluorescence in-situ hybridization (FISH) cases may benefit from ancillary ALK FISH probe testing.

    PubMed

    Selinger, Christina; Cooper, Wendy; Lum, Trina; McNeil, Catriona; Morey, Adrienne; Waring, Paul; Amanuel, Benhur; Millward, Michael; Peverall, Joanne; Van Vliet, Chris; Christie, Michael; Tran, Yen; Diakos, Connie; Pavlakis, Nick; Gill, Anthony J; O'Toole, Sandra

    2015-11-01

    Accurate assessment of anaplastic lymphoma kinase (ALK) gene rearrangement in non-small-cell lung cancers (NSCLCs) is critical to identify patients who are likely to respond to crizotinib. The aim of this study was to evaluate the ALK/EML4 TriCheck FISH probe in a series of NSCLCs enriched for tumours with equivocal ALK status. ALK FISH was prospectively performed on 45 NSCLCs with the ALK/EML4 TriCheck probe (ZytoVision) and the Vysis ALK break-apart probe (Abbott Molecular). ALK immunohistochemistry was performed with 5A4 and D5F3 antibodies. Fourteen cases had equivocal ALK status, based on borderline or focal FISH positivity, an atypical FISH pattern, or discrepancy between ALK FISH and immunohistochemistry. Four of the 14 equivocal cases showed discordance between the two FISH probes. All other cases were concordant. The TriCheck probe showed that, of 31 unequivocal cases, 15 were ALK-rearranged, and 60% of these had EML4 as the translocation partner. Within the group of 14 equivocal cases, 12 showed rearrangement with the Tricheck probe; only one of these showed EML4 rearrangement. Of the six equivocal cases that received crizotinib, four showed clinical benefit. The ALK/EML4 TriCheck FISH probe may be useful for the detection of ALK rearrangements, especially in borderline or atypical cases, where an additional unique ALK FISH probe may provide further confirmation of rearrangement. © 2015 John Wiley & Sons Ltd.

  7. Alk1 and Alk2 are two new cell cycle-regulated haspin-like proteins in budding yeast.

    PubMed

    Nespoli, Alessandro; Vercillo, Raffaella; di Nola, Lisa; Diani, Laura; Giannattasio, Michele; Plevani, Paolo; Muzi-Falconi, Marco

    2006-07-01

    Haspin is a protein kinase identified in mouse and human cells, and genes coding for haspin-like proteins are present in virtually all eukaryotic genomes sequenced so far. Two haspin homologues, called Alk1 and Alk2, are present in the yeast Saccharomyces cerevisiae. Both Alk1 and Alk2 exhibit a weak auto-kinase activity in vitro, are phosphoproteins in vivo and are hyperphosphorylated in response to DNA damage. The amount and modification of the two proteins is greatly regulated during the cell cycle. In fact, Alk1 and Alk2 levels peak in mitosis and late-S/G2, respectively, and phosphorylation of both proteins is maximal in mitosis. Control of protein stability plays a major role in Alk2 regulation. The half-life of Alk2 is particularly short in G1; mutagenesis and genetic analysis indicate that its degradation is controlled by the APC pathway. Overexpression of ALK2, but not of ALK1, causes a mitotic arrest, which is correlated to the kinase activity of the protein. This finding, together with its cell cycle regulation, suggests a role for Alk2 in the control of mitosis.

  8. Crystal structure of domain-swapped STE20 OSR1 kinase domain

    SciTech Connect

    Lee, Seung-Jae; Cobb, Melanie H.; Goldsmith, Elizabeth J.

    2009-09-15

    OSR1 (oxidative stress-responsive-1) and SPAK (Ste20/Sps1-related proline/alanine-rich kinase) belong to the GCK-VI subfamily of Ste20 group kinases. OSR1 and SPAK are key regulators of NKCCs (Na{sup +}/K{sup +}/2Cl{sup -} cotransporters) and activated by WNK family members (with-no-lysine kinase), mutations of which are known to cause Gordon syndrome, an autosomal dominant form of inherited hypertension. The crystal structure of OSR1 kinase domain has been solved at 2.25 {angstrom}. OSR1 forms a domain-swapped dimer in an inactive conformation, in which P+1 loop and {alpha}EF helix are swapped between dimer-related monomers. Structural alignment with nonswapped Ste20 TAO2 kinase indicates that the integrity of chemical interactions in the kinase domain is well preserved in the domain-swapped interfaces. The OSR1 kinase domain has now been added to a growing list of domain-swapped protein kinases recently reported, suggesting that the domain-swapping event provides an additional layer of complexity in regulating protein kinase activity.

  9. Conformational features and binding affinities to Cripto, ALK7 and ALK4 of Nodal synthetic fragments.

    PubMed

    Calvanese, Luisa; Sandomenico, Annamaria; Caporale, Andrea; Focà, Annalia; Focà, Giuseppina; D'Auria, Gabriella; Falcigno, Lucia; Ruvo, Menotti

    2015-04-01

    Nodal, a member of the TGF-β superfamily, is a potent embryonic morphogen also implicated in tumor progression. As for other TGF-βs, it triggers the signaling functions through the interaction with the extracellular domains of type I and type II serine/threonine kinase receptors and with the co-receptor Cripto. Recently, we reported the molecular models of Nodal in complex with its type I receptors (ALK4 and ALK7) as well as with Cripto, as obtained by homology modeling and docking simulations. From such models, potential binding epitopes have been identified. To validate such hypotheses, a series of mutated Nodal fragments have been synthesized. These peptide analogs encompass residues 44-67 of the Nodal protein, corresponding to the pre-helix loop and the H3 helix, and reproduce the wild-type sequence or bear some modifications to evaluate the hot-spot role of modified residues in the receptor binding. Here, we show the structural characterization in solution by CD and NMR of the Nodal peptides and the measurement of binding affinity toward Cripto by surface plasmon resonance. Data collected by both conformational analyses and binding measurements suggest a role for Y58 of Nodal in the recognition with Cripto and confirm that previously reported for E49 and E50. Surface plasmon resonance binding assays with recombinant proteins show that Nodal interacts in vitro also with ALK7 and ALK4 and preliminary data, generated using the Nodal synthetic fragments, suggest that Y58 of Nodal may also be involved in the recognition with these protein partners.

  10. Assignment of transforming growth factor beta1 and beta3 and a third new ligand to the type I receptor ALK-1.

    PubMed

    Lux, A; Attisano, L; Marchuk, D A

    1999-04-09

    Germ line mutations in one of two distinct genes, endoglin or ALK-1, cause hereditary hemorrhagic telangiectasia (HHT), an autosomal dominant disorder of localized angiodysplasia. Both genes encode endothelial cell receptors for the transforming growth factor beta (TGF-beta) ligand superfamily. Endoglin has homology to the type III receptor, betaglycan, although its exact role in TGF-beta signaling is unclear. Activin receptor-like kinase 1 (ALK-1) has homology to the type I receptor family, but its ligand and corresponding type II receptor are unknown. In order to identify the ligand and type II receptor for ALK-1 and to investigate the role of endoglin in ALK-1 signaling, we devised a chimeric receptor signaling assay by exchanging the kinase domain of ALK-1 with either the TGF-beta type I receptor or the activin type IB receptor, both of which can activate an inducible PAI-1 promoter. We show that TGF-beta1 and TGF-beta3, as well as a third unknown ligand present in serum, can activate chimeric ALK-1. HHT-associated missense mutations in the ALK-1 extracellular domain abrogate signaling. The ALK-1/ligand interaction is mediated by the type II TGF-beta receptor for TGF-beta and most likely through the activin type II or type IIB receptors for the serum ligand. Endoglin is a bifunctional receptor partner since it can bind to ALK-1 as well as to type I TGF-beta receptor. These data suggest that HHT pathogenesis involves disruption of a complex network of positive and negative angiogenic factors, involving TGF-beta, a new unknown ligand, and their corresponding receptors.

  11. Polyomavirus middle-T antigen associates with the kinase domain of Src-related tyrosine kinases.

    PubMed Central

    Dunant, N M; Senften, M; Ballmer-Hofer, K

    1996-01-01

    Middle-T antigen of mouse polyomavirus, an oncogenic DNA virus, associates with and activates the cellular tyrosine kinases c-Src, c-Yes, and Fyn. This interaction is essential for polyomavirus-mediated transformation of cells in culture and tumor formation in animals. To determine the domain of c-Src directing association with middle-T, mutant c-Src proteins lacking the amino-terminal unique domain and the myristylation signal, the SH2 domain, the SH3 domain, or all three of these domains were coexpressed with middle-T in NIH 3T3 cells. All mutants were found to associate with middle-T, demonstrating that the kinase domain of c-Src, including the carboxy-terminal regulatory tail, is sufficient for association with middle-T. Moreover, we found that Hck, another member of the Src kinase family, does not bind middle-T, while chimeric kinases consisting of the amino-terminal domains of c-Src fused to the kinase domain of Hck or the amino-terminal domains of Hck fused to the kinase domain of c-Src associated with middle-T. Hck mutated at its carboxy-terminal regulatory residue, tyrosine 501, was also found to associate with middle-T. These results suggest that in Hck, the postulated intramolecular interaction between the carboxy-terminal regulatory tyrosine and the SH2 domain prevents association with middle-T. This intramolecular interaction apparently also limits the ability of c-Src to associate with middle-T, since removal of the SH2 or SH3 domain increases the efficiency with which middle-T binds c-Src. PMID:8627648

  12. The ErbB Kinase Domain: Structural Perspectives into Kinase Activation and Inhibition

    PubMed Central

    Bose, Ron; Zhang, Xuewu

    2009-01-01

    Epidermal growth factor receptor (EGFR) and its family members, ErbB2, ErB3 and ErB4, are receptor tyrosine kinases which send signals into the cell to regulate many critical processes including development, tissue homeostasis, and tumorigenesis. Central to the signaling of these receptors is their intracellular kinase domain, which is activated by ligand-induced dimerization of the receptor and phosphorylates several tyrosine residues in the C-terminal tail. The phosphorylated tail then recruits other signaling molecules and relays the signal to downstream pathways. A model of the autoinhibition, activation and feedback inhibition mechanisms for the ErbB kinase domain has emerged from a number of recent structural studies. Meanwhile, recent clinical studies have revealed the relationship between specific ErbB kinase mutations and the responsiveness to kinase inhibitor drugs. We will review these regulation mechanisms of the ErbB kinase domain, and discuss the binding specificity of kinase inhibitors and the effects of kinase domain mutations found in cancer patients from a structural perspective. PMID:18761339

  13. A structural genomics analysis of histidine kinase sensor domains

    NASA Astrophysics Data System (ADS)

    Cheung, Jonah

    2005-11-01

    Histidine kinase sensors are a part of a two-component system of protein signaling in prokaryotes and lower eukaryotes that relay an external environmental signal to an adaptive internal cellular response. Signal transduction occurs via phosphotransfer between a sensor protein and a response regulator which interact in tandem. The sensor is usually a transmembrane protein that contains a conserved cytoplasmic histidine kinase transmitter domain and a modular periplasmic sensor domain. The response regulator is cytoplasmic protein that contains a receiver domain that interacts with the histidine kinase, and an output domain that interacts with regulators of transcription or chemotaxis. My work focuses on the X-ray structure determination of a variety of bacterial sensor domains, based on a structural genomics analysis of the entire sensor domain family. Structures of the NarX, DcuS, LisK, and DctB sensor domains have been solved to atomic resolution, some in both ligand-bound and ligand-free states. Two distinct structural folds have been revealed---all-alpha helical and mixed alpha-beta. An analysis of the structures reveals a possible mechanism of transmembrane signaling in histidine kinase sensors as a sliding-piston motion between transmembrane helices. Although there is great diversity in ligand binding, there appears to be a small number of distinct sensor domain folds for which structural representatives of two have been solved. A final synthesis of the structural information with a comprehensive bio-informatics analysis of all histidine kinase sensor domain sequences allows fold prediction for over 400 sensor domains, in a step towards mapping the entire structural landscape of this protein family.

  14. ALK F1174V mutation confers sensitivity while ALK I1171 mutation confers resistance to alectinib. The importance of serial biopsy post progression.

    PubMed

    Ou, Sai-Hong; Milliken, Jeffrey C; Azada, Michele C; Miller, Vincent A; Ali, Siraj M; Klempner, Samuel J

    2016-01-01

    Many acquired resistant mutations to the anaplastic lymphoma kinase (ALK) gene have been identified during treatment of ALK-rearranged non-small cell lung cancer (NSCLC) patients with crizotinib, ceritinib, and alectinib. These various acquired resistant ALK mutations confer differential sensitivities to various ALK inhibitors and may provide guidance on how to sequence the use of many of the second generation ALK inhibitors. We described a patient who developed an acquired ALK F1174V resistant mutation on progression from crizotinib that responded to alectinib for 18 months but then developed an acquired ALK I1171S mutation to alectinib. Both tumor samples had essentially the same genomic profile by comprehensive genomic profiling otherwise. This is the first patient report that demonstrates ALK F1174V mutation is sensitive to alectinib and further confirms missense acquired ALK I1171 mutation is resistant to alectinib. Sequential tumor re-biopsy for comprehensive genomic profiling (CGP) is important to appreciate the selective pressure during treatment with various ALK inhibitors underpinning the evolution of the disease course of ALK+NSCLC patients while on treatment with the various ALK inhibitors. This approach will likely help inform the optimal sequencing strategy as more ALK inhibitors become available. This case report also validates the importance of developing structurally distinct ALK inhibitors for clinical use to overcome non-cross resistant ALK mutations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Cost-effectiveness of ceritinib in patients previously treated with crizotinib in anaplastic lymphoma kinase positive (ALK+) non-small cell lung cancer in Canada.

    PubMed

    Hurry, Manjusha; Zhou, Zheng-Yi; Zhang, Jie; Zhang, Chenxue; Fan, Liangyi; Rebeira, Mayvis; Xie, Jipan

    2016-10-01

    To assess the cost-effectiveness of ceritinib vs alternatives in patients who discontinue treatment with crizotinib in anaplastic lymphoma kinase-positive (ALK+) non-small cell lung cancer (NSCLC) from a Canadian public healthcare perspective. A partitioned survival model with three health states (stable, progressive, and death) was developed. Comparators were chosen based on reported utilization from a retrospective Canadian chart study; comparators were pemetrexed, best supportive care (BSC), and historical control (HC). HC comprised of all treatment alternatives reported. Progression-free survival and overall survival for ceritinib were estimated using data reported from single-arm clinical trials (ASCEND-1 [NCT01283516] and ASCEND-2 [NCT01685060]). Survival data for comparators were obtained from published clinical trials in a NSCLC population and from a Canadian retrospective chart study. Parametric models were used to extrapolate outcomes beyond the trial period. Drug acquisition, administration, resource use, and adverse event (AE) costs were obtained from databases. Utilities for health states and disutilities for AEs based on EQ-5D were derived from literature. Incremental costs per quality-adjusted life year (QALY) gained were estimated. Univariate and probabilistic sensitivity analyses were performed. Over 4 years, ceritinib was associated with 0.86 QALYs and total direct costs of $89,740 for the post-ALK population. The incremental cost-effectiveness ratio (ICER) was $149,117 comparing ceritinib vs BSC, $80,100 vs pemetrexed, and $104,436 vs HC. Additional scenarios included comparison to docetaxel with an ICER of $149,780 and using utility scores reported from PROFILE 1007, with a reported ICER ranging from $67,311 vs pemetrexed to $119,926 vs BSC. Due to limitations in clinical efficacy input, extensive sensitivity analyses were carried out whereby results remained consistent with the base-case findings. Based on the willingness-to-pay threshold for

  16. Myosin 3A Kinase Activity Is Regulated by Phosphorylation of the Kinase Domain Activation Loop*

    PubMed Central

    Quintero, Omar A.; Unrath, William C.; Stevens, Stanley M.; Manor, Uri; Kachar, Bechara; Yengo, Christopher M.

    2013-01-01

    Class III myosins are unique members of the myosin superfamily in that they contain both a motor and kinase domain. We have found that motor activity is decreased by autophosphorylation, although little is known about the regulation of the kinase domain. We demonstrate by mass spectrometry that Thr-178 and Thr-184 in the kinase domain activation loop and two threonines in the loop 2 region of the motor domain are autophosphorylated (Thr-908 and Thr-919). The kinase activity of MYO3A 2IQ with the phosphomimic (T184E) or phosphoblock (T184A) mutations demonstrates that kinase activity is reduced 30-fold as a result of the T184A mutation, although the Thr-178 site only had a minor impact on kinase activity. Interestingly, the actin-activated ATPase activity of MYO3A 2IQ is slightly reduced as a result of the T178A and T184A mutations suggesting coupling between motor and kinase domains. Full-length GFP-tagged T184A and T184E MYO3A constructs transfected into COS7 cells do not disrupt the ability of MYO3A to localize to filopodia structures. In addition, we demonstrate that T184E MYO3A reduces filopodia elongation in the presence of espin-1, whereas T184A enhances filopodia elongation in a similar fashion to kinase-dead MYO3A. Our results suggest that as MYO3A accumulates at the tips of actin protrusions, autophosphorylation of Thr-184 enhances kinase activity resulting in phosphorylation of the MYO3A motor and reducing motor activity. The differential regulation of the kinase and motor activities allows for MYO3A to precisely self-regulate its concentration in the actin bundle-based structures of cells. PMID:24214986

  17. Activity of second-generation ALK inhibitors against crizotinib-resistant mutants in an NPM-ALK model compared to EML4-ALK

    PubMed Central

    Fontana, Diletta; Ceccon, Monica; Gambacorti-Passerini, Carlo; Mologni, Luca

    2015-01-01

    Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor involved in both solid and hematological tumors. About 80% of ALK-positive anaplastic large-cell lymphoma (ALCL) cases are characterized by the t(2;5)(p23;q35) translocation, encoding for the aberrant fusion protein nucleophosmin (NPM)-ALK, whereas 5% of non-small-cell lung cancer (NSCLC) patients carry the inv(2)(p21;p23) rearrangement, encoding for the echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion. The ALK/c-MET/ROS inhibitor crizotinib successfully improved the treatment of ALK-driven diseases. However, several cases of resistance appeared in NSCLC patients, and ALK amino acid substitutions were identified as a leading cause of resistance to crizotinib. Second-generation ALK inhibitors have been developed in order to overcome crizotinib resistance. In this work, we profiled in vitro the activity of crizotinib, AP26113, ASP3026, alectinib, and ceritinib against six mutated forms of ALK associated with clinical resistance to crizotinib (C1156Y, L1196M, L1152R, G1202R, G1269A, and S1206Y) and provide a classification of mutants according to their level of sensitivity/resistance to the drugs. Since the biological activity of ALK mutations extends beyond the specific type of fusion, both NPM-ALK- and EML4-ALK-positive cellular models were used. Our data revealed that most mutants may be targeted by using different inhibitors. One relevant exception is represented by the G1202R substitution, which was highly resistant to all drugs (>10-fold increased IC50 compared to wild type) and may represent the most challenging mutation to overcome. These results provide a prediction of cross-resistance of known crizotinib-resistant mutations against all second-generation tyrosine kinase inhibitors (TKIs) clinically available, and therefore could be a useful tool to help clinicians in the management of crizotinib-resistance cases. PMID:25727400

  18. Discovery of a series of 2-(1H-pyrazol-1-yl)pyridines as ALK5 inhibitors with potential utility in the prevention of dermal scarring.

    PubMed

    Boys, Mark L; Bian, Feng; Kramer, James B; Chio, Christopher L; Ren, Xiao-Dan; Chen, Huifen; Barrett, Stephen D; Sexton, Karen E; Iula, Donna M; Filzen, Gary F; Nguyen, Maria N; Angell, Paul; Downs, Victoria L; Wang, Zhi; Raheja, Neil; Ellsworth, Edmund L; Fakhoury, Stephen; Bratton, Larry D; Keller, Paul R; Gowan, Richard; Drummond, Elena M; Maiti, Samarendra N; Hena, Mostofa A; Lu, Leroy; McConnell, Patrick; Knafels, John D; Thanabal, Venkataraman; Sun, Fang; Alessi, Diane; McCarthy, Ann; Zhang, Erli; Finzel, Barry C; Patel, Sneha; Ciotti, Susan M; Eisma, Rone; Payne, N A; Gilbertsen, Richard B; Kostlan, Catherine R; Pocalyko, David J; Lala, Deepak S

    2012-05-15

    A series of 2-(1H-pyrazol-1-yl)pyridines are described as inhibitors of ALK5 (TGFβ receptor I kinase). Modeling compounds in the ALK5 kinase domain enabled some optimization of potency via substitutions on the pyrazole core. One of these compounds PF-03671148 gave a dose dependent reduction in TGFβ induced fibrotic gene expression in human fibroblasts. A similar reduction in fibrotic gene expression was observed when PF-03671148 was applied topically in a rat wound repair model. Thus these compounds have potential utility for the prevention of dermal scarring. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Rationale for co-targeting IGF-1R and ALK in ALK fusion-positive lung cancer.

    PubMed

    Lovly, Christine M; McDonald, Nerina T; Chen, Heidi; Ortiz-Cuaran, Sandra; Heukamp, Lukas C; Yan, Yingjun; Florin, Alexandra; Ozretić, Luka; Lim, Diana; Wang, Lu; Chen, Zhao; Chen, Xi; Lu, Pengcheng; Paik, Paul K; Shen, Ronglai; Jin, Hailing; Buettner, Reinhard; Ansén, Sascha; Perner, Sven; Brockmann, Michael; Bos, Marc; Wolf, Jürgen; Gardizi, Masyar; Wright, Gavin M; Solomon, Benjamin; Russell, Prudence A; Rogers, Toni-Maree; Suehara, Yoshiyuki; Red-Brewer, Monica; Tieu, Rudy; de Stanchina, Elisa; Wang, Qingguo; Zhao, Zhongming; Johnson, David H; Horn, Leora; Wong, Kwok-Kin; Thomas, Roman K; Ladanyi, Marc; Pao, William

    2014-09-01

    Crizotinib, a selective tyrosine kinase inhibitor (TKI), shows marked activity in patients whose lung cancers harbor fusions in the gene encoding anaplastic lymphoma receptor tyrosine kinase (ALK), but its efficacy is limited by variable primary responses and acquired resistance. In work arising from the clinical observation of a patient with ALK fusion-positive lung cancer who had an exceptional response to an insulin-like growth factor 1 receptor (IGF-1R)-specific antibody, we define a therapeutic synergism between ALK and IGF-1R inhibitors. Similar to IGF-1R, ALK fusion proteins bind to the adaptor insulin receptor substrate 1 (IRS-1), and IRS-1 knockdown enhances the antitumor effects of ALK inhibitors. In models of ALK TKI resistance, the IGF-1R pathway is activated, and combined ALK and IGF-1R inhibition improves therapeutic efficacy. Consistent with this finding, the levels of IGF-1R and IRS-1 are increased in biopsy samples from patients progressing on crizotinib monotherapy. Collectively these data support a role for the IGF-1R-IRS-1 pathway in both ALK TKI-sensitive and ALK TKI-resistant states and provide a biological rationale for further clinical development of dual ALK and IGF-1R inhibitors.

  20. Phosphorylation of unique domains of Src family kinases

    PubMed Central

    Amata, Irene; Maffei, Mariano; Pons, Miquel

    2014-01-01

    Members of the Src family of kinases (SFKs) are non-receptor tyrosine kinases involved in numerous signal transduction pathways. The catalytic, SH3 and SH2 domains are attached to the membrane-anchoring SH4 domain through the intrinsically disordered “Unique” domains, which exhibit strong sequence divergence among SFK members. In the last decade, structural and biochemical studies have begun to uncover the crucial role of the Unique domain in the regulation of SFK activity. This mini-review discusses what is known about the phosphorylation events taking place on the SFK Unique domains, and their biological relevance. The modulation by phosphorylation of biologically relevant inter- and intra- molecular interactions of Src, as well as the existence of complex phosphorylation/dephosphorylation patterns observed for the Unique domain of Src, reinforces the important functional role of the Unique domain in the regulation mechanisms of the Src kinases and, in a wider context, of intrinsically disordered regions in cellular processes. PMID:25071818

  1. Activated type I TGFbeta receptor (Alk5) kinase confers enhancedsurvival to mammary epithelial cells and accelerates mammary tumorprogression

    SciTech Connect

    Muraoka-Cook, Rebecca S.; Shin, Incheol; Yi, Jae Youn; Easterly,Evangeline; Barcellos-Hoff, Mary Helen; Yingling, Jonathan M.; Zent, Roy; Arteaga, Carlos L.

    2005-01-02

    The transforming growth factor-betas (TGF{beta}s) are members of a large superfamily of pleiotropic cytokines that also includes the activins and the bone morphogenetic proteins (BMPs). Members of the TGF{beta} family regulate complex physiological processes such cell proliferation, differentiation, adhesion, cell-cell and cell-matrix interactions, motility, and cell death, among others (Massague, 1998). Dysregulation of TGF{beta} signaling contributes to several pathological processes including cancer, fibrosis, and auto-immune disorders (Massague et al., 2000). The TGF{beta}s elicit their biological effects by binding to type II and type I transmembrane receptor serine-threonine kinases (T{beta}RII and T{beta}RI) which, in turn, phosphorylated Smad 2 and Smad 3. Phosphorylated Smad 2/3 associate with Smad 4 and, as a heteromeric complex, translocate to the nucleus where they regulate gene transcription. The inhibitory Smad7 down regulates TGF{beta} signaling by binding to activated T{beta}RI and interfering with its ability to phosphorylate Smad 2/3 (Derynck and Zhang, 2003; Shi and Massague, 2003). Signaling is also regulated by Smad proteolysis. TGF{beta} receptor-mediated activation results in multi-ubiquitination of Smad 2 in the nucleus and subsequent degradation of Smad 2 by the proteasome (Lo and Massague, 1999). Activation of TGF{beta} receptors also induces mobilization of a Smad 7-Smurf complex from the nucleus to the cytoplasm; this complex recognizes the activated receptors and mediates their ubiquitination and internalization via caveolin-rich vesicles, leading to termination of TGF{beta} signaling (Di Guglielmo et al., 2003). Other signal transducers/pathways have been implicated in TGF{beta} actions. These include the extracellular signal-regulated kinase (Erk), c-Jun N-terminal kinase (Jnk), p38 mitogen-activated protein kinase (MAPK), protein phosphatase PP2A, phosphatidylinositol-3 kinase (PI3K), and the family of Rho GTPases [reviewed in

  2. ALK is a MYCN target gene and regulates cell migration and invasion in neuroblastoma

    PubMed Central

    Hasan, Md. Kamrul; Nafady, Asmaa; Takatori, Atsushi; Kishida, Satoshi; Ohira, Miki; Suenaga, Yusuke; Hossain, Shamim; Akter, Jesmin; Ogura, Atsushi; Nakamura, Yohko; Kadomatsu, Kenji; Nakagawara, Akira

    2013-01-01

    Human anaplastic lymphoma kinase (ALK) has been identified as an oncogene that is mutated or amplified in NBLs. To obtain a better understanding of the molecular events associated with ALK in the pathogenesis of NBL, it is necessary to clarify how ALK gene contributes to NBL progression. In the present study, we found that ALK expression was significantly high in NBL clinical samples with amplified MYCN (n = 126, P < 0.01) and in developing tumors of MYCN-transgenic mice. Indeed, promoter analysis revealed that ALK is a direct transcriptional target of MYCN. Overexpression and knockdown of ALK demonstrated its function in cell proliferation, migration and invasion. Moreover, treatment with an ALK inhibitor, TAE-684, efficiently suppressed such biological effects in MYCN amplified cells and tumor growth of the xenograft in mice. Our present findings explore the fundamental understanding of ALK in order to develop novel therapeutic tools by targeting ALK for aggressive NBL treatment. PMID:24356251

  3. ALK is a MYCN target gene and regulates cell migration and invasion in neuroblastoma.

    PubMed

    Hasan, Md Kamrul; Nafady, Asmaa; Takatori, Atsushi; Kishida, Satoshi; Ohira, Miki; Suenaga, Yusuke; Hossain, Shamim; Akter, Jesmin; Ogura, Atsushi; Nakamura, Yohko; Kadomatsu, Kenji; Nakagawara, Akira

    2013-12-20

    Human anaplastic lymphoma kinase (ALK) has been identified as an oncogene that is mutated or amplified in NBLs. To obtain a better understanding of the molecular events associated with ALK in the pathogenesis of NBL, it is necessary to clarify how ALK gene contributes to NBL progression. In the present study, we found that ALK expression was significantly high in NBL clinical samples with amplified MYCN (n = 126, P < 0.01) and in developing tumors of MYCN-transgenic mice. Indeed, promoter analysis revealed that ALK is a direct transcriptional target of MYCN. Overexpression and knockdown of ALK demonstrated its function in cell proliferation, migration and invasion. Moreover, treatment with an ALK inhibitor, TAE-684, efficiently suppressed such biological effects in MYCN amplified cells and tumor growth of the xenograft in mice. Our present findings explore the fundamental understanding of ALK in order to develop novel therapeutic tools by targeting ALK for aggressive NBL treatment.

  4. ALK7 protects against pathological cardiac hypertrophy in mice.

    PubMed

    Huang, He; Tang, Yanhong; Wu, Gang; Mei, Yang; Liu, Wanli; Liu, Xiaoxiong; Wan, Nian; Liu, Yu; Huang, Congxin

    2015-10-01

    Activin receptor-like kinase 7 (ALK7), one of the type I transforming growth factor-β receptors, is expressed in various tissues, including the heart. However, the participation of ALK7 in the regulation of cardiac hypertrophy has not yet been studied. Here, we sought to determine the regulatory role and underlying mechanisms of ALK7 in cardiac hypertrophy. We performed aortic banding (AB) in ALK7-knockout mice, cardiac-specific ALK7-transgenic mice, and the wild-type littermates of these mice. Cardiac hypertrophy was evaluated using pathological analysis, echocardiographic measurement, haemodynamic measurement, and molecular analysis. Our results revealed that ALK7 disruption led to an aggravated cardiac hypertrophic response that was accompanied by increased cardiac fibrosis and reduced contractile function, whereas cardiac-specific ALK7 overexpression exhibited the opposite phenotype in response to pressure overload. Similarly, ALK7 protected against angiotensin II-induced cardiomyocyte hypertrophy in vitro. Mechanistically, we demonstrated that ALK7-dependent cardioprotection was mediated largely through inhibition of the MEK-ERK1/2 signalling pathway. Our data suggest that ALK7 acts as a novel regulator of pathological cardiac hypertrophy via the negative regulation of MEK-ERK1/2 signalling and may serve as a potential therapeutic target for pathological cardiac hypertrophy. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  5. Crystal Structure of the FERM Domain of Focal Adhesion Kinase

    SciTech Connect

    Ceccarelli,D.; Song, H.; Poy, F.; Schaller, M.; Eck, M.

    2006-01-01

    Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells. Through phosphorylation of proteins assembled at the cytoplasmic tails of integrins, FAK promotes signaling events that modulate cellular growth, survival, and migration. The amino-terminal region of FAK contains a region of sequence homology with band 4.1 and ezrin/radixin/moesin (ERM) proteins termed a FERM domain. FERM domains are found in a variety of signaling and cytoskeletal proteins and are thought to mediate intermolecular interactions with partner proteins and phospholipids at the plasma membrane and intramolecular regulatory interactions. Here we report two crystal structures of an NH2-terminal fragment of avian FAK containing the FERM domain and a portion of the regulatory linker that connects the FERM and kinase domains. The tertiary folds of the three subdomains (F1, F2, and F3) are similar to those of known FERM structures despite low sequence conservation. Differences in the sequence and relative orientation of the F3 subdomain alters the nature of the interdomain interface, and the phosphoinositide binding site found in ERM family FERM domains is not present in FAK. A putative protein interaction site on the F3 lobe is masked by the proximal region of the linker. Additionally, in one structure the adjacent Src SH3 and SH2 binding sites in the linker associate with the surfaces of the F3 and F1 lobes, respectively. These structural features suggest the possibility that protein interactions of the FAK FERM domain can be regulated by binding of Src kinases to the linker segment.

  6. Identification of ALK Rearrangements in Malignant Peritoneal Mesothelioma.

    PubMed

    Hung, Yin P; Dong, Fei; Watkins, Jaclyn C; Nardi, Valentina; Bueno, Raphael; Dal Cin, Paola; Godleski, John J; Crum, Christopher P; Chirieac, Lucian R

    2017-09-14

    Malignant peritoneal mesothelioma is a rare, aggressive tumor arising from the peritoneal lining, induced by asbestos, therapeutic radiation, or germline mutations. Nevertheless, the molecular features remain largely unknown. To investigate anaplastic lymphoma kinase (ALK) rearrangements in a large series of peritoneal mesothelioma and characterize the mutational landscape of these tumors. We studied 88 consecutive patients (39 men, 49 women; median age 61, range 17-84 years) with peritoneal mesotheliomas diagnosed at a single institution between 2005 and 2015. We identified ALK-positive mesotheliomas by immunohistochemistry and confirmed ALK rearrangement by fluorescence in situ hybridization (FISH). In ALK-rearranged cases, we characterized the fusion partners using targeted next-generation sequencing of both tumor DNA and RNA. In select cases, we quantified asbestos fibers by combined scanning electron microscopy and x-ray spectroscopy. We also explored ALK rearrangement in a separate series of 205 patients with pleural mesothelioma. Identification and characterization of novel ALK rearrangements and correlations with clinicopathologic characteristics. Anaplastic lymphoma kinase was positive by immunohistochemistry in 11 (13%) peritoneal mesotheliomas (focal weak in 8, diffuse strong in 3). In focal weak ALK-positive cases, no ALK rearrangement was detected by FISH or next-generation sequencing. In strong diffuse ALK-positive cases, FISH confirmed ALK rearrangements, and next-generation sequencing identified novel fusion partners ATG16L1, STRN, and TPM1. Patients with ALK-rearranged peritoneal mesotheliomas were women and younger than patients without ALK rearrangement (median age 36 vs 62; Mann-Whitney test, P = .02), but all other clinicopathologic characteristics (size of tumor nodules, histology, treatment, and survival) were not different. No asbestos fibers were detected in ALK-rearranged cases. Furthermore, loss of chromosomal region 9p or 22q or

  7. ALK-rearrangements and testing methods in non-small cell lung cancer: a review

    PubMed Central

    Shackelford, Rodney E.; Vora, Moiz; Mayhall, Kim; Cotelingam, James

    2014-01-01

    The anaplastic lymphoma tyrosine kinase (ALK) gene was first described as a driver mutation in anaplastic non-Hodgkin's lymphoma. Dysregulated ALK expression is now an identified driver mutation in nearly twenty different human malignancies, including 4-9% of non-small cell lung cancers (NSCLC). The tyrosine kinase inhibitor crizotinib is more effective than standard chemotherapeutic agents in treating ALK positive NSCLC, making molecular diagnostic testing for dysregulated ALK expression a necessary step in identifying optimal treatment modalities. Here we review ALKmediated signal transduction pathways and compare the molecular protocols used to identify dysregulated ALK expression in NSCLC. We also discuss the use of crizotinib and second generation ALK tyrosine kinase inhibitors in the treatment of ALK positive NSCLC, and the known mechanisms of crizotinib resistance in NSCLC. PMID:24955213

  8. ALK-rearrangements and testing methods in non-small cell lung cancer: a review.

    PubMed

    Shackelford, Rodney E; Vora, Moiz; Mayhall, Kim; Cotelingam, James

    2014-04-01

    The anaplastic lymphoma tyrosine kinase (ALK) gene was first described as a driver mutation in anaplastic non-Hodgkin's lymphoma. Dysregulated ALK expression is now an identified driver mutation in nearly twenty different human malignancies, including 4-9% of non-small cell lung cancers (NSCLC). The tyrosine kinase inhibitor crizotinib is more effective than standard chemotherapeutic agents in treating ALK positive NSCLC, making molecular diagnostic testing for dysregulated ALK expression a necessary step in identifying optimal treatment modalities. Here we review ALKmediated signal transduction pathways and compare the molecular protocols used to identify dysregulated ALK expression in NSCLC. We also discuss the use of crizotinib and second generation ALK tyrosine kinase inhibitors in the treatment of ALK positive NSCLC, and the known mechanisms of crizotinib resistance in NSCLC.

  9. Cooperativity and evolution of Tetrahymena two-domain arginine kinase.

    PubMed

    Okazaki, Noriko; Motomura, Shou; Okazoe, Nanaka; Yano, Daichi; Suzuki, Tomohiko

    2015-08-01

    Tetrahymena pyriformis contains two arginine kinases, a 40-kDa enzyme (AK1) with a myristoylation signal sequence at the N-terminus and a two-domain 80-kDa enzyme (AK2). The former is localized mainly in cilia and the latter is in the cytoplasm. AK1 was successfully synthesized using an insect cell-free protein synthesis system and subjected to peptide mass fingerprinting (PMF) analysis. The masses corresponding to unmodified N-terminal tryptic peptide or N-terminal myristoylated peptide were not observed, suggesting that N-terminal peptides were not ionized in this analysis. We performed PMF analyses for two other phosphagen kinases (PKs) with myristoylation signals, an AK from Nematostella vectensis and a PK from Ectocarpus siliculosus. In both cases, the myristoylated, N-terminal peptides were clearly identified. The differences between the experimental and theoretical masses were within 0.0165-0.0583 Da, supporting the accuracy of the identification. Domains 1 and 2 of Tetrahymena two-domain AK2 were expressed separately in Escherichia coli and the extent of cooperativity was estimated on the basis of their kinetic constants. The results suggested that each of the domains functions independently, namely no cooperativity is displayed between the two domains. This is in sharp contrast to the two-domain AK from Anthopleura. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Structure Prediction and Validation of the ERK8 Kinase Domain

    PubMed Central

    Strambi, Angela; Mori, Mattia; Rossi, Matteo; Colecchia, David; Manetti, Fabrizio; Carlomagno, Francesca; Botta, Maurizio; Chiariello, Mario

    2013-01-01

    Extracellular signal-regulated kinase 8 (ERK8) has been already implicated in cell transformation and in the protection of genomic integrity and, therefore, proposed as a novel potential therapeutic target for cancer. In the absence of a crystal structure, we developed a three-dimensional model for its kinase domain. To validate our model we applied a structure-based virtual screening protocol consisting of pharmacophore screening and molecular docking. Experimental characterization of the hit compounds confirmed that a high percentage of the identified scaffolds was able to inhibit ERK8. We also confirmed an ATP competitive mechanism of action for the two best-performing molecules. Ultimately, we identified an ERK8 drug-resistant “gatekeeper” mutant that corroborated the predicted molecular binding mode, confirming the reliability of the generated structure. We expect that our model will be a valuable tool for the development of specific ERK8 kinase inhibitors. PMID:23326322

  11. Crystal Structure of the Protein Kinase Domain of Yeast AMP-Activated Protein Kinase Snf1

    SciTech Connect

    Rudolph,M.; Amodeo, G.; Bai, Y.; Tong, L.

    2005-01-01

    AMP-activated protein kinase (AMPK) is a master metabolic regulator, and is an important target for drug development against diabetes, obesity, and other diseases. AMPK is a hetero-trimeric enzyme, with a catalytic ({alpha}) subunit, and two regulatory ({beta} and {gamma}) subunits. Here we report the crystal structure at 2.2 Angstrom resolution of the protein kinase domain (KD) of the catalytic subunit of yeast AMPK (commonly known as SNF1). The Snf1-KD structure shares strong similarity to other protein kinases, with a small N-terminal lobe and a large C-terminal lobe. Two negative surface patches in the structure may be important for the recognition of the substrates of this kinase.

  12. A causal link from ALK to hexokinase II overexpression and hyperactive glycolysis in EML4-ALK-positive lung cancer

    PubMed Central

    Ma, Yibao; Yu, Chunrong; Mohamed, Esraa M.; Shao, Huanjie; Wang, Li; Sundaresan, Gobalakrishnan; Zweit, Jamal; Idowu, Michael; Fang, Xianjun

    2016-01-01

    A high rate of aerobic glycolysis is a hallmark of malignant transformation. Accumulating evidence suggests that diverse regulatory mechanisms mediate this cancer-associated metabolic change seen in a wide spectrum of cancer. The echinoderm microtubule associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion protein is found in approximately 3-7% of non-small cell lung carcinomas (NSCLC). Molecular evidence and therapeutic effectiveness of FDA-approved ALK inhibitors indicated that EML4-ALK is a driving factor of lung tumorigenesis. A recent clinical study showed that NSCLC harboring EML4-ALK rearrangements displayed higher glucose metabolism compared to EML4-ALK-negative NSCLC. In the current work, we presented evidence that EML4-ALK is coupled to overexpression of hexokinase II (HK2), one of the rate-limiting enzymes of the glycolytic pathway. The link from EML4-ALK to HK2 upregulation is essential for a high rate of glycolysis and proliferation of EML4-ALK-rearranged NSCLC cells. We identified hypoxia-inducible factor 1α (HIF1α) as a key transcription factor to drive HK2 gene expression in normoxia in these cells. EML4-ALK induced hypoxia-independent but glucose-dependent accumulation of HIF1α protein via both transcriptional activation of HIF1α mRNA and the PI3K-AKT pathway to enhance HIF1α protein synthesis. The EML4-ALK-mediated upregulation of HIF1α, HK2 and glycolytic metabolism was also highly active in vivo as demonstrated by FDG-PET imaging of xenografts grown from EML4-ALK-positive NSCLC cells. Our data reveal a novel EML4-ALK-HIF1α-HK2 cascade to enhance glucose metabolism in EML4-ALK-positive NSCLC. PMID:27132509

  13. Hyperactivation of Alk induces neonatal lethality in knock-in AlkF1178L mice

    PubMed Central

    Lopez-Delisle, Lucille; Pierre-Eugène, Cécile; Bloch-Gallego, Evelyne; Birling, Marie-Christine; Duband, Jean-Loup; Durand, Estelle; Bourgeois, Thomas; Matrot, Boris; Sorg, Tania; Huerre, Michel; Meziane, Hamid; Roux, Michel J.; Champy, Marie-France; Gallego, Jorge; Delattre, Olivier; Janoueix-Lerosey, Isabelle

    2014-01-01

    The ALK (Anaplastic Lymphoma Kinase) gene encodes a tyrosine kinase receptor preferentially expressed in the central and peripheral nervous systems. A syndromic presentation associating congenital neuroblastoma with severe encephalopathy and an abnormal shape of the brainstem has been described in patients harbouring de novo germline F1174V and F1245V ALK mutations. Here, we investigated the phenotype of knock-in (KI) mice bearing the AlkF1178L mutation (F1174L in human). Although heterozygous KI mice did not reproduce the severe breathing and feeding difficulties observed in human patients, behavioral tests documented a reduced activity during dark phases and an increased anxiety of mutated mice. Matings of heterozygotes yielded the expected proportions of wild-type, heterozygotes and homozygotes at birth but a high neonatal lethality was noticed for homozygotes. We documented Alk expression in several motor nuclei of the brainstem involved in the control of sucking and swallowing. Evaluation of basic physiological functions 12 hours after birth revealed slightly more apneas but a dramatic reduced milk intake for homozygotes compared to control littermates. Overall, our data demonstrate that Alk activation above a critical threshold is not compatible with survival in mice, in agreement with the extremely severe phenotype of patients carrying aggressive de novo ALK germline mutations. PMID:24811761

  14. ALK gene copy number gain and immunohistochemical expression status using three antibodies in neuroblastoma.

    PubMed

    Kim, Eun Kyung; Kim, Sewha

    2016-03-17

    Anaplastic lymphoma kinase (ALK) gene aberrations-such as mutations, amplifications, and copy number gains-represent a major genetic predisposition to neuroblastoma (NB). This study aimed to evaluate the correlation between ALK gene copy number status, ALK protein expression, and clinicopathological parameters. We retrospectively retrieved 30 cases of poorly differentiated NB and constructed tissue microarrays (TMAs). ALK copy number changes were assessed by fluorescence in situ hybridization (FISH) assays, and ALK immunohistochemistry (IHC) testing was performed using three different antibodies (ALK1, D5F3, and 5A4 clones). ALK amplification and copy number gain were observed in 10% (3/30) and 53.3% (16/30) of the cohort, respectively. There were positive correlations between ALK copy number and IHC positive rate in ALK1 and 5A4 antibodies (p= < 0.001 and 0.019, respectively). ALK1, D5F3, and 5A4 antibodies equally showed 100% sensitivity in detecting ALK amplification. However, the sensitivity for detecting copy number gain differed among the three antibodies, with 75% sensitivity in D5F3 and 0% sensitivity in ALK1. ALK-amplified NBs were correlated with synchronous MYCN amplification and chromosome 1p deletion. ALK IHC positivity was frequently observed in INSS stage IV and high-risk group patients. In conclusion, this study identified that an increase in the ALK copy number is a frequent genetic alteration in poorly differentiated NB. ALK-amplified NBs showed consistent ALK IHC positivity with all kinds of antibodies. In contrast, the detection performance of ALK copy number gain was antibody dependent, with the D5F3 antibody showing the best sensitivity.

  15. ALK Gene Copy Number Gain and Immunohistochemical Expression Status Using Three Antibodies in Neuroblastoma.

    PubMed

    Kim, Eun Kyung; Kim, Sewha

    2017-01-01

    Anaplastic lymphoma kinase ( ALK) gene aberrations-such as mutations, amplifications, and copy number gains-represent a major genetic predisposition to neuroblastoma (NB). This study aimed to evaluate the correlation between ALK gene copy number status, ALK protein expression, and clinicopathological parameters. We retrospectively retrieved 30 cases of poorly differentiated NB and constructed tissue microarrays (TMAs). ALK copy number changes were assessed by fluorescence in situ hybridization (FISH) assays, and ALK immunohistochemistry (IHC) testing was performed using three different antibodies (ALK1, D5F3, and 5A4 clones). ALK amplification and copy number gain were observed in 10% (3/30) and 53.3% (16/30) of the cohort, respectively. There were positive correlations between ALK copy number and IHC-positive rate in ALK1 and 5A4 antibodies ( P < 0.001 and P = 0.019, respectively). ALK1, D5F3, and 5A4 antibodies equally showed 100% sensitivity in detecting ALK amplification. However, the sensitivity for detecting copy number gain differed among the three antibodies, with 75% sensitivity in D5F3 and 0% sensitivity in ALK1. ALK-amplified NBs were correlated with synchronous MYCN amplification and chromosome 1p deletion. ALK IHC positivity was frequently observed in INSS stage IV and high-risk group patients. In conclusion, this study identified that an increase in the ALK copy number is a frequent genetic alteration in poorly differentiated NB. ALK-amplified NBs showed consistent ALK IHC positivity with all kinds of antibodies. In contrast, the detection performance of ALK copy number gain was antibody dependent, with the D5F3 antibody showing the best sensitivity.

  16. The elusive activity of the Yersinia protein kinase A kinase domain is revealed.

    PubMed

    Laskowski-Arce, Michelle A; Orth, Kim

    2007-10-01

    Yersinia spp. pathogens use their type III secretion system to translocate effectors that manipulate host signaling pathways during infection. Although molecular targets for five of the six known Yersinia effectors are known, the target for the serine/threonine kinase domain of Yersinia protein kinase A (YpkA) has remained elusive. Recently, Navarro et al. (2007) demonstrated that YpkA phosphorylates Galphaq, and inhibits Galphaq-mediated signaling. Inhibition by YpkA could contribute to one of the most documented symptoms of Yersinia pestis infection, extensive bleeding.

  17. A lipid binding domain in sphingosine kinase 2

    SciTech Connect

    Don, Anthony S.; Rosen, Hugh

    2009-02-27

    The lipid second messenger sphingosine 1-phosphate (S1P) is a critical mediator of cellular proliferation and survival signals, and is essential for vasculogenesis and neurogenesis. S1P formation is catalysed by sphingosine kinases 1 and 2 (Sphk1 and Sphk2). We have found that the endogenous glycolipid sulfatide (3-O-sulfogalactosylceramide) binds to and inhibits the activity of Sphk2 and the closely related ceramide kinase (Cerk), but not Sphk1. Using sulfatide as a probe, we mapped the lipid binding domain to the N-terminus of Sphk2 (residues 1-175), a region of sequence that is absent in Sphk1, but aligns with a pleckstrin homology domain in Cerk. Accordingly, Sphk2 bound to phosphatidylinositol monophosphates but not to abundant cellular phospholipids. Deleting the N-terminal domain reduced Sphk2 membrane localisation in cells. We have therefore identified a lipid binding domain in Sphk2 that is important for the enzyme's sub-cellular localisation.

  18. Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency

    PubMed Central

    Mologni, Luca; Poggio, Teresa; Varesio, Lydia M.; Menotti, Matteo; Bombelli, Silvia; Rigolio, Roberta; Manazza, Andrea D.; Di Giacomo, Filomena; Ambrogio, Chiara; Giudici, Giovanni; Casati, Cesare; Mastini, Cristina; Compagno, Mara; Turner, Suzanne D.; Gambacorti-Passerini, Carlo; Chiarle, Roberto; Voena, Claudia

    2016-01-01

    Most of Anaplastic Large Cell Lymphoma (ALCL) cases carry the t(2;5; p23;q35) that produces the fusion protein NPM-ALK. NPM-ALK deregulated kinase activity drives several pathways that support malignant transformation of lymphoma cells. We found that in ALK-rearranged ALCL cell lines NPM-ALK was distributed in equal amounts between the cytoplasm and the nucleus. Only the cytoplasmic portion was catalytically active in both cell lines and primary ALCL, whereas the nuclear portion was inactive due to heterodimerization with NPM1. Thus, about 50% of the NPM-ALK is not active and sequestered as NPM-ALK/NPM1 heterodimers in the nucleus. Overexpression or re-localization of NPM-ALK to the cytoplasm by NPM genetic knock-out or knock-down caused ERK1/2 increased phosphorylation and cell death through the engagement of an ATM/Chk2 and γH2AX mediated DNA damage response. Remarkably, human NPM-ALK amplified cell lines resistant to ALK tyrosine kinase inhibitors (TKIs) underwent apoptosis upon drug withdrawal as a consequence of ERK1/2 hyperactivation. Altogether, these findings indicate that an excess of NPM-ALK activation and signaling induces apoptosis via oncogenic stress responses. A “drug holiday” where the ALK TKI treatment is suspended could represent a therapeutic option in cells that become resistant by NPM-ALK amplification. PMID:26657151

  19. Activated Alk triggers prolonged neurogenesis and Ret upregulation providing a therapeutic target in ALK-mutated neuroblastoma

    PubMed Central

    Cazes, Alex; Lopez-Delisle, Lucille; Tsarovina, Konstantina; Pierre-Eugène, Cécile; De Preter, Katleen; Peuchmaur, Michel; Nicolas, André; Provost, Claire; Louis-Brennetot, Caroline; Daveau, Romain; Kumps, Candy; Cascone, Ilaria; Schleiermacher, Gudrun; Prignon, Aurélie; Speleman, Frank; Rohrer, Hermann; Delattre, Olivier; Janoueix-Lerosey, Isabelle

    2014-01-01

    Activating mutations of the ALK (Anaplastic lymphoma Kinase) gene have been identified in sporadic and familial cases of neuroblastoma, a cancer of early childhood arising from the sympathetic nervous system (SNS). To decipher ALK function in neuroblastoma predisposition and oncogenesis, we have characterized knock-in (KI) mice bearing the two most frequent mutations observed in neuroblastoma patients. A dramatic enlargement of sympathetic ganglia is observed in AlkF1178L mice from embryonic to adult stages associated with an increased proliferation of sympathetic neuroblasts from E14.5 to birth. In a MYCN transgenic context, the F1178L mutation displays a higher oncogenic potential than the R1279Q mutation as evident from a shorter latency of tumor onset. We show that tumors expressing the R1279Q mutation are sensitive to ALK inhibition upon crizotinib treatment. Furthermore, our data provide evidence that activated ALK triggers RET upregulation in mouse sympathetic ganglia at birth as well as in murine and human neuroblastoma. Using vandetanib, we show that RET inhibition strongly impairs tumor growth in vivo in both MYCN/KI AlkR1279Q and MYCN/KI AlkF1178L mice. Altogether, our findings demonstrate the critical role of activated ALK in SNS development and pathogenesis and identify RET as a therapeutic target in ALK mutated neuroblastoma. PMID:24811913

  20. Rate limiting domain and loop motions in arginine kinase

    PubMed Central

    Davulcu, Omar; Skalicky, Jack J.; Chapman, Michael S.

    2011-01-01

    Arginine kinase catalyzes the reversible transfer of a phosphoryl group between ATP and arginine. It is the arthropod homolog of creatine kinase, buffering cellular ATP levels. Crystal structures of arginine kinase, in substrate-free and substrate-bound forms, have revealed large conformational changes associated with the catalytic cycle. Recent NMR identified movements of the N-terminal domain and a loop comprising residues I182-G209 with conformational exchange rates in the substrate-free enzyme similar to the turnover rate. Here, to understand whether these motions might be rate-limiting, activation barriers for both the intrinsic dynamics and enzyme turnover are determined using measurements over a temperature range of 15 to 30°C. 15N transverse relaxation dispersion yields activation barriers of 46 ± 8 and 34 ± 12 kJ/mol for of the N-terminal domain and I182-G209 loop, respectively. An activation barrier of 34 ± 13 kJ/mol was obtained for enzyme turnover from steady-state kinetics. The similarity between the activation barriers is indeed consistent with turnover being limited by backbone conformational dynamics, and pinpoints the locations of potentially rate limiting motions. PMID:21425868

  1. Inhibition of Axl improves the targeted therapy against ALK-mutated neuroblastoma

    SciTech Connect

    Xu, Fei; Li, Hongling; Sun, Yong

    2014-11-28

    Highlights: • First reported Axl is co-expressed with ALK in neuroblastoma tissues and cell lines. • Axl activation promotes cell growth and impairs the efficiency of ALK inhibitor. • Further found silence of Axl leads to increased sensitivity to ALK inhibitors. • Axl inhibitor promotes the efficiency of targeted therapy in vitro and in vivo. • Axl activation should be considered in the clinical application of ALK inhibitors. - Abstract: Neuroblastoma (NB) patients harboring mutated ALK can be expected to potentially benefit from targeted therapy based on ALK tyrosine kinase inhibitor (TKI), such as crizotinib and ceritinib. However, the effect of the treatment varies with different individuals, although with the same genic changes. Axl receptor tyrosine kinase is expressed in a variety of human cancers, but little data are reported in NB, particularly in which carrying mutated ALK. In this study, we focus on the roles of Axl in ALK-mutated NB for investigating rational therapeutic strategy. We found that Axl is expressed in ALK-positive NB tissues and cell lines, and could be effectively activated by its ligand GAS6. Ligand-dependent Axl activation obviously rescued crizotinib-mediated suppression of cell proliferation in ALK-mutated NB cells. Genetic inhibition of Axl with specific small interfering RNA markedly increased the sensitivity of cells to ALK-TKIs. Furthermore, a small-molecule inhibitor of Axl significantly enhanced ALK-targeted therapy, as an increased frequency of apoptosis was observed in NB cells co-expressing ALK and Axl. Taken together, our results demonstrated that activation of Axl could lead to insensitivity to ALK inhibitors, and dual inhibition of ALK and Axl might be a potential therapeutic strategy against ALK-mutated NB.

  2. Reversal of microRNA-150 silencing disadvantages crizotinib-resistant NPM-ALK(+) cell growth

    PubMed Central

    Hoareau-Aveilla, Coralie; Valentin, Thibaud; Daugrois, Camille; Quelen, Cathy; Mitou, Géraldine; Quentin, Samuel; Jia, Jinsong; Spicuglia, Salvatore; Ferrier, Pierre; Ceccon, Monica; Giuriato, Sylvie; Gambacorti-Passerini, Carlo; Brousset, Pierre; Lamant, Laurence; Meggetto, Fabienne

    2015-01-01

    The regulatory microRNA miR-150 is involved in the development of hemopathies and is downregulated in T-lymphomas, such as anaplastic large-cell lymphoma (ALCL) tumors. ALCL is defined by the presence or absence of translocations that activate the anaplastic lymphoma kinase (ALK), with nucleophosmin-ALK (NPM-ALK) fusions being the most common. Here, we compared samples of primary NPM-ALK(+) and NPM-ALK(–) ALCL to investigate the role of miR-150 downstream of NPM-ALK. Methylation of the MIR150 gene was substantially elevated in NPM-ALK(+) biopsies and correlated with reduced miR-150 expression. In NPM-ALK(+) cell lines, DNA hypermethylation–mediated miR-150 repression required ALK-dependent pathways, as ALK inhibition restored miR-150 expression. Moreover, epigenetic silencing of miR-150 was due to the activation of STAT3, a major downstream substrate of NPM-ALK, in cooperation with DNA methyltransferase 1 (DNMT1). Accordingly, miR-150 repression was turned off following treatment with the DNMT inhibitor, decitabine. In murine NPM-ALK(+) xenograft models, miR-150 upregulation induced antineoplastic activity. Treatment of crizotinib-resistant NPM-ALK(+) KARPAS-299-CR06 cells with decitabine or ectopic miR-150 expression reduced viability and growth. Altogether, our results suggest that hypomethylating drugs, alone or in combination with other agents, may benefit ALK(+) patients harboring tumors resistant to crizotinib and other anti-ALK tyrosine kinase inhibitors (TKIs). Moreover, these results support further work on miR-150 in these and other ALK(+) malignancies. PMID:26258416

  3. Design of an encodable tyrosine kinase-inducible domain: detection of tyrosine kinase activity by terbium luminescence.

    PubMed

    Zondlo, Susan Carr; Gao, Feng; Zondlo, Neal J

    2010-04-28

    Tyrosine kinases are critical mediators of intracellular signaling and of intracellular responses to extracellular signaling. Changes in tyrosine kinase activity are implicated in numerous human diseases, including cancers, diabetes, and pathogen infectivity. To address questions in tyrosine phosphorylation, we have designed a protein tyrosine kinase-inducible domain, a small, genetically encodable protein motif whose structure is dependent on its tyrosine phosphorylation state. Tyrosine kinase-inducible domain peptides are based on EF-hand loops in which a structurally critical Glu12 residue is replaced by tyrosine at residue 11 or at residue 15 of the protein. Tyrosine kinase-inducible domain peptides bind terbium(III) in a phosphorylation-dependent manner, showing strong terbium luminescence when phosphorylated but weak terbium luminescence when not phosphorylated. Lanthanide binding was confirmed by NMR. A tyrosine kinase-inducible domain peptide, pKID-Abl, was designed to incorporate a recognition sequence of the Abl kinase. Incubation of pKID-Abl with Abl kinase resulted in a large increase in terbium luminescence. This increase in luminescence was abolished when pKID-Abl and Abl kinase were incubated with the Abl kinase inhibitor Gleevec. In addition, incubation of phosphorylated pKID-Abl with the tyrosine phosphatase YOP resulted in a large reduction in terbium luminescence. pKID-Abl was employed as a fluorescent sensor of Abl tyrosine kinase activity in HeLa cell extracts, exhibiting low luminescence with extracts from serum-starved cells and increased luminescence using extracts from EGF-treated cells. These results indicate that tyrosine kinase-inducible domains may be used as sensors of tyrosine kinase and tyrosine phosphatase activity and in the detection of tyrosine kinase inhibitors.

  4. Emergence of new ALK mutations at relapse of neuroblastoma.

    PubMed

    Schleiermacher, Gudrun; Javanmardi, Niloufar; Bernard, Virginie; Leroy, Quentin; Cappo, Julie; Rio Frio, Thomas; Pierron, Gaelle; Lapouble, Eve; Combaret, Valérie; Speleman, Frank; de Wilde, Bram; Djos, Anna; Ora, Ingrid; Hedborg, Fredrik; Träger, Catarina; Holmqvist, Britt-Marie; Abrahamsson, Jonas; Peuchmaur, Michel; Michon, Jean; Janoueix-Lerosey, Isabelle; Kogner, Per; Delattre, Olivier; Martinsson, Tommy

    2014-09-01

    In neuroblastoma, the ALK receptor tyrosine kinase is activated by point mutations. We investigated the potential role of ALK mutations in neuroblastoma clonal evolution. We analyzed ALK mutations in 54 paired diagnosis-relapse neuroblastoma samples using Sanger sequencing. When an ALK mutation was observed in one paired sample, a minor mutated component in the other sample was searched for by more than 100,000× deep sequencing of the relevant hotspot, with a sensitivity of 0.17%. All nine ALK-mutated cases at diagnosis demonstrated the same mutation at relapse, in one case in only one of several relapse nodules. In five additional cases, the mutation seemed to be relapse specific, four of which were investigated by deep sequencing. In two cases, no mutation evidence was observed at diagnosis. In one case, the mutation was present at a subclonal level (0.798%) at diagnosis, whereas in another case, two different mutations resulting in identical amino acid changes were detected, one only at diagnosis and the other only at relapse. Further evidence of clonal evolution of ALK-mutated cells was provided by establishment of a fully ALK-mutated cell line from a primary sample with an ALK-mutated cell population at subclonal level (6.6%). In neuroblastoma, subclonal ALK mutations can be present at diagnosis with subsequent clonal expansion at relapse. Given the potential of ALK-targeted therapy, the significant spatiotemporal variation of ALK mutations is of utmost importance, highlighting the potential of deep sequencing for detection of subclonal mutations with a sensitivity 100-fold that of Sanger sequencing and the importance of serial samplings for therapeutic decisions. © 2014 by American Society of Clinical Oncology.

  5. Phosphoproteomics reveals ALK promote cell progress via RAS/JNK pathway in neuroblastoma

    PubMed Central

    Xu, Guofeng; Zhang, Min; Wu, Yeming; Wu, Zhixiang

    2016-01-01

    Emerging evidence suggests receptor tyrosine kinase ALK as a promising therapeutic target in neuroblastoma. However, clinical trials reveal that a limited proportion of ALK-positive neuroblastoma patients experience clinical benefits from Crizotinib, a clinically approved specific inhibitor of ALK. The precise molecular mechanisms of aberrant ALK activity in neuroblastoma remain elusive, limiting the clinical application of ALK as a therapeutic target in neuroblastoma. Here, we describe a deep quantitative phosphoproteomic approach in which Crizotinib-treated neuroblastoma cell lines bearing aberrant ALK are used to investigate downstream regulated phosphoproteins. We identified more than 19,500—and quantitatively analyzed approximately 10,000—phosphorylation sites from each cell line, ultimately detecting 450–790 significantly-regulated phosphorylation sites. Multiple layers of bioinformatic analysis of the significantly-regulated phosphoproteins identified RAS/JNK as a downstream signaling pathway of ALK, independent of the ALK variant present. Further experiments demonstrated that ALK/JNK signaling could be inactivated by either ALK- or JNK-specific inhibitors, resulting in cell growth inhibition by induction of cell cycle arrest and cell apoptosis. Our study broadly defines the phosphoproteome in response to ALK inhibition and provides a resource for further clinical investigation of ALK as therapeutic target for the treatment of neuroblastoma. PMID:27732954

  6. ALK rearrangements in EBUS-derived transbronchial needle aspiration cytology in lung cancer.

    PubMed

    Neat, M J; Foot, N J; Hicks, A; Breen, R; Wilkins, B; McLean, E; Santis, G

    2013-12-01

    Patients with non-small cell lung cancer (NSCLC) positive for anaplastic lymphoma kinase (ALK) gene rearrangements may be treated successfully with the ALK inhibitor crizotinib. ALK copy-number abnormalities have also been described. In this study, we evaluated the suitability of fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) to determine ALK status in endobronchial ultrasound (EBUS)-derived cytology samples. Samples were obtained from 55 consecutive patients with NSCLC who had undergone EBUS-transbronchial needle aspiration (TBNA) according to our standard clinical protocols. All tumours had been screened previously for epithelial growth factor receptor (EGFR) and v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations. FISH, using commercially available ALK rearrangement-specific probes, was employed to assess ALK status. IHC using the ALK-1 monoclonal antibody (DAKO) was also performed. FISH analysis was successful in 52 of 55 samples (94.5%); ALK rearrangement was demonstrated in 3 of 52 samples from patients with NSCLC (5.7%). ALK amplification was observed in 3 of 52 patient samples (5.7%) and an increase in ALK copy number was found in 28 of 52 patient samples (53.8%). IHC on cell blocks demonstrated ALK expression in one of three samples with ALK rearrangement. One patient sample had concomitant ALK rearrangement and KRAS mutation. We found FISH to be superior to IHC using the ALK-1 monoclonal antibody for the detection of ALK rearrangement in EBUS-TBNA cytology specimens in NSCLC, and also that ALK rearrangement can co-exist with KRAS mutation in the same tumour. © 2013 John Wiley & Sons Ltd.

  7. Kinase Associated-1 Domains Drive MARK/PAR1 Kinases to Membrane Targets by Binding Acidic Phospholipids

    SciTech Connect

    Moravcevic, Katarina; Mendrola, Jeannine M.; Schmitz, Karl R.; Wang, Yu-Hsiu; Slochower, David; Janmey, Paul A.; Lemmon, Mark A.

    2011-09-28

    Phospholipid-binding modules such as PH, C1, and C2 domains play crucial roles in location-dependent regulation of many protein kinases. Here, we identify the KA1 domain (kinase associated-1 domain), found at the C terminus of yeast septin-associated kinases (Kcc4p, Gin4p, and Hsl1p) and human MARK/PAR1 kinases, as a membrane association domain that binds acidic phospholipids. Membrane localization of isolated KA1 domains depends on phosphatidylserine. Using X-ray crystallography, we identified a structurally conserved binding site for anionic phospholipids in KA1 domains from Kcc4p and MARK1. Mutating this site impairs membrane association of both KA1 domains and intact proteins and reveals the importance of phosphatidylserine for bud neck localization of yeast Kcc4p. Our data suggest that KA1 domains contribute to coincidence detection, allowing kinases to bind other regulators (such as septins) only at the membrane surface. These findings have important implications for understanding MARK/PAR1 kinases, which are implicated in Alzheimer's disease, cancer, and autism.

  8. The structures of the kinase domain and UBA domain of MPK38 suggest the activation mechanism for kinase activity

    PubMed Central

    Cho, Yong-Soon; Yoo, Jiho; Park, Soomin; Cho, Hyun-Soo

    2014-01-01

    Murine protein serine/threonine kinase 38 (MPK38) is the murine orthologue of human maternal embryonic leucine-zipper kinase (MELK), which belongs to the SNF1/AMPK family. MELK is considered to be a promising drug target for anticancer therapy because overexpression and hyperactivation of MELK is correlated with several human cancers. Activation of MPK38 requires the extended sequence (ExS) containing the ubiquitin-associated (UBA) linker and UBA domain and phosphorylation of the activation loop. However, the activation mechanism of MPK38 is unknown. This paper reports the crystal structure of MPK38 (T167E), which mimics a phosphorylated state of the activation loop, in complex with AMP-PNP. In the MPK38 structure, the UBA linker forces an inward movement of the αC helix. Phosphorylation of the activation loop then induces movement of the activation loop towards the C-lobe and results in interlobar cleft closure. These processes generate a fully active state of MPK38. This structure suggests that MPK38 has a similar molecular mechanism regulating activation as in other kinases of the SNF1/AMPK family. PMID:24531485

  9. Conformational instability of the MARK3 UBA domain compromises ubiquitin recognition and promotes interaction with the adjacent kinase domain

    SciTech Connect

    Murphy, James M.; Korzhnev, Dmitry M.; Ceccarelli, Derek F.; Briant, Douglas J.; Zarrine-Afsar, Arash; Sicheri, Frank; Kay, Lewis E.; Pawson, Tony

    2012-10-23

    The Par-1/MARK protein kinases play a pivotal role in establishing cellular polarity. This family of kinases contains a unique domain architecture, in which a ubiquitin-associated (UBA) domain is located C-terminal to the kinase domain. We have used a combination of x-ray crystallography and NMR dynamics experiments to understand the interaction of the human (h) MARK3 UBA domain with the adjacent kinase domain as compared with ubiquitin. The x-ray crystal structure of the linked hMARK3 kinase and UBA domains establishes that the UBA domain forms a stable intramolecular interaction with the N-terminal lobe of the kinase domain. However, solution-state NMR studies of the isolated UBA domain indicate that it is highly dynamic, undergoing conformational transitions that can be explained by a folding-unfolding equilibrium. NMR titration experiments indicated that the hMARK3 UBA domain has a detectable but extremely weak affinity for mono ubiquitin, which suggests that conformational instability of the isolated hMARK3 UBA domain attenuates binding to ubiquitin despite the presence of residues typically involved in ubiquitin recognition. Our data identify a molecular mechanism through which the hMARK3 UBA domain has evolved to bind the kinase domain, in a fashion that stabilizes an open conformation of the N- and C-terminal lobes, at the expense of its capacity to engage ubiquitin. These results may be relevant more generally to the 30% of UBA domains that lack significant ubiquitin-binding activity, and they suggest a unique mechanism by which interaction domains may evolve new binding properties.

  10. Treating ALK-positive lung cancer--early successes and future challenges.

    PubMed

    Camidge, D Ross; Doebele, Robert C

    2012-04-03

    Rearrangements of the anaplastic lymphoma kinase (ALK) gene occur infrequently in non-small-cell lung cancer (NSCLC), but provide an important paradigm for oncogene-directed therapy in this disease. Crizotinib, an orally bioavailable inhibitor of ALK, provides significant benefit for patients with ALK-positive (ALK+) NSCLC in association with characteristic, mostly mild, toxic effects, and this drug has been approved by the FDA for clinical use in this molecularly defined subgroup of lung cancer. Many new ALK inhibitors are being developed and understanding the challenges of determining and addressing the adverse effects that are likely to be ALK specific, while maximizing the time of benefit on targeted agents, and understanding the mechanisms that underlie drug resistance will be critical in the future for informing the optimal therapy of ALK+ NSCLC.

  11. The enzymatic activity of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase is enhanced by NPM-ALK: new insights in ALK-mediated pathogenesis and the treatment of ALCL.

    PubMed

    Boccalatte, Francesco E; Voena, Claudia; Riganti, Chiara; Bosia, Amalia; D'Amico, Lucia; Riera, Ludovica; Cheng, Mangeng; Ruggeri, Bruce; Jensen, Ole N; Goss, Valerie L; Lee, Kimberly; Nardone, Julie; Rush, John; Polakiewicz, Roberto D; Comb, Michael J; Chiarle, Roberto; Inghirami, Giorgio

    2009-03-19

    Anaplastic large cell lymphoma represents a subset of neoplasms caused by translocations that juxtapose the anaplastic lymphoma kinase (ALK) to dimerization partners. The constitutive activation of ALK fusion proteins leads to cellular transformation through a complex signaling network. To elucidate the ALK pathways sustaining lymphomagenesis and tumor maintenance, we analyzed the tyrosine-kinase protein profiles of ALK-positive cell lines using 2 complementary proteomic-based approaches, taking advantage of a specific ALK RNA interference (RNAi) or cell-permeable inhibitors. A well-defined set of ALK-associated tyrosine phosphopeptides, including metabolic enzymes, kinases, ribosomal and cytoskeletal proteins, was identified. Validation studies confirmed that vasodilator-stimulated phosphoprotein and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC) associated with nucleophosmin (NPM)-ALK, and their phosphorylation required ALK activity. ATIC phosphorylation was documented in cell lines and primary tumors carrying ALK proteins and other tyrosine kinases, including TPR-Met and wild type c-Met. Functional analyses revealed that ALK-mediated ATIC phosphorylation enhanced its enzymatic activity, dampening the methotrexate-mediated transformylase activity inhibition. These findings demonstrate that proteomic approaches in well-controlled experimental settings allow the definition of informative proteomic profiles and the discovery of novel ALK downstream players that contribute to the maintenance of the neoplastic phenotype. Prediction of tumor responses to methotrexate may justify specific molecular-based chemotherapy.

  12. Structure of a double-domain phosphagen kinase reveals an asymmetric arrangement of the tandem domains.

    PubMed

    Wang, Zhiming; Qiao, Zhu; Ye, Sheng; Zhang, Rongguang

    2015-04-01

    Tandem duplications and fusions of single genes have led to magnificent expansions in the divergence of protein structures and functions over evolutionary timescales. One of the possible results is polydomain enzymes with interdomain cooperativities, few examples of which have been structurally characterized at the full-length level to explore their innate synergistic mechanisms. This work reports the crystal structures of a double-domain phosphagen kinase in both apo and ligand-bound states, revealing a novel asymmetric L-shaped arrangement of the two domains. Unexpectedly, the interdomain connections are not based on a flexible hinge linker but on a rigid secondary-structure element: a long α-helix that tethers the tandem domains in relatively fixed positions. Besides the connective helix, the two domains also contact each other directly and form an interdomain interface in which hydrogen bonds and hydrophobic interactions further stabilize the L-shaped domain arrangement. Molecular-dynamics simulations show that the interface is generally stable, suggesting that the asymmetric domain arrangement crystallographically observed in the present study is not a conformational state simply restrained by crystal-packing forces. It is possible that the asymmetrically arranged tandem domains could provide a structural basis for further studies of the interdomain synergy.

  13. Anaplastic lymphoma kinase status in rhabdomyosarcomas.

    PubMed

    Yoshida, Akihiko; Shibata, Tatsuhiro; Wakai, Susumu; Ushiku, Tetsuo; Tsuta, Koji; Fukayama, Masashi; Makimoto, Atsushi; Furuta, Koh; Tsuda, Hitoshi

    2013-06-01

    Rhabdomyosarcoma is a rare soft tissue sarcoma that typically affects children, adolescents, and young adults. Despite treatment via a multidisciplinary approach, the prognosis of advance-stage rhabdomyosarcomas remains poor, and a new treatment strategy is needed. Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that is a potential target for specific inhibitors. In this study, we investigated 116 rhabdomyosarcomas using a polymer-based ALK immunostaining method and correlated the results with clinicopathological parameters. In addition, we examined ALK status using dual-color fluorescence in situ hybridization, PCR, and sequencing. In immunohistochemical analysis, ALK was detected in 2 (6%) of 33 embryonal rhabdomyosarcomas, 42 (69%) of 61 alveolar rhabdomyosarcomas, and 0 (0%) of 22 other subtypes, including pleomorphic, adult-spindle-cell/sclerosing, and epithelioid variants. Compared with ALK-negative alveolar rhabdomyosarcomas, ALK-positive ones are presented with metastatic spread more frequently and showed a greater extent of myogenin reactivity. Overall survival was not associated with ALK expression. FOXO1 rearrangement was significantly associated with ALK immunoreactivity. The median ALK copy number was greater in ALK-positive tumors than in ALK-negative tumors. Most (93%) cases tested showed no selective increase in the ALK gene dosage. ALK selective amplification and low-level selective gain were noted in one and three cases, respectively. Further, a high-polysomy pattern (≥4 ALK copies in ≥40% of cells) was observed in seven cases. A significant increase in the ALK copy number was exclusive to the ALK-immunopositive cohort, but it was uncommon, accounting for only 30% of the 37 ALK-positive rhabdomyosarcomas. ALK gene rearrangement was not observed in either cohort, while an ALK somatic mutation (I1277T) was found in one ALK-negative embryonal case. Although it remains controversial whether ALK expression without gene rearrangement

  14. Regulation of Endothelial Barrier Function by TGF-β type I Receptor ALK5: Potential Role of Contractile Mechanisms and Heat Shock Protein 90

    PubMed Central

    Antonov, Alexander S.; Antonova, Galina N.; Fujii, Makiko; Dijke, Peter ten; Handa, Vaishali; Catravas, John D.; Verin, Alexander D.

    2013-01-01

    Multifunctional cytokine transforming growth factor-beta (TGF-β1) plays a critical role in the pathogenesis of acute lung inflammation by controlling endothelial monolayer permeability. TGF-β1 regulates endothelial cell (EC) functions via two distinct receptors, activin receptor-like kinase 1 (ALK1) and activin receptor-like kinase 5 (ALK5). The precise roles of ALK1 and ALK5 in the regulation of TGF-β1-induced lung endothelium dysfunction remain mostly unknown. We now report that adenoviral infection with constitutively active ALK5 (caALK5), but not caALK1, induces EC retraction and that this receptor predominantly controls EC permeability. We demonstrate that ubiquitinated ALK5 and phosphorylated heat shock protein 27 (phospho-Hsp27) specifically accumulate in the cytoskeleton fraction, which parallels with microtubule collapse, cortical actin disassembly and increased EC permeability. We have found that ALK1 and ALK5 interact with heat shock protein 90 (Hsp90). Moreover, the Hsp90 inhibitor radicicol (RA) prevents accumulation of ubiquitinated caALK5 and phospho-Hsp27 in the cytoskeletal fraction and restore the decreased EC permeability induced by caALK5. We hypothesize that specific translocation of ubiquitinated ALK5 receptor into the cytoskeleton compartment due to its lack of degradation is the mechanism that causes the divergence of caALK1 and caALK5 signaling. PMID:21465483

  15. Src-homology 3 domain of protein kinase p59fyn mediates binding to phosphatidylinositol 3-kinase in T cells.

    PubMed Central

    Prasad, K V; Janssen, O; Kapeller, R; Raab, M; Cantley, L C; Rudd, C E

    1993-01-01

    The Src-related tyrosine kinase p59fyn(T) plays an important role in the generation of intracellular signals from the T-cell antigen receptor TCR zeta/CD3 complex. A key question concerns the nature and the binding sites of downstream components that interact with this Src-related kinase. p59fyn(T) contains Src-homology 2 and 3 domains (SH2 and SH3) with a capacity to bind to intracellular proteins. One potential downstream target is phosphatidylinositol 3-kinase (PI 3-kinase). In this study, we demonstrate that anti-CD3 and anti-Fyn immunoprecipitates possess PI 3-kinase activity as assessed by TLC and HPLC. Both free and receptor-bound p59fyn(T) were found to bind to the lipid kinase. Further, our results indicate that Src-related kinases have developed a novel mechanism to interact with PI 3-kinase. Precipitation using GST fusion proteins containing Fyn SH2, SH3, and SH2/SH3 domains revealed that PI 3-kinase bound principally to the SH3 domain of Fyn. Fyn SH3 bound directly to the p85 subunit of PI 3-kinase as expressed in a baculoviral system. Anti-CD3 crosslinking induced an increase in the detection of Fyn SH3-associated PI 3-kinase activity. Thus PI 3-kinase is a target of SH3 domains and is likely to play a major role in the signals derived from the TCR zeta/CD3-p59fyn complex. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8394019

  16. TRPM7 is regulated by halides through its kinase domain

    PubMed Central

    Yu, Haijie; Zhang, Zheng; Lis, Annette; Penner, Reinhold; Fleig, Andrea

    2013-01-01

    Transient receptor potential melastatin 7 (TRPM7) is a divalent-selective cation channel fused to an atypical α-kinase. TRPM7 is a key regulator of cell growth and proliferation, processes accompanied by mandatory cell volume changes. Osmolarity-induced cell volume alterations regulate TRPM7 through molecular crowding of solutes that affect channel activity, including magnesium (Mg2+), Mg-nucleotides and a further unidentified factor. Here, we assess whether chloride and related halides can act as negative feedback regulators of TRPM7. We find that chloride and bromide inhibit heterologously expressed TRPM7 in synergy with intracellular Mg2+ ([Mg2+]i) and this is facilitated through the ATP-binding site of the channel’s kinase domain. The synergistic block of TRPM7 by chloride and Mg2+ is not reversed during divalent-free or acidic conditions, indicating a change in protein conformation that leads to channel inactivation. Iodide has the strongest inhibitory effect on TRPM7 at physiological [Mg2+]i. Iodide also inhibits endogenous TRPM7-like currents as assessed in MCF-7 breast cancer cells, where upregulation of SLC5A5 sodium-iodide symporter enhances iodide uptake and inhibits cell proliferation. These results indicate that chloride could be an important factor in modulating TRPM7 during osmotic stress and implicate TRPM7 as a possible molecular mechanism contributing to the anti-proliferative characteristics of intracellular iodide accumulation in cancer cells. PMID:23471296

  17. Brief report: Clinical implications of variant ALK FISH rearrangement patterns

    PubMed Central

    Gao, Xin; Sholl, Lynette M.; Nishino, Mizuki; Heng, Jennifer; Jänne, Pasi A.; Oxnard, Geoffrey R.

    2015-01-01

    Introduction Break-apart fluorescence in situ hybridization (FISH) is the FDA-approved assay for detecting anaplastic lymphoma kinase (ALK) rearrangements in non-small cell lung cancer (NSCLC), identifying patients who can gain dramatic benefit from ALK kinase inhibitors. Assay interpretation can be technically challenging, and either splitting of the 5′ and 3′ probes or loss of the 5′ probe constitute rearrangement. We hypothesized that there may be clinical differences depending upon rearrangement pattern on FISH. Methods An IRB-approved database of NSCLC patients at Dana-Farber Cancer Institute was queried for ALK rearrangement. Clinical characteristics and response to crizotinib were reviewed. Immunohistochemistry (IHC) and targeted next-generation sequencing (NGS) were obtained when available. Results Of 1,614 NSCLC patients with ALK testing, 82 (5.1%) patients had ALK rearrangement by FISH: 30 with split signals, 25 with 5′ deletion, and 27 with details unavailable. Patients with 5′ deletion were older (p=0.01) and tended to have more extensive smoking histories (p=0.08). IHC was positive for ALK rearrangement in all 27 patients with FISH split signals, while 3 of 21 patients with FISH 5′ deletion had negative IHC (p=0.05). Targeted NGS on 2 of 3 cases with discordant FISH and IHC results did not identify ALK rearrangement, instead finding driver mutations in EGFR and KRAS. Patients with 5′ deletion treated with crizotinib had a smaller magnitude of tumor response (p=0.03). Conclusions Patients with 5′ deletion on ALK FISH harbor features less typical of ALK-rearranged tumors, potentially indicating that some cases with this variant are false-positives. Corroborative testing with IHC or NGS may be beneficial. PMID:26536196

  18. Canadian consensus: inhibition of ALK-positive tumours in advanced non-small-cell lung cancer

    PubMed Central

    Melosky, B.; Agulnik, J.; Albadine, R.; Banerji, S.; Bebb, D.G.; Bethune, D.; Blais, N.; Butts, C.; Cheema, P.; Cheung, P.; Cohen, V.; Deschenes, J.; Ionescu, D.N.; Juergens, R.; Kamel-Reid, S.; Laurie, S.A.; Liu, G.; Morzycki, W.; Tsao, M.S.; Xu, Z.; Hirsh, V.

    2016-01-01

    Anaplastic lymphoma kinase (alk) is an oncogenic driver in non-small-cell lung cancer (nsclc). Chromosomal rearrangements involving the ALK gene occur in up to 4% of nonsquamous nsclc patients and lead to constitutive activation of the alk signalling pathway. ALK-positive nsclc is found in relatively young patients, with a median age of 50 years. Patients frequently have brain metastasis. Targeted inhibition of the alk pathway prolongs progression-free survival in patients with ALK-positive advanced nsclc. The results of several recent clinical trials confirm the efficacy and safety benefit of crizotinib and ceritinib in this population. Canadian oncologists support the following consensus statement: All patients with advanced nonsquamous nsclc (excluding pure neuroendocrine carcinoma) should be tested for the presence of an ALK rearrangement. If an ALK rearrangement is present, treatment with a targeted alk inhibitor in the first-line setting is recommended. As patients become resistant to first-generation alk inhibitors, other treatments, including second-generation alk inhibitors can be considered. PMID:27330348

  19. Efficiency of Crizotinib on an ALK-Positive Inflammatory Myofibroblastic Tumor of the Central Nervous System: A Case Report

    PubMed Central

    Chennouf, Anas; Arslanian, Elizabeth; Roberge, David; Berthelet, France; Bojanowski, Michel; Bahary, Jean-Paul; Masucci, Laura; Belanger, Karl; Florescu, Marie

    2017-01-01

    Inflammatory myofibroblastic tumors (IMT) of the central nervous system (CNS) are rare entities that have a predilection for local recurrences. Approximately half of the inflammatory myofibroblastic tumors contain translocations that result in the over-expression of the anaplastic lymphoma kinase (ALK) gene. We hereby present the case of a patient diagnosed with a left parieto-occipital IMT that recurred after multiple surgeries and radiotherapy. Immuno-histochemical examination of the tumor demonstrated ALK overexpression and the presence of an ALK rearrangement observed in lung cancers. The patient was subsequently started on an ALK inhibitor. A response evaluation criteria in solid tumors (RECIST) partial response was observed by the seventh month of ALK inhibition and the tumor remained in control for 14 months. The current case reiterates the activity of ALK inhibitors within the CNS and suggests that radiotherapy may potentiate the permeability of ALK inhibitors in CNS tumors addicted to ALK signalling. PMID:28409069

  20. ALK gene expression status in pleural effusion predicts tumor responsiveness to crizotinib in Chinese patients with lung adenocarcinoma

    PubMed Central

    Wang, Zheng; Wu, Xiaonan; Han, Xiaohong; Cheng, Gang; Mu, Xinlin; Zhang, Yuhui; Cui, Di; Liu, Chang; Liu, Dongge; Shi, Yuankai

    2016-01-01

    Objective The relationship between anaplastic lymphoma kinase (ALK) expression in malignant pleural effusion (MPE) samples detected only by Ventana immunohistochemistry (IHC) ALK (D5F3) and the efficacy of ALK-tyrosine kinase inhibitor therapy is uncertain. Methods Ventana anti-ALK (D5F3) rabbit monoclonal primary antibody testing was performed on 313 cell blocks of MPE samples from Chinese patients with advanced lung adenocarcinoma, and fluorescence in situ hybridization (FISH) was used to verify the ALK gene status in Ventana IHC ALK (D5F3)-positive samples. The follow-up clinical data on patients who received crizotinib treatment were recorded. Results Of the 313 MPE samples, 27 (8.6%) were confirmed as ALK expression-positive, and the Ventana IHC ALK (D5F3)-positive rate was 17.3% (27/156) in wild-type epidermal growth factor receptor (EGFR) MPE samples. Twenty-three of the 27 IHC ALK (D5F3)-positive samples were positive by FISH. Of the 11 Ventana IHC ALK (D5F3)-positive patients who received crizotinib therapy, 2 patients had complete response (CR), 5 had partial response (PR) and 3 had stable disease (SD). Conclusions The ALK gene expression status detected by the Ventana IHC ALK (D5F3) platform in MPE samples may predict tumor responsiveness to crizotinib in Chinese patients with advanced lung adenocarcinoma. PMID:28174489

  1. Tec kinase signaling in T cells is regulated by phosphatidylinositol 3-kinase and the Tec pleckstrin homology domain.

    PubMed

    Yang, W C; Ching, K A; Tsoukas, C D; Berg, L J

    2001-01-01

    Tec, the prototypical member of the Tec family of tyrosine kinases, is abundantly expressed in T cells and other hemopoietic cell types. Although the functions of Itk and Txk have recently been investigated, little is known about the role of Tec in T cells. Using antisense oligonucleotide treatment to deplete Tec protein from primary T cells, we demonstrate that Tec plays a role in TCR signaling leading to IL-2 gene induction. Interestingly, Tec kinases are the only known family of tyrosine kinases containing a pleckstrin homology (PH) domain. Using several PH domain mutants overexpressed in Jurkat T cells, we show that the Tec PH domain is required for Tec-mediated IL-2 gene induction and TCR-mediated Tec tyrosine phosphorylation. Furthermore, we show that Tec colocalizes with the TCR after TCR cross-linking, and that both the Tec PH and Src homology (SH) 2 domains play a role in this association. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, abolishes Tec-mediated IL-2 gene induction and Tec tyrosine phosphorylation, and partially suppresses Tec colocalization with the activated TCR. Thus, our data implicate the Tec kinase PH domain and phosphatidylinositol 3-kinase in Tec signaling downstream of the TCR.

  2. Efficacy of ALK5 inhibition in myelofibrosis

    PubMed Central

    Zhao, Wanke; Ho, Wanting Tina; Han, Ying; Murdun, Cem; Mailloux, Adam W.; Zhang, Ling; Wang, Xuefeng; Budhathoki, Anjali; Pradhan, Kith; Rapaport, Franck; Wang, Huaquan; Shao, Zonghong; Ren, Xiubao; Steidl, Ulrich; Levine, Ross L.; Zhao, Zhizhuang Joe; Verma, Amit; Epling-Burnette, Pearlie K.

    2017-01-01

    Myelofibrosis (MF) is a bone marrow disorder characterized by clonal myeloproliferation, aberrant cytokine production, extramedullary hematopoiesis, and bone marrow fibrosis. Although somatic mutations in JAK2, MPL, and CALR have been identified in the pathogenesis of these diseases, inhibitors of the Jak2 pathway have not demonstrated efficacy in ameliorating MF in patients. TGF-β family members are profibrotic cytokines and we observed significant TGF-β1 isoform overexpression in a large cohort of primary MF patient samples. Significant overexpression of TGF-β1 was also observed in murine clonal MPLW515L megakaryocytic cells. TGF-β1 stimulated the deposition of excessive collagen by mesenchymal stromal cells (MSCs) by activating the TGF-β receptor I kinase (ALK5)/Smad3 pathway. MSCs derived from MPLW515L mice demonstrated sustained overproduction of both collagen I and collagen III, effects that were abrogated by ALK5 inhibition in vitro and in vivo. Importantly, use of galunisertib, a clinically active ALK5 inhibitor, significantly improved MF in both MPLW515L and JAK2V617F mouse models. These data demonstrate the role of malignant hematopoietic stem cell (HSC)/TGF-β/MSC axis in the pathogenesis of MF, and provide a preclinical rationale for ALK5 blockade as a therapeutic strategy in MF. PMID:28405618

  3. Personalized treatment in advanced ALK-positive non-small cell lung cancer: from bench to clinical practice

    PubMed Central

    Passaro, Antonio; Lazzari, Chiara; Karachaliou, Niki; Spitaleri, Gianluca; Pochesci, Alessia; Catania, Chiara; Rosell, Rafael; de Marinis, Filippo

    2016-01-01

    The discovery of anaplastic lymphoma kinase (ALK) gene rearrangements and the development of tyrosine kinase inhibitors (TKI) that target them have achieved unprecedented success in the management of patients with ALK-positive non-small cell lung cancer (NSCLC). Despite the high efficacy of crizotinib, the first oral ALK TKI approved for the treatment of ALK-positive NSCLC, almost all patients inevitably develop acquired resistance, showing disease progression in the brain or in other parenchymal sites. Second- or third-generation ALK TKIs have shown to be active in crizotinib-pretreated or crizotinib-naïve ALK-positive patients, even in those with brain metastases. In this review, the current knowledge regarding ALK-positive NSCLC, focusing on the biology of the disease and the available therapeutic options are discussed. PMID:27799783

  4. Screening for ALK abnormalities in central nervous system metastases of non-small-cell lung cancer: ALK abnormalities in CNS metastases of NSCLC.

    PubMed

    Nicoś, Marcin; Jarosz, Bożena; Krawczyk, Paweł; Wojas-Krawczyk, Kamila; Kucharczyk, Tomasz; Sawicki, Marek; Pankowski, Juliusz; Trojanowski, Tomasz; Milanowski, Janusz

    2016-11-23

    Anaplastic lymphoma kinase (ALK) gene rearrangement was reported in 3-7% of primary non-small-cell lung cancer (NSCLC) and its presence is commonly associated with adenocarcinoma (AD) type and non-smoking history. ALK tyrosine kinase inhibitors (TKIs) such as crizotinib, alectinib and ceritinib showed efficiency in patients with primary NSCLC harboring ALK gene rearrangement. Moreover, response to ALK TKIs was observed in central nervous system (CNS) metastatic lesions of NSCLC. However, there are no reports concerning the frequency of ALK rearrangement in CNS metastases. We assessed the frequency of ALK abnormalities in 145 formalin fixed paraffin embedded (FFPE) tissue samples from CNS metastases of NSCLC using immunohistochemical (IHC) automated staining (BenchMark GX, Ventana, USA) and fluorescence in situ hybridization (FISH) technique (Abbot Molecular, USA). The studied group was heterogeneous in terms of histopathology and smoking status. ALK abnormalities were detected in 4.8% (7/145) of CNS metastases. ALK abnormalities were observed in six AD (7.5%; 6/80) and in single patients with adenosuqamous lung carcinoma. Analysis of clinical and demographic factors indicated that expression of abnormal ALK was significantly more frequently observed (p=0.0002; χ(2) =16.783) in former-smokers. Comparison of IHC and FISH results showed some discrepancies, which were caused by unspecific staining of macrophages and glial/nerve cells, which constitute the background of CNS tissues. Our results indicate high frequency of ALK gene rearrangement in CNS metastatic sites of NSCLC that are in line with prior studies concerning evaluation of the presence of ALK abnormalities in such patients. However, we showed that assessment of ALK by IHC and FISH methods in CNS tissues require additional standardizations. This article is protected by copyright. All rights reserved.

  5. Distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases of Actinobacteria.

    PubMed

    Ogawara, Hiroshi

    2016-09-01

    PASTA domains (penicillin-binding protein and serine/threonine kinase-associated domains) have been identified in penicillin-binding proteins and serine/threonine kinases of Gram-positive Firmicutes and Actinobacteria. They are believed to bind β-lactam antibiotics, and be involved in peptidoglycan metabolism, although their biological function is not definitively clarified. Actinobacteria, especially Streptomyces species, are distinct in that they undergo complex cellular differentiation and produce various antibiotics including β-lactams. This review focuses on the distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases in Actinobacteria. In Actinobacteria, PASTA domains are detectable exclusively in class A but not in class B penicillin-binding proteins, in sharp contrast to the cases in other bacteria. In penicillin-binding proteins, PASTA domains distribute independently from taxonomy with some distribution bias. Particularly interesting thing is that no Streptomyces species have penicillin-binding protein with PASTA domains. Protein kinases in Actinobacteria possess 0 to 5 PASTA domains in their molecules. Protein kinases in Streptomyces can be classified into three groups: no PASTA domain, 1 PASTA domain and 4 PASTA domain-containing groups. The 4 PASTA domain-containing groups can be further divided into two subgroups. The serine/threonine kinases in different groups may perform different functions. The pocket region in one of these subgroup is more dense and extended, thus it may be involved in binding of ligands like β-lactams more efficiently.

  6. PTB domain-directed substrate targeting in a tyrosine kinase from the unicellular choanoflagellate Monosiga brevicollis.

    PubMed

    Prieto-Echagüe, Victoria; Chan, Perry M; Craddock, Barbara P; Manser, Edward; Miller, W Todd

    2011-04-26

    Choanoflagellates are considered to be the closest living unicellular relatives of metazoans. The genome of the choanoflagellate Monosiga brevicollis contains a surprisingly high number and diversity of tyrosine kinases, tyrosine phosphatases, and phosphotyrosine-binding domains. Many of the tyrosine kinases possess combinations of domains that have not been observed in any multicellular organism. The role of these protein interaction domains in M. brevicollis kinase signaling is not clear. Here, we have carried out a biochemical characterization of Monosiga HMTK1, a protein containing a putative PTB domain linked to a tyrosine kinase catalytic domain. We cloned, expressed, and purified HMTK1, and we demonstrated that it possesses tyrosine kinase activity. We used immobilized peptide arrays to define a preferred ligand for the third PTB domain of HMTK1. Peptide sequences containing this ligand sequence are phosphorylated efficiently by recombinant HMTK1, suggesting that the PTB domain of HMTK1 has a role in substrate recognition analogous to the SH2 and SH3 domains of mammalian Src family kinases. We suggest that the substrate recruitment function of the noncatalytic domains of tyrosine kinases arose before their roles in autoinhibition.

  7. Discovery of Brigatinib (AP26113), a Phosphine Oxide-Containing, Potent, Orally Active Inhibitor of Anaplastic Lymphoma Kinase.

    PubMed

    Huang, Wei-Sheng; Liu, Shuangying; Zou, Dong; Thomas, Mathew; Wang, Yihan; Zhou, Tianjun; Romero, Jan; Kohlmann, Anna; Li, Feng; Qi, Jiwei; Cai, Lisi; Dwight, Timothy A; Xu, Yongjin; Xu, Rongsong; Dodd, Rory; Toms, Angela; Parillon, Lois; Lu, Xiaohui; Anjum, Rana; Zhang, Sen; Wang, Frank; Keats, Jeffrey; Wardwell, Scott D; Ning, Yaoyu; Xu, Qihong; Moran, Lauren E; Mohemmad, Qurish K; Jang, Hyun Gyung; Clackson, Tim; Narasimhan, Narayana I; Rivera, Victor M; Zhu, Xiaotian; Dalgarno, David; Shakespeare, William C

    2016-05-26

    In the treatment of echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase positive (ALK+) non-small-cell lung cancer (NSCLC), secondary mutations within the ALK kinase domain have emerged as a major resistance mechanism to both first- and second-generation ALK inhibitors. This report describes the design and synthesis of a series of 2,4-diarylaminopyrimidine-based potent and selective ALK inhibitors culminating in identification of the investigational clinical candidate brigatinib. A unique structural feature of brigatinib is a phosphine oxide, an overlooked but novel hydrogen-bond acceptor that drives potency and selectivity in addition to favorable ADME properties. Brigatinib displayed low nanomolar IC50s against native ALK and all tested clinically relevant ALK mutants in both enzyme-based biochemical and cell-based viability assays and demonstrated efficacy in multiple ALK+ xenografts in mice, including Karpas-299 (anaplastic large-cell lymphomas [ALCL]) and H3122 (NSCLC). Brigatinib represents the most clinically advanced phosphine oxide-containing drug candidate to date and is currently being evaluated in a global phase 2 registration trial.

  8. Dependence-induced ethanol drinking and GABA neurotransmission are altered in Alk deficient mice.

    PubMed

    Schweitzer, Paul; Cates-Gatto, Chelsea; Varodayan, Florence P; Nadav, Tali; Roberto, Marisa; Lasek, Amy W; Roberts, Amanda J

    2016-08-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that is expressed in the brain and implicated in alcohol abuse in humans and behavioral responses to ethanol in mice. Previous studies have shown an association of human ALK with acute responses to alcohol and alcohol dependence. In addition, Alk knockout (Alk -/-) mice consume more ethanol in a binge-drinking test and show increased sensitivity to ethanol sedation. However, the function of ALK in excessive drinking following the establishment of ethanol dependence has not been examined. In this study, we tested Alk -/- mice for dependence-induced drinking using the chronic intermittent ethanol-two bottle choice drinking (CIE-2BC) protocol. We found that Alk -/- mice initially consume more ethanol prior to CIE exposure, but do not escalate ethanol consumption after exposure, suggesting that ALK may promote the escalation of drinking after ethanol dependence. To determine the mechanism(s) responsible for this behavioral phenotype we used an electrophysiological approach to examine GABA neurotransmission in the central nucleus of the amygdala (CeA), a brain region that regulates alcohol consumption and shows increased GABA signaling after chronic ethanol exposure. GABA transmission in ethanol-naïve Alk -/- mice was enhanced at baseline and potentiated in response to acute ethanol application when compared to wild-type (Alk +/+) mice. Moreover, basal GABA transmission was not elevated by CIE exposure in Alk -/- mice as it was in Alk +/+ mice. These data suggest that ALK plays a role in dependence-induced drinking and the regulation of presynaptic GABA release in the CeA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Dependence-induced ethanol drinking and GABA neurotransmission are altered in Alk deficient mice

    PubMed Central

    Schweitzer, Paul; Cates-Gatto, Chelsea; Varodayan, Florence P.; Nadav, Tali; Roberto, Marisa; Lasek, Amy W.; Roberts, Amanda J.

    2016-01-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that is expressed in the brain and implicated in alcohol abuse in humans and behavioral responses to ethanol in mice. Previous studies have shown an association of human ALK with acute responses to alcohol and alcohol dependence. In addition, Alk knockout (Alk −/−) mice consume more ethanol in a binge-drinking test and show increased sensitivity to ethanol sedation. However, the function of ALK in excessive drinking following the establishment of ethanol dependence has not been examined. In this study, we tested Alk −/− mice for dependence-induced drinking using the chronic intermittent ethanol-two bottle choice drinking (CIE-2BC) protocol. We found that Alk −/− mice initially consume more ethanol prior to CIE exposure, but do not escalate ethanol consumption after exposure, suggesting that ALK may promote the escalation of drinking after ethanol dependence. To determine the mechanism(s) responsible for this behavioral phenotype we used an electrophysiological approach to examine GABA neurotransmission in the central nucleus of the amygdala (CeA), a brain region that regulates alcohol consumption and shows increased GABA signaling after chronic ethanol exposure. GABA transmission in ethanol-naïve Alk −/− mice was enhanced at baseline and potentiated in response to acute ethanol application when compared to wild-type (Alk +/+) mice. Moreover, basal GABA transmission was not elevated by CIE exposure in Alk −/− mice as it was in Alk +/+ mice. These data suggest that ALK plays a role in dependence-induced drinking and the regulation of presynaptic GABA release in the CeA. PMID:26946429

  10. Autophosphorylation in the Leucine-Rich Repeat Kinase 2 (LRRK2) GTPase Domain Modifies Kinase and GTP-Binding Activities

    PubMed Central

    Webber, Philip J.; Smith, Archer D.; Sen, Saurabh; Renfrow, Matthew B.; Mobley, James A.; West, Andrew B.

    2011-01-01

    The LRRK2 protein has both GTPase and kinase activities and mutation in either enzymatic domain can cause late-onset Parkinson’s disease (PD). Nucleotide binding in the GTPase domain may be required for kinase activity and residues in the GTPase domain are potential sites for autophosphorylation, suggesting a complex mechanism of intrinsic regulation. To further define the effects of LRRK2 autophosphorylation, we applied a technique optimal for detection of protein phosphorylation, electron transfer dissociation (ETD), and identified autophosphorylation events exclusively nearby the nucleotide binding pocket in the GTPase domain. PD-linked mutations alter kinase activity but did not alter autophosphorylation site specificity or sites of phosphorylation in a robust in vitro substrate myelin basic protein. Amino-acid substitutions in the GTPase domain have large effects on kinase activity, as insertion of the GTPase-associated R1441C pathogenic mutation together with the G2019S kinase-domain mutation resulted in a multiplicative increase (~7-fold) in activity. Removal of a conserved autophosphorylation site (T1503) by mutation to an alanine residue resulted in greatly decreased GTP-binding and kinase activity. While autophosphorylation likely serves to potentiate kinase activity, we find that oligomerization and loss of the active dimer species occurs in an ATP and autophosphorylation independent manner. LRRK2 autophosphorylation sites are overall robustly protected from dephosphorylation in vitro, suggesting tight control over activity in vivo. We developed highly specific antibodies targeting pT1503 but failed to detect endogenous autophosphorylation in protein derived from transgenic mice and cell lines. LRRK2 activity in vivo is unlikely to be constitutive but rather refined to specific responses. PMID:21806997

  11. Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns 3-kinases: binding partners of SH3 domains?

    PubMed Central

    Ponting, C. P.

    1996-01-01

    Two SH3 domain-containing cytosolic components of the NADPH oxidase, p47phox and p40phox, are shown by analyses of their sequences to contain single copies of a novel class of domain, the PX (phox) domain. Homologous domains are demonstrated to be present in the Cpk class of phosphatidylinositol 3-kinase, S. cerevisiae Bem1p, and S. pombe Scd2, and a large family of human sorting nexin 1 (SNX1) homologues. The majority of these domains contains a polyproline motif, typical of SH3 domain-binding proteins. Two further findings are reported. A third NADPH oxidase subunit, p67phox, is shown to contain four tetratricopeptide repeats (TPRs) within its N-terminal RaclGTP-binding region, and a 28 residue motif in p40phox is demonstrated to be present in protein kinase C isoforms iota/lambda and zeta, and in three ZZ domain-containing proteins. PMID:8931154

  12. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state

    NASA Astrophysics Data System (ADS)

    Cabail, M. Zulema; Li, Shiqing; Lemmon, Eric; Bowen, Mark E.; Hubbard, Stevan R.; Miller, W. Todd

    2015-03-01

    The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of α-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.

  13. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state.

    PubMed

    Cabail, M Zulema; Li, Shiqing; Lemmon, Eric; Bowen, Mark E; Hubbard, Stevan R; Miller, W Todd

    2015-03-11

    The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of α-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.

  14. Alk7 Depleted Mice Exhibit Prolonged Cardiac Repolarization and Are Predisposed to Ventricular Arrhythmia

    PubMed Central

    Ying, Shaozhen; Cao, Hong; Hu, He; Wang, Xin; Tang, Yanhong; Huang, Congxin

    2016-01-01

    We aimed to investigate the role of activin receptor-like kinase (ALK7) in regulating cardiac electrophysiology. Here, we showed that Alk7-/- mice exhibited prolonged QT intervals in telemetry ECG recordings. Furthermore, Langendorff-perfused Alk7-/- hearts had significantly longer action potential duration (APD) and greater incidence of ventricular arrhythmia (AV) induced by burst pacing. Using whole-cell patch clamp, we found that the densities of repolarizing K+ currents Ito and IK1 were profoundly reduced in Alk7-/- ventricular cardiomyocytes. Mechanistically, the expression of Kv4.2 (a major subunit of Ito carrying channel) and KCHIP2 (a key accessory subunit of Ito carrying channel), was markedly decreased in Alk7-/- hearts. These findings suggest that endogenous expression of ALK7 is necessary to maintain repolarizing K+ currents in ventricular cardiomyocytes, and finally prevent action potential prolongation and ventricular arrhythmia. PMID:26882027

  15. DISCOIDIN DOMAIN RECEPTOR TYROSINE KINASES: NEW PLAYERS IN CANCER PROGRESSION

    PubMed Central

    Valiathan, Rajeshwari R.; Marco, Marta; Leitinger, Birgit; Kleer, Celina G.; Fridman, Rafael

    2012-01-01

    Almost all human cancers display dysregulated expression and/or function of one or more receptor tyrosine kinases (RTKs). The strong causative association between altered RTK function and cancer progression has translated into novel therapeutic strategies that target these cell surface receptors in the treatment of cancer. Yet, the full spectrum of RTKs that may alter the oncogenic process is not completely understood. Accumulating evidence suggests that a unique set of RTKs known as the Discoidin Domain Receptors (DDRs) play a role in cancer progression by regulating the interactions of tumor cells with their surrounding collagen matrix. The DDRs are the only RTKs that specifically bind to, and are activated by collagen. Hence, the DDRs are part of the signaling networks that translate information from the extracellular matrix thereby acting as key regulators of cell-matrix interactions. Under physiological conditions, DDRs control cell and tissue homeostasis by acting as collagen sensors, transducing signals that regulate cell polarity, tissue morphogenesis, and cell differentiation. In cancer, DDRs are hijacked by tumor cells to disrupt normal cell-matrix communication and initiate pro-migratory and pro-invasive programs. Importantly, several cancer types exhibit DDR mutations, which are thought to alter receptor function and contribute to cancer progression. Other evidence suggests that the actions of DDRs in cancer are complex, either promoting or suppressing tumor cell behavior in a DDR type/isoform specific and context dependent manner. Thus, there is still a considerable gap in our knowledge of DDR actions in cancer tissues. This review summarizes the current knowledge on DDR expression and function in cancer and discusses the potential implications of DDRs in cancer biology. It is hoped that this effort will encourage more research into these poorly understood but unique RTKs, which have the potential of becoming novel therapeutics targets in cancer. PMID

  16. Treatment of elderly patients or patients who are performance status 2 (PS2) with advanced Non-Small Cell Lung Cancer without epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) translocations - Still a daily challenge.

    PubMed

    Su, Chunxia; Zhou, Fei; Shen, Jiqiao; Zhao, Jing; O'Brien, Mary

    2017-09-01

    Cytotoxic chemotherapy remains the core treatment strategy for patients with advanced non-small cell lung cancer (NSCLC) with tumours that do not have actionable molecular alterations, such as epidermal growth factor receptor (EGFR)-sensitising mutations, anaplastic lymphoma kinase (ALK) translocations or ROS1 translocations. Age and performance status (PS) are two pivotal factors to guide treatment decisions regarding the use of chemotherapy in lung cancer patients. Lung cancer is predominantly a disease of the elderly, with more than two-thirds of patients aged ≥65 years, the current definition of 'elderly'. The prevalence of poor PS, as estimated by patients themselves, can be as high as 50%. Both the elderly and PS2 patients are underrepresented in clinical trials. Therefore, optimising treatment strategy for the subgroup of elderly or PS2 patients with advanced NSCLC remains challenging as a result of a paucity of clinical trial data. The current review focusses on the elderly or PS2 patients without actionable oncogenic drivers and attempts to summarise current available data on recent treatments trials including angiogenesis inhibitors and immune-checkpoint inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Constitutive ALK5-Independent c-Jun N-Terminal Kinase Activation Contributes to Endothelin-1 Overexpression in Pulmonary Fibrosis: Evidence of an Autocrine Endothelin Loop Operating through the Endothelin A and B Receptors

    PubMed Central

    Shi-Wen, Xu; Rodríguez-Pascual, Fernando; Lamas, Santiago; Holmes, Alan; Howat, Sarah; Pearson, Jeremy D.; Dashwood, Michael R.; du Bois, Roland M.; Denton, Christopher P.; Black, Carol M.; Abraham, David J.; Leask, Andrew

    2006-01-01

    The signal transduction mechanisms generating pathological fibrosis are almost wholly unknown. Endothelin-1 (ET-1), which is up-regulated during tissue repair and fibrosis, induces lung fibroblasts to produce and contract extracellular matrix. Lung fibroblasts isolated from scleroderma patients with chronic pulmonary fibrosis produce elevated levels of ET-1, which contribute to the persistent fibrotic phenotype of these cells. Transforming growth factor β (TGF-β) induces fibroblasts to produce and contract matrix. In this report, we show that TGF-β induces ET-1 in normal and fibrotic lung fibroblasts in a Smad-independent ALK5/c-Jun N-terminal kinase (JNK)/Ap-1-dependent fashion. ET-1 induces JNK through TAK1. Fibrotic lung fibroblasts display constitutive JNK activation, which was reduced by the dual ETA/ETB receptor inhibitor, bosentan, providing evidence of an autocrine endothelin loop. Thus, ET-1 and TGF-β are likely to cooperate in the pathogenesis of pulmonary fibrosis. As elevated JNK activation in fibrotic lung fibroblasts contributes to the persistence of the myofibroblast phenotype in pulmonary fibrosis by promoting an autocrine ET-1 loop, targeting the ETA and ETB receptors or constitutive JNK activation by fibrotic lung fibroblasts is likely to be of benefit in combating chronic pulmonary fibrosis. PMID:16809784

  18. Activin Receptor-Like Kinase 7 Suppresses Lipolysis to Accumulate Fat in Obesity Through Downregulation of Peroxisome Proliferator–Activated Receptor γ and C/EBPα

    PubMed Central

    Yogosawa, Satomi; Mizutani, Shin; Ogawa, Yoshihiro; Izumi, Tetsuro

    2013-01-01

    We previously identified a quantitative trait locus for adiposity, non-insulin-dependent diabetes 5 (Nidd5), on mouse chromosome 2. In the current study, we identified the actual genetic alteration at Nidd5 as a nonsense mutation of the Acvr1c gene encoding activin receptor-like kinase 7 (ALK7), one of the type I transforming growth factor-β receptors, which results in a COOH-terminal deletion of the kinase domain. We further showed that the ALK7 dysfunction causes increased lipolysis in adipocytes and leads to decreased fat accumulation. Conversely, ALK7 activation inhibits lipolysis by suppressing the expression of adipose lipases. ALK7 and activated Smads repress those lipases by downregulating peroxisome proliferator–activated receptor γ (PPARγ) and CCAAT/enhancer binding protein (C/EBP) α. Although PPARγ and C/EBPα act as adipogenic transcription factors during adipocyte differentiation, they are lipolytic in sum in differentiated adipocytes and are downregulated by ALK7 in obesity to accumulate fat. Under the obese state, ALK7 deficiency improves glucose tolerance and insulin sensitivity by preferentially increasing fat combustion in mice. These findings have uncovered a net lipolytic function of PPARγ and C/EBPα in differentiated adipocytes and point to the ALK7-signaling pathway that is activated in obesity as a potential target of medical intervention. PMID:22933117

  19. Activation of the EGF receptor tyrosine kinase by divalent metal ions: comparison of holoreceptor and isolated kinase domain properties.

    PubMed

    Koland, J G; Cerione, R A

    1990-05-22

    The activation of the epidermal growth factor (EGF) receptor tyrosine kinase activity is thought to represent a key initial step in EGF-mediated mitogenesis. The mechanisms underlying the regulation of the EGF receptor tyrosine kinase activity were examined through comparisons of the holoreceptor, purified from human placenta, and a soluble 42 kDa tyrosine kinase domain (TKD), generated by the limited trypsin proteolysis of the holoreceptor. The results of these studies highlight the importance of divalent metal ions (Me2+), i.e., Mn2+ and Mg2+, as activators of the tyrosine kinase activity. Manganese is an extremely effective activator of the holoreceptor tyrosine kinase, and under some conditions (low ionic strength) it completely alleviates the need for EGF to stimulate activity. In contrast, Mg2+ only weakly stimulates the holoreceptor tyrosine kinase activity in the absence of EGF, but promotes essentially full activity in the presence of the growth factor. Like the holoreceptor, the soluble TKD is highly active in the presence of Mn2+. However, the isolated TKD is completely inactive in the presence of Mg2+, and, in fact, Mg2+ inhibits the Mn2(+)-stimulated tyrosine kinase activity. The differences in the effects of Mn2+ and Mg2+ on the isolated TKD were further demonstrated by monitoring the effects of Me2+ on the modification of a reactive cysteine residue(s) on the TKD. While Mn2+ potentiates the inhibition by cysteine-directed reagents of the tyrosine kinase activity, Mg2+ has no effect on either the rate or the extent of the inhibition. Both the regulation by Mn2+ of the kinase activity of the TKD and the potentiation by Mn2+ of the cysteine reactivity of the TKD occur over a millimolar concentration range, which implicates a direct binding interaction by the metal ion. Overall, these results demonstrate that there are two key activator sites on the EGF receptor, i.e., the EGF binding site on the extracellular domain and a Me2+ binding site on the

  20. Alk1 controls arterial endothelial cell migration in lumenized vessels.

    PubMed

    Rochon, Elizabeth R; Menon, Prahlad G; Roman, Beth L

    2016-07-15

    Heterozygous loss of the arterial-specific TGFβ type I receptor, activin receptor-like kinase 1 (ALK1; ACVRL1), causes hereditary hemorrhagic telangiectasia (HHT). HHT is characterized by development of fragile, direct connections between arteries and veins, or arteriovenous malformations (AVMs). However, how decreased ALK1 signaling leads to AVMs is unknown. To understand the cellular mis-steps that cause AVMs, we assessed endothelial cell behavior in alk1-deficient zebrafish embryos, which develop cranial AVMs. Our data demonstrate that alk1 loss has no effect on arterial endothelial cell proliferation but alters arterial endothelial cell migration within lumenized vessels. In wild-type embryos, alk1-positive cranial arterial endothelial cells generally migrate towards the heart, against the direction of blood flow, with some cells incorporating into endocardium. In alk1-deficient embryos, migration against flow is dampened and migration in the direction of flow is enhanced. Altered migration results in decreased endothelial cell number in arterial segments proximal to the heart and increased endothelial cell number in arterial segments distal to the heart. We speculate that the consequent increase in distal arterial caliber and hemodynamic load precipitates the flow-dependent development of downstream AVMs.

  1. The histidine kinase CusS senses silver ions through direct binding by its sensor domain

    PubMed Central

    Gudipaty, Swapna A.; McEvoy, Megan M.

    2014-01-01

    The Cus system of Escherichia coli aids in protection of cells from high concentrations of Ag(I) and Cu(I). The histidine kinase CusS of the CusRS two-component system functions as a Ag(I)/Cu(I)-responsive sensor kinase and is essential for induction of the genes encoding the CusCFBA efflux pump. In this study, we have examined the molecular features of the sensor domain of CusS in order to understand how a metal-responsive histidine kinase senses specific metal ions. We find that the predicted periplasmic sensor domain of CusS directly interacts with Ag(I) ions and undergoes a conformational change upon metal binding. Metal binding also enhances the tendency of the domain to dimerize. These findings suggest a model for activation of the histidine kinase through metal binding events in the periplasmic sensor domain. PMID:24948475

  2. The heat shock protein-90 co-chaperone, Cyclophilin 40, promotes ALK-positive, anaplastic large cell lymphoma viability and its expression is regulated by the NPM-ALK oncoprotein.

    PubMed

    Pearson, Joel D; Mohammed, Zubair; Bacani, Julinor T C; Lai, Raymond; Ingham, Robert J

    2012-06-08

    Anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL) is a T cell lymphoma defined by the presence of chromosomal translocations involving the ALK tyrosine kinase gene. These translocations generate fusion proteins (e.g. NPM-ALK) with constitutive tyrosine kinase activity, which activate numerous signalling pathways important for ALK+ ALCL pathogenesis. The molecular chaperone heat shock protein-90 (Hsp90) plays a critical role in allowing NPM-ALK and other signalling proteins to function in this lymphoma. Co-chaperone proteins are important for helping Hsp90 fold proteins and for directing Hsp90 to specific clients; however the importance of co-chaperone proteins in ALK+ ALCL has not been investigated. Our preliminary findings suggested that expression of the immunophilin co-chaperone, Cyclophilin 40 (Cyp40), is up-regulated in ALK+ ALCL by JunB, a transcription factor activated by NPM-ALK signalling. In this study we examined the regulation of the immunophilin family of co-chaperones by NPM-ALK and JunB, and investigated whether the immunophilin co-chaperones promote the viability of ALK+ ALCL cell lines. NPM-ALK and JunB were knocked-down in ALK+ ALCL cell lines with siRNA, and the effect on the expression of the three immunophilin co-chaperones: Cyp40, FK506-binding protein (FKBP) 51, and FKBP52 examined. Furthermore, the effect of knock-down of the immunophilin co-chaperones, either individually or in combination, on the viability of ALK+ ALCL cell lines and NPM-ALK levels and activity was also examined. We found that NPM-ALK promoted the transcription of Cyp40 and FKBP52, but only Cyp40 transcription was promoted by JunB. We also observed reduced viability of ALK+ ALCL cell lines treated with Cyp40 siRNA, but not with siRNAs directed against FKBP52 or FKBP51. Finally, we demonstrate that the decrease in the viability of ALK+ ALCL cell lines treated with Cyp40 siRNA does not appear to be due to a decrease in NPM-ALK levels or the

  3. A patient previously treated with ALK inhibitors for central nervous system lesions from ALK rearranged lung cancer: a case report

    PubMed Central

    Kashima, Jumpei; Okuma, Yusuke; Hishima, Tsunekazu

    2016-01-01

    Background Patients with anaplastic lymphoma kinase (ALK)-rearranged non-small-cell lung cancer (NSCLC) are now preferentially treated with tyrosine kinase inhibitors (TKIs). However, patients treated with ALK inhibitors end up with acquired resistance. Case presentation We present a patient with recurrent ALK-rearranged NSCLC that developed multiple brain metastases and meningitis carcinomatosa after sequential treatment with several lines of cytotoxic chemotherapy, crizotinib, and alectinib. After the patient underwent retreatment with crizotinib as salvage therapy because of poor performance status, the intracranial metastatic foci and meningeal thickening were shrank within 1 week. Conclusion Our experience with this case suggests that alectinib may restore sensitivity to crizotinib or amplified pathway such as MET which bestowed alectinib resistance was inhibited with crizotinib. PMID:27785052

  4. Functional domains of plant chimeric calcium/calmodulin-dependent protein kinase: regulation by autoinhibitory and visinin-like domains

    NASA Technical Reports Server (NTRS)

    Ramachandiran, S.; Takezawa, D.; Wang, W.; Poovaiah, B. W.

    1997-01-01

    A novel calcium-binding calcium/calmodulin-dependent protein kinase (CCaMK) with a catalytic domain, calmodulin-binding domain, and a neural visinin-like domain was cloned and characterized from plants [Patil et al., (1995) Proc. Natl. Acad. Sci. USA 92, 4797-4801; Takezawa et al. (1996) J. Biol. Chem. 271, 8126-8132]. The mechanisms of CCaMK activation by calcium and calcium/calmodulin were investigated using various deletion mutants. The use of deletion mutants of CCaMK lacking either one, two, or all three calcium-binding EF hands indicated that all three calcium-binding sites in the visinin-like domain were crucial for the full calcium/calmodulin-dependent kinase activity. As each calcium-binding EF hand was deleted, there was a gradual reduction in calcium/calmodulin-dependent kinase activity from 100 to 4%. Another mutant (amino acids 1-322) which lacks both the visinin-like domain containing three EF hands and the calmodulin-binding domain was constitutively active, indicating the presence of an autoinhibitory domain around the calmodulin-binding domain. By using various synthetic peptides and the constitutively active mutant, we have shown that CCaMK contains an autoinhibitory domain within the residues 322-340 which overlaps its calmodulin-binding domain. Kinetic studies with both ATP and the GS peptide substrate suggest that the autoinhibitory domain of CCaMK interacts only with the peptide substrate binding motif of the catalytic domain, but not with the ATP-binding motif.

  5. Functional domains of plant chimeric calcium/calmodulin-dependent protein kinase: regulation by autoinhibitory and visinin-like domains

    NASA Technical Reports Server (NTRS)

    Ramachandiran, S.; Takezawa, D.; Wang, W.; Poovaiah, B. W.

    1997-01-01

    A novel calcium-binding calcium/calmodulin-dependent protein kinase (CCaMK) with a catalytic domain, calmodulin-binding domain, and a neural visinin-like domain was cloned and characterized from plants [Patil et al., (1995) Proc. Natl. Acad. Sci. USA 92, 4797-4801; Takezawa et al. (1996) J. Biol. Chem. 271, 8126-8132]. The mechanisms of CCaMK activation by calcium and calcium/calmodulin were investigated using various deletion mutants. The use of deletion mutants of CCaMK lacking either one, two, or all three calcium-binding EF hands indicated that all three calcium-binding sites in the visinin-like domain were crucial for the full calcium/calmodulin-dependent kinase activity. As each calcium-binding EF hand was deleted, there was a gradual reduction in calcium/calmodulin-dependent kinase activity from 100 to 4%. Another mutant (amino acids 1-322) which lacks both the visinin-like domain containing three EF hands and the calmodulin-binding domain was constitutively active, indicating the presence of an autoinhibitory domain around the calmodulin-binding domain. By using various synthetic peptides and the constitutively active mutant, we have shown that CCaMK contains an autoinhibitory domain within the residues 322-340 which overlaps its calmodulin-binding domain. Kinetic studies with both ATP and the GS peptide substrate suggest that the autoinhibitory domain of CCaMK interacts only with the peptide substrate binding motif of the catalytic domain, but not with the ATP-binding motif.

  6. Oncogenic TPM3-ALK activation requires dimerization through the coiled-coil structure of TPM3

    SciTech Connect

    Amano, Yosuke; Ishikawa, Rie; Sakatani, Toshio; Ichinose, Junji; Sunohara, Mitsuhiro; Watanabe, Kousuke; Kage, Hidenori; Nakajima, Jun; Nagase, Takahide; Ohishi, Nobuya; Takai, Daiya

    2015-02-13

    Inflammatory myofibroblastic tumor (IMT) is a mesenchymal tumor that can arise from anywhere in the body. Anaplastic lymphoma kinase (ALK) gene rearrangements, most often resulting in the tropomyosin 3 (TPM3)-ALK fusion gene, are the main causes of IMT. However, the mechanism of malignant transformation in IMT has yet to be elucidated. The purpose of this study was to clarify the role of the TPM3 region in the transformation of IMT via TPM3-ALK. Lentivirus vectors containing a TPM3-ALK fusion gene lacking various lengths of TPM3 were constructed and expressed in HEK293T and NIH3T3 cell lines. Focus formation assay revealed loss of contact inhibition in NIH3T3 cells transfected with full-length TPM3-ALK, but not with ALK alone. Blue-native polyacrylamide gel electrophoresis (BN-PAGE) revealed that TPM3-ALK dimerization increased in proportion to the length of TPM3. Western blot showed phosphorylation of ALK, ERK1/2, and STAT3 in HEK293T cells transfected with TPM3-ALK. Thus, the coiled-coil structure of TPM3 contributes to the transforming ability of the TPM3-ALK fusion protein, and longer TPM3 region leads to higher dimer formation. - Highlights: • TPM3-ALK fusion protein dimerizes through the coiled-coil structure of TPM3. • Longer coiled-coil structure of TPM3 leads to higher TPM3-ALK dimer formation. • Presence of TPM3-ALK dimer leads to ALK, STAT3, and ERK1/2 phosphorylation. • Presence of TPM3-ALK leads to loss of contact inhibition. • BN-PAGE is a simple technique for visualizing oncogenic dimerization.

  7. Prospective and clinical validation of ALK immunohistochemistry: results from the phase I/II study of alectinib for ALK-positive lung cancer (AF-001JP study)

    PubMed Central

    Takeuchi, K.; Togashi, Y.; Kamihara, Y.; Fukuyama, T.; Yoshioka, H.; Inoue, A.; Katsuki, H.; Kiura, K.; Nakagawa, K.; Seto, T.; Maemondo, M.; Hida, T.; Harada, M.; Ohe, Y.; Nogami, N.; Yamamoto, N.; Nishio, M.; Tamura, T.

    2016-01-01

    Background Anaplastic lymphoma kinase (ALK) fusions need to be accurately and efficiently detected for ALK inhibitor therapy. Fluorescence in situ hybridization (FISH) remains the reference test. Although increasing data are supporting that ALK immunohistochemistry (IHC) is highly concordant with FISH, IHC screening needed to be clinically and prospectively validated. Patients and methods In the AF-001JP trial for alectinib, 436 patients were screened for ALK fusions through IHC (n = 384) confirmed with FISH (n = 181), multiplex RT-PCR (n = 68), or both (n = 16). IHC results were scored with iScore. Result ALK fusion was positive in 137 patients and negative in 250 patients. Since the presence of cancer cells in the samples for RT-PCR was not confirmed, ALK fusion negativity could not be ascertained in 49 patients. IHC interpreted with iScore showed a 99.4% (173/174) concordance with FISH. All 41 patients who had iScore 3 and were enrolled in phase II showed at least 30% tumor reduction with 92.7% overall response rate. Two IHC-positive patients with an atypical FISH pattern responded to ALK inhibitor therapy. The reduction rate was not correlated with IHC staining intensity. Conclusions Our study showed (i) that when sufficiently sensitive and appropriately interpreted, IHC can be a stand-alone diagnostic for ALK inhibitor therapies; (ii) that when atypical FISH patterns are accompanied by IHC positivity, the patients should be considered as candidates for ALK inhibitor therapies, and (iii) that the expression level of ALK fusion is not related to the level of response to ALK inhibitors and is thus not required for patient selection. Registration number JapicCTI-101264 (This study is registered with the Japan Pharmaceutical Information Center). PMID:26487585

  8. RecA stimulates AlkB-mediated direct repair of DNA adducts

    PubMed Central

    Shivange, Gururaj; Monisha, Mohan; Nigam, Richa; Kodipelli, Naveena; Anindya, Roy

    2016-01-01

    The Escherichia coli AlkB protein is a 2-oxoglutarate/Fe(II)-dependent demethylase that repairs alkylated single stranded and double stranded DNA. Immunoaffinity chromatography coupled with mass spectrometry identified RecA, a key factor in homologous recombination, as an AlkB-associated protein. The interaction between AlkB and RecA was validated by yeast two-hybrid assay; size-exclusion chromatography and standard pull down experiment and was shown to be direct and mediated by the N-terminal domain of RecA. RecA binding results AlkB–RecA heterodimer formation and RecA–AlkB repairs alkylated DNA with higher efficiency than AlkB alone. PMID:27378775

  9. Detection of ALK rearrangements in lung cancer patients using a homebrew PCR assay.

    PubMed

    Yu, Hui; Chang, JianHua; Liu, Fang; Wang, Qifeng; Lu, YongMing; Zhang, ZhuanXu; Shen, Jiabing; Zhai, Qing; Meng, Xia; Wang, Jialei; Ye, Xun

    2017-01-31

    Lung cancer patients with anaplastic lymphoma kinase (ALK) rearrangements are candidates for targeted therapeutics. However, patients must be tested with a companion diagnostic assay to realize their ALK rearrangement status. We analyzed the publicly available E-GEOD-31210 microarray dataset and identified a non-coding RNA, sweyjawbu, which is strongly associated with ALK rearrangements. We validated these results using quantitative real-time PCR in an independent cohort consisting of 4 cell lines and 83 clinical samples. We could differentiate between ALK rearrangement-positive and -negative lung cancer samples by comparing sweyjawbu expression. Additionally, ALK rearrangement status was determined by comparing the expression of the 5' and 3' regions of the ALK transcript or by detecting known ALK hybrid subtypes. Thus, using our homebrew PCR assay, we were able to accurately detect ALK rearrangements, which could be used for diagnostic screening of lung cancer patients. The prototype could potentially be transferred to an automatic multiplex PCR platform (FilmArray) to differentiate between ALK rearrangement-positive and -negative patients in point-of-care settings.

  10. Novel CAD-ALK gene rearrangement is drugable by entrectinib in colorectal cancer

    PubMed Central

    Amatu, Alessio; Somaschini, Alessio; Cerea, Giulio; Bosotti, Roberta; Valtorta, Emanuele; Buonandi, Pasquale; Marrapese, Giovanna; Veronese, Silvio; Luo, David; Hornby, Zachary; Multani, Pratik; Murphy, Danielle; Shoemaker, Robert; Lauricella, Calogero; Giannetta, Laura; Maiolani, Martina; Vanzulli, Angelo; Ardini, Elena; Galvani, Arturo; Isacchi, Antonella; Sartore-Bianchi, Andrea; Siena, Salvatore

    2015-01-01

    Background: Activated anaplastic lymphoma kinase (ALK) gene fusions are recurrent events in a small fraction of colorectal cancers (CRCs), although these events have not yet been exploited as in other malignancies. Methods: We detected ALK protein expression by immunohistochemistry and gene rearrangements by fluorescence in situ hybridisation in the ALKA-372-001 phase I study of the pan-Trk, ROS1, and ALK inhibitor entrectinib. One out of 487 CRCs showed ALK positivity with a peculiar pattern that prompted further characterisation by targeted sequencing using anchored multiplex PCR. Results: A novel ALK fusion with the carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) gene (CAD-ALK fusion gene) was identified. It resulted from inversion within chromosome 2 and the fusion of exons 1–35 of CAD with exons 20–29 of ALK. After failure of previous standard therapies, treatment of this patient with the ALK inhibitor entrectinib resulted in a durable objective tumour response. Conclusions: We describe the novel CAD-ALK rearrangement as an oncogene and provide the first evidence of its drugability as a new molecular target in CRC. PMID:26633560

  11. Allosteric inhibition of Aurora-A kinase by a synthetic vNAR domain.

    PubMed

    Burgess, Selena G; Oleksy, Arkadiusz; Cavazza, Tommaso; Richards, Mark W; Vernos, Isabelle; Matthews, David; Bayliss, Richard

    2016-07-01

    The vast majority of clinically approved protein kinase inhibitors target the ATP-binding pocket directly. Consequently, many inhibitors have broad selectivity profiles and most have significant off-target effects. Allosteric inhibitors are generally more selective, but are difficult to identify because allosteric binding sites are often unknown or poorly characterized. Aurora-A is activated through binding of TPX2 to an allosteric site on the kinase catalytic domain, and this knowledge could be exploited to generate an inhibitor. Here, we generated an allosteric inhibitor of Aurora-A kinase based on a synthetic, vNAR single domain scaffold, vNAR-D01. Biochemical studies and a crystal structure of the Aurora-A/vNAR-D01 complex show that the vNAR domain overlaps with the TPX2 binding site. In contrast with the binding of TPX2, which stabilizes an active conformation of the kinase, binding of the vNAR domain stabilizes an inactive conformation, in which the αC-helix is distorted, the canonical Lys-Glu salt bridge is broken and the regulatory (R-) spine is disrupted by an additional hydrophobic side chain from the activation loop. These studies illustrate how single domain antibodies can be used to characterize the regulatory mechanisms of kinases and provide a rational basis for structure-guided design of allosteric Aurora-A kinase inhibitors.

  12. Allosteric inhibition of Aurora-A kinase by a synthetic vNAR domain

    PubMed Central

    Burgess, Selena G.; Oleksy, Arkadiusz; Cavazza, Tommaso; Richards, Mark W.; Vernos, Isabelle; Matthews, David

    2016-01-01

    The vast majority of clinically approved protein kinase inhibitors target the ATP-binding pocket directly. Consequently, many inhibitors have broad selectivity profiles and most have significant off-target effects. Allosteric inhibitors are generally more selective, but are difficult to identify because allosteric binding sites are often unknown or poorly characterized. Aurora-A is activated through binding of TPX2 to an allosteric site on the kinase catalytic domain, and this knowledge could be exploited to generate an inhibitor. Here, we generated an allosteric inhibitor of Aurora-A kinase based on a synthetic, vNAR single domain scaffold, vNAR-D01. Biochemical studies and a crystal structure of the Aurora-A/vNAR-D01 complex show that the vNAR domain overlaps with the TPX2 binding site. In contrast with the binding of TPX2, which stabilizes an active conformation of the kinase, binding of the vNAR domain stabilizes an inactive conformation, in which the αC-helix is distorted, the canonical Lys-Glu salt bridge is broken and the regulatory (R-) spine is disrupted by an additional hydrophobic side chain from the activation loop. These studies illustrate how single domain antibodies can be used to characterize the regulatory mechanisms of kinases and provide a rational basis for structure-guided design of allosteric Aurora-A kinase inhibitors. PMID:27411893

  13. The mobility of two kinase domains in the Escherichia coli chemoreceptor array varies with signaling state

    PubMed Central

    Briegel, Ariane; Ames, Peter; Gumbart, James C.; Oikonomou, Catherine M.; Parkinson, John S.; Jensen, Grant J.

    2013-01-01

    Summary Motile bacteria sense their physical and chemical environment through highly cooperative, ordered arrays of chemoreceptors. These signaling complexes phosphorylate a response regulator which in turn governs flagellar motor reversals, driving cells towards favorable environments. The structural changes that translate chemoeffector binding into the appropriate kinase output are not known. Here, we apply high-resolution electron cryotomography to visualize mutant chemoreceptor signaling arrays in well-defined kinase activity states. The arrays were well ordered in all signaling states, with no discernible differences in receptor conformation at 2-3 nm resolution. Differences were observed, however, in a keel-like density that we identify here as CheA kinase domains P1 and P2, which are the phosphorylation site domain and the binding domain for response regulator target proteins, respectively. Mutant receptor arrays with high kinase activities all exhibited small keels and high proteolysis susceptibility, indicative of mobile P1 and P2 domains. In contrast, arrays in kinase-off signaling states exhibited a range of keel sizes. These findings confirm that chemoreceptor arrays do not undergo large structural changes during signaling, and suggest instead that kinase activity is modulated at least in part by changes in the mobility of key domains. PMID:23802570

  14. Insights into brain metastasis in patients with ALK+ lung cancer: is the brain truly a sanctuary?

    PubMed

    Toyokawa, Gouji; Seto, Takashi; Takenoyama, Mitsuhiro; Ichinose, Yukito

    2015-12-01

    Anaplastic lymphoma kinase (ALK) has been identified to exert a potent transforming activity through its rearrangement in non-small cell lung cancer (NSCLC), and patients (pts) with ALK rearrangement can be treated more successfully with ALK inhibitors, such as crizotinib, alectinib, and ceritinib, than with chemotherapy. Despite the excellent efficacy of ALK inhibitors, resistance to these drugs is inevitably encountered in most ALK-rearranged pts. Cases of resistance are subtyped into three groups, i.e., systemic, oligo, and central nervous system (CNS) types, with the CNS being used to be considered a sanctuary. With regard to the management of CNS lesions in pts with ALK+ NSCLC, a growing body of evidence has gradually demonstrated the intracranial (IC) efficacy of ALK inhibitor (ALKi) in ALK+ NSCLC pts with brain metastases (BMs). Although the efficacy of crizotinib for the CNS lesions remains controversial, a recent retrospective investigation of ALK+ pts with BM enrolled in PROFILE 1005 and PROFILE 1007 demonstrated that crizotinib is associated with a high disease control rate for BM. However, BM comprises the most common site of progressive disease in pts with or without baseline BMs, which is a serious problem for crizotinib. Furthermore, alectinib can be used to achieve strong and long-lasting inhibitory effects on BM. In addition to alectinib, the IC efficacy of other next-generation ALK inhibitors, such as ceritinib, AP26113 and PF-06463922, has been demonstrated. In this article, we review the latest evidence regarding the BM and IC efficacy of ALK inhibitors in pts with ALK+ NSCLC.

  15. The Rapamycin-Binding Domain of the Protein Kinase mTOR is a Destabilizing Domain*

    PubMed Central

    Edwards, Sarah R.; Wandless, Thomas J.

    2013-01-01

    Rapamycin is an immunosuppressive drug that binds simultaneously to the 12-kDa FK506- and rapamycin-binding protein (FKBP12, or FKBP) and the FKBP-rapamycin binding domain (FRB) of the mammalian target of rapamycin (mTOR) kinase. The resulting ternary complex has been used to conditionally perturb protein function, and one such method involves perturbation of a protein of interest through its mislocalization. We synthesized two rapamycin derivatives that possess large substituents at the C16 position within the FRB-binding interface, and these derivatives were screened against a library of FRB mutants using a three-hybrid assay in Saccharomyces cerevisiae. Several FRB mutants responded to one of the rapamycin derivatives, and twenty of these mutants were further characterized in mammalian cells. The mutants most responsive to the ligand were fused to yellow fluorescent protein, and fluorescence levels in the presence and absence of the ligand were measured to determine stability of the fusion proteins. Wild-type and mutant FRB domains were expressed at low levels in the absence of the rapamycin derivative, and expression levels rose up to ten-fold upon treatment with ligand. The synthetic rapamycin derivatives were further analyzed using quantitative mass spectrometry, and one of the compounds was found to contain contaminating rapamycin. Furthermore, uncontaminated analogs retain the ability to inhibit mTOR, albeit with diminished potency relative to rapamycin. The ligand-dependent stability displayed by wildtype FRB and FRB mutants as well as the inhibitory potential and purity of the rapamycin derivatives should be considered as potentially confounding experimental variables when using these systems. PMID:17350953

  16. Molecular determinants of KA1 domain-mediated autoinhibition and phospholipid activation of MARK1 kinase

    PubMed Central

    Emptage, Ryan P.; Lemmon, Mark A.; Ferguson, Kathryn M.

    2017-01-01

    Protein kinases are frequently regulated by intramolecular autoinhibitory interactions between protein modules that are reversed when these modules bind other ‘activating’ protein or membrane-bound targets. One group of kinases, the MAP/microtubule affinity-regulating kinases (MARKs) contain a poorly understood regulatory module, the KA1 (kinase associated-1) domain, at their C-terminus. KA1 domains from MARK1 and several related kinases from yeast to humans have been shown to bind membranes containing anionic phospholipids, and peptide ligands have also been reported. Deleting or mutating the C-terminal KA1 domain has been reported to activate the kinase in which it is found — also suggesting an intramolecular autoinhibitory role. Here, we show that the KA1 domain of human MARK1 interacts with, and inhibits, the MARK1 kinase domain. Using site-directed mutagenesis, we identify residues in the KA1 domain required for this auto-inhibitory activity, and find that residues involved in autoinhibition and in anionic phospholipid binding are the same. We also demonstrate that a ‘mini’ MARK1 becomes activated upon association with vesicles containing anionic phospholipids, but only if the protein is targeted to these vesicles by a second signal. These studies provide a mechanistic basis for understanding how MARK1 and its relatives may require more than one signal at the membrane surface to control their activation at the correct location and time. MARK family kinases have been implicated in a plethora of disease states including Alzheimer’s, cancer, and autism, so advancing our understanding of their regulatory mechanisms may ultimately have therapeutic value. PMID:27879374

  17. Crystal structure of the kinase domain of serum and glucocorticoid-regulated kinase 1 in complex with AMP PNP.

    PubMed

    Zhao, Baoguang; Lehr, Ruth; Smallwood, Angela M; Ho, Thau F; Maley, Kathleen; Randall, Tanya; Head, Martha S; Koretke, Kristin K; Schnackenberg, Christine G

    2007-12-01

    Serum and glucocorticoid-regulated kinase 1 (SGK1) is a serine/threonine protein kinase of the AGC family which participates in the control of epithelial ion transport and is implicated in proliferation and apoptosis. We report here the 1.9 A crystal structure of the catalytic domain of inactive human SGK1 in complex with AMP-PNP. SGK1 exists as a dimer formed by two intermolecular disulfide bonds between Cys258 in the activation loop and Cys193. Although most of the SGK1 structure closely resembles the common protein kinase fold, the structure around the active site is unique when compared to most protein kinases. The alphaC helix is not present in this inactive form of SGK1 crystal structure; instead, the segment corresponding to the C helix forms a beta-strand that is stabilized by the N-terminal segment of the activation loop through a short antiparallel beta-sheet. Since the differences from other kinases occur around the ATP binding site, this structure can provide valuable insight into the design of selective and highly potent ATP-competitive inhibitors of SGK1 kinase.

  18. Crystallization of the Focal Adhesion Kinase Targeting (FAT) Domain in a Primitive Orthorhombic Space Group

    SciTech Connect

    Magis,A.; Bailey, K.; Kurenova, E.; Hernandez Prada, J.; Cance, W.; Ostrov, D.

    2008-01-01

    X-ray diffraction data from the targeting (FAT) domain of focal adhesion kinase (FAK) were collected from a single crystal that diffracted to 1.99 Angstroms resolution and reduced to the primitive orthorhombic lattice. A single molecule was predicted to be present in the asymmetric unit based on the Matthews coefficient. The data were phased using molecular-replacement methods using an existing model of the FAK FAT domain. All structures of human focal adhesion kinase FAT domains solved to date have been solved in a C-centered orthorhombic space group.

  19. GTP binding to the ROC domain of DAP-kinase regulates its function through intramolecular signalling.

    PubMed

    Carlessi, Rodrigo; Levin-Salomon, Vered; Ciprut, Sara; Bialik, Shani; Berissi, Hanna; Albeck, Shira; Peleg, Yoav; Kimchi, Adi

    2011-09-01

    Death-associated protein kinase (DAPk) was recently suggested by sequence homology to be a member of the ROCO family of proteins. Here, we show that DAPk has a functional ROC (Ras of complex proteins) domain that mediates homo-oligomerization and GTP binding through a defined P-loop motif. Upon binding to GTP, the ROC domain negatively regulates the catalytic activity of DAPk and its cellular effects. Mechanistically, GTP binding enhances an inhibitory autophosphorylation at a distal site that suppresses kinase activity. This study presents a new mechanism of intramolecular signal transduction, by which GTP binding operates in cis to affect the catalytic activity of a distal domain in the protein.

  20. Diversity in domain architectures of Ser/Thr kinases and their homologues in prokaryotes

    PubMed Central

    Krupa, A; Srinivasan, N

    2005-01-01

    Background Ser/Thr/Tyr kinases (STYKs) commonly found in eukaryotes have been recently reported in many bacterial species. Recent studies elucidating their cellular functions have established their roles in bacterial growth and development. However functions of a large number of bacterial STYKs still remain elusive. The organisation of domains in a large dataset of bacterial STYKs has been investigated here in order to recognise variety in domain combinations which determine functions of bacterial STYKs. Results Using sensitive sequence and profile search methods, domain organisation of over 600 STYKs from 125 prokaryotic genomes have been examined. Kinase catalytic domains of STYKs tethered to a wide range of enzymatic domains such as phosphatases, HSP70, peptidyl prolyl isomerases, pectin esterases and glycoproteases have been identified. Such distinct preferences for domain combinations are not known to be present in either the Histidine kinase or the eukaryotic STYK families. Domain organisation of STYKs specific to certain groups of bacteria has also been noted in the current anlaysis. For example, Hydrophobin like domains in Mycobacterial STYK and penicillin binding domains in few STYKs of Gram-positive organisms and FHA domains in cyanobacterial STYKs. Homologues of characterised substrates of prokaryotic STYKs have also been identified. Conclusion The domains and domain architectures of most of the bacterial STYKs identified are very different from the known domain organisation in STYKs of eukaryotes. This observation highlights distinct biological roles of bacterial STYKs compared to eukaryotic STYKs. Bacterial STYKs reveal high diversity in domain organisation. Some of the modular organisations conserved across diverse bacterial species suggests their central role in bacterial physiology. Unique domain architectures of few other groups of STYKs reveal recruitment of functions specific to the species. PMID:16171520

  1. Novel receptor-like kinases in cacao contain PR-1 extracellular domains.

    PubMed

    Teixeira, Paulo José Pereira Lima; Costa, Gustavo Gilson Lacerda; Fiorin, Gabriel Lorencini; Pereira, Gonçalo Amarante Guimarães; Mondego, Jorge Maurício Costa

    2013-08-01

    Members of the pathogenesis-related protein 1 (PR-1) family are well-known markers of plant defence responses, forming part of the arsenal of the secreted proteins produced on pathogen recognition. Here, we report the identification of two cacao (Theobroma cacao L.) PR-1s that are fused to transmembrane regions and serine/threonine kinase domains, in a manner characteristic of receptor-like kinases (RLKs). These proteins (TcPR-1f and TcPR-1g) were named PR-1 receptor kinases (PR-1RKs). Phylogenetic analysis of RLKs and PR-1 proteins from cacao indicated that PR-1RKs originated from a fusion between sequences encoding PR-1 and the kinase domain of a LecRLK (Lectin Receptor-Like Kinase). Retrotransposition marks surround TcPR-1f, suggesting that retrotransposition was involved in the origin of PR-1RKs. Genes with a similar domain architecture to cacao PR-1RKs were found in rice (Oryza sativa), barrel medic (Medicago truncatula) and a nonphototrophic bacterium (Herpetosiphon aurantiacus). However, their kinase domains differed from those found in LecRLKs, indicating the occurrence of convergent evolution. TcPR-1g expression was up-regulated in the biotrophic stage of witches' broom disease, suggesting a role for PR-1RKs during cacao defence responses. We hypothesize that PR-1RKs transduce a defence signal by interacting with a PR-1 ligand. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  2. The structure of the PERK kinase domain suggests the mechanism for its activation

    PubMed Central

    Cui, Wenjun; Li, Jingzhi; Ron, David; Sha, Bingdong

    2011-01-01

    The endoplasmic reticulum (ER) unfolded protein response (UPR) is comprised of several intracellular signaling pathways that alleviate ER stress. The ER-localized transmembrane kinase PERK is one of three major ER stress transducers. Oligomerization of PERK’s N-terminal ER luminal domain by ER stress promotes PERK trans-autophosphorylation of the C-terminal cytoplasmic kinase domain at multiple residues including Thr980 on the kinase activation loop. Activated PERK phosphorylates Ser51 of the α-subunit of translation initiation factor 2 (eIF2α), which inhibits initiation of protein synthesis and reduces the load of unfolded proteins entering the ER. The crystal structure of PERK’s kinase domain has been determined to 2.8 Å resolution. The structure resembles the back-to-back dimer observed in the related eIF2α kinase PKR. Phosphorylation of Thr980 stabilizes both the activation loop and helix αG in the C-terminal lobe, preparing the latter for eIF2α binding. The structure suggests conservation in the mode of activation of eIF2α kinases and is consistent with a ‘line-up’ model for PERK activation triggered by oligomerization of its luminal domain. PMID:21543844

  3. ASCEND-8: A Randomized Phase 1 Study of Ceritinib, 450 mg or 600 mg, Taken with a Low-Fat Meal versus 750 mg in Fasted State in Patients with Anaplastic Lymphoma Kinase (ALK)-Rearranged Metastatic Non-Small Cell Lung Cancer (NSCLC).

    PubMed

    Cho, Byoung Chul; Kim, Dong-Wan; Bearz, Alessandra; Laurie, Scott A; McKeage, Mark; Borra, Gloria; Park, Keunchil; Kim, Sang-We; Ghosn, Marwan; Ardizzoni, Andrea; Maiello, Evaristo; Greystoke, Alastair; Yu, Richard; Osborne, Karen; Gu, Wen; Scott, Jeffrey W; Passos, Vanessa Q; Lau, Yvonne Y; Wrona, Anna

    2017-09-01

    Ceritinib, 750 mg fasted, is approved for treatment of patients with ALK receptor tyrosine kinase gene (ALK)-rearranged (ALK-positive) NSCLC previously treated with crizotinib. Part 1 of the ASCEND-8 study determined whether administering ceritinib, 450 mg or 600 mg, with a low-fat meal may enhance gastrointestinal (GI) tolerability versus 750 mg fasted in patients with ALK-positive NSCLC while maintaining similar exposure. ASCEND-8 is a multicenter, randomized, open-label, phase 1 study. Part 1 investigated the steady-state pharmacokinetics (PK) and safety of ceritinib, 450 mg or 600 mg, taken with a low-fat meal versus 750 mg fasted in patients with advanced ALK-positive NSCLC who were either treatment naive or pretreated with chemotherapy and/or crizotinib. Part 2 will assess efficacy and safety of ceritinib in treatment-naive patients. As of June 16, 2016, 137 patients were randomized (450 mg fed [n = 44], 600 mg fed [n = 47], and 750 mg fasted [n = 46]); 135 patients received ceritinib. Median follow-up duration was 4.14 months. At steady state, relative to 750 mg fasted, 450 mg with food demonstrated comparable PK as assessed by maximum (peak) concentration of drug in plasma and area under the plasma concentration-time curve from time zero to 24 hours, whereas 600 mg with food demonstrated approximately 25% higher PK. Relative to 750 mg fasted, 450 mg with food was associated with a lower proportion of patients with GI toxicities, mostly grade 1 (diarrhea [43.2%], nausea [29.5%], and vomiting [18.2%]); there were no grade 3 or 4 events, study drug discontinuations, or serious AEs due to GI toxicities. Ceritinib, 450 mg with food, had similar exposure and a more favorable GI safety profile than ceritinib, 750 mg in fasted patients with ALK-positive NSCLC. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  4. Bacterial expression, purification and preliminary kinetic description of the kinase domain of v-fps.

    PubMed

    Gish, G; McGlone, M L; Pawson, T; Adams, J A

    1995-06-01

    The gene coding for the tyrosine protein kinase domain of v-fps was subcloned into a plasmid vector expressing glutathione-S-transferase (GST). This new vector expresses a fusion protein in Escherichia coli composed of the kinase domain linked with GST at the N-terminus (GST-kin). A portion of the total expressed protein was soluble upon cell lysis and was purified by affinity chromatography using glutathione cross-linked agarose. GST-kin (M(r) 57,000) is a phosphoprotein as judged by 32P autoradiography, consistent with the known autophosphorylation site within the kinase core [Weinmaster et al. (1984) Cell, 37, 559-568]. Cleavage of the fusion protein with thrombin and purification on phosphocellulose resin yielded the pure kinase domain (M(r) 33,000). The activity of the kinase domain is indistinguishable from that of GST-kin using the peptide substrate EEEIYEEIE, indicating that N-terminal fusion has no effect on the kinase domain. GST-kin phosphorylates a second peptide, EAEIYEAIE, with improved catalytic efficiency. Initial velocity data are consistent with a random bireactant mechanism with no substrate synergism observed in the ternary complex. Steady-state kinetic analyses reveal that this peptide is phosphorylated, with a kcat of 3.6 s-1, a Kpeptide of 500 microM and a KATP of 250 microM. The expression, purification and preliminary kinetic analysis of the kinase domain of v-fps provide the first step in the application of structure-function studies for this oncoprotein.

  5. Managing Resistance to EFGR- and ALK-Targeted Therapies.

    PubMed

    Lovly, Christine M; Iyengar, Puneeth; Gainor, Justin F

    2017-01-01

    Targeted therapies have transformed the management of non-small cell lung cancer (NSCLC) and placed an increased emphasis on stratifying patients on the basis of genetic alterations in oncogenic drivers. To date, the best characterized molecular targets in NSCLC are the epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK). Despite steady advances in targeted therapies within these molecular subsets, however, acquired resistance to therapy is near universal. Recent preclinical models and translational efforts have provided critical insights into the molecular mechanisms of resistance to EGFR and ALK inhibitors. In this review, we present a framework for understanding resistance to targeted therapies. We also provide overviews of the molecular mechanisms of resistance and strategies to overcome resistance among EGFR-mutant and ALK-rearranged lung cancers. To date, these strategies have centered on the development of novel next-generation inhibitors, rationale combinations, and use of local ablative therapies, such as radiotherapy.

  6. Activated ALK Collaborates with MYCN in Neuroblastoma Pathogenesis

    PubMed Central

    Zhu, Shizhen; Lee, Jeong-Soo; Guo, Feng; Shin, Jimann; Perez-Atayde, Antonio R.; Kutok, Jeffery L.; Rodig, Scott J.; Neuberg, Donna S.; Helman, Daniel; Feng, Hui; Stewart, Rodney A.; Wang, Wenchao; George, Rani E.; Kanki, John P.; Look, A. Thomas

    2012-01-01

    SUMMARY Amplification of the MYCN oncogene in childhood neuroblastoma is often accompanied by mutational activation of ALK (anaplastic lymphoma kinase), suggesting their pathogenic cooperation. We generated a transgenic zebrafish model of neuroblastoma in which MYCN-induced tumors arise from a subpopulation of neuroblasts that migrate into the adrenal medulla analogue following organogenesis. Coexpression of activated ALK with MYCN in this model triples the disease penetrance and markedly accelerates tumor onset. MYCN overexpression induces adrenal sympathetic neuroblast hyperplasia, blocks chromaffin cell differentiation, and ultimately triggers a developmentally-timed apoptotic response in the hyperplastic sympathoadrenal cells. Coexpression of activated ALK with MYCN provides prosurvival signals that block this apoptotic response and allow continued expansion and oncogenic transformation of hyperplastic neuroblasts, thus promoting progression to neuroblastoma. PMID:22439933

  7. Structural Insights into the HWE Histidine Kinase Family: The Brucella Blue Light-Activated Histidine Kinase Domain.

    PubMed

    Rinaldi, Jimena; Arrar, Mehrnoosh; Sycz, Gabriela; Cerutti, María Laura; Berguer, Paula M; Paris, Gastón; Estrín, Darío Ariel; Martí, Marcelo Adrián; Klinke, Sebastián; Goldbaum, Fernando Alberto

    2016-03-27

    In response to light, as part of a two-component system, the Brucella blue light-activated histidine kinase (LOV-HK) increases its autophosphorylation, modulating the virulence of this microorganism. The Brucella histidine kinase (HK) domain belongs to the HWE family, for which there is no structural information. The HWE family is exclusively present in proteobacteria and usually coupled to a wide diversity of light sensor domains. This work reports the crystal structure of the Brucella HK domain, which presents two different dimeric assemblies in the asymmetric unit: one similar to the already described canonical parallel homodimers (C) and the other, an antiparallel non-canonical (NC) dimer, each with distinct relative subdomain orientations and dimerization interfaces. Contrary to these crystallographic structures and unlike other HKs, in solution, the Brucella HK domain is monomeric and still active, showing an astonishing instability of the dimeric interface. Despite this instability, using cross-linking experiments, we show that the C dimer is the functionally relevant species. Mutational analysis demonstrates that the autophosphorylation activity occurs in cis. The different relative subdomain orientations observed for the NC and C states highlight the large conformational flexibility of the HK domain. Through the analysis of these alternative conformations by means of molecular dynamics simulations, we also propose a catalytic mechanism for Brucella LOV-HK.

  8. USP15 targets ALK3/BMPR1A for deubiquitylation to enhance bone morphogenetic protein signalling

    PubMed Central

    Herhaus, Lina; Al-Salihi, Mazin A.; Dingwell, Kevin S.; Cummins, Timothy D.; Wasmus, Lize; Vogt, Janis; Ewan, Richard; Bruce, David; Macartney, Thomas; Weidlich, Simone; Smith, James C.; Sapkota, Gopal P.

    2014-01-01

    Protein kinase ALK3/BMPR1A mediates bone morphogenetic protein (BMP) signalling through phosphorylation and activation of SMADs 1/5/8. SMAD6, a transcriptional target of BMP, negatively regulates the BMP pathway by recruiting E3 ubiquitin ligases and targeting ALK3 for ubiquitin-mediated degradation. Here, we identify a deubiquitylating enzyme USP15 as an interactor of SMAD6 and ALK3. We show that USP15 enhances BMP-induced phosphorylation of SMAD1 by interacting with and deubiquitylating ALK3. RNAi-mediated depletion of USP15 increases ALK3 K48-linked polyubiquitylation, and reduces both BMP-induced SMAD1 phosphorylation and transcription of BMP target genes. We also show that loss of USP15 expression from mouse myoblast cells inhibits BMP-induced osteoblast differentiation. Furthermore, USP15 modulates BMP-induced phosphorylation of SMAD1 and transcription during Xenopus embryogenesis. PMID:24850914

  9. USP15 targets ALK3/BMPR1A for deubiquitylation to enhance bone morphogenetic protein signalling.

    PubMed

    Herhaus, Lina; Al-Salihi, Mazin A; Dingwell, Kevin S; Cummins, Timothy D; Wasmus, Lize; Vogt, Janis; Ewan, Richard; Bruce, David; Macartney, Thomas; Weidlich, Simone; Smith, James C; Sapkota, Gopal P

    2014-05-01

    Protein kinase ALK3/BMPR1A mediates bone morphogenetic protein (BMP) signalling through phosphorylation and activation of SMADs 1/5/8. SMAD6, a transcriptional target of BMP, negatively regulates the BMP pathway by recruiting E3 ubiquitin ligases and targeting ALK3 for ubiquitin-mediated degradation. Here, we identify a deubiquitylating enzyme USP15 as an interactor of SMAD6 and ALK3. We show that USP15 enhances BMP-induced phosphorylation of SMAD1 by interacting with and deubiquitylating ALK3. RNAi-mediated depletion of USP15 increases ALK3 K48-linked polyubiquitylation, and reduces both BMP-induced SMAD1 phosphorylation and transcription of BMP target genes. We also show that loss of USP15 expression from mouse myoblast cells inhibits BMP-induced osteoblast differentiation. Furthermore, USP15 modulates BMP-induced phosphorylation of SMAD1 and transcription during Xenopus embryogenesis.

  10. Polo-box domain: a versatile mediator of polo-like kinase function.

    PubMed

    Park, Jung-Eun; Soung, Nak-Kyun; Johmura, Yoshikazu; Kang, Young H; Liao, Chenzhong; Lee, Kyung H; Park, Chi Hoon; Nicklaus, Marc C; Lee, Kyung S

    2010-06-01

    Members of the polo subfamily of protein kinases have emerged as important regulators in diverse aspects of the cell cycle and cell proliferation. A large body of evidence suggests that a highly conserved polo-box domain (PBD) present in the C-terminal non-catalytic region of polo kinases plays a pivotal role in the function of these enzymes. Recent advances in our comprehension of the mechanisms underlying mammalian polo-like kinase 1 (Plk1)-dependent protein-protein interactions revealed that the PBD serves as an essential molecular mediator that brings the kinase domain of Plk1 into proximity with its substrates, mainly through phospho-dependent interactions with its target proteins. In this review, current understanding of the structure and functions of PBD, mode of PBD-dependent interactions and substrate phosphorylation, and other phospho-independent functions of PBD are discussed.

  11. Polo-Box Domain: a versatile mediator of polo-like kinase function

    PubMed Central

    Park, Jung-Eun; Soung, Nak-Kyun; Yoshikazu, Johmura; Kang, Young H.; Liao, Chenzhong; Lee, Kyung H.; Park, Chi Hoon; Nicklaus, Marc C.; Lee, Kyung S.

    2010-01-01

    Members of the polo subfamily of protein kinases have emerged as important regulators in diverse aspects of the cell cycle and cell proliferation. A large body of evidence suggests that a highly conserved polo-box domain (PBD) present in the C-terminal non-catalytic region of polo kinases play a pivotal role in the function of these enzymes. Recent advances in our comprehension of the mechanisms underlying mammalian polo-like kinase 1 (Plk1)-dependent protein-protein interactions revealed that the PBD serves as an essential molecular mediator that brings the kinase domain of Plk1 in proximity with its substrates mainly through phospho-dependent interactions with its target proteins. In this review, current understanding of the structure and functions of PBD, mode of PBD-dependent interactions and substrate phosphorylation, and other phospho-independent functions of PBD are discussed. PMID:20148280

  12. Clinical outcomes of advanced non-small-cell lung cancer patients with EGFR mutation, ALK rearrangement and EGFR/ALK co-alterations

    PubMed Central

    Chen, Hua-Jun; Zhou, Qing; Yan, Li-Xu; Xie, Zhi; Su, Jian; Chen, Zhi-Hong; Tu, Hai-Yan; Yan, Hong-Hong; Wang, Zhen; Xu, Chong-Rui; Jiang, Ben-Yuan; Wang, Bin-Chao; Bai, Xiao-Yan; Zhong, Wen-Zhao; Wu, Yi-Long; Yang, Jin-Ji

    2016-01-01

    The co-occurrence of epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements constitutes a rare molecular subtype of non-small-cell lung cancer (NSCLC). Herein, we assessed the clinical outcomes and incidence of acquired resistance to tyrosine kinase inhibitors (TKIs) in this subtype. So we enrolled 118 advanced NSCLC treated with TKIs. EGFR mutations and ALK rearrangements were detected by DNA sequencing or Scorpion amplification refractory mutation system and fluorescence in situ hybridization respectively. Immunohistochemistry was used to evaluate the activation of associated proteins. We found that nine in ten patients with EGFR/ALK co-alterations had good response with first-line EGFR TKI, and the objective response rate (ORR) of EGFR TKIs was 80% (8/10) for EGFR/ALK co-altered and 65.5% (55/84) for EGFR-mutant (P = 0.57), with a median progression-free survival (PFS) of 11.2 and 13.2 months, (hazard ratio [HR]=0.95, 95% [CI], 0.49-1.84, P= 0.87). ORR of crizotinib was 40% (2/5) for EGFR/ALK co-altered and 73.9% (17/23) for ALK-rearranged (P= 0.29), with a median PFS of 1.9 and 6.9 months (hazard ratio [HR], 0.40; 95% [CI] 0.15-1.10, P = 0.08). The median overall survival (OS) was 21.3, 23.7, and 18.5 months in EGFR-mutant, ALK-rearranged, and EGFR/ALK co-altered (P= 0.06), and there existed a statistically significant difference in OS between ALK-rearranged and EGFR/ALK co-altered (P=0.03). Taken together, the first-line EGFR-TKI might be the reasonable care for advanced NSCLC harbouring EGFR/ALK co-alterations, whether or nor to use sequential crizotinib should be guided by the status of ALK rearrangement and the relative level of phospho-EGFR and phospho-ALK. PMID:27533086

  13. Purification of catalytic domain of rat spleen p72syk kinase and its phosphorylation and activation by protein kinase C.

    PubMed Central

    Borowski, P; Heiland, M; Kornetzky, L; Medem, S; Laufs, R

    1998-01-01

    The catalytic domain of p72(syk) kinase (CDp72(syk)) was purified from a 30000 g particulate fraction of rat spleen. The purification procedure employed sequential chromatography on columns of DEAE-Sephacel and Superdex-200, and elution from HA-Ultrogel by chloride. The analysis of the final CDp72(syk) preparation by SDS/PAGE revealed a major silver-stained 40 kDa protein. The kinase was identified by covalent modification of its ATP-binding site with [14C]5'-fluorosulphonylbenzoyladenosine and by immunoblotting with a polyclonal antibody against the 'linker' region of p72(syk). By using poly(Glu4, Tyr1) as a substrate, the specific activity of the enzyme was determined as 18.5 nmol Pi/min per mg. Casein, histones H1 and H2B and myelin basic protein were efficiently phosphorylated by CDp72(syk). The kinase exhibited a limited ability to phosphorylate random polymers containing tyrosine residues. CDp72(syk) autophosphorylation activity was associated with an activation of the kinase towards exogenous substrates. The extent of activation was dependent on the substrates added. CDp72(syk) was phosphorylated by protein kinase C (PKC) on serine and threonine residues. With a newly developed assay method, we demonstrated that the PKC-mediated phosphorylation had a strong activating effect on the tyrosine kinase activity of CDp72(syk). Studies extended to conventional PKC isoforms revealed an isoform-dependent manner (alpha > betaI = betaII > gamma) of CDp72(syk) phosphorylation. The different phosphorylation efficiencies of the PKC isoforms closely correlated with the ability to enhance the tyrosine kinase activity. PMID:9531509

  14. Uterine ALK3 is essential during the window of implantation

    PubMed Central

    Monsivais, Diana; Clementi, Caterina; Peng, Jia; Titus, Mary M.; Barrish, James P.; Creighton, Chad J.; Lydon, John P.; DeMayo, Francesco J.; Matzuk, Martin M.

    2016-01-01

    The window of implantation is defined by the inhibition of uterine epithelial proliferation, structural epithelial cell remodeling, and attenuated estrogen (E2) response. These changes occur via paracrine signaling between the uterine epithelium and stroma. Because implantation defects are a major cause of infertility in women, identifying these signaling pathways will improve infertility interventions. Bone morphogenetic proteins (BMPs) are TGF-β family members that regulate the postimplantation and midgestation stages of pregnancy. In this study, we discovered that signaling via activin-like kinase 3 (ALK3/BMPR1A), a BMP type 1 receptor, is necessary for blastocyst attachment. Conditional knockout (cKO) of ALK3 in the uterus was obtained by producing Alk3flox/flox-Pgr-cre–positive females. Alk3 cKO mice are sterile and have defects in the luminal uterine epithelium, including increased microvilli density and maintenance of apical cell polarity. Moreover, Alk3 cKO mice exhibit an elevated uterine E2 response and unopposed epithelial cell proliferation during the window of implantation. We determined that dual transcriptional regulation of Kruppel-like factor 15 (Klf15), by both the transforming growth factor β (TGF-β) transcription factor SMAD family member 4 (SMAD4) and progesterone receptor (PR), is necessary to inhibit uterine epithelial cell proliferation, a key step for embryo implantation. Our findings present a convergence of BMP and steroid hormone signaling pathways in the regulation of uterine receptivity. PMID:26721398

  15. Uterine ALK3 is essential during the window of implantation.

    PubMed

    Monsivais, Diana; Clementi, Caterina; Peng, Jia; Titus, Mary M; Barrish, James P; Creighton, Chad J; Lydon, John P; DeMayo, Francesco J; Matzuk, Martin M

    2016-01-19

    The window of implantation is defined by the inhibition of uterine epithelial proliferation, structural epithelial cell remodeling, and attenuated estrogen (E2) response. These changes occur via paracrine signaling between the uterine epithelium and stroma. Because implantation defects are a major cause of infertility in women, identifying these signaling pathways will improve infertility interventions. Bone morphogenetic proteins (BMPs) are TGF-β family members that regulate the postimplantation and midgestation stages of pregnancy. In this study, we discovered that signaling via activin-like kinase 3 (ALK3/BMPR1A), a BMP type 1 receptor, is necessary for blastocyst attachment. Conditional knockout (cKO) of ALK3 in the uterus was obtained by producing Alk3(flox) (/flox)-Pgr-cre-positive females. Alk3 cKO mice are sterile and have defects in the luminal uterine epithelium, including increased microvilli density and maintenance of apical cell polarity. Moreover, Alk3 cKO mice exhibit an elevated uterine E2 response and unopposed epithelial cell proliferation during the window of implantation. We determined that dual transcriptional regulation of Kruppel-like factor 15 (Klf15), by both the transforming growth factor β (TGF-β) transcription factor SMAD family member 4 (SMAD4) and progesterone receptor (PR), is necessary to inhibit uterine epithelial cell proliferation, a key step for embryo implantation. Our findings present a convergence of BMP and steroid hormone signaling pathways in the regulation of uterine receptivity.

  16. Domain compatibility in Ire1 kinase is critical for the Unfolded Protein Response

    PubMed Central

    Poothong, Juthakorn; Sopha, Pattarawut; Kaufman, Randal J.; Tirasophon, Witoon

    2013-01-01

    The unfolded phrotein response is a mechanism to cope with endoplasmic reticulum stress. In Saccharomyces cerevisiae, Ire1 senses the stress and mediates a signaling cascade to upregulate responsive genes through an unusual HAC1 mRNA splicing. The splicing requires interconnected activity (kinase and endoribonuclease) of Ire1 to cleave HAC1 mRNA at the non-canonical splice sites before translation into Hac1 transcription factor. Analysis of the truncated kinase domain from Ire1 homologs revealed that this domain is highly conserved. Characterization by domain swapping indicated that a functional ATP/ADP binding domain is minimally required. However the overall domain compatibility is critical for eliciting its full endoribonuclease function. PMID:20541549

  17. Domain compatibility in Ire1 kinase is critical for the unfolded protein response.

    PubMed

    Poothong, Juthakorn; Sopha, Pattarawut; Kaufman, Randal J; Tirasophon, Witoon

    2010-07-16

    The unfolded protein response is a mechanism to cope with endoplasmic reticulum stress. In Saccharomyces cerevisiae, Ire1 senses the stress and mediates a signaling cascade to upregulate responsive genes through an unusual HAC1 mRNA splicing. The splicing requires interconnected activity (kinase and endoribonuclease (RNase)) of Ire1 to cleave HAC1 mRNA at the non-canonical splice sites before translation into Hac1 transcription factor. Analysis of the truncated kinase domain from Ire1 homologs revealed that this domain is highly conserved. Characterization by domain swapping indicated that a functional ATP/ADP binding domain is minimally required. However the overall domain compatibility is critical for eliciting its full RNase function.

  18. CNK and HYP form a discrete dimer by their SAM domains to mediate RAF kinase signaling.

    PubMed

    Rajakulendran, Thanashan; Sahmi, Malha; Kurinov, Igor; Tyers, Mike; Therrien, Marc; Sicheri, Frank

    2008-02-26

    RAF kinase functions in the mitogen-activated protein kinase (MAPK) pathway to transmit growth signals to the downstream kinases MEK and ERK. Activation of RAF catalytic activity is facilitated by a regulatory complex comprising the proteins CNK (Connector enhancer of KSR), HYP (Hyphen), and KSR (Kinase Suppressor of Ras). The sterile alpha-motif (SAM) domain found in both CNK and HYP plays an essential role in complex formation. Here, we have determined the x-ray crystal structure of the SAM domain of CNK in complex with the SAM domain of HYP. The structure reveals a single-junction SAM domain dimer of 1:1 stoichiometry in which the binding mode is a variation of polymeric SAM domain interactions. Through in vitro and in vivo mutational analyses, we show that the specific mode of dimerization revealed by the crystal structure is essential for RAF signaling and facilitates the recruitment of KSR to form the CNK/HYP/KSR regulatory complex. We present two docking-site models to account for how SAM domain dimerization might influence the formation of a higher-order CNK/HYP/KSR complex.

  19. The Unique Domain Forms a Fuzzy Intramolecular Complex in Src Family Kinases.

    PubMed

    Arbesú, Miguel; Maffei, Mariano; Cordeiro, Tiago N; Teixeira, João M C; Pérez, Yolanda; Bernadó, Pau; Roche, Serge; Pons, Miquel

    2017-03-16

    The N-terminal regulatory region of c-Src including the SH4, Unique, and SH3 domains adopts a compact, yet highly dynamic, structure that can be described as an intramolecular fuzzy complex. Most of the long-range interactions within the Unique domain are also observed in constructs lacking the structured SH3, indicating a considerable degree of preorganization of the disordered Unique domain. Here we report that members of the Src family of kinases (SFK) share well-conserved sequence features involving aromatic residues in their Unique domains. This observation contrasts with the supposed lack of sequence homology implied by the name of these domains and suggests that the other members of SFK also have a regulatory region involving their Unique domains. We argue that the Unique domain of each SFK is sensitive to specific input signals, encoded by each specific sequence, but the entire family shares a common mechanism for connecting the disordered and structured domains.

  20. TrkA is a binding partner of NPM-ALK that promotes the survival of ALK(+) T-cell lymphoma.

    PubMed

    Shi, Wenyu; George, Suraj Konnath; George, Bhawana; Curry, Choladda V; Murzabdillaeva, Albina; Alkan, Serhan; Amin, Hesham M

    2017-09-01

    Nucleophosmin-anaplastic lymphoma kinase-expressing (NPM-ALK(+) ) T-cell lymphoma is an aggressive neoplasm that is more commonly seen in children and young adults. The pathogenesis of NPM-ALK(+) T-cell lymphoma is not completely understood. Wild-type ALK is a receptor tyrosine kinase that is physiologically expressed in neural tissues during early stages of human development, which suggests that ALK may interact with neurotrophic factors. The aberrant expression of NPM-ALK results from a translocation between the ALK gene on chromosome 2p23 and the NPM gene on chromosome 5q35. The nerve growth factor (NGF) is the first neurotrophic factor attributed to non-neural functions including cancer cell survival, proliferation, and metastasis. These functions are primarily mediated through the tropomyosin receptor kinase A (TrkA). The expression and role of NGF/TrkA in NPM-ALK(+) T-cell lymphoma are not known. In this study, we tested the hypothesis that TrkA signaling is upregulated and sustains the survival of this lymphoma. Our data illustrate that TrkA and NGF are expressed in five NPM-ALK(+) T-cell lymphoma cell lines and TrkA is expressed in 11 of 13 primary lymphoma tumors from patients. In addition, we found evidence to support that NPM-ALK and TrkA functionally interact. A selective TrkA inhibitor induced apoptosis and decreased cell viability, proliferation, and colony formation of NPM-ALK(+) T-cell lymphoma cell lines. These effects were associated with downregulation of cell survival regulatory proteins. Similar results were also observed using specific knockdown of TrkA in NPM-ALK(+) T-cell lymphoma cells by siRNA. Importantly, the inhibition of TrkA signaling was associated with antitumor effects in vivo, because tumor xenografts in mice regressed and the mice exhibited improved survival. In conclusion, TrkA plays an important role in the pathogenesis of NPM-ALK(+) T-cell lymphoma, and therefore, targeting TrkA signaling may represent a novel approach to

  1. Precision medicine in NSCLC and pathology: how does ALK fit in the pathway?

    PubMed

    Kerr, K M; López-Ríos, F

    2016-09-01

    The evolution of personalised medicine in lung cancer has dramatically impacted diagnostic pathology. Current challenges centre on the growing demands placed on small tissue samples by molecular diagnostic techniques. In this review, expert recommendations are provided regarding successful identification of anaplastic lymphoma kinase (ALK)-rearranged non-small-cell lung cancer (NSCLC). Steps to correctly process and conserve tumour tissue during diagnostic testing are essential to ensure tissue availability. For example, storing extra tissue sections ready for molecular diagnostic steps allows faster testing and preserves tissue. Fluorescence in situ hybridisation (FISH) is commonly used to detect ALK rearrangements, with most laboratories favouring screening by immunohistochemistry followed by a confirmatory FISH assay. Reverse transcription-polymerase chain reaction can also identify ALK fusion gene mRNA transcripts but can be limited by the quality of RNA and the risk that rare fusion variants may not be captured. Next-generation sequencing (NGS) technology has recently provided an alternative method for detecting ALK rearrangements. While current experience is limited, NGS is set to become the most efficient approach as an increasing number of genetic abnormalities is required to be tested. Upfront, reflex testing for ALK gene rearrangement should become routine as ALK tyrosine kinase inhibitor therapy moves into the first-line setting. Guidelines recommend that EGFR and ALK tests are carried out in parallel on all confirmed and potential adenocarcinomas, and this is more efficient in terms of tissue usage and testing turnaround time for both of these actionable gene alterations. The practice of sequential testing is not recommended. Identification of ALK rearrangements is now essential for the diagnosis of NSCLC, underpinned by the benefits of ALK inhibitors. As scientific understanding and diagnostic technology develops, ALK testing will continue to be an

  2. Mutational analysis of the kinase domain of MYLK2 gene in common human cancers.

    PubMed

    Soung, Young Hwa; Lee, Jong Woo; Kim, Su Young; Nam, Suk Woo; Park, Won Sang; Lee, Jung Young; Yoo, Nam Jin; Lee, Sug Hyung

    2006-01-01

    Genetic alterations of the genes encoding protein kinases have been implicated in the development of human cancers. Myosin light chain kinase 2, skeletal muscle (MYLK2) encodes a calcium/calmodulin-dependent serine/threonine kinase. In a recent study, MYLK2 gene was somatically mutated in colorectal carcinomas. The aim of this study was to explore the possibility that other common human carcinomas besides colorectal carcinomas harbored MYLK2 mutations in the kinase domain. We analyzed exons 6 and 7 eccoding the kinase domain of MYLK2 for somatic mutations in 60 gastric, 104 colorectal, 79 non-small cell lung, and 54 breast cancers using a polymerase chain reaction (PCR)-based single-strand conformation polymorphism (SSCP). We found one MYLK2 mutation in lung adenocarcinomas, but not in other cancers. The MYLK2 mutation detected was a missense mutation that would substitute an amino acid (E374D) However, there was no somatic mutation of the MYLK2 gene. These data suggest that the kinase domain of MYLK2 is rarely mutated in common human carcinomas and that it does not play a dominant role in cancer pathogenesis.

  3. Cytomorphological features of ALK-positive lung adenocarcinomas: psammoma bodies and signet ring cells.

    PubMed

    Pareja, Fresia; Crapanzano, John P; Mansukhani, Mahesh M; Bulman, William A; Saqi, Anjali

    2015-03-01

    Correlation between histology and genotype has been described in lung adenocarcinomas. For example, studies have demonstrated that adenocarcinomas with an anaplastic lymphoma kinase (ALK) gene rearrangement may have mucinous features. The objective of the current study was to determine whether a similar association can be identified in cytological specimens. A retrospective search for ALK-rearranged cytopathology (CP) and surgical pathology (SP) lung carcinomas was conducted. Additional ALK-negative (-) lung adenocarcinomas served as controls. For CP and SP cases, the clinical data (i.e., age, sex, and smoking history), architecture, nuclear features, presence of mucin-containing cells (including signet ring cells), and any additional salient characteristics were evaluated. The search yielded 20 ALK-positive (+) adenocarcinomas. Compared with patients with ALK(-) lung adenocarcinomas (33 patients; 12 with epidermal growth factor receptor [EGFR]-mutation, 11 with Kristen rat sarcoma [KRAS]-mutation, and 10 wild-type adenocarcinomas), patients with ALK(+) adenocarcinoma presented at a younger age; and there was no correlation noted with sex or smoking status. The most common histological pattern in SP was papillary/micropapillary. Mucinous features were associated with ALK rearrangement in SP specimens. Signet ring cells and psammoma bodies were evident in and significantly associated with ALK(+) SP and CP specimens. However, psammoma bodies were observed in rare adenocarcinomas with an EGFR mutation. Both the ALK(+) and ALK(-) groups had mostly high nuclear grade. Salient features, including signet ring cells and psammoma bodies, were found to be significantly associated with ALK(+) lung adenocarcinomas and are identifiable on CP specimens. Recognizing these may be especially helpful in the molecular triage of scant CP samples. © 2014 American Cancer Society.

  4. Tackling ALK in non-small cell lung cancer: the role of novel inhibitors

    PubMed Central

    Facchinetti, Francesco; Di Maio, Massimo; Graziano, Paolo; Bria, Emilio; Rossi, Giulio; Novello, Silvia

    2016-01-01

    Crizotinib is an oral inhibitor of anaplastic lymphoma kinase (ALK) with remarkable clinical activity in patients suffering from ALK-rearranged non-small cell lung cancer (NSCLC), accounting to its superiority compared to chemotherapy. Unfortunately, virtually all ALK-rearranged tumors acquire resistance to crizotinib, frequently within one year since the treatment initiation. To date, therapeutic strategies to overcome crizotinib resistance have focused on the use of more potent and structurally different compounds. Second-generation ALK inhibitors such as ceritinib (LDK378), alectinib (CH5424802/RO5424802) and brigatinib (AP26113) have shown relevant clinical activity, consequently fostering their rapid clinical development and their approval by health agencies. The third-generation inhibitor lorlatinib (PF-06463922), selectively active against ALK and ROS1, harbors impressive biological potency; its efficacy in reversing resistance to crizotinib and to other ALK inhibitors is being proven by early clinical trials. The NTRK1-3 and ROS1 inhibitor entrectinib (RXDX-101) has been reported to act against NSCLC harboring ALK fusion proteins too. Despite the quick development of these novel agents, several issues remain to be discussed in the treatment of patients suffering from ALK-rearranged NSCLC. This position paper will discuss the development, the current evidence and approvals, as long as the future perspectives of new ALK inhibitors beyond crizotinib. Clinical behaviors of ALK-rearranged NSCLC vary significantly among patients and differential molecular events responsible of crizotinib resistance account for the most important quote of this heterogeneity. The precious availability of a wide range of active anti-ALK compounds should be approached in a critical and careful perspective, in order to develop treatment strategies tailored on the disease evolution of every single patient. PMID:27413712

  5. Tackling ALK in non-small cell lung cancer: the role of novel inhibitors.

    PubMed

    Facchinetti, Francesco; Tiseo, Marcello; Di Maio, Massimo; Graziano, Paolo; Bria, Emilio; Rossi, Giulio; Novello, Silvia

    2016-06-01

    Crizotinib is an oral inhibitor of anaplastic lymphoma kinase (ALK) with remarkable clinical activity in patients suffering from ALK-rearranged non-small cell lung cancer (NSCLC), accounting to its superiority compared to chemotherapy. Unfortunately, virtually all ALK-rearranged tumors acquire resistance to crizotinib, frequently within one year since the treatment initiation. To date, therapeutic strategies to overcome crizotinib resistance have focused on the use of more potent and structurally different compounds. Second-generation ALK inhibitors such as ceritinib (LDK378), alectinib (CH5424802/RO5424802) and brigatinib (AP26113) have shown relevant clinical activity, consequently fostering their rapid clinical development and their approval by health agencies. The third-generation inhibitor lorlatinib (PF-06463922), selectively active against ALK and ROS1, harbors impressive biological potency; its efficacy in reversing resistance to crizotinib and to other ALK inhibitors is being proven by early clinical trials. The NTRK1-3 and ROS1 inhibitor entrectinib (RXDX-101) has been reported to act against NSCLC harboring ALK fusion proteins too. Despite the quick development of these novel agents, several issues remain to be discussed in the treatment of patients suffering from ALK-rearranged NSCLC. This position paper will discuss the development, the current evidence and approvals, as long as the future perspectives of new ALK inhibitors beyond crizotinib. Clinical behaviors of ALK-rearranged NSCLC vary significantly among patients and differential molecular events responsible of crizotinib resistance account for the most important quote of this heterogeneity. The precious availability of a wide range of active anti-ALK compounds should be approached in a critical and careful perspective, in order to develop treatment strategies tailored on the disease evolution of every single patient.

  6. Comparison of methods in the detection of ALK and ROS1 rearrangements in lung cancer.

    PubMed

    Rogers, Toni-Maree; Russell, Prudence A; Wright, Gavin; Wainer, Zoe; Pang, Jia-Min; Henricksen, Leigh A; Singh, Shalini; Stanislaw, Stacey; Grille, James; Roberts, Esteban; Solomon, Benjamin; Fox, Stephen B

    2015-04-01

    The use of targeted therapies toward specific oncogenic driver mutations has become a critical factor in the treatment of patients with lung cancer. It is therefore essential to utilize tests with high performance characteristics. Fluorescence in situ hybridization (FISH) is the standard method for detecting anaplastic lymphoma kinase (ALK) and ROS1 rearrangements in non-small-cell lung cancer but the utility of other methods such as immunohistochemistry (IHC) and chromogenic in situ hybridization (CISH) is unclear. Three hundred and sixty-two lung cancer patients were tested with FISH, CISH, and IHC using three ALK antibodies (ALK1, 5A4, D5F3) and one ROS1 antibody in the detection of ALK and ROS1 rearrangements. There was a 97.4% concordance (298 of 306) between FISH and CISH for detection of ALK rearrangements. The ROS1 rearrangement status had a 97% (291 of 300) concordance between CISH and FISH. ALK protein expression was observed in 6 of 341 samples with the ALK1 and 5A4 antibodies and 5 of 341 samples with D5F3. All three antibodies stained each of the ALK FISH-positive samples (100% sensitivity). ROS1 protein expression was observed in 2 of 322 samples. One of three samples with a ROS1 rearrangement by FISH showed ROS1 protein expression (33.3% sensitivity). Our findings show good correlation between FISH versus CISH in the detection of ALK and ROS1 rearrangements. FISH versus IHC showed good correlation in the detection of ALK rearrangements but showed weak correlation in the detection of ROS1 rearrangements. These results suggest CISH and IHC could be complimentary detection methods to FISH in the detection of ALK and ROS1 rearrangements.

  7. Purification, crystallization and preliminary X-ray diffraction analysis of the kinase domain of human tousled-like kinase 2

    SciTech Connect

    Garrote, Ana M.; Redondo, Pilar; Montoya, Guillermo; Muñoz, Inés G.

    2014-02-19

    The C-terminal kinase domain of TLK2 (a human tousled-like kinase) has been cloned and overexpressed in Escherichia coli followed by purification to homogeneity. Crystallization experiments in the presence of ATP-γ-S yielded crystals suitable for X-ray diffraction analysis belonging to two different space groups: tetragonal I4{sub 1}22 and cubic P2{sub 1}3. Tousled-like kinases (TLKs) are an evolutionarily conserved family of serine/threonine protein kinases involved in chromatin dynamics, including DNA replication and repair, transcription and chromosome segregation. The two members of the family reported in humans, namely TLK1 and TLK2, localize to the cell nucleus and are capable of forming homo- or hetero-oligomers by themselves. To characterize the role of TLK2, its C-terminal kinase domain was cloned and overexpressed in Escherichia coli followed by purification to homogeneity. Crystallization experiments in the presence of ATP-γ-S yielded crystals suitable for X-ray diffraction analysis belonging to two different space groups: tetragonal I4{sub 1}22 and cubic P2{sub 1}3. The latter produced the best diffracting crystal (3.4 Å resolution using synchrotron radiation), with unit-cell parameters a = b = c = 126.05 Å, α = β = γ = 90°. The asymmetric unit contained one protein molecule, with a Matthews coefficient of 4.59 Å{sup 3} Da{sup −1} and a solvent content of 73.23%.

  8. Novel TRAF1-ALK fusion identified by deep RNA sequencing of anaplastic large cell lymphoma.

    PubMed

    Feldman, Andrew L; Vasmatzis, George; Asmann, Yan W; Davila, Jaime; Middha, Sumit; Eckloff, Bruce W; Johnson, Sarah H; Porcher, Julie C; Ansell, Stephen M; Caride, Ariel

    2013-11-01

    Chromosomal translocations leading to expression of abnormal fusion proteins play a major role in the pathogenesis of various hematologic malignancies. The recent development of high-throughput, "deep" sequencing has allowed discovery of novel translocations leading to a rapid increase in understanding these diseases. Translocations involving the anaplastic lymphoma kinase (ALK) gene leading to ALK fusion proteins originally were discovered in anaplastic large cell lymphomas (ALCLs). Among ALCLs, NPM1-ALK fusions are most common and lead to nuclear localization of the fusion protein. Here, we present a 50-year-old male with ALCL demonstrating cytoplasmic ALK immunoreactivity only, suggesting the presence of a non-NPM1 fusion partner. We performed deep RNA sequencing of tumor tissue from this patient and identified a novel transcript fusing Exon 6 of TRAF1 to Exon 20 of ALK. The TRAF1-ALK fusion transcript was confirmed at the mRNA level by Sanger sequencing and the fusion protein was visualized by Western blot. The discovery of this TRAF1-ALK fusion expands the diversity of known ALK fusion partners and highlights the power of deep sequencing for fusion transcript discovery. © 2013 Wiley Periodicals, Inc. Copyright © 2013 Wiley Periodicals, Inc.

  9. RANBP2-ALK fusion combined with monosomy 7 in acute myelomonocytic leukemia.

    PubMed

    Lim, Ji-Hun; Jang, Seongsoo; Park, Chan-Jeoung; Cho, Young-Uk; Lee, Je-Hwan; Lee, Kyoo-Hyung; Lee, Jin-Ok; Shin, Jong-Yeon; Kim, Jong-Il; Huh, Jooryung; Seo, Eul-Ju

    2014-01-01

    Anaplastic lymphoma receptor tyrosine kinase (ALK) is located on chromosome 2p23; the chromosomal rearrangements of this gene are common genetic alterations, resulting in the creation of multiple fusion genes involved in tumorigenesis. However, the presence of an ALK fusion in myeloid malignancies is extremely rare. We report a case of acute myelomonocytic leukemia in a 31-year-old woman with an unusual rearrangement between RAN-binding protein 2 (RANBP2) and ALK and a karyotype of 45,XX,inv(2)(p23q21),-7[20]. We detected an ALK rearrangement using fluorescence in situ hybridization, identified the ALK fusion partner by using RNA transcriptome sequencing, and demonstrated the RANBP2-ALK fusion transcript by reverse transcriptase--PCR and Sanger sequencing. Immunohistochemistry for ALK showed strong staining of the nuclear membrane in leukemic cells. The patient had an unfavorable clinical course. Our results, together with a literature review, suggest the RANBP2-ALK fusion combined with monosomy 7 may be related to a unique clonal hematologic disorder of childhood and adolescence, characterized by myelomonocytic leukemia and a poor prognosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. For staining of ALK protein, the novel D5F3 antibody demonstrates superior overall performance in terms of intensity and extent of staining in comparison to the currently used ALK1 antibody.

    PubMed

    Taheri, Diana; Zahavi, David J; Del Carmen Rodriguez, Maria; Meliti, Abdelrazak; Rezaee, Neda; Yonescu, Raluca; Ricardo, Bernardo F P; Dolatkhah, Shahaboddin; Ning, Yi; Bishop, Justin A; Netto, George J; Sharma, Rajni

    2016-09-01

    Inflammatory myofibroblastic tumor (IMT) is a rare neoplasm. Approximately 50 % of IMTs show an anaplastic lymphoma kinase (ALK) gene fusion resulting in ALK overexpression on immunohistochemistry (IHC). A novel anti-ALK monoclonal antibody (D5F3) has been suggested to be of superior sensitivity to the ALK1 antibody which is currently used. We compared the performance of D5F3 in detecting ALK protein expression in IMTs from various anatomic sites compared to the currently utilized ALK1. We selected 25 IMTs from our surgical pathology files (2005-2015). The novel rabbit monoclonal anti-human CD246 (clone D5F3) and the currently used mouse monoclonal anti-human CD246 (clone ALK1) were used for immunohistochemical staining (IHC) in an automated slide stainer. The percentage of immunoreactive tumor cells (0, <5 %, 5-50 %, >50 %) and cytoplasmic staining intensity (graded 0-3) were assessed and compared between the two antibodies. Fluorescence in situ hybridization (FISH) studies for ALK gene rearrangement were performed on 11 tumors. D5F3 antibody stained 76 % and ALK1 antibody stained 72 % of IMTs (p = 0.747). Compared to staining with ALK1, D5F3 stained a higher proportion of cases extensively (>50 % cells) (76 vs. 28 %, p < 0.001) and with high intensity (grade 3 76 % vs 0; p < 0.001). FISH and IHC findings (for both antibodies) were concordant in 9/10 (90 %) IMTs, in which results were informative. The novel anti-ALK rabbit monoclonal antibody (D5F3 clone) demonstrates superior overall performance in term of intensity and extent of staining of ALK protein in IMT. We found IHC staining with both antibody clones to correlate equally well with FISH results for detection of ALK rearrangement.

  11. Completing the structural family portrait of the human EphB tyrosine kinase domains

    PubMed Central

    Overman, Ross C; Debreczeni, Judit E; Truman, Caroline M; McAlister, Mark S; Attwood, Teresa K

    2014-01-01

    The EphB receptors have key roles in cell morphology, adhesion, migration and invasion, and their aberrant action has been linked with the development and progression of many different tumor types. Their conflicting expression patterns in cancer tissues, combined with their high sequence and structural identity, present interesting challenges to those seeking to develop selective therapeutic molecules targeting this large receptor family. Here, we present the first structure of the EphB1 tyrosine kinase domain determined by X-ray crystallography to 2.5Å. Our comparative crystalisation analysis of the human EphB family kinases has also yielded new crystal forms of the human EphB2 and EphB4 catalytic domains. Unable to crystallize the wild-type EphB3 kinase domain, we used rational engineering (based on our new structures of EphB1, EphB2, and EphB4) to identify a single point mutation which facilitated its crystallization and structure determination to 2.2 Å. This mutation also improved the soluble recombinant yield of this kinase within Escherichia coli, and increased both its intrinsic stability and catalytic turnover, without affecting its ligand-binding profile. The partial ordering of the activation loop in the EphB3 structure alludes to a potential cis-phosphorylation mechanism for the EphB kinases. With the kinase domain structures of all four catalytically competent human EphB receptors now determined, a picture begins to emerge of possible opportunities to produce EphB isozyme-selective kinase inhibitors for mechanistic studies and therapeutic applications. PMID:24677421

  12. Class III Histidine Kinases: a Recently Accessorized Kinase Domain in Putative Modulators of Type IV Pilus-Based Motility.

    PubMed

    Adebali, Ogun; Petukh, Marharyta G; Reznik, Alexander O; Tishkov, Artem V; Upadhyay, Amit A; Zhulin, Igor B

    2017-09-15

    Histidine kinases are key components of regulatory systems that enable bacteria to respond to environmental changes. Two major classes of histidine kinases are recognized on the basis of their modular design: classical (HKI) and chemotaxis specific (HKII). Recently, a new type of histidine kinase that appeared to have features of both HKIs and HKIIs was identified and termed HKIII; however, the details of HKIII's relationship to other two classes of histidine kinases, their function, and evolutionary history remain unknown. Here, we carried out genomic, phylogenetic, and protein sequence analyses that allowed us to reveal the unusual evolutionary history of this protein family, formalize its distinctive features, and propose its putative function. HKIIIs are characterized by the presence of sensory domains and the lack of a dimerization domain, which is typically present in all histidine kinases. In addition to a single-domain response regulator, HKIII signal transduction systems utilize CheX phosphatase and, in many instances, an unorthodox soluble chemoreceptor that are usual components of chemotaxis signal transduction systems. However, many HKIII genes are found in genomes completely lacking chemotaxis genes, thus decoupling their function from chemotaxis. By contrast, all HKIII-containing genomes also contain pilT, a marker gene for bacterial type IV pilus-based motility, whose regulation is proposed as a putative function for HKIII. These signal transduction systems have a narrow phyletic distribution but are present in many emerging and opportunistic pathogens, thus offering an attractive potential target for future antimicrobial drug design.IMPORTANCE Bacteria adapt to their environment and their hosts by detecting signals and regulating their cellular functions accordingly. Here, we describe a largely unexplored family of signal transduction histidine kinases, called HKIII, that have a unique modular design. While they are currently identified in a

  13. French multicentric validation of ALK rearrangement diagnostic in 547 lung adenocarcinomas.

    PubMed

    Lantuejoul, Sylvie; Rouquette, Isabelle; Blons, Hélène; Le Stang, Nolwenn; Ilie, Marius; Begueret, Hugues; Grégoire, Valerie; Hofman, Paul; Gros, Audrey; Garcia, Stephane; Monhoven, Nathalie; Devouassoux-Shisheboran, Mojgan; Mansuet-Lupo, Audrey; Thivolet, Françoise; Antoine, Martine; Vignaud, Jean-Michel; Penault-Llorca, Frederique; Galateau-Sallé, Françoise; McLeer-Florin, Anne

    2015-07-01

    Anaplastic lymphoma kinase (ALK) gene rearrangements in lung adenocarcinoma result in kinase activity targetable by crizotinib. Although fluorescence in situ hybridisation (FISH) is the reference diagnostic technique, immunohistochemistry (IHC) could be useful for pre-screening. Diagnostic yields of ALK IHC, FISH and quantitative reverse transcriptase PCR performed in 14 French pathology/molecular genetics platforms were compared. 547 lung adenocarcinoma specimens were analysed using 5A4 and D5F3 antibodies, two break-apart FISH probes and TaqMan kits. Clinicopathological data were recorded. 140 tumours were ALK rearranged (FISH with ≥15% of rearranged cells) and 400 were ALK FISH negative (<15%). FISH was not interpretable for seven cases. ALK patients were young (p=0.003), mostly females (p=0.007) and light/nonsmokers (p<0.0001). 13 cases were IHC negative but FISH ≥15%, including six cases with FISH between 15% and 20%; eight were IHC positive with FISH between 10% and 14%. Sensitivity and specificity for 5A4 and D5F3 were 87% and 92%, and 89% and 76%, respectively. False-negative IHC, observed in 2.4% of cases, dropped to 1.3% for FISH >20%. Variants were undetected in 36% of ALK tumours. Discordances predominated with FISH ranging from 10% to 20% of rearranged cells and were centre dependent. IHC remains a reliable pre-screening method for ALK rearrangement detection. Copyright ©ERS 2015.

  14. Oncogenic ALK regulates EMT in non-small cell lung carcinoma through repression of the epithelial splicing regulatory protein 1

    PubMed Central

    Menotti, Matteo; Poggio, Teresa; Panizza, Elena; Wang, Qi; Minero, Valerio G.; Fagoonee, Sharmila; Compagno, Mara; Altruda, Fiorella; Monti, Stefano; Chiarle, Roberto

    2016-01-01

    A subset of Non-Small Cell Lung Carcinoma (NSCLC) carries chromosomal rearrangements involving the Anaplastic Lymphoma Kinase (ALK) gene. ALK-rearranged NSCLC are typically adenocarcinoma characterized by a solid signet-ring cell pattern that is frequently associated with a metastatic phenotype. Recent reports linked the presence of ALK rearrangement to an epithelial-mesenchymal transition (EMT) phenotype in NSCLC, but the extent and the mechanisms of an ALK-mediated EMT in ALK-rearranged NSCLC are largely unknown. We found that the ALK-rearranged H2228 and DFCI032, but not the H3122, cell lines displayed a mesenchymal phenotype. In these cell lines, oncogenic ALK activity dictated an EMT phenotype by directly suppressing E-cadherin and up-regulating vimentin expression, as well as expression of other genes involved in EMT. We found that the epithelial splicing regulatory protein 1 (ESRP1), a key regulator of the splicing switch during EMT, was repressed by EML4-ALK activity. The treatment of NSCLC cells with ALK tyrosine kinase inhibitors (TKIs) led to up-regulation of ESRP1 and E-cadherin, thus reverting the phenotype from mesenchymal to epithelial (MET). Consistently, ESRP1 knock-down impaired E-cadherin up-regulation upon ALK inhibition, whereas enforced expression of ESRP1 was sufficient to increase E-cadherin expression. These findings demonstrate an ALK oncogenic activity in the regulation of an EMT phenotype in a subset of NSCLC with potential implications for the biology of ALK-rearranged NSCLC in terms of metastatic propensity and resistance to therapy. PMID:27119231

  15. Oncogenic ALK regulates EMT in non-small cell lung carcinoma through repression of the epithelial splicing regulatory protein 1.

    PubMed

    Voena, Claudia; Varesio, Lydia M; Zhang, Liye; Menotti, Matteo; Poggio, Teresa; Panizza, Elena; Wang, Qi; Minero, Valerio G; Fagoonee, Sharmila; Compagno, Mara; Altruda, Fiorella; Monti, Stefano; Chiarle, Roberto

    2016-05-31

    A subset of Non-Small Cell Lung Carcinoma (NSCLC) carries chromosomal rearrangements involving the Anaplastic Lymphoma Kinase (ALK) gene. ALK-rearranged NSCLC are typically adenocarcinoma characterized by a solid signet-ring cell pattern that is frequently associated with a metastatic phenotype. Recent reports linked the presence of ALK rearrangement to an epithelial-mesenchymal transition (EMT) phenotype in NSCLC, but the extent and the mechanisms of an ALK-mediated EMT in ALK-rearranged NSCLC are largely unknown. We found that the ALK-rearranged H2228 and DFCI032, but not the H3122, cell lines displayed a mesenchymal phenotype. In these cell lines, oncogenic ALK activity dictated an EMT phenotype by directly suppressing E-cadherin and up-regulating vimentin expression, as well as expression of other genes involved in EMT. We found that the epithelial splicing regulatory protein 1 (ESRP1), a key regulator of the splicing switch during EMT, was repressed by EML4-ALK activity. The treatment of NSCLC cells with ALK tyrosine kinase inhibitors (TKIs) led to up-regulation of ESRP1 and E-cadherin, thus reverting the phenotype from mesenchymal to epithelial (MET). Consistently, ESRP1 knock-down impaired E-cadherin up-regulation upon ALK inhibition, whereas enforced expression of ESRP1 was sufficient to increase E-cadherin expression. These findings demonstrate an ALK oncogenic activity in the regulation of an EMT phenotype in a subset of NSCLC with potential implications for the biology of ALK-rearranged NSCLC in terms of metastatic propensity and resistance to therapy.

  16. Asymmetric effect of domain interactions on the kinetics of folding in yeast phosphoglycerate kinase.

    PubMed

    Osváth, Szabolcs; Köhler, Gottfried; Závodszky, Péter; Fidy, Judit

    2005-06-01

    The aim of this work is to shed more light on the effect of domain-domain interactions on the kinetics and the pathway of protein folding. A model protein system consisting of several single-tryptophan variants of the two-domain yeast phosphoglycerate kinase (PGK) and its individual domains was studied. Refolding was initiated from the guanidine-unfolded state by stopped-flow or manual mixing and monitored by tryptophan fluorescence from 1 msec to 1000 sec. Denaturant titrations of both individual domains showed apparent two-state unfolding transitions. Refolding kinetics of the individual domains from different denaturant concentrations, however, revealed the presence of intermediate structures during titration for both domains. Refolding of the same domains within the complete protein showed that domain-domain interactions direct the folding of both domains, but in an asymmetric way. Folding of the N domain was already altered within 1 msec, while detectable changes in the folding of the C domain occurred only 60-100 msec after initiating refolding. All mutants showed a hyperfluorescent kinetic intermediate. Both the disappearance of this intermediate and the completion of the folding were significantly faster in the individual N domain than in the complete protein. On the contrary, folding of the individual C domain was slower than in the complete protein. The presence of the C domain directs the refolding of the N domain along a completely different pathway than that of the individual N domain, while folding of the individual C domain follows the same path as within the complete protein.

  17. The bHLH transcription factor Hand is regulated by Alk in the Drosophila embryonic gut

    SciTech Connect

    Varshney, Gaurav K.; Palmer, Ruth H. . E-mail: Ruth.Palmer@ucmp.umu.se

    2006-12-29

    During embryonic development the midgut visceral muscle is formed by fusion of cells within the visceral mesoderm, a process initiated by the specification of a specialised cell type, the founder cell, within this tissue. Activation of the receptor tyrosine kinase Anaplastic lymphoma kinase (Alk) in the developing visceral muscle of Drosophila melanogaster initiates a signal transduction pathway required for muscle fusion. In this paper, we have investigated downstream components which are regulated by this novel signalling pathway. Here we show that Alk-mediated signal transduction drives the expression of the bHLH transcription factor Hand in vivo. Loss of Alk function results in a complete lack of Hand expression in this tissue, whereas Alk gain of function results in an expansion of Hand expression. Finally, we have investigated the process of muscle fusion in the gut of Hand mutant animals and can find no obvious defects in this process, suggesting that Hand is not critical for visceral muscle fusion per se.

  18. Role of Domain Interactions in the Collective Motion of Phosphoglycerate Kinase

    PubMed Central

    Schay, Gusztáv; Herényi, Levente; Fidy, Judit; Osváth, Szabolcs

    2013-01-01

    Protein function is governed by the underlying conformational dynamics of the molecule. The experimental and theoretical work leading to contemporary understanding of enzyme dynamics was mostly restricted to the large-scale movements of single-domain proteins. Collective movements resulting from a regulatory interplay between protein domains is often crucial for enzymatic activity. It is not clear, however, how our knowledge could be extended to describe collective near-equilibrium motions of multidomain enzymes. We examined the effect of domain interactions on the low temperature near equilibrium dynamics of the native state, using phosphoglycerate kinase as model protein. We measured thermal activation of tryptophan phosphorescence quenching to explore millisecond-range protein motions. The two protein domains of phosphoglycerate kinase correspond to two dynamic units, but interdomain interactions link the motion of the two domains. The effect of the interdomain interactions on the activation of motions in the individual domains is asymmetric. As the temperature of the frozen protein is increased from the cryogenic, motions of the N domain are activated first. This is a partial activation, however, and the full dynamics of the domain becomes activated only after the activation of the C domain. PMID:23442918

  19. Role of domain interactions in the collective motion of phosphoglycerate kinase.

    PubMed

    Schay, Gusztáv; Herényi, Levente; Fidy, Judit; Osváth, Szabolcs

    2013-02-05

    Protein function is governed by the underlying conformational dynamics of the molecule. The experimental and theoretical work leading to contemporary understanding of enzyme dynamics was mostly restricted to the large-scale movements of single-domain proteins. Collective movements resulting from a regulatory interplay between protein domains is often crucial for enzymatic activity. It is not clear, however, how our knowledge could be extended to describe collective near-equilibrium motions of multidomain enzymes. We examined the effect of domain interactions on the low temperature near equilibrium dynamics of the native state, using phosphoglycerate kinase as model protein. We measured thermal activation of tryptophan phosphorescence quenching to explore millisecond-range protein motions. The two protein domains of phosphoglycerate kinase correspond to two dynamic units, but interdomain interactions link the motion of the two domains. The effect of the interdomain interactions on the activation of motions in the individual domains is asymmetric. As the temperature of the frozen protein is increased from the cryogenic, motions of the N domain are activated first. This is a partial activation, however, and the full dynamics of the domain becomes activated only after the activation of the C domain. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Targeting autophagy enhances the anti-tumoral action of crizotinib in ALK-positive anaplastic large cell lymphoma

    PubMed Central

    Desquesnes, Aurore; Le Gonidec, Sophie; AlSaati, Talal; Beau, Isabelle; Lamant, Laurence; Meggetto, Fabienne; Espinos, Estelle; Codogno, Patrice; Brousset, Pierre; Giuriato, Sylvie

    2015-01-01

    Anaplastic Lymphoma Kinase-positive Anaplastic Large Cell Lymphomas (ALK+ ALCL) occur predominantly in children and young adults. Their treatment, based on aggressive chemotherapy, is not optimal since ALCL patients can still expect a 30% 2-year relapse rate. Tumor relapses are very aggressive and their underlying mechanisms are unknown. Crizotinib is the most advanced ALK tyrosine kinase inhibitor and is already used in clinics to treat ALK-associated cancers. However, crizotinib escape mechanisms have emerged, thus preventing its use in frontline ALCL therapy. The process of autophagy has been proposed as the next target for elimination of the resistance to tyrosine kinase inhibitors. In this study, we investigated whether autophagy is activated in ALCL cells submitted to ALK inactivation (using crizotinib or ALK-targeting siRNA). Classical autophagy read-outs such as autophagosome visualization/quantification by electron microscopy and LC3-B marker turn-over assays were used to demonstrate autophagy induction and flux activation upon ALK inactivation. This was demonstrated to have a cytoprotective role on cell viability and clonogenic assays following combined ALK and autophagy inhibition. Altogether, our results suggest that co-treatment with crizotinib and chloroquine (two drugs already used in clinics) could be beneficial for ALK-positive ALCL patients. PMID:26338968

  1. Crystal structure of the FLT3 kinase domain bound to the inhibitor quizartinib (AC220)

    DOE PAGES

    Zorn, Julie A.; Wang, Qi; Fujimura, Eric; ...

    2015-04-02

    More than 30% of acute myeloid leukemia (AML) patients possess activating mutations in the receptor tyrosine kinase FMS-like tyrosine kinase 3 or FLT3. A small-molecule inhibitor of FLT3 (known as quizartinib or AC220) that is currently in clinical trials appears promising for the treatment of AML. Here, we report the co-crystal structure of the kinase domain of FLT3 in complex with quizartinib. FLT3 with quizartinib bound adopts an “Abl-like” inactive conformation with the activation loop stabilized in the “DFG-out” orientation and folded back onto the kinase domain. This conformation is similar to that observed for the uncomplexed intracellular domain ofmore » FLT3 as well as for related receptor tyrosine kinases, except for a localized induced fit in the activation loop. The co-crystal structure reveals the interactions between quizartinib and the active site of FLT3 that are key for achieving its high potency against both wild-type FLT3 as well as a FLT3 variant observed in many AML patients. This co-complex further provides a structural rationale for quizartinib-resistance mutations.« less

  2. Crystal structure of the FLT3 kinase domain bound to the inhibitor quizartinib (AC220)

    SciTech Connect

    Zorn, Julie A.; Wang, Qi; Fujimura, Eric; Barros, Tiago; Kuriyan, John; Boggon, Titus J.

    2015-04-02

    More than 30% of acute myeloid leukemia (AML) patients possess activating mutations in the receptor tyrosine kinase FMS-like tyrosine kinase 3 or FLT3. A small-molecule inhibitor of FLT3 (known as quizartinib or AC220) that is currently in clinical trials appears promising for the treatment of AML. Here, we report the co-crystal structure of the kinase domain of FLT3 in complex with quizartinib. FLT3 with quizartinib bound adopts an “Abl-like” inactive conformation with the activation loop stabilized in the “DFG-out” orientation and folded back onto the kinase domain. This conformation is similar to that observed for the uncomplexed intracellular domain of FLT3 as well as for related receptor tyrosine kinases, except for a localized induced fit in the activation loop. The co-crystal structure reveals the interactions between quizartinib and the active site of FLT3 that are key for achieving its high potency against both wild-type FLT3 as well as a FLT3 variant observed in many AML patients. This co-complex further provides a structural rationale for quizartinib-resistance mutations.

  3. cDNA cloning and characterization of a novel squid rhodopsin kinase encoding multiple modular domains.

    PubMed

    Mayeenuddin, L H; Mitchell, J

    2001-01-01

    Rhodopsin phosphorylation is one of the key mechanisms of inactivation in vertebrate and invertebrate visual signal transduction. Here we report the cDNA cloning and protein characterization of a 70-kDa squid rhodopsin kinase, SQRK. The cDNA encoding the 70-kDa protein demonstrates high sequence identity with octopus rhodopsin kinase (92%) and mammalian beta-adrenergic receptor kinases (63-65%), but only 33% similarity with bovine rhodopsin kinase, suggesting that invertebrate rhodopsin kinases may be structurally similar to beta-adrenergic receptor kinases. This cDNA encodes three distinct modular domains: RGS, S/TKc, and PH domains. The native SQRK is an eye-specific protein that is only expressed in photoreceptor cells and the optic ganglion as determined by immunoblotting. Purified SQRK is able to phosphorylate both squid and bovine rhodopsin. Squid rhodopsin phosphorylation by purified SQRK was sensitive to both Mg2+ and GTPgammaS but was insensitive to Ca2+/CaM regulation. The ability of SQRK to phosphorylate rhodopsin was totally lost in the presence of SQRK-specific antibodies. Our results suggest that SQRK plays an important role in squid visual signal termination.

  4. Selective anticancer activity of a hexapeptide with sequence homology to a non-kinase domain of Cyclin Dependent Kinase 4

    PubMed Central

    2011-01-01

    Background Cyclin-dependent kinases 2, 4 and 6 (Cdk2, Cdk4, Cdk6) are closely structurally homologous proteins which are classically understood to control the transition from the G1 to the S-phases of the cell cycle by combining with their appropriate cyclin D or cyclin E partners to form kinase-active holoenzymes. Deregulation of Cdk4 is widespread in human cancer, CDK4 gene knockout is highly protective against chemical and oncogene-mediated epithelial carcinogenesis, despite the continued presence of CDK2 and CDK6; and overexpresssion of Cdk4 promotes skin carcinogenesis. Surprisingly, however, Cdk4 kinase inhibitors have not yet fulfilled their expectation as 'blockbuster' anticancer agents. Resistance to inhibition of Cdk4 kinase in some cases could potentially be due to a non-kinase activity, as recently reported with epidermal growth factor receptor. Results A search for a potential functional site of non-kinase activity present in Cdk4 but not Cdk2 or Cdk6 revealed a previously-unidentified loop on the outside of the C'-terminal non-kinase domain of Cdk4, containing a central amino-acid sequence, Pro-Arg-Gly-Pro-Arg-Pro (PRGPRP). An isolated hexapeptide with this sequence and its cyclic amphiphilic congeners are selectively lethal at high doses to a wide range of human cancer cell lines whilst sparing normal diploid keratinocytes and fibroblasts. Treated cancer cells do not exhibit the wide variability of dose response typically seen with other anticancer agents. Cancer cell killing by PRGPRP, in a cyclic amphiphilic cassette, requires cells to be in cycle but does not perturb cell cycle distribution and is accompanied by altered relative Cdk4/Cdk1 expression and selective decrease in ATP levels. Morphological features of apoptosis are absent and cancer cell death does not appear to involve autophagy. Conclusion These findings suggest a potential new paradigm for the development of broad-spectrum cancer specific therapeutics with a companion diagnostic

  5. Structural Characterization of the Predominant Family of Histidine Kinase Sensor Domains

    SciTech Connect

    Zhang, Z.; Hendrickson, W

    2010-01-01

    Histidine kinase (HK) receptors are used ubiquitously by bacteria to monitor environmental changes, and they are also prevalent in plants, fungi, and other protists. Typical HK receptors have an extracellular sensor portion that detects a signal, usually a chemical ligand, and an intracellular transmitter portion that includes both the kinase domain itself and the site for histidine phosphorylation. While kinase domains are highly conserved, sensor domains are diverse. HK receptors function as dimers, but the molecular mechanism for signal transduction across cell membranes remains obscure. In this study, eight crystal structures were determined from five sensor domains representative of the most populated family, family HK1, found in a bioinformatic analysis of predicted sensor domains from transmembrane HKs. Each structure contains an inserted repeat of PhoQ/DcuS/CitA (PDC) domains, and similarity between sequence and structure is correlated across these and other double-PDC sensor proteins. Three of the five sensors crystallize as dimers that appear to be physiologically relevant, and comparisons between ligated structures and apo-state structures provide insights into signal transmission. Some HK1 family proteins prove to be sensors for chemotaxis proteins or diguanylate cyclase receptors, implying a combinatorial molecular evolution.

  6. Structural characterization of the predominant family of histidine kinase sensor domains.

    PubMed

    Zhang, Zhen; Hendrickson, Wayne A

    2010-07-16

    Histidine kinase (HK) receptors are used ubiquitously by bacteria to monitor environmental changes, and they are also prevalent in plants, fungi, and other protists. Typical HK receptors have an extracellular sensor portion that detects a signal, usually a chemical ligand, and an intracellular transmitter portion that includes both the kinase domain itself and the site for histidine phosphorylation. While kinase domains are highly conserved, sensor domains are diverse. HK receptors function as dimers, but the molecular mechanism for signal transduction across cell membranes remains obscure. In this study, eight crystal structures were determined from five sensor domains representative of the most populated family, family HK1, found in a bioinformatic analysis of predicted sensor domains from transmembrane HKs. Each structure contains an inserted repeat of PhoQ/DcuS/CitA (PDC) domains, and similarity between sequence and structure is correlated across these and other double-PDC sensor proteins. Three of the five sensors crystallize as dimers that appear to be physiologically relevant, and comparisons between ligated structures and apo-state structures provide insights into signal transmission. Some HK1 family proteins prove to be sensors for chemotaxis proteins or diguanylate cyclase receptors, implying a combinatorial molecular evolution.

  7. Characterisation of a plant 3-phosphoinositide-dependent protein kinase-1 homologue which contains a pleckstrin homology domain.

    PubMed

    Deak, M; Casamayor, A; Currie, R A; Downes, C P; Alessi, D R

    1999-05-28

    A plant homologue of mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1) has been identified in Arabidopsis and rice which displays 40% overall identity with human 3-phosphoinositide-dependent protein kinase-1. Like the mammalian 3-phosphoinositide-dependent protein kinase-1, Arabidopsis 3-phosphoinositide-dependent protein kinase-1 and rice 3-phosphoinositide-dependent protein kinase-1 possess a kinase domain at N-termini and a pleckstrin homology domain at their C-termini. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 can rescue lethality in Saccharomyces cerevisiae caused by disruption of the genes encoding yeast 3-phosphoinositide-dependent protein kinase-1 homologues. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 interacts via its pleckstrin homology domain with phosphatidic acid, PtdIns3P, PtdIns(3,4,5)P3 and PtdIns(3,4)P2 and to a lesser extent with PtdIns(4,5)P2 and PtdIns4P. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 is able to activate human protein kinase B alpha (PKB/AKT) in the presence of PtdIns(3,4,5)P3. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 is only the second plant protein reported to possess a pleckstrin homology domain and the first plant protein shown to bind 3-phosphoinositides.

  8. A ligand-induced switch in the periplasmic domain of sensor histidine kinase CitA.

    PubMed

    Sevvana, Madhumati; Vijayan, Vinesh; Zweckstetter, Markus; Reinelt, Stefan; Madden, Dean R; Herbst-Irmer, Regine; Sheldrick, George M; Bott, Michael; Griesinger, Christian; Becker, Stefan

    2008-03-21

    Sensor histidine kinases of two-component signal-transduction systems are essential for bacteria to adapt to variable environmental conditions. However, despite their prevalence, it is not well understood how extracellular signals such as ligand binding regulate the activity of these sensor kinases. CitA is the sensor histidine kinase in Klebsiella pneumoniae that regulates the transport and anaerobic metabolism of citrate in response to its extracellular concentration. We report here the X-ray structures of the periplasmic sensor domain of CitA in the citrate-free and citrate-bound states. A comparison of the two structures shows that ligand binding causes a considerable contraction of the sensor domain. This contraction may represent the molecular switch that activates transmembrane signaling in the receptor.

  9. SH2 domain proteins as high-affinity receptor tyrosine kinase substrates.

    PubMed

    Sierke, S L; Koland, J G

    1993-09-28

    Activation of a growth factor receptor tyrosine kinase (RTK) is accompanied by a rapid autophosphorylation of the receptor on tyrosine residues. Receptor activation has been shown to promote the association of signal-transducing proteins containing SH2 domains (second domain of src homology). These receptor-associated proteins can, in turn, be phosphorylated by the RTK, an event which presumably regulates their activities. It has been suggested that SH2 domains in signal-transducing proteins target these proteins as substrates of the activated RTK. To test this hypothesis, recombinant proteins were generated that contained tyrosine phosphorylation sites of the erbB3 receptor and/or the SH2 domain of c-src. Incorporation of the SH2 domain led to a decrease in KM and an increase in Vmax for the substrate. The KM determined for one chimeric SH2/erbB3 substrate was among the lowest reported for epidermal growth factor RTK substrates. Experiments with a truncated kinase lacking C-terminal autophosphorylation sites indicated that the reduction in KM for these substrates was mediated by interactions between the substrate SH2 domain and phosphotyrosine residues of the RTK. These interactions could also inhibit RTK activity. These results demonstrate that the SH2 domain can effectively target substrates to a RTK and that SH2 domain proteins can regulate RTK activity.

  10. Domain Requirements of the JIL-1 Tandem Kinase for Histone H3 Serine 10 Phosphorylation and Chromatin Remodeling in Vivo*

    PubMed Central

    Li, Yeran; Cai, Weili; Wang, Chao; Yao, Changfu; Bao, Xiaomin; Deng, Huai; Girton, Jack; Johansen, Jørgen; Johansen, Kristen M.

    2013-01-01

    The JIL-1 kinase localizes to Drosophila polytene chromosome interbands and phosphorylates histone H3 at interphase, counteracting histone H3 lysine 9 dimethylation and gene silencing. JIL-1 can be divided into four main domains, including an NH2-terminal domain, two separate kinase domains, and a COOH-terminal domain. In this study, we characterize the domain requirements of the JIL-1 kinase for histone H3 serine 10 (H3S10) phosphorylation and chromatin remodeling in vivo. We show that a JIL-1 construct without the NH2-terminal domain is without H3S10 phosphorylation activity despite the fact that it localizes properly to polytene interband regions and that it contains both kinase domains. JIL-1 is a double kinase, and we demonstrate that both kinase domains of JIL-1 are required to be catalytically active for H3S10 phosphorylation to occur. Furthermore, we provide evidence that JIL-1 is phosphorylated at serine 424 and that this phosphorylation is necessary for JIL-1 H3S10 phosphorylation activity. Thus, these data are compatible with a model where the NH2-terminal domain of JIL-1 is required for chromatin complex interactions that position the kinase domain(s) for catalytic activity in the context of the state of higher order nucleosome packaging and chromatin structure and where catalytic H3S10 phosphorylation activity mediated by the first kinase domain is dependent on autophosphorylation of serine 424 by the second kinase domain. Furthermore, using a lacO repeat tethering system to target mutated JIL-1 constructs with or without catalytic activity, we show that the epigenetic H3S10 phosphorylation mark itself functions as a causative regulator of chromatin structure independently of any structural contributions from the JIL-1 protein. PMID:23723094

  11. Functional Characterization of the Receiver Domain for Phosphorelay Control in Hybrid Sensor Kinases.

    PubMed

    Kinoshita-Kikuta, Emiko; Kinoshita, Eiji; Eguchi, Yoko; Yanagihara, Shiho; Edahiro, Keisuke; Inoue, Yuki; Taniguchi, Momoka; Yoshida, Myu; Yamamoto, Kaneyoshi; Takahashi, Hirotaka; Sawasaki, Tatsuya; Utsumi, Ryutaro; Koike, Tohru

    2015-01-01

    Hybrid sensor kinase, which contains a histidine kinase (HK) domain, a receiver domain, and a histidine-containing phosphotransmitter (HPt) domain, conveys signals to its cognate response regulator by means of a His-Asp-His-Asp phosphorelay. We examined the multistep phosphorelay of a recombinant EvgAS system in Escherichia coli and performed in vitro quantitative analyses of phosphorylation by using Phos-tag SDS-PAGE. Replacement of Asp in the receiver domain of EvgS by Ala markedly promoted phosphorylation at His in the HK domain compared with that in wild-type EvgS. Similar Ala-substituted mutants of other hybrid sensor kinases BarA and ArcB showed similar characteristics. In the presence of sufficient ATP, autophosphorylation of the HK domain in the mutant progressed efficiently with nearly pseudo-first-order kinetics until the phosphorylation ratio reached a plateau value of more than 95% within 60 min, and the value was maintained until 180 min. However, both wild-type EvgS and the Ala-substituted mutant of His in the HPt domain showed a phosphorylation ratio of less than 25%, which gradually decreased after 10 min. These results showed that the phosphorylation level is regulated negatively by the receiver domain. Furthermore, our in vivo assays confirmed the existence of a similar hyperphosphorylation reaction in the HK domain of the EvgS mutant in which the Asp residue was replaced with Ala, confirming the validity of the control mechanism proposed from profiling of phosphorylation in vitro [corrected].

  12. The Janus Kinase (JAK) FERM and SH2 Domains: Bringing Specificity to JAK–Receptor Interactions

    PubMed Central

    Ferrao, Ryan; Lupardus, Patrick J.

    2017-01-01

    The Janus kinases (JAKs) are non-receptor tyrosine kinases essential for signaling in response to cytokines and interferons and thereby control many essential functions in growth, development, and immune regulation. JAKs are unique among tyrosine kinases for their constitutive yet non-covalent association with class I and II cytokine receptors, which upon cytokine binding bring together two JAKs to create an active signaling complex. JAK association with cytokine receptors is facilitated by N-terminal FERM and SH2 domains, both of which are classical mediators of peptide interactions. Together, the JAK FERM and SH2 domains mediate a bipartite interaction with two distinct receptor peptide motifs, the proline-rich “Box1” and hydrophobic “Box2,” which are present in the intracellular domain of cytokine receptors. While the general sidechain chemistry of Box1 and Box2 peptides is conserved between receptors, they share very weak primary sequence homology, making it impossible to posit why certain JAKs preferentially interact with and signal through specific subsets of cytokine receptors. Here, we review the structure and function of the JAK FERM and SH2 domains in light of several recent studies that reveal their atomic structure and elucidate interaction mechanisms with both the Box1 and Box2 receptor motifs. These crystal structures demonstrate how evolution has repurposed the JAK FERM and SH2 domains into a receptor-binding module that facilitates interactions with multiple receptors possessing diverse primary sequences. PMID:28458652

  13. Inhibitors of the Polo-Box Domain of Polo-Like Kinase 1.

    PubMed

    Berg, Angela; Berg, Thorsten

    2016-04-15

    Polo-like kinase 1 (Plk1), a key player in mitosis, is overexpressed in a wide range of tumor types and has been validated as a target for tumor therapy. In addition to its N-terminal kinase domain, Plk1 harbors a C-terminal protein-protein interaction domain, referred to as the polo-box domain (PBD). Because the PBD is unique to the five-member family of polo-like kinases, and its inhibition is sufficient to inhibit the enzyme, the Plk1 PBD is an attractive target for the inhibition of Plk1 function. Although peptide-based inhibitors are invaluable tools for elucidating the nature of the binding interface, small molecules are better suited for the induction of mitotic arrest and apoptosis in tumor cells by Plk1 inhibition. This review describes the considerable progress that has been made in developing small-molecule and peptide-based inhibitors of the Plk1 PBD.

  14. High MET receptor expression but not gene amplification in ALK 2p23 rearrangement positive non-small-cell lung cancer.

    PubMed

    Feng, Yan; Minca, Eugen C; Lanigan, Christopher; Liu, Angen; Zhang, Wei; Yin, Lihong; Pennell, Nathan A; Farver, Carol; Tubbs, Raymond; Ma, Patrick C

    2014-05-01

    Overexpression of MET receptor tyrosine kinase and its ligand hepatocyte growth factor (HGF) and MET gene amplification have been well-documented in non-small-cell lung cancer (NSCLC). Activated MET signaling plays an important role in human cancer tumorigenesis, metastasis, and drug resistance. However, the deregulation of MET/HGF pathway in NSCLC harboring ALK gene rearrangement (ALK[+]), which is sensitive to dual ALK and MET inhibitor Crizotinib, has not been reported. We performed systematic analysis of MET/HGF expression by immunohistochemistry (IHC) and MET gene amplification by dual color, dual hapten bright field in situ hybridization in 19 ALK(+) and 73 ALK(-) NSCLC tumor tissues from those who had clinical ALK rearrangement test done at the Cleveland Clinic from August 2010 to January 2013. IHC scoring was interpreted on a standard four-tier system. The percentage of MET IHC score 0, 1+, 2+, and 3+ were 5.5%, 27.8%, 50.0%, and 16.7% in ALK(+) group, compared with 28.8%, 33.9%, 23.7%, and 13.6% in ALK(-) group, respectively. The MET high expression (IHC score 2 or 3) was significantly higher in ALK(+) group statistically (66.7% versus 37.3%, p = 0.03). HGF-high expression (IHC score 2 or 3) was 33.3% in ALK(+) and 15.8% in ALK(-) (p = 0.17). We identified eight cases in ALK(-) and one case in ALK(+) tumor who had MET gene amplification (18.4% versus 7.1%, p = 0.43) by dual color, dual hapten bright field in situ hybridization. No significant correlation between MET protein receptor expression and gene amplification was identified. Our study demonstrated for the first time that MET receptor expression, but not MET gene amplification, is significantly increased in ALK(+) NSCLC. MET gene amplification is a relatively rare event in this unique population compared with ALK(-) NSCLC.

  15. Domain interactions direct misfolding and amyloid formation of yeast phosphoglycerate kinase.

    PubMed

    Osváth, Szabolcs; Jäckel, Márta; Agócs, Gergely; Závodszky, Péter; Köhler, Gottfried; Fidy, Judit

    2006-03-01

    There are proteins that are built of two structural domains and are deposited full-length in amyloid plaques formed in various diseases. In spite of the known differences in the mechanisms of folding of single- and multidomain proteins, no published studies can be found that address the role of the domain-domain interactions during misfolding and amyloid formation. By the discovery of the role of domain-domain interactions, here we provide important insight in the submolecular mechanism of amyloid formation. A model system based on yeast phosphoglycerate kinase was designed. This system includes the wild-type yeast phosphoglycerate kinase and single-tryptophan mutants of the individual N and C terminal domains and the complete protein. Electron microscopic measurements proved that amyloid fibrils grow from all mutants under identical conditions as for the wild-type protein. Misfolding and amyloid formation was followed in stopped-flow and manual mixing experiments on the 1 ms to 4 days timescale. Tryptophan fluorescence was used for selective detection of conformational changes accompanying the formation of the amyloidogenic intermediates and the growth of amyloid fibrils. The interactions between the polypeptide chains of the two domains direct the misfolding process from the early steps to the amyloid formation, and influence the final structure. The kinetics of misfolding is different for the individual domains, pointing to the significance of the amino acid sequence. Misfolding of the domains within the complete protein is synchronized indicating that domain-domain interactions direct the misfolding and amyloid formation mechanism. 2006 Wiley-Liss, Inc.

  16. A transforming mutation enhances the activity of the c-Kit soluble tyrosine kinase domain.

    PubMed Central

    Lam, L P; Chow, R Y; Berger, S A

    1999-01-01

    An activating mutation (DY814) located in the catalytic domain of the c-Kit receptor has been found in mastocytomas from human, mouse and rat. We evaluated the enzymic properties of purified wild-type (WT) and DY814 tyrosine kinase domains expressed in Pichia pastoris. A linker encoding the Flag epitope was fused to c-Kit cDNA species, enabling affinity purification of the proteins with anti-Flag antibodies. Yeast lysates expressing DY814 contained multiple tyrosine-phosphorylated proteins, whereas WT lysates had no detectable tyrosine phosphorylation. Purification of the WT and mutant kinases in the presence of vanadate demonstrated that both enzymes undergo autophosphorylation. Kinetic analyses of WT and DY814 kinases indicated that at 20 nM enzyme concentration the mutation increases the specific activity 10-fold and decreases the apparent Km for ATP 9-fold. WT activity displayed a hyperbolic dependence on enzyme concentration, consistent with a requirement for dimerization or aggregation for activity. This activity was also enhanced by anti-Flag antibodies. In contrast, the dependence of DY814 activity on enzyme concentration was primarily linear and only marginally enhanced by anti-Flag antibodies. Gel-filtration analysis showed that the WT kinase migrated as a monomer, whereas the DY814 mutant migrated as a dimer. These results indicate that this point mutation promotes dimerization of the c-Kit kinase, potentially contributing to its transforming potential in mast cells. PMID:9931308

  17. Crystal structures of the S6K1 kinase domain in complexes with inhibitors.

    PubMed

    Niwa, Hideaki; Mikuni, Junko; Sasaki, Shunta; Tomabechi, Yuri; Honda, Keiko; Ikeda, Mariko; Ohsawa, Noboru; Wakiyama, Motoaki; Handa, Noriko; Shirouzu, Mikako; Honma, Teruki; Tanaka, Akiko; Yokoyama, Shigeyuki

    2014-09-01

    Ribosomal protein S6 kinase 1 (S6K1) is a serine/threonine protein kinase that plays an important role in the PIK3/mTOR signaling pathway, and is implicated in diseases including diabetes, obesity, and cancer. The crystal structures of the S6K1 kinase domain in complexes with staurosporine and the S6K1-specific inhibitor PF-4708671 have been reported. In the present study, five compounds (F108, F109, F176, F177, and F179) were newly identified by in silico screening of a chemical library and kinase assay. The crystal structures of the five inhibitors in complexes with the S6K1 kinase domain were determined at resolutions between 1.85 and 2.10 Å. All of the inhibitors bound to the ATP binding site, lying along the P-loop, while the activation loop stayed in the inactive form. Compound F179, with a carbonyl group in the middle of the molecule, altered the αC helix conformation by interacting with the invariant Lys123. Compounds F176 and F177 bound slightly distant from the hinge region, and their sulfoamide groups formed polar interactions with the protein. The structural features required for the specific binding of inhibitors are discussed.

  18. A first generation inhibitor of human Greatwall kinase, enabled by structural and functional characterisation of a minimal kinase domain construct

    PubMed Central

    Ocasio, Cory A.; Rajasekaran, Mohan B.; Walker, Sarah; Le Grand, Darren; Spencer, John; Pearl, Frances M.G.; Ward, Simon E.; Savic, Velibor; Pearl, Laurence H.; Hochegger, Helfrid; Oliver, Antony W.

    2016-01-01

    MASTL (microtubule-associated serine/threonine kinase-like), more commonly known as Greatwall (GWL), has been proposed as a novel cancer therapy target. GWL plays a crucial role in mitotic progression, via its known substrates ENSA/ARPP19, which when phosphorylated inactivate PP2A/B55 phosphatase. When over-expressed in breast cancer, GWL induces oncogenic properties such as transformation and invasiveness. Conversely, down-regulation of GWL selectively sensitises tumour cells to chemotherapy. Here we describe the first structure of the GWL minimal kinase domain and development of a small-molecule inhibitor GKI-1 (Greatwall Kinase Inhibitor-1). In vitro, GKI-1 inhibits full-length human GWL, and shows cellular efficacy. Treatment of HeLa cells with GKI-1 reduces ENSA/ARPP19 phosphorylation levels, such that they are comparable to those obtained by siRNA depletion of GWL; resulting in a decrease in mitotic events, mitotic arrest/cell death and cytokinesis failure. Furthermore, GKI-1 will be a useful starting point for the development of more potent and selective GWL inhibitors. PMID:27563826

  19. Purification, crystallization and preliminary X-ray diffraction analysis of the kinase domain of human tousled-like kinase 2

    PubMed Central

    Garrote, Ana M.; Redondo, Pilar; Montoya, Guillermo; Muñoz, Inés G.

    2014-01-01

    Tousled-like kinases (TLKs) are an evolutionarily conserved family of serine/threonine protein kinases involved in chromatin dynamics, including DNA replication and repair, transcription and chromosome segregation. The two members of the family reported in humans, namely TLK1 and TLK2, localize to the cell nucleus and are capable of forming homo- or hetero-oligomers by themselves. To characterize the role of TLK2, its C-terminal kinase domain was cloned and overexpressed in Escherichia coli followed by purification to homogeneity. Crystallization experiments in the presence of ATP-γ-S yielded crystals suitable for X-ray diffraction analysis belonging to two different space groups: tetragonal I4122 and cubic P213. The latter produced the best diffracting crystal (3.4 Å resolution using synchrotron radiation), with unit-cell parameters a = b = c = 126.05 Å, α = β = γ = 90°. The asymmetric unit contained one protein molecule, with a Matthews coefficient of 4.59 Å3 Da−1 and a solvent content of 73.23%. PMID:24598926

  20. A cell cycle kinase with tandem sensory PAS domains integrates cell fate cues

    PubMed Central

    Mann, Thomas H.; Seth Childers, W.; Blair, Jimmy A.; Eckart, Michael R.; Shapiro, Lucy

    2016-01-01

    All cells must integrate sensory information to coordinate developmental events in space and time. The bacterium Caulobacter crescentus uses two-component phospho-signalling to regulate spatially distinct cell cycle events through the master regulator CtrA. Here, we report that CckA, the histidine kinase upstream of CtrA, employs a tandem-PAS domain sensor to integrate two distinct spatiotemporal signals. Using CckA reconstituted on liposomes, we show that one PAS domain modulates kinase activity in a CckA density-dependent manner, mimicking the stimulation of CckA kinase activity that occurs on its transition from diffuse to densely packed at the cell poles. The second PAS domain interacts with the asymmetrically partitioned second messenger cyclic-di-GMP, inhibiting kinase activity while stimulating phosphatase activity, consistent with the selective inactivation of CtrA in the incipient stalked cell compartment. The integration of these spatially and temporally regulated signalling events within a single signalling receptor enables robust orchestration of cell-type-specific gene regulation. PMID:27117914

  1. Somatic mutations of the ERBB4 kinase domain in human cancers.

    PubMed

    Soung, Young Hwa; Lee, Jong Woo; Kim, Su Young; Wang, Young Pil; Jo, Keon Hyun; Moon, Seok Whan; Park, Won Sang; Nam, Suk Woo; Lee, Jung Young; Yoo, Nam Jin; Lee, Sug Hyung

    2006-03-15

    The EGFR family consists of 4 receptor tyrosine kinases, EGFR (ERBB1), ERBB2 (HER2), ERBB3 (HER3) and ERBB4 (HER4). Recent reports revealed that the kinase domains of both EGFR (ERBB1) and ERBB2 gene were somatically mutated in human cancers, raising the possibility that the other ERBB members possess somatic mutations in human cancers. Here, we performed mutational analysis of the ERBB4 kinase domain by polymerase chain reaction-single-strand conformation polymorphism assay in 595 cancer tissues from stomach, lung, colon and breast. We detected the ERBB4 somatic mutations in 3 of 180 gastric carcinomas (1.7%), 3 of 104 colorectal carcinomas (2.9%), 5 of 217 nonsmall cell lung cancers (2.3%) and 1 of 94 breast carcinomas (1.1%). The 12 ERBB4 mutations consisted of 1 in-frame duplication mutation and 8 missense mutations in the exons, and 3 mutations in the introns. We simultaneously analyzed the somatic mutations of EGFR, ERBB2, K-RAS, PIK3CA and BRAF genes in the 12 samples with the ERBB4 mutations and found that 1 gastric carcinoma with ERBB4 mutation also harbored K-RAS gene mutation. Our study demonstrated that in addition to EGFR and ERBB2, somatic mutation of the kinase domain of ERBB4 occurs in the common human cancers, and suggested that alterations of ERBB4-mediated signaling pathway by ERBB4 mutations may contribute to the development of human cancers.

  2. EML4-ALK induces epithelial–mesenchymal transition consistent with cancer stem cell properties in H1299 non-small cell lung cancer cells

    SciTech Connect

    Guo, Fuchun; Liu, Xiaoke Qing, Qin Sang, Yaxiong Feng, Chengjun Li, Xiaoyu Jiang, Li Su, Pei Wang, Yongsheng

    2015-04-10

    The echinoderm microtubule-associated protein-like 4(EML4) – anaplastic lymphoma kinase (ALK) fusion gene has been identified as a driver mutation in non-small-cell lung cancer (NSCLC). However, the role of EML4-ALK in malignant transformation is not entirely clear. Here, for the first time, we showed that H1299 NSCLC cells stably expressing EML4-ALK acquire EMT phenotype, associated with enhanced invasive migration and increased expression of EMT-inducing transcription factors. H1299-EML4-ALK cells also displayed cancer stem cell-like properties with a concomitant up-regulation of CD133 and enhanced ability of mammospheres formation. Moreover, we found that inhibition of ERK1/2 reversed EMT induced by EML4-ALK in H1299 cells. Taken together, these results suggested that EML4-ALK induced ERK activation is mechanistically associated with EMT phenotype. Thus, inhibition of ERK signaling pathway could be a potential strategy in treatment of NSCLC patients with EML4-ALK translocation. - Highlights: • EML4-ALK induced epithelial–mesenchymal transition in H1299 cells. • Expression of EML4-ALK promotes invasion and migration in vitro. • EML4-ALK enhanced sphere formation and stem cell-like properties in H1299 cells. • Blockage of ERK1/2 reverse Epithelial–Mesenchymal transition induced by EML4-ALK.

  3. Comprehensive Characterization of AMP-Activated Protein Kinase Catalytic Domain by Top-Down Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Yu, Deyang; Peng, Ying; Ayaz-Guner, Serife; Gregorich, Zachery R.; Ge, Ying

    2016-02-01

    AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that is essential in regulating energy metabolism in all eukaryotic cells. It is a heterotrimeric protein complex composed of a catalytic subunit (α) and two regulatory subunits (β and γ). C-terminal truncation of AMPKα at residue 312 yielded a protein that is active upon phosphorylation of Thr172 in the absence of β and γ subunits, which is refered to as the AMPK catalytic domain and commonly used to substitute for the AMPK heterotrimeric complex in in vitro kinase assays. However, a comprehensive characterization of the AMPK catalytic domain is lacking. Herein, we expressed a His-tagged human AMPK catalytic domin (denoted as AMPKΔ) in E. coli, comprehensively characterized AMPKΔ in its basal state and after in vitro phosphorylation using top-down mass spectrometry (MS), and assessed how phosphorylation of AMPKΔ affects its activity. Unexpectedly, we found that bacterially-expressed AMPKΔ was basally phosphorylated and localized the phosphorylation site to the His-tag. We found that AMPKΔ had noticeable basal activity and was capable of phosphorylating itself and its substrates without activating phosphorylation at Thr172. Moreover, our data suggested that Thr172 is the only site phosphorylated by its upstream kinase, liver kinase B1, and that this phosphorylation dramatically increases the kinase activity of AMPKΔ. Importantly, we demonstrated that top-down MS in conjunction with in vitro phosphorylation assay is a powerful approach for monitoring phosphorylation reaction and determining sequential order of phosphorylation events in kinase-substrate systems.

  4. Comprehensive Characterization of AMP-activated Protein Kinase Catalytic Domain by Top-down Mass Spectrometry

    PubMed Central

    Yu, Deyang; Peng, Ying; Ayaz-Guner, Serife; Gregorich, Zachery R.; Ge, Ying

    2015-01-01

    AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that is essential in regulating energy metabolism in all eukaryotic cells. It is a heterotrimeric protein complex composed of a catalytic subunit (α) and two regulatory subunits (β and γ. C-terminal truncation of AMPKα at residue 312 yielded a protein that is active upon phosphorylation of Thr172 in the absence of β and γ subunits, which is refered to as the AMPK catalytic domain and commonly used to substitute for the AMPK heterotrimeric complex in in vitro kinase assays. However, a comprehensive characterization of the AMPK catalytic domain is lacking. Herein, we expressed a His-tagged human AMPK catalytic domin (denoted as AMPKΔ) in E. coli, comprehensively characterized AMPKΔ in its basal state and after in vitro phosphorylation using top-down mass spectrometry (MS), and assessed how phosphorylation of AMPKΔ affects its activity. Unexpectedly, we found that bacterially-expressed AMPKΔ was basally phosphorylated and localized the phosphorylation site to the His-tag. We found that AMPKΔ has noticeable basal activity and was capable of phosphorylating itself and its substrates without activating phosphorylation at Thr172. Moreover, our data suggested that Thr172 is the only site phosphorylated by its upstream kinase, liver kinase B1, and that this phosphorylation dramatically increases the kinase activity of AMPKΔ. Importantly, we demonstrated that top-down MS in conjunction with in vitro phosphorylation assay is a powerful approach for monitoring phosphorylation reaction and determining sequential order of phosphorylation events in kinase-substrate systems. PMID:26489410

  5. Identification of different ALK mutations in a pair of neuroblastoma cell lines established at diagnosis and relapse

    PubMed Central

    Chen, Lindi; Humphreys, Angharad; Turnbull, Lisa; Bellini, Angela; Schleiermacher, Gudrun; Salwen, Helen; Cohn, Susan L.; Bown, Nick; Tweddle, Deborah A.

    2016-01-01

    Anaplastic Lymphoma Kinase (ALK) is a transmembrane receptor kinase that belongs to the insulin receptor superfamily and has previously been shown to play a role in cell proliferation, migration and invasion in neuroblastoma. Activating ALK mutations are reported in both hereditary and sporadic neuroblastoma tumours, and several ALK inhibitors are currently under clinical evaluation as novel treatments for neuroblastoma. Overall, mutations at codons F1174, R1275 and F1245 together account for ∼85% of reported ALK mutations in neuroblastoma. NBLW and NBLW-R are paired cell lines originally derived from an infant with metastatic MYCN amplified Stage IVS (Evans Criteria) neuroblastoma, at diagnosis and relapse, respectively. Using both Sanger and targeted deep sequencing, this study describes the identification of distinct ALK mutations in these paired cell lines, including the rare R1275L mutation, which has not previously been reported in a neuroblastoma cell line. Analysis of the sensitivity of NBLW and NBLW-R cells to a panel of ALK inhibitors (TAE-684, Crizotinib, Alectinib and Lorlatinib) revealed differences between the paired cell lines, and overall NBLW-R cells with the F1174L mutation were more resistant to ALK inhibitor induced apoptosis compared with NBLW cells. This pair of cell lines represents a valuable pre-clinical model of clonal evolution of ALK mutations associated with neuroblastoma progression. PMID:27888620

  6. SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors.

    PubMed Central

    McGlade, C J; Ellis, C; Reedijk, M; Anderson, D; Mbamalu, G; Reith, A D; Panayotou, G; End, P; Bernstein, A; Kazlauskas, A

    1992-01-01

    The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors. Images PMID:1372092

  7. A novel Patient Derived Tumorgraft model with TRAF1-ALK Anaplastic Large Cell Lymphoma translocation

    PubMed Central

    Abate, Francesco; Todaro, Maria; van der Krogt, Jo-Anne; Boi, Michela; Landra, Indira; Machiorlatti, Rodolfo; Tabbo’, Fabrizio; Messana, Katia; Barreca, Antonella; Novero, Domenico; Gaudiano, Marcello; Aliberti, Sabrina; Di Giacomo, Filomena; Tousseyn, Thomas; Lasorsa, Elena; Crescenzo, Ramona; Bessone, Luca; Ficarra, Elisa; Acquaviva, Andrea; Rinaldi, Andrea; Ponzoni, Maurilio; Longo, Dario Livio; Aime, Silvio; Cheng, Mangeng; Ruggeri, Bruce; Piccaluga, Pier Paolo; Pileri, Stefano; Tiacci, Enrico; Falini, Brunangelo; Pera-Gresely, Benet; Cerchietti, Leandro; Iqbal, Javeed; Chan, Wing C; Shultz, Leonard D.; Kwee, Ivo; Piva, Roberto; Wlodarska, Iwona; Rabadan, Raul; Bertoni, Francesco; Inghirami, Giorgio

    2016-01-01

    Although Anaplastic Large Cell Lymphomas (ALCL) carrying Anaplastic Lymphoma Kinase (ALK) have a relatively good prognosis, aggressive forms exist. We have identified a novel translocation, causing the fusion of the TRAF1 and ALK genes, in one patient who presented with a leukemic ALK+ ALCL (ALCL-11). To uncover the mechanisms leading to high-grade ALCL, we developed a human Patient Derived Tumorgraft (hPDT) line. Molecular characterization of primary and PDT cells demonstrated the activation of ALK and of NFkB pathways. Genomic studies of ALCL-11 showed the TP53 loss and the in vivo subclonal expansion of lymphoma cells lacking PRDM1/Blimp-1 and with c-MYC gene amplification. The treatment with proteasome inhibitors of TRAF1-ALK cells led to down-regulation of p50/p52 and lymphoma growth inhibition. Moreover a NFkB gene set classifier stratified ALCL in distinct subsets with different clinical outcome. Moreover, a selective ALK inhibitor (CEP28122) resulted in a significant clinical response of hPDT mice, but the disease could not be eradicated. These data indicate that the activation of NFkB signaling contributes to the neoplastic phenotype of TRAF1-ALK ALCL. ALCL hPDTs are invaluable to validate the role of druggable molecules, predict therapeutic responses and are helpful tools for the implementation of patient specific therapies. PMID:25533804

  8. Automation of ALK gene rearrangement testing with fluorescence in situ hybridization (FISH): a feasibility study.

    PubMed

    Zwaenepoel, Karen; Merkle, Dennis; Cabillic, Florian; Berg, Erica; Belaud-Rotureau, Marc-Antoine; Grazioli, Vittorio; Herelle, Olga; Hummel, Michael; Le Calve, Michele; Lenze, Dido; Mende, Stefanie; Pauwels, Patrick; Quilichini, Benoit; Repetti, Elena

    2015-02-01

    In the past several years we have observed a significant increase in our understanding of molecular mechanisms that drive lung cancer. Specifically in the non-small cell lung cancer sub-types, ALK gene rearrangements represent a sub-group of tumors that are targetable by the tyrosine kinase inhibitor Crizotinib, resulting in significant reductions in tumor burden. Phase II and III clinical trials were performed using an ALK break-apart FISH probe kit, making FISH the gold standard for identifying ALK rearrangements in patients. FISH is often considered a labor and cost intensive molecular technique, and in this study we aimed to demonstrate feasibility for automation of ALK FISH testing, to improve laboratory workflow and ease of testing. This involved automation of the pre-treatment steps of the ALK assay using various protocols on the VP 2000 instrument, and facilitating automated scanning of the fluorescent FISH specimens for simplified enumeration on various backend scanning and analysis systems. The results indicated that ALK FISH can be automated. Significantly, both the Ikoniscope and BioView system of automated FISH scanning and analysis systems provided a robust analysis algorithm to define ALK rearrangements. In addition, the BioView system facilitated consultation of difficult cases via the internet.

  9. Characterization and bacterial expression of the Dictyostelium myosin light chain kinase cDNA. Identification of an autoinhibitory domain.

    PubMed

    Tan, J L; Spudich, J A

    1991-08-25

    A full-length cDNA corresponding to the Dictyostelium myosin light chain kinase gene has been isolated and characterized. Sequence analysis of the cDNA confirms conserved protein kinase subdomains and reveals that the Dictyostelium sequence is highly homologous to those of calcium/calmodulin-dependent protein kinases, including myosin light chain kinases from higher eukaryotes. Despite the high homologies to calcium/calmodulin-dependent protein kinases, there is no recognizable calmodulin-binding domain within the Dictyostelium sequence. However, the Dictyostelium myosin light chain kinase possesses a putative auto-inhibitory domain near its carboxyl terminus. To further characterize this domain, the full-length enzyme as well as a truncated form lacking this domain were expressed in bacterial cells and purified. The full-length enzyme expressed in bacteria exhibits essentially the same biochemical characteristics as the enzyme isolated from Dictyostelium. The truncated form however exhibits a Vmax that is approximately ten times greater than that of the native enzyme. In addition, unlike the native kinase and the full-length kinase expressed in bacteria, the truncated enzyme does not undergo autophosphorylation. These results suggest that the Dictyostelium enzyme, like myosin light chain kinases from higher eukaryotes, is regulated by an autoinhibitory domain but that the specific molecular signals necessary for activation of the Dictyostelium enzyme are entirely distinct.

  10. Baculovirus protein PK2 subverts eIF2α kinase function by mimicry of its kinase domain C-lobe

    PubMed Central

    Li, John J.; Cao, Chune; Fixsen, Sarah M.; Young, Janet M.; Bando, Hisanori; Elde, Nels C.; Katsuma, Susumu; Dever, Thomas E.; Sicheri, Frank

    2015-01-01

    Phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) by eIF2α family kinases is a conserved mechanism to limit protein synthesis under specific stress conditions. The baculovirus-encoded protein PK2 inhibits eIF2α family kinases in vivo, thereby increasing viral fitness. However, the precise mechanism by which PK2 inhibits eIF2α kinase function remains an enigma. Here, we probed the mechanism by which PK2 inhibits the model eIF2α kinase human RNA-dependent protein kinase (PKR) as well as native insect eIF2α kinases. Although PK2 structurally mimics the C-lobe of a protein kinase domain and possesses the required docking infrastructure to bind eIF2α, we show that PK2 directly binds the kinase domain of PKR (PKRKD) but not eIF2α. The PKRKD–PK2 interaction requires a 22-residue N-terminal extension preceding the globular PK2 body that we term the “eIF2α kinase C-lobe mimic” (EKCM) domain. The functional insufficiency of the N-terminal extension of PK2 implicates a role for the adjacent EKCM domain in binding and inhibiting PKR. Using a genetic screen in yeast, we isolated PK2-activating mutations that cluster to a surface of the EKCM domain that in bona fide protein kinases forms the catalytic cleft through sandwiching interactions with a kinase N-lobe. Interaction assays revealed that PK2 associates with the N- but not the C-lobe of PKRKD. We propose an inhibitory model whereby PK2 engages the N-lobe of an eIF2α kinase domain to create a nonfunctional pseudokinase domain complex, possibly through a lobe-swapping mechanism. Finally, we show that PK2 enhances baculovirus fitness in insect hosts by targeting the endogenous insect heme-regulated inhibitor (HRI)–like eIF2α kinase. PMID:26216977

  11. Is membrane occupation and recognition nexus domain functional in plant phosphatidylinositol phosphate kinases?

    PubMed

    Mikami, Koji; Saavedra, Laura; Sommarin, Marianne

    2010-10-01

    Phosphatidylinositol phosphate kinase (PIPK) catalyzes a key step controlling cellular contents of phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2], a critical intracellular messenger involved in vesicle trafficking and modulation of actin cytoskeleton and also a substrate of phospholipase C to produce the two intracellular messengers, diacylglycerol and inositol-1,4,5-trisphosphate. In addition to the conserved C-terminal PIPK catalytic domain, plant PIPKs contain a unique structural feature consisting of a repeat of membrane occupation and recognition nexus (MORN) motifs, called the MORN domain, in the N-terminal half. The MORN domain has previously been proposed to regulate plasma membrane localization and phosphatidic acid (PA)-inducible activation. Recently, the importance of the catalytic domain, but not the MORN domain, in these aspects was demonstrated. These conflicting data raise the question about the function of the MORN domain in plant PIPKs. We therefore performed analyses of PpPIPK1 from the moss Physcomitrella patens to elucidate the importance of the MORN domain in the control of enzymatic activity; however, we found no effect on either enzymatic activity or activation by PA. Taken together with our previous findings of lack of function in plasma membrane localization, there is no positive evidence indicating roles of the MORN domain in enzymatic and functional regulations of PpPIPK1. Therefore, further biochemical and reverse genetic analyses are necessary to understand the biological significance of the MORN domain in plant PIPKs.

  12. Dynamics of the Tec-family tyrosine kinase SH3 domains.

    PubMed

    Roberts, Justin M; Tarafdar, Sreya; Joseph, Raji E; Andreotti, Amy H; Smithgall, Thomas E; Engen, John R; Wales, Thomas E

    2016-04-01

    The Src Homology 3 (SH3) domain is an important regulatory domain found in many signaling proteins. X-ray crystallography and NMR structures of SH3 domains are generally conserved but other studies indicate that protein flexibility and dynamics are not. We previously reported that based on hydrogen exchange mass spectrometry (HX MS) studies, there is variable flexibility and dynamics among the SH3 domains of the Src-family tyrosine kinases and related proteins. Here we have extended our studies to the SH3 domains of the Tec family tyrosine kinases (Itk, Btk, Tec, Txk, Bmx). The SH3 domains of members of this family augment the variety in dynamics observed in previous SH3 domains. Txk and Bmx SH3 were found to be highly dynamic in solution by HX MS and Bmx was unstructured by NMR. Itk and Btk SH3 underwent a clear EX1 cooperative unfolding event, which was localized using pepsin digestion and mass spectrometry after hydrogen exchange labeling. The unfolding was localized to peptide regions that had been previously identified in the Src-family and related protein SH3 domains, yet the kinetics of unfolding were not. Sequence alignment does not provide an easy explanation for the observed dynamics behavior, yet the similarity of location of EX1 unfolding suggests that higher-order structural properties may play a role. While the exact reason for such dynamics is not clear, such motions can be exploited in intra- and intermolecular binding assays of proteins containing the domains. © 2016 The Protein Society.

  13. DSTYK kinase domain ablation impaired the mice capabilities of learning and memory in water maze test.

    PubMed

    Li, Kui; Liu, Ji-Wei; Zhu, Zhi-Chuan; Wang, Hong-Tao; Zu, Yong; Liu, Yong-Jie; Yang, Yan-Hong; Xiong, Zhi-Qi; Shen, Xu; Chen, Rui; Zheng, Jing; Hu, Ze-Lan

    2014-01-01

    DSTYK (Dual serine/threonine and tyrosine protein kinase) is a putative dual Ser/Thr and Tyr protein kinase with unique structural features. It is proposed that DSTYK may play important roles in brain because of its high expression in most brain areas. In the present study, a DSTYK knockout (KO) mouse line with the ablation of C-terminal of DSTYK including the kinase domain was generated to study the physiological function of DSTYK. The DSTYK KO mice are fertile and have no significant morphological defects revealed by Nissl staining compared with wildtype mice. Open field test and rotarod test showed there is no obvious difference in basic motor and balance capacity between the DSTYK homozygous KO mice and DSTYK heterozygous KO mice. In water maze test, however, the DSTYK homozygous KO mice show impaired capabilities of learning and memory compared with the DSTYK heterozygous KO mice.

  14. Discovery of Novel Small-Molecule Inhibitors of LIM Domain Kinase for Inhibiting HIV-1

    PubMed Central

    Yi, Fei; Guo, Jia; Dabbagh, Deemah; Spear, Mark; He, Sijia; Kehn-Hall, Kylene; Fontenot, Jacque; Yin, Yan; Bibian, Mathieu; Park, Chul Min; Zheng, Ke; Park, Ha Jeung; Soloveva, Veronica; Gharaibeh, Dima; Retterer, Cary; Zamani, Rouzbeh; Pitt, Margaret L.; Naughton, John; Jiang, Yongjun; Shang, Hong; Hakami, Ramin M.; Ling, Binhua; Young, John A. T.; Bavari, Sina; Xu, Xuehua

    2017-01-01

    ABSTRACT A dynamic actin cytoskeleton is necessary for viral entry, intracellular migration, and virion release. For HIV-1 infection, during entry, the virus triggers early actin activity by hijacking chemokine coreceptor signaling, which activates a host dependency factor, cofilin, and its kinase, the LIM domain kinase (LIMK). Although knockdown of human LIM domain kinase 1 (LIMK1) with short hairpin RNA (shRNA) inhibits HIV infection, no specific small-molecule inhibitor of LIMK has been available. Here, we describe the design and discovery of novel classes of small-molecule inhibitors of LIMK for inhibiting HIV infection. We identified R10015 as a lead compound that blocks LIMK activity by binding to the ATP-binding pocket. R10015 specifically blocks viral DNA synthesis, nuclear migration, and virion release. In addition, R10015 inhibits multiple viruses, including Zaire ebolavirus (EBOV), Rift Valley fever virus (RVFV), Venezuelan equine encephalitis virus (VEEV), and herpes simplex virus 1 (HSV-1), suggesting that LIMK inhibitors could be developed as a new class of broad-spectrum antiviral drugs. IMPORTANCE The actin cytoskeleton is a structure that gives the cell shape and the ability to migrate. Viruses frequently rely on actin dynamics for entry and intracellular migration. In cells, actin dynamics are regulated by kinases, such as the LIM domain kinase (LIMK), which regulates actin activity through phosphorylation of cofilin, an actin-depolymerizing factor. Recent studies have found that LIMK/cofilin are targeted by viruses such as HIV-1 for propelling viral intracellular migration. Although inhibiting LIMK1 expression blocks HIV-1 infection, no highly specific LIMK inhibitor is available. This study describes the design, medicinal synthesis, and discovery of small-molecule LIMK inhibitors for blocking HIV-1 and several other viruses and emphasizes the feasibility of developing LIMK inhibitors as broad-spectrum antiviral drugs. PMID:28381571

  15. Discovery of Novel Small-Molecule Inhibitors of LIM Domain Kinase for Inhibiting HIV-1.

    PubMed

    Yi, Fei; Guo, Jia; Dabbagh, Deemah; Spear, Mark; He, Sijia; Kehn-Hall, Kylene; Fontenot, Jacque; Yin, Yan; Bibian, Mathieu; Park, Chul Min; Zheng, Ke; Park, Ha Jeung; Soloveva, Veronica; Gharaibeh, Dima; Retterer, Cary; Zamani, Rouzbeh; Pitt, Margaret L; Naughton, John; Jiang, Yongjun; Shang, Hong; Hakami, Ramin M; Ling, Binhua; Young, John A T; Bavari, Sina; Xu, Xuehua; Feng, Yangbo; Wu, Yuntao

    2017-07-01

    A dynamic actin cytoskeleton is necessary for viral entry, intracellular migration, and virion release. For HIV-1 infection, during entry, the virus triggers early actin activity by hijacking chemokine coreceptor signaling, which activates a host dependency factor, cofilin, and its kinase, the LIM domain kinase (LIMK). Although knockdown of human LIM domain kinase 1 (LIMK1) with short hairpin RNA (shRNA) inhibits HIV infection, no specific small-molecule inhibitor of LIMK has been available. Here, we describe the design and discovery of novel classes of small-molecule inhibitors of LIMK for inhibiting HIV infection. We identified R10015 as a lead compound that blocks LIMK activity by binding to the ATP-binding pocket. R10015 specifically blocks viral DNA synthesis, nuclear migration, and virion release. In addition, R10015 inhibits multiple viruses, including Zaire ebolavirus (EBOV), Rift Valley fever virus (RVFV), Venezuelan equine encephalitis virus (VEEV), and herpes simplex virus 1 (HSV-1), suggesting that LIMK inhibitors could be developed as a new class of broad-spectrum antiviral drugs.IMPORTANCE The actin cytoskeleton is a structure that gives the cell shape and the ability to migrate. Viruses frequently rely on actin dynamics for entry and intracellular migration. In cells, actin dynamics are regulated by kinases, such as the LIM domain kinase (LIMK), which regulates actin activity through phosphorylation of cofilin, an actin-depolymerizing factor. Recent studies have found that LIMK/cofilin are targeted by viruses such as HIV-1 for propelling viral intracellular migration. Although inhibiting LIMK1 expression blocks HIV-1 infection, no highly specific LIMK inhibitor is available. This study describes the design, medicinal synthesis, and discovery of small-molecule LIMK inhibitors for blocking HIV-1 and several other viruses and emphasizes the feasibility of developing LIMK inhibitors as broad-spectrum antiviral drugs. Copyright © 2017 Yi et al.

  16. The Structural Basis for Activation and Inhibition of ZAP-70 Kinase Domain.

    PubMed

    Huber, Roland G; Fan, Hao; Bond, Peter J

    2015-10-01

    ZAP-70 (Zeta-chain-associated protein kinase 70) is a tyrosine kinase that interacts directly with the activated T-cell receptor to transduce downstream signals, and is hence a major player in the regulation of the adaptive immune response. Dysfunction of ZAP-70 causes selective T cell deficiency that in turn results in persistent infections. ZAP-70 is activated by a variety of signals including phosphorylation of the kinase domain (KD), and binding of its regulatory tandem Src homology 2 (SH2) domains to the T cell receptor. The present study investigates molecular mechanisms of activation and inhibition of ZAP-70 via atomically detailed molecular dynamics simulation approaches. We report microsecond timescale simulations of five distinct states of the ZAP-70 KD, comprising apo, inhibited and three phosphorylated variants. Extensive analysis of local flexibility and correlated motions reveal crucial transitions between the states, thus elucidating crucial steps in the activation mechanism of the ZAP-70 KD. Furthermore, we rationalize previously observed staurosporine-bound crystal structures, suggesting that whilst the KD superficially resembles an "active-like" conformation, the inhibitor modulates the underlying protein dynamics and restricts it in a compact, rigid state inaccessible to ligands or cofactors. Finally, our analysis reveals a novel, potentially druggable pocket in close proximity to the activation loop of the kinase, and we subsequently use its structure in fragment-based virtual screening to develop a pharmacophore model. The pocket is distinct from classical type I or type II kinase pockets, and its discovery offers promise in future design of specific kinase inhibitors, whilst mutations in residues associated with this pocket are implicated in immunodeficiency in humans.

  17. De novo cystic brain lesions mimicking neurocysticercosis in ALK-positive lung cancer.

    PubMed

    Kim, Su-Hyun; Hyun, Jae-Won; Kim, Ho Jin; Gwak, Ho-Shin; Lee, Sang Hyun; Hong, Eun-Kyung; Lee, Youngjoo

    2017-08-01

    Cystic brain metastases (CBM) have been recently reported in a minority of patients with anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC). All previously reported ALK-positive CBM developed during crizotinib treatment and were often asymptomatic and indolent, even without CNS-directed therapy. Thus, crizotinib was suggested as an etiologic agent for the development of CBM. Here, we report a case of de novo CBM in a patient with ALK-positive NSCLC prior to crizotinib treatment; the ALK-positive NSCLC had initially been misdiagnosed as neurocysticercosis because of the atypical radiological presentation of brain metastases. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Novel ALK fusion partners in lung cancer.

    PubMed

    Iyevleva, Aglaya G; Raskin, Grigory A; Tiurin, Vladislav I; Sokolenko, Anna P; Mitiushkina, Natalia V; Aleksakhina, Svetlana N; Garifullina, Aigul R; Strelkova, Tatiana N; Merkulov, Valery O; Ivantsov, Alexandr O; Kuligina, Ekatherina Sh; Pozharisski, Kazimir M; Togo, Alexandr V; Imyanitov, Evgeny N

    2015-06-28

    Detection of ALK rearrangements in patients with non-small cell lung cancer (NSCLC) presents a significant technical challenge due to the existence of multiple translocation partners and break-points. To improve the performance of PCR-based tests, we utilized the combination of 2 assays, i.e. the variant-specific PCR for the 5 most common ALK rearrangements and the test for unbalanced 5'/3'-end ALK expression. Overall, convincing evidence for the presence of ALK translocation was obtained for 34/400 (8.5%) cases, including 14 EML4ex13/ALKex20, 12 EML4ex6/ALKex20, 3 EML4ex18/ALKex20, 2 EML4ex20/ALKex20 variants and 3 tumors with novel translocation partners. 386 (96.5%) out of 400 EGFR mutation-negative NSCLCs were concordant for both tests, being either positive (n = 26) or negative (n = 360) for ALK translocation; 49 of these samples (6 ALK+, 43 ALK-) were further evaluated by FISH, and there were no instances of disagreement. Among the 14 (3.5%) "discordant" tumors, 5 demonstrated ALK translocation by the first but not by the second PCR assay, and 9 had unbalanced ALK expression in the absence of known ALK fusion variants. 5 samples from the latter group were subjected to FISH, and the presence of translocation was confirmed in 2 cases. Next generation sequencing analysis of these 2 samples identified novel translocation partners, DCTN1 and SQSTM1; furthermore, the DCTN1/ALK fusion was also found in another NSCLC sample with unbalanced 5'/3'-end ALK expression, indicating a recurrent nature of this translocation. We conclude that the combination of 2 different PCR tests is a viable approach for the diagnostics of ALK rearrangements. Systematic typing of ALK fusions is likely to reveal new NSCLC-specific ALK partners.

  19. Elucidation of the active conformation of the APS-kinase domain of human PAPS synthetase 1.

    PubMed

    Sekulic, Nikolina; Dietrich, Kristen; Paarmann, Ingo; Ort, Stephan; Konrad, Manfred; Lavie, Arnon

    2007-03-23

    Bifunctional human PAPS synthetase (PAPSS) catalyzes, in a two-step process, the formation of the activated sulfate carrier 3'-phosphoadenosine 5'-phosphosulfate (PAPS). The first reaction involves the formation of the 5'-adenosine phosphosulfate (APS) intermediate from ATP and inorganic sulfate. APS is then further phosphorylated on its 3'-hydroxyl group by an additional ATP molecule to generate PAPS. The former reaction is catalyzed by the ATP-sulfurylase domain and the latter by the APS-kinase domain. Here, we report the structure of the APS-kinase domain of PAPSS isoform 1 (PAPSS1) representing the Michaelis complex with the products ADP-Mg and PAPS. This structure provides a rare glimpse of the active conformation of an enzyme catalyzing phosphoryl transfer without resorting to substrate analogs, inactivating mutations, or catalytically non-competent conditions. Our structure shows the interactions involved in the binding of the magnesium ion and PAPS, thereby revealing residues critical for catalysis. The essential magnesium ion is observed bridging the phosphate groups of the products. This function of the metal ion is made possible by the DGDN-loop changing its conformation from that previously reported, and identifies these loop residues unambiguously as a Walker B motif. Furthermore, the second aspartate residue of this motif is the likely candidate for initiating nucleophilic attack on the ATP gamma-phosphate group by abstracting the proton from the 3'-hydroxyl group of the substrate APS. We report the structure of the APS-kinase domain of human PAPSS1 in complex with two APS molecules, demonstrating the ability of the ATP/ADP-binding site to bind APS. Both structures reveal extended N termini that approach the active site of the neighboring monomer. Together, these results significantly increase our understandings of how catalysis is achieved by APS-kinase.

  20. Critical role of the SPAK protein kinase CCT domain in controlling blood pressure

    PubMed Central

    Zhang, Jinwei; Siew, Keith; Macartney, Thomas; O'Shaughnessy, Kevin M.; Alessi, Dario R.

    2015-01-01

    The STE20/SPS1-related proline/alanine-rich kinase (SPAK) controls blood pressure (BP) by phosphorylating and stimulating the Na-Cl (NCC) and Na-K-2Cl (NKCC2) co-transporters, which regulate salt reabsorption in the kidney. SPAK possesses a conserved carboxy-terminal (CCT) domain, which recognises RFXV/I motifs present in its upstream activator [isoforms of the With-No-lysine (K) kinases (WNKs)] as well as its substrates (NCC and NKCC2). To define the physiological importance of the CCT domain, we generated knock-in mice in which the critical CCT domain Leu502 residue required for high affinity recognition of the RFXI/V motif was mutated to Alanine. The SPAK CCT domain defective knock-in animals are viable, and the Leu502Ala mutation abolished co-immunoprecipitation of SPAK with WNK1, NCC and NKCC2. The CCT domain defective animals displayed markedly reduced SPAK activity and phosphorylation of NCC and NKCC2 co-transporters at the residues phosphorylated by SPAK. This was also accompanied by a reduction in the expression of NCC and NKCC2 protein without changes in mRNA levels. The SPAK CCT domain knock-in mice showed typical features of Gitelman Syndrome with mild hypokalaemia, hypomagnesaemia, hypocalciuria and displayed salt wasting on switching to a low-Na diet. These observations establish that the CCT domain plays a crucial role in controlling SPAK activity and BP. Our results indicate that CCT domain inhibitors would be effective at reducing BP by lowering phosphorylation as well as expression of NCC and NKCC2. PMID:25994507

  1. Cloning and biochemical characterization of LIMK-2, a protein kinase containing two LIM domains.

    PubMed

    Smolich, B; Vo, M; Buckley, S; Plowman, G; Papkoff, J

    1997-02-01

    We have isolated human and rat clones of the LIM motif-containing protein kinase, termed LIMK-2. LIMK-2 is related to the neuronally expressed LIM-kinase, whose hemizygous deletion appears to result in cognitive impairment in patients with Williams syndrome. The hallmark of this protein family is the presence of 1 or 2-terminal LIM motifs and an atypical C-terminal protein kinase domain. LIMK-2 mRNA was detected by Northern blot analysis in human tissues, most abundantly in placenta, lung, liver, and pancreas, and also in a variety of cell lines including neuronal, glioblastoma, and mammary carcinoma lines. The LIMK-2 transcript was also induced upon neuroectodermal differentiation of mouse P19 embryonal carcinoma cells. A 65 kDa recombinant LIMK-2 protein was identified in 293 cells stably transfected with a LIMK-2 expression vector. An in vitro kinase assay demonstrates LIMK-2 is autophosphorylated and exhibits serine/threonine kinase activity towards the exogenous substrate MBP. The endogenous 65 kDa LIMK-2 protein was detected in a variety of cell lines, and coprecipitates with a 140 kDa tyrosine phosphorylated protein, but was not itself tyrosine phosphorylated. At the subcellular level, LIMK-2 is localized in both the nucleus and in a Triton X-100 soluble fraction.

  2. Putting a bit into the polo-box domain of polo-like kinase 1.

    PubMed

    Park, Jung-Eun; Kim, Tae-Sung; Meng, Lingjun; Bang, Jeong K; Kim, Bo Y; Lee, Kyung S

    Polo-like kinase 1 (Plk1) plays key roles in regulating various mitotic processes that are critical for cellular proliferation. A growing body of evidence suggests that Plk1 overexpression is tightly associated with the development of human cancers. Interestingly, various types of cancer cells are shown to be addicted to a high level of Plk1, and the reversal of Plk1 addiction appears to be an effective strategy for selectively killing cancer cells, but not normal cells. Therefore, Plk1 is considered an attractive anticancer drug target. Over the years, a large number of inhibitors that target the catalytic activity of Plk1 have been developed. However, these inhibitors exhibit significant levels of cross-reactivity with related kinases, including Plk2 and Plk3. Consequently, as an alternative approach for developing anti-Plk1 therapeutics, substantial effort is under way to develop inhibitors that target the C-terminal protein-protein interaction domain of Plk1, called the polo-box domain (PBD). In this communication, I will discuss the pros and cons of targeting the PBD in comparison to those of targeting the ATP-binding site within the kinase domain.

  3. Crystal structure of the polo-box domain of polo-like kinase 2.

    PubMed

    Shan, Hong-Mei; Wang, Tao; Quan, Jun-Min

    2015-01-16

    Polo-like kinase 2 (PLK2) is a crucial regulator in cell cycle progression, DNA damage response, and neuronal activity. PLK2 is characterized by the conserved N-terminal kinase domain and the unique C-terminal polo-box domain (PBD). The PBD mediates diverse functions of PLK2 by binding phosphorylated Ser-pSer/pThr motifs of its substrates. Here, we report the first crystal structure of the PBD of PLK2. The overall structure of the PLK2 PBD is similar to that of the PLK1 PBD, which is composed by two polo boxes each contain β6α structures that form a 12-stranded β sandwich domain. The edge of the interface between the two polo boxes forms the phosphorylated Ser-pSer/pThr motifs binding cleft. On the hand, the peripheral regions around the core binding cleft of the PLK2 PBD is distinct from that of the PLK1 PBD, which might confer the substrate specificity of the PBDs of the polo-like kinase family.

  4. Real-time genomic profiling of histiocytoses identifies early-kinase domain BRAF alterations while improving treatment outcomes

    PubMed Central

    Lee, Lynn H.; Gasilina, Anjelika; Roychoudhury, Jayeeta; McCormack, Francis X.; Pressey, Joseph; Lorsbach, Robert; Ali, Siraj; Bailey, Mark; Stephens, Philip; Ross, Jeffrey S.; Miller, Vincent A.; Nassar, Nicolas N.; Kumar, Ashish R.

    2017-01-01

    Many patients with histiocytic disorders such as Langerhans cell histiocytosis (LCH) or Erdheim-Chester disease (ECD) have treatment-refractory disease or suffer recurrences. Recent findings of gene mutations in histiocytoses have generated options for targeted therapies. We sought to determine the utility of prospective sequencing of select genes to further characterize mutations and identify targeted therapies for patients with histiocytoses. Biopsies of 72 patients with a variety of histiocytoses underwent comprehensive genomic profiling with targeted DNA and RNA sequencing. Fifteen patients (21%) carried the known BRAF V600E mutation, and 11 patients (15%) carried various mutations in MAP2K1, which we confirm induce constitutive activation of extracellular signal–regulated kinase (ERK) and were sensitive to inhibitors of mitogen-activated protein kinase kinase (MEK, the product of MAP2K1). We also identified recurring ALK rearrangements, and 4 LCH patients with an uncommon in-frame deletion in BRAF (N486_P490del or N486_T491>K), resulting in constitutive activation of ERK with resistance to V600E-specific inhibitors. We subsequently describe clinical cases where patients with aggressive multisystem LCH experience dramatic and sustained responses to monotherapy with either dabrafenib or trametinib. These findings support our conclusion that comprehensive genomic profiling should be regularly applied to these disorders at diagnosis, and can positively impact clinical care. PMID:28194436

  5. Target of Rapamycin Regulates Development and Ribosomal RNA Expression through Kinase Domain in Arabidopsis1[W][OA

    PubMed Central

    Ren, Maozhi; Qiu, Shuqing; Venglat, Prakash; Xiang, Daoquan; Feng, Li; Selvaraj, Gopalan; Datla, Raju

    2011-01-01

    Target of rapamycin (TOR) is a central regulator of cell growth, cell death, nutrition, starvation, hormone, and stress responses in diverse eukaryotes. However, very little is known about TOR signaling and the associated functional domains in plants. We have taken a genetic approach to dissect TOR functions in Arabidopsis (Arabidopsis thaliana) and report here that the kinase domain is essential for the role of TOR in embryogenesis and 45S rRNA expression. Twelve new T-DNA insertion mutants, spanning 14.2 kb of TOR-encoding genomic region, have been characterized. Nine of these share expression of defective kinase domain and embryo arrest at 16 to 32 cell stage. However, three T-DNA insertion lines affecting FATC domain displayed normal embryo development, indicating that FATC domain was dispensable in Arabidopsis. Genetic complementation showed that the TOR kinase domain alone in tor-10/tor-10 mutant background can rescue early embryo lethality and restore normal development. Overexpression of full-length TOR or kinase domain in Arabidopsis displayed developmental abnormalities in meristem, leaf, root, stem, flowering time, and senescence. We further show that TOR, especially the kinase domain, plays a role in ribosome biogenesis by activating 45S rRNA production. Of the six putative nuclear localization sequences in the kinase domain, nuclear localization sequence 6 was identified to confer TOR nuclear targeting in transient expression assays. Chromatin immunoprecipitation studies revealed that the HEAT repeat domain binds to 45S rRNA promoter and the 5′ external transcribed spacer elements motif. Together, these results show that TOR controls the embryogenesis, postembryonic development, and 45S rRNA production through its kinase domain in Arabidopsis. PMID:21266656

  6. Evaluation of the kinase domain of c-KIT in canine cutaneous mast cell tumors

    PubMed Central

    Webster, Joshua D; Kiupel, Matti; Yuzbasiyan-Gurkan, Vilma

    2006-01-01

    Background Mutations in the c-KIT proto-oncogene have been implicated in the progression of several neoplastic diseases, including gastrointestinal stromal tumors and mastocytosis in humans, and cutaneous mast cell tumors (MCTs) in canines. Mutations in human mastocytosis patients primarily occur in c-KIT exon 17, which encodes a portion of its kinase domain. In contrast, deletions and internal tandem duplication (ITD) mutations are found in the juxtamembrane domain of c-KIT in approximately 15% of canine MCTs. In addition, ITD c-KIT mutations are significantly associated with aberrant KIT protein localization in canine MCTs. However, some canine MCTs have aberrant KIT localization but lack ITD c-KIT mutations, suggesting that other mutations or other factors may be responsible for aberrant KIT localization in these tumors. Methods In order to characterize the prevalence of mutations in the phospho-transferase portion of c-KIT's kinase domain in canine MCTs exons 16–20 of 33 canine MCTs from 33 dogs were amplified and sequenced. Additionally, in order to determine if mutations in c-KIT exon 17 are responsible for aberrant KIT localization in MCTs that lack juxtamembrane domain c-KIT mutations, c-KIT exon 17 was amplified and sequenced from 18 canine MCTs that showed an aberrant KIT localization pattern but did not have ITD c-KIT mutations. Results No mutations or polymorphisms were identified in exons 16–20 of any of the MCTs examined. Conclusion In conclusion, mutations in the phospho-transferase portion of c-KIT's kinase domain do not play an important role in the progression of canine cutaneous MCTs, or in the aberrant localization of KIT in canine MCTs. PMID:16579858

  7. Activation of G Protein-Coupled Receptor Kinase 1 Involves Interactions between Its N-Terminal Region and Its Kinase Domain

    SciTech Connect

    Huang, Chih-chin; Orban, Tivadar; Jastrzebska, Beata; Palczewski, Krzysztof; Tesmer, John J.G.

    2012-03-16

    G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors (GPCRs) to initiate receptor desensitization. In addition to the canonical phosphoacceptor site of the kinase domain, activated receptors bind to a distinct docking site that confers higher affinity and activates GRKs allosterically. Recent mutagenesis and structural studies support a model in which receptor docking activates a GRK by stabilizing the interaction of its 20-amino acid N-terminal region with the kinase domain. This interaction in turn stabilizes a closed, more active conformation of the enzyme. To investigate the importance of this interaction for the process of GRK activation, we first validated the functionality of the N-terminal region in rhodopsin kinase (GRK1) by site-directed mutagenesis and then introduced a disulfide bond to cross-link the N-terminal region of GRK1 with its specific binding site on the kinase domain. Characterization of the kinetic and biophysical properties of the cross-linked protein showed that disulfide bond formation greatly enhances the catalytic efficiency of the peptide phosphorylation, but receptor-dependent phosphorylation, Meta II stabilization, and inhibition of transducin activation were unaffected. These data indicate that the interaction of the N-terminal region with the kinase domain is important for GRK activation but does not dictate the affinity of GRKs for activated receptors.

  8. Three Years Sustained Complete Remission Achieved in a Primary Refractory ALK-Positive Anaplastic T Large Cell Lymphoma Treated with Crizotinib

    PubMed Central

    Mahuad, Carolina Valeria; Repáraz, María de los Ángeles Vicente; Zerga, Marta E.; Aizpurua, María Florencia; Casali, Claudia; Garate, Gonzalo

    2016-01-01

    The prognosis of the primary refractory anaplastic lymphoma kinase (ALK+) anaplastic T large cell lymphoma is ominous. The identification of molecular targets with potential to drive oncogenesis remains a cornerstone for the designing of new selective cancer therapies. Crizotinib is a selective ATP-competitive inhibitor for ALK, approved for its use in lung cancer with rearrangements on ALK gene. The reported cases describe the use of crizotinib as a bridging strategy prior to allotransplantation; there are no reported prolonged survivals under monotherapy with Crizotinib. We report a case of a primary refractory ALK+ anaplastic large-cell lymphoma that sustains complete response after 3 years of crizotinib monotherapy. PMID:27441079

  9. Structure of the GH1 domain of guanylate kinase-associated protein from Rattus norvegicus

    SciTech Connect

    Tong, Junsen; Yang, Huiseon; Eom, Soo Hyun; Chun, ChangJu; Im, Young Jun

    2014-09-12

    Graphical abstract: - Highlights: • The crystal structure of GKAP homology domain 1 (GH1) was determined. • GKAP GH1 is a three-helix bundle connected by short flexible loops. • The predicted helix α4 associates weakly with the helix α3, suggesting dynamic nature of the GH1 domain. - Abstract: Guanylate-kinase-associated protein (GKAP) is a scaffolding protein that links NMDA receptor-PSD-95 to Shank–Homer complexes by protein–protein interactions at the synaptic junction. GKAP family proteins are characterized by the presence of a C-terminal conserved GKAP homology domain 1 (GH1) of unknown structure and function. In this study, crystal structure of the GH1 domain of GKAP from Rattus norvegicus was determined in fusion with an N-terminal maltose-binding protein at 2.0 Å resolution. The structure of GKAP GH1 displays a three-helix bundle connected by short flexible loops. The predicted helix α4 which was not visible in the crystal structure associates weakly with the helix α3 suggesting dynamic nature of the GH1 domain. The strict conservation of GH1 domain across GKAP family members and the lack of a catalytic active site required for enzyme activity imply that the GH1 domain might serve as a protein–protein interaction module for the synaptic protein clustering.

  10. Structure of the catalytic domain of human polo-like kinase 1.

    PubMed

    Kothe, Michael; Kohls, Darcy; Low, Simon; Coli, Rocco; Cheng, Alan C; Jacques, Suzanne L; Johnson, Theresa L; Lewis, Cristina; Loh, Christine; Nonomiya, Jim; Sheils, Alissa L; Verdries, Kimberly A; Wynn, Thomas A; Kuhn, Cyrille; Ding, Yuan-Hua

    2007-05-22

    Polo-like kinase 1 (Plk1) is an attractive target for the development of anticancer agents due to its importance in regulating cell-cycle progression. Overexpression of Plk1 has been detected in a variety of cancers, and expression levels often correlate with poor prognosis. Despite high interest in Plk1-targeted therapeutics, there is currently no structure publicly available to guide structure-based drug design of specific inhibitors. We determined the crystal structures of the T210V mutant of the kinase domain of human Plk1 complexed with the nonhydrolyzable ATP analogue adenylylimidodiphosphate (AMPPNP) or the pyrrolo-pyrazole inhibitor PHA-680626 at 2.4 and 2.1 A resolution, respectively. Plk1 adopts the typical kinase domain fold and crystallized in a conformation resembling the active state of other kinases. Comparison of the kinetic parameters determined for the (unphosphorylated) wild-type enzyme, as well as the T210V and T210D mutants, shows that the mutations primarily affect the kcat of the reaction, with little change in the apparent Km for the protein or nucleotide substrates (kcat = 0.0094, 0.0376, and 0.0049 s-1 and Km(ATP) = 3.2, 4.0, and 3.0 microM for WT, T210D, and T210V, respectively). The structure highlights features of the active site that can be exploited to obtain Plk1-specific inhibitors with selectivity over other kinases and Plk isoforms. These include the presence of a phenylalanine at the bottom of the ATP pocket, combined with a cysteine (as opposed to the more commonly found leucine) in the roof of the binding site, a pocket created by Leu132 in the hinge region, and a cluster of positively charged residues in the solvent-exposed area outside of the adenine pocket adjacent to the hinge region.

  11. Evaluation of EML4-ALK Fusion Proteins in Non-Small Cell Lung Cancer Using Small Molecule Inhibitors12

    PubMed Central

    Li, Yongjun; Ye, Xiaofen; Liu, Jinfeng; Zha, Jiping; Pei, Lin

    2011-01-01

    The echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion gene resulting from an inversion within chromosome 2p occurs in approximately 5% of non-small cell lung cancer and is mutually exclusive with Ras and EGFR mutations. In this study, we have used a potent and selective ALK small molecule inhibitor, NPV-TAE684, to assess the oncogenic role of EML4-ALK in non-small cell lung cancer (NSCLC). We show here that TAE684 inhibits proliferation and induces cell cycle arrest, apoptosis, and tumor regression in two NSCLC models that harbor EML4-ALK fusions. TAE684 inhibits EML4-ALK activation and its downstream signaling including ERK, AKT, and STAT3. We used microarray analysis to carry out targeted pathway studies of gene expression changes in H2228 NSCLC xenograft model after TAE684 treatment and identified a gene signature of EML4-ALK inhibition. The gene signature represents 1210 known human genes, and the top biologic processes represented by these genes are cell cycle, DNA synthesis, cell proliferation, and cell death. We also compared the effect of TAE684 with PF2341066, a c-Met and ALK small molecule inhibitor currently in clinical trial in cancers harboring ALK fusions, and demonstrated that TAE684 is a much more potent inhibitor of EML4-ALK. Our data demonstrate that EML4-ALK plays an important role in the pathogenesis of a subset of NSCLC and provides insight into the mechanism of EML4-ALK inhibition by a small molecule inhibitor. PMID:21245935

  12. Novel Kinase Inhibitors Targeting the PH Domain of AKT for Preventing and Treating Cancer | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute's Medical Oncology Branch is seeking statements of capability or interest from parties interested in licensing and co-development collaborative research to further develop, evaluate, or commercialize novel kinase inhibitors targeting the PH domain of AKT.

  13. ALK Signaling and Target Therapy in Anaplastic Large Cell Lymphoma

    PubMed Central

    Tabbó, Fabrizio; Barreca, Antonella; Piva, Roberto; Inghirami, Giorgio

    2012-01-01

    The discovery by Morris et al. (1994) of the genes contributing to the t(2;5)(p23;q35) translocation has laid the foundation for a molecular based recognition of anaplastic large cell lymphoma and highlighted the need for a further stratification of T-cell neoplasia. Likewise the detection of anaplastic lymphoma kinase (ALK) genetic lesions among many human cancers has defined unique subsets of cancer patients, providing new opportunities for innovative therapeutic interventions. The objective of this review is to appraise the molecular mechanisms driving ALK-mediated transformation, and to maintain the neoplastic phenotype. The understanding of these events will allow the design and implementation of novel tailored strategies for a well-defined subset of cancer patients. PMID:22649787

  14. Sensing Domain Dynamics in Protein Kinase A-Iα Complexes by Solution X-ray Scattering*

    PubMed Central

    Cheng, Cecilia Y.; Yang, Jie; Taylor, Susan S.; Blumenthal, Donald K.

    2009-01-01

    The catalytic (C) and regulatory (R) subunits of protein kinase A are exceptionally dynamic proteins. Interactions between the R- and C-subunits are regulated by cAMP binding to the two cyclic nucleotide-binding domains in the R-subunit. Mammalian cells express four different isoforms of the R-subunit (RIα, RIβ, RIIα, and RIIβ) that all interact with the C-subunit in different ways. Here, we investigate the dynamic behavior of protein complexes between RIα and C-subunits using small angle x-ray scattering. We show that a single point mutation in RIα, R333K (which alters the cAMP-binding properties of Domain B) results in a compact shape compared with the extended shape of the wild-type R·C complex. A double mutant complex that disrupts the interaction site between the C-subunit and Domain B in RIα, RIαABR333K·C(K285P), results in a broader P(r) curve that more closely resembles the P(r) profiles of wild-type complexes. These results together suggest that interactions between RIα Domain B and the C-subunit in the RIα·C complex involve large scale dynamics that can be disrupted by single point mutations in both proteins. In contrast to RIα·C complexes. Domain B in the RIIβ·C heterodimer is not dynamic and is critical for both inhibition and complex formation. Our study highlights the functional differences of domain dynamics between protein kinase A isoforms, providing a framework for elucidating the global organization of each holoenzyme and the cross-talk between the R- and C-subunits. PMID:19837668

  15. NEK1 kinase domain structure and its dynamic protein interactome after exposure to Cisplatin.

    PubMed

    Melo-Hanchuk, Talita D; Slepicka, Priscila Ferreira; Meirelles, Gabriela Vaz; Basei, Fernanda Luisa; Lovato, Diogo Ventura; Granato, Daniela Campos; Pauletti, Bianca Alves; Domingues, Romenia Ramos; Leme, Adriana Franco Paes; Pelegrini, Alessandra Luiza; Lenz, Guido; Knapp, Stefan; Elkins, Jonathan M; Kobarg, Jörg

    2017-07-14

    NEK family kinases are serine/threonine kinases that have been functionally implicated in the regulation of the disjunction of the centrosome, the assembly of the mitotic spindle, the function of the primary cilium and the DNA damage response. NEK1 shows pleiotropic functions and has been found to be mutated in cancer cells, ciliopathies such as the polycystic kidney disease, as well as in the genetic diseases short-rib thoracic dysplasia, Mohr-syndrome and amyotrophic lateral sclerosis. NEK1 is essential for the ionizing radiation DNA damage response and priming of the ATR kinase and of Rad54 through phosphorylation. Here we report on the structure of the kinase domain of human NEK1 in its apo- and ATP-mimetic inhibitor bound forms. The inhibitor bound structure may allow the design of NEK specific chemo-sensitizing agents to act in conjunction with chemo- or radiation therapy of cancer cells. Furthermore, we characterized the dynamic protein interactome of NEK1 after DNA damage challenge with cisplatin. Our data suggest that NEK1 and its interaction partners trigger the DNA damage pathways responsible for correcting DNA crosslinks.

  16. The JIL-1 Kinase Affects Telomere Expression in the Different Telomere Domains of Drosophila

    PubMed Central

    Silva-Sousa, Rute; Casacuberta, Elena

    2013-01-01

    In Drosophila, the non-LTR retrotransposons HeT-A, TART and TAHRE build a head-to-tail array of repetitions that constitute the telomere domain by targeted transposition at the end of the chromosome whenever needed. As a consequence, Drosophila telomeres have the peculiarity to harbor the genes in charge of telomere elongation. Understanding telomere expression is important in Drosophila since telomere homeostasis depends in part on the expression of this genomic compartment. We have recently shown that the essential kinase JIL-1 is the first positive regulator of the telomere retrotransposons. JIL-1 mediates chromatin changes at the promoter of the HeT-A retrotransposon that are necessary to obtain wild type levels of expression of these telomere transposons. With the present study, we show how JIL-1 is also needed for the expression of a reporter gene embedded in the telomere domain. Our analysis, using different reporter lines from the telomere and subtelomere domains of different chromosomes, indicates that JIL-1 likely acts protecting the telomere domain from the spreading of repressive chromatin from the adjacent subtelomere domain. Moreover, the analysis of the 4R telomere suggests a slightly different chromatin structure at this telomere. In summary, our results strongly suggest that the action of JIL-1 depends on which telomere domain, which chromosome and which promoter is embedded in the telomere chromatin. PMID:24244743

  17. Reduced activin receptor-like kinase 1 activity promotes cardiac fibrosis in heart failure.

    PubMed

    Morine, Kevin J; Qiao, Xiaoying; Paruchuri, Vikram; Aronovitz, Mark J; Mackey, Emily E; Buiten, Lyanne; Levine, Jonathan; Ughreja, Keshan; Nepali, Prerna; Blanton, Robert M; Oh, S Paul; Karas, Richard H; Kapur, Navin K

    2017-07-18

    Activin receptor-like kinase 1 (ALK1) mediates signaling via the transforming growth factor beta-1 (TGFβ1), a pro-fibrogenic cytokine. No studies have defined a role for ALK1 in heart failure. We tested the hypothesis that reduced ALK1 expression promotes maladaptive cardiac remodeling in heart failure. In patients with advanced heart failure referred for left ventricular (LV) assist device implantation, LV Alk1 mRNA and protein levels were lower than control LV obtained from patients without heart failure. To investigate the role of ALK1 in heart failure, Alk1 haploinsufficient (Alk1(+/-)) and wild-type (WT) mice were studied 2 weeks after severe transverse aortic constriction (TAC). LV and lung weights were higher in Alk1(+/-) mice after TAC. Cardiomyocyte area and LV mRNA levels of brain natriuretic peptide and β-myosin heavy chain were increased similarly in Alk1(+/-) and WT mice after TAC. Alk-1 mice exhibited reduced Smad 1 phosphorylation and signaling compared to WT mice after TAC. Compared to WT, LV fibrosis and Type 1 collagen mRNA and protein levels were higher in Alk1(+/-) mice. LV fractional shortening was lower in Alk1(+/-) mice after TAC. Reduced expression of ALK1 promotes cardiac fibrosis and impaired LV function in a murine model of heart failure. Further studies examining the role of ALK1 and ALK1 inhibitors on cardiac remodeling are required. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. HAMP Domain Rotation and Tilting Movements Associated with Signal Transduction in the PhoQ Sensor Kinase

    PubMed Central

    Matamouros, Susana; Hager, Kyle R.

    2015-01-01

    ABSTRACT HAMP domains are α-helical coiled coils that often transduce signals from extracytoplasmic sensing domains to cytoplasmic domains. Limited structural information has resulted in hypotheses that specific HAMP helix movement changes downstream enzymatic activity. These hypotheses were tested by mutagenesis and cysteine cross-linking analysis of the PhoQ histidine kinase, essential for resistance to antimicrobial peptides in a variety of enteric pathogens. These results support a mechanistic model in which periplasmic signals which induce an activation state generate a rotational movement accompanied by a tilt in α-helix 1 which activates kinase activity. Biochemical data and a high-confidence model of the PhoQ cytoplasmic domain indicate a possible physical interaction of the HAMP domain with the catalytic domain as necessary for kinase repression. These results support a model of PhoQ activation in which changes in the periplasmic domain lead to conformational movements in the HAMP domain helices which disrupt interaction between the HAMP and the catalytic domains, thus promoting increased kinase activity. PMID:26015499

  19. Structural Analysis of Sensor Domains from the TMAO-Responsive Histidine Kinase Receptor TorS.

    SciTech Connect

    Moore, J.; Hendrickson, W

    2009-01-01

    Histidine kinase receptors respond to diverse signals and mediate signal transduction across the plasma membrane in all prokaryotes and certain eukaryotes. Each receptor is part of a two-component system that regulates a particular cellular process. Organisms that use trimethylamine-N-oxide (TMAO) as a terminal electron acceptor typically control their anaerobic respiration through the TMAO reductase (Tor) pathway, which the TorS histidine kinase activates when sensing TMAO in the environment. We have determined crystal structures for the periplasmic sensor domains of TorS receptors from Escherichia coli and Vibrio parahaemolyticus. TorS sensor domains have a novel fold consisting of a membrane-proximal right-handed four-helical bundle and a membrane-distal left-handed four-helical bundle, but conformational dispositions differ significantly in the two structures. Isolated TorS sensor domains dimerize in solution; and from comparisons with dimeric NarX and Tar sensors, we postulate that signaling through TorS dimers involves a piston-type displacement between helices.

  20. Evolution of S-domain receptor-like kinases in land plants and origination of S-locus receptor kinases in Brassicaceae

    PubMed Central

    2013-01-01

    Background The S-domain serine/threonine receptor-like kinases (SRLKs) comprise one of the largest and most rapidly expanding subfamilies in the plant receptor-like/Pelle kinase (RLKs) family. The founding member of this subfamily, the S-locus receptor kinase (SRK), functions as the female determinant of specificity in the self-incompatibility (SI) responses of crucifers. Two classes of proteins resembling the extracellular S domain (designated S-domain receptor-like proteins, SRLPs) or the intracellular kinase domain (designated S-domain receptor-like cytoplasmic kinases, SRLCKs) of SRK are also ubiquitous in land plants, indicating that the SRLKs are composite molecules that originated by domain fusion of the two component proteins. Here, we explored the origin and diversification of SRLKs by phylogenomic methods. Results Based on the distribution patterns of SRLKs and SRLCKs in a reconciled species-domain tree, a maximum parsimony model was then established for simultaneously inferring and dating gene duplication/loss and fusion /fission events in SRLK evolution. Various SRK alleles from crucifer species were then included in our phylogenetic analyses to infer the origination of SRKs by identifying the proper outgroups. Conclusions Two gene fusion events were inferred and the major gene fusion event occurred in the common ancestor of land plants generated almost all of extant SRLKs. The functional diversification of duplicated SRLKs was illustrated by molecular evolution analyses of SRKs. Our findings support that SRKs originated as two ancient haplotypes derived from a pair of tandem duplicate genes through random regulatory neo-/sub- functionalization in the common ancestor of the Brassicaceae. PMID:23510165

  1. Evolution of S-domain receptor-like kinases in land plants and origination of S-locus receptor kinases in Brassicaceae.

    PubMed

    Xing, Shilai; Li, Mengya; Liu, Pei

    2013-03-19

    The S-domain serine/threonine receptor-like kinases (SRLKs) comprise one of the largest and most rapidly expanding subfamilies in the plant receptor-like/Pelle kinase (RLKs) family. The founding member of this subfamily, the S-locus receptor kinase (SRK), functions as the female determinant of specificity in the self-incompatibility (SI) responses of crucifers. Two classes of proteins resembling the extracellular S domain (designated S-domain receptor-like proteins, SRLPs) or the intracellular kinase domain (designated S-domain receptor-like cytoplasmic kinases, SRLCKs) of SRK are also ubiquitous in land plants, indicating that the SRLKs are composite molecules that originated by domain fusion of the two component proteins. Here, we explored the origin and diversification of SRLKs by phylogenomic methods. Based on the distribution patterns of SRLKs and SRLCKs in a reconciled species-domain tree, a maximum parsimony model was then established for simultaneously inferring and dating gene duplication/loss and fusion /fission events in SRLK evolution. Various SRK alleles from crucifer species were then included in our phylogenetic analyses to infer the origination of SRKs by identifying the proper outgroups. Two gene fusion events were inferred and the major gene fusion event occurred in the common ancestor of land plants generated almost all of extant SRLKs. The functional diversification of duplicated SRLKs was illustrated by molecular evolution analyses of SRKs. Our findings support that SRKs originated as two ancient haplotypes derived from a pair of tandem duplicate genes through random regulatory neo-/sub- functionalization in the common ancestor of the Brassicaceae.

  2. Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways.

    PubMed Central

    Luo, H; Rose, P; Barber, D; Hanratty, W P; Lee, S; Roberts, T M; D'Andrea, A D; Dearolf, C R

    1997-01-01

    The Jak (Janus) family of nonreceptor tyrosine kinases plays a critical role in cytokine signal transduction pathways. In Drosophila melanogaster, the dominant hop(Tum-l) mutation in the Hop Jak kinase causes leukemia-like and other developmental defects. Previous studies have suggested that the Hop(Tum-l) protein might be a hyperactive kinase. Here, we report on the new dominant mutation hop(T42), which causes abnormalities that are similar to but more extreme than those caused by hop(Tum-l). We determined that Hop(T42) contains a glutamic acid-to-lysine substitution at amino acid residue 695 (E695K). This residue occurs in the JH2 (kinase-like) domain and is conserved among all Jak family members. We determined that Hop(Tum-1) and Hop(T42) both hyperphosphorylated and hyperactivated D-Stat when overexpressed in Drosophila cells. Moreover, we found that the hop(T42) phenotype was partially rescued by a reduction of wild-type D-stat activity. Finally, generation of the corresponding E695K mutation in murine Jak2 resulted in increased autophosphorylation and increased activation of Stat5 in COS cells. These results demonstrate that the mutant Hop proteins do indeed have increased tyrosine kinase activity, that the mutations hyperactivate the Hop-D-Stat pathway, and that Drosophila is a relevant system for the functional dissection of mammalian Jak-Stat pathways. Finally, we propose a model for the role of the Hop-D-Stat pathway in Drosophila hematopoiesis. PMID:9032284

  3. Binding partners of the kinase domains in Drosophila obscurin and their effect on the structure of the flight muscle.

    PubMed

    Katzemich, Anja; West, Ryan J H; Fukuzawa, Atsushi; Sweeney, Sean T; Gautel, Mathias; Sparrow, John; Bullard, Belinda

    2015-09-15

    Drosophila obscurin (Unc-89) is a titin-like protein in the M-line of the muscle sarcomere. Obscurin has two kinase domains near the C-terminus, both of which are predicted to be inactive. We have identified proteins binding to the kinase domains. Kinase domain 1 bound Bällchen (Ball, an active kinase), and both kinase domains 1 and 2 bound MASK (a 400-kDa protein with ankyrin repeats). Ball was present in the Z-disc and M-line of the indirect flight muscle (IFM) and was diffusely distributed in the sarcomere. MASK was present in both the M-line and the Z-disc. Reducing expression of Ball or MASK by siRNA resulted in abnormalities in the IFM, including missing M-lines and multiple Z-discs. Obscurin was still present, suggesting that the kinase domains act as a scaffold binding Ball and MASK. Unlike obscurin in vertebrate skeletal muscle, Drosophila obscurin is necessary for the correct assembly of the IFM sarcomere. We show that Ball and MASK act downstream of obscurin, and both are needed for development of a well defined M-line and Z-disc. The proteins have not previously been identified in Drosophila muscle.

  4. Definition of the interferon-alpha receptor-binding domain on the TYK2 kinase.

    PubMed

    Yan, H; Piazza, F; Krishnan, K; Pine, R; Krolewski, J J

    1998-02-13

    Interferons and cytokines modulate gene expression via a simple, direct signaling pathway containing receptors, JAK tyrosine kinases, and STAT transcription factors. The interferon-alpha pathway is a model for these cascades. Two receptors, IFNaR1 and IFNaR2, associate exclusively in a constitutive manner with two JAK proteins, TYK2 and JAK1, respectively. Defining the molecular interface between JAK proteins and their receptors is critical to understanding the signaling pathway and may contribute to the development of novel therapeutics. This report defines the IFNaR1 interaction domain on TYK2. In vitro binding studies demonstrate that the amino-terminal half of TYK2, which is approximately 600 amino acids long and contains JAK homology (JH) domains 3-7, comprises the maximal binding domain for IFNaR1. A fragment containing amino acids 171-601 (JH3-6) also binds IFNaR1, but with reduced affinity. Glutathione S-transferase-TYK2 fusion proteins approximating either the JH6 or JH3 domain affinity-precipitate IFNaR1, suggesting that these are major sites of interaction within the larger binding domain. TYK2 amino acids 1-601 act in a dominant manner to inhibit the transcription of an interferon-alpha-dependent reporter gene, presumably by displacing endogenous TYK2 from the receptor. This same fragment inhibits interferon-alpha-dependent tyrosine phosphorylation of TYK2, STAT1, and STAT2.

  5. Novel mutation in the tyrosine kinase domain of FGFR2 in a patient with Pfeiffer syndrome.

    PubMed

    Zankl, Andreas; Jaeger, Gudrun; Bonafé, Luisa; Boltshauser, Eugen; Superti-Furga, Andrea

    2004-12-15

    Mutations in the fibroblast growth factor receptor 2 (FGFR2) cause a variety of craniosynostosis syndromes. The mutational spectrum tends to be narrow with the majority of mutations occurring in either exon IIIa or IIIc or in the intronic sequence preceding exon IIIc. Mutations outside of this hotspot are uncommon and the few identified mutations have demonstrated wide clinical variability, making it difficult to establish a clear-cut genotype-phenotype correlation. To better delineate the clinical picture associated with these unusual mutations, we describe a severely affected patient with Pfeiffer syndrome and a missense mutation in the tyrosine kinase (TK) domain of FGFR2.

  6. ALK1 heterozygosity increases extracellular matrix protein expression, proliferation and migration in fibroblasts.

    PubMed

    Muñoz-Félix, José M; Perretta-Tejedor, Nuria; Eleno, Nélida; López-Novoa, José M; Martínez-Salgado, Carlos

    2014-06-01

    Fibrosis is a pathological situation in which excessive amounts of extracellular matrix (ECM) are deposited in the tissue. Myofibroblasts play a crucial role in the development and progress of fibrosis as they actively synthesize ECM components such as collagen I, fibronectin and connective tissue growth factor (CTGF) and cause organ fibrosis. Transforming growth factor beta 1 (TGF-β1) plays a major role in tissue fibrosis. Activin receptor-like kinase 1 (ALK1) is a type I receptor of TGF-β1 with an important role in angiogenesis whose function in cellular biology and TGF-β signaling is well known in endothelial cells, but its role in fibroblast biology and its contribution to fibrosis is poorly studied. We have recently demonstrated that ALK1 regulates ECM protein expression in a mouse model of obstructive nephropathy. Our aim was to evaluate the role of ALK1 in several processes involved in fibrosis such as ECM protein expression, proliferation and migration in ALK1(+/+) and ALK1(+/-) mouse embryonic fibroblasts (MEFs) after TGF-β1 stimulations and inhibitors. ALK1 heterozygous MEFs show increased expression of ECM proteins (collagen I, fibronectin and CTGF/CCN2), cell proliferation and migration due to an alteration of TGF-β/Smad signaling. ALK1 heterozygous disruption shows an increase of Smad2 and Smad3 phosphorylation that explains the increases in CTGF/CCN2, fibronectin and collagen I, proliferation and cell motility observed in these cells. Therefore, we suggest that ALK1 plays an important role in the regulation of ECM protein expression, proliferation and migration.

  7. Two Polo-like kinase 4 binding domains in Asterless perform distinct roles in regulating kinase stability

    PubMed Central

    Klebba, Joseph E.; Galletta, Brian J.; Nye, Jonathan; Plevock, Karen M.; Buster, Daniel W.; Hollingsworth, Natalie A.; Slep, Kevin C.

    2015-01-01

    Plk4 (Polo-like kinase 4) and its binding partner Asterless (Asl) are essential, conserved centriole assembly factors that induce centriole amplification when overexpressed. Previous studies found that Asl acts as a scaffolding protein; its N terminus binds Plk4’s tandem Polo box cassette (PB1-PB2) and targets Plk4 to centrioles to initiate centriole duplication. However, how Asl overexpression drives centriole amplification is unknown. In this paper, we investigated the Asl–Plk4 interaction in Drosophila melanogaster cells. Surprisingly, the N-terminal region of Asl is not required for centriole duplication, but a previously unidentified Plk4-binding domain in the C terminus is required. Mechanistic analyses of the different Asl regions revealed that they act uniquely during the cell cycle: the Asl N terminus promotes Plk4 homodimerization and autophosphorylation during interphase, whereas the Asl C terminus stabilizes Plk4 during mitosis. Therefore, Asl affects Plk4 in multiple ways to regulate centriole duplication. Asl not only targets Plk4 to centrioles but also modulates Plk4 stability and activity, explaining the ability of overexpressed Asl to drive centriole amplification. PMID:25688134

  8. Comparison and correlation of binding mode of ATP in the kinase domains of Hexokinase family

    PubMed Central

    Kumar, Yellapu Nanda; Kumar, Pasupuleti Santhosh; Sowjenya, Gopal; Rao, Valasani Koteswara; Yeswanth, Sthanikam; Prasad, Uppu Venkateswara; Pradeepkiran, Jangampalli Adi; Sarma, PVGK; Bhaskar, Matcha

    2012-01-01

    Hexokinases (HKs) are the enzymes that catalyses the ATP dependent phosphorylation of Hexose sugars to Hexose-6-Phosphate (Hex-6-P). There exist four different forms of HKs namely HK-I, HK-II, HK-III and HK-IV and all of them share a common ATP binding site core surrounded by more variable sequence that determine substrate affinities. Although they share a common binding site but they differ in their kinetic functions, hence the present study is aimed to analyze the binding mode of ATP. The analysis revealed that the four ATP binding domains are showing 13 identical, 7 similar and 6 dissimilar residues with similar structural conformation. Molecular docking of ATP into the kinase domains using Molecular Operating Environment (MOE) soft ware tool clearly showed the variation in the binding mode of ATP with variable docking scores. This probably explains the variable phosphorylation rates among hexokinases family. PMID:22829728

  9. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection.

    PubMed

    Limpens, Erik; Franken, Carolien; Smit, Patrick; Willemse, Joost; Bisseling, Ton; Geurts, René

    2003-10-24

    The rhizobial infection of legumes has the most stringent demand toward Nod factor structure of all host responses, and therefore a specific Nod factor entry receptor has been proposed. The SYM2 gene identified in certain ecotypes of pea (Pisum sativum) is a good candidate for such an entry receptor. We exploited the close phylogenetic relationship of pea and the model legume Medicago truncatula to identify genes specifically involved in rhizobial infection. The SYM2 orthologous region of M. truncatula contains 15 putative receptor-like genes, of which 7 are LysM domain-containing receptor-like kinases (LYKs). Using reverse genetics in M. truncatula, we show that two LYK genes are specifically involved in infection thread formation. This, as well as the properties of the LysM domains, strongly suggests that they are Nod factor entry receptors.

  10. Personalized treatment options for ALK-positive metastatic non-small-cell lung cancer: potential role for Ceritinib.

    PubMed

    El-Osta, Hazem; Shackelford, Rodney

    2015-01-01

    The fusion of echinoderm microtubule-associated protein-like 4 with the anaplastic lymphoma kinase (EML4-ALK) is found in 3%-7% of non-small-cell lung cancer (NSCLC) cases and confers sensitivity to crizotinib, the first United States Food and Drug Administration (FDA)-approved ALK inhibitor drug. Although crizotinib has an excellent initial therapeutic effect, acquired resistance to this drug invariably develops within the first year of treatment. Resistance may involve secondary gatekeeper mutations within the ALK gene interfering with crizotinib-ALK interactions, or compensatory activation of aberrant bypass signaling pathways. New therapeutic strategies to overcome crizotinib resistance are needed. Ceritinib, a second-generation ALK inhibitor, overcomes several crizotinib-resistant ALK mutations and has demonstrated efficacy against tumor growth in several in vitro and in vivo preclinical models of crizotinib resistance. Notably, the dose-escalation Phase I ASCEND-1 trial has shown a marked activity of ceritinib in both crizotinib-naïve and crizotinib-resistant ALK-rearranged lung cancer. The overall response rate was 58% in a subgroup of patients with ALK-rearranged late-stage NSCLC. Drug discontinuation rate due to toxicity was 10%. The standard dose was established at 750 mg daily. This paper outlines the pathogenesis and treatment of ALK-positive lung cancer, focuses on the preclinical and clinical results surrounding the accelerated FDA approval of ceritinib for the treatment of ALK-positive metastatic NSCLC patients who have progressed on/or are crizotinib intolerant, and discusses the potential efforts seeking to maximize ceritinib efficacy and expand its usage to other indications in cancer therapy.

  11. Personalized treatment options for ALK-positive metastatic non-small-cell lung cancer: potential role for Ceritinib

    PubMed Central

    El-Osta, Hazem; Shackelford, Rodney

    2015-01-01

    The fusion of echinoderm microtubule-associated protein-like 4 with the anaplastic lymphoma kinase (EML4-ALK) is found in 3%–7% of non-small-cell lung cancer (NSCLC) cases and confers sensitivity to crizotinib, the first United States Food and Drug Administration (FDA)-approved ALK inhibitor drug. Although crizotinib has an excellent initial therapeutic effect, acquired resistance to this drug invariably develops within the first year of treatment. Resistance may involve secondary gatekeeper mutations within the ALK gene interfering with crizotinib–ALK interactions, or compensatory activation of aberrant bypass signaling pathways. New therapeutic strategies to overcome crizotinib resistance are needed. Ceritinib, a second-generation ALK inhibitor, overcomes several crizotinib-resistant ALK mutations and has demonstrated efficacy against tumor growth in several in vitro and in vivo preclinical models of crizotinib resistance. Notably, the dose-escalation Phase I ASCEND-1 trial has shown a marked activity of ceritinib in both crizotinib-naïve and crizotinib-resistant ALK-rearranged lung cancer. The overall response rate was 58% in a subgroup of patients with ALK-rearranged late-stage NSCLC. Drug discontinuation rate due to toxicity was 10%. The standard dose was established at 750 mg daily. This paper outlines the pathogenesis and treatment of ALK-positive lung cancer, focuses on the preclinical and clinical results surrounding the accelerated FDA approval of ceritinib for the treatment of ALK-positive metastatic NSCLC patients who have progressed on/or are crizotinib intolerant, and discusses the potential efforts seeking to maximize ceritinib efficacy and expand its usage to other indications in cancer therapy. PMID:26622190

  12. The N-terminal domains of cyclin-dependent kinase inhibitory proteins block the phosphorylation of cdk2/Cyclin E by the CDK-activating kinase.

    PubMed

    Rank, K B; Evans, D B; Sharma, S K

    2000-05-10

    It has been suggested that binding of p27 and p21 kinase inhibitory proteins (KIPs) to cyclin-dependent kinases (cdks) render them inaccessible to cdk-activating kinase (CAK), presumably by steric hindrance by the C-terminal residues. However, this common mechanism of inhibition is inconsistent with the known structural divergence in the p27 and p21 C-terminal domains. Therefore, we studied the direct binding of N-terminal minimal domain of p27 (amino acids 28-81) to cdk2/cyclin E. An unlabeled p27 minimal domain, mutated in the N-terminal LFG motif, was unable to compete with a labeled minimal domain for binding to cdk2/cyclin E. The p27 and its minimal domain inhibited CAK-mediated phosphorylation of cdk2/cyclin E. This inhibitory effect was significantly diminished with p27 minimal domain mutated in the LFG motif. A synthetic peptide, ACRRLFGPVDSE, from the N-terminal residues 17-28 of p21, was also a potent inhibitor of CAK-mediated cdk2/cyclin E phosphorylation. Taken together, these results show that anchoring of p27 or p21 KIPs to cyclin E via the N-terminal LFG-containing motif can block CAK access to its cdk2/cyclin E substrate.

  13. CRISPR/Cas9 Technology-Based Xenograft Tumors as Candidate Reference Materials for Multiple EML4-ALK Rearrangements Testing.

    PubMed

    Peng, Rongxue; Zhang, Rui; Lin, Guigao; Yang, Xin; Li, Ziyang; Zhang, Kuo; Zhang, Jiawei; Li, Jinming

    2017-09-01

    The echinoderm microtubule-associated protein-like 4 and anaplastic lymphoma kinase (ALK) receptor tyrosine kinase (EML4-ALK) rearrangement is an important biomarker that plays a pivotal role in therapeutic decision making for non-small-cell lung cancer (NSCLC) patients. Ensuring accuracy and reproducibility of EML4-ALK testing by fluorescence in situ hybridization, immunohistochemistry, RT-PCR, and next-generation sequencing requires reliable reference materials for monitoring assay sensitivity and specificity. Herein, we developed novel reference materials for various kinds of EML4-ALK testing. CRISPR/Cas9 was used to edit various NSCLC cell lines containing EML4-ALK rearrangement variants 1, 2, and 3a/b. After s.c. inoculation, the formalin-fixed, paraffin-embedded (FFPE) samples from xenografts were prepared and tested for suitability as candidate reference materials by fluorescence in situ hybridization, immunohistochemistry, RT-PCR, and next-generation sequencing. Sample validation and commutability assessments showed that all types of FFPE samples derived from xenograft tumors have typical histological structures, and EML4-ALK testing results were similar to the clinical ALK-positive NSCLC specimens. Among the four methods for EML4-ALK detection, the validation test showed 100% concordance. Furthermore, these novel FFPE reference materials showed good stability and homogeneity. Without limitations on variant types and production, our novel FFPE samples based on CRISPR/Cas9 editing and xenografts are suitable as candidate reference materials for the validation, verification, internal quality control, and proficiency testing of EML4-ALK detection. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  14. Concurrent EGFR Mutation and ALK Translocation in Non-Small Cell Lung Cancer

    PubMed Central

    Thomas, Sachdev; Bank, Bruce; Fishkin, Paul; Mooney, Colin; Salgia, Ravi

    2016-01-01

    Epidermal growth factor receptor (EGFR) mutations and anaplastic large-cell lymphoma kinase (ALK) rearrangements are now routine biomarkers that have been incorporated into the practice of managing non-small cell lung cancer (NSCLC). Historically, the two molecular alterations have been viewed as mutually exclusive, but recent identified cases suggest otherwise. In this report, we describe cases of lung cancer with concurrent EGFR mutation and ALK rearrangement and identify their clinical characteristics. Non-small cell lung cancer patients with multiple molecular alterations were retrospectively analyzed from an academic referral center from 2011–2013. An additional review was conducted of reported cases with dual alterations. Four cases of NSCLC with alterations in both EGFR and ALK were identified and evaluated with 16 published cases for a total of 20 cases. The age of patients ranged from 37 to 77 years. Nine patients were never smokers. The disease control rates in patients treated with EGFR inhibitors and ALK inhibitors were 46% (6/13) and 71% (5/7), respectively. This series highlights the importance of comprehensive molecular profiling of newly diagnosed lung cancer, as NSCLC may be driven by concurrent molecular alterations. EGFR- and ALK-targeted therapies appear to have modest activity in patients with tumors possessing both alterations. Dual-altered NSCLC patients may have distinct clinical characteristics warranting further study. Combination targeted therapy or novel multi-targeted tyrosine kinase inhibitors may prove important in these patients, though necessary studies remain ongoing. PMID:27026837

  15. Minor modifications to ceritinib enhance anti-tumor activity in EML4-ALK positive cancer.

    PubMed

    Kang, Chung Hyo; Kim, Eun-Young; Kim, Hyoung Rae; Lee, Chong Ock; Lee, Heung Kyoung; Jeong, Hye Gwang; Choi, Sang Un; Yun, Chang-Soo; Hwang, Jong Yeon; Lee, Joo-Youn; Son, You Hwa; Ahn, Sunjoo; Lee, Byung Hoi; Jung, Heejung; Park, Chi Hoon

    2016-05-01

    Ceritinib, an ALK inhibitor, was hurriedly approved by the US FDA last year, and demonstrates impressive results in EML4-ALK positive patients. To get a superior ALK inhibitor, we synthesized several ceritinib derivatives with minor modifications to the phenylpiperidine moiety. Biochemical and cellular assays demonstrated the improved activity of KRCA-386 over that of ceritinib. KRCA-386 has superior inhibitory activity against ALK mutants commonly found in crizotinib-resistant patients. Particularly, KRCA-386 has considerably greater activity than ceritinib against the G1202R mutant, one of the most challenging mutations to overcome. The cell cycle analysis indicates that ALK inhibitors induce G1/S arrest, resulting in apoptosis. The in vivo xenograft data also demonstrate that KRCA-386 is significantly better than ceritinib. KRCA-386 dosed at 25 mpk caused 105% tumor growth inhibition (TGI) compared to 72% TGI with ceritinib dosed at 25 mpk. (n = 8, P = 0.010) The kinase profiling assay revealed that several kinases, which are known to be critical for tumor growth, are inhibited by KRCA-386, but not by ceritinib. We anticipate that this characteristic of KRCA-386 enhances its in vivo efficacy. In addition, KRCA-386 shows excellent blood brain barrier penetration compared to ceritinib. These results suggest that KRCA-386 could be useful for crizotinib-resistant patients with brain metastases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Functional Analysis of the Cyclin-Dependent Kinase Inhibitor Pho81 Identifies a Novel Inhibitory Domain

    PubMed Central

    Huang, Sidong; Jeffery, Douglas A.; Anthony, Malcolm D.; O'Shea, Erin K.

    2001-01-01

    In response to phosphate limitation, Saccharomyces cerevisiae induces transcription of a set of genes important for survival. A phosphate-responsive signal transduction pathway mediates this response by controlling the activity of the transcription factor Pho4. Three components of this signal transduction pathway resemble those used to regulate the eukaryotic cell cycle: a cyclin-dependent kinase (CDK), Pho85; a cyclin, Pho80; and a CDK inhibitor (CKI), Pho81. Pho81 forms a stable complex with Pho80-Pho85 under both high- and low-phosphate conditions, but it only inhibits the kinase when cells are starved for phosphate. Pho81 contains six tandem repeats of the ankyrin consensus domain homologous to the INK4 family of mammalian CKIs. INK4 proteins inhibit kinase activity through an interaction of the ankyrin repeats and the CDK subunits. Surprisingly, we find that a region of Pho81 containing 80 amino acids C terminal to the ankyrin repeats is necessary and sufficient for Pho81's CKI function. The ankyrin repeats of Pho81 appear to have no significant role in Pho81 inhibition. Our results suggest that Pho81 inhibits Pho80-Pho85 with a novel motif. PMID:11533256

  17. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    SciTech Connect

    Simarro, Maria; Gimenez-Cassina, Alfredo; Kedersha, Nancy; Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A.; Rhee, Kirsten; Tisdale, Sarah; Danial, Nika; Benarafa, Charaf; Orduna, Anonio; Anderson, Paul

    2010-10-22

    Research highlights: {yields} Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. {yields} The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. {yields} Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  18. Structural analysis of the polo-box domain of human Polo-like kinase 2.

    PubMed

    Kim, Ju Hee; Ku, Bonsu; Lee, Kyung S; Kim, Seung Jun

    2015-07-01

    Polo-like kinases (Plks) are the key regulators of cell cycle progression, the members of which share a kinase domain and a polo-box domain (PBD) that serves as a protein-binding module. While Plk1 is a promising target for antitumor therapy, Plk2 is regarded as a tumor suppressor even though the two Plks commonly recognize the S-pS/T-P motif through their PBD. Herein, we report the crystal structure of the PBD of Plk2 at 2.7 Å. Despite the overall structural similarity with that of Plk1 reflecting their high sequence homology, the crystal structure also contains its own features including the highly ordered loop connecting two subdomains and the absence of 310 -helices in the N-terminal region unlike the PBD of Plk1. Based on the three-dimensional structure, we furthermore could model its interaction with two types of phosphopeptides, one of which was previously screened as the optimal peptide for the PBD of Plk2.

  19. Differential roles of the glycogen-binding domains of beta subunits in regulation of the Snf1 kinase complex.

    PubMed

    Mangat, Simmanjeet; Chandrashekarappa, Dakshayini; McCartney, Rhonda R; Elbing, Karin; Schmidt, Martin C

    2010-01-01

    Members of the AMP-activated protein kinase family, including the Snf1 kinase of Saccharomyces cerevisiae, are activated under conditions of nutrient stress. AMP-activated protein kinases are heterotrimeric complexes composed of a catalytic alpha subunit and regulatory beta and gamma subunits. In this study, the role of the beta subunits in the regulation of Snf1 activity was examined. Yeasts express three isoforms of the AMP-activated protein kinase consisting of Snf1 (alpha), Snf4 (gamma), and one of three alternative beta subunits, either Sip1, Sip2, or Gal83. The Gal83 isoform of the Snf1 complex is the most abundant and was analyzed in the greatest detail. All three beta subunits contain a conserved domain referred to as the glycogen-binding domain. The deletion of this domain from Gal83 results in a deregulation of the Snf1 kinase, as judged by a constitutive activity independent of glucose availability. In contrast, the deletion of this homologous domain from the Sip1 and Sip2 subunits had little effect on Snf1 kinase regulation. Therefore, the different Snf1 kinase isoforms are regulated through distinct mechanisms, which may contribute to their specialized roles in different stress response pathways. In addition, the beta subunits are subjected to phosphorylation. The responsible kinases were identified as being Snf1 and casein kinase II. The significance of the phosphorylation is unclear since the deletion of the region containing the phosphorylation sites in Gal83 had little effect on the regulation of Snf1 in response to glucose limitation.

  20. Differential Roles of the Glycogen-Binding Domains of β Subunits in Regulation of the Snf1 Kinase Complex▿

    PubMed Central

    Mangat, Simmanjeet; Chandrashekarappa, Dakshayini; McCartney, Rhonda R.; Elbing, Karin; Schmidt, Martin C.

    2010-01-01

    Members of the AMP-activated protein kinase family, including the Snf1 kinase of Saccharomyces cerevisiae, are activated under conditions of nutrient stress. AMP-activated protein kinases are heterotrimeric complexes composed of a catalytic α subunit and regulatory β and γ subunits. In this study, the role of the β subunits in the regulation of Snf1 activity was examined. Yeasts express three isoforms of the AMP-activated protein kinase consisting of Snf1 (α), Snf4 (γ), and one of three alternative β subunits, either Sip1, Sip2, or Gal83. The Gal83 isoform of the Snf1 complex is the most abundant and was analyzed in the greatest detail. All three β subunits contain a conserved domain referred to as the glycogen-binding domain. The deletion of this domain from Gal83 results in a deregulation of the Snf1 kinase, as judged by a constitutive activity independent of glucose availability. In contrast, the deletion of this homologous domain from the Sip1 and Sip2 subunits had little effect on Snf1 kinase regulation. Therefore, the different Snf1 kinase isoforms are regulated through distinct mechanisms, which may contribute to their specialized roles in different stress response pathways. In addition, the β subunits are subjected to phosphorylation. The responsible kinases were identified as being Snf1 and casein kinase II. The significance of the phosphorylation is unclear since the deletion of the region containing the phosphorylation sites in Gal83 had little effect on the regulation of Snf1 in response to glucose limitation. PMID:19897735

  1. Crystal Structure and Oligomeric State of the RetS Signaling Kinase Sensory Domain

    SciTech Connect

    Jing, X.; Jaw, J; Robinson, H; Schubot, F

    2010-01-01

    The opportunistic pathogen Pseudomonas aeruginosa may cause both acute and chronic-persistent infections in predisposed individuals. Acute infections require the presence of a functional type III secretion system (T3SS), whereas chronic P. aeruginosa infections are characterized by the formation of drug-resistant biofilms. The T3SS and biofilm formation are reciprocally regulated by the signaling kinases LadS, RetS, and GacS. RetS downregulates biofilm formation and upregulates expression of the T3SS through a unique mechanism. RetS forms a heterodimeric complex with GacS and thus prevents GacS autophosphorylation and downstream signaling. The signals that regulate RetS are not known but RetS possesses a distinctive periplasmic sensor domain that is believed to serve as receptor for the regulatory ligand. We have determined the crystal structure of the RetS sensory domain at 2.0 {angstrom} resolution. The structure closely resembles those of carbohydrate binding modules of other proteins, suggesting that the elusive ligands are likely carbohydrate moieties. In addition to the conserved beta-sandwich structure, the sensory domain features two alpha helices which create a unique surface topology. Protein-protein crosslinking and fluorescence energy transfer experiments also revealed that the sensory domain dimerizes with a dissociation constant of K{sub d} = 580 {+-} 50 nM, a result with interesting implications for our understanding of the underlying signaling mechanism.

  2. Tyrosine kinase domain mutations of EGFR gene in head and neck squamous cell carcinoma

    PubMed Central

    Vatte, Chittibabu; Al Amri, Ali M; Cyrus, Cyril; Chathoth, Shahanas; Acharya, Sadananda; Hashim, Tariq Mohammad; Al Ali, Zhara; Alshreadah, Saleh Tawfeeq; Alsayyah, Ahmed; Al-Ali, Amein K

    2017-01-01

    Background Epidermal growth factor receptor (EGFR) is a commonly altered gene that is identified in various cancers, including head and neck squamous cell carcinoma (HNSCC). Therefore, EGFR is a promising molecular marker targeted by monoclonal antibodies and small molecule inhibitors targeting the tyrosine kinase (TK) domain. Objective The objective of this study was to investigate the spectrum of mutations in exons 18, 19, 20, and 21 of the EGFR gene in HNSCC patients. Materials and methods This retrospective study included 47 confirmed HNSCC cases. Mutations in the TK domain, exons 18, 19, 20, and 21 of the EGFR gene, were detected by Scorpion® chemistry and ARMS® technologies on Rotor-Gene Q real-time polymerase chain reaction. Results The tumors exhibited EGFR-TK domain mutations in 57% of cases. Four cases of T790M mutations were reported for the first time among HNSCC patients. Out of the total mutations, L861Q (exon 21), exon 20 insertions and deletions of exon 19 accounted for the majority of mutations (21%, 19%, and 17%, respectively). EGFR mutation status was correlated with the higher grade (P=0.026) and advanced stage (P=0.034) of HNSCC tumors. Conclusion Higher frequency of EGFR-TK domain mutations together with the presence of the T790M mutation suggests that identification of these mutations might streamline the therapy and provide a better prognosis in HNSCC cases. PMID:28352186

  3. From defense to symbiosis: limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume-Rhizobium symbiosis.

    PubMed

    Nakagawa, Tomomi; Kaku, Hanae; Shimoda, Yoshikazu; Sugiyama, Akifumi; Shimamura, Masayuki; Takanashi, Kojiro; Yazaki, Kazufumi; Aoki, Toshio; Shibuya, Naoto; Kouchi, Hiroshi

    2011-01-01

    Nitrogen-fixing symbiosis between legumes and rhizobia is initiated by the recognition of rhizobial Nod factors (NFs) by host plants. NFs are diversely modified derivatives of chitin oligosaccharide, a fungal elicitor that induces defense responses in plants. Recent evidence has shown that both NFs and chitin elicitors are recognized by structurally related LysM receptor kinases. Transcriptome analyses of Lotus japonicus roots indicated that NFs not only activate symbiosis genes but also transiently activate defense-related genes through NF receptors. Conversely, chitin oligosaccharides were able to activate symbiosis genes independently of NF receptors. Analyses using chimeric genes consisting of the LysM receptor domain of a Lotus japonicus NF receptor, NFR1, and the kinase domain of an Arabidopsis chitin receptor, CERK1, demonstrated that substitution of a portion of the αEF helix in CERK1 with the amino acid sequence YAQ from the corresponding region of NFR1 enables L. japonicus nfr1 mutants to establish symbiosis with Mesorhizobium loti. We also showed that the kinase domains of two Lotus japonicus LysM receptor kinases, Lys6 and Lys7, which also possess the YAQ sequence, suppress the symbiotic defect of nfr1. These results strongly suggest that, in addition to adaptation of extracellular LysM domains to NFs, limited alterations in the kinase domain of chitin receptors have played a crucial role in shifting the intracellular signaling to symbiosis from defense responses, thus constituting one of the key genetic events in the evolution of root nodule symbiosis in legume plants. © 2010 The Authors. The Plant Journal © 2010 Blackwell Publishing Ltd.

  4. ALK oncoproteins in atypical inflammatory myofibroblastic tumours: novel RRBP1-ALK fusions in epithelioid inflammatory myofibroblastic sarcoma.

    PubMed

    Lee, Jen-Chieh; Li, Chien-Feng; Huang, Hsuan-Ying; Zhu, Mei-Jun; Mariño-Enríquez, Adrián; Lee, Chung-Ta; Ou, Wen-Bin; Hornick, Jason L; Fletcher, Jonathan A

    2017-02-01

    ALK oncogenic activation mechanisms were characterized in four conventional spindle-cell inflammatory myofibroblastic tumours (IMT) and five atypical IMT, each of which had ALK genomic perturbations. Constitutively activated ALK oncoproteins were purified by ALK immunoprecipitation and electrophoresis, and were characterized by mass spectrometry. The four conventional IMT had TPM3/4-ALK fusions (two cases) or DCTN1-ALK fusions (two cases), whereas two atypical spindle-cell IMT had TFG-ALK and TPM3-ALK fusion in one case each, and three epithelioid inflammatory myofibroblastic sarcomas had RANBP2-ALK fusions in two cases, and a novel RRBP1-ALK fusion in one case. The epithelioid inflammatory myofibroblastic sarcoma with RRBP1-ALK fusion had cytoplasmic ALK expression with perinuclear accentuation, different from the nuclear membranous ALK localization in epithelioid inflammatory myofibroblastic sarcomas with RANBP2-ALK fusions. Evaluation of three additional uncharacterized epithelioid inflammatory myofibroblastic sarcomas with ALK cytoplasmic/perinuclear- accentuation expression demonstrated RRBP1-ALK fusion in two cases. These studies show that atypical spindle-cell IMT can utilize the same ALK fusion mechanisms described previously in conventional IMT, whereas in clinically aggressive epithelioid inflammatory myofibroblastic sarcoma we identify a novel recurrent ALK oncogenic mechanism, resulting from fusion with the RRBP1 gene. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  5. Separate domains of the insulin receptor contain sites of autophosphorylation and tyrosine kinase activity

    SciTech Connect

    Goren, H.J.; White, M.F.; Khan, C.R.

    1987-04-21

    The authors have studied the structure and function of the solubilized insulin receptor before and after partial proteolytic digestion to define domains in the ..beta..-subunit that undergo autophosphorylation and contain the tyrosine kinase activity. Wheat germ agglutinin purified insulin receptor from Fao cells was digested briefly at 22/sup 0/C with low concentrations of trypsin, staphylococcal V8 protease, or elastase. Autophosphorylation of the ..beta..-subunit was carried out before and after digestion, and the (/sup 32/P)phosphoproteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, detected by autoradiography, and analyzed by tryptic peptide mapping by use of reverse-phase high-performance liquid chromatography. The 85-kDa fragment was not immunoprecipitated by an antibody directed against the C-terminal domain of the ..beta..-subunit (..cap alpha..Pep-1), indicating that this region of the receptor was lost. The 85-kDa fragment contained about half of the (/sup 32/P)phosphate originally found in the ..beta..-subunit, and tryptic peptide mapping showed that two major tryptic phosphopeptides (previously called pY2 and pY3) were removed. Three other tryptic phosphopeptides (pY1, pY1a, and pY4) were found in the 85- and 70-kDa fragments. To determined the structural requirements for kinase activity, the insulin receptor was subjected to tryptic digestion for 30 s-30 min, such that the receptor was composed exclusively of 85- and 70-kDa fragments of the ..beta..-subunit. The 85-kDa fragment exhibited autophosphorylation at pY1, pY1a, and pY4. Both the 85- and 70-kDa fragments phosphorylated tyrosine residues in a synthetic decapeptide that has the sequence of the C-terminal domain of the ..beta..-subunit of human insulin rare in the receptor.

  6. A novel patient-derived tumorgraft model with TRAF1-ALK anaplastic large-cell lymphoma translocation.

    PubMed

    Abate, F; Todaro, M; van der Krogt, J-A; Boi, M; Landra, I; Machiorlatti, R; Tabbò, F; Messana, K; Abele, C; Barreca, A; Novero, D; Gaudiano, M; Aliberti, S; Di Giacomo, F; Tousseyn, T; Lasorsa, E; Crescenzo, R; Bessone, L; Ficarra, E; Acquaviva, A; Rinaldi, A; Ponzoni, M; Longo, D L; Aime, S; Cheng, M; Ruggeri, B; Piccaluga, P P; Pileri, S; Tiacci, E; Falini, B; Pera-Gresely, B; Cerchietti, L; Iqbal, J; Chan, W C; Shultz, L D; Kwee, I; Piva, R; Wlodarska, I; Rabadan, R; Bertoni, F; Inghirami, G

    2015-06-01

    Although anaplastic large-cell lymphomas (ALCL) carrying anaplastic lymphoma kinase (ALK) have a relatively good prognosis, aggressive forms exist. We have identified a novel translocation, causing the fusion of the TRAF1 and ALK genes, in one patient who presented with a leukemic ALK+ ALCL (ALCL-11). To uncover the mechanisms leading to high-grade ALCL, we developed a human patient-derived tumorgraft (hPDT) line. Molecular characterization of primary and PDT cells demonstrated the activation of ALK and nuclear factor kB (NFkB) pathways. Genomic studies of ALCL-11 showed the TP53 loss and the in vivo subclonal expansion of lymphoma cells, lacking PRDM1/Blimp1 and carrying c-MYC gene amplification. The treatment with proteasome inhibitors of TRAF1-ALK cells led to the downregulation of p50/p52 and lymphoma growth inhibition. Moreover, a NFkB gene set classifier stratified ALCL in distinct subsets with different clinical outcome. Although a selective ALK inhibitor (CEP28122) resulted in a significant clinical response of hPDT mice, nevertheless the disease could not be eradicated. These data indicate that the activation of NFkB signaling contributes to the neoplastic phenotype of TRAF1-ALK ALCL. ALCL hPDTs are invaluable tools to validate the role of druggable molecules, predict therapeutic responses and implement patient specific therapies.

  7. Fission yeast Cdk7 controls gene expression through both its CAK and C-terminal domain kinase activities.

    PubMed

    Devos, Maxime; Mommaerts, Elise; Migeot, Valerie; van Bakel, Harm; Hermand, Damien

    2015-05-01

    Cyclin-dependent kinase (Cdk) activation and RNA polymerase II transcription are linked by the Cdk7 kinase, which phosphorylates Cdks as a trimeric Cdk-activating kinase (CAK) complex, and serine 5 within the polymerase II (Pol II) C-terminal domain (CTD) as transcription factor TFIIH-bound CAK. However, the physiological importance of integrating these processes is not understood. Besides the Cdk7 ortholog Mcs6, fission yeast possesses a second CAK, Csk1. The two enzymes have been proposed to act redundantly to activate Cdc2. Using an improved analogue-sensitive Mcs6-as kinase, we show that Csk1 is not a relevant CAK for Cdc2. Further analyses revealed that Csk1 lacks a 20-amino-acid sequence required for its budding yeast counterpart, Cak1, to bind Cdc2. Transcriptome profiling of the Mcs6-as mutant in the presence or absence of the budding yeast Cak1 kinase, in order to uncouple the CTD kinase and CAK activities of Mcs6, revealed an unanticipated role of the CAK branch in the transcriptional control of the cluster of genes implicated in ribosome biogenesis and cell growth. The analysis of a Cdc2 CAK site mutant confirmed these data. Our data show that the Cdk7 kinase modulates transcription through its well-described RNA Pol II CTD kinase activity and also through the Cdc2-activating kinase activity.

  8. Fission Yeast Cdk7 Controls Gene Expression through both Its CAK and C-Terminal Domain Kinase Activities

    PubMed Central

    Devos, Maxime; Mommaerts, Elise; Migeot, Valerie; van Bakel, Harm

    2015-01-01

    Cyclin-dependent kinase (Cdk) activation and RNA polymerase II transcription are linked by the Cdk7 kinase, which phosphorylates Cdks as a trimeric Cdk-activating kinase (CAK) complex, and serine 5 within the polymerase II (Pol II) C-terminal domain (CTD) as transcription factor TFIIH-bound CAK. However, the physiological importance of integrating these processes is not understood. Besides the Cdk7 ortholog Mcs6, fission yeast possesses a second CAK, Csk1. The two enzymes have been proposed to act redundantly to activate Cdc2. Using an improved analogue-sensitive Mcs6-as kinase, we show that Csk1 is not a relevant CAK for Cdc2. Further analyses revealed that Csk1 lacks a 20-amino-acid sequence required for its budding yeast counterpart, Cak1, to bind Cdc2. Transcriptome profiling of the Mcs6-as mutant in the presence or absence of the budding yeast Cak1 kinase, in order to uncouple the CTD kinase and CAK activities of Mcs6, revealed an unanticipated role of the CAK branch in the transcriptional control of the cluster of genes implicated in ribosome biogenesis and cell growth. The analysis of a Cdc2 CAK site mutant confirmed these data. Our data show that the Cdk7 kinase modulates transcription through its well-described RNA Pol II CTD kinase activity and also through the Cdc2-activating kinase activity. PMID:25691663

  9. The RUN domain of rubicon is important for hVps34 binding, lipid kinase inhibition, and autophagy suppression.

    PubMed

    Sun, Qiming; Zhang, Jing; Fan, Weiliang; Wong, Kwun Ngok; Ding, Xiaojun; Chen, She; Zhong, Qing

    2011-01-07

    The class III phosphatidylinositol 3-kinase (PI3KC3) plays a central role in autophagy. Rubicon, a RUN domain-containing protein, is newly identified as a PI3KC3 subunit through its association with Beclin 1. Rubicon serves as a negative regulator of PI3KC3 and autophagosome maturation. The molecular mechanism underlying the PI3KC3 and autophagy inhibition by Rubicon is largely unknown. Here, we demonstrate that Rubicon interacts with the PI3KC3 catalytic subunit hVps34 via its RUN domain. The RUN domain contributes to the efficient inhibition of PI3KC3 lipid kinase activity by Rubicon. Furthermore, a Rubicon RUN domain deletion mutant fails to complement the autophagy deficiency in Rubicon-depleted cells. Hence, these results reveal a critical role of the Rubicon RUN domain in PI3KC3 and autophagy regulation.

  10. Probing the Determinants of Diacylglycerol Binding Affinity in C1B domain of Protein Kinase

    PubMed Central

    Stewart, Mikaela D.; Morgan, Brittany; Massi, Francesca; Igumenova, Tatyana I.

    2012-01-01

    C1 domains are independently folded modules that are responsible for targeting their parent proteins to lipid membranes containing diacylglycerol (DAG), a ubiquitous second messenger. The DAG-binding affinities of C1 domains determine the threshold concentration of DAG required for the propagation of the signaling response and the selectivity of this response among the DAG receptors in the cell. The structural information currently available for C1 domains offers little insight into the molecular basis of their differential DAG-binding affinities. In this work, we characterized the C1B domain of Protein Kinase Cα (C1Bα) and its diagnostic mutant, Y123W, using solution NMR methods and molecular dynamics simulations. The mutation did not perturb the C1Bα structure or sub-nanosecond dynamics of the protein backbone, but resulted in a >100-fold increase of DAG binding affinity and substantial change in μs-timescale conformational dynamics, as quantified by NMR rotating-frame relaxation-dispersion methods. The differences in the conformational exchange behavior between the wild-type and Y123W C1Bα were localized to the hinge regions of ligand-binding loops. Molecular dynamics simulations provided insight into the identity of the exchanging conformers and revealed the significance of a particular residue, Gln128, in modulating the geometry of the ligand-binding site. Taken together with the results of binding studies, our findings suggest that the conformational dynamics and preferential partitioning of the tryptophan sidechain into the water-lipid interface are important factors that modulate the DAG-binding properties of C1 domains. PMID:21419781

  11. The pleiotrophin-ALK axis is required for tumorigenicity of glioblastoma stem cells.

    PubMed

    Koyama-Nasu, R; Haruta, R; Nasu-Nishimura, Y; Taniue, K; Katou, Y; Shirahige, K; Todo, T; Ino, Y; Mukasa, A; Saito, N; Matsui, M; Takahashi, R; Hoshino-Okubo, A; Sugano, H; Manabe, E; Funato, K; Akiyama, T

    2014-04-24

    Increasing evidence suggests that brain tumors arise from the transformation of neural stem/precursor/progenitor cells. Much current research on human brain tumors is focused on the stem-like properties of glioblastoma. Here we show that anaplastic lymphoma kinase (ALK) and its ligand pleiotrophin are required for the self-renewal and tumorigenicity of glioblastoma stem cells (GSCs). Furthermore, we demonstrate that pleiotrophin is transactivated directly by SOX2, a transcription factor essential for the maintenance of both neural stem cells and GSCs. We speculate that the pleiotrophin-ALK axis may be a promising target for the therapy of glioblastoma.

  12. ALK Positive Anaplastic Large Cell Lymphoma Presenting as Extensive Bone Involvement

    PubMed Central

    Gajendra, Smeeta; Lipi, Lipika; Goel, Shalini; Misra, Ruchira

    2015-01-01

    Anaplastic lymphoma kinase (ALK) positive Anaplastic large cell lymphoma (ALCL) represents approximately 2% of all Non-Hodgkin’s lymphomas that commonly involves nodal as well as a wide variety of extra nodal sites, as skin, soft tissue, bones and lungs, although primary or secondary involvement of bone is rare. Herein, we report a case of 14-year-old female child presented as extensive bony involvement with a clinical diagnosis of bone tumour/ small round cell tumour, which was proved to be ALK positive ALCL on histopathological examination. PMID:25738071

  13. Anaplastic lymphoma kinase rearrangements in non-small-cell lung cancer: novel applications in diagnostics and treatment.

    PubMed

    Shackelford, Rodney E; Ansari, Junaid M; Wei, Eric X; Alexander, Jonathan S; Cotelingam, James

    2017-08-01

    The ALK gene, first identified as an anaplastic large cell lymphoma driver mutation, is dysregulated in nearly 20 different human malignancies, including 3-7% of non-small-cell lung cancers (NSCLC). In NSCLC, ALK commonly fuses with the EML4, forming a constitutively active tyrosine kinase that drives oncogenic progression. Recently, several ALK-inhibiting drugs have been developed that are more effective than standard chemotherapeutic regimens in treating advanced ALK-positive NSCLC. For this reason, molecular diagnostic testing for dysregulated ALK expression is a necessary part of identifying optimal NSCLC treatment options. Here, we review the molecular pathology of ALK-positive NSCLC, ALK molecular diagnostic techniques, ALK-targeted NSCLC treatments, and drug resistance mechanisms to ALK-targeted therapies.

  14. Identification of positive-acting domains in GCN2 protein kinase required for translational activation of GCN4 expression

    SciTech Connect

    Wek, R.C.; Ramirez, M.; Jackson, B.M.; Hinnebusch, A.G. )

    1990-06-01

    GCN4 is a transcriptional activator of amino acid-biosynthetic genes in the yeast {ital Saccharomyces cerevisiae}. GCN2, a translational activator of {ital GCN4} expression, contains a domain homologous to the catalytic subunit of eukaryotic protein kinases. Substitution of a highly conserved lysine residue in the kinase domain abolished GCN2 regulatory function in vivo and its ability to autophosphorylate in vitro, indicating that GCN2 acts as a protein kinase in stimulating {ital GCN4} expression. Elevated {ital GCN2} gene dosage led to depression of {ital GCN4} under nonstarvation conditions; however, the authors found that {ital GCN2} mRNA and protein levels did not increase in wild-type cells in response to amino acid starvation. Therefore, it appears that GCN2 protein kinase function is stimulated postranslationally in amino acid-starved cells. Three dominant-constitutive {ital GCN2} point mutations were isolated that led to derepressed {ital GCN4} expression under nonstarvation conditions. Two of the {ital GCN2}(Con) mutations mapped in the kinase domain itself. The third mapped just downstream from a carboxyl-terminal segment homologous to histidyl-tRNA synthetase (HisRS), which the authors suggest might function to detect uncharged tRNA in amino acid-starved cells and activate the adjacent protein kinase moiety.

  15. Intramolecular activation of a Ca(2+)-dependent protein kinase is disrupted by insertions in the tether that connects the calmodulin-like domain to the kinase

    NASA Technical Reports Server (NTRS)

    Vitart, V.; Christodoulou, J.; Huang, J. F.; Chazin, W. J.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Ca(2+)-dependent protein kinases (CDPK) have a calmodulin-like domain (CaM-LD) tethered to the C-terminal end of the kinase. Activation is proposed to involve intramolecular binding of the CaM-LD to a junction sequence that connects the CaM-LD to the kinase domain. Consistent with this model, a truncated CDPK (DeltaNC) in which the CaM-LD has been deleted can be activated in a bimolecular interaction with an isolated CaM-LD or calmodulin, similar to the activation of a calmodulin-dependent protein kinase (CaMK) by calmodulin. Here we provide genetic evidence that this bimolecular activation requires a nine-residue binding segment from F436 to I444 (numbers correspond to CPK-1 accession number L14771). Two mutations at either end of this core segment (F436/A and VI444/AA) severely disrupted bimolecular activation, whereas flanking mutations had only minor effects. Intramolecular activation of a full-length kinase was also disrupted by a VI444/AA mutation, but surprisingly not by a F436/A mutation (at the N-terminal end of the binding site). Interestingly, intramolecular but not bimolecular activation was disrupted by insertion mutations placed immediately downstream of I444. To show that mutant enzymes were not misfolded, latent kinase activity was stimulated through binding of an antijunction antibody. Results here support a model of intramolecular activation in which the tether (A445 to G455) that connects the CaM-LD to the kinase provides an important structural constraint and is not just a simple flexible connection.

  16. Sensitivity Analysis of the NPM-ALK Signalling Network Reveals Important Pathways for Anaplastic Large Cell Lymphoma Combination Therapy

    PubMed Central

    Buetti-Dinh, Antoine; O’Hare, Thomas

    2016-01-01

    A large subset of anaplastic large cell lymphoma (ALCL) patients harbour a somatic aberration in which anaplastic lymphoma kinase (ALK) is fused to nucleophosmin (NPM) resulting in a constitutively active signalling fusion protein, NPM-ALK. We computationally simulated the signalling network which mediates pathological cell survival and proliferation through NPM-ALK to identify therapeutically targetable nodes through which it may be possible to regain control of the tumourigenic process. The simulations reveal the predominant role of the VAV1-CDC42 (cell division control protein 42) pathway in NPM-ALK-driven cellular proliferation and of the Ras / mitogen-activated ERK kinase (MEK) / extracellular signal-regulated kinase (ERK) cascade in controlling cell survival. Our results also highlight the importance of a group of interleukins together with the Janus kinase 3 (JAK3) / signal transducer and activator of transcription 3 (STAT3) signalling in the development of NPM-ALK derived ALCL. Depending on the activity of JAK3 and STAT3, the system may also be sensitive to activation of protein tyrosine phosphatase-1 (SHP1), which has an inhibitory effect on cell survival and proliferation. The identification of signalling pathways active in tumourigenic processes is of fundamental importance for effective therapies. The prediction of alternative pathways that circumvent classical therapeutic targets opens the way to preventive approaches for countering the emergence of cancer resistance. PMID:27669408

  17. Light-induced conformational changes of LOV1 (light oxygen voltage-sensing domain 1) and LOV2 relative to the kinase domain and regulation of kinase activity in Chlamydomonas phototropin.

    PubMed

    Okajima, Koji; Aihara, Yusuke; Takayama, Yuki; Nakajima, Mihoko; Kashojiya, Sachiko; Hikima, Takaaki; Oroguchi, Tomotaka; Kobayashi, Amane; Sekiguchi, Yuki; Yamamoto, Masaki; Suzuki, Tomomi; Nagatani, Akira; Nakasako, Masayoshi; Tokutomi, Satoru

    2014-01-03

    Phototropin (phot), a blue light (BL) receptor in plants, has two photoreceptive domains named LOV1 and LOV2 as well as a Ser/Thr kinase domain (KD) and acts as a BL-regulated protein kinase. A LOV domain harbors a flavin mononucleotide that undergoes a cyclic photoreaction upon BL excitation via a signaling state in which the inhibition of the kinase activity by LOV2 is negated. To understand the molecular mechanism underlying the BL-dependent activation of the kinase, the photochemistry, kinase activity, and molecular structure were studied with the phot of Chlamydomonas reinhardtii. Full-length and LOV2-KD samples of C. reinhardtii phot showed cyclic photoreaction characteristics with the activation of LOV- and BL-dependent kinase. Truncation of LOV1 decreased the photosensitivity of the kinase activation, which was well explained by the fact that the signaling state lasted for a shorter period of time compared with that of the phot. Small angle x-ray scattering revealed monomeric forms of the proteins in solution and detected BL-dependent conformational changes, suggesting an extension of the global molecular shapes of both samples. Constructed molecular model of full-length phot based on the small angle x-ray scattering data proved the arrangement of LOV1, LOV2, and KD for the first time that showed a tandem arrangement both in the dark and under BL irradiation. The models suggest that LOV1 alters its position relative to LOV2-KD under BL irradiation. This finding demonstrates that LOV1 may interact with LOV2 and modify the photosensitivity of the kinase activation through alteration of the duration of the signaling state in LOV2.

  18. Protein Kinase Activity and Identification of a Toxic Effector Domain of the Target of Rapamycin TOR Proteins in Yeast

    PubMed Central

    Alarcon, Clara M.; Heitman, Joseph; Cardenas, Maria E.

    1999-01-01

    In complex with FKBP12, the immunosuppressant rapamycin binds to and inhibits the yeast TOR1 and TOR2 proteins and the mammalian homologue mTOR/FRAP/RAFT1. The TOR proteins promote cell cycle progression in yeast and human cells by regulating translation and polarization of the actin cytoskeleton. A C-terminal domain of the TOR proteins shares identity with protein and lipid kinases, but only one substrate (PHAS-I), and no regulators of the TOR-signaling cascade have been identified. We report here that yeast TOR1 has an intrinsic protein kinase activity capable of phosphorylating PHAS-1, and this activity is abolished by an active site mutation and inhibited by FKBP12-rapamycin or wortmannin. We find that an intact TOR1 kinase domain is essential for TOR1 functions in yeast. Overexpression of a TOR1 kinase-inactive mutant, or of a central region of the TOR proteins distinct from the FRB and kinase domains, was toxic in yeast, and overexpression of wild-type TOR1 suppressed this toxic effect. Expression of the TOR-toxic domain leads to a G1 cell cycle arrest, consistent with an inhibition of TOR function in translation. Overexpression of the PLC1 gene, which encodes the yeast phospholipase C homologue, suppressed growth inhibition by the TOR-toxic domains. In conclusion, our findings identify a toxic effector domain of the TOR proteins that may interact with substrates or regulators of the TOR kinase cascade and that shares sequence identity with other PIK family members, including ATR, Rad3, Mei-41, and ATM. PMID:10436010

  19. Identification of green tea catechins as potent inhibitors of the polo-box domain of polo-like kinase 1.

    PubMed

    Shan, Hong-Mei; Shi, Yanxia; Quan, Junmin

    2015-01-01

    Polo-like kinase 1 (PLK1) plays crucial functions in multiple stages of mitosis and is considered to be a potential drug target for cancer therapy. The functions of PLK1 are mediated by its N-terminal kinase domain and C-terminal polo-box domain (PBD). Most inhibitors targeting the kinase domain of PLK1 have a selectivity issue because of a high degree of structural conservation within kinase domains of all protein kinases. Here, we combined virtual and experimental screenings to identify green tea catechins as potent inhibitors of the PLK1 PBD. Initially, (-)-epigallocatechin, one of the main components of green tea polyphenols, was found to significantly block the binding of fluorescein-labeled phosphopeptide to the PBD at a concentration of 10 μm. Next, additional catechins were evaluated for their dose-dependent inhibition of the PBD and preliminary structure-activity relationships were derived. Cellular analysis further showed that catechins interfere with the proper subcellular localization of PLK1, lead to cell-cycle arrest in the S and G2M phases, and induce growth inhibition of several human cancer cell types, such as breast adenocarcinoma (MCF7), lung adenocarcinoma (A549), and cervical adenocarcinoma (HeLa). Our data provides new insight into understanding the anticancer activities of green tea catechins.

  20. APS, an adapter protein with a PH and SH2 domain, is a substrate for the insulin receptor kinase.

    PubMed Central

    Ahmed, Z; Smith, B J; Kotani, K; Wilden, P; Pillay, T S

    1999-01-01

    APS (adapter protein with a PH and SH2 domain) is the newest member of a family of tyrosine kinase adapter proteins including SH2-B and Lnk. We previously identified SH2-B as an insulin-receptor-binding protein and substrate [Kotani, Wilden and Pillay (1998) Biochem J. 335, 103-109]. Here we show that APS interacts with the insulin receptor kinase activation loop through its SH2 domain and insulin stimulates the tyrosine-phosphorylation of APS. Furthermore, the phosphorylation of activation-loop tyrosine residues 1158 and 1162 are required for this interaction. PMID:10417330

  1. Association of Mixed Lineage Kinase Domain-Like Protein Expression With Prognosis in Patients With Colon Cancer.

    PubMed

    Li, Xian; Guo, Jing; Ding, Ai-Ping; Qi, Wei-Wei; Zhang, Pei-Hua; Lv, Jing; Qiu, Wen-Sheng; Sun, Zhen-Qing

    2017-08-01

    The mixed lineage kinase domain-like protein has recently been identified as a key downstream component of tumor necrosis factor-induced necroptosis, which is an important pathway of cancer cell death. The goal of the current study is to explore the expression of mixed lineage kinase domain-like protein in colon cancer tissues and evaluate the prognostic value in patients with colon cancer. We collected normal and cancer colon tissues from 135 patients diagnosed with colon cancer after radical operation during July 2007 to April 2009 at The Affiliated Hospital of Qingdao University. Immunohistochemistry analysis was scored using an established scoring system. Kaplan-Meier survival curves were generated for recurrence-free survival and overall survival for all patients and 2 subsets of patients. The relationship between mixed lineage kinase domain-like protein expression and prognosis parameter (recurrence-free survival, overall survival) was analyzed by univariate and multivariate Cox regression analyses. The median age of all patients was 67 years and 56.3% were male. Low expression of mixed lineage kinase domain-like protein was associated with decreased overall survival (78.6 vs 81.2 months; P = .011) in all patients. In the subset of 79 patients who received adjuvant chemotherapy, low expression of mixed lineage kinase domain-like protein was associated with decreased recurrence-free survival (60.4 vs 72.8 months; P = .032) and decreased overall survival (66.3 vs 72.9 months; P = .005). Low expression of mixed lineage kinase domain-like protein was associated with decreased overall survival (74.9 vs 79.8 months; P = .006) and recurrence-free survival (69.6 vs 78.8 months; P = .005) among patients with Tumor Node Metastasis (TNM) stage II colon cancer. Low expression of mixed lineage kinase domain-like protein was associated with decreased overall survival in all patient-group with resected colon cancer. It is associated with decreased recurrence-free survival

  2. The degradation of mixed lineage kinase domain-like protein promotes neuroprotection after ischemic brain injury

    PubMed Central

    Zhou, Yanlong; Zhou, Beiqun; Tu, Hui; Tang, Yan; Xu, Chen; Chen, Yanbo; Zhao, Zhong; Miao, Zhigang

    2017-01-01

    Mixed lineage kinase domain-like (MLKL) protein was recently found to play a critical role in necrotic cell death. To explore its role in neurological diseases, we measured MLKL protein expression after ischemia injury in a mouse model. We found that MLKL expression significantly increased 12 h after ischemia/reperfusion (I/R) injury with peak levels at 48 h. Inhibition of MLKL by intraperitoneal administration of NSA significantly reduced infarct volume and improved neurological deficits after 75 min of ischemia and 24 h of reperfusion. Further, we found NSA reduced MLKL levels via the ubiquitination proteasome pathway, but not by inhibiting RNA transcription. Interestingly, NSA administration increased cleaved PARP-1 levels, indicating the protective effects of MLKL inhibition is not related to apoptosis. These findings suggest MLKL is a new therapeutic target for neurological pathologies like stroke. Therefore, promoting degradation of MLKL may be a novel avenue to reduce necrotic cell death after ischemic brain injury. PMID:28978125

  3. The degradation of mixed lineage kinase domain-like protein promotes neuroprotection after ischemic brain injury.

    PubMed

    Zhou, Yanlong; Zhou, Beiqun; Tu, Hui; Tang, Yan; Xu, Chen; Chen, Yanbo; Zhao, Zhong; Miao, Zhigang

    2017-09-15

    Mixed lineage kinase domain-like (MLKL) protein was recently found to play a critical role in necrotic cell death. To explore its role in neurological diseases, we measured MLKL protein expression after ischemia injury in a mouse model. We found that MLKL expression significantly increased 12 h after ischemia/reperfusion (I/R) injury with peak levels at 48 h. Inhibition of MLKL by intraperitoneal administration of NSA significantly reduced infarct volume and improved neurological deficits after 75 min of ischemia and 24 h of reperfusion. Further, we found NSA reduced MLKL levels via the ubiquitination proteasome pathway, but not by inhibiting RNA transcription. Interestingly, NSA administration increased cleaved PARP-1 levels, indicating the protective effects of MLKL inhibition is not related to apoptosis. These findings suggest MLKL is a new therapeutic target for neurological pathologies like stroke. Therefore, promoting degradation of MLKL may be a novel avenue to reduce necrotic cell death after ischemic brain injury.

  4. Sensory domain contraction in histidine kinase CitA triggers transmembrane signaling in the membrane-bound sensor

    PubMed Central

    Salvi, Michele; Schomburg, Benjamin; Giller, Karin; Graf, Sabrina; Unden, Gottfried; Becker, Stefan; Lange, Adam; Griesinger, Christian

    2017-01-01

    Bacteria use membrane-integral sensor histidine kinases (HK) to perceive stimuli and transduce signals from the environment to the cytosol. Information on how the signal is transmitted across the membrane by HKs is still scarce. Combining both liquid- and solid-state NMR, we demonstrate that structural rearrangements in the extracytoplasmic, citrate-sensing Per-Arnt-Sim (PAS) domain of HK CitA are identical for the isolated domain in solution and in a longer construct containing the membrane-embedded HK and lacking only the kinase core. We show that upon citrate binding, the PAS domain contracts, resulting in a shortening of the C-terminal β-strand. We demonstrate that this contraction of the PAS domain, which is well characterized for the isolated domain, is the signal transmitted to the transmembrane (TM) helices in a CitA construct in liposomes. Putting the extracytoplasmic PAS domain into context of the membrane-embedded CitA construct slows down citrate-binding kinetics by at least a factor of 60, confirming that TM helix motions are linked to the citrate-binding event. Our results are confirmation of a hallmark of the HK signal transduction mechanism with atomic resolution on a full-length construct lacking only the kinase core domain. PMID:28265100

  5. Sensory domain contraction in histidine kinase CitA triggers transmembrane signaling in the membrane-bound sensor.

    PubMed

    Salvi, Michele; Schomburg, Benjamin; Giller, Karin; Graf, Sabrina; Unden, Gottfried; Becker, Stefan; Lange, Adam; Griesinger, Christian

    2017-03-21

    Bacteria use membrane-integral sensor histidine kinases (HK) to perceive stimuli and transduce signals from the environment to the cytosol. Information on how the signal is transmitted across the membrane by HKs is still scarce. Combining both liquid- and solid-state NMR, we demonstrate that structural rearrangements in the extracytoplasmic, citrate-sensing Per-Arnt-Sim (PAS) domain of HK CitA are identical for the isolated domain in solution and in a longer construct containing the membrane-embedded HK and lacking only the kinase core. We show that upon citrate binding, the PAS domain contracts, resulting in a shortening of the C-terminal β-strand. We demonstrate that this contraction of the PAS domain, which is well characterized for the isolated domain, is the signal transmitted to the transmembrane (TM) helices in a CitA construct in liposomes. Putting the extracytoplasmic PAS domain into context of the membrane-embedded CitA construct slows down citrate-binding kinetics by at least a factor of 60, confirming that TM helix motions are linked to the citrate-binding event. Our results are confirmation of a hallmark of the HK signal transduction mechanism with atomic resolution on a full-length construct lacking only the kinase core domain.

  6. Protein kinase C epsilon is localized to the Golgi via its zinc-finger domain and modulates Golgi function.

    PubMed Central

    Lehel, C; Olah, Z; Jakab, G; Anderson, W B

    1995-01-01

    Protein kinase C (PKC) is a multigene family of serine/threonine kinases that are central to many signal transduction pathways. Among the PKC isozymes, only PKC epsilon has been reported to exhibit full oncogenic potential. PKC epsilon also displays unique substrate specificity and intracellular localization. To examine the interrelationship between the biological effects and domain structure of PKC epsilon, NIH 3T3 cells were stably transfected to overexpress different epitope-tagged fragments of PKC epsilon. The overexpressed proteins each contain the epsilon-tag peptide at the C terminus to allow ready detection with an antibody specific for the tag. The holo-PKC epsilon was found to localize with the Golgi network and other compartments, whereas the zinc-finger domain localized exclusively at the Golgi. Golgi-specific glycosaminoglycan sulfation was strongly inhibited in cells overexpressing either holo-PKC epsilon or its zinc-finger domain, while the secretion of sulfated glycosaminoglycans into the medium was impaired in cells expressing the PKC epsilon zinc-finger domain. Thus, these results suggest that PKC epsilon may be involved in specifically regulating Golgi-related processes. Further, the results indicate that PKC epsilon domains other than the kinase domain may also have biological activity and that the zinc-finger domain may function as a subcellular localization signal. Images Fig. 1 Fig. 2 Fig. 3 PMID:7877991

  7. Ligand-induced global transitions in the catalytic domain of protein kinase A

    PubMed Central

    Hyeon, Changbong; Jennings, Patricia A.; Adams, Joseph A.; Onuchic, José N.

    2009-01-01

    Conformational transitions play a central role in the phosphorylation mechanisms of protein kinase. To understand the nature of these transitions, we investigated the dynamics of nucleotide binding to the catalytic domain of PKA, a prototype for the protein kinase enzyme family. The open-to-closed transition in PKA was constructed as a function of ATP association by using available X-ray data and Brownian dynamics. Analyzing the multiple kinetic trajectories at the residue level, we find that the spatial rearrangement of the residues around the nucleotide-binding pocket, along with suppressed local fluctuations, controls the compaction of the entire molecule. In addition, to accommodate the stresses induced by ATP binding at the early transition stage, partial unfoldings (cracking) and reformations of several native contacts occur at the interfaces between the secondary structure motifs enveloping the binding pocket. This suggests that the enzyme experiences local structural deformations while reaching its functional, ATP-bound state. Our dynamical view of the ligand-induced transitions in PKA suggests that the kinetic hierarchy of local and global dynamics, the variable fluctuation of residues and the necessity of partial local unfolding may be fundamental components in other large scale allosteric transitions. PMID:19204278

  8. Intracellular catalytic domain of symbiosis receptor kinase hyperactivates spontaneous nodulation in absence of rhizobia.

    PubMed

    Saha, Sudip; Dutta, Ayan; Bhattacharya, Avisek; DasGupta, Maitrayee

    2014-12-01

    Symbiosis Receptor Kinase (SYMRK), a member of the Nod factor signaling pathway, is indispensible for both nodule organogenesis and intracellular colonization of symbionts in rhizobia-legume symbiosis. Here, we show that the intracellular kinase domain of a SYMRK (SYMRK-kd) but not its inactive or full-length version leads to hyperactivation of the nodule organogenic program in Medicago truncatula TR25 (symrk knockout mutant) in the absence of rhizobia. Spontaneous nodulation in TR25/SYMRK-kd was 6-fold higher than rhizobia-induced nodulation in TR25/SYMRK roots. The merged clusters of spontaneous nodules indicated that TR25 roots in the presence of SYMRK-kd have overcome the control over both nodule numbers and their spatial position. In the presence of rhizobia, SYMRK-kd could rescue the epidermal infection processes in TR25, but colonization of symbionts in the nodule interior was significantly compromised. In summary, ligand-independent deregulated activation of SYMRK hyperactivates nodule organogenesis in the absence of rhizobia, but its ectodomain is required for proper symbiont colonization.

  9. Expression, purification, stability optimization and characterization of human Aurora B kinase domain from E. coli.

    PubMed

    Sheth, Payal R; Ramanathan, Lata; Ranchod, Ashwin; Basso, Andrea D; Barrett, Dianah; Zhao, Jia; Gray, Kimberly; Liu, Yan-Hui; Zhang, Rumin; Le, Hung V

    2010-11-15

    Aurora B kinase plays a critical role in regulating mitotic progression, and its dysregulation has been linked to tumorigenesis. The structure of the kinase domain of human Aurora B and the complementary information of binding thermodynamics of known Aurora inhibitors is lacking. Towards that effort, we sought to identify a human Aurora B construct that would be amenable for large-scale protein production for biophysical and structural studies. Although the designed AurB(69-333) construct expressed at high levels in Escherichia coli, the purified protein was largely unstable and prone to aggregation. We employed thermal-shift assay for high-throughput screening of 192 conditions to identify optimal pH and salt conditions that increased the stability and minimized aggregation of AurB(69-333). Direct ligand binding analyses using temperature-dependent circular dichroism (TdCD) and TR-FRET-based Lanthascreen™ binding assay showed that the purified protein was folded and functional. The affinity rank-order obtained using TdCD and Lanthascreen™ binding assay correlated with enzymatic IC50 values measured using full-length Aurora B protein for all the inhibitors tested except for AZD1152. The direct binding results support the hypothesis that the purified human AurB(69-333) fragment is a good surrogate for its full-length counterpart for biophysical and structural analyses.

  10. ALK1 expression in oral lichen planus: a possible relation to microvessel density.

    PubMed

    Hazzaa, Hala H A; El-Wakeel, Naglaa M; Attia, Enas A S; Abo Hager, Eman A

    2016-05-01

    To assess the expression of activin receptor-like kinase 1 (ALK1) and investigate its possible relationship with microvessel density (MVD) in different forms of oral lichen planus (OLP) compared to controls' biopsies. Biopsies from 20 reticular/papular OLP (R/PLP), 20 atrophic/erosive OLP (A/ELP) patients, and 20 healthy subjects were immunohistochemically analyzed and statistically compared and correlated for ALK1 expression and MVD as assessed by CD34 expression. All OLP specimens revealed the presence of positive cytoplasmic CD34 immunostaining in endothelial cells, with statistically high significant MVD in each of R/PLP (Median; M = 4.40) and A/ELP (M = 7.69) compared to controls (M = 1.16) (P < 0.001). Statistically significant MVD was found in A/ELP compared to R/PLP (P < 0.001). All control specimens revealed negative ALK1 immunostaining of the few inflammatory cells found, while 85% of A/ELP cases and 70% of R/PLP cases showed positively immunostained sections for ALK-1, with statistically significant higher ALK1 expression In A/ELP (M = 1.95) compared to R/PLP (M = 0.86) (P = 0.005). No significant correlation between CD34 and ALK1 was detected in R/PLP (r = 0.081), while a barely moderate positive correlation was found in A/ELP (r = 0.396). ALK1 expression and MVD are increased in OLP, particularly in A/ELP type. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. A genome-wide microRNA profiling indicates miR-424-5p and miR-503-5p as regulators of ALK expression in neuroblastoma.

    PubMed

    De Mariano, Marilena; Stigliani, Sara; Moretti, Stefano; Parodi, Federica; Croce, Michela; Bernardi, Cinzia; Pagano, Aldo; Tonini, Gian Paolo; Ferrini, Silvano; Longo, Luca

    2017-08-22

    The discovery of missense mutations of ALK gene identified this receptor tyrosine kinase as a therapeutic target in neuroblastoma (NB). Moreover, a high level of ALK protein has been associated with metastatic NB cases and with a worse prognosis, suggesting that also ALK overexpression is involved in NB tumorigenesis. Since miRNAs play key roles in the regulation of gene expression we aimed at identifying those miRNAs that can regulate ALK in NB. We therefore analyzed the genome-wide expression profile of miRNAs in two sample sets of 16 NB cell lines and 22 NB samples by using miRNA microarrays. Both sample sets were then divided into two subgroups showing high (ALK+) or low/absent (ALK-) expression of ALK. Results showed a down-regulation of 30 and 23 miRNAs (p-value <0.05) in the ALK+ group in NB cell lines and samples, respectively. Validation analysis indicated that miR-424-5p and miR-503-5p, belonging to the same cluster, were differentially expressed in both NB cell lines and tumor samples. Although only miR-424-5p showed a direct binding to ALK 3'-UTR, both miRNAs led to a remarkable decreasing of ALK protein as well as to the inhibition of cell viability in ALK+ NB cell lines. In conclusion, our data indicate that both miR-424-5p and miR-503-5p are involved in regulating ALK expression in NB, either by directly targeting ALK receptor or indirectly, and may thus serve as potential therapeutic tools in ALK dependent NBs.

  12. Alk5 inhibition increases delivery of macromolecular and protein-bound contrast agents to tumors

    PubMed Central

    Daldrup-Link, Heike E.; Mohanty, Suchismita; Ansari, Celina; Ito, Ken; Hong, Su Hyun; Hoffmann, Matthias; Pisani, Laura; Boudreau, Nancy; Gambhir, Sanjiv Sam; Coussens, Lisa M.

    2016-01-01

    Limited transendothelial permeability across tumor microvessels represents a significant bottleneck in the development of tumor-specific diagnostic agents and theranostic drugs. Here, we show an approach to increase transendothelial permeability of macromolecular and nanoparticle-based contrast agents via inhibition of the type I TGF-β receptor, activin-like kinase 5 (Alk5), in tumors. Alk5 inhibition significantly increased tumor contrast agent delivery and enhancement on imaging studies, while healthy organs remained relatively unaffected. Imaging data correlated with significantly decreased tumor interstitial fluid pressure, while tumor vascular density remained unchanged. This immediately clinically translatable concept involving Alk5 inhibitor pretreatment prior to an imaging study could be leveraged for improved tumor delivery of macromolecular and nanoparticle-based imaging probes and, thereby, facilitate development of more sensitive imaging tests for cancer diagnosis, enhanced tumor characterization, and personalized, image-guided therapies. PMID:27182558

  13. A molecular dynamics investigation on the crizotinib resistance mechanism of C1156Y mutation in ALK

    SciTech Connect

    Sun, Hui-Yong; Ji, Feng-Qin

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer The study revealed the detailed resistance mechanism of the non-active mutation C1156Y in ALK. Black-Right-Pointing-Pointer C1156Y leads to crizotinib displacement and conformational changes in the binding cavity. Black-Right-Pointing-Pointer The conformations cause a decline in the vdW and electrostatic energy between crizotinib and ALK. -- Abstract: Crizotinib is an anaplastic lymphoma kinase (ALK) inhibitor that has recently been approved in the US for the treatment of non-small cell lung carcinoma (NSCLC). Despite its outstanding safety and efficacy, several resistant mutations against crizotinib have been detected in the treatment of NSCLC. However, in contrast to the widely accepted mechanism of steric hindrance by mutations at the active site, the mechanism by which the C1156Y non-active site mutation confers resistance against crizotinib remains unclear. In the present study, the resistance mechanism of C1156Y in ALK was investigated using molecular dynamics simulations. The results suggest that despite the non-active site mutation, C1156Y causes the dislocation of crizotinib as well as the indirect conformational changes in the binding cavity, which results in a marked decrease in the van der Waals and electrostatic interactions between crizotinib and ALK. The obtained results provide a detailed explanation of the resistance caused by C1156Y and may give a vital clue for the design of drugs to combat crizotinib resistance.

  14. BMP9/ALK1 inhibits neovascularization in mouse models of age-related macular degeneration

    PubMed Central

    Ntumba, Kalonji; Akla, Naoufal; Oh, S. Paul; Eichmann, Anne; Larrivée, Bruno

    2016-01-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in aging populations of industrialized countries. The drawbacks of inhibitors of vascular endothelial growth factor (VEGFs) currently used for the treatment of AMD, which include resistance and potential serious side-effects, require the identification of new therapeutic targets to modulate angiogenesis. BMP9 signaling through the endothelial Alk1 serine-threonine kinase receptor modulates the response of endothelial cells to VEGF and promotes vessel quiescence and maturation during development. Here, we show that BMP9/Alk1 signaling inhibits neovessel formation in mouse models of pathological ocular angiogenesis relevant to AMD. Activating Alk1 signaling in laser-induced choroidal neovascularization (CNV) and oxygen-induced retinopathy (OIR) inhibited neovascularization and reduced the volume of vascular lesions. Alk1 signaling was also found to interfere with VEGF signaling in endothelial cells whereas BMP9 potentiated the inhibitory effects of VEGFR2 signaling blockade, both in OIR and laser-induced CNV. Together, our data show that targeting BMP9/Alk1 efficiently prevents the growth of neovessels in AMD models and introduce a new approach to improve conventional anti-VEGF therapies. PMID:27517154

  15. A novel FGFR2 mutation in tyrosine kinase II domain, L617F, in Crouzon syndrome.

    PubMed

    Suh, Ye-Jin; Bae, Han-Sol; Choi, Jin-Young; Lee, Jong-Ho; Kim, Myung-Jin; Kim, Sukwha; Ryoo, Hyun-Mo; Baek, Seung-Hak

    2014-01-01

    The purposes of this study were to find a novel mutation of FGFR2 in Korean Crouzon syndrome patients and to identify the functional consequences of this mutation. The samples consisted of 16 Crouzon patients. Peripheral venous blood was collected from the patients. FGFR2 mutation screening was performed by direct PCR sequencing of all exons and part of the introns. Restriction fragment length polymorphism (RFLP) analysis was performed to confirm the novel mutation. For functional studies, we performed luciferase assay for Runx2 transcriptional activity, real-time PCR for the bone markers (osteocalcin and alkaline phosphatase), and Western blot for phosphorylated FGFR2 and ERK1/2-MAPK protein. Among 16 patients, 10 showed FGFR2 mutations that had already been reported elsewhere. A novel FGFR2 mutation associated with tyrosine kinase II (TK-II) domain, L617F, was found in one Crouzon syndrome patient by direct PCR sequencing. Presence of this mutation was confirmed using RFLP analysis. Runx2 transcriptional activity and expression of osteocalcin and alkaline phosphatase significantly increased in L617F-transfected cells compared to wild-type cells. FGFR2 autophosphorylation in L617F-transfected cells increased in 1% serum, but ERK1/2-MAPK protein was not activated. The FGFR2-L617F mutation associated with the TK domain is potentially related to premature suture closure in Crouzon syndrome patient. © 2013 Wiley Periodicals, Inc.

  16. Tyrosine Kinase 2-mediated Signal Transduction in T Lymphocytes Is Blocked by Pharmacological Stabilization of Its Pseudokinase Domain*

    PubMed Central

    Tokarski, John S.; Zupa-Fernandez, Adriana; Tredup, Jeffrey A.; Pike, Kristen; Chang, ChiehYing; Xie, Dianlin; Cheng, Lihong; Pedicord, Donna; Muckelbauer, Jodi; Johnson, Stephen R.; Wu, Sophie; Edavettal, Suzanne C.; Hong, Yang; Witmer, Mark R.; Elkin, Lisa L.; Blat, Yuval; Pitts, William J.; Weinstein, David S.; Burke, James R.

    2015-01-01

    Inhibition of signal transduction downstream of the IL-23 receptor represents an intriguing approach to the treatment of autoimmunity. Using a chemogenomics approach marrying kinome-wide inhibitory profiles of a compound library with the cellular activity against an IL-23-stimulated transcriptional response in T lymphocytes, a class of inhibitors was identified that bind to and stabilize the pseudokinase domain of the Janus kinase tyrosine kinase 2 (Tyk2), resulting in blockade of receptor-mediated activation of the adjacent catalytic domain. These Tyk2 pseudokinase domain stabilizers were also shown to inhibit Tyk2-dependent signaling through the Type I interferon receptor but not Tyk2-independent signaling and transcriptional cellular assays, including stimulation through the receptors for IL-2 (JAK1- and JAK3-dependent) and thrombopoietin (JAK2-dependent), demonstrating the high functional selectivity of this approach. A crystal structure of the pseudokinase domain liganded with a representative example showed the compound bound to a site analogous to the ATP-binding site in catalytic kinases with features consistent with high ligand selectivity. The results support a model where the pseudokinase domain regulates activation of the catalytic domain by forming receptor-regulated inhibitory interactions. Tyk2 pseudokinase stabilizers, therefore, represent a novel approach to the design of potent and selective agents for the treatment of autoimmunity. PMID:25762719

  17. Targeting Neuroblastoma Cell Surface Proteins: Recommendations for Homology Modeling of hNET, ALK, and TrkB

    PubMed Central

    Haddad, Yazan; Heger, Zbyněk; Adam, Vojtech

    2017-01-01

    Targeted therapy is a promising approach for treatment of neuroblastoma as evident from the large number of targeting agents employed in clinical practice today. In the absence of known crystal structures, researchers rely on homology modeling to construct template-based theoretical structures for drug design and testing. Here, we discuss three candidate cell surface proteins that are suitable for homology modeling: human norepinephrine transporter (hNET), anaplastic lymphoma kinase (ALK), and neurotrophic tyrosine kinase receptor 2 (NTRK2 or TrkB). When choosing templates, both sequence identity and structure quality are important for homology modeling and pose the first of many challenges in the modeling process. Homology modeling of hNET can be improved using template models of dopamine and serotonin transporters instead of the leucine transporter (LeuT). The extracellular domains of ALK and TrkB are yet to be exploited by homology modeling. There are several idiosyncrasies that require direct attention throughout the process of model construction, evaluation and refinement. Shifts/gaps in the alignment between the template and target, backbone outliers and side-chain rotamer outliers are among the main sources of physical errors in the structures. Low-conserved regions can be refined with loop modeling method. Residue hydrophobicity, accessibility to bound metals or glycosylation can aid in model refinement. We recommend resolving these idiosyncrasies as part of “good modeling practice” to obtain highest quality model. Decreasing physical errors in protein structures plays major role in the development of targeting agents and understanding of chemical interactions at the molecular level. PMID:28163672

  18. Targeting Neuroblastoma Cell Surface Proteins: Recommendations for Homology Modeling of hNET, ALK, and TrkB.

    PubMed

    Haddad, Yazan; Heger, Zbyněk; Adam, Vojtech

    2017-01-01

    Targeted therapy is a promising approach for treatment of neuroblastoma as evident from the large number of targeting agents employed in clinical practice today. In the absence of known crystal structures, researchers rely on homology modeling to construct template-based theoretical structures for drug design and testing. Here, we discuss three candidate cell surface proteins that are suitable for homology modeling: human norepinephrine transporter (hNET), anaplastic lymphoma kinase (ALK), and neurotrophic tyrosine kinase receptor 2 (NTRK2 or TrkB). When choosing templates, both sequence identity and structure quality are important for homology modeling and pose the first of many challenges in the modeling process. Homology modeling of hNET can be improved using template models of dopamine and serotonin transporters instead of the leucine transporter (LeuT). The extracellular domains of ALK and TrkB are yet to be exploited by homology modeling. There are several idiosyncrasies that require direct attention throughout the process of model construction, evaluation and refinement. Shifts/gaps in the alignment between the template and target, backbone outliers and side-chain rotamer outliers are among the main sources of physical errors in the structures. Low-conserved regions can be refined with loop modeling method. Residue hydrophobicity, accessibility to bound metals or glycosylation can aid in model refinement. We recommend resolving these idiosyncrasies as part of "good modeling practice" to obtain highest quality model. Decreasing physical errors in protein structures plays major role in the development of targeting agents and understanding of chemical interactions at the molecular level.

  19. Characterization of the Catalytic and Nucleotide Binding Properties of the α-Kinase Domain of Dictyostelium Myosin-II Heavy Chain Kinase A*

    PubMed Central

    Yang, Yidai; Ye, Qilu; Jia, Zongchao; Côté, Graham P.

    2015-01-01

    The α-kinases are a widely expressed family of serine/threonine protein kinases that exhibit no sequence identity with conventional eukaryotic protein kinases. In this report, we provide new information on the catalytic properties of the α-kinase domain of Dictyostelium myosin-II heavy chain kinase-A (termed A-CAT). Crystallization of A-CAT in the presence of MgATP yielded structures with AMP or adenosine in the catalytic cleft together with a phosphorylated Asp-766 residue. The results show that the β- and α-phosphoryl groups are transferred either directly or indirectly to the catalytically essential Asp-766. Biochemical assays confirmed that A-CAT hydrolyzed ATP, ADP, and AMP with kcat values of 1.9, 0.6, and 0.32 min−1, respectively, and showed that A-CAT can use ADP to phosphorylate peptides and proteins. Binding assays using fluorescent 2′/3′-O-(N-methylanthraniloyl) analogs of ATP and ADP yielded Kd values for ATP, ADP, AMP, and adenosine of 20 ± 3, 60 ± 20, 160 ± 60, and 45 ± 15 μm, respectively. Site-directed mutagenesis showed that Glu-713, Leu-716, and Lys-645, all of which interact with the adenine base, were critical for nucleotide binding. Mutation of the highly conserved Gln-758, which chelates a nucleotide-associated Mg2+ ion, eliminated catalytic activity, whereas loss of the highly conserved Lys-722 and Arg-592 decreased kcat values for kinase and ATPase activities by 3–6-fold. Mutation of Asp-663 impaired kinase activity to a much greater extent than ATPase, indicating a specific role in peptide substrate binding, whereas mutation of Gln-768 doubled ATPase activity, suggesting that it may act to exclude water from the active site. PMID:26260792

  20. Structural insights into the recognition of β3 integrin cytoplasmic tail by the SH3 domain of Src kinase.

    PubMed

    Katyal, Priya; Puthenveetil, Robbins; Vinogradova, Olga

    2013-10-01

    Src kinase plays an important role in integrin signaling by regulating cytoskeletal organization and cell remodeling. Previous in vivo studies have revealed that the SH3 domain of c-Src kinase directly associates with the C-terminus of β3 integrin cytoplasmic tail. Here, we explore this binding interface with a combination of different spectroscopic and computational methods. Chemical shift mapping, PRE, transferred NOE and CD data were used to obtain a docked model of the complex. This model suggests a different binding mode from the one proposed through previous studies wherein, the C-terminal end of β3 spans the region in between the RT and n-Src loops of SH3 domain. Furthermore, we show that tyrosine phosphorylation of β3 prevents this interaction, supporting the notion of a constitutive interaction between β3 integrin and Src kinase.

  1. Structural insights into the recognition of β3 integrin cytoplasmic tail by the SH3 domain of Src kinase

    PubMed Central

    Katyal, Priya; Puthenveetil, Robbins; Vinogradova, Olga

    2013-01-01

    Src kinase plays an important role in integrin signaling by regulating cytoskeletal organization and cell remodeling. Previous in vivo studies have revealed that the SH3 domain of c-Src kinase directly associates with the C-terminus of β3 integrin cytoplasmic tail. Here, we explore this binding interface with a combination of different spectroscopic and computational methods. Chemical shift mapping, PRE, transferred NOE and CD data were used to obtain a docked model of the complex. This model suggests a different binding mode from the one proposed through previous studies wherein, the C-terminal end of β3 spans the region in between the RT and n-Src loops of SH3 domain. Furthermore, we show that tyrosine phosphorylation of β3 prevents this interaction, supporting the notion of a constitutive interaction between β3 integrin and Src kinase. PMID:23913837

  2. Crizotinib for the Treatment of ALK-Rearranged Non-Small Cell Lung Cancer: A Success Story to Usher in the Second Decade of Molecular Targeted Therapy in Oncology

    PubMed Central

    Bartlett, Cynthia Huang; Mino-Kenudson, Mari; Cui, Jean; Iafrate, A. John

    2012-01-01

    Crizotinib, an ALK/MET/ROS1 inhibitor, was approved by the U.S. Food and Drug Administration for the treatment of anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) in August 2011, merely 4 years after the first publication of ALK-rearranged NSCLC. The crizotinib approval was accompanied by the simultaneous approval of an ALK companion diagnostic fluorescent in situ hybridization assay for the detection of ALK-rearranged NSCLC. Crizotinib continued to be developed as an ALK and MET inhibitor in other tumor types driven by alteration in ALK and MET. Crizotinib has recently been shown to be an effective ROS1 inhibitor in ROS1-rearranged NSCLC, with potential future clinical applications in ROS1-rearranged tumors. Here we summarize the heterogeneity within the ALK- and ROS1-rearranged molecular subtypes of NSCLC. We review the past and future clinical development of crizotinib for ALK-rearranged NSCLC and the diagnostic assays to detect ALK-rearranged NSCLC. We highlight how the success of crizotinib has changed the paradigm of future drug development for targeted therapies by targeting a molecular-defined subtype of NSCLC despite its rarity and affected the practice of personalized medicine in oncology, emphasizing close collaboration between clinical oncologists, pathologists, and translational scientists. PMID:22989574

  3. Characterization of the sensor domain of QseE histidine kinase from Escherichia coli.

    PubMed

    Yeo, Kwon Joo; Park, Jin-Wan; Kim, Eun-Hee; Jeon, Young Ho; Hwang, Kwang Yeon; Cheong, Hae-Kap

    2016-10-01

    In enterohemorrhagic Escherichia coli (EHEC), the QseEF two-component system causes attaching and effacing (AE) lesion on epithelial cells. QseE histidine kinase senses the host hormone epinephrine, sulfate, and phosphate; it also regulates QseF response regulator, which activates LEE gene that encodes AE lesion. In order to understand the recognition of ligand molecules and signal transfer mechanism in pathogenic bacteria, structural studies of the sensor domain of QseE of Escherichia coli should be conducted. In this study, we describe the overexpression, purification, and structural and biophysical properties of the sensor domain of QseE. The fusion protein had a 6×His tag at its N-terminus; this protein was overexpressed as inclusion bodies in E. coli BL21 (DE3). The protein was denatured in 7M guanidine hydrochloride and refolded by dialysis. The purification of the refolded protein was carried out using Ni-NTA affinity column and size-exclusion chromatography. Thereafter, the characteristics of the refolded protein were determined from NMR, CD, and MALS spectroscopies. In a pH range of 7.4-5.0, the folded protein existed in a monomeric form with a predominantly helical structure. (1)H-(15)N HSQC NMR spectra shows that approximately 93% backbone amide peaks are detected at pH 5.0, suggesting that the number of backbone signals is sufficient for NMR studies. These data might provide an opportunity for structural and functional studies of the sensor domain of QseE.

  4. Intratumoral Heterogeneity of ALK-Rearranged and ALK/EGFR Coaltered Lung Adenocarcinoma

    PubMed Central

    Cai, Weijing; Lin, Dongmei; Wu, Chunyan; Li, Xuefei; Zhao, Chao; Zheng, Limou; Chuai, Shannon; Fei, Ke; Zhou, Caicun; Hirsch, Fred R.

    2015-01-01

    Purpose Genetic intratumoral heterogeneity has a profound influence on the selection of clinical treatment strategies and on addressing resistance to targeted therapy. The purpose of this study was to explore the potential effect of intratumoral heterogeneity on both genetic and pathologic characteristics of ALK-rearranged lung adenocarcinoma (LADC). Methods We tested ALK fusions and EGFR mutations in 629 patients with LADC by using laser-capture microdissection to capture spatially separated tumor cell subpopulations in various adenocarcinoma subtypes and to test for ALK fusions and EGFR mutations in ALK-rearranged, EGFR-mutated, and ALK/EGFR coaltered LADCs to compare the oncogenic driver status between different tumor cell subpopulations in the same primary tumor. Results Among the 629 patients, 30 (4.8%) had ALK fusions, 364 (57.9%) had EGFR mutations, and two had ALK fusions that coexisted with EGFR mutations. Intratumoral heterogeneity of ALK fusions were identified in nine patients by reverse-transcriptase polymerase chain reaction. In the two patients with an ALK/EGFR coaltered status, genetic intratumoral heterogeneity was observed both between different growth patterns and within the same growth pattern. The relative abundance of ALK and EGFR alterations was different in the same captured area. ALK fusions were positively associated with a micropapillary pattern (P = .002) and were negatively associated with a lepidic pattern (P = .008) in an expanded statistical analysis of 900 individual adenocarcinoma components, although they appeared to be more common in acinar-predominant LADCs in the analysis of 629 patients. Conclusion Intratumoral genetic heterogeneity was demonstrated to coexist with histologic heterogeneity in both single-driver and ALK/EGFR coaltered LADCs. Altered oncogenic drivers in spatially separated subclones of the same tumor may be different. PMID:26416997

  5. Clinicopathological Study of 18 Cases of Inflammatory Myofibroblastic Tumors with Reference to ALK-1 Expression: 5-Year Experience in a Tertiary Care Center.

    PubMed

    Telugu, Ramesh Babu; Prabhu, Anne Jennifer; Kalappurayil, Nobin Babu; Mathai, John; Gnanamuthu, Birla Roy; Manipadam, Marie Therese

    2017-05-01

    Inflammatory myofibroblastic tumor is a histopathologically distinctive neoplasm of children and young adults. According to World Health Organization (WHO) classification, inflammatory myofibroblastic tumor is an intermediate-grade tumor, with potential for recurrence and rare metastasis. There are no definite histopathologic, molecular, or cytogenetic features to predict malignant transformation, recurrence, or metastasis. A 5-year retrospective study of histopathologically diagnosed inflammatory myofibroblastic tumors of various anatomic sites was conducted to correlate anaplastic lymphoma kinase-1 (ALK-1) expression with histological atypia, multicentric origin of tumor, recurrence, and metastasis. Clinical details of all the cases were noted from the clinical work station. Immunohistochemical stains for ALK-1 and other antibodies were performed. Statistical analysis was done using Fisher exact test. A total of 18 cases of inflammatory myofibroblastic tumors were found during the study period, of which 14 were classical. The female-male ratio was 1:1 and the mean age was 23.8 years. Histologically atypical (four cases) and multifocal tumors (three cases, multicentric in origin) were noted. Recurrence was noted in 30% of ALK-1 positive and 37.5% of ALK-1 negative cases, whereas metastasis to the lung, liver, and pelvic bone was noted in the ALK-1 positive group only. Overall, ALK-1 protein was expressed in 55.6% of inflammatory myofibroblastic tumors. There was no statistically significant correlation between ALK-1 expression, tumor type, recurrence and metastasis. However, ALK-1 immunohistochemistry is a useful diagnostic aid in the appropriate clinical and histomorphologic context.

  6. Synthesis and preliminary PET imaging of 11C and 18F isotopologues of the ROS1/ALK inhibitor lorlatinib

    NASA Astrophysics Data System (ADS)

    Collier, Thomas Lee; Normandin, Marc D.; Stephenson, Nickeisha A.; Livni, Eli; Liang, Steven H.; Wooten, Dustin W.; Esfahani, Shadi A.; Stabin, Michael G.; Mahmood, Umar; Chen, Jianqing; Wang, Wei; Maresca, Kevin; Waterhouse, Rikki N.; El Fakhri, Georges; Richardson, Paul; Vasdev, Neil

    2017-06-01

    Lorlatinib (PF-06463922) is a next-generation small-molecule inhibitor of the orphan receptor tyrosine kinase c-ros oncogene 1 (ROS1), which has a kinase domain that is physiologically related to anaplastic lymphoma kinase (ALK), and is undergoing Phase I/II clinical trial investigations for non-small cell lung cancers. An early goal is to measure the concentrations of this drug in brain tumour lesions of lung cancer patients, as penetration of the blood-brain barrier is important for optimal therapeutic outcomes. Here we prepare both 11C- and 18F-isotopologues of lorlatinib to determine the biodistribution and whole-body dosimetry assessments by positron emission tomography (PET). Non-traditional radiolabelling strategies are employed to enable an automated multistep 11C-labelling process and an iodonium ylide-based radiofluorination. Carbon-11-labelled lorlatinib is routinely prepared with good radiochemical yields and shows reasonable tumour uptake in rodents. PET imaging in non-human primates confirms that this radiotracer has high brain permeability.

  7. Structural and functional studies of the HAMP domain of EnvZ, an osmosensing transmembrane histidine kinase in Escherichia coli.

    PubMed

    Kishii, Ryuta; Falzon, Liliana; Yoshida, Takeshi; Kobayashi, Hiroshi; Inouye, Masayori

    2007-09-07

    The HAMP domain plays an essential role in signal transduction not only in histidine kinase but also in a number of other signal-transducing receptor proteins. Here we expressed the EnvZ HAMP domain (Arg(180)-Thr(235)) with the R218K mutation (termed L(RK)) or with L(RK) connected with domain A (Arg(180)-Arg(289)) (termed LA(RK)) of EnvZ, an osmosensing transmembrane histidine kinase in Escherichia coli, by fusing it with protein S. The L(RK) and LA(RK) proteins were purified after removing protein S. The CD analysis of the isolated L protein revealed that it consists of a random structure or is unstructured. This suggests that the EnvZ HAMP domain by itself is unable to form a stable structure and that this structural fragility may be important for its role in signal transduction. Interestingly the substitution of Ala(193) in the EnvZ HAMP domain with valine or leucine in Tez1A1, a chimeric protein of Tar and EnvZ, caused a constitutive OmpC phenotype. The CD analysis of LA(RK)(A193L) revealed that this mutated HAMP domain possesses considerable secondary structures and that the thermostability of this entire LA(RK)(A193L) became substantially lower than that of LA(RK) or just domain A, indicating that the structure of the HAMP domain with the A193L mutation affects the stability of downstream domain A. This results in cooperative thermodenaturation of domain A with the mutated HAMP domain. These results are discussed in light of the recently solved NMR structure of the HAMP domain from a thermophilic bacterium (Hulko, M., Berndt, F., Gruber, M., Linder, J. U., Truffault, V., Schultz, A., Martin, J., Schultz, J. E., Lupas, A. N., and Coles, M. (2006) Cell 126, 929-940).

  8. Methylatable Signaling Helix Coordinated Inhibitory Receiver Domain in Sensor Kinase Modulates Environmental Stress Response in Bacillus Cereus

    PubMed Central

    Chen, Jung-Chi; Liu, Jyung-Hurng; Hsu, Duen-Wei; Shu, Jwu-Ching; Chen, Chien-Yen; Chen, Chien-Cheng

    2015-01-01

    σB, an alternative transcription factor, controls the response of the cell to a variety of environmental stresses in Bacillus cereus. Previously, we reported that RsbM negatively regulates σB through the methylation of RsbK, a hybrid sensor kinase, on a signaling helix (S-helix). However, RsbK comprises a C-terminal receiver (REC) domain whose function remains unclear. In this study, deletion of the C-terminal REC domain of RsbK resulted in high constitutive σB expression independent of environmental stimuli. Thus, the REC domain may serve as an inhibitory element. Mutagenic substitution was employed to modify the putative phospho-acceptor residue D827 in the REC domain of RsbK. The expression of RsbKD827N and RsbKD827E exhibited high constitutive σB, indicating that D827, if phosphorylatable, possibly participates in σB regulation. Bacterial two-hybrid analyses demonstrated that RsbK forms a homodimer and the REC domain interacts mainly with the histidine kinase (HK) domain and partly with the S-helix. In particular, co-expression of RsbM strengthens the interaction between the REC domain and the S-helix. Consistently, our structural model predicts a significant interaction between the HK and REC domains of the RsbK intradimer. Here, we demonstrated that coordinated the methylatable S-helix and the REC domain of RsbK is functionally required to modulate σB-mediated stress response in B. cereus and maybe ubiquitous in microorganisms encoded RsbK-type sensor kinases. PMID:26379238

  9. The Extracellular Domain of the Saccharomyces cerevisiae Sln1p Membrane Osmolarity Sensor Is Necessary for Kinase Activity

    PubMed Central

    Ostrander, Darin B.; Gorman, Jessica A.

    1999-01-01

    The function of the extracellular domain (ECD) of Sln1p, a plasma membrane two-transmembrane domain (TMD) sensor of the high-osmolarity glycerol (HOG) response pathway, has been studied in the yeast Saccharomyces cerevisiae. Truncations of SLN1 that retain an intact kinase domain are capable of complementing the lethality of an sln1Δ strain. By observing levels of Hog1p phosphorylation as well as the phosphorylation state of Sln1p, the kinase activities of various SLN1 constructions were determined. In derivatives that do not contain the first TMD, Sln1p activity was no longer dependent on medium osmolarity but appeared to be constitutively active even under conditions of high osmolarity. Removal of the first TMD (ΔTMD1 construct) gave a protein that was strongly phosphorylated whereas Hog1p was largely dephosphorylated, as expected if the active form of Sln1p is phosphorylated. When both TMDs as well as the ECD were deleted, so that the kinase domain is cytosolic, Sln1p was not phosphorylated whereas Hog1p became constitutively hyperphosphorylated. Surprisingly, this hyperactivity of the HOG mitogen-activated protein kinase signaling pathway was not sufficient to result in cell lethality. When the ECD of the ΔTMD1 construct was replaced with a leucine zipper motif, Sln1p was hyperactive, so that Hog1p became mostly unphosphorylated. In contrast, when the Sln1p/leucine zipper construct was crippled by a mutation of one of the internal leucines, the Sln1 kinase was inactive. These experiments are consistent with the hypothesis that the ECD of Sln1p functions as a dimerization and activation domain but that osmotic regulation of activity requires the presence of the first TMD. PMID:10198019

  10. Crystal Structures of the Kinase Domain of the Sulfate-Activating Complex in Mycobacterium tuberculosis

    PubMed Central

    Poyraz, Ömer; Brunner, Katharina; Lohkamp, Bernhard; Axelsson, Hanna; Hammarström, Lars G. J.; Schnell, Robert; Schneider, Gunter

    2015-01-01

    In Mycobacterium tuberculosis the sulfate activating complex provides a key branching point in sulfate assimilation. The complex consists of two polypeptide chains, CysD and CysN. CysD is an ATP sulfurylase that, with the energy provided by the GTPase activity of CysN, forms adenosine-5’-phosphosulfate (APS) which can then enter the reductive branch of sulfate assimilation leading to the biosynthesis of cysteine. The CysN polypeptide chain also contains an APS kinase domain (CysC) that phosphorylates APS leading to 3’-phosphoadenosine-5’-phosphosulfate, the sulfate donor in the synthesis of sulfolipids. We have determined the crystal structures of CysC from M. tuberculosis as a binary complex with ADP, and as ternary complexes with ADP and APS and the ATP mimic AMP-PNP and APS, respectively, to resolutions of 1.5 Å, 2.1 Å and 1.7 Å, respectively. CysC shows the typical APS kinase fold, and the structures provide comprehensive views of the catalytic machinery, conserved in this enzyme family. Comparison to the structure of the human homolog show highly conserved APS and ATP binding sites, questioning the feasibility of the design of specific inhibitors of mycobacterial CysC. Residue Cys556 is part of the flexible lid region that closes off the active site upon substrate binding. Mutational analysis revealed this residue as one of the determinants controlling lid closure and hence binding of the nucleotide substrate. PMID:25807013

  11. ANKRD54 preferentially selects Bruton's Tyrosine Kinase (BTK) from a Human Src-Homology 3 (SH3) domain library.

    PubMed

    Gustafsson, Manuela O; Mohammad, Dara K; Ylösmäki, Erkko; Choi, Hyunseok; Shrestha, Subhash; Wang, Qing; Nore, Beston F; Saksela, Kalle; Smith, C I Edvard

    2017-01-01

    Bruton's Tyrosine Kinase (BTK) is a cytoplasmic protein tyrosine kinase with a fundamental role in B-lymphocyte development and activation. The nucleocytoplasmic shuttling of BTK is specifically modulated by the Ankyrin Repeat Domain 54 (ANKRD54) protein and the interaction is known to be exclusively SH3-dependent. To identify the spectrum of the ANKRD54 SH3-interactome, we applied phage-display screening of a library containing all the 296 human SH3 domains. The BTK-SH3 domain was the prime interactor. Quantitative western blotting analysis demonstrated the accuracy of the screening procedure. Revealing the spectrum and specificity of ANKRD54-interactome is a critical step toward functional analysis in cells and tissues.

  12. Regulation of protein kinase Cmu by basic peptides and heparin. Putative role of an acidic domain in the activation of the kinase.

    PubMed

    Gschwendt, M; Johannes, F J; Kittstein, W; Marks, F

    1997-08-15

    Protein kinase Cmu is a novel member of the protein kinase C (PKC) family that differs from the other isoenzymes in structural and enzymatic properties. No substrate proteins of PKCmu have been identified as yet. Moreover, the regulation of PKCmu activity remains obscure, since a structural region corresponding to the pseudosubstrate domains of other PKC isoenzymes has not been found for PKCmu. Here we show that aldolase is phosphorylated by PKCmu in vitro. Phosphorylation of aldolase and of two substrate peptides by PKCmu is inhibited by various proteins and peptides, including typical PKC substrates such as histone H1, myelin basic protein, and p53. This inhibitory activity seems to depend on clusters of basic amino acids in the protein/peptide structures. Moreover, in contrast to other PKC isoenzymes PKCmu is activated by heparin and dextran sulfate. Maximal activation by heparin is about twice and that by dextran sulfate four times as effective as maximal activation by phosphatidylserine plus 12-O-tetradecanoylphorbol-13-acetate, the conventional activators of c- and nPKC isoforms. We postulate that PKCmu contains an acidic domain, which is involved in the formation and stabilization of an active state and which, in the inactive enzyme, is blocked by an intramolecular interaction with a basic domain. This intramolecular block is thought to be released by heparin and possibly also by 12-O-tetradecanoylphorbol-13-acetate/phosphatidylserine, whereas basic peptides and proteins inhibit PKCmu activity by binding to the acidic domain of the active enzyme.

  13. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project.

    PubMed

    Savage, Kerry J; Harris, Nancy Lee; Vose, Julie M; Ullrich, Fred; Jaffe, Elaine S; Connors, Joseph M; Rimsza, Lisa; Pileri, Stefano A; Chhanabhai, Mukesh; Gascoyne, Randy D; Armitage, James O; Weisenburger, Dennis D

    2008-06-15

    The International Peripheral T-Cell Lymphoma Project is a collaborative effort designed to gain better understanding of peripheral T-cell and natural killer (NK)/T-cell lymphomas (PTCLs). A total of 22 institutions in North America, Europe, and Asia submitted clinical and pathologic information on PTCLs diagnosed and treated at their respective centers. Of the 1314 eligible patients, 181 had anaplastic large-cell lymphoma (ALCL; 13.8%) on consensus review: One hundred fifty-nine had systemic ALCL (12.1%) and 22 had primary cutaneous ALCL (1.7%). Patients with anaplastic lymphoma kinase-positive (ALK(+)) ALCL had a superior outcome compared with those with ALK(-) ALCL (5-year failure-free survival [FFS], 60% vs 36%; P = .015; 5-year overall survival [OS], 70% vs 49%; P = .016). However, contrary to prior reports, the 5-year FFS (36% vs 20%; P = .012) and OS (49% vs 32%; P = .032) were superior for ALK(-) ALCL compared with PTCL, not otherwise specified (PTCL-NOS). Patients with primary cutaneous ALCL had a very favorable 5-year OS (90%), but with a propensity to relapse (5-year FFS, 55%). In summary, ALK(-) ALCL should continue to be separated from both ALK(+) ALCL and PTCL-NOS. Although the prognosis of ALK(-) ALCL appears to be better than that for PTCL-NOS, it is still unsatisfactory and better therapies are needed. Primary cutaneous ALCL is associated with an indolent course.

  14. Rad53 kinase activation-independent replication checkpoint function of the N-terminal forkhead-associated (FHA1) domain.

    PubMed

    Pike, Brietta L; Tenis, Nora; Heierhorst, Jörg

    2004-09-17

    Saccharomyces cerevisiae Rad53 has crucial functions in many aspects of the cellular response to DNA damage and replication blocks. To coordinate these diverse roles, Rad53 has two forkhead-associated (FHA) phosphothreonine-binding domains in addition to a kinase domain. Here, we show that the conserved N-terminal FHA1 domain is essential for the function of Rad53 to prevent the firing of late replication origins in response to replication blocks. However, the FHA1 domain is not required for Rad53 activation during S phase, and as a consequence of defective downstream signaling, Rad53 containing an inactive FHA1 domain is hyperphosphorylated in response to replication blocks. The FHA1 mutation dramatically hypersensitizes strains with defects in the cell cycle-wide checkpoint pathways (rad9Delta and rad17Delta) to DNA damage, but it is largely epistatic with defects in the replication checkpoint (mrc1Delta). Altogether, our data indicate that the FHA1 domain links activated Rad53 to downstream effectors in the replication checkpoint. The results reveal an important mechanistic difference to the homologous Schizosaccharomyces pombe FHA domain that is required for Mrc1-dependent activation of the corresponding Cds1 kinase. Surprisingly, despite the severely impaired replication checkpoint and also G(2)/M checkpoint functions, the FHA1 mutation by itself leads to only moderate viability defects in response to DNA damage, highlighting the importance of functionally redundant pathways.

  15. DIFFERENT REQUIREMENTS OF THE KINASE AND UHM DOMAINS OF KIS FOR ITS NUCLEAR LOCALIZATION AND BINDING TO SPLICING FACTORS

    PubMed Central

    Manceau, Valérie; Kielkopf, Clara L.; Sobel, André; Maucuer, Alexandre

    2008-01-01

    Summary The protein kinase KIS is made by the juxtaposition of a unique kinase domain and a C-terminal domain with a U2AF Homology Motif (UHM), a sequence motif for protein interaction initially identified in the heterodimeric pre-mRNA splicing factor U2AF. This domain of KIS is closely related to the C-terminal UHM domain of the U2AF large subunit, U2AF65. KIS phosphorylates the splicing factor SF1, which in turn enhances SF1 binding to U2AF65 and the 3′ splice site, an event known to take place at an early step of spliceosome assembly. Here, the analysis of the subcellular localization of mutated forms of KIS indicates that the kinase domain of KIS is the necessary domain for its nuclear localization. As in the case of U2AF65, the UHM containing C-terminal domain of KIS is required for binding to the splicing factors SF1 and SF3b155. The efficiency of KIS binding to SF1 and SF3b155 is similar to that of U2AF65 in pull-down assays. These results further support the functional link of KIS with splicing factors. Interestingly, when compared to other UHM containing proteins, KIS presents a different specificity for the UHM docking sites that are present in the N-terminal region of SF3b155, thus providing a new insight into the variety of interactions mediated by UHM domains. PMID:18588901

  16. The SNF1 Kinase Ubiquitin-associated Domain Restrains Its Activation, Activity, and the Yeast Life Span.

    PubMed

    Jiao, Rubin; Postnikoff, Spike; Harkness, Troy A; Arnason, Terra G

    2015-06-19

    The enzyme family of heterotrimeric AMP-dependent protein kinases is activated upon low energy states, conferring a switch toward energy-conserving metabolic pathways through immediate kinase actions on enzyme targets and delayed alterations in gene expression through its nuclear relocalization. This family is evolutionarily conserved, including the presence of a ubiquitin-associated (UBA) motif in most catalytic subunits. The potential for the UBA domain to promote protein associations or direct subcellular location, as seen in other UBA-containing proteins, led us to query whether the UBA domain within the yeast AMP-dependent protein kinase ortholog, SNF1 kinase, was important in these aspects of its regulation. Here, we demonstrate that conserved UBA motif mutations significantly alter SNF1 kinase activation and biological activity, including enhanced allosteric subunit associations and increased oxidative stress resistance and life span. Significantly, the enhanced UBA-dependent longevity and oxidative stress response are at least partially dependent on the Fkh1 and Fkh2 stress response transcription factors, which in turn are shown to influence Snf1 gene expression.

  17. Correlation between conformational stability of the ternary enzyme-substrate complex and domain closure of 3-phosphoglycerate kinase.

    PubMed

    Varga, Andrea; Flachner, Beáta; Gráczer, Eva; Osváth, Szabolcs; Szilágyi, Andrea N; Vas, Mária

    2005-04-01

    3-phosphoglycerate kinase (PGK) is a typical two-domain hinge-bending enzyme with a well-structured interdomain region. The mechanism of domain-domain interaction and its regulation by substrate binding is not yet fully understood. Here the existence of strong cooperativity between the two domains was demonstrated by following heat transitions of pig muscle and yeast PGKs using differential scanning microcalorimetry and fluorimetry. Two mutants of yeast PGK containing a single tryptophan fluorophore either in the N- or in the C-terminal domain were also studied. The coincidence of the calorimetric and fluorimetric heat transitions in all cases indicated simultaneous, highly cooperative unfolding of the two domains. This cooperativity is preserved in the presence of substrates: 3-phosphoglycerate bound to the N domain or the nucleotide (MgADP, MgATP) bound to the C domain increased the structural stability of the whole molecule. A structural explanation of domain-domain interaction is suggested by analysis of the atomic contacts in 12 different PGK crystal structures. Well-defined backbone and side-chain H bonds, and hydrophobic and electrostatic interactions between side chains of conserved residues are proposed to be responsible for domain-domain communication. Upon binding of each substrate newly formed molecular contacts are identified that firstly explain the order of the increased heat stability in the various binary complexes, and secondly describe the possible route of transmission of the substrate-induced conformational effects from one domain to the other. The largest stability is characteristic of the native ternary complex and is abolished in the case of a chemically modified inactive form of PGK, the domain closure of which was previously shown to be prevented [Sinev MA, Razgulyaev OI, Vas M, Timchenko AA & Ptitsyn OB (1989) Eur J Biochem180, 61-66]. Thus, conformational stability correlates with domain closure that requires simultaneous binding of both

  18. An SH2 domain-based tyrosine kinase assay using biotin ligase modified with a terbium(III) complex.

    PubMed

    Sueda, Shinji; Shinboku, Yuki; Kusaba, Takeshi

    2013-01-01

    Src homology 2 (SH2) domains are modules of approximately 100 amino acids and are known to bind phosphotyrosine-containing sequences with high affinity and specificity. In the present work, we developed an SH2 domain-based assay for Src tyrosine kinase using a unique biotinylation reaction from archaeon Sulfolobus tokodaii. S. tokodaii biotinylation has a unique property that biotin protein ligase (BPL) forms a stable complex with its biotinylated substrate protein (BCCP). Here, an SH2 domain from lymphocyte-specific tyrosine kinase was genetically fused to a truncated BCCP, and the resulting fusion protein was labeled through biotinylation with BPL carrying multiple copies of a luminescent Tb(3+) complex. The labeled SH2 fusion proteins were employed to detect a phosphorylated peptide immobilized on the surface of the microtiter plate, where the phosphorylated peptide was produced by phosphorylation to the substrate peptide by Src tyrosine kinase. Our assay allows for a reliable determination of the activity of Src kinase lower than 10 pg/μL by a simple procedure.

  19. EGFR kinase domain mutation positive lung cancers are sensitive to intrapleural perfusion with hyperthermic chemotherapy (IPHC) complete treatment.

    PubMed

    Zhang, Hongjuan; Zhan, Cheng; Ke, Ji; Xue, Zhiqiang; Zhang, Aiqun; Xu, Kaifeng; Shen, Zhirong; Yu, Lei; Chen, Liang

    2016-01-19

    Lung cancer is the global leading cause of cancer-related deaths. A significant portion of lung cancer patients harbor kinase domain mutations in the epidermal growth factor receptor (EGFR). While EGFR tyrosine kinase inhibitors (TKI) effectively shrink tumors harboring mutant EGFR, clinical efficacy is limited by the development of TKI resistance. Effective alternatives are desperately needed in clinic for treating EGFR kinase domain mutation positive lung cancer. In our clinic in treating M1a lung cancer patients through intrapleural perfusion with hyperthermic chemotherapy (IPHC) followed by cycles of systemic chemotherapy (we termed this procedure IPHC complete treatment, IPHC-CT), we found dramatic tumor shrinkage in mutant EGFR-positive patients. We further confirmed the sensitivity of EGFR mutation-positive lung cancer cell lines derived from patients to HC (hyperthermic chemotherapy) treatment. We found that hyperthermia promoted accumulation of cisplatin in lung cancer cells. Hyperthermia and cisplatin synergistically downregulated the EGFR protein level, leading to quenching of signal from EGFR and induction of apoptosis. Our work therefore showed IPHC-CT is an effective treatment for EGFR kinase domain mutation positive lung cancer patients.

  20. Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking

    PubMed Central

    Dubey, Badri N.; Lori, Christian; Ozaki, Shogo; Fucile, Geoffrey; Plaza-Menacho, Ivan; Jenal, Urs; Schirmer, Tilman

    2016-01-01

    Histidine kinases are key components of regulatory networks in bacteria. Although many of these enzymes are bifunctional, mediating both phosphorylation and dephosphorylation of downstream targets, the molecular details of this central regulatory switch are unclear. We showed recently that the universal second messenger cyclic di–guanosine monophosphate (c-di-GMP) drives Caulobacter crescentus cell cycle progression by forcing the cell cycle kinase CckA from its default kinase into phosphatase mode. We use a combination of structure determination, modeling, and functional analysis to demonstrate that c-di-GMP reciprocally regulates the two antagonistic CckA activities through noncovalent cross-linking of the catalytic domain with the dimerization histidine phosphotransfer (DHp) domain. We demonstrate that both c-di-GMP and ADP (adenosine diphosphate) promote phosphatase activity and propose that c-di-GMP stabilizes the ADP-bound quaternary structure, which allows the receiver domain to access the dimeric DHp stem for dephosphorylation. In silico analyses predict that c-di-GMP control is widespread among bacterial histidine kinases, arguing that it can replace or modulate canonical transmembrane signaling. PMID:27652341

  1. Development of natural product-derived receptor tyrosine kinase inhibitors based on conservation of protein domain fold.

    PubMed

    Kissau, Lars; Stahl, Petra; Mazitschek, Ralph; Giannis, Athannasios; Waldmann, Herbert

    2003-07-03

    Receptor tyrosine kinases (RTKs) such as Tie-2, IGF1R, Her-2/Neu, EGFR, and VEGFR1-3 play crucial roles in the control of cell growth and differentiation. Inhibition of such RTKs has become a major focus of current anticancer drug development, and therefore the discovery of new classes of inhibitors for these signal-transducing proteins is of prime importance. We have recently proposed a novel concept for improving the hit-finding process by employing natural products as biologically validated starting points in structural space for compound library development. In this concept, natural products are regarded as evolutionary chosen ligands for protein domains which are structurally conserved yet genetically mobile. Here we report on the discovery of novel and highly selective VEGFR-2 and -3, Tie-2, and IGF1R inhibitors derived from the naturally occurring Her-2/Neu kinase inhibitor nakijiquinone C and developed on the basis of this concept. Based on the structure of the natural product, a small library (74 members) was synthesized and investigated for inhibition of kinases with highly similar ATP-binding domains. The library yielded inhibitors with IC(50)s in the low micromolar range with high frequency (7 out of 74). In particular, four inhibitors of Tie-2 were found, a kinase critically involved in the formation of new blood vessels from preexisting ones (angiogenesis) and believed to be a new promising target in antitumor therapy. These results support the "domain concept". To advance the development of improved inhibitors, extensive molecular modeling studies were undertaken, including the construction of new homology models for VEGFR-2 and Tie-2. These studies revealed residues in the kinase structure which are crucial to the development of tailor-made receptor tyrosine kinase inhibitors.

  2. L1198F Mutation Resensitizes Crizotinib to ALK by Altering the Conformation of Inhibitor and ATP Binding Sites.

    PubMed

    Li, Jian; Sun, Rong; Wu, Yuehong; Song, Mingzhu; Li, Jia; Yang, Qianye; Chen, Xiaoyi; Bao, Jinku; Zhao, Qi

    2017-02-24

    The efficacy of anaplastic lymphoma kinase (ALK) positive non-small-cell lung cancer (NSCLC) treatment with small molecule inhibitors is greatly challenged by acquired resistance. A recent study reported the newest generation inhibitor resistant mutation L1198F led to the resensitization to crizotinib, which is the first Food and Drug Administration (FDA) approved drug for the treatment of ALK-positive NSCLC. It is of great importance to understand how this extremely rare event occurred for the purpose of overcoming the acquired resistance of such inhibitors. In this study, we exploited molecular dynamics (MD) simulation to dissect the molecular mechanisms. Our MD results revealed that L1198F mutation of ALK resulted in the conformational change at the inhibitor site and altered the binding affinity of ALK to crizotinib and lorlatinib. L1198F mutation also affected the autoactivation of ALK as supported by the identification of His1124 and Tyr1278 as critical amino acids involved in ATP binding and phosphorylation. Our findings are valuable for designing more specific and potent inhibitors for the treatment of ALK-positive NSCLC and other types of cancer.

  3. L1198F Mutation Resensitizes Crizotinib to ALK by Altering the Conformation of Inhibitor and ATP Binding Sites

    PubMed Central

    Li, Jian; Sun, Rong; Wu, Yuehong; Song, Mingzhu; Li, Jia; Yang, Qianye; Chen, Xiaoyi; Bao, Jinku; Zhao, Qi

    2017-01-01

    The efficacy of anaplastic lymphoma kinase (ALK) positive non-small-cell lung cancer (NSCLC) treatment with small molecule inhibitors is greatly challenged by acquired resistance. A recent study reported the newest generation inhibitor resistant mutation L1198F led to the resensitization to crizotinib, which is the first Food and Drug Administration (FDA) approved drug for the treatment of ALK-positive NSCLC. It is of great importance to understand how this extremely rare event occurred for the purpose of overcoming the acquired resistance of such inhibitors. In this study, we exploited molecular dynamics (MD) simulation to dissect the molecular mechanisms. Our MD results revealed that L1198F mutation of ALK resulted in the conformational change at the inhibitor site and altered the binding affinity of ALK to crizotinib and lorlatinib. L1198F mutation also affected the autoactivation of ALK as supported by the identification of His1124 and Tyr1278 as critical amino acids involved in ATP binding and phosphorylation. Our findings are valuable for designing more specific and potent inhibitors for the treatment of ALK-positive NSCLC and other types of cancer. PMID:28245558

  4. Interactions between the S-Domain Receptor Kinases and AtPUB-ARM E3 Ubiquitin Ligases Suggest a Conserved Signaling Pathway in Arabidopsis1[W][OA

    PubMed Central

    Samuel, Marcus A.; Mudgil, Yashwanti; Salt, Jennifer N.; Delmas, Frédéric; Ramachandran, Shaliny; Chilelli, Andrea; Goring, Daphne R.

    2008-01-01

    The Arabidopsis (Arabidopsis thaliana) genome encompasses multiple receptor kinase families with highly variable extracellular domains. Despite their large numbers, the various ligands and the downstream interacting partners for these kinases have been deciphered only for a few members. One such member, the S-receptor kinase, is known to mediate the self-incompatibility (SI) response in Brassica. S-receptor kinase has been shown to interact and phosphorylate a U-box/ARM-repeat-containing E3 ligase, ARC1, which, in turn, acts as a positive regulator of the SI response. In an effort to identify conserved signaling pathways in Arabidopsis, we performed yeast two-hybrid analyses of various S-domain receptor kinase family members with representative Arabidopsis plant U-box/ARM-repeat (AtPUB-ARM) E3 ligases. The kinase domains from S-domain receptor kinases were found to interact with ARM-repeat domains from AtPUB-ARM proteins. These kinase domains, along with M-locus protein kinase, a positive regulator of SI response, were also able to phosphorylate the ARM-repeat domains in in vitro phosphorylation assays. Subcellular localization patterns were investigated using transient expression assays in tobacco (Nicotiana tabacum) BY-2 cells and changes were detected in the presence of interacting kinases. Finally, potential links to the involvement of these interacting modules to the hormone abscisic acid (ABA) were investigated. Interestingly, AtPUB9 displayed redistribution to the plasma membrane of BY-2 cells when either treated with ABA or coexpressed with the active kinase domain of ARK1. As well, T-DNA insertion mutants for ARK1 and AtPUB9 lines were altered in their ABA sensitivity during germination and acted at or upstream of ABI3, indicating potential involvement of these proteins in ABA responses. PMID:18552232

  5. Structural and spectroscopic analysis of the kinase inhibitor bosutinib and an isomer of bosutinib binding to the Abl tyrosine kinase domain.

    PubMed

    Levinson, Nicholas M; Boxer, Steven G

    2012-01-01

    Chronic myeloid leukemia (CML) is caused by the kinase activity of the BCR-Abl fusion protein. The Abl inhibitors imatinib, nilotinib and dasatinib are currently used to treat CML, but resistance to these inhibitors is a significant clinical problem. The kinase inhibitor bosutinib has shown efficacy in clinical trials for imatinib-resistant CML, but its binding mode is unknown. We present the 2.4 Å structure of bosutinib bound to the kinase domain of Abl, which explains the inhibitor's activity against several imatinib-resistant mutants, and reveals that similar inhibitors that lack a nitrile moiety could be effective against the common T315I mutant. We also report that two distinct chemical compounds are currently being sold under the name "bosutinib", and report spectroscopic and structural characterizations of both. We show that the fluorescence properties of these compounds allow inhibitor binding to be measured quantitatively, and that the infrared absorption of the nitrile group reveals a different electrostatic environment in the conserved ATP-binding sites of Abl and Src kinases. Exploiting such differences could lead to inhibitors with improved selectivity.

  6. Structural and Spectroscopic Analysis of the Kinase Inhibitor Bosutinib and an Isomer of Bosutinib Binding to the Abl Tyrosine Kinase Domain

    PubMed Central

    Levinson, Nicholas M.; Boxer, Steven G.

    2012-01-01

    Chronic myeloid leukemia (CML) is caused by the kinase activity of the BCR-Abl fusion protein. The Abl inhibitors imatinib, nilotinib and dasatinib are currently used to treat CML, but resistance to these inhibitors is a significant clinical problem. The kinase inhibitor bosutinib has shown efficacy in clinical trials for imatinib-resistant CML, but its binding mode is unknown. We present the 2.4 Å structure of bosutinib bound to the kinase domain of Abl, which explains the inhibitor's activity against several imatinib-resistant mutants, and reveals that similar inhibitors that lack a nitrile moiety could be effective against the common T315I mutant. We also report that two distinct chemical compounds are currently being sold under the name “bosutinib”, and report spectroscopic and structural characterizations of both. We show that the fluorescence properties of these compounds allow inhibitor binding to be measured quantitatively, and that the infrared absorption of the nitrile group reveals a different electrostatic environment in the conserved ATP-binding sites of Abl and Src kinases. Exploiting such differences could lead to inhibitors with improved selectivity. PMID:22493660

  7. Crystal structure of the kinase domain of human protein tyrosine kinase 6 (PTK6) at 2.33 Å resolution.

    PubMed

    Thakur, Manish Kumar; Kumar, Amit; Birudukota, Swarnakumari; Swaminathan, Srinivasan; Tyagi, Rajiv; Gosu, Ramachandraiah

    2016-09-16

    Human Protein tyrosine kinase 6 (PTK6) (EC:2.7.10.2), also known as the breast tumor kinase (BRK), is an intracellular non-receptor Src-related tyrosine kinase expressed in a majority of human breast tumors and breast cancer cell lines, but its expression is low or completely absent in normal mammary glands. In the recent past, several studies have suggested that PTK6 is a potential therapeutic target in cancer. To understand its structural and functional properties, the PTK6 kinase domain (PTK6-KD) gene was cloned, overexpressed in a baculo-insect cell system, purified and crystallized at room temperature. X-ray diffraction data to 2.33 Å resolution was collected on a single PTK6-KD crystal, which belonged to the triclinic space group P1. The Matthews coefficient calculation suggested the presence of four protein molecules per asymmetric unit, with a solvent content of ∼50%.The structure has been solved by molecular replacement and crystal structure data submitted to the protein data bank under the accession number 5D7V. This is the first report of apo PTK6-KD structure crystallized in DFG-in and αC-helix-out conformation.

  8. Structure of the two-domain hexameric APS kinase from Thiobacillus denitrificans: structural basis for the absence of ATP sulfurylase activity

    SciTech Connect

    Gay, Sean C.; Segel, Irwin H.; Fisher, Andrew J.

    2009-10-01

    APS kinase from Thiobacillus denitrificans contains an inactive N-terminal ATP sulfurylase domain. The structure presented unveils the first hexameric assembly for an APS kinase, and reveals that structural changes in the N-terminal domain disrupt the ATP sulfurylase active site thus prohibiting activity. The Tbd-0210 gene of the chemolithotrophic bacterium Thiobacillus denitrificans is annotated to encode a 60.5 kDa bifunctional enzyme with ATP sulfurylase and APS kinase activity. This putative bifunctional enzyme was cloned, expressed and structurally characterized. The 2.95 Å resolution X-ray crystal structure reported here revealed a hexameric assembly with D{sub 3} symmetry. Each subunit contains a large N-terminal sulfurylase-like domain and a C-terminal APS kinase domain reminiscent of the two-domain fungal ATP sulfurylases of Penicillium chrysogenum and Saccharomyces cerevisiae, which also exhibit a hexameric assembly. However, the T. denitrificans enzyme exhibits numerous structural and sequence differences in the N-terminal domain that render it inactive with respect to ATP sulfurylase activity. Surprisingly, the C-terminal domain does indeed display APS kinase activity, indicating that this gene product is a true APS kinase. Therefore, these results provide the first structural insights into a unique hexameric APS kinase that contains a nonfunctional ATP sulfurylase-like domain of unknown function.

  9. 3D-QSAR and molecular fragment replacement study on diaminopyrimidine and pyrrolotriazine ALK inhibitors

    NASA Astrophysics Data System (ADS)

    Ke, Zhipeng; Lu, Tao; Liu, Haichun; Yuan, Haoliang; Ran, Ting; Zhang, Yanmin; Yao, Sihui; Xiong, Xiao; Xu, Jinxing; Xu, Anyang; Chen, Yadong

    2014-06-01

    Over expression of anaplastic lymphoma kinase (ALK) has been found in many types of cancer, and ALK is a promising therapeutic target for the treatment of cancer. To obtain new potent inhibitors of ALK, we conducted lead optimization using 3D-QSAR modeling and molecular docking investigation of 2,4-diaminopyrimidines and 2,7-disubstituted-pyrrolo[2,1-f][1,2,4]triazine-based compounds. Three favorable 3D-QSAR models (CoMFA with q2, 0.555; r2, 0.939; CoMSIA with q2, 0.625; r2, 0.974; Topomer CoMFA with q2, 0.557; r2 0.756) have been developed to predict the biological activity of novel compounds. Topomer Search was utilized for virtual screening to obtain suitable fragments. The novel compounds generated by molecular fragment replacement (MFR) were evaluated by Topomer CoMFA prediction, Glide (docking) and further evaluated with CoMFA and CoMSIA prediction. 25 novel 2,7-disubstituted-pyrrolo[2,1-f][1,2,4]triazine derivatives as potential ALK inhibitors were finally obtained. In this paper, a combination of CoMFA, CoMSIA and Topomer CoMFA could obtain favorable 3D-QSAR models and suitable fragments for ALK inhibitors optimization. The work flow which comprised 3D-QSAR modeling, Topomer Search, MFR, molecular docking and evaluating criteria could be applied to de novo drug design and the resulted compounds initiate us to further optimize and design new potential ALK inhibitors.

  10. Enhanced Antitumorigenic Effects in Glioblastoma on Double Targeting of Pleiotrophin and Its Receptor ALK1

    PubMed Central

    Grzelinski, Marius; Steinberg, Florian; Martens, Tobias; Czubayko, Frank; Lamszus, Katrin; Aigner, Achim

    2009-01-01

    In adults, glioblastomas are the most lethal and most frequent malignant brain tumors, and the poor prognosis despite aggressive treatment indicates the need to establish novel targets for molecular intervention. The secreted growth factor pleiotrophin (PTN, HB-GAM, HBNF, OSF-1) shows mitogenic, chemotactic, and transforming activity. Whereas PTN expression is tightly regulated during embryogenesis and is very limited in normal adult tissues, a marked PTN up-regulation is seen in tumors including glioblastomas. Likewise, the PTN receptor anaplastic lymphoma kinase (ALK) has been shown previously to be upregulated and functionally relevant in glioblastoma. In this study, we explore the antitumorigenic effects of the simultaneous ribozyme-mediated knockdown of both receptor and ligand. Various glioblastoma cell lines are analyzed for PTN and ALK expression. Beyond the individual efficacies of several specific ribozymes against PTN or ALK, respectively, antiproliferative and proapoptotic effects of a single gene targeting approach are strongly enhanced on double knockdown of both genes in vitro. More importantly, this results in the abolishment of tumor growth in an in vivo subcutaneous tumor xenograft model. Finally, the analysis of various downstream signaling pathways by antibody arrays reveals a distinct pattern of changes in the activation of signal transduction molecules on PTN/ALK double knockdown. Beyond the already known ones, it identifies additional pathways relevant for PTN/ALK signaling. We conclude that double targeting of PTN and ALK leads to enhanced antitumorigenic effects over single knockdown approaches, which offers novel therapeutic options owing to increased efficacy also after prolonged knockdown. PMID:19177199

  11. Prediction of the repeat domain structures and impact of parkinsonism-associated variations on structure and function of all functional domains of leucine-rich repeat kinase 2 (LRRK2).

    PubMed

    Mills, Ryan D; Mulhern, Terrence D; Liu, Fei; Culvenor, Janetta G; Cheng, Heung-Chin

    2014-04-01

    Genetic variations of leucine-rich repeat kinase 2 (LRRK2) are the major cause of dominantly inherited Parkinson disease (PD). LRRK2 protein contains seven predicted domains: a tandem Ras-like GTPase (ROC) domain and C-terminal of Roc (COR) domain, a protein kinase domain, and four repeat domains. PD-causative variations arise in all domains, suggesting that aberrant functioning of any domain can contribute to neurotoxic mechanisms of LRRK2. Determination of the three-dimensional structure of LRRK2 is one of the best avenues to decipher its neurotoxic mechanism. However, with the exception of the Roc domain, the three-dimensional structures of the functional domains of LRRK2 have yet to be determined. Based on the known three-dimensional structures of repeat domains of other proteins, the tandem Roc-COR domains of the Chlorobium tepidum Rab family protein, and the kinase domain of the Dictyostelium discoideum Roco4 protein, we predicted (1) the motifs essential for protein-protein interactions in all domains, (2) the motifs critical for catalysis and substrate recognition in the tandem Roc-COR and kinase domains, and (3) the effects of some PD-associated missense variations on the neurotoxic action of LRRK2. Results of our analysis provide a conceptual framework for future investigation into the regulation and the neurotoxic mechanism of LRRK2.

  12. Deletion of the kinase domain in death-associated protein kinase attenuates tubular cell apoptosis in renal ischemia-reperfusion injury.

    PubMed

    Kishino, Masanori; Yukawa, Kazunori; Hoshino, Katsuaki; Kimura, Akihiko; Shirasawa, Nobuyuki; Otani, Haruhisa; Tanaka, Tetsuji; Owada-Makabe, Kyoko; Tsubota, Yuji; Maeda, Masanobu; Ichinose, Masakazu; Takeda, Kiyoshi; Akira, Shizuo; Mune, Masatoshi

    2004-07-01

    Death-associated protein kinase (DAPK) is a calcium/calmodulin-dependent serine/threonine kinase localized to renal tubular epithelial cells. To elucidate the contribution of DAPK activity to apoptosis in renal ischemia-reperfusion (IR) injury, wild-type (WT) mice and DAPK-mutant mice, which express a DAPK deletion mutant that lacks a portion of the kinase domain, were subjected to renal pedicle clamping and reperfusion. After IR, DAPK activity was elevated in WT kidneys but not in mutant kidneys (1785.7 +/- 54.1 pmol/min/mg versus 160.7 +/- 60.6 pmol/min/mg). Furthermore, there were more TUNEL-positive nuclei and activated caspase 3-positive cells in WT kidneys than in mutant kidneys after IR (24.0 +/- 5.9 nuclei or 9.4 +/- 0.6 cells per high-power field [HPF] versus 6.3 +/- 2.2 nuclei or 4.4 +/- 0.7 cells/HPF at 40 h after ischemia). In addition, the increase in p53-positive tubule cells after IR was greater in WT kidney than in mutant kidneys (9.9 +/- 1.4 cells/HPF versus 0.8 +/- 0.4 cells/HPF), which is consistent with the theory that DAPK activity stabilizes p53 protein. Finally, serum creatinine levels after IR were higher in WT mice than in mutant mice (2.54 +/- 0.34 mg/dl versus 0.87 +/- 0.24 mg/dl at 40 h after ischemia). Thus, these results indicate that deletion of the kinase domain from DAPK molecule can attenuate tubular cell apoptosis and renal dysfunction after IR injury.

  13. Ethanol activates midkine and anaplastic lymphoma kinase signaling in neuroblastoma cells and in the brain.

    PubMed

    He, Donghong; Chen, Hu; Muramatsu, Hisako; Lasek, Amy W

    2015-11-01

    Alcohol engages signaling pathways in the brain. Midkine (MDK) is a neurotrophic factor that is over-expressed in the prefrontal cortex of alcoholics. MDK and one of its receptors, anaplastic lymphoma kinase (ALK), also regulate behavioral responses to ethanol in mice. The goal of this study was to determine whether MDK and ALK expression and signaling are activated by ethanol. We found that ethanol treatment of neuroblastoma cells increased MDK and ALK expression. We also assessed activation of ALK by ethanol in cells and found that ALK and ALK-dependent extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription 3 (STAT3) phosphorylation increased rapidly with ethanol exposure. Similarly, treatment of cells with recombinant MDK protein increased ALK, ERK and STAT3 phosphorylation, suggesting that ethanol may utilize MDK to activate ALK signaling. In support of this, transfection of cells with MDK siRNAs attenuated ALK signaling in response to ethanol. Ethanol also activates ERK signaling in the brain. We found that inhibition of ALK or knockout of MDK attenuated ethanol-induced ERK phosphorylation in mouse amygdala. These results demonstrate that ethanol engages MDK and ALK signaling, which has important consequences for alcohol-induced neurotoxicity and the regulation of behaviors related to alcohol abuse.

  14. Glycogen synthase kinase 3-{beta} phosphorylates novel S/T-P-S/T domains in Notch1 intracellular domain and induces its nuclear localization

    SciTech Connect

    Han, Xiangzi; Ju, Ji-hyun; Shin, Incheol

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Novel S/T-P-S/T domains were identified in NICD. Black-Right-Pointing-Pointer Phosphorylation of NICD on the S/T-P-S/T domains induced nuclear localization. Black-Right-Pointing-Pointer GSK-3{beta} phosphorylated S and T residues in NICD S/T-P-S/T domains. -- Abstract: We identified two S/T-P-S/T domains (2122-2124, 2126-2128) inducing Notch intracellular domain (NICD) nuclear localization. The GFP-NICD (1963-2145) fusion protein deletion mutant without classical NLS was localized in the nucleus like the full length GFP-NICD. However, quadruple substitution mutant (T2122A T2124A S2126A T2128A) showed increased cytoplasmic localization. GSK-3{beta} enhanced nuclear localization and transcriptional activity of WT NICD but not of quadruple substitution mutant. In vitro kinase assays revealed that GSK-3{beta} phosphorylated S and T residues in NICD S/T-P-S/T domains. These results suggest that the novel S/T-P-S/T domain, phosphorylated by GSK-3{beta} is also involved in the nuclear localization of NICD as well as classical NLS.

  15. A large, single-center, real-world study of clinicopathological characteristics and treatment in advanced ALK-positive non-small-cell lung cancer.

    PubMed

    Chen, Gang; Chen, Xi; Zhang, Yaxiong; Yan, Fang; Fang, Wenfeng; Yang, Yunpeng; Hong, Shaodong; Miao, Siyu; Wu, Manli; Huang, Xiaodan; Luo, Youli; Zhou, Cong; Gong, Run; Huang, Yan; Zhou, Ningning; Zhao, Hongyun; Zhang, Li

    2017-04-04

    Crizotinib has achieved astonishing success in advanced non-small-cell lung cancer (NSCLC) patients harboring anaplastic lymphoma kinase (ALK) rearrangement. However, no real-world studies described the clinicopathological characteristics and treatment of such patients in China. Patients were consecutively collected from Sun Yat-sen University Cancer Center. Chi-square test was applied to explore the relationship between ALK fusion status and metastasis sites. Kaplan-Meier methods and multivariable analyses were used to estimate progression-free survival (PFS). A total of 291 advanced NSCLC patients (ALK (+), N = 97; both ALK & epidermal growth factor receptor (EGFR) (-), N = 194) were enrolled. The occurrence of brain metastasis in ALK-positive patients was significantly higher than double-negative ones both at baseline (26.5% vs. 16.5%, P = 0.038) and during treatment (25.8% vs. 11.9%, P = 0.003), but opposite for pleural effusion (6.2% vs. 26.9%, P < 0.001 at baseline; 3.1% vs. 10.3%, P = 0.031 during treatment). ALK-positive patients of 53.6% used crizotinib, whereas others only received chemotherapy (37.1%) or supportive care (9.3%). Usage of crizotinib prolonged PFS compared with chemotherapy in ALK-positive patients (median PFS 17.6 m vs. 4.8 m, P < 0.001). ALK-positive NSCLC had more brain metastasis and less pleural effusion than double-negative ones. Crizotinib showed better PFS than chemotherapy in advanced ALK-positive NSCLC at any line. However, half advanced ALK-positive patients never received crizotinib, which was grim and need improving.

  16. Two Amino Acid Residues Confer Different Binding Affinities of Abelson Family Kinase Src Homology 2 Domains for Phosphorylated Cortactin*

    PubMed Central

    Gifford, Stacey M.; Liu, Weizhi; Mader, Christopher C.; Halo, Tiffany L.; Machida, Kazuya; Boggon, Titus J.; Koleske, Anthony J.

    2014-01-01

    The closely related Abl family kinases, Arg and Abl, play important non-redundant roles in the regulation of cell morphogenesis and motility. Despite similar N-terminal sequences, Arg and Abl interact with different substrates and binding partners with varying affinities. This selectivity may be due to slight differences in amino acid sequence leading to differential interactions with target proteins. We report that the Arg Src homology (SH) 2 domain binds two specific phosphotyrosines on cortactin, a known Abl/Arg substrate, with over 10-fold higher affinity than the Abl SH2 domain. We show that this significant affinity difference is due to the substitution of arginine 161 and serine 187 in Abl to leucine 207 and threonine 233 in Arg, respectively. We constructed Abl SH2 domains with R161L and S187T mutations alone and in combination and find that these substitutions are sufficient to convert the low affinity Abl SH2 domain to a higher affinity “Arg-like” SH2 domain in binding to a phospho-cortactin peptide. We crystallized the Arg SH2 domain for structural comparison to existing crystal structures of the Abl SH2 domain. We show that these two residues are important determinants of Arg and Abl SH2 domain binding specificity. Finally, we expressed Arg containing an “Abl-like” low affinity mutant Arg SH2 domain (L207R/T233S) and find that this mutant, although properly localized to the cell periphery, does not support wild type levels of cell edge protrusion. Together, these observations indicate that these two amino acid positions confer different binding affinities and cellular functions on the distinct Abl family kinases. PMID:24891505

  17. ALK-positive anaplastic large cell lymphoma limited to the skin: clinical, histopathological and molecular analysis of 6 pediatric cases. A report from the ALCL99 study.

    PubMed

    Oschlies, Ilske; Lisfeld, Jasmin; Lamant, Laurence; Nakazawa, Atsuko; d'Amore, Emanuele S G; Hansson, Ulrika; Hebeda, Konnie; Simonitsch-Klupp, Ingrid; Maldyk, Jadwiga; Müllauer, Leonhard; Tinguely, Marianne; Stücker, Markus; Ledeley, Marie-Cecile; Siebert, Reiner; Reiter, Alfred; Brugières, Laurence; Klapper, Wolfram; Woessmann, Wilhelm

    2013-01-01

    Anaplastic large cell lymphomas are peripheral T-cell lymphomas that are characterized by a proliferation of large anaplastic blasts expressing CD30. In children, systemic anaplastic large cell lymphomas often present at advanced clinical stage and harbor translocations involving the anaplastic lymphoma kinase (ALK) gene leading to the expression of chimeric anaplastic lymphoma kinase (ALK)-fusion proteins. Primary cutaneous anaplastic large cell lymphoma is regarded as an ALK-negative variant confined to the skin and is part of the spectrum of primary cutaneous CD30-positive T-cell lymphoproliferative disorders. Thirty-three of 487 pediatric patients registered within the Anaplastic Large Cell Lymphoma-99 trial (1999 to 2006) presented with a skin limited CD30-positive lympho-proliferative disorder. In 23 of the 33 patients, material for international histopathological review was available, and the cases were studied for histopathological, immunophenotypical and clinical features as well as for breaks within the ALK gene. Five of 23 cases and one additional case (identified after closure of the trial) expressed ALK-protein. Complete staging excluded any other organ involvement in all children. Expression of ALK proteins was demonstrated by immunohistochemistry in all cases and the presence of breaks of the ALK gene was genetically confirmed in 5 evaluable cases. The histopathological and clinical picture of these skin-restricted ALK-positive lymphomas was indistinguishable from that of cutaneous anaplastic large cell lymphoma. Five children presented with a single skin lesion that was completely resected in 4 and incompletely resected in one. Three of these patients received no further therapy, 2 additional local radiotherapy, and one chemotherapy. All children remain in complete remission with a median follow up of seven years (range 1-8 years). We present 6 pediatric cases of ALK-positive primary cutaneous anaplastic large cell lymphomas. After thorough

  18. Anaplastic lymphoma kinase inhibitors in phase I and phase II clinical trials for non-small cell lung cancer.

    PubMed

    Karachaliou, Niki; Santarpia, Mariacarmela; Gonzalez Cao, Maria; Teixido, Cristina; Sosa, Aaron E; Berenguer, Jordi; Rodriguez Capote, Alejandra; Altavilla, Giuseppe; Rosell, Rafael

    2017-06-01

    Crizotinib is a first-in-class ALK tyrosine kinase inhibitor (TKI), which has proven its superiority over standard platinum-based chemotherapy for the first-line therapy of ALK-rearranged non-small cell lung cancer (NSCLC) patients. The development of acquired resistance to crizotinib represents an ongoing challenge with the central nervous system being one of the most common sites of relapse. Ceritinib and alectinib are approved second-generation ALK TKIs. Several novel ALK inhibitors, more potent and with different selectivity compared to crizotinib, are currently in development. Areas covered: This review will focus on new ALK inhibitors, currently in phase 1 or 2 clinical studies. We will also comment on the mechanisms of resistance to ALK inhibition and the strategies to delay or overcome resistance. Expert opinion: The therapeutic management of ALK-rearranged NSCLC has been greatly improved. Next-generation ALK inhibitors have shown differential potency against ALK rearrangements and ALK resistance mutations. The molecular profile of the tumor at the time of disease progression to crizotinib is crucial for the sequencing of novel ALK TKIs. Ongoing clinical studies will address key issues, including the optimal therapeutic algorithm and whether combinational approaches are more effective than single ALK inhibition for the outcome of ALK-rearranged NSCLC patients.

  19. Role of treatment in the appearance and selection of BCR-ABL1 kinase domain mutations.

    PubMed

    Razga, Filip; Jurcek, Tomas; Zackova, Daniela; Dvorakova, Dana; Toskova, Martina; Jeziskova, Ivana; Mayer, Jiri; Racil, Zdenek

    2012-08-01

    The availability of different tyrosine kinase inhibitors (TKIs) with distinct anti-leukemic potency enables optimization of current therapeutic regimens; however, some patients lose their therapy response and acquire TKI resistance. In this study, we describe a single-center experience of monitoring BCR-ABL1 kinase domain (KD) mutations and discuss the impact of treatment on mutation selection. Chronic myelogenous leukemia (CML) patients treated with TKIs at the Department of Internal Medicine-Hematology and Oncology, Masaryk University and University Hospital Brno during 2003-2011 were included in this study. A total number of 100 patients who did not achieve an optimal therapy response or who lost their therapy response were screened for the presence of BCR-ABL1 KD mutations, using direct sequencing. Our data show that pretreatment with non-specific non-TKI drugs prior to TKI therapy does not preferentially select for initial BCR-ABL1 KD mutations, in contrast to first-line imatinib therapy, which shows a clear predominance of T315I or P-loop mutations compared with mutations located in other KD regions. In addition, the median time to detection of P-loop mutations was substantially shorter in patients treated with first-line imatinib than in those pretreated with non-TKI drugs. Furthermore, analysis of CML patients who had recurrent resistance to TKI therapy revealed possible therapy-driven selection of BCR-ABL1 KD mutations. Finally, we confirm the previously described poor prognosis of CML patients with mutations in the BCR-ABL1 KD, since 40.0% of our CML patients who harbored a BCR-ABL1 KD mutation died from CML while receiving TKI treatment. Moreover, among the patients who are still on treatment, 27.8% have already progressed. Our data also confirm the unique position of the T315I mutation with respect to its strong resistance to currently approved TKIs. On the basis of the 'real-life' data described in this study, it is possible that the therapy itself

  20. Chimeric Plant Calcium/Calmodulin-Dependent Protein Kinase Gene with a Neural Visinin-Like Calcium-Binding Domain

    NASA Technical Reports Server (NTRS)

    Patil, Shameekumar; Takezawa, D.; Poovaiah, B. W.

    1995-01-01

    Calcium, a universal second messenger, regulates diverse cellular processes in eukaryotes. Ca-2(+) and Ca-2(+)/calmodulin-regulated protein phosphorylation play a pivotal role in amplifying and diversifying the action of Ca-2(+)- mediated signals. A chimeric Ca-2(+)/calmodulin-dependent protein kinase (CCaMK) gene with a visinin-like Ca-2(+)- binding domain was cloned and characterized from lily. The cDNA clone contains an open reading frame coding for a protein of 520 amino acids. The predicted structure of CCaMK contains a catalytic domain followed by two regulatory domains, a calmodulin-binding domain and a visinin-like Ca-2(+)-binding domain. The amino-terminal region of CCaMK contains all 11 conserved subdomains characteristic of serine/threonine protein kinases. The calmodulin-binding region of CCaMK has high homology (79%) to alpha subunit of mammalian Ca-2(+)/calmodulin-dependent protein kinase. The calmodulin-binding region is fused to a neural visinin-like domain that contains three Ca-2(+)-binding EF-hand motifs and a biotin-binding site. The Escherichia coli-expressed protein (approx. 56 kDa) binds calmodulin in a Ca-2(+)-dependent manner. Furthermore, Ca-45-binding assays revealed that CCaMK directly binds Ca-2(+). The CCaMK gene is preferentially expressed in developing anthers. Southern blot analysis revealed that CCaMK is encoded by a single gene. The structural features of the gene suggest that it has multiple regulatory controls and could play a unique role in Ca-2(+) signaling in plants.

  1. Discovery of Novel Polo-Like Kinase 1 Polo-Box Domain Inhibitors to Induce Mitotic Arrest in Tumor Cells.

    PubMed

    Qin, Tan; Chen, Fangjin; Zhuo, Xiaolong; Guo, Xiao; Yun, Taikangxiang; Liu, Ying; Zhang, Chuanmao; Lai, Luhua

    2016-08-11

    Polo-like kinase 1(Plk1) is vital for cell mitosis and has been identified as anticancer target. Its polo-box domain (PBD) mediates substrate binding, blocking of which may offer selective Plk1 inhibition compared to kinase domain inhibitors. Although several PBD inhibitors were reported, most of them suffer from low cell activity. Here, we report the discovery of novel inhibitors to induce mitotic arrest in HeLa cells by virtual screening with Plk1 PBD and cellular activity testing. Of the 81 compounds tested in the cell assay, 10 molecules with diverse chemical scaffolds are potent to induce mitotic arrest of HeLa at low micromolar concentrations. The best compound induces mitotic arrest of HeLa cells with an EC50 of 4.4 μM. The cellular active inhibitors showed binding to Plk1 PBD and compete with PBD substrate in microscale thermophoresis analysis.

  2. OsBRI1 Activates BR Signaling by Preventing Binding between the TPR and Kinase Domains of OsBSK3 via Phosphorylation1

    PubMed Central

    Wang, Xiaolong; Zhao, Zhiying; Wang, Ruiju; Huang, Xiahe; Zhu, Yali; Yuan, Li; Wang, Yingchun; Burlingame, Alma L.; Gao, Yingjie

    2016-01-01

    Many plant receptor kinases transduce signals through receptor-like cytoplasmic kinases (RLCKs); however, the molecular mechanisms that create an effective on-off switch are unknown. The receptor kinase BR INSENSITIVE1 (BRI1) transduces brassinosteroid (BR) signal by phosphorylating members of the BR-signaling kinase (BSK) family of RLCKs, which contain a kinase domain and a C-terminal tetratricopeptide repeat (TPR) domain. Here, we show that the BR signaling function of BSKs is conserved in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) and that the TPR domain of BSKs functions as a “phospho-switchable” autoregulatory domain to control BSKs’ activity. Genetic studies revealed that OsBSK3 is a positive regulator of BR signaling in rice, while in vivo and in vitro assays demonstrated that OsBRI1 interacts directly with and phosphorylates OsBSK3. The TPR domain of OsBSK3, which interacts directly with the protein’s kinase domain, serves as an autoinhibitory domain to prevent OsBSK3 from interacting with bri1-SUPPRESSOR1 (BSU1). Phosphorylation of OsBSK3 by OsBRI1 disrupts the interaction between its TPR and kinase domains, thereby increasing the binding between OsBSK3’s kinase domain and BSU1. Our results not only demonstrate that OsBSK3 plays a conserved role in regulating BR signaling in rice, but also provide insight into the molecular mechanism by which BSK family proteins are inhibited under basal conditions but switched on by the upstream receptor kinase BRI1. PMID:26697897

  3. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy

    PubMed Central

    Webb, Thomas R; Slavish, Jake; George, Rani E; Look, A Thomas; Xue, Liquan; Jiang, Qin; Cui, Xiaoli; Rentrop, Walter B; Morris, Stephan W

    2009-01-01

    Anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase in the insulin receptor superfamily, was initially identified in constitutively activated oncogenic fusion forms – the most common being nucleophosmin-ALK – in anaplastic large-cell lymphomas, and subsequent studies have identified ALK fusions in diffuse large B-cell lymphomas, systemic histiocytosis, inflammatory myofibroblastic tumors, esophageal squamous cell carcinomas and non-small-cell lung carcinomas. More recently, genomic DNA amplification and protein overexpression, as well as activating point mutations, of ALK have been described in neuroblastomas. In addition to those cancers for which a causative role for aberrant ALK activity is well validated, more circumstantial links implicate the full-length, normal ALK receptor in the genesis of other malignancies – including glioblastoma and breast cancer – via a mechanism of receptor activation involving autocrine and/or paracrine growth loops with the reported ALK ligands, pleiotrophin and midkine. This review summarizes normal ALK biology, the confirmed and putative roles of ALK in the development of human cancers and efforts to target ALK using small-molecule kinase inhibitors. PMID:19275511

  4. The SH3 regulatory domain of the hematopoietic cell kinase Hck binds ELMO via its polyproline motif

    PubMed Central

    Awad, Rida; Marion, Sévajol; Isabel, Ayala; Anne, Chouquet; Philippe, Frachet; Pierre, Gans; Jean-Baptiste, Reiser; Jean-Philippe, Kleman

    2015-01-01

    Eukaryotic EnguLfment and cell MOtility (ELMO) proteins form an evolutionary conserved family of regulators involved in small GTPase dependent actin remodeling processes that regulates the guanine exchange factor activity of some of the Downstream Of CrK (DOCK) family members. Gathered data strongly suggest that DOCK activation by ELMO and the subsequent signaling result from a subtle balance in the binding of partners to ELMO. Among its putative upward modulators, the Hematopoietic cell kinase (Hck), a member of the Src kinase superfamily, has been identified as a binding partner and a specific tyrosine kinase for ELMO1. Indeed, Hck is implicated in distinct molecular signaling pathways governing phagocytosis, cell adhesion, and migration of hematopoietic cells. Although ELMO1 has been shown to interact with the regulatory Src Homology 3 (SH3) domain of Hck, no direct evidence indicating the mode of interaction between Hck and ELMO1 have been provided in the literature. In the present study, we report convergent pieces of evidence that demonstrate the specific interaction between the SH3 domain of Hck and the polyproline motif of ELMO1. Our results also suggest that the tyrosine-phosphorylation state of ELMO1 tail might act as a putative modulator of Hck kinase activity towards ELMO1 that in turn participates in DOCK180 activation and further triggers subsequent signaling towards actin remodeling. PMID:25737835

  5. Numb-Associated Kinase Interacts with the Phosphotyrosine Binding Domain of Numb and Antagonizes the Function of Numb In Vivo

    PubMed Central

    Chien, Cheng-ting; Wang, Shuwen; Rothenberg, Michael; Jan, Lily Y.; Jan, Yuh Nung

    1998-01-01

    During asymmetric cell division, the membrane-associated Numb protein localizes to a crescent in the mitotic progenitor and is segregated predominantly to one of the two daughter cells. We have identified a putative serine/threonine kinase, Numb-associated kinase (Nak), which interacts physically with the phosphotyrosine binding (PTB) domain of Numb. The PTB domains of Shc and insulin receptor substrate bind to an NPXY motif which is not present in the region of Nak that interacts with Numb PTB domain. We found that the Numb PTB domain but not the Shc PTB domain interacts with Nak through a peptide of 11 amino acids, implicating a novel and specific protein-protein interaction. Overexpression of Nak in the sensory organs causes both daughters of a normally asymmetric cell division to adopt the same cell fate, a transformation similar to the loss of numb function phenotype and opposite the cell fate transformation caused by overexpression of Numb. The frequency of cell fate transformation is sensitive to the numb gene dosage, as expected from the physical interaction between Nak and Numb. These findings indicate that Nak may play a role in cell fate determination during asymmetric cell divisions. PMID:9418906

  6. In vivo binding properties of SH2 domains from GTPase-activating protein and phosphatidylinositol 3-kinase.

    PubMed Central

    Cooper, J A; Kashishian, A

    1993-01-01

    We have used a transient expression system and mutant platelet-derived growth factor (PDGF) receptors to study the binding specificities of the Src homology 2 (SH2) regions of the Ras GTPase-activator protein (GAP) and the p85 alpha subunit of phosphatidylinositol 3-kinase (PI3 kinase). A number of fusion proteins, each tagged with an epitope allowing recognition by a monoclonal antibody, were expressed at levels comparable to those of endogenous GAP. Fusion proteins containing the central SH2-SH3-SH2 region of GAP or the C-terminal region of p85 alpha, which includes two SH2 domains, bound to PDGF receptors in response to PDGF stimulation. Both fusion proteins showed the same requirements for tyrosine phosphorylation sites in the PDGF receptor as the full-length proteins from which they were derived, i.e., binding of the GAP fusion protein was reduced by mutation of Tyr-771, and binding of the p85 fusion protein was reduced by mutation of Tyr-740, Tyr-751, or both residues. Fusion proteins containing single SH2 domains from either GAP or p85 alpha did not bind detectably to PDGF receptors in this system, suggesting that two SH2 domains in a single polypeptide cooperate to raise the affinity of binding. The sequence specificities of individual SH2 domains were deduced from the binding properties of fusion proteins containing one SH2 domain from GAP and another from p85. The results suggest that the C-terminal GAP SH2 domain specifies binding to Tyr-771, the C-terminal p85 alpha SH2 domain binds to either Tyr-740 or Tyr-751, and each protein's N-terminal SH2 domain binds to unidentified phosphorylation sites.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8382774

  7. PB1 Domain-Dependent Signaling Complex Is Required for Extracellular Signal-Regulated Kinase 5 Activation

    PubMed Central

    Nakamura, Kazuhiro; Uhlik, Mark T.; Johnson, Nancy L.; Hahn, Klaus M.; Johnson, Gary L.

    2006-01-01

    MEKK2, MEK5, and extracellular signal-regulated kinase 5 (ERK5) are members of a three-kinase cascade for the activation of ERK5. MEK5 is the only MAP2K to express a PB1 domain, and we have shown that it heterodimerizes with the PB1 domain of MEKK2. Here we demonstrate the MEK5 PB1 domain is a scaffold that also binds ERK5, functionally forming a MEKK2-MEK5-ERK5 complex. Reconstitution assays and CFP/YFP imaging (fluorescence resonance energy transfer [FRET]) measuring YFP-MEKK2/CFP-MEK5 and CFP-MEK5/YFP-ERK5 interactions define distinct MEK5 PB1 domain binding sites for MEKK2 and ERK5, with a C-terminal extension of the PB1 domain contributing to ERK5 binding. Stimulus-dependent CFP/YFP FRET in combination with mutational analysis was used to define MEK5 PB1 domain residues critical for the interaction of MEKK2/MEK5 and MEK5/ERK5 required for activation of the ERK5 pathway in living cells. Fusion of the MEK5 PB1 domain to the N terminus of MEK1 confers ERK5 regulation by a MAP2K normally regulating only ERK1/2. The MEK5 PB1 domain confers stringent MAP3K regulation of ERK5 relative to more promiscuous MAP3K control of ERK1/2, JNK, and p38. PMID:16507987

  8. Biochemical characterization of the protein tyrosine kinase homology domain of the ErbB3 (HER3) receptor protein.

    PubMed

    Sierke, S L; Cheng, K; Kim, H H; Koland, J G

    1997-03-15

    The putative protein tyrosine kinase domain (TKD) of the ErbB3 (HER3) receptor protein was generated as a histidine-tagged recombinant protein (hisTKD-B3) and characterized enzymologically. CD spectroscopy indicated that the hisTKD-B3 protein assumed a native conformation with a secondary structure similar to that of the epidermal growth factor (EGF) receptor TKD. However, when compared with the EGF receptor-derived protein, hisTKD-B3 exhibited negligible intrinsic protein tyrosine kinase activity. Immune complex kinase assays of full-length ErbB3 proteins also yielded no evidence of catalytic activity. A fluorescence assay previously used to characterize the nucleotide-binding properties of the EGF receptor indicated that the ErbB3 protein was unable to bind nucleotide. The hisTKD-B3 protein was subsequently found to be an excellent substrate for the EGF receptor protein tyrosine kinase, which suggested that in vivo phosphorylation of ErbB3 in response to EGF could be attributed to a direct cross-phosphorylation by the EGF receptor protein tyrosine kinase.

  9. Biochemical characterization of the protein tyrosine kinase homology domain of the ErbB3 (HER3) receptor protein.

    PubMed Central

    Sierke, S L; Cheng, K; Kim, H H; Koland, J G

    1997-01-01

    The putative protein tyrosine kinase domain (TKD) of the ErbB3 (HER3) receptor protein was generated as a histidine-tagged recombinant protein (hisTKD-B3) and characterized enzymologically. CD spectroscopy indicated that the hisTKD-B3 protein assumed a native conformation with a secondary structure similar to that of the epidermal growth factor (EGF) receptor TKD. However, when compared with the EGF receptor-derived protein, hisTKD-B3 exhibited negligible intrinsic protein tyrosine kinase activity. Immune complex kinase assays of full-length ErbB3 proteins also yielded no evidence of catalytic activity. A fluorescence assay previously used to characterize the nucleotide-binding properties of the EGF receptor indicated that the ErbB3 protein was unable to bind nucleotide. The hisTKD-B3 protein was subsequently found to be an excellent substrate for the EGF receptor protein tyrosine kinase, which suggested that in vivo phosphorylation of ErbB3 in response to EGF could be attributed to a direct cross-phosphorylation by the EGF receptor protein tyrosine kinase. PMID:9148746

  10. BRAF Kinase Domain Mutations are Common in RASwt Chronic Myelomonocytic Leukemia

    PubMed Central

    Zhang, Liping; Singh, Rajesh R.; Patel, Keyur P.; Stingo, Francesco; Routbort, Mark; You, M. James; Miranda, Roberto N.; Kantarjian, Hagop M.; Medeiros, L. Jeffrey; Luthra, Raja; Khoury, Joseph D.

    2014-01-01

    Purpose The frequency of RAS mutations in chronic myelomonocytic leukemia (CMML) suggests that activation of the MAPK pathway is important in CMML pathogenesis. Accordingly, we hypothesized that mutations in other members of the MAPK pathway might be overrepresented in RASwt CMML. Methods We performed next generation sequencing analysis on 70 CMML patients with known RAS mutation status using the TruSeq Amplicon Cancer Panel kit (Illumina, San Diego, CA). Results The study group included 37 men and 33 women with a median age of 67.8 years (range, 28–86 years). Forty patients were RASwt and 30 were RASmut; the latter included KRAS=17; NRAS=12; KRAS+NRAS=1. Next-generation sequencing showed 5 patients (7.1% of total group; 12.5% of RASwt group) with RASwt who had BRAF mutations. All BRAFmut patients had CMML-1; 2 (40%) with MPN-CMML and 3 with MDS-CMML. The BRAF mutations were of missense type and involved exon 11 in 1 patient and exon 15 in 4 patients. All BRAFmut patients had CMML-1 with low-risk cytogenetic findings, and none of the BRAFmut CMML cases were therapy-related. Two (40%) of the 5 patients with BRAFmut patients transformed to acute myeloid leukemia during follow up. Multivariate Cox proportional hazard regression modeling suggests that BRAFmut status is associated with overall survival (p=0.04). Additionally, the RASmut group tended to have worse OS compared to the RASwt group. Conclusion In summary, we demonstrate that a subset of patients with RASwt CMML harbors BRAF kinase domain mutations that are potentially capable of activating the MAPK signaling pathway. PMID:24446311

  11. A frequent kinase domain mutation that changes the interaction between PI3K[alpha] and the membrane

    SciTech Connect

    Mandelker, Diana; Gabelli, Sandra B.; Schmidt-Kittler, Oleg; Zhu, Jiuxiang; Cheong, Ian; Huang, Chuan-Hsiang; Kinzler, Kenneth W.; Vogelstein, Bert; Amzel, L. Mario

    2009-12-01

    Mutations in oncogenes often promote tumorigenesis by changing the conformation of the encoded proteins, thereby altering enzymatic activity. The PIK3CA oncogene, which encodes p110{alpha}, the catalytic subunit of phosphatidylinositol 3-kinase alpha (PI3K{alpha}), is one of the two most frequently mutated oncogenes in human cancers. We report the structure of the most common mutant of p110{alpha} in complex with two interacting domains of its regulatory partner (p85{alpha}), both free and bound to an inhibitor (wortmannin). The N-terminal SH2 (nSH2) domain of p85{alpha} is shown to form a scaffold for the entire enzyme complex, strategically positioned to communicate extrinsic signals from phosphopeptides to three distinct regions of p110{alpha}. Moreover, we found that Arg-1047 points toward the cell membrane, perpendicular to the orientation of His-1047 in the WT enzyme. Surprisingly, two loops of the kinase domain that contact the cell membrane shift conformation in the oncogenic mutant. Biochemical assays revealed that the enzymatic activity of the p110{alpha} His1047Arg mutant is differentially regulated by lipid membrane composition. These structural and biochemical data suggest a previously undescribed mechanism for mutational activation of a kinase that involves perturbation of its interaction with the cellular membrane.

  12. Autophosphorylation of the C2 domain inhibits translocation of the novel protein kinase C (nPKC) Apl II.

    PubMed

    Farah, Carole A; Lindeman, Amanda A; Siu, Vincent; Gupta, Micaela Das; Sossin, Wayne S

    2012-11-01

    Protein kinase Cs (PKCs) are critical signaling molecules controlled by complex regulatory pathways. Herein, we describe an important regulatory role for C2 domain phosphorylation. Novel PKCs (nPKCs) contain an N-terminal C2 domain that cannot bind to calcium. Previously, we described an autophosphorylation site in the Aplysia novel PKC Apl II that increased the binding of the C2 domain to lipids. In this study, we show that the function of this phosphorylation is to inhibit PKC translocation. Indeed, a phosphomimetic serine-glutamic acid mutation reduced translocation of PKC Apl II while blocking phosphorylation with a serine-alanine mutation enhanced translocation and led to the persistence of the kinase at the membrane longer after the end of the stimulation. Consistent with a role for autophosphorylation in regulating kinase translocation, inhibiting PKC activity using bisindolymaleimide 1 increased physiological translocation of PKC Apl II, whereas inhibiting phosphatase activity using calyculin A inhibited physiological translocation of PKC Apl II in neurons. Our results suggest a major role for autophosphorylation-dependent regulation of translocation.

  13. Mutations in the Kinase Domain of the HER2/ERBB2 Gene Identified in a Wide Variety of Human Cancers.

    PubMed

    Wen, Wenhsiang; Chen, Wangjuh Sting; Xiao, Nick; Bender, Ryan; Ghazalpour, Anatole; Tan, Zheng; Swensen, Jeffrey; Millis, Sherri Z; Basu, Gargi; Gatalica, Zoran; Press, Michael F

    2015-09-01

    The HER2 (official name ERBB2) gene encodes a membrane receptor in the epidermal growth factor receptor family amplified and overexpressed in adenocarcinoma. Activating mutations also occur in several cancers. We report mutation analyses of the HER2 kinase domain in 7497 histologically diverse cancers. Forty-five genes, including the kinase domain of HER2 with HER2 IHC and dual in situ hybridization, were analyzed in tumors from 7497 patients with cancer, including 850 breast, 770 colorectal, 910 non-small cell lung, 823 uterine or cervical, 1372 ovarian, and 297 pancreatic cancers, as well as 323 melanomas and 2152 other solid tumors. Sixty-nine HER2 kinase domain mutations were identified in tumors from 68 patients (approximately 1% of all cases, ranging from absent in sarcomas to 4% in urothelial cancers), which included previously published activating mutations and 13 novel mutations. Fourteen cases with coexisting HER2 mutation and amplification and/or overexpression were identified. Fifty-two of 68 patients had additional mutations in other analyzed genes, whereas 16 patients (23%) had HER2 mutations identified as the sole driver mutation. HER2 mutations coexisted with HER2 gene amplification and overexpression and with mutations in other functionally important genes. HER2 mutations were identified as the only driver mutation in a significant proportion of solid cancers. Evaluation of anti-HER2 therapies in nonamplified, HER2-mutated cancers is warranted.

  14. Structures of Staphylococcus aureus D-tagatose-6-phosphate kinase implicate domain motions in specificity and mechanism.

    PubMed

    Miallau, Linda; Hunter, William N; McSweeney, Sean M; Leonard, Gordon A

    2007-07-06

    High resolution structures of Staphylococcus aureus d-tagatose-6-phosphate kinase (LacC) in two crystal forms are herein reported. The structures define LacC in apoform, in binary complexes with ADP or the co-factor analogue AMP-PNP, and in a ternary complex with AMP-PNP and D-tagatose-6-phosphate. The tertiary structure of the LacC monomer, which is closely related to other members of the pfkB subfamily of carbohydrate kinases, is composed of a large alpha/beta core domain and a smaller, largely beta "lid." Four extended polypeptide segments connect these two domains. Dimerization of LacC occurs via interactions between lid domains, which come together to form a beta-clasp structure. Residues from both subunits contribute to substrate binding. LacC adopts a closed structure required for phosphoryl transfer only when both substrate and co-factor are bound. A reaction mechanism similar to that used by other phosphoryl transferases is proposed, although unusually, when both substrate and co-factor are bound to the enzyme two Mg(2+) ions are observed in the active site. A new motif of amino acid sequence conservation common to the pfkB subfamily of carbohydrate kinases is identified.

  15. Solution structure of the focal adhesion adaptor PINCH LIM1 domain and characterization of its interaction with the integrin-linked kinase ankyrin repeat domain.

    PubMed

    Velyvis, A; Yang, Y; Wu, C; Qin, J

    2001-02-16

    PINCH is a recently identified adaptor protein that comprises an array of five LIM domains. PINCH functions through LIM-mediated protein-protein interactions that are involved in cell adhesion, growth, and differentiation. The LIM1 domain of PINCH interacts with integrin-linked kinase (ILK), thereby mediating focal adhesions via a specific integrin/ILK signaling pathway. We have solved the NMR structure of the PINCH LIM1 domain and characterized its binding to ILK. LIM1 contains two contiguous zinc fingers of the CCHC and CCCH types and adopts a global fold similar to that of functionally distinct LIM domains from cysteine-rich protein and cysteine-rich intestinal protein families with CCHC and CCCC zinc finger types. Gel-filtration and NMR experiments demonstrated a 1:1 complex between PINCH LIM1 and the ankyrin repeat domain of ILK. A chemical shift mapping experiment identified regions in PINCH LIM1 that are important for interaction with ILK. Comparison of surface features between PINCH LIM1 and other functionally different LIM domains indicated that the LIM motif might have a highly variable mode in recognizing various target proteins.

  16. Understanding the molecular basis of EGFR kinase domain/MIG-6 peptide recognition complex using computational analyses.

    PubMed

    Moonrin, Ninnutt; Songtawee, Napat; Rattanabunyong, Siriluk; Chunsrivirot, Surasuk; Mokmak, Wanwimon; Tongsima, Sissades; Choowongkomon, Kiattawee

    2015-03-27

    Epidermal growth factor receptor (EGFR) signalling plays a major role in biological processes, including cell proliferation, differentiation and survival. Since the over-expression of EGFR causes human cancers, EGFR is an attractive drug target. A tumor suppressor endogenous protein, MIG-6, is known to suppress EGFR over-expression by binding to the C-lobe of EGFR kinase. Thus, this C-lobe of the EGFR kinase is a potential new target for EGFR kinase activity inhibition. In this study, molecular dynamics (MD) simulations and binding free energy calculations were used to investigate the protein-peptide interactions between EGFR kinase and a 27-residue peptide derived from MIG-6_s1 segment (residues 336-362). These 27 residues of MIG-6_s1 were modeled from the published MIG-6 X-ray structure. The binding dynamics were detailed by applying the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method to predict the binding free energy. Both van der Waals interactions and non-polar solvation were favorable driving forces for binding process. Six residues of EGFR kinase and eight residues of MIG-6_s1 residues were shown to be responsible for interface binding in which we investigated per residue free energy decomposition and the results from the computational alanine scanning approach. These residues also had higher hydrogen bond occupancies than other residues at the binding interface. The results from the aforementioned calculations reasonably agreed with the previous experimental mutagenesis studies. Molecular dynamics simulations were used to investigate the interactions of MIG-6_s1 to EGFR kinase domain. Our study provides an insight into such interactions that is useful in guiding the design of novel anticancer therapeutics. The information on our modelled peptide interface with EGFR kinase could be a possible candidate for an EGFR dimerization inhibitor.

  17. Ceritinib in ALK-Rearranged Non–Small-Cell Lung Cancer

    PubMed Central

    Shaw, Alice T.; Kim, Dong-Wan; Mehra, Ranee; Tan, Daniel S.W.; Felip, Enriqueta; Chow, Laura Q.M.; Camidge, D. Ross; Vansteenkiste, Johan; Sharma, Sunil; De Pas, Tommaso; Riely, Gregory J.; Solomon, Benjamin J.; Wolf, Juergen; Thomas, Michael; Schuler, Martin; Liu, Geoffrey; Santoro, Armando; Lau, Yvonne Y.; Goldwasser, Meredith; Boral, Anthony L.; Engelman, Jeffrey A.

    2014-01-01

    BACKGROUND Non–small-cell lung cancer (NSCLC) harboring the anaplastic lymphoma kinase gene (ALK) rearrangement is sensitive to the ALK inhibitor crizotinib, but resistance invariably develops. Ceritinib (LDK378) is a new ALK inhibitor that has shown greater antitumor potency than crizotinib in preclinical studies. METHODS In this phase 1 study, we administered oral ceritinib in doses of 50 to 750 mg once daily to patients with advanced cancers harboring genetic alterations in ALK. In an expansion phase of the study, patients received the maximum tolerated dose. Patients were assessed to determine the safety, pharmacokinetic properties, and antitumor activity of ceritinib. Tumor biopsies were performed before ceritinib treatment to identify resistance mutations in ALK in a group of patients with NSCLC who had had disease progression during treatment with crizotinib. RESULTS A total of 59 patients were enrolled in the dose-escalation phase. The maximum tolerated dose of ceritinib was 750 mg once daily; dose-limiting toxic events included diarrhea, vomiting, dehydration, elevated aminotransferase levels, and hypophosphatemia. This phase was followed by an expansion phase, in which an additional 71 patients were treated, for a total of 130 patients overall. Among 114 patients with NSCLC who received at least 400 mg of ceritinib per day, the overall response rate was 58% (95% confidence interval [CI], 48 to 67). Among 80 patients who had received crizotinib previously, the response rate was 56% (95% CI, 45 to 67). Responses were observed in patients with various resistance mutations in ALK and in patients without detectable mutations. Among patients with NSCLC who received at least 400 mg of ceritinib per day, the median progression-free survival was 7.0 months (95% CI, 5.6 to 9.5). CONCLUSIONS Ceritinib was highly active in patients with advanced, ALK-rearranged NSCLC, including those who had had disease progression during crizotinib treatment, regardless of the

  18. Genetic and biochemical dissection of a HisKA domain identifies residues required exclusively for kinase and phosphatase activities.

    PubMed

    Willett, Jonathan W; Kirby, John R

    2012-01-01

    Two-component signal transduction systems, composed of histidine kinases (HK) and response regulators (RR), allow bacteria to respond to diverse environmental stimuli. The HK can control both phosphorylation and subsequent dephosphorylation of its cognate RR. The majority of HKs utilize the HisKA subfamily of dimerization and histidine phosphotransfer (DHp) domains, which contain the phospho-accepting histidine and directly contact the RR. Extensive genetics, biochemistry, and structural biology on several prototypical TCS systems including NtrB-NtrC and EnvZ-OmpR have provided a solid basis for understanding the function of HK-RR signaling. Recently, work on NarX, a HisKA_3 subfamily protein, indicated that two residues in the highly conserved region of the DHp domain are responsible for phosphatase activity. In this study we have carried out both genetic and biochemical analyses on Myxococcus xanthus CrdS, a member of the HisKA subfamily of bacterial HKs. CrdS is required for the regulation of spore formation in response to environmental stress. Following alanine-scanning mutagenesis of the α1 helix of the DHp domain of CrdS, we determined the role for each mutant protein for both kinase and phosphatase activity. Our results indicate that the conserved acidic residue (E372) immediately adjacent to the site of autophosphorylation (H371) is specifically required for kinase activity but not for phosphatase activity. Conversely, we found that the conserved Thr/Asn residue (N375) was required for phosphatase activity but not for kinase activity. We extended our biochemical analyses to two CrdS homologs from M. xanthus, HK1190 and HK4262, as well as Thermotoga maritima HK853. The results were similar for each HisKA family protein where the conserved acidic residue is required for kinase activity while the conserved Thr/Asn residue is required for phosphatase activity. These data are consistent with conserved mechanisms for kinase and phosphatase activities in the

  19. Conformational dynamics as a key factor of signaling mediated by the receiver domain of sensor histidine kinase from Arabidopsis thaliana.

    PubMed

    Otrusinová, Olga; Demo, Gabriel; Padrta, Petr; Jaseňáková, Zuzana; Pekárová, Blanka; Gelová, Zuzana; Szmitkowska, Agnieszka; Kadeřávek, Pavel; Jansen, Séverine; Zachrdla, Milan; Klumpler, Tomáš; Marek, Jaromír; Hritz, Jozef; Janda, Lubomír; Iwaï, Hideo; Wimmerová, Michaela; Hejátko, Jan; Žídek, Lukáš

    2017-08-31

    Multistep phosphorelay (MSP) cascades mediate responses to a wide spectrum of stimuli, including plant hormonal signaling, but several aspects of MSP await elucidation. Here, we provide first insight into the key step of MSP-mediated phosphotransfer in a eukaryotic system, the phosphorylation of the receiver domain of the histidine kinase CYTOKININ INDEPENDENT 1 (CKI1RD) from Arabidopsis thaliana We observed that the crystal structures of free, Mg(2+)-bound, and beryllofluoridated CKI1RD (a stable analog of the labile phosphorylated form) were identical and similar to the active state of receiver domains of bacterial response regulators. However, the three CKI1RD variants exhibited different conformational dynamics in solution. NMR studies revealed that Mg(2+) binding and beryllofluoridation alter the conformational equilibrium of the β3-α3 loop close to the phosphorylation site. Mutations that perturbed the conformational behavior of the β3-α3 loop while keeping the active site aspartate intact resulted in suppression of CKI1 function. Mechanistically, homology modeling indicated that the β3-α3 loop directly interacts with the ATP-binding site of the CKI1 histidine kinase domain. The functional relevance of the conformational dynamics observed in the β3-α3 loop of CKI1RD was supported by a comparison with another A. thaliana histidine kinase, ETR1. In contrast to the highly dynamic β3-α3 loop of CKI1RD, the corresponding loop of the ETR1 receiver domain (ETR1RD) exhibited little conformational exchange and adopted a different orientation in crystals. Biochemical data indicated that ETR1RD is involved in phosphorylation-independent signaling, implying a direct link between conformational behavior and the ability of eukaryotic receiver domains to participate in MSP. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  20. The relevance of external quality assessment for molecular testing for ALK positive non-small cell lung cancer: results from two pilot rounds show room for optimization.

    PubMed

    Tembuyser, Lien; Tack, Véronique; Zwaenepoel, Karen; Pauwels, Patrick; Miller, Keith; Bubendorf, Lukas; Kerr, Keith; Schuuring, Ed; Thunnissen, Erik; Dequeker, Elisabeth M C

    2014-01-01

    Molecular profiling should be performed on all advanced non-small cell lung cancer with non-squamous histology to allow treatment selection. Currently, this should include EGFR mutation testing and testing for ALK rearrangements. ROS1 is another emerging target. ALK rearrangement status is a critical biomarker to predict response to tyrosine kinase inhibitors such as crizotinib. To promote high quality testing in non-small cell lung cancer, the European Society of Pathology has introduced an external quality assessment scheme. This article summarizes the results of the first two pilot rounds organized in 2012-2013. Tissue microarray slides consisting of cell-lines and resection specimens were distributed with the request for routine ALK testing using IHC or FISH. Participation in ALK FISH testing included the interpretation of four digital FISH images. Data from 173 different laboratories was obtained. Results demonstrate decreased error rates in the second round for both ALK FISH and ALK IHC, although the error rates were still high and the need for external quality assessment in laboratories performing ALK testing is evident. Error rates obtained by FISH were lower than by IHC. The lowest error rates were observed for the interpretation of digital FISH images. There was a large variety in FISH enumeration practices. Based on the results from this study, recommendations for the methodology, analysis, interpretation and result reporting were issued. External quality assessment is a crucial element to improve the quality of molecular testing.

  1. A malignant inflammatory myofibroblastic tumor of the hypopharynx harboring the 3a/b variants of the EML4-ALK fusion gene

    PubMed Central

    Muscarella, Lucia Anna; Rossi, Giulio; Trombetta, Domenico; La Torre, Annamaria; Di Candia, Leonarda; Mengoli, Maria Cecilia; Sparaneo, Angelo; Fazio, Vito Michele; Graziano, Paolo

    2017-01-01

    Inflammatory myofibroblastic tumors (IMT) in the head and neck region are rare neoplasms that generally mimic benign/low-grade neoplasms. Overexpression of anaplastic lymphoma kinase (ALK) has been reported in 50% of IMT cases, secondary to ALK activation by structural rearrangements in the ALK gene, which results in a fusion protein with echinoderm microtubule associated protein like 4 (EML4) in ~20% of cases. The present study describes a case of a 74-year-old woman with a malignant IMT in the right posterior hypopharynx harboring a previously unreported chromosomal rearrangement resulting in EML4 and ALK gene fusion. Strong ALK immunoreactivity was observed in neoplastic cells, while fluorescent in situ hybridization combined with fluorescent fragment analysis and direct sequencing identified the first case of the 3a/b variants of the EML4-ALK fusion gene in IMT. The results of the current study highlight the uncommon occurrence of ALK-positive IMT in the head/neck region and demonstrate the importance of integrating different molecular methodologies to identify unequivocal gene fusion characterization. PMID:28356934

  2. EML4-ALK induces epithelial-mesenchymal transition consistent with cancer stem cell properties in H1299 non-small cell lung cancer cells.

    PubMed

    Guo, Fuchun; Liu, Xiaoke; Qing, Qin; Sang, Yaxiong; Feng, Chengjun; Li, Xiaoyu; Jiang, Li; Su, Pei; Wang, Yongsheng

    2015-04-10

    The echinoderm microtubule-associated protein-like 4(EML4)--anaplastic lymphoma kinase (ALK) fusion gene has been identified as a driver mutation in non-small-cell lung cancer (NSCLC). However, the role of EML4-ALK in malignant transformation is not entirely clear. Here, for the first time, we showed that H1299 NSCLC cells stably expressing EML4-ALK acquire EMT phenotype, associated with enhanced invasive migration and increased expression of EMT-inducing transcription factors. H1299-EML4-ALK cells also displayed cancer stem cell-like properties with a concomitant up-regulation of CD133 and enhanced ability of mammospheres formation. Moreover, we found that inhibition of ERK1/2 reversed EMT induced by EML4-ALK in H1299 cells. Taken together, these results suggested that EML4-ALK induced ERK activation is mechanistically associated with EMT phenotype. Thus, inhibition of ERK signaling pathway could be a potential strategy in treatment of NSCLC patients with EML4-ALK translocation.

  3. An Unusual Case of Systemic Inflammatory Myofibroblastic Tumor with Successful Treatment with ALK-Inhibitor

    PubMed Central

    Jacob, Sanjivini V.; Reith, John D.; Kojima, Angerika Y.; Williams, William D.; Liu, Chen; Vila Duckworth, Lizette

    2014-01-01

    Systemic inflammatory myofibroblastic tumor is an exceedingly rare entity. A 45-year-old Hispanic female presented with a 6-month history of left-sided thigh pain, low back pain, and generalized weakness. PET/CT scan revealed abnormal activity in the liver, adrenal gland, and pancreas. MRI of the abdomen demonstrated two 6-7 cm masses in the liver. MRI of the lumbar spine demonstrated lesions in the L2 to L4 spinous processes, paraspinal muscles, and subcutaneous tissues, as well as an 8 mm enhancing intradural lesion at T11, all thought to be metastatic disease. A biopsy of the liver showed portal tract expansion by a spindle cell proliferation rich in inflammation. Tumor cells showed immunoreactivity for smooth muscle actin and anaplastic lymphoma kinase 1 (ALK1). Tissue from the L5 vertebra showed a process histologically identical to that seen in the liver. FISH analysis of these lesions demonstrated an ALK (2p23) gene rearrangement. The patient was successfully treated with an ALK-inhibitor, Crizotinib, and is now in complete remission. We present the first reported case, to our knowledge, of inflammatory myofibroblastic tumor with systemic manifestations and ALK translocation. This case is a prime example of how personalized medicine has vastly improved patient care through the use of molecular-targeted therapy. PMID:25045570

  4. ALK and ROS1 testing on lung cancer cytologic samples: Perspectives.

    PubMed

    Pisapia, Pasquale; Lozano, Maria D; Vigliar, Elena; Bellevicine, Claudio; Pepe, Francesco; Malapelle, Umberto; Troncone, Giancarlo

    2017-07-25

    Cytologic sampling is the mainstay of diagnosing advanced lung cancer. Moreover, to select patients for personalized first-line or second-line treatment, epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) rearrangements are tested on cytologic preparations. Commercially available fluorescence in situ hybridization (FISH) and immunocytochemistry (ICC) assays have primarily been used for the identification of cells harboring ALK or ROS1 gene fusions on histologic rather than cytologic preparations. However, it is now recognized that FISH and ICC also can be applied on cytologic samples provided the cytopathologist is aware that FISH and ICC results are not always concordant and that the performance of ICC largely depends on antibody clones, signal detection systems, and scoring systems. Notably, the routine clinical use of FISH and ICC may be replaced by emerging next-generation sequencing and digital, color-coded barcode technologies, which have the advantage of simultaneously evaluating ALK, ROS1, and EGFR alterations in a single analysis. Although their use in clinical cytologic practice remains to be fully established, it is conceivable that this technology will replace both FISH and ICC analyses in future diagnostic algorithms. Here, the authors review studies devoted to testing ALK and ROS1 on cytology specimens in an attempt to provide an update for the cytopathologist regarding current and evolving practice. Cancer (Cancer Cytopathol) 2017. © 2017 American Cancer Society. © 2017 American Cancer Society.

  5. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells

    PubMed Central

    Kraehling, Jan R.; Chidlow, John H.; Rajagopal, Chitra; Sugiyama, Michael G.; Fowler, Joseph W.; Lee, Monica Y.; Zhang, Xinbo; Ramírez, Cristina M.; Park, Eon Joo; Tao, Bo; Chen, Keyang; Kuruvilla, Leena; Larriveé, Bruno; Folta-Stogniew, Ewa; Ola, Roxana; Rotllan, Noemi; Zhou, Wenping; Nagle, Michael W.; Herz, Joachim; Williams, Kevin Jon; Eichmann, Anne; Lee, Warren L.; Fernández-Hernando, Carlos; Sessa, William C.

    2016-01-01

    In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL. PMID:27869117

  6. Stimulation of the midkine/ALK axis renders glioma cells resistant to cannabinoid antitumoral action

    PubMed Central

    Lorente, M; Torres, S; Salazar, M; Carracedo, A; Hernández-Tiedra, S; Rodríguez-Fornés, F; García-Taboada, E; Meléndez, B; Mollejo, M; Campos-Martín, Y; Lakatosh, S A; Barcia, J; Guzmán, M; Velasco, G

    2011-01-01

    Identifying the molecular mechanisms responsible for the resistance of gliomas to anticancer treatments is an issue of great therapeutic interest. Δ9-Tetrahydrocannabinol (THC), the major active ingredient of marijuana, and other cannabinoids inhibit tumor growth in animal models of cancer, including glioma, an effect that relies, at least in part, on the stimulation of autophagy-mediated apoptosis in tumor cells. Here, by analyzing the gene expression profile of a large series of human glioma cells with different sensitivity to cannabinoid action, we have identified a subset of genes specifically associated to THC resistance. One of these genes, namely that encoding the growth factor midkine (Mdk), is directly involved in the resistance of glioma cells to cannabinoid treatment. We also show that Mdk mediates its protective effect via the anaplastic lymphoma kinase (ALK) receptor and that Mdk signaling through ALK interferes with cannabinoid-induced autophagic cell death. Furthermore, in vivo Mdk silencing or ALK pharmacological inhibition sensitizes cannabinod-resistant tumors to THC antitumoral action. Altogether, our findings identify Mdk as a pivotal factor involved in the resistance of glioma cells to THC pro-autophagic and antitumoral action, and suggest that selective targeting of the Mdk/ALK axis could help to improve the efficacy of antitumoral therapies for gliomas. PMID:21233844

  7. Artocarpus altilis CG-901 alters critical nodes in the JH1-kinase domain of Janus kinase 2 affecting upstream JAK/STAT3 signaling.

    PubMed

    Nash, Oyekanmi; Omotuyi, Olaposi; Lee, Joonku; Kwon, Byoung-Mog; Ogbadu, Lucy

    2015-11-01

    As a key step in achieving low-cost, easily accessible anti-cancer therapy for low- and middle-income countries, we recently established the scientific basis for the folkloric use of Artocarpus altilis for the treatment of cancer by investigating the geranyl dihydrochalcone (CG-901) content and its interference with signal transducer and activator of transcription 3 (STAT3) phosphorylation and blockage of further downstream signaling. In the current study, the CG-901 upstream target was queried by chemical fingerprinting similarity assessment, semi-empirical (PM6ESCF) QMMM and molecular dynamics (MD) simulation. Moderate (∼0.4) to high (∼0.7) Tanimoto scores were found when the CG-901 scaffold was compared to ligands co-crystallized with Janus kinases (JAK) 1-3. High negative energy values were obtained when the CG-901 was treated semi-empirically (PM6ESCF) within the classical field of JAK (1-3). Multiple nanosecond MD simulations showed that CG-901 did not cause any large structural perturbations in the nucleotide-binding, activation and catalytic loops within the kinase (JH1) domain of JAK (1-3); however, it reduced the energy required to attain metastability along the path to energy minima conformation. In comparison to JAK1 and Apo-state JAK2, JAK2-bound CG-901 exhibited a highly re-organized key intra-domain protein network; indicating atomic level interference with inter-residue communication. In conclusion, CG-901 isolated from A. altilis represents a broad-spectrum JAK inhibitor, which may underlie the mechanism of STAT3 phosphorylation blockage. Graphical abstract Upper panel Janus kinase 2 upstream signaling pathway. Lower panel Apo-JAK2 (left) and CG-901-bound JAK2 (right).

  8. Kinase inhibitor-responsive genotypes in EGFR mutated lung adenocarcinomas: moving past common point mutations or indels into uncommon kinase domain duplications and rearrangements

    PubMed Central

    2016-01-01

    The most frequent epidermal growth factor receptor (EGFR) mutations found by traditional or comprehensive molecular profiling of lung adenocarcinomas include indels of exon 19 (the exon 19 deletion delE746_A750 being the most common) and the exon 21 L858R point mutation. The current approval labels for first line palliative gefitinib 250 mg/day, erlotinib 150 mg/day and afatinib 40 mg/day for advanced lung cancers require the presence of the aforementioned classical/sensitizing EGFR mutations. Other gefitinib, erlotinib and afatinib sensitizing mutations include exon 18 indels, G719X, exon 19 insertions, A763_Y764insFQEA, S768I and L861Q; for which off-label EGFR kinase inhibitor use is generally agreed upon by thoracic oncologists. The main biological mechanism of resistance to approved first line EGFR inhibitors is the selection/acquisition of EGFR-T790M that in itself can be inhibited by osimertinib 80 mg/day, a 3rd generation EGFR inhibitor that is bypassed by EGFR-C797X mutations. Another class of de novo inhibitor insensitive mutation includes EGFR exon 20 insertions. More recently, the dichotomy of only point mutations or indels explaining aberrant kinase activation of EGFR plus inhibitor response has been shattered by the discovery of uncommon (<0.5% of all EGFR mutations) genomic events involving exon 18–25 kinase domain duplications (KDD) and rearrangements (EGFR-RAD51 or EGFR-PURB). The latter lead to oncogene addiction, enhanced sensitivity to kinase inhibitors in vitro and clinical responses to approved EGFR inhibitors. The enhanced landscape of EGFR inhibitor-responsive genotypes highlights that comprehensive molecular profiling may be necessary to maximize the identification of all cases that can benefit from precision oncology. PMID:27413714

  9. Kinase inhibitor-responsive genotypes in EGFR mutated lung adenocarcinomas: moving past common point mutations or indels into uncommon kinase domain duplications and rearrangements.

    PubMed

    Costa, Daniel B

    2016-06-01

    The most frequent epidermal growth factor receptor (EGFR) mutations found by traditional or comprehensive molecular profiling of lung adenocarcinomas include indels of exon 19 (the exon 19 deletion delE746_A750 being the most common) and the exon 21 L858R point mutation. The current approval labels for first line palliative gefitinib 250 mg/day, erlotinib 150 mg/day and afatinib 40 mg/day for advanced lung cancers require the presence of the aforementioned classical/sensitizing EGFR mutations. Other gefitinib, erlotinib and afatinib sensitizing mutations include exon 18 indels, G719X, exon 19 insertions, A763_Y764insFQEA, S768I and L861Q; for which off-label EGFR kinase inhibitor use is generally agreed upon by thoracic oncologists. The main biological mechanism of resistance to approved first line EGFR inhibitors is the selection/acquisition of EGFR-T790M that in itself can be inhibited by osimertinib 80 mg/day, a 3(rd) generation EGFR inhibitor that is bypassed by EGFR-C797X mutations. Another class of de novo inhibitor insensitive mutation includes EGFR exon 20 insertions. More recently, the dichotomy of only point mutations or indels explaining aberrant kinase activation of EGFR plus inhibitor response has been shattered by the discovery of uncommon (<0.5% of all EGFR mutations) genomic events involving exon 18-25 kinase domain duplications (KDD) and rearrangements (EGFR-RAD51 or EGFR-PURB). The latter lead to oncogene addiction, enhanced sensitivity to kinase inhibitors in vitro and clinical responses to approved EGFR inhibitors. The enhanced landscape of EGFR inhibitor-responsive genotypes highlights that comprehensive molecular profiling may be necessary to maximize the identification of all cases that can benefit from precision oncology.

  10. A Dual Role for Receptor-interacting Protein Kinase 2 (RIP2) Kinase Activity in Nucleotide-binding Oligomerization Domain 2 (NOD2)-dependent Autophagy*

    PubMed Central

    Homer, Craig R.; Kabi, Amrita; Marina-García, Noemí; Sreekumar, Arun; Nesvizhskii, Alexey I.; Nickerson, Kourtney P.; Chinnaiyan, Arul M.; Nuñez, Gabriel; McDonald, Christine

    2012-01-01

    Autophagy is triggered by the intracellular bacterial sensor NOD2 (nucleotide-binding, oligomerization domain 2) as an anti-bacterial response. Defects in autophagy have been implicated in Crohn's disease susceptibility. The molecular mechanisms of activation and regulation of this process by NOD2 are not well understood, with recent studies reporting conflicting requirements for RIP2 (receptor-interacting protein kinase 2) in autophagy induction. We examined the requirement of NOD2 signaling mediated by RIP2 for anti-bacterial autophagy induction and clearance of Salmonella typhimurium in the intestinal epithelial cell line HCT116. Our data demonstrate that NOD2 stimulates autophagy in a process dependent on RIP2 tyrosine kinase activity. Autophagy induction requires the activity of the mitogen-activated protein kinases MEKK4 and p38 but is independent of NFκB signaling. Activation of autophagy was inhibited by a PP2A phosphatase complex, which interacts with both NOD2 and RIP2. PP2A phosphatase activity inhibited NOD2-dependent autophagy but not activation of NFκB or p38. Upon stimulation of NOD2, the phosphatase activity of the PP2A complex is inhibited through tyrosine phosphorylation of the catalytic subunit in a process dependent on RIP2 activity. These findings demonstrate that RIP2 tyrosine kinase activity is not only required for NOD2-dependent autophagy but plays a dual role in this process. RIP2 both sends a positive autophagy signal through activation of p38 MAPK and relieves repression of autophagy mediated by the phosphatase PP2A. PMID:22665475

  11. Protein Kinase Cθ C2 Domain Is a Phosphotyrosine Binding Module That Plays a Key Role in Its Activation*

    PubMed Central

    Stahelin, Robert V.; Kong, Kok-Fai; Raha, Sumita; Tian, Wen; Melowic, Heather R.; Ward, Katherine E.; Murray, Diana; Altman, Amnon; Cho, Wonhwa

    2012-01-01

    Protein kinase Cθ (PKCθ) is a novel PKC that plays a key role in T lymphocyte activation. To understand how PKCθ is regulated in T cells, we investigated the properties of its N-terminal C2 domain that functions as an autoinhibitory domain. Our measurements show that a Tyr(P)-containing peptide derived from CDCP1 binds the C2 domain of PKCθ with high affinity and activates the enzyme activity of the intact protein. The Tyr(P) peptide also binds the C2 domain of PKCδ tightly, but no enzyme activation was observed with PKCδ. Mutations of PKCθ-C2 residues involved in Tyr(P) binding abrogated the enzyme activation and association of PKCθ with Tyr-phosphorylated full-length CDCP1 and severely inhibited the T cell receptor/CD28-mediated activation of a PKCθ-dependent reporter gene in T cells. Collectively, these studies establish the C2 domain of PKCθ as a Tyr(P)-binding domain and suggest that the domain may play a major role in PKCθ activation via its Tyr(P) binding. PMID:22787157

  12. Structural and Functional Characterization of the JH2 Pseudokinase Domain of JAK Family Tyrosine Kinase 2 (TYK2).

    PubMed

    Min, Xiaoshan; Ungureanu, Daniela; Maxwell, Sarah; Hammarén, Henrik; Thibault, Steve; Hillert, Ellin-Kristina; Ayres, Merrill; Greenfield, Brad; Eksterowicz, John; Gabel, Chris; Walker, Nigel; Silvennoinen, Olli; Wang, Zhulun

    2015-11-06

    JAK (Janus family of cytoplasmic tyrosine kinases) family tyrosine kinase 2 (TYK2) participates in signaling through cytokine receptors involved in immune responses and inflammation. JAKs are characterized by dual kinase domain: a tyrosine kinase domain (JH1) that is preceded by a pseudokinase domain (JH2). The majority of disease-associated mutations in JAKs map to JH2, demonstrating its central regulatory function. JH2s were considered catalytically inactive, but JAK2 JH2 was found to have low autoregulatory catalytic activity. Whether the other JAK JH2s share ATP binding and enzymatic activity has been unclear. Here we report the crystal structure of TYK2 JH2 in complex with adenosine 5'-O-(thiotriphosphate) (ATP-γS) and characterize its nucleotide binding by biochemical and biophysical methods. TYK2 JH2 did not show phosphotransfer activity, but it binds ATP and the nucleotide binding stabilizes the protein without inducing major conformational changes. Mutation of the JH2 ATP-binding pocket increased basal TYK2 phosphorylation and downstream signaling. The overall structural characteristics of TYK2 JH2 resemble JAK2 JH2, but distinct stabilizing molecular interactions around helix αAL in the activation loop provide a structural basis for differences in substrate access and catalytic activities among JAK family JH2s. The structural and biochemical data suggest that ATP binding is functionally important for both TYK2 and JAK2 JH2s, whereas the regulatory phosphorylation appears to be a unique property of JAK2. Finally, the co-crystal structure of TYK2 JH2 complexed with a small molecule inhibitor demonstrates that JH2 is accessible to ATP-competitive compounds, which offers novel approaches for targeting cytokine signaling as well as potential therapeutic applications. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. NMR assignments of the GacS histidine-kinase periplasmic detection domain from Pseudomonas aeruginosa PAO1.

    PubMed

    Ali-Ahmad, Ahmad; Bornet, Olivier; Fadel, Firas; Bourne, Yves; Vincent, Florence; Bordi, Christophe; Guerlesquin, Françoise; Sebban-Kreuzer, Corinne

    2017-04-01

    Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen. It can infect vulnerable patients such as those with cystic fibrosis or hospitalized in intensive care units where it is responsible for both acute and chronic infection. The switch between these infections is controlled by a complex regulatory system involving the central GacS/GacA two-component system that activates the production of two small non-coding RNAs. GacS is a histidine kinase harboring one periplasmic detection domain, two inner-membrane helices and three H1/D1/H2 cytoplasmic domains. By detecting a yet unknown signal, the GacS histidine-kinase periplasmic detection domain (GacSp) is predicted to play a key role in activating the GacS/GacA pathway. Here, we present the chemical shift assignment of 96 % of backbone atoms (HN, N, C, Cα, Cβ and Hα), 88 % aliphatic hydrogen atoms and 90 % of aliphatic carbon atoms of this domain. The NMR-chemical shift data, on the basis of Talos server secondary structure predictions, reveal that GacSp consists of 3 β-strands, 3 α-helices and a major loop devoid of secondary structures.

  14. The role of Y84 on domain 1 and Y87 on domain 2 of Paragonimus westermani taurocyamine kinase: Insights on the substrate binding mechanism of a trematode phosphagen kinase.

    PubMed

    Jarilla, Blanca R; Tokuhiro, Shinji; Nagataki, Mitsuru; Uda, Kouji; Suzuki, Tomohiko; Acosta, Luz P; Agatsuma, Takeshi

    2013-12-01

    The two-domain taurocyamine kinase (TK) from Paragonimus westermani was suggested to have a unique substrate binding mechanism. We performed site-directed mutagenesis on each domain of this TK and compared the kinetic parameters Km(Tc) and Vmax with that of the wild-type to determine putative amino acids involved in substrate recognition and binding. Replacement of Y84 on domain 1 and Y87 on domain 2 with R resulted in the loss of activity for the substrate taurocyamine. Y84E mutant has a dramatic decrease in affinity and activity for taurocyamine while Y87E has completely lost catalytic activity. Substituting H and I on the said positions also resulted in significant changes in activity. Mutation of the residues A59 on the GS region of domain 1 also caused significant decrease in affinity and activity while mutation on the equivalent position on domain 2 resulted in complete loss of activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Plant chimeric Ca2+/Calmodulin-dependent protein kinase. Role of the neural visinin-like domain in regulating autophosphorylation and calmodulin affinity

    NASA Technical Reports Server (NTRS)

    Sathyanarayanan, P. V.; Cremo, C. R.; Poovaiah, B. W.

    2000-01-01

    Chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) is characterized by a serine-threonine kinase domain, an autoinhibitory domain, a calmodulin-binding domain and a neural visinin-like domain with three EF-hands. The neural visinin-like Ca(2+)-binding domain at the C-terminal end of the CaM-binding domain makes CCaMK unique among all the known calmodulin-dependent kinases. Biological functions of the plant visinin-like proteins or visinin-like domains in plant proteins are not well known. Using EF-hand deletions in the visinin-like domain, we found that the visinin-like domain regulated Ca(2+)-stimulated autophosphorylation of CCaMK. To investigate the effects of Ca(2+)-stimulated autophosphorylation on the interaction with calmodulin, the equilibrium binding constants of CCaMK were measured by fluorescence emission anisotropy using dansylated calmodulin. Binding was 8-fold tighter after Ca(2+)-stimulated autophosphorylation. This shift in affinity did not occur in CCaMK deletion mutants lacking Ca(2+)-stimulated autophosphorylation. A variable calmodulin affinity regulated by Ca(2+)-stimulated autophosphorylation mediated through the visinin-like domain is a new regulatory mechanism for CCaMK activation and calmodulin-dependent protein kinases. Our experiments demonstrate the existence of two functional molecular switches in a protein kinase regulating the kinase activity, namely a visinin-like domain acting as a Ca(2+)-triggered switch and a CaM-binding domain acting as an autophosphorylation-triggered molecular switch.

  16. Responses to crizotinib in patients with ALK-positive lung adenocarcinoma who tested immunohistochemistry (IHC)-positive and fluorescence in situ hybridization (FISH)-negative

    PubMed Central

    Yang, Lin; Mu, Xinlin; Wang, Yan; Zhao, Xinming; Li, Junling; Lin, Dongmei

    2016-01-01

    Although the Ventana immunohistochemistry (IHC) platform for detecting anaplastic lymphoma kinase gene (ALK) (D5F3) expression was recently approved by the US Food and Drugs Administration (FDA), fluorescence in situ hybridization (FISH) is still the “gold-standard” method recommended by the US National Comprehensive Cancer Network (NCCN) guideline for NSCLC. We evaluated 6 ALK-positive lung adenocarcinoma patients who tested Ventana IHC-positive and FISH-negative and assessed their clinical responses to the ALK tyrosine kinase inhibitor (TKI) crizotinib. Histologic and cytologic specimens from the 6 patients were stained with Ventana anti-ALK(D5F3) rabbit monoclonal primary antibody using the OptiView™ DAB IHC detection kit and OptiView™ amplification kit on a Ventana BenchMark XT processor. In addition, they were also tested by FISH, qRT-PCR, next-generation sequencing (NGS), and RNAscope ISH analysis. All patients received crizotinib treatment and their follow-up clinical data were recorded. The objective response rate achieved with crizotinib therapy was 66.7% (4/6 partial responses and 2/6 stable disease). One patient in whom a new fusion type (EML4->EXOC6B->ALK fusion) was identified obtained a partial response. These findings indicate that patients with ALK-positive lung adenocarcinoma who test Ventana IHC-positive and FISH-negative may still respond to crizotinib therapy. PMID:27418132

  17. The Drosophila Midkine/Pleiotrophin Homologues Miple1 and Miple2 Affect Adult Lifespan but Are Dispensable for Alk Signaling during Embryonic Gut Formation

    PubMed Central

    Hugosson, Fredrik; Sjögren, Camilla; Birve, Anna; Hedlund, Ludmilla; Eriksson, Therese; Palmer, Ruth H.

    2014-01-01

    Midkine (MDK) and Pleiotrophin (PTN) are small heparin-binding cytokines with closely related structures. The Drosophila genome harbours two genes encoding members of the MDK/PTN family of proteins, known as miple1 and miple2. We have investigated the role of Miple proteins in vivo, in particular with regard to their proposed role as ligands for the Alk receptor tyrosine kinase (RTK). Here we show that Miple proteins are neither required to drive Alk signaling during Drosophila embryogenesis, nor are they essential for development in the fruit fly. Additionally we show that neither MDK nor PTN can activate hALK in vivo when ectopically co-expressed in the fly. In conclusion, our data suggest that Alk is not activated by MDK/PTN related growth factors Miple1 and Miple 2 in vivo. PMID:25380037

  18. The Drosophila midkine/pleiotrophin homologues Miple1 and Miple2 affect adult lifespan but are dispensable for alk signaling during embryonic gut formation.

    PubMed

    Hugosson, Fredrik; Sjögren, Camilla; Birve, Anna; Hedlund, Ludmilla; Eriksson, Therese; Palmer, Ruth H

    2014-01-01

    Midkine (MDK) and Pleiotrophin (PTN) are small heparin-binding cytokines with closely related structures. The Drosophila genome harbours two genes encoding members of the MDK/PTN family of proteins, known as miple1 and miple2. We have investigated the role of Miple proteins in vivo, in particular with regard to their proposed role as ligands for the Alk receptor tyrosine kinase (RTK). Here we show that Miple proteins are neither required to drive Alk signaling during Drosophila embryogenesis, nor are they essential for development in the fruit fly. Additionally we show that neither MDK nor PTN can activate hALK in vivo when ectopically co-expressed in the fly. In conclusion, our data suggest that Alk is not activated by MDK/PTN related growth factors Miple1 and Miple 2 in vivo.

  19. microRNA classifiers are powerful diagnostic/prognostic tools in ALK-, EGFR-, and KRAS-driven lung cancers.

    PubMed

    Gasparini, Pierluigi; Cascione, Luciano; Landi, Lorenza; Carasi, Stefania; Lovat, Francesca; Tibaldi, Carmelo; Alì, Greta; D'Incecco, Armida; Minuti, Gabriele; Chella, Antonio; Fontanini, Gabriella; Fassan, Matteo; Cappuzzo, Federico; Croce, Carlo M

    2015-12-01

    microRNAs (miRNAs) can act as oncosuppressors or oncogenes, induce chemoresistance or chemosensitivity, and are major posttranscriptional gene regulators. Anaplastic lymphoma kinase (ALK), EGF receptor (EGFR), and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) are major drivers of non-small cell lung cancer (NSCLC). The aim of this study was to assess the miRNA profiles of NSCLCs driven by translocated ALK, mutant EGFR, or mutant KRAS to find driver-specific diagnostic and prognostic miRNA signatures. A total of 85 formalin-fixed, paraffin-embedded samples were considered: 67 primary NSCLCs and 18 matched normal lung tissues. Of the 67 primary NSCLCs, 17 were echinoderm microtubule-associated protein-like 4-ALK translocated (ALK(+)) lung cancers; the remaining 50 were not (ALK(-)). Of the 50 ALK(-) primary NSCLCs, 24 were EGFR and KRAS mutation-negative (i.e., WT; triple negative); 11 were mutant EGFR (EGFR(+)), and 15 were mutant KRAS (KRAS(+)). We developed a diagnostic classifier that shows how miR-1253, miR-504, and miR-26a-5p expression levels can classify NSCLCs as ALK-translocated, mutant EGFR, or mutant KRAS versus mutation-free. We also generated a prognostic classifier based on miR-769-5p and Let-7d-5p expression levels that can predict overall survival. This classifier showed better performance than the commonly used classifiers based on mutational status. Although it has several limitations, this study shows that miRNA signatures and classifiers have great potential as powerful, cost-effective next-generation tools to improve and complement current genetic tests. Further studies of these miRNAs can help define their roles in NSCLC biology and in identifying best-performing chemotherapy regimens.

  20. Reduced mural cell coverage and impaired vessel integrity after angiogenic stimulation in the Alk1-deficient brain

    PubMed Central

    Chen, Wanqiu; Guo, Yi; Walker, Espen J.; Shen, Fanxia; Jun, Kristine; Oh, S. Paul; Degos, Vincent; Lawton, Michael T.; Tihan, Tarik; Davalos, Dimitrios; Akassoglou, Katerina; Nelson, Jeffrey; Pile-Spellman, John; Su, Hua; Young, William L.

    2013-01-01

    Objective Vessels in brain arteriovenous malformations (bAVM) are prone to rupture. The underlying pathogenesis is not clear. Hereditary hemorrhagic telangiectasia type 2 (HHT2) patients with activin receptor-like kinase 1 (Alk1) mutation have a higher incidence of bAVM than the general population. We tested the hypothesis that vascular endothelial growth factor (VEGF) impairs vascular integrity in the Alk1-deficient brain through reduction of mural cell-coverage. Methods and Results Adult Alk11f/2f mice (loxP sites flanking exons 4-6) and wild-type (WT) mice were injected with 2×107 PFU Ad-Cre and 2×109 genome copies of AAV-VEGF to induce focal homozygous Alk1 deletion (in Alk11f/2f mice) and angiogenesis. Brain vessels were analyzed eight weeks later. Compared to WT mice, the Alk1-deficient brain had more fibrin (99±30×103 pixels/mm2 vs. 40±13×103, P=0.001), iron deposition (508±506 pixels/mm2 vs. 6 ±49, P=0.04), and Iba1+ microglia/macrophage infiltration (888±420 Iba1+ cells/mm2 vs. 240±104 Iba1+, P=0.001) after VEGF stimulation. In the angiogenic foci, the Alk1-deficient brain had more α-SMA- vessels (52±9% vs. 12±7%, P<0.001), fewer vascular associated pericytes (503±179/mm2 vs. 931±115, P<0.001), and reduced PDGFR-β expression (26±9%, P<0.001). Conclusion Reduction of mural cell coverage in response to VEGF stimulation is a potential mechanism for the impairment of vessel wall integrity in HHT2-associated bAVM. PMID:23241407

  1. AKAP (A-kinase anchoring protein) domains: beads of structure-function on the necklace of G-protein signalling.

    PubMed

    Malbon, C C; Tao, J; Shumay, E; Wang, H-Y

    2004-11-01

    AKAPs (A-kinase anchoring proteins) are members of a diverse family of scaffold proteins that minimally possess a characteristic binding domain for the RI/RII regulatory subunit of protein kinase A and play critical roles in establishing spatial constraints for multivalent signalling assemblies. Especially for G-protein-coupled receptors, the AKAPs provide an organizing centre about which various protein kinases and phosphatases can be assembled to create solid-state signalling devices that can signal, be modulated and trafficked within the cell. The structure of AKAP250 (also known as gravin or AKAP12), based on analyses of milligram quantities of recombinant protein expressed in Escherichia coli, suggests that the AKAP is probably an unordered scaffold, acting as a necklace on which 'jewels' of structure-function (e.g. the RII-binding domain) that provide docking sites on which signalling components can be assembled. Recent results suggest that AKAP250 provides not only a 'tool box' for assembling signalling elements, but may indeed provide a basis for spatial constraint observed for many signalling paradigms. The spatial dimension of the integration of cell signalling will probably reflect many functions performed by members of the AKAP family.

  2. Bruton's tyrosine kinase activity is negatively regulated by Sab, the Btk-SH3 domain-binding protein.

    PubMed

    Yamadori, T; Baba, Y; Matsushita, M; Hashimoto, S; Kurosaki, M; Kurosaki, T; Kishimoto, T; Tsukada, S

    1999-05-25

    Bruton's tyrosine kinase (Btk) is a cytoplasmic tyrosine kinase that is crucial for human and murine B cell development, and its deficiency causes human X-linked agammaglobulinemia and murine X-linked immunodeficiency. In this report, we describe the function of the Btk-binding protein Sab (SH3-domain binding protein that preferentially associates with Btk), which we reported previously as a newly identified Src homology 3 domain-binding protein. Sab was shown to inhibit the auto- and transphosphorylation activity of Btk, which prompted us to propose that Sab functions as a transregulator of Btk. Forced overexpression of Sab in B cells led to the reduction of B cell antigen receptor-induced tyrosine phosphorylation of Btk and significantly reduced both early and late B cell antigen receptor-mediated events, including calcium mobilization, inositol 1, 4,5-trisphosphate production, and apoptotic cell death, where the involvement of Btk activity has been demonstrated previously. Together, these results indicate the negative regulatory role of Sab in the B cell cytoplasmic tyrosine kinase pathway.

  3. Bruton’s tyrosine kinase activity is negatively regulated by Sab, the Btk-SH3 domain-binding protein

    PubMed Central

    Yamadori, Tomoki; Baba, Yoshihiro; Matsushita, Masato; Hashimoto, Shoji; Kurosaki, Mari; Kurosaki, Tomohiro; Kishimoto, Tadamitsu; Tsukada, Satoshi

    1999-01-01

    Bruton’s tyrosine kinase (Btk) is a cytoplasmic tyrosine kinase that is crucial for human and murine B cell development, and its deficiency causes human X-linked agammaglobulinemia and murine X-linked immunodeficiency. In this report, we describe the function of the Btk-binding protein Sab (SH3-domain binding protein that preferentially associates with Btk), which we reported previously as a newly identified Src homology 3 domain-binding protein. Sab was shown to inhibit the auto- and transphosphorylation activity of Btk, which prompted us to propose that Sab functions as a transregulator of Btk. Forced overexpression of Sab in B cells led to the reduction of B cell antigen receptor-induced tyrosine phosphorylation of Btk and significantly reduced both early and late B cell antigen receptor-mediated events, including calcium mobilization, inositol 1,4,5-trisphosphate production, and apoptotic cell death, where the involvement of Btk activity has been demonstrated previously. Together, these results indicate the negative regulatory role of Sab in the B cell cytoplasmic tyrosine kinase pathway. PMID:10339589

  4. Quantification of Anaplastic Lymphoma Kinase Protein Expression in Non-Small Cell Lung Cancer Tissues from Patients Treated with Crizotinib.

    PubMed

    Hembrough, Todd; Liao, Wei-Li; Hartley, Christopher P; Ma, Patrick C; Velcheti, Vamsidhar; Lanigan, Christopher; Thyparambil, Sheeno; An, Eunkyung; Monga, Manish; Krizman, David; Burrows, Jon; Tafe, Laura J

    2016-01-01

    Crizotinib has antitumor activity in ALK (anaplastic lymphoma receptor tyrosine kinase)-rearranged non-small cell lung cancer (NSCLC). The current diagnostic test for ALK rearrangement is breakapart fluorescence in situ hybridization (FISH), but FISH has low throughput and is not always reflective of protein concentrations. The emergence of multiple clinically relevant biomarkers in NSCLC necessitates efficient testing of scarce tissue samples. We developed an anaplastic lymphoma kinase (ALK) protein assay that uses multiplexed selected reaction monitoring (SRM) to quantify absolute amounts of ALK in formalin-fixed paraffin-embedded (FFPE) tumor tissue. After validation in formalin-fixed cell lines, the SRM assay was used to quantify concentrations of ALK in 18 FFPE NSCLC samples that had been tested for ALK by FISH and immunohistochemistry. Results were correlated with patient response to crizotinib. We detected ALK in 11 of 14 NSCLC samples with known ALK rearrangements by FISH. Absolute ALK concentrations correlated with clinical response in 5 of 8 patients treated with crizotinib. The SRM assay did not detect ALK in 3 FISH-positive patients who had not responded to crizotinib. In 1 of these cases, DNA sequencing revealed a point mutation that predicts a nonfunctional ALK fusion protein. The SRM assay did not detect ALK in any tumor tissue with a negative ALK status by FISH or immunohistochemistry. ALK concentrations measured by SRM correlate with crizotinib response in NSCLC patients. The ALK SRM proteomic assay, which may be multiplexed with other clinically relevant proteins, allows for rapid identification of patients potentially eligible for targeted therapies. © 2015 American Association for Clinical Chemistry.

  5. Quantification of Anaplastic Lymphoma Kinase Protein Expression in Non–Small Cell Lung Cancer Tissues from Patients Treated with Crizotinib

    PubMed Central

    Hembrough, Todd; Liao, Wei-Li; Hartley, Christopher P.; Ma, Patrick C.; Velcheti, Vamsidhar; Lanigan, Christopher; Thyparambil, Sheeno; An, Eunkyung; Monga, Manish; Krizman, David; Burrows, Jon; Tafe, Laura J.

    2016-01-01

    BACKGROUND Crizotinib has antitumor activity in ALK (anaplastic lymphoma receptor tyrosine kinase)-rearranged non–small cell lung cancer (NSCLC). The current diagnostic test for ALK rearrangement is breakapart fluorescence in situ hybridization (FISH), but FISH has low throughput and is not always reflective of protein concentrations. The emergence of multiple clinically relevant biomarkers in NSCLC necessitates efficient testing of scarce tissue samples. We developed an anaplastic lymphoma kinase (ALK) protein assay that uses multiplexed selected reaction monitoring (SRM) to quantify absolute amounts of ALK in formalin-fixed paraffin-embedded (FFPE) tumor tissue. METHODS After validation in formalin-fixed cell lines, the SRM assay was used to quantify concentrations of ALK in 18 FFPE NSCLC samples that had been tested for ALK by FISH and immunohistochemistry. Results were correlated with patient response to crizotinib. RESULTS We detected ALK in 11 of 14 NSCLC samples with known ALK rearrangements by FISH. Absolute ALK concentrations correlated with clinical response in 5 of 8 patients treated with crizotinib. The SRM assay did not detect ALK in 3 FISH-positive patients who had not responded to crizotinib. In 1 of these cases, DNA sequencing revealed a point mutation that predicts a nonfunctional ALK fusion protein. The SRM assay did not detect ALK in any tumor tissue with a negative ALK status by FISH or immunohistochemistry. CONCLUSIONS ALK concentrations measured by SRM correlate with crizotinib response in NSCLC patients. The ALK SRM proteomic assay, which may be multiplexed with other clinically relevant proteins, allows for rapid identification of patients potentially eligible for targeted therapies. PMID:26585927

  6. Crystal structure of designed PX domain from cytokine-independent survival kinase and implications on evolution-based protein engineering.

    PubMed

    Shultis, David; Dodge, Gregory; Zhang, Yang

    2015-08-01

    The Phox homology domain (PX domain) is a phosphoinositide-binding structural domain that is critical in mediating protein and cell membrane association and has been found in more than 100 eukaryotic proteins. The abundance of PX domains in nature offers an opportunity to redesign the protein using EvoDesign, a computational approach to design new sequences based on structure profiles of multiple evolutionarily related proteins. In this study, we report the X-ray crystallographic structure of a designed PX domain from the cytokine-independent survival kinase (CISK), which has been implicated as functioning in parallel with PKB/Akt in cell survival and insulin responses. Detailed data analysis of the designed CISK-PX protein demonstrates positive impacts of knowledge-based secondary structure and solvation predictions and structure-based sequence profiles on the efficiency of the evolutionary-based protein design method. The structure of the designed CISK-PX domain is close to the wild-type (1.54 Å in Cα RMSD), which was accurately predicted by I-TASSER based fragment assembly simulations (1.32 Å in Cα RMSD). This study represents the first successfully designed conditional peripheral membrane protein fold and has important implications in the examination and experimental validation of the evolution-based protein design approaches.

  7. Effects of ortho substituent groups of protocatechualdehyde derivatives on binding to the C1 domain of novel protein kinase C.

    PubMed

    Mamidi, Narsimha; Borah, Rituparna; Sinha, Narayan; Jana, Chandramohan; Manna, Debasis

    2012-09-06

    Diacylglycerol (DAG) regulates a broad range of cellular functions including tumor promotion, apoptosis, differentiation, and growth. Thus, the DAG-responsive C1 domain of protein kinase C (PKC) isoenzymes is considered to be an attractive drug target for the treatment of cancer and other diseases. To develop effective PKC regulators, we conveniently synthesized (hydroxymethyl)phenyl ester analogues targeted to the DAG binding site within the C1 domain. Biophysical studies and molecular docking analysis showed that the hydroxymethyl group, hydrophobic side chains, and acyl group at the ortho position are essential for their interactions with the C1-domain backbone. Modifications of these groups showed diminished binding to the C1 domain. The active (hydroxymethyl)phenyl ester analogues showed more than 5-fold stronger binding affinity for the C1 domain than DAG. Therefore, our findings reveal that (hydroxymethyl)phenyl ester analogues represent an attractive group of C1-domain ligands that can be further structurally modified to improve their binding and activity.

  8. Crystal structure of shikimate kinase from Mycobacterium tuberculosis reveals the dynamic role of the LID domain in catalysis.

    PubMed

    Gu, Yijun; Reshetnikova, Ludmila; Li, Yue; Wu, Yan; Yan, Honggao; Singh, Shivendra; Ji, Xinhua

    2002-06-07

    Shikimate kinase (SK) and other enzymes in the shikimate pathway are potential targets for developing non-toxic antimicrobial agents, herbicides, and anti-parasite drugs, because the pathway is essential in the above species but is absent from mammals. The crystal structure of Mycobacterium tuberculosis SK (MtSK) in complex with MgADP has been determined at 1.8 A resolution, revealing critical information for the structure-based design of novel anti-M. tuberculosis agents. MtSK, with a five-stranded parallel beta-sheet flanked by eight alpha-helices, has three domains: the CORE domain, the shikimate-binding domain (SB), and the LID domain. The ADP molecule is bound with its adenine moiety sandwiched between the side-chains of Arg110 and Pro155, its beta-phosphate group in the P-loop, and the alpha and beta-phosphate groups hydrogen bonded to the guanidinium group of Arg117. Arg117 is located in the LID domain, is strictly conserved in SK sequences, is observed for the first time to interact with any bound nucleotide, and appears to be important in both substrate binding and catalysis. The crystal structure of MtSK (this work) and that of Erwinia chrysanthemi SK suggest a concerted conformational change of the LID and SB domains upon nucleotide binding.

  9. Neuronal leucine-rich repeat 1 negatively regulates anaplastic lymphoma kinase in neuroblastoma

    PubMed Central

    Satoh, Shunpei; Takatori, Atsushi; Ogura, Atsushi; Kohashi, Kenichi; Souzaki, Ryota; Kinoshita, Yoshiaki; Taguchi, Tomoaki; Hossain, Md. Shamim; Ohira, Miki; Nakamura, Yohko; Nakagawara, Akira

    2016-01-01

    In neuroblastoma (NB), one of the most common paediatric solid tumours, activation of anaplastic lymphoma kinase (ALK) is often associated with poor outcomes. Although genetic studies have identified copy number alteration and nonsynonymous mutations of ALK, the regulatory mechanism of ALK signalling at protein levels is largely elusive. Neuronal leucine-rich repeat 1 (NLRR1) is a type 1 transmembrane protein that is highly expressed in unfavourable NB and potentially influences receptor tyrosine kinase signalling. Here, we showed that NLRR1 and ALK exhibited a mutually exclusive expression pattern in primary NB tissues by immunohistochemistry. Moreover, dorsal root ganglia of Nlrr1+/+ and Nlrr1−/− mice displayed the opposite expression patterns of Nlrr1 and Alk. Of interest, NLRR1 physically interacted with ALK in vitro through its extracellular region. Notably, the NLRR1 ectodomain impaired ALK phosphorylation and proliferation of ALK-mutated NB cells. A newly identified cleavage of the NLRR1 ectodomain also supported NLRR1-mediated ALK signal regulation in trans. Thus, we conclude that NLRR1 appears to be an extracellular negative regulator of ALK signalling in NB and neuronal development. Our findings may be beneficial to comprehend NB heterogeneity and to develop a novel therapy against unfavourable NB. PMID:27604320

  10. Alectinib induced CNS radiation necrosis in an ALK+NSCLC patient with a remote (7 years) history of brain radiation.

    PubMed

    Ou, Sai-Hong Ignatius; Weitz, Michael; Jalas, John R; Kelly, Daniel F; Wong, Vanessa; Azada, Michele C; Quines, Oliver; Klempner, Samuel J

    2016-06-01

    Alectinib is a second generation ALK inhibitor that has significant clinical activity in central nervous system (CNS) metastases in anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC). Pseudoprogression (PsP) due to radiation necrosis during alecitnib treatment of central nervous system (CNS) metastases from ALK-rearranged NSCLC as been reported. Hence, distinguishing radiation-related PsP from alectinib-induced radiographic changes is important to avoid erroneous early trial discontinuation and abandonment of an effective treatment. However, it remains difficult to assess casuality of radiation necrosis is related to recent direct radiation or induced by alectinib treatment or both. It is also unknown how long from previous radiation can alectinib still induce radiation necrosis. Here we reported a crizotinib-refractory ALK-positive NSCLC patient who develop radiation necrosis in one of his metastatic CNS lesions after approximately 12 months of alectinib treatment who otherwise had on-going CNS response on alectinib. His most recent radiation to his CNS metastases was 7 years prior to the start of alectinib. This case illustrates that in the setting of pror CNS radiation, given the significant clinical activity of alectinib in CNS metastases in ALK-positive NSCLC patients the risk of CNS radiation necrosis remains long after previous radiation to the CNS metastases has been completed and can occur after durable response of treatment.

  11. Molecular dynamics and pharmacophore modelling studies of different subtype (ALK and EGFR (T790M)) inhibitors in NSCLC.

    PubMed

    Singh, P K; Silakari, O

    2017-03-01

    Extensively validated 3D pharmacophore models for ALK (anaplastic lymphoma kinase) and EGFR (T790M) (epithelial growth factor receptor with acquired secondary mutation) were developed. The pharmacophore model for ALK (r(2) = 0.96, q(2) = 0.692) suggested that two hydrogen bond acceptors and three hydrophobic groups arranged in 3-D space are essential for the binding affinity of ALK inhibitors. Similarly, the pharmacophore model for EGFR (T790M) (r(2) = 0.92, q(2) = 0.72) suggested that the presence of a hydrogen bond acceptor, two hydrogen bond donors and a hydrophobic group plays vital role in binding of an inhibitor of EGFR (T790M). These pharmacophore models allowed searches for novel ALK and EGFR (T790M) dual inhibitors from multiconformer 3D databases (Asinex, Chembridge and Maybridge). Finally, the eight best hits were selected for molecular dynamics simulation, to study the stability of their complexes with both proteins and final binding orientations of these molecules. After molecular dynamics simulations, one hit has been predicted to possess good binding affinity for both ALK and EGFR (T790M), which can be further investigated for its experimental in-vitro/in-vivo activities.

  12. Conformational Dynamics of the Focal Adhesion Targeting Domain Control Specific Functions of Focal Adhesion Kinase in Cells*

    PubMed Central

    Kadaré, Gress; Gervasi, Nicolas; Brami-Cherrier, Karen; Blockus, Heike; El Messari, Said; Arold, Stefan T.; Girault, Jean-Antoine

    2015-01-01

    Focal adhesion (FA) kinase (FAK) regulates cell survival and motility by transducing signals from membrane receptors. The C-terminal FA targeting (FAT) domain of FAK fulfils multiple functions, including recruitment to FAs through paxillin binding. Phosphorylation of FAT on Tyr925 facilitates FA disassembly and connects to the MAPK pathway through Grb2 association, but requires dissociation of the first helix (H1) of the four-helix bundle of FAT. We investigated the importance of H1 opening in cells by comparing the properties of FAK molecules containing wild-type or mutated FAT with impaired or facilitated H1 openings. These mutations did not alter the activation of FAK, but selectively affected its cellular functions, including self-association, Tyr925 phosphorylation, paxillin binding, and FA targeting and turnover. Phosphorylation of Tyr861, located between the kinase and FAT domains, was also enhanced by the mutation that opened the FAT bundle. Similarly phosphorylation of Ser910 by ERK in response to bombesin was increased by FAT opening. Although FAK molecules with the mutation favoring FAT opening were poorly recruited at FAs, they efficiently restored FA turnover and cell shape in FAK-deficient cells. In contrast, the mutation preventing H1 opening markedly impaired FAK function. Our data support the biological importance of conformational dynamics of the FAT domain and its functional interactions with other parts of the molecule. PMID:25391654

  13. Crystal Structure of the Frizzled-Like Cysteine-Rich Domain of the Receptor Tyrosine Kinase MuSK

    SciTech Connect<