Science.gov

Sample records for alk tyrosine kinase

  1. Activation of the orphan receptor tyrosine kinase ALK by zinc.

    PubMed

    Bennasroune, Aline; Mazot, Pierre; Boutterin, Marie-Claude; Vigny, Marc

    2010-08-06

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase essentially and transiently expressed during development of the central and peripheral nervous system. The nature of the cognate ligand of this receptor in Vertebrates is still a matter of debate. During synaptic transmission the release of ionic zinc found in vesicles of certain glutamatergic and gabaergic terminals may act as a neuromodulator by binding to pre- or post-synaptic receptors. Recently, zinc has been shown to activate the receptor tyrosine kinase, TrkB, independently of neurotrophins. This activation occurs via increasing the Src family kinase activity. In the present study, we investigated whether the ALK activity could be modulated by extracellular zinc. We first showed that zinc alone rapidly activates ALK. This activation is dependent of ALK tyrosine kinase activity and dimerization of the receptor but is independent of Src family kinase activity. In contrast, addition of sodium pyrithione, a zinc ionophore, led to a further activation of ALK. This stronger activation is dependent of Src family kinase but independent of ALK activity and dimerization. In conclusion, zinc could constitute an endogenous ligand of ALK in vertebrates.

  2. ALK: a tyrosine kinase target for cancer therapy

    PubMed Central

    Holla, Vijaykumar R.; Elamin, Yasir Y.; Bailey, Ann Marie; Johnson, Amber M.; Litzenburger, Beate C.; Khotskaya, Yekaterina B.; Sanchez, Nora S.; Zeng, Jia; Shufean, Md Abu; Shaw, Kenna R.; Mendelsohn, John; Mills, Gordon B.; Meric-Bernstam, Funda; Simon, George R.

    2017-01-01

    The anaplastic lymphoma kinase (ALK) gene plays an important physiologic role in the development of the brain and can be oncogenically altered in several malignancies, including non-small-cell lung cancer (NSCLC) and anaplastic large cell lymphomas (ALCL). Most prevalent ALK alterations are chromosomal rearrangements resulting in fusion genes, as seen in ALCL and NSCLC. In other tumors, ALK copy-number gains and activating ALK mutations have been described. Dramatic and often prolonged responses are seen in patients with ALK alterations when treated with ALK inhibitors. Three of these—crizotinib, ceritinib, and alectinib—are now FDA approved for the treatment of metastatic NSCLC positive for ALK fusions. However, the emergence of resistance is universal. Newer ALK inhibitors and other targeting strategies are being developed to counteract the newly emergent mechanism(s) of ALK inhibitor resistance. This review outlines the recent developments in our understanding and treatment of tumors with ALK alterations. PMID:28050598

  3. Augmentor α and β (FAM150) are ligands of the receptor tyrosine kinases ALK and LTK: Hierarchy and specificity of ligand–receptor interactions

    PubMed Central

    Reshetnyak, Andrey V.; Murray, Phillip B.; Shi, Xiarong; Mo, Elizabeth S.; Mohanty, Jyotidarsini; Tome, Francisco; Bai, Hanwen; Gunel, Murat; Lax, Irit; Schlessinger, Joseph

    2015-01-01

    Receptor tyrosine kinases (RTKs) are a class of cell surface receptors that, upon ligand binding, stimulate a variety of critical cellular functions. The orphan receptor anaplastic lymphoma kinase (ALK) is one of very few RTKs that remain without a firmly established protein ligand. Here we present a novel cytokine, FAM150B, which we propose naming augmentor-α (AUG-α), as a ligand for ALK. AUG-α binds ALK with high affinity and activates ALK in cells with subnanomolar potency. Detailed binding experiments using cells expressing ALK or the related receptor leukocyte tyrosine kinase (LTK) demonstrate that AUG-α binds and robustly activates both ALK and LTK. We show that the previously established LTK ligand FAM150A (AUG-β) is specific for LTK and only weakly binds to ALK. Furthermore, expression of AUG-α stimulates transformation of NIH/3T3 cells expressing ALK, induces IL-3 independent growth of Ba/F3 cells expressing ALK, and is expressed in neuroblastoma, a cancer partly driven by ALK. These experiments reveal the hierarchy and specificity of two cytokines as ligands for ALK and LTK and set the stage for elucidating their roles in development and disease states. PMID:26630010

  4. Molecular Testing Guideline for Selection of Lung Cancer Patients for EGFR and ALK Tyrosine Kinase Inhibitors

    PubMed Central

    Lindeman, Neal I.; Cagle, Philip T.; Beasley, Mary Beth; Chitale, Dhananjay Arun; Dacic, Sanja; Giaccone, Giuseppe; Jenkins, Robert Brian; Kwiatkowski, David J.; Saldivar, Juan-Sebastian; Squire, Jeremy; Thunnissen, Erik; Ladanyi, Marc

    2014-01-01

    Objective To establish evidence-based recommendations for the molecular analysis of lung cancers that are that are required to guide EGFR- and ALK-directed therapies, addressing which patients and samples should be tested, and when and how testing should be performed. Participants Three cochairs without conflicts of interest were selected, one from each of the 3 sponsoring professional societies: College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Writing and advisory panels were constituted from additional experts from these societies. Evidence Three unbiased literature searches of electronic databases were performed to capture articles published published from January 2004 through February 2012, yielding 1533 articles whose abstracts were screened to identify 521 pertinent articles that were then reviewed in detail for their relevance to the recommendations. Evidence was formally graded for each recommendation. Consensus Process Initial recommendations were formulated by the cochairs and panel members at a public meeting. Each guideline section was assigned to at least 2 panelists. Drafts were circulated to the writing panel (version 1), advisory panel (version 2), and the public (version 3) before submission (version 4). Conclusions The 37 guideline items address 14 subjects, including 15 recommendations (evidence grade A/B). The major recommendations are to use testing for EGFR mutations and ALK fusions to guide patient selection for therapy with an epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) inhibitor, respectively, in all patients with advanced-stage adenocarcinoma, regardless of sex, race, smoking history, or other clinical risk factors, and to prioritize EGFR and ALK testing over other molecular predictive tests. As scientific discoveries and clinical practice outpace the completion of randomized clinical trials, evidence-based guidelines developed

  5. New therapeutic strategies in neuroblastoma: combined targeting of a novel tyrosine kinase inhibitor and liposomal siRNAs against ALK

    PubMed Central

    Di Paolo, Daniela; Yang, D.; Pastorino, Fabio; Emionite, Laura; Cilli, Michele; Daga, Antonio; Destefanis, Elisa; Di Fiore, Annarita; Piaggio, Francesca; Brignole, Chiara; Xu, Xiaobao; Liang, Chris; Gibbons, James

    2015-01-01

    Many different aberrations in the Anaplastic Lymphoma Kinase (ALK) were found to be oncogenic drivers in several cancers including neuroblastoma (NB), therefore ALK is now considered a critical player in NB oncogenesis and a promising therapeutic target. The ALK-inhibitor crizotinib has a limited activity against the various ALK mutations identified in NB patients. We tested: the activity of the novel ALK-inhibitor X-396 administered alone or in combination with Targeted Liposomes carrying ALK-siRNAs (TL[ALK-siRNA]) that are active irrespective of ALK gene mutational status; the pharmacokinetic profiles and the biodistribution of X-396; the efficacy of X-396 versus crizotinib treatment in NB xenografts; whether the combination of X-396 with the TL[ALK-siRNA] could promote long-term survival in NB mouse models. X-396 revealed good bioavailability, moderate half-life, high mean plasma and tumor concentrations. X-396 was more effective than crizotinib in inhibiting in vitro cell proliferation of NB cells and in reducing tumor volume in subcutaneous NB models in a dose-dependent manner. In orthotopic NB xenografts, X-396 significantly increased life span independently of the ALK mutation status. In combination studies, all effects were significantly improved in the mice treated with TL[ALK-siRNA] and X-396 compared to mice receiving the single agents. Our findings provide a rational basis to design innovative molecular-based treatment combinations for clinical application in ALK-driven NB tumors. PMID:26299615

  6. New therapeutic strategies in neuroblastoma: combined targeting of a novel tyrosine kinase inhibitor and liposomal siRNAs against ALK.

    PubMed

    Di Paolo, Daniela; Yang, D; Pastorino, Fabio; Emionite, Laura; Cilli, Michele; Daga, Antonio; Destafanis, Elisa; Di Fiore, Annarita; Piaggio, Francesca; Brignole, Chiara; Xu, Xiaobao; Liang, Chris; Gibbons, James; Ponzoni, Mirco; Perri, Patrizia

    2015-10-06

    Many different aberrations in the Anaplastic Lymphoma Kinase (ALK) were found to be oncogenic drivers in several cancers including neuroblastoma (NB), therefore ALK is now considered a critical player in NB oncogenesis and a promising therapeutic target. The ALK-inhibitor crizotinib has a limited activity against the various ALK mutations identified in NB patients. We tested: the activity of the novel ALK-inhibitor X-396 administered alone or in combination with Targeted Liposomes carrying ALK-siRNAs (TL[ALK-siRNA]) that are active irrespective of ALK gene mutational status; the pharmacokinetic profiles and the biodistribution of X-396; the efficacy of X-396 versus crizotinib treatment in NB xenografts; whether the combination of X-396 with the TL[ALK-siRNA] could promote long-term survival in NB mouse models. X-396 revealed good bioavailability, moderate half-life, high mean plasma and tumor concentrations. X-396 was more effective than crizotinib in inhibiting in vitro cell proliferation of NB cells and in reducing tumor volume in subcutaneous NB models in a dose-dependent manner. In orthotopic NB xenografts, X-396 significantly increased life span independently of the ALK mutation status. In combination studies, all effects were significantly improved in the mice treated with TL[ALK-siRNA] and X-396 compared to mice receiving the single agents. Our findings provide a rational basis to design innovative molecular-based treatment combinations for clinical application in ALK-driven NB tumors.

  7. Detection of anaplastic lymphoma kinase (ALK) gene rearrangement in non-small cell lung cancer and related issues in ALK inhibitor therapy: a literature review.

    PubMed

    Yi, Eunhee S; Chung, Jin-Haeng; Kulig, Kimary; Kerr, Keith M

    2012-06-01

    Anaplastic lymphoma kinase (ALK) encodes a receptor tyrosine kinase, and ALK gene rearrangement (ALK+) is implicated in the oncogenesis of non-small cell lung carcinomas (NSCLCs), especially adenocarcinomas. The ALK inhibitor crizotinib was approved in August 2011 by the US Food and Drug Administration (FDA) for treating late-stage NSCLCs that are ALK+, with a companion fluorescent in situ hybridization (FISH) test using the Vysis ALK Break Apart FISH Probe Kit. This review covers pertinent issues in ALK testing, including approaches to select target patients for the test, pros and cons of different detection methods, and mechanisms as well as monitoring of acquired crizotinib resistance in ALK+ NSCLCs.

  8. Therapeutic strategies and mechanisms of drug resistance in Anaplastic Lymphoma Kinase (ALK)-rearranged lung cancer.

    PubMed

    Katayama, Ryohei

    2017-02-06

    Anaplastic lymphoma kinase (ALK) gene encoding the receptor tyrosine kinase ALK is expressed as a fusion gene in a variety of carcinomas. The expression of ALK is nearly undetectable in adults, and its activation is normally regulated by its ligands, FAM150A/B. However, ALK gene rearrangements result in different ALK fusion proteins that are constitutively expressed via the active promoter of fusion partner genes. ALK fusion proteins dimerize in a ligand-independent manner and lead to the dysregulation of cell proliferation via abnormal constitutive activation of ALK tyrosine kinase. Many ALK tyrosine kinase inhibitors (TKIs) have been developed to date, are three of which are currently in clinical use for the treatment of ALK-rearranged non-small cell lung cancer (NSCLC). ALK TKIs often achieve marked tumor regression in NSCLC patients with ALK rearrangements; however, ALK TKI-resistant tumors inevitably emerge within a few years in most cases. In this review, we summarize diverse ALK TKI resistance mechanisms identified in NSCLC with ALK rearrangements, and review potential therapeutic strategies to overcome ALK TKI resistance in these patients.

  9. Anaplastic lymphoma kinase (ALK) inhibitors in the treatment of ALK-driven lung cancers.

    PubMed

    Roskoski, Robert

    2017-03-01

    Anaplastic lymphoma kinase is expressed in two-thirds of the anaplastic large-cell lymphomas as an NPM-ALK fusion protein. Physiological ALK is a receptor protein-tyrosine kinase within the insulin receptor superfamily of proteins that participates in nervous system development. The EML4-ALK fusion protein and four other ALK-fusion proteins play a fundamental role in the development in about 5% of non-small cell lung cancers. The amino-terminal portions of the ALK fusion proteins result in dimerization and subsequent activation of the ALK protein kinase domain that plays a key role in the pathogenesis of various tumors. Downstream signaling from the ALK fusion protein leads to the activation of the Ras/Raf/MEK/ERK1/2 cell proliferation module and the JAK/STAT cell survival pathways. Moreover, nearly two dozen ALK activating mutations are involved in the pathogenesis of childhood neuroblastomas. The occurrence of oncogenic ALK-fusion proteins, particularly in non-small cell lung cancer, has fostered considerable interest in the development of ALK inhibitors. Crizotinib was the first such inhibitor approved by the US Food and Drug Administration for the treatment of ALK-positive non-small cell lung cancer in 2011. The median time for the emergence of crizotinib drug resistance is 10.5 months after the initiation of therapy. Such resistance prompted the development of second-generation drugs including ceritinib and alectinib, which are approved for the treatment of non-small cell lung cancer. Unlike the single gatekeeper mutation that occurs in drug-resistant epidermal growth factor receptor in lung cancer, nearly a dozen different mutations in the catalytic domain of ALK fusion proteins have been discovered that result in crizotinib resistance. Crizotinib, ceritinib, and alectinib form a complex within the front cleft between the small and large lobes of an inactive ALK protein-kinase domain with a compact activation segment. These drugs are classified as type I½ B

  10. An interaction map of small-molecule kinase inhibitors with anaplastic lymphoma kinase (ALK) mutants in ALK-positive non-small cell lung cancer.

    PubMed

    Ai, Xinghao; Shen, Shengping; Shen, Lan; Lu, Shun

    2015-05-01

    Human anaplastic lymphoma kinase (ALK) has become a well-established target for the treatment of ALK-positive non-small cell lung cancer (NSCLC). Here, we have profiled seven small-molecule inhibitors, including 2 that are approved drugs, against a panel of clinically relevant mutations in ALK tyrosine kinase (TK) domain, aiming at a comprehensive understanding of molecular mechanism and biological implication underlying inhibitor response to ALK TK mutation. We find that (i) the gatekeeper mutation L1196M causes crizotinib resistance by simultaneously increasing and decreasing the binding affinities of, respectively, ATP and inhibitor to ALK, whereas the secondary mutation C1156Y, which is located far away from the ATP-binding site of ALK TK domain, causes the resistance by inducing marked allosteric effect on the site, (ii) the 2nd and 3rd generation kinase inhibitors exhibit relatively high sensitivity towards ALK mutants as compared to 1st generation inhibitors, (iii) the pan-kinase inhibitor staurosporine is insensitive for most mutations due to its high structural compatibility, and (iv) ATP affinity to ALK is generally reduced upon most clinically relevant mutations. Furthermore, we also identify six novel mutation-inhibitor pairs that are potentially associated with drug resistance. In addition, the G1202R and C1156Y mutations are expected to generally cause resistance for many existing inhibitors, since they can address significant effect on the geometric shape and physicochemical property of ALK active pocket.

  11. [Tyrosine kinase inhibitors].

    PubMed

    Robert, Jacques

    2011-11-01

    Membrane receptors with tyrosine kinase activity and cytoplasmic tyrosine kinases have emerged as important potential targets in oncology. Starting from basic structures such as anilino-quinazoline, numerous compounds have been synthesised, with the help of tyrosine kinase crystallography, which has allowed to optimise protein-ligand interactions. The catalytic domains of all kinases present similar three-dimensional structures, which explains that it may be difficult to identify molecules having a high specificity for a given tyrosine kinase. Some tyrosine kinase inhibitors are relatively specific for epidermal growth factor receptor (EGFR) such as géfitinib and erlotinib; other are mainly active against platelet-derived growth factor receptor (PDGFR) and the receptor KIT, such as imatinib or nilotinib, and other against vascular endothelial growth factor (VEGF) receptors involved in angiogenesis, such as sunitinib and sorafenib. The oral formulation of tyrosine kinase inhibitors is well accepted by the patients but may generate sometimes compliance problems requiring pharmacokinetic monitoring. This chemical family is in full expansion and several dozens of compounds have entered clinical trials.

  12. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer

    PubMed Central

    Koivunen, Jussi P.; Mermel, Craig; Zejnullahu, Kreshnik; Murphy, Carly; Lifshits, Eugene; Holmes, Alison J.; Choi, Hwan Geun; Kim, Jhingook; Chiang, Derek; Thomas, Roman; Lee, Jinseon; Richards, William G.; Sugarbaker, David J.; Ducko, Christopher; Lindeman, Neal; Marcoux, J. Paul; Engelman, Jeffrey A.; Gray, Nathanael S.; Lee, Charles; Meyerson, Matthew; Jänne, Pasi A.

    2011-01-01

    Purpose The EML4-ALK fusion gene has been detected in ~7% of Japanese non-small cell lung cancers (NSCLC). We determined the frequency of EML4-ALK in Caucasian NSCLCs and in NSCLC cell lines. We also determined whether TAE684, a specific ALK kinase inhibitor, would inhibit the growth of EML4-ALK containing cell lines in vitro and in vivo. Experimental Design We screened 305 primary NSCLCs (both US (n=138) and Korean (n=167) patients) and 83 NSCLC cell lines using RT-PCR and by exon array analyses. We evaluated the efficacy of TAE684 against NSCLC cell lines in vitro and in vivo. Results We detected 4 different variants, including two novel variants, of EML4-ALK using RT-PCR in 8/305 tumors (3%) and in 3/83 (3.6%) NSCLC cell lines. All EML4-ALK containing tumors and cell lines were adenocarcinomas. EML4-ALK was detected more frequently in NSCLC patients who were never or light (< 10 pack years) cigarette smokers compared to current/former smokers (6% vs. 1%; p=0.049). TAE684 inhibited the growth of 1 of 3 (H3122) EML4-ALK containing cell lines in vitro and in vivo, inhibited Akt phosphorylation and caused apoptosis. In another EML4-ALK cell line, DFCI032, TAE684 was ineffective due to co-activation of EGFR and ERBB2. The combination of TAE684 and CL-387,785 (EGFR/ERBB2 kinase inhibitor), inhibited growth and Akt phosphorylation and led to apoptosis in the DFCI032 cell line. Conclusions EML4-ALK is found in the minority of NSCLCs. ALK kinase inhibitors alone or in combination may nevertheless be clinically effective treatments for NSCLC patients whose tumors contain EML4-ALK. PMID:18594010

  13. Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3

    PubMed Central

    Kasprzycka, Monika; Marzec, Michal; Liu, Xiaobin; Zhang, Qian; Wasik, Mariusz A.

    2006-01-01

    The mechanisms of malignant cell transformation mediated by the oncogenic, chimeric nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) tyrosine kinase remain only partially understood. Here we report that the NPM/ALK-carrying T cell lymphoma (ALK+TCL) cells secrete IL-10 and TGF-β and express FoxP3, indicating their T regulatory (Treg) cell phenotype. The secreted IL-10 suppresses proliferation of normal immune, CD3/CD28-stimulated peripheral blood mononuclear cells and enhances viability of the ALK+TCL cells. The Treg phenotype of the affected cells is strictly dependent on NPM/ALK expression and function as demonstrated by transfection of the kinase into BaF3 cells and inhibition of its enzymatic activity and expression in ALK+TCL cells. NPM/ALK, in turn, induces the phenotype through activation of its key signal transmitter, signal transducer and activator of transcription 3 (STAT3). These findings identify a mechanism of NPM/ALK-mediated oncogenesis based on induction of the Treg phenotype of the transformed CD4+ T cells. These results also provide an additional rationale to therapeutically target the chimeric kinase and/or STAT3 in ALK+TCL. PMID:16766651

  14. Alectinib: a novel second generation anaplastic lymphoma kinase (ALK) inhibitor for overcoming clinically-acquired resistance

    PubMed Central

    Song, Zilan; Wang, Meining; Zhang, Ao

    2015-01-01

    The development of inhibitors for the tyrosine anaplastic lymphoma kinase (ALK) has advanced rapidly, driven by biology and medicinal chemistry. The first generation ALK inhibitor crizotinib was granted US FDA approval with only four years of preclinical and clinical testing. Although this drug offers significant clinical benefit to the ALK-positive patients, resistance has been developed through a variety of mechanisms. In addition to ceritinib, alectinib is another second-generation ALK inhibitor launched in 2014 in Japan. This drug has a unique chemical structure bearing a 5H-benzo[b]carbazol-11(6H)-one structural scaffold with an IC50 value of 1.9 nmol/L, and is highly potent against ALK bearing the gatekeeper mutation L1196M with an IC50 of 1.56 nmol/L. In the clinic, alectinib is highly efficacious in treatment of ALK-positive non-small cell lung cancer (NSCLC), and retains potency to combat crizotinib-resistant ALK mutations L1196M, F1174L, R1275Q and C1156Y. PMID:26579422

  15. Atypical Carcinoid Tumor with Anaplastic Lymphoma Kinase (ALK) Rearrangement Successfully Treated by an ALK Inhibitor.

    PubMed

    Nakajima, Masayuki; Uchiyama, Naoki; Shigemasa, Rie; Matsumura, Takeshi; Matsuoka, Ryota; Nomura, Akihiro

    This is the first report in which crizotinib, an anaplastic lymphoma kinase (ALK) inhibitor, reduced an atypical carcinoid tumor with ALK rearrangement. A 70-year-old man developed a tumor in the left lung and multiple metastases to the lung and brain. The pathology of transbronchial biopsied specimens demonstrated an atypical carcinoid pattern. Combined with immunohistochemical findings, we diagnosed the tumor as atypical carcinoid. ALK gene rearrangement was observed by both immunohistochemical (IHC) and fluorescence in situ hybridization. He was treated with chemotherapy as first-line therapy, however, the tumor did not respond to chemotherapy. Thereafter, he was treated with crizotinib, which successfully reduced the tumors.

  16. Discovering the first tyrosine kinase.

    PubMed

    Hunter, Tony

    2015-06-30

    In the middle of the 20th century, animal tumor viruses were heralded as possible models for understanding human cancer. By the mid-1970s, the molecular basis by which tumor viruses transform cells into a malignant state was beginning to emerge as the first viral genomic sequences were reported and the proteins encoded by their transforming genes were identified and characterized. This was a time of great excitement and rapid progress. In 1978, prompted by the discovery from Ray Erikson's group that the Rous sarcoma virus (RSV) v-Src-transforming protein had an associated protein kinase activity specific for threonine, my group at the Salk Institute set out to determine whether the polyomavirus middle T-transforming protein had a similar kinase activity. Here, I describe the experiments that led to the identification of a kinase activity associated with middle T antigen and our serendipitous discovery that this activity was specific for tyrosine in vitro, and how this in turn led to the fortuitous observation that the v-Src-associated kinase activity was also specific for tyrosine. Our finding that v-Src increased the level of phosphotyrosine in cellular proteins in RSV-transformed cells confirmed that v-Src is a tyrosine kinase and transforms cells by phosphorylating proteins on tyrosine. My colleague Bart Sefton and I reported these findings in the March issue of PNAS in 1980. Remarkably, all of the experiments in this paper were accomplished in less than one month.

  17. Discovering the first tyrosine kinase

    PubMed Central

    Hunter, Tony

    2015-01-01

    In the middle of the 20th century, animal tumor viruses were heralded as possible models for understanding human cancer. By the mid-1970s, the molecular basis by which tumor viruses transform cells into a malignant state was beginning to emerge as the first viral genomic sequences were reported and the proteins encoded by their transforming genes were identified and characterized. This was a time of great excitement and rapid progress. In 1978, prompted by the discovery from Ray Erikson’s group that the Rous sarcoma virus (RSV) v-Src–transforming protein had an associated protein kinase activity specific for threonine, my group at the Salk Institute set out to determine whether the polyomavirus middle T-transforming protein had a similar kinase activity. Here, I describe the experiments that led to the identification of a kinase activity associated with middle T antigen and our serendipitous discovery that this activity was specific for tyrosine in vitro, and how this in turn led to the fortuitous observation that the v-Src–associated kinase activity was also specific for tyrosine. Our finding that v-Src increased the level of phosphotyrosine in cellular proteins in RSV-transformed cells confirmed that v-Src is a tyrosine kinase and transforms cells by phosphorylating proteins on tyrosine. My colleague Bart Sefton and I reported these findings in the March issue of PNAS in 1980. Remarkably, all of the experiments in this paper were accomplished in less than one month. PMID:26130799

  18. Tyrosine Kinase Inhibitors in Lung Cancer

    PubMed Central

    Thomas, Anish; Rajan, Arun; Giaccone, Giuseppe

    2012-01-01

    SYNOPSIS ‘Driver mutations’ are essential for carcinogenesis as well as tumor progression as they confer a selective growth advantage to cancer cells. Identification of driver mutations in growth related protein kinases, especially tyrosine kinases have led to clinical development of an array of tyrosine kinase inhibitors in various malignancies, including lung cancer. Inhibition of epidermal growth factor receptor and anaplastic lymphoma kinase tyrosine kinases have proven to be of meaningful clinical benefit, while inhibition of several other tyrosine kinases have been of limited clinical benefit, thus far. An improved understanding of tyrosine kinase biology has also led to faster drug development, identification of resistance mechanisms and ways to overcome resistance. In this review, we discuss the clinical data supporting the use and practical aspects of management of patients on epidermal growth factor receptor and anaplastic lymphoma kinase tyrosine kinase inhibitors. PMID:22520981

  19. Tyrosine kinases in inflammatory dermatologic disease

    PubMed Central

    Paniagua, Ricardo T.; Fiorentino, David; Chung, Lorinda; Robinson, William H.

    2010-01-01

    Tyrosine kinases are enzymes that catalyze the phosphorylation of tyrosine residues on protein substrates. They are key components of signaling pathways that drive an array of cellular responses including proliferation, differentiation, migration, and survival. Specific tyrosine kinases have recently been identified as critical to the pathogenesis of several autoimmune and inflammatory diseases. Small-molecule inhibitors of tyrosine kinases are emerging as a novel class of therapy that may provide benefit in certain patient subsets. In this review, we highlight tyrosine kinase signaling implicated in inflammatory dermatologic diseases, evaluate strategies aimed at inhibiting these aberrant signaling pathways, and discuss prospects for future drug development. PMID:20584561

  20. Receptor Tyrosine Kinases in Drosophila Development

    PubMed Central

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  1. Receptor tyrosine kinases in carcinogenesis.

    PubMed

    Zhang, Xiao-Ying; Zhang, Pei-Ying

    2016-11-01

    Receptor tyrosine kinases (RTKs) are cell surface glycoproteins with enzymatic activity involved in the regulation of various important functions. In all-important physiological functions including differentiation, cell-cell interactions, survival, proliferation, metabolism, migration and signaling these receptors are the key players of regulation. Additionally, mutations of RTKs or their overexpression have been described in many human cancers and are being explored as a novel avenue for a new therapeutic approach. Some of the deregulated RTKs observed to be significantly affected in cancers included vascular endothelial growth factor receptor, epidermal growth factor receptor, fibroblast growth factor receptor, RTK-like orphan receptor 1 (ROR1) and the platelet-derived growth factor receptor. These deregulated RTKs offer attractive possibilities for the new anticancer therapeutic approach involving specific targeting by monoclonal antibodies as well as kinase. The present review aimed to highlight recent perspectives of RTK ROR1 in cancer.

  2. Rearranged Anaplastic Lymphoma Kinase (ALK) Gene in Adult-Onset Papillary Thyroid Cancer Amongst Atomic Bomb Survivors

    PubMed Central

    Mukai, Mayumi; Takahashi, Keiko; Hayashi, Yuzo; Nakachi, Kei; Kusunoki, Yoichiro

    2012-01-01

    Background We previously noted that among atomic bomb survivors (ABS), the relative frequency of cases of adult papillary thyroid cancer (PTC) with chromosomal rearrangements (mainly RET/PTC) was significantly greater in those with relatively higher radiation exposure than those with lower radiation exposure. In contrast, the frequency of PTC cases with point mutations (mainly BRAFV600E) was significantly lower in patients with relatively higher radiation exposure than those with lower radiation exposure. We also found that among ABS, the frequency of PTC cases with no detectable gene alterations in RET, neurotrophic tyrosine kinase receptor 1 (NTRK1), BRAF, or RAS was significantly higher in patients with relatively higher radiation exposure than those with lower radiation exposure. However, in ABS with PTC, the relationship between the presence of the anaplastic lymphoma kinase (ALK) gene fused with other gene partners and radiation exposure has received little study. In this study, we tested the hypothesis that the relative frequency of rearranged ALK in ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, would be greater in those having relatively higher radiation exposures. Methods The 105 subjects in the study were drawn from the Life Span Study cohort of ABS of Hiroshima and Nagasaki who were diagnosed with PTC between 1956 and 1993. Seventy-nine were exposed (>0 mGy), and 26 were not exposed to A-bomb radiation. In the 25 ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, we examined archival, formalin-fixed, paraffin-embedded PTC specimens for rearrangement of ALK using reverse transcription–polymerase chain reaction and 5′ rapid amplification of cDNA ends (5′ RACE). Results We found rearranged ALK in 10 of 19 radiation-exposed PTC cases, but none among 6 patients with PTC with no radiation exposure. In addition, solid/trabecular-like architecture in PTC was closely associated with ALK

  3. Ocular Toxicity of Tyrosine Kinase Inhibitors

    PubMed Central

    Davis, Mary Elizabeth

    2016-01-01

    Purpose/Objectives To review common tyrosine kinase inhibitors, as well as their ocular side effects and management. Data Sources A comprehensive literature search was conducted using cINahl®, Pubmed, and cochrane databases for articles published since 2004 with the following search terms: ocular toxicities, tyrosine kinase inhibitors, ophthalmology, adverse events, eye, and vision. Data Synthesis Tyrosine kinase inhibitors can cause significant eye toxicity. Conclusions Given the prevalence of new tyrosine kinase inhibitor therapies and the complexity of possible pathogenesis of ocular pathology, oncology nurses can appreciate the occurrence of ocular toxicities and the role of nursing in the management of these problems. Implications for Nursing Knowledge of the risk factors and etiology of ocular toxicity of targeted cancer therapies can guide nursing assessment, enhance patient education, and improve care management. Including a review of eye symptoms and vision issues in nursing assessment can enhance early detection and treatment of ocular toxicity. PMID:26906134

  4. In contrast to agonist monoclonal antibodies, both C-terminal truncated form and full length form of Pleiotrophin failed to activate vertebrate ALK (anaplastic lymphoma kinase)?

    PubMed

    Mathivet, Thomas; Mazot, Pierre; Vigny, Marc

    2007-12-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase essentially and transiently expressed during development in specific regions of the central and peripheral nervous system. ALK expression persists at a lower level in the adult brain. Thus, it might play an important role in both the normal development and function of the nervous system. The nature of the cognate ligand of this receptor in vertebrates is still a matter of debate. Pleiotrophin and midkine have been proposed as ligands of ALK but several independent studies do not confirm this hypothesis. Interestingly, a recent study proposed that a C-terminal truncated form of Pleiotrophin (Pleiotrophin.15) and not the full length form (Pleiotrophin.18) promotes glioblastoma proliferation in an ALK-dependent fashion. These data were obviously a strong basis to conciliate the conflicting results so far reported in the literature. In the present study, we first purified to homogeneity the two forms of Pleiotrophin secreted by HEK 293 cells. In contrast to agonist monoclonal antibodies, both Pleiotrophin.15 and Pleiotrophin.18 failed to activate ALK in neuroblastoma and glioblastoma cells expressing this receptor. Thus, for our point of view, ALK is still an orphan receptor in vertebrates.

  5. CRKL mediates EML4-ALK signaling and is a potential therapeutic target for ALK-rearranged lung adenocarcinoma

    PubMed Central

    Voeller, Donna; Gower, Arjan; Kim, In-Kyu; Zhang, Yu-Wen; Giaccone, Giuseppe

    2016-01-01

    Anaplastic lymphoma kinase (ALK) gene rearrangements are oncogenic drivers in a small subset of patients with non-small-cell lung cancer (NSCLC). The ALK inhibitors are highly effective in NSCLC patients harboring ALK rearrangements; however, most patients acquire resistance to the therapy following an initial response. Mechanisms of acquired resistance are complex. We used LC-MS/MS-based phosphotyrosine-peptide profiling in the EML4-ALK rearranged H3122 and H2228 cells treated with ALK inhibitors, to identify downstream effectors of ALK. We then used Western blot, siRNA experiments, cell proliferation, viability and migration assays to validate our findings. We identified CRKL as a novel downstream effector of ALK signaling. We demonstrated that CRKL tyrosine phosphorylation was repressed by pharmacological inhibition or small interfering RNA (siRNA) knockdown of ALK in the ALK-rearranged cells. More importantly, CRKL knockdown attenuated their cell proliferation, viability, and migration, but it had no effect on ALK phosphorylation and expression in these cells. Furthermore, CRKL tyrosine phosphorylation was inhibited by dasatinib (an inhibitor of ABL and SRC kinases), which in combination with the ALK inhibitor crizotinib displayed a synergistic inhibitory effect in vitro. In conclusion, our study suggests that CRKL is a key downstream effector of ALK, and combined inhibition of ALK and CRKL may represent an effective strategy for treating ALK-rearranged NSCLC patients. PMID:27078848

  6. Tyrosine kinase inhibitors in preclinical development.

    PubMed

    Levitt, M L; Koty, P P

    1999-01-01

    Due to the limited efficacy of cytotoxic chemotherapy in the treatment of advanced malignancy and its excessive toxicity precluding its use in chemoprevention, new therapeutic and preventive strategies have been sought. One of the most interesting of these new approaches is the manipulation of signal transduction pathways. Among the approaches being considered to eventuate such a strategy is the inhibition of autophosphorylation, a critical first step in the signal transduction pathways of many cell surface receptor tyrosine kinases, as well as of non-receptor tyrosine kinases. This article is intended to review those tyrosine kinase inhibitors that are currently in preclinical development, for which there are data to support consideration for their use in chemoprevention or cancer treatment. We will focus upon those agents that have received attention in the past several years.

  7. Analysis of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-reactive CD8(+) T cell responses in children with NPM-ALK(+) anaplastic large cell lymphoma.

    PubMed

    K Singh, V; Werner, S; Hackstein, H; Lennerz, V; Reiter, A; Wölfel, T; Damm-Welk, C; Woessmann, W

    2016-10-01

    Cellular immune responses against the oncoantigen anaplastic lymphoma kinase (ALK) in patients with ALK-positive anaplastic large cell lymphoma (ALCL) have been detected using peptide-based approaches in individuals preselected for human leucocyte antigen (HLA)-A*02:01. In this study, we aimed to evaluate nucleophosmin (NPM)-ALK-specific CD8(+) T cell responses in ALCL patients ensuring endogenous peptide processing of ALK antigens and avoiding HLA preselection. We also examined the HLA class I restriction of ALK-specific CD8(+) T cells. Autologous dendritic cells (DCs) transfected with in-vitro-transcribed RNA (IVT-RNA) encoding NPM-ALK were used as antigen-presenting cells for T cell stimulation. Responder T lymphocytes were tested in interferon-gamma enzyme-linked immunospot (ELISPOT) assays with NPM-ALK-transfected autologous DCs as well as CV-1 in Origin with SV40 genes (COS-7) cells co-transfected with genes encoding the patients' HLA class I alleles and with NPM-ALK encoding cDNA to verify responses and define the HLA restrictions of specific T cell responses. NPM-ALK-specific CD8(+) T cell responses were detected in three of five ALK-positive ALCL patients tested between 1 and 13 years after diagnosis. The three patients had also maintained anti-ALK antibody responses. No reactivity was detected in samples from five healthy donors. The NPM-ALK-specific CD8(+) T cell responses were restricted by HLA-C-alleles (C*06:02 and C*12:02) in all three cases. This approach allowed for the detection of NPM-ALK-reactive T cells, irrespective of the individual HLA status, up to 9 years after ALCL diagnosis.

  8. RTKdb: database of receptor tyrosine kinase

    PubMed Central

    Grassot, Julien; Mouchiroud, Guy; Perrière, Guy

    2003-01-01

    Receptor Tyrosine Kinases (RTK) are transmembrane receptors specifically found in metazoans. They represent an excellent model for studying evolution of cellular processes in metazoans because they encompass large families of modular proteins and belong to a major family of contingency generating molecules in eukaryotic cells: the protein kinases. Because tyrosine kinases have been under close scrutiny for many years in various species, they are associated with a wealth of information, mainly in mammals. Presently, most categories of RTK were identified in mammals, but in a near future other model species will be sequenced, and will bring us RTKs from other metazoan clades. Thus, collecting RTK sequences would provide a good starting point as a new model for comparative and evolutionary studies applying to multigene families. In this context, we are developing the Receptor Tyrosine Kinase database (RTKdb), which is the only database on tyrosine kinase receptors presently available. In this database, protein sequences from eight model metazoan species are organized under the format previously used for the HOVERGEN, HOBACGEN and NUREBASE systems. RTKdb can be accessed through the PBIL (Pôle Bioinformatique Lyonnais) World Wide Web server at http://pbil.univ-lyon1.fr/RTKdb/, or through the FamFetch graphical user interface available at the same address. PMID:12520021

  9. Ror receptor tyrosine kinases: orphans no more

    PubMed Central

    Green, Jennifer L.; Kuntz, Steven G.; Sternberg, Paul W.

    2015-01-01

    Ror proteins are a conserved family of tyrosine kinase receptors that function in developmental processes, including skeletal and neuronal development, cell movement, and cell polarity. While Ror (receptor tyrosine kinase-like orphan receptor) proteins were originally named because the associated ligand and signaling pathway were unknown, recent studies in multiple species now establish that Ror proteins are Wnt receptors. Depending on the cellular context, Ror proteins can either activate or repress transcription of Wnt target genes and can modulate Wnt signaling by sequestering Wnt ligands. New evidence implicates Ror proteins in planar cell polarity (PCP), an alternative Wnt pathway. Here, we review the progress made in understanding these mysterious proteins and in particular we focus on their function as Wnt receptors. PMID:18848778

  10. Tyrosine Kinase Display of Prostate Cancer Cells

    DTIC Science & Technology

    2001-10-01

    transdifferentiation . The fact that some prostate cancer cell lines, such as LNCaP, can undergo NE differentiation suggests that at least a subset of NE cells is...Katz, C. A. Olsson, and R. Buttyan. 1997. Transdifferentiation of cultured human prostate cells to a neuroendocrine cell phenotype in a hormone...in the above-mentioned cases 3), and some of these cells can be induced to transdifferentiate are tyrosine kinases, which are known initiators of

  11. Structure Based Drug Design of Crizotinib (PF-02341066), a Potent and Selective Dual Inhibitor of Mesenchymal-Epithelial Transition Factor (c-MET) Kinase and Anaplastic Lymphoma Kinase (ALK)

    SciTech Connect

    Cui, J Jean; Tran-Dube,; #769; Michelle,; Shen, Hong; Nambu, Mitchell; Kung, Pei-Pei; Pairish, Mason; Jia, Lei; Meng, Jerry; Funk, Lee; Botrous, Iriny; McTigue, Michele; Grodsky, Neil; Ryan, Kevin; Padrique, Ellen; Alton, Gordon; Timofeevski, Sergei; Yamazaki, Shinji; Li, Qiuhua; Zou, Helen; Christensen, James; Mroczkowski, Barbara; Bender, Steve; Kania, Robert S; Edwards, Martin P

    2011-08-03

    Because of the critical roles of aberrant signaling in cancer, both c-MET and ALK receptor tyrosine kinases are attractive oncology targets for therapeutic intervention. The cocrystal structure of 3 (PHA-665752), bound to c-MET kinase domain, revealed a novel ATP site environment, which served as the target to guide parallel, multiattribute drug design. A novel 2-amino-5-aryl-3-benzyloxypyridine series was created to more effectively make the key interactions achieved with 3. In the novel series, the 2-aminopyridine core allowed a 3-benzyloxy group to reach into the same pocket as the 2,6-dichlorophenyl group of 3 via a more direct vector and thus with a better ligand efficiency (LE). Further optimization of the lead series generated the clinical candidate crizotinib (PF-02341066), which demonstrated potent in vitro and in vivo c-MET kinase and ALK inhibition, effective tumor growth inhibition, and good pharmaceutical properties.

  12. Canine pulmonary adenocarcinoma tyrosine kinase receptor expression and phosphorylation

    PubMed Central

    2014-01-01

    Background This study evaluated tyrosine kinase receptor (TKR) expression and activation in canine pulmonary adenocarcinoma (cpAC) biospecimens. As histological similarities exist between human and cpAC, we hypothesized that cpACs will have increased TKR mRNA and protein expression as well as TKR phosphorylation. The molecular profile of cpAC has not been well characterized making the selection of therapeutic targets that would potentially have relevant biological activity impossible. Therefore, the objectives of this study were to define TKR expression and their phosphorylation state in cpAC as well as to evaluate the tumors for the presence of potential epidermal growth factor receptor (EGFR) tyrosine kinase activating mutations in exons 18–21. Immunohistochemistry (IHC) for TKR expression was performed using a tissue microarray (TMA) constructed from twelve canine tumors and companion normal lung samples. Staining intensities of the IHC were quantified by a veterinary pathologist as well as by two different digitalized algorithm image analyses software programs. An antibody array was used to evaluate TKR phosphorylation of the tumor relative to the TKR phosphorylation of normal tissues with the resulting spot intensities quantified using array analysis software. Each EGFR exon PCR product from all of the tumors and non-affected lung tissues were sequenced using sequencing chemistry and the sequencing reactions were run on automated sequencer. Sequence alignments were made to the National Center for Biotechnology Information canine EGFR reference sequence. Results The pro-angiogenic growth factor receptor, PDGFRα, had increased cpAC tumor mRNA, protein expression and phosphorylation when compared to the normal lung tissue biospecimens. Similar to human pulmonary adenocarcinoma, significant increases in cpAC tumor mRNA expression and receptor phosphorylation of the anaplastic lymphoma kinase (ALK) tyrosine receptor were present when compared to the

  13. Design, synthesis and pharmacological evaluation of 2-(thiazol-2-amino)-4-arylaminopyrimidines as potent anaplastic lymphoma kinase (ALK) inhibitors.

    PubMed

    Liu, Zhiqing; Yue, Xihua; Song, Zilan; Peng, Xia; Guo, Junfeng; Ji, Yinchun; Cheng, Zhen; Ding, Jian; Ai, Jing; Geng, Meiyu; Zhang, Ao

    2014-10-30

    A series of new 2,4-diarylaminopyrimidine analogues (DAAPalogues) was developed by incorporation of a substituted 2-aminothiazole component as the C-2 substituent of the center pyrimidine core. Compound 5i showed highest potency of 12.4 nM against ALK and 24.1 nM against ALK gatekeeper mutation L1196M. Although only having moderate cellular potency in the SUP-M2 cells harboring NPM-ALK, compound 5i showed good kinase selectivity and dose-dependently inhibited phosphorylation of ALK and its down-stream signaling pathways.

  14. Tyrosine Kinase Inhibition: An Approach to Drug Development

    NASA Astrophysics Data System (ADS)

    Levitzki, Alexander; Gazit, Aviv

    1995-03-01

    Protein tyrosine kinases (PTKs) regulate cell proliferation, cell differentiation, and signaling processes in the cells of the immune system. Uncontrolled signaling from receptor tyrosine kinases and intracellular tyrosine kinases can lead to inflammatory responses and to diseases such as cancer, atherosclerosis, and psoriasis. Thus, inhibitors that block the activity of tyrosine kinases and the signaling pathways they activate may provide a useful basis for drug development. This article summarizes recent progress in the development of PTK inhibitors and demonstrates their potential use in the treatment of disease.

  15. Activin Receptor-Like Kinase Receptors ALK5 and ALK1 Are Both Required for TGFβ-Induced Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    de Kroon, Laurie M. G.; Narcisi, Roberto; Blaney Davidson, Esmeralda N.; Cleary, Mairéad A.; van Beuningen, Henk M.; Koevoet, Wendy J. L. M.; van Osch, Gerjo J. V. M.; van der Kraan, Peter M.

    2015-01-01

    Introduction Bone marrow-derived mesenchymal stem cells (BMSCs) are promising for cartilage regeneration because BMSCs can differentiate into cartilage tissue-producing chondrocytes. Transforming Growth Factor β (TGFβ) is crucial for inducing chondrogenic differentiation of BMSCs and is known to signal via Activin receptor-Like Kinase (ALK) receptors ALK5 and ALK1. Since the specific role of these two TGFβ receptors in chondrogenesis is unknown, we investigated whether ALK5 and ALK1 are expressed in BMSCs and whether both receptors are required for chondrogenic differentiation of BMSCs. Materials & Methods ALK5 and ALK1 gene expression in human BMSCs was determined with RT-qPCR. To induce chondrogenesis, human BMSCs were pellet-cultured in serum-free chondrogenic medium containing TGFβ1. Chondrogenesis was evaluated by aggrecan and collagen type IIα1 RT-qPCR analysis, and histological stainings of proteoglycans and collagen type II. To overexpress constitutively active (ca) receptors, BMSCs were transduced either with caALK5 or caALK1. Expression of ALK5 and ALK1 was downregulated by transducing BMSCs with shRNA against ALK5 or ALK1. Results ALK5 and ALK1 were expressed in in vitro-expanded as well as in pellet-cultured BMSCs from five donors, but mRNA levels of both TGFβ receptors did not clearly associate with chondrogenic induction. TGFβ increased ALK5 and decreased ALK1 gene expression in chondrogenically differentiating BMSC pellets. Neither caALK5 nor caALK1 overexpression induced cartilage matrix formation as efficient as that induced by TGFβ. Moreover, short hairpin-mediated downregulation of either ALK5 or ALK1 resulted in a strong inhibition of TGFβ-induced chondrogenesis. Conclusion ALK5 as well as ALK1 are required for TGFβ-induced chondrogenic differentiation of BMSCs, and TGFβ not only directly induces chondrogenesis, but also modulates ALK5 and ALK1 receptor signaling in BMSCs. These results imply that optimizing cartilage formation by

  16. Chlamydia trachomatis tarp is phosphorylated by src family tyrosine kinases.

    PubMed

    Jewett, Travis J; Dooley, Cheryl A; Mead, David J; Hackstadt, Ted

    2008-06-27

    The translocated actin recruiting phosphoprotein (Tarp) is injected into the cytosol shortly after Chlamydia trachomatis attachment to a target cell and subsequently phosphorylated by an unidentified tyrosine kinase. A role for Tarp phosphorylation in bacterial entry is unknown. In this study, recombinant C. trachomatis Tarp was employed to identify the host cell kinase(s) required for phosphorylation. Each tyrosine rich repeat of L2 Tarp harbors a sequence similar to a Src and Abl kinase consensus target. Furthermore, purified p60-src, Yes, Fyn, and Abl kinases were able to phosphorylate Tarp. Mutagenesis of potential tyrosines within a single tyrosine rich repeat peptide indicated that both Src and Abl kinases phosphorylate the same residues suggesting that C. trachomatis Tarp may serve as a substrate for multiple host cell kinases. Surprisingly, chemical inhibition of Src and Abl kinases prevented Tarp phosphorylation in culture and had no measurable effect on bacterial entry into host cells.

  17. ALK and ROS1 as a joint target for the treatment of lung cancer: a review.

    PubMed

    Puig de la Bellacasa, Raimon; Karachaliou, Niki; Estrada-Tejedor, Roger; Teixidó, Jordi; Costa, Carlota; Borrell, José I

    2013-04-01

    Rearrangements of the anaplastic lymphoma kinase (ALK) have been described in multiple malignancies, including non-small cell lung cancer (NSCLC). ALK fusions have gain of function properties while activating mutations in wild-type ALK can also occur within the tyrosine kinase domain. ALK rearrangements define a new molecular subtype of NSCLC that is exquisitely sensitive to ALK inhibition. Crizotinib, an orally available small molecule ATP-mimetic compound which was originally designed as a MET inhibitor, was recognized to have "off-target" anti-ALK activity and has been approved in the USA for the treatment of patients with ALK-positive NSCLC. Chromosomal rearrangements involving the ROS1 receptor tyrosine kinase have also been recently described in NSCLC, while crizotinib is currently under clinical trial in this molecular subset of NSCLC patients. The basic approaches of any computer aided drug design work in terms of structure and ligand based drug design. Details of each of these approaches should be covered with an emphasis on utilizing both in order to develop multi-targeted small-molecule kinase inhibitors. Such multi-targeted tyrosine kinase inhibitors can have antiproliferative activity against both ROS1and ALK rearranged NSCLC. Herein, we highlight the importance of targeting these proteins and the advances in optimizing more potent and selective ALK and ROS1 kinase inhibitors.

  18. ALK and ROS1 as a joint target for the treatment of lung cancer: a review

    PubMed Central

    Puig de la Bellacasa, Raimon; Karachaliou, Niki; Estrada-Tejedor, Roger; Teixidó, Jordi; Costa, Carlota

    2013-01-01

    Rearrangements of the anaplastic lymphoma kinase (ALK) have been described in multiple malignancies, including non-small cell lung cancer (NSCLC). ALK fusions have gain of function properties while activating mutations in wild-type ALK can also occur within the tyrosine kinase domain. ALK rearrangements define a new molecular subtype of NSCLC that is exquisitely sensitive to ALK inhibition. Crizotinib, an orally available small molecule ATP-mimetic compound which was originally designed as a MET inhibitor, was recognized to have “off-target” anti-ALK activity and has been approved in the USA for the treatment of patients with ALK-positive NSCLC. Chromosomal rearrangements involving the ROS1 receptor tyrosine kinase have also been recently described in NSCLC, while crizotinib is currently under clinical trial in this molecular subset of NSCLC patients. The basic approaches of any computer aided drug design work in terms of structure and ligand based drug design. Details of each of these approaches should be covered with an emphasis on utilizing both in order to develop multi-targeted small-molecule kinase inhibitors. Such multi-targeted tyrosine kinase inhibitors can have antiproliferative activity against both ROS1and ALK rearranged NSCLC. Herein, we highlight the importance of targeting these proteins and the advances in optimizing more potent and selective ALK and ROS1 kinase inhibitors. PMID:25806218

  19. The enzymatic activity of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase is enhanced by NPM-ALK: new insights in ALK-mediated pathogenesis and the treatment of ALCL.

    PubMed

    Boccalatte, Francesco E; Voena, Claudia; Riganti, Chiara; Bosia, Amalia; D'Amico, Lucia; Riera, Ludovica; Cheng, Mangeng; Ruggeri, Bruce; Jensen, Ole N; Goss, Valerie L; Lee, Kimberly; Nardone, Julie; Rush, John; Polakiewicz, Roberto D; Comb, Michael J; Chiarle, Roberto; Inghirami, Giorgio

    2009-03-19

    Anaplastic large cell lymphoma represents a subset of neoplasms caused by translocations that juxtapose the anaplastic lymphoma kinase (ALK) to dimerization partners. The constitutive activation of ALK fusion proteins leads to cellular transformation through a complex signaling network. To elucidate the ALK pathways sustaining lymphomagenesis and tumor maintenance, we analyzed the tyrosine-kinase protein profiles of ALK-positive cell lines using 2 complementary proteomic-based approaches, taking advantage of a specific ALK RNA interference (RNAi) or cell-permeable inhibitors. A well-defined set of ALK-associated tyrosine phosphopeptides, including metabolic enzymes, kinases, ribosomal and cytoskeletal proteins, was identified. Validation studies confirmed that vasodilator-stimulated phosphoprotein and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC) associated with nucleophosmin (NPM)-ALK, and their phosphorylation required ALK activity. ATIC phosphorylation was documented in cell lines and primary tumors carrying ALK proteins and other tyrosine kinases, including TPR-Met and wild type c-Met. Functional analyses revealed that ALK-mediated ATIC phosphorylation enhanced its enzymatic activity, dampening the methotrexate-mediated transformylase activity inhibition. These findings demonstrate that proteomic approaches in well-controlled experimental settings allow the definition of informative proteomic profiles and the discovery of novel ALK downstream players that contribute to the maintenance of the neoplastic phenotype. Prediction of tumor responses to methotrexate may justify specific molecular-based chemotherapy.

  20. Evaluation of a tyrosine kinase peptide microarray for tyrosine kinase inhibitor therapy selection in cancer

    PubMed Central

    Labots, Mariette; Gotink, Kristy J; Dekker, Henk; Azijli, Kaamar; van der Mijn, Johannes C; Huijts, Charlotte M; Piersma, Sander R; Jiménez, Connie R; Verheul, Henk M W

    2016-01-01

    Personalized cancer medicine aims to accurately predict the response of individual patients to targeted therapies, including tyrosine kinase inhibitors (TKIs). Clinical implementation of this concept requires a robust selection tool. Here, using both cancer cell lines and tumor tissue from patients, we evaluated a high-throughput tyrosine kinase peptide substrate array to determine its readiness as a selection tool for TKI therapy. We found linearly increasing phosphorylation signal intensities of peptides representing kinase activity along the kinetic curve of the assay with 7.5–10 μg of lysate protein and up to 400 μM adenosine triphosphate (ATP). Basal kinase activity profiles were reproducible with intra- and inter-experiment coefficients of variation of <15% and <20%, respectively. Evaluation of 14 tumor cell lines and tissues showed similar consistently high phosphorylated peptides in their basal profiles. Incubation of four patient-derived tumor lysates with the TKIs dasatinib, sunitinib, sorafenib and erlotinib primarily caused inhibition of substrates that were highly phosphorylated in the basal profile analyses. Using recombinant Src and Axl kinase, relative substrate specificity was demonstrated for a subset of peptides, as their phosphorylation was reverted by co-incubation with a specific inhibitor. In conclusion, we demonstrated robust technical specifications of this high-throughput tyrosine kinase peptide microarray. These features required as little as 5–7 μg of protein per sample, facilitating clinical implementation as a TKI selection tool. However, currently available peptide substrates can benefit from an enhancement of the differential potential for complex samples such as tumor lysates. We propose that mass spectrometry-based phosphoproteomics may provide such an enhancement by identifying more discriminative peptides. PMID:27980342

  1. Tyrosine Kinase Receptor Expression in Canine Liposarcoma.

    PubMed

    Avallone, G; Pellegrino, V; Roccabianca, P; Lepri, E; Crippa, L; Beha, G; De Tolla, L; Sarli, G

    2017-03-01

    The expression of tyrosine kinase receptors is attracting major interest in human and veterinary oncological pathology because of their role as targets for adjuvant therapies. Little is known about tyrosine kinase receptor (TKR) expression in canine liposarcoma (LP), a soft tissue sarcoma. The aim of this study was to evaluate the immunohistochemical expression of the TKRs fibroblast growth factor receptor 1 (FGFR1) and platelet-derived growth factor receptor-β (PDGFRβ); their ligands, fibroblast growth factor 2 (FGF2) and platelet-derived growth factor B (PDGFB); and c-kit in canine LP. Immunohistochemical labeling was categorized as high or low expression and compared with the mitotic count and MIB-1-based proliferation index. Fifty canine LPs were examined, classified, and graded. Fourteen cases were classified as well differentiated, 7 as myxoid, 25 as pleomorphic, and 4 as dedifferentiated. Seventeen cases were grade 1, 26 were grade 2, and 7 were grade 3. A high expression of FGF2, FGFR1, PDGFB, and PDGFRβ was identified in 62% (31/50), 68% (34/50), 81.6% (40/49), and 70.8% (34/48) of the cases, respectively. c-kit was expressed in 12.5% (6/48) of the cases. Mitotic count negatively correlated with FGF2 ( R = -0.41; P < .01), being lower in cases with high FGF2 expression, and positively correlated with PDGFRβ ( R = 0.33; P < .01), being higher in cases with high PDGFRβ expression. No other statistically significant correlations were identified. These results suggest that the PDGFRβ-mediated pathway may have a role in the progression of canine LP and may thus represent a promising target for adjuvant cancer therapies.

  2. Specificity and Structure of a High Affinity Activin Receptor-like Kinase 1 (ALK1) Signaling Complex

    PubMed Central

    Townson, Sharon A.; Martinez-Hackert, Erik; Greppi, Chloe; Lowden, Patricia; Sako, Dianne; Liu, June; Ucran, Jeffrey A.; Liharska, Katia; Underwood, Kathryn W.; Seehra, Jasbir; Kumar, Ravindra; Grinberg, Asya V.

    2012-01-01

    Activin receptor-like kinase 1 (ALK1), an endothelial cell-specific type I receptor of the TGF-β superfamily, is an important regulator of normal blood vessel development as well as pathological tumor angiogenesis. As such, ALK1 is an important therapeutic target. Thus, several ALK1-directed agents are currently in clinical trials as anti-angiogenic cancer therapeutics. Given the biological and clinical importance of the ALK1 signaling pathway, we sought to elucidate the biophysical and structural basis underlying ALK1 signaling. The TGF-β family ligands BMP9 and BMP10 as well as the three type II TGF-β family receptors ActRIIA, ActRIIB, and BMPRII have been implicated in ALK1 signaling. Here, we provide a kinetic and thermodynamic analysis of BMP9 and BMP10 interactions with ALK1 and type II receptors. Our data show that BMP9 displays a significant discrimination in type II receptor binding, whereas BMP10 does not. We also report the crystal structure of a fully assembled ternary complex of BMP9 with the extracellular domains of ALK1 and ActRIIB. The structure reveals that the high specificity of ALK1 for BMP9/10 is determined by a novel orientation of ALK1 with respect to BMP9, which leads to a unique set of receptor-ligand interactions. In addition, the structure explains how BMP9 discriminates between low and high affinity type II receptors. Taken together, our findings provide structural and mechanistic insights into ALK1 signaling that could serve as a basis for novel anti-angiogenic therapies. PMID:22718755

  3. Activity of second-generation ALK inhibitors against crizotinib-resistant mutants in an NPM-ALK model compared to EML4-ALK

    PubMed Central

    Fontana, Diletta; Ceccon, Monica; Gambacorti-Passerini, Carlo; Mologni, Luca

    2015-01-01

    Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor involved in both solid and hematological tumors. About 80% of ALK-positive anaplastic large-cell lymphoma (ALCL) cases are characterized by the t(2;5)(p23;q35) translocation, encoding for the aberrant fusion protein nucleophosmin (NPM)-ALK, whereas 5% of non-small-cell lung cancer (NSCLC) patients carry the inv(2)(p21;p23) rearrangement, encoding for the echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion. The ALK/c-MET/ROS inhibitor crizotinib successfully improved the treatment of ALK-driven diseases. However, several cases of resistance appeared in NSCLC patients, and ALK amino acid substitutions were identified as a leading cause of resistance to crizotinib. Second-generation ALK inhibitors have been developed in order to overcome crizotinib resistance. In this work, we profiled in vitro the activity of crizotinib, AP26113, ASP3026, alectinib, and ceritinib against six mutated forms of ALK associated with clinical resistance to crizotinib (C1156Y, L1196M, L1152R, G1202R, G1269A, and S1206Y) and provide a classification of mutants according to their level of sensitivity/resistance to the drugs. Since the biological activity of ALK mutations extends beyond the specific type of fusion, both NPM-ALK- and EML4-ALK-positive cellular models were used. Our data revealed that most mutants may be targeted by using different inhibitors. One relevant exception is represented by the G1202R substitution, which was highly resistant to all drugs (>10-fold increased IC50 compared to wild type) and may represent the most challenging mutation to overcome. These results provide a prediction of cross-resistance of known crizotinib-resistant mutations against all second-generation tyrosine kinase inhibitors (TKIs) clinically available, and therefore could be a useful tool to help clinicians in the management of crizotinib-resistance cases. PMID:25727400

  4. Therapeutic drug monitoring and tyrosine kinase inhibitors

    PubMed Central

    Herviou, Pauline; Thivat, Emilie; Richard, Damien; Roche, Lucie; Dohou, Joyce; Pouget, Mélanie; Eschalier, Alain; Durando, Xavier; Authier, Nicolas

    2016-01-01

    The therapeutic activity of drugs can be optimized by establishing an individualized dosage, based on the measurement of the drug concentration in the serum, particularly if the drugs are characterized by an inter-individual variation in pharmacokinetics that results in an under- or overexposure to treatment. In recent years, several tyrosine kinase inhibitors (TKIs) have been developed to block intracellular signaling pathways in tumor cells. These oral drugs are candidates for therapeutic drug monitoring (TDM) due to their high inter-individual variability for therapeutic and toxic effects. Following a literature search on PubMed, studies on TKIs and their pharmacokinetic characteristics, plasma quantification and inter-individual variability was studied. TDM is commonly used in various medical fields, including cardiology and psychiatry, but is not often applied in oncology. Plasma concentration monitoring has been thoroughly studied for imatinib, in order to evaluate the usefulness of TDM. The measurement of plasma concentration can be performed by various analytical techniques, with liquid chromatography-mass spectrometry being the reference method. This method is currently used to monitor the efficacy and tolerability of imatinib treatments. Although TDM is already being used for imatinib, additional studies are required in order to improve this practice with the inclusion of other TKIs. PMID:27446421

  5. Skin problems and EGFR-tyrosine kinase inhibitor

    PubMed Central

    Kozuki, Toshiyuki

    2016-01-01

    Epidermal growth factor receptor inhibition is a good target for the treatment of lung, colon, pancreatic and head and neck cancers. Epidermal growth factor receptor-tyrosine kinase inhibitor was first approved for the treatment of advanced lung cancer in 2002. Epidermal growth factor receptor-tyrosine kinase inhibitor plays an essential role in the treatment of cancer, especially for patients harbouring epidermal growth factor receptor activating mutation. Hence, skin toxicity is the most concerning issue for the epidermal growth factor receptor-tyrosine kinase inhibitor treatment. Skin toxicity is bothersome and sometimes affects the quality of life and treatment compliance. Thus, it is important for physicians to understand the background and how to manage epidermal growth factor receptor-tyrosine kinase inhibitor-associated skin toxicity. Here, the author reviewed the mechanism and upfront preventive and reactive treatments for epidermal growth factor receptor inhibitor-associated skin toxicities. PMID:26826719

  6. Skin problems and EGFR-tyrosine kinase inhibitor.

    PubMed

    Kozuki, Toshiyuki

    2016-04-01

    Epidermal growth factor receptor inhibition is a good target for the treatment of lung, colon, pancreatic and head and neck cancers. Epidermal growth factor receptor-tyrosine kinase inhibitor was first approved for the treatment of advanced lung cancer in 2002. Epidermal growth factor receptor-tyrosine kinase inhibitor plays an essential role in the treatment of cancer, especially for patients harbouring epidermal growth factor receptor activating mutation. Hence, skin toxicity is the most concerning issue for the epidermal growth factor receptor-tyrosine kinase inhibitor treatment. Skin toxicity is bothersome and sometimes affects the quality of life and treatment compliance. Thus, it is important for physicians to understand the background and how to manage epidermal growth factor receptor-tyrosine kinase inhibitor-associated skin toxicity. Here, the author reviewed the mechanism and upfront preventive and reactive treatments for epidermal growth factor receptor inhibitor-associated skin toxicities.

  7. Inhibition of Axl improves the targeted therapy against ALK-mutated neuroblastoma

    SciTech Connect

    Xu, Fei; Li, Hongling; Sun, Yong

    2014-11-28

    Highlights: • First reported Axl is co-expressed with ALK in neuroblastoma tissues and cell lines. • Axl activation promotes cell growth and impairs the efficiency of ALK inhibitor. • Further found silence of Axl leads to increased sensitivity to ALK inhibitors. • Axl inhibitor promotes the efficiency of targeted therapy in vitro and in vivo. • Axl activation should be considered in the clinical application of ALK inhibitors. - Abstract: Neuroblastoma (NB) patients harboring mutated ALK can be expected to potentially benefit from targeted therapy based on ALK tyrosine kinase inhibitor (TKI), such as crizotinib and ceritinib. However, the effect of the treatment varies with different individuals, although with the same genic changes. Axl receptor tyrosine kinase is expressed in a variety of human cancers, but little data are reported in NB, particularly in which carrying mutated ALK. In this study, we focus on the roles of Axl in ALK-mutated NB for investigating rational therapeutic strategy. We found that Axl is expressed in ALK-positive NB tissues and cell lines, and could be effectively activated by its ligand GAS6. Ligand-dependent Axl activation obviously rescued crizotinib-mediated suppression of cell proliferation in ALK-mutated NB cells. Genetic inhibition of Axl with specific small interfering RNA markedly increased the sensitivity of cells to ALK-TKIs. Furthermore, a small-molecule inhibitor of Axl significantly enhanced ALK-targeted therapy, as an increased frequency of apoptosis was observed in NB cells co-expressing ALK and Axl. Taken together, our results demonstrated that activation of Axl could lead to insensitivity to ALK inhibitors, and dual inhibition of ALK and Axl might be a potential therapeutic strategy against ALK-mutated NB.

  8. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1)

    PubMed Central

    Marzec, Michal; Zhang, Qian; Goradia, Ami; Raghunath, Puthiyaveettil N.; Liu, Xiaobin; Paessler, Michele; Wang, Hong Yi; Wysocka, Maria; Cheng, Mangeng; Ruggeri, Bruce A.; Wasik, Mariusz A.

    2008-01-01

    The mechanisms of malignant cell transformation caused by the oncogenic, chimeric nucleophosmin (NPM)/anaplastic lymphoma kinase (ALK) remain only partially understood, with most of the previous studies focusing mainly on the impact of NPM/ALK on cell survival and proliferation. Here we report that the NPM/ALK-carrying T cell lymphoma (ALK+TCL) cells strongly express the immunosuppressive cell-surface protein CD274 (PD-L1, B7-H1), as determined on the mRNA and protein level. The CD274 expression is strictly dependent on the expression and enzymatic activity of NPM/ALK, as demonstrated by inhibition of the NPM/ALK function in ALK+TCL cells by the small molecule ALK inhibitor CEP-14083 and by documenting CD274 expression in IL-3-depleted BaF3 cells transfected with the wild-type NPM/ALK, but not the kinase-inactive NPM/ALK K210R mutant or empty vector alone. NPM/ALK induces CD274 expression by activating its key signal transmitter, transcription factor STAT3. STAT3 binds to the CD274 gene promoter in vitro and in vivo, as shown in the gel electromobility shift and chromatin immunoprecipitation assays, and is required for the PD-L1 gene expression, as demonstrated by siRNA-mediated STAT3 depletion. These findings identify an additional cell-transforming property of NPM/ALK and describe a direct link between an oncoprotein and an immunosuppressive cell-surface protein. These results also provide an additional rationale to therapeutically target NPM/ALK and STAT3 in ALK+TCL. Finally, they suggest that future immunotherapeutic protocols for this type of lymphoma may need to include the inhibition of NPM/ALK and STAT3 to achieve optimal clinical efficacy. PMID:19088198

  9. Potential sites of CFTR activation by tyrosine kinases

    PubMed Central

    Billet, Arnaud; Jia, Yanlin; Jensen, Timothy J.; Hou, Yue-Xian; Chang, Xiu-Bao; Riordan, John R.; Hanrahan, John W.

    2016-01-01

    ABSTRACT The CFTR chloride channel is tightly regulated by phosphorylation at multiple serine residues. Recently it has been proposed that its activity is also regulated by tyrosine kinases, however the tyrosine phosphorylation sites remain to be identified. In this study we examined 2 candidate tyrosine residues near the boundary between the first nucleotide binding domain and the R domain, a region which is important for channel function but devoid of PKA consensus sequences. Mutating tyrosines at positions 625 and 627 dramatically reduced responses to Src or Pyk2 without altering the activation by PKA, suggesting they may contribute to CFTR regulation. PMID:26645934

  10. Importance of tyrosine phosphorylation in receptor kinase complexes.

    PubMed

    Macho, Alberto P; Lozano-Durán, Rosa; Zipfel, Cyril

    2015-05-01

    Tyrosine phosphorylation is an important post-translational modification that is known to regulate receptor kinase (RK)-mediated signaling in animals. Plant RKs are annotated as serine/threonine kinases, but recent work has revealed that tyrosine phosphorylation is also crucial for the activation of RK-mediated signaling in plants. These initial observations have paved the way for subsequent detailed studies on the mechanism of activation of plant RKs and the biological relevance of tyrosine phosphorylation for plant growth and immunity. In this Opinion article we review recent reports on the contribution of RK tyrosine phosphorylation in plant growth and immunity; we propose that tyrosine phosphorylation plays a major regulatory role in the initiation and transduction of RK-mediated signaling in plants.

  11. Variant translocation partners of the anaplastic lymphoma kinase (ALK) gene in two cases of anaplastic large cell lymphoma, identified by inverse cDNA polymerase chain reaction.

    PubMed

    Takeoka, Kayo; Okumura, Atsuko; Honjo, Gen; Ohno, Hitoshi

    2014-01-01

    In anaplastic large cell lymphoma (ALCL), the anaplastic lymphoma kinase (ALK) gene is rearranged with diverse partners due to variant translocations/inversions. Case 1 was a 39-year-old man who developed multiple tumors in the mediastinum, psoas muscle, lung, and lymph nodes. A biopsy specimen of the inguinal node was effaced by large tumor cells expressing CD30, epithelial membrane antigen, and cytoplasmic ALK, which led to a diagnosis of ALK(+) ALCL. Case 2 was a 51-year-old man who was initially diagnosed with undifferentiated carcinoma. He developed multiple skin tumors eight years after his initial presentation, and was finally diagnosed with ALK(+) ALCL. He died of therapy-related acute myeloid leukemia. G-banding and fluorescence in situ hybridization using an ALK break-apart probe revealed the rearrangement of ALK and suggested variant translocation in both cases. We applied an inverse cDNA polymerase chain reaction (PCR) strategy to identify the partner of ALK. Nucleotide sequencing of the PCR products and a database search revealed that the sequences of ATIC in case 1 and TRAF1 in case 2 appeared to follow those of ALK. We subsequently confirmed ATIC-ALK and TRAF1-ALK fusions by reverse transcriptase PCR and nucleotide sequencing. We successfully determined the partner gene of ALK in two cases of ALK(+) ALCL. ATIC is the second most common partner of variant ALK rearrangements, while the TRAF1-ALK fusion gene was first reported in 2013, and this is the second reported case of ALK(+) ALCL carrying TRAF1-ALK.

  12. Tyrosine phosphorylation of Rab7 by Src kinase.

    PubMed

    Lin, Xiaosi; Zhang, Jiaming; Chen, Lingqiu; Chen, Yongjun; Xu, Xiaohui; Hong, Wanjin; Wang, Tuanlao

    2017-03-20

    The small molecular weight GTPase Rab7 is a key regulator for late endosomal/lysosomal membrane trafficking, it was known that Rab7 is phosphorylated, but the corresponding kinase and the functional regulation of Rab7 phosphorylation remain unclear. We provide evidence here that Rab7 is a substrate of Src kinase, and is tyrosine-phosphorylated by Src, withY183 residue of Rab7 being the optimal phosphorylation site for Src. Further investigations demonstrated that the tyrosine phosphorylation of Rab7 depends on the guanine nucleotide binding activity of Rab7 and the activity of Src kinase. The tyrosine phosphorylation of Rab7 is physiologically induced by EGF, and impairs the interaction of Rab7 with RILP, consequently inhibiting EGFR degradation and sustaining Akt signaling. These results suggest that the tyrosine phosphorylation of Rab7 may be involved in coordinating membrane trafficking and cell signaling.

  13. A semisynthetic Eph receptor tyrosine kinase provides insight into ligand-induced kinase activation

    PubMed Central

    Singla, Nikhil; Erdjument-Bromage, Hediye; Himanen, Juha P.; Muir, Tom W.; Nikolov, Dimitar B.

    2011-01-01

    SUMMARY We have developed a methodology for generating milligram amounts of functional Eph tyrosine kinase receptor using the protein engineering approach of expressed protein ligation. Stimulation with ligand induces efficient autophosphorylation of the semisynthetic Eph construct. The in vitro phosphorylation of key Eph tyrosine residues upon ligand-induced activation was monitored via time-resolved, quantitative phosphoproteomics, suggesting a precise and unique order of phosphorylation of the Eph tyrosines in the kinase activation process. To our knowledge, this work represents the first reported semisynthesis of a receptor tyrosine kinase and provides a potentially general method for producing single-pass membrane proteins for structural and biochemical characterization. PMID:21439481

  14. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors

    PubMed Central

    Davare, Monika A.; Vellore, Nadeem A.; Wagner, Jacob P.; Eide, Christopher A.; Goodman, James R.; Drilon, Alexander; Deininger, Michael W.; O’Hare, Thomas; Druker, Brian J.

    2015-01-01

    Oncogenic ROS1 fusion proteins are molecular drivers in multiple malignancies, including a subset of non-small cell lung cancer (NSCLC). The phylogenetic proximity of the ROS1 and anaplastic lymphoma kinase (ALK) catalytic domains led to the clinical repurposing of the Food and Drug Administration (FDA)-approved ALK inhibitor crizotinib as a ROS1 inhibitor. Despite the antitumor activity of crizotinib observed in both ROS1- and ALK-rearranged NSCLC patients, resistance due to acquisition of ROS1 or ALK kinase domain mutations has been observed clinically, spurring the development of second-generation inhibitors. Here, we profile the sensitivity and selectivity of seven ROS1 and/or ALK inhibitors at various levels of clinical development. In contrast to crizotinib’s dual ROS1/ALK activity, cabozantinib (XL-184) and its structural analog foretinib (XL-880) demonstrate a striking selectivity for ROS1 over ALK. Molecular dynamics simulation studies reveal structural features that distinguish the ROS1 and ALK kinase domains and contribute to differences in binding site and kinase selectivity of the inhibitors tested. Cell-based resistance profiling studies demonstrate that the ROS1-selective inhibitors retain efficacy against the recently reported CD74-ROS1G2032R mutant whereas the dual ROS1/ALK inhibitors are ineffective. Taken together, inhibitor profiling and stringent characterization of the structure–function differences between the ROS1 and ALK kinase domains will facilitate future rational drug design for ROS1- and ALK-driven NSCLC and other malignancies. PMID:26372962

  15. Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency

    PubMed Central

    Mologni, Luca; Poggio, Teresa; Varesio, Lydia M.; Menotti, Matteo; Bombelli, Silvia; Rigolio, Roberta; Manazza, Andrea D.; Di Giacomo, Filomena; Ambrogio, Chiara; Giudici, Giovanni; Casati, Cesare; Mastini, Cristina; Compagno, Mara; Turner, Suzanne D.; Gambacorti-Passerini, Carlo; Chiarle, Roberto; Voena, Claudia

    2016-01-01

    Most of Anaplastic Large Cell Lymphoma (ALCL) cases carry the t(2;5; p23;q35) that produces the fusion protein NPM-ALK. NPM-ALK deregulated kinase activity drives several pathways that support malignant transformation of lymphoma cells. We found that in ALK-rearranged ALCL cell lines NPM-ALK was distributed in equal amounts between the cytoplasm and the nucleus. Only the cytoplasmic portion was catalytically active in both cell lines and primary ALCL, whereas the nuclear portion was inactive due to heterodimerization with NPM1. Thus, about 50% of the NPM-ALK is not active and sequestered as NPM-ALK/NPM1 heterodimers in the nucleus. Overexpression or re-localization of NPM-ALK to the cytoplasm by NPM genetic knock-out or knock-down caused ERK1/2 increased phosphorylation and cell death through the engagement of an ATM/Chk2 and γH2AX mediated DNA damage response. Remarkably, human NPM-ALK amplified cell lines resistant to ALK tyrosine kinase inhibitors (TKIs) underwent apoptosis upon drug withdrawal as a consequence of ERK1/2 hyperactivation. Altogether, these findings indicate that an excess of NPM-ALK activation and signaling induces apoptosis via oncogenic stress responses. A “drug holiday” where the ALK TKI treatment is suspended could represent a therapeutic option in cells that become resistant by NPM-ALK amplification. PMID:26657151

  16. A novel proteomic approach for specific identification of tyrosine kinase substrates using [13C]tyrosine.

    PubMed

    Ibarrola, Nieves; Molina, Henrik; Iwahori, Akiko; Pandey, Akhilesh

    2004-04-16

    Proteomic studies to find substrates of tyrosine kinases generally rely on identification of protein bands that are "pulled down" by antiphosphotyrosine antibodies from ligand-stimulated samples. One can obtain erroneous results from such experiments because of two major reasons. First, some proteins might be basally phosphorylated on tyrosine residues in the absence of ligand stimulation. Second, proteins can bind non-specifically to the antibodies or the affinity matrix. Induction of phosphorylation of proteins by ligand must therefore be confirmed by a different approach, which is not always feasible. We have developed a novel proteomic approach to identify substrates of tyrosine kinases in signaling pathways studies based on in vivo labeling of proteins with "light" (12C-labeled) or "heavy" (13C-labeled) tyrosine. This stable isotope labeling in cell culture method enables the unequivocal identification of tyrosine kinase substrates, as peptides derived from true substrates give rise to a unique signature in a mass spectrometry experiment. By using this approach, from a single experiment, we have successfully identified several known substrates of insulin signaling pathway and a novel substrate, polymerase I and transcript release factor, a protein that is implicated in the control of RNA metabolism and regulation of type I collagen promoters. This approach is amenable to high throughput global studies as it simplifies the specific identification of substrates of tyrosine kinases as well as serine/threonine kinases using mass spectrometry.

  17. Anaplastic lymphoma kinase status in rhabdomyosarcomas.

    PubMed

    Yoshida, Akihiko; Shibata, Tatsuhiro; Wakai, Susumu; Ushiku, Tetsuo; Tsuta, Koji; Fukayama, Masashi; Makimoto, Atsushi; Furuta, Koh; Tsuda, Hitoshi

    2013-06-01

    Rhabdomyosarcoma is a rare soft tissue sarcoma that typically affects children, adolescents, and young adults. Despite treatment via a multidisciplinary approach, the prognosis of advance-stage rhabdomyosarcomas remains poor, and a new treatment strategy is needed. Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that is a potential target for specific inhibitors. In this study, we investigated 116 rhabdomyosarcomas using a polymer-based ALK immunostaining method and correlated the results with clinicopathological parameters. In addition, we examined ALK status using dual-color fluorescence in situ hybridization, PCR, and sequencing. In immunohistochemical analysis, ALK was detected in 2 (6%) of 33 embryonal rhabdomyosarcomas, 42 (69%) of 61 alveolar rhabdomyosarcomas, and 0 (0%) of 22 other subtypes, including pleomorphic, adult-spindle-cell/sclerosing, and epithelioid variants. Compared with ALK-negative alveolar rhabdomyosarcomas, ALK-positive ones are presented with metastatic spread more frequently and showed a greater extent of myogenin reactivity. Overall survival was not associated with ALK expression. FOXO1 rearrangement was significantly associated with ALK immunoreactivity. The median ALK copy number was greater in ALK-positive tumors than in ALK-negative tumors. Most (93%) cases tested showed no selective increase in the ALK gene dosage. ALK selective amplification and low-level selective gain were noted in one and three cases, respectively. Further, a high-polysomy pattern (≥4 ALK copies in ≥40% of cells) was observed in seven cases. A significant increase in the ALK copy number was exclusive to the ALK-immunopositive cohort, but it was uncommon, accounting for only 30% of the 37 ALK-positive rhabdomyosarcomas. ALK gene rearrangement was not observed in either cohort, while an ALK somatic mutation (I1277T) was found in one ALK-negative embryonal case. Although it remains controversial whether ALK expression without gene rearrangement

  18. Personalized treatment in advanced ALK-positive non-small cell lung cancer: from bench to clinical practice

    PubMed Central

    Passaro, Antonio; Lazzari, Chiara; Karachaliou, Niki; Spitaleri, Gianluca; Pochesci, Alessia; Catania, Chiara; Rosell, Rafael; de Marinis, Filippo

    2016-01-01

    The discovery of anaplastic lymphoma kinase (ALK) gene rearrangements and the development of tyrosine kinase inhibitors (TKI) that target them have achieved unprecedented success in the management of patients with ALK-positive non-small cell lung cancer (NSCLC). Despite the high efficacy of crizotinib, the first oral ALK TKI approved for the treatment of ALK-positive NSCLC, almost all patients inevitably develop acquired resistance, showing disease progression in the brain or in other parenchymal sites. Second- or third-generation ALK TKIs have shown to be active in crizotinib-pretreated or crizotinib-naïve ALK-positive patients, even in those with brain metastases. In this review, the current knowledge regarding ALK-positive NSCLC, focusing on the biology of the disease and the available therapeutic options are discussed. PMID:27799783

  19. Reversal of microRNA-150 silencing disadvantages crizotinib-resistant NPM-ALK(+) cell growth

    PubMed Central

    Hoareau-Aveilla, Coralie; Valentin, Thibaud; Daugrois, Camille; Quelen, Cathy; Mitou, Géraldine; Quentin, Samuel; Jia, Jinsong; Spicuglia, Salvatore; Ferrier, Pierre; Ceccon, Monica; Giuriato, Sylvie; Gambacorti-Passerini, Carlo; Brousset, Pierre; Lamant, Laurence; Meggetto, Fabienne

    2015-01-01

    The regulatory microRNA miR-150 is involved in the development of hemopathies and is downregulated in T-lymphomas, such as anaplastic large-cell lymphoma (ALCL) tumors. ALCL is defined by the presence or absence of translocations that activate the anaplastic lymphoma kinase (ALK), with nucleophosmin-ALK (NPM-ALK) fusions being the most common. Here, we compared samples of primary NPM-ALK(+) and NPM-ALK(–) ALCL to investigate the role of miR-150 downstream of NPM-ALK. Methylation of the MIR150 gene was substantially elevated in NPM-ALK(+) biopsies and correlated with reduced miR-150 expression. In NPM-ALK(+) cell lines, DNA hypermethylation–mediated miR-150 repression required ALK-dependent pathways, as ALK inhibition restored miR-150 expression. Moreover, epigenetic silencing of miR-150 was due to the activation of STAT3, a major downstream substrate of NPM-ALK, in cooperation with DNA methyltransferase 1 (DNMT1). Accordingly, miR-150 repression was turned off following treatment with the DNMT inhibitor, decitabine. In murine NPM-ALK(+) xenograft models, miR-150 upregulation induced antineoplastic activity. Treatment of crizotinib-resistant NPM-ALK(+) KARPAS-299-CR06 cells with decitabine or ectopic miR-150 expression reduced viability and growth. Altogether, our results suggest that hypomethylating drugs, alone or in combination with other agents, may benefit ALK(+) patients harboring tumors resistant to crizotinib and other anti-ALK tyrosine kinase inhibitors (TKIs). Moreover, these results support further work on miR-150 in these and other ALK(+) malignancies. PMID:26258416

  20. Tyrosine Kinase Inhibitors and Diabetes: A Novel Treatment Paradigm?

    PubMed

    Fountas, Athanasios; Diamantopoulos, Leonidas-Nikolaos; Tsatsoulis, Agathocles

    2015-11-01

    Deregulation of protein tyrosine kinase (PTK) activity is implicated in various proliferative conditions. Multi-target tyrosine kinase inhibitors (TKIs) are increasingly used for the treatment of different malignancies. Recently, several clinical cases of the reversal of both type 1 and 2 diabetes mellitus (T1DM, T2DM) during TKI administration have been reported. Experimental in vivo and in vitro studies have elucidated some of the mechanisms behind this effect. For example, inhibition of Abelson tyrosine kinase (c-Abl) results in β cell survival and enhanced insulin secretion, while platelet-derived growth factor receptor (PDGFR) and epidermal growth factor receptor (EGFR) inhibition leads to improvement in insulin sensitivity. In addition, inhibition of vascular endothelial growth factor receptor 2 (VEGFR2) reduces the degree of islet cell inflammation (insulitis). Therefore, targeting several PTKs may provide a novel approach for correcting the pathophysiologic disturbances of diabetes.

  1. Haemophilus ducreyi LspA proteins are tyrosine phosphorylated by macrophage-encoded protein tyrosine kinases.

    PubMed

    Deng, Kaiping; Mock, Jason R; Greenberg, Steven; van Oers, Nicolai S C; Hansen, Eric J

    2008-10-01

    The LspA proteins (LspA1 and LspA2) of Haemophilus ducreyi are necessary for this pathogen to inhibit the phagocytic activity of macrophage cell lines, an event that can be correlated with a reduction in the level of active Src family protein tyrosine kinases (PTKs) in these eukaryotic cells. During studies investigating this inhibitory mechanism, it was discovered that the LspA proteins themselves were tyrosine phosphorylated after wild-type H. ducreyi cells were incubated with macrophages. LspA proteins in cell-free concentrated H. ducreyi culture supernatant fluid could also be tyrosine phosphorylated by macrophages. This ability to tyrosine phosphorylate the LspA proteins was not limited to immune cell lineages but could be accomplished by both HeLa and COS-7 cells. Kinase inhibitor studies with macrophages demonstrated that the Src family PTKs were required for this tyrosine phosphorylation activity. In silico methods and site-directed mutagenesis were used to identify EPIYG and EPVYA motifs in LspA1 that contained tyrosines that were targets for phosphorylation. A total of four tyrosines could be phosphorylated in LspA1, with LspA2 containing eight predicted tyrosine phosphorylation motifs. Purified LspA1 fusion proteins containing either the EPIYG or EPVYA motifs were shown to be phosphorylated by purified Src PTK in vitro. Macrophage lysates could also tyrosine phosphorylate the LspA proteins and an LspA1 fusion protein via a mechanism that was dependent on the presence of both divalent cations and ATP. Several motifs known to interact with or otherwise affect eukaryotic kinases were identified in the LspA proteins.

  2. Phosphoproteomics reveals ALK promote cell progress via RAS/JNK pathway in neuroblastoma

    PubMed Central

    Xu, Guofeng; Zhang, Min; Wu, Yeming; Wu, Zhixiang

    2016-01-01

    Emerging evidence suggests receptor tyrosine kinase ALK as a promising therapeutic target in neuroblastoma. However, clinical trials reveal that a limited proportion of ALK-positive neuroblastoma patients experience clinical benefits from Crizotinib, a clinically approved specific inhibitor of ALK. The precise molecular mechanisms of aberrant ALK activity in neuroblastoma remain elusive, limiting the clinical application of ALK as a therapeutic target in neuroblastoma. Here, we describe a deep quantitative phosphoproteomic approach in which Crizotinib-treated neuroblastoma cell lines bearing aberrant ALK are used to investigate downstream regulated phosphoproteins. We identified more than 19,500—and quantitatively analyzed approximately 10,000—phosphorylation sites from each cell line, ultimately detecting 450–790 significantly-regulated phosphorylation sites. Multiple layers of bioinformatic analysis of the significantly-regulated phosphoproteins identified RAS/JNK as a downstream signaling pathway of ALK, independent of the ALK variant present. Further experiments demonstrated that ALK/JNK signaling could be inactivated by either ALK- or JNK-specific inhibitors, resulting in cell growth inhibition by induction of cell cycle arrest and cell apoptosis. Our study broadly defines the phosphoproteome in response to ALK inhibition and provides a resource for further clinical investigation of ALK as therapeutic target for the treatment of neuroblastoma. PMID:27732954

  3. Electromagnetic field-induced stimulation of Bruton's tyrosine kinase.

    PubMed

    Kristupaitis, D; Dibirdik, I; Vassilev, A; Mahajan, S; Kurosaki, T; Chu, A; Tuel-Ahlgren, L; Tuong, D; Pond, D; Luben, R; Uckun, F M

    1998-05-15

    Here we present evidence that exposure of DT40 lymphoma B-cells to low energy electromagnetic fields (EMF) results in activation of phospholipase C-gamma 2 (PLC-gamma2), leading to increased inositol phospholipid turnover. PLC-gamma2 activation in EMF-stimulated cells is mediated by stimulation of the Bruton's tyrosine kinase (BTK), a member of the Src-related TEC family of protein tyrosine kinases, which acts downstream of LYN kinase and upstream of PLC-gamma2. B-cells rendered BTK-deficient by targeted disruption of the btk gene did not show enhanced PLC-gamma2 activation in response to EMF exposure. Introduction of the wild-type (but not a kinase domain mutant) human btk gene into BTK-deficient B-cells restored their EMF responsiveness. Thus, BTK exerts a pivotal and mandatory function in initiation of EMF-induced signaling cascades in B-cells.

  4. Resistance to HER2-directed antibodies and tyrosine kinase inhibitors

    PubMed Central

    Garrett, Joan T

    2011-01-01

    The antibody trastuzumab and the tyrosine kinase inhibitor lapatinib are approved by the FDA for the treatment of HER2-overexpressing breast cancer. These anti-HER2 drugs are changing the natural history of HER2-overexpressing breast cancer. However, therapeutic resistance to trastuzumab or lapatinib, as either single-agents or in combination with chemotherapy in the metastatic setting, typically occurs within months of starting therapy. Several mechanisms of trastuzumab-resistance have been reported that include signaling from other HER receptors, signaling from receptor tyrosine kinases (RTKs) outside of the HER (ErbB) family, increased phosphatidylinositol-3-kinase signaling, and the presence of truncated forms of HER2. Mechanisms of resistance to lapatinib also point to increased phosphatidylinositol 3-kinase signaling as well as derepression/activation of compensatory survival pathways. In this review, we discuss how these models and mechanisms enhance our understanding of the clinical resistance to HER2-directed therapies. PMID:21307659

  5. Motogenic and morphogenic activity of epithelial receptor tyrosine kinases

    PubMed Central

    1996-01-01

    Receptor tyrosine kinases play essential roles in morphogenesis and differentiation of epithelia. Here we examined various tyrosine kinase receptors, which are preferentially expressed in epithelia (c-met, c- ros, c-neu, and the keratin growth factor [KGF] receptor), for their capacity to induce cell motility and branching morphogenesis of epithelial cells. We exchanged the ligand-binding domain of these receptors by the ectodomain of trkA and could thus control signaling by the new ligand, NGF. We demonstrate here that the tyrosine kinases of c- met, c-ros, c-neu, the KGF receptor, and trkA, but not the insulin receptor, induced scattering and increased motility of kidney epithelial cells in tissue culture. Mutational analysis suggests that SHC binding is essential for scattering and increased cell motility induced by trkA. The induction of motility in epithelial cells is thus an important feature of various receptor tyrosine kinases, which in vivo play a role in embryogenesis and metastasis. In contrast, only the c-met receptor promoted branching morphogenesis of kidney epithelial cells in three-dimensional matrices, which resemble the formation of tubular epithelia in development. Interestingly, the ability of c-met to induce morphogenesis could be transferred to trkA, when in a novel receptor hybrid COOH-terminal sequences of c-met (including Y14 to Y16) were fused to the trkA kinase domain. These data demonstrate that tubulogenesis of epithelia is a restricted activity of tyrosine kinases, as yet only demonstrated for the c-met receptor. We predict the existence of specific substrates that mediate this morphogenesis signal. PMID:8655582

  6. MAP kinase activator from insulin-stimulated skeletal muscle is a protein threonine/tyrosine kinase.

    PubMed Central

    Nakielny, S; Cohen, P; Wu, J; Sturgill, T

    1992-01-01

    A 'MAP kinase activator' was purified several thousand-fold from insulin-stimulated rabbit skeletal muscle, which resembled the 'activator' from nerve growth factor-stimulated PC12 cells in that it could be inactivated by incubation with protein phosphatase 2A, but not by protein tyrosine phosphatases and its apparent molecular mass was 45-50 kDa. In the presence of MgATP, 'MAP kinase activator' converted the normal 'wild-type' 42 kDa MAP kinase from an inactive dephosphorylated form to the fully active diphosphorylated species. Phosphorylation occurred on the same threonine and tyrosine residues which are phosphorylated in vivo in response to growth factors or phorbol esters. A mutant MAP kinase produced by changing a lysine at the active centre to arginine was phosphorylated in an identical manner by the 'MAP kinase activator', but no activity was generated. The results demonstrate that 'MAP kinase activator' is a protein kinase (MAP kinase kinase) and not a protein that stimulates the autophosphorylation of MAP kinase. MAP kinase kinase is the first established example of a protein kinase that can phosphorylate an exogenous protein on threonine as well as tyrosine residues. Images PMID:1318193

  7. Old Tyrosine Kinase Inhibitors and Newcomers in Gastrointestinal Cancer Treatment.

    PubMed

    Giordani, Erika; Zoratto, Federica; Strudel, Martina; Papa, Anselmo; Rossi, Luigi; Minozzi, Marina; Caruso, Davide; Zaccarelli, Eleonora; Verrico, Monica; Tomao, Silverio

    2016-01-01

    Gastrointestinal cancer treatment is based more on molecular biology that has provided increasing knowledge about cancer pathogenesis on which targeted therapy is being developed. Precisely, targeted therapy is defined as a "type of treatment that uses drugs, such as monoclonal antibodies or tyrosine kinase inhibitors, to identify and attack specific cancer cells". Nowadays, the United States Food and Drug Administration has approved many targeted therapies for gastrointestinal cancer treatment, as many are in various phases of development as well. In a previous review we discussed the main monoclonal antibodies used and studied in gastrointestinal cancer. In addition to monoclonal antibodies, tyrosine kinase inhibitors represent another class of targeted therapy and following the approval of imatinib for gastrointestinal stromal tumours, other tyrosine kinase inhibitors have been approved for gastrointestinal cancers treatment such as sunitinib, regoragenib, sorafenib and erlotinib. Moving forward, the purpose of this review is to focus on the efficacy data of main tyrosine kinase inhibitors commonly used in the personalized treatment of each gastrointestinal tumour and to provide a comprehensive overview about experimental targeted therapies ongoing in this setting.

  8. Teaching resources. Growth factor and receptor tyrosine kinases.

    PubMed

    Aaronson, Stuart

    2005-02-22

    This Teaching Resource provides lecture notes and slides for a graduate-level class on ligand regulation of signaling by receptor tyrosine kinases and receptors involved in the Wnt canonical pathway. It is part of a series of lectures that constitute the Cell Signaling Systems course. A description of the lecture, along with a set of slides used to present this information, is provided.

  9. ALK gene expression status in pleural effusion predicts tumor responsiveness to crizotinib in Chinese patients with lung adenocarcinoma

    PubMed Central

    Wang, Zheng; Wu, Xiaonan; Han, Xiaohong; Cheng, Gang; Mu, Xinlin; Zhang, Yuhui; Cui, Di; Liu, Chang; Liu, Dongge; Shi, Yuankai

    2016-01-01

    Objective The relationship between anaplastic lymphoma kinase (ALK) expression in malignant pleural effusion (MPE) samples detected only by Ventana immunohistochemistry (IHC) ALK (D5F3) and the efficacy of ALK-tyrosine kinase inhibitor therapy is uncertain. Methods Ventana anti-ALK (D5F3) rabbit monoclonal primary antibody testing was performed on 313 cell blocks of MPE samples from Chinese patients with advanced lung adenocarcinoma, and fluorescence in situ hybridization (FISH) was used to verify the ALK gene status in Ventana IHC ALK (D5F3)-positive samples. The follow-up clinical data on patients who received crizotinib treatment were recorded. Results Of the 313 MPE samples, 27 (8.6%) were confirmed as ALK expression-positive, and the Ventana IHC ALK (D5F3)-positive rate was 17.3% (27/156) in wild-type epidermal growth factor receptor (EGFR) MPE samples. Twenty-three of the 27 IHC ALK (D5F3)-positive samples were positive by FISH. Of the 11 Ventana IHC ALK (D5F3)-positive patients who received crizotinib therapy, 2 patients had complete response (CR), 5 had partial response (PR) and 3 had stable disease (SD). Conclusions The ALK gene expression status detected by the Ventana IHC ALK (D5F3) platform in MPE samples may predict tumor responsiveness to crizotinib in Chinese patients with advanced lung adenocarcinoma. PMID:28174489

  10. Exploring Missense Mutations in Tyrosine Kinases Implicated with Neurodegeneration.

    PubMed

    Sami, Neha; Kumar, Vijay; Islam, Asimul; Ali, Sher; Ahmad, Faizan; Hassan, Imtaiyaz

    2016-08-20

    Protein kinases are one of the largest families of evolutionarily related proteins and the third most common protein class of human genome. All the protein kinases share the same structural organization. They are made up of an extracellular domain, transmembrane domain and an intra cellular kinase domain. Missense mutations in these kinases have been studied extensively and correlated with various neurological disorders. Individual mutations in the kinase domain affect the functions of protein. The enhanced or reduced expression of protein leads to hyperactivation or inactivation of the signalling pathways, resulting in neurodegeneration. Here, we present extensive analyses of missense mutations in the tyrosine kinase focussing on the neurodegenerative diseases encompassing structure function relationship. This is envisaged to enhance our understanding about the neurodegeneration and possible therapeutic measures.

  11. Second-generation inhibitors of Bruton tyrosine kinase.

    PubMed

    Wu, Jingjing; Liu, Christina; Tsui, Stella T; Liu, Delong

    2016-09-02

    Bruton tyrosine kinase (BTK) is a critical effector molecule for B cell development and plays a major role in lymphoma genesis. Ibrutinib is the first-generation BTK inhibitor. Ibrutinib has off-target effects on EGFR, ITK, and Tec family kinases, which explains the untoward effects of ibrutinib. Resistance to ibrutinib was also reported. The C481S mutation in the BTK kinase domain was reported to be a major mechanism of resistance to ibrutinib. This review summarizes the clinical development of novel BTK inhibitors, ACP-196 (acalabrutinib), ONO/GS-4059, and BGB-3111.

  12. CDPKs are dual-specificity protein kinases and tyrosine autophosphorylation attenuates kinase activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium-dependent protein kinases (CDPKs or CPKs) are classified as serine/threonine protein kinases but we made the surprising observation that soybean CDPK' and several Arabidopsis isoforms (AtCPK4 and AtCPK34) could also autophosphorylate on tyrosine residues. In studies with His6-GmCDPK', we ide...

  13. Src tyrosine kinase regulates adhesion and chemotaxis in Waldenstrom Macroglobulinemia

    PubMed Central

    Ngo, Hai T.; Azab, Abdel Kareem; Farag, Mena; Jia, Xiaoying; Melhem, Molly M.; Runnels, Judith; Roccaro, Aldo M.; Azab, Feda; Sacco, Antonio; Leleu, Xavier; Anderson, Kenneth C.; Ghobrial, Irene M.

    2009-01-01

    Purpose Waldenstrom's macroglobulinemia (WM) is a lymphoplasmacytic lymphoma characterized by widespread involvement of the bone marrow. Despite different options of therapy, WM is still incurable. Src tyrosine kinase was shown to play a central role in the regulation of a variety of biological processes such as cell proliferation, migration, adhesion, and survival, in solid tumors. We sought to determine whether the protein tyrosine kinase Src regulates adhesion, migration and survival in WM. Experimental Design We have tested the expression of Src tyrosine kinase in WM and normal cells, and tested the effect of its specific inhibitor AZD-530 on adhesion, migration, cell cycle and survival of WM cell line and patient samples. Moreover, we tested its effect on sytockeletal and cell cycle signaling in WM. Results We demonstrated that Src is over expressed in WM cells compared to control B cells. And that the use of the Src inhibitor AZD0530 led to significant inhibition of adhesion, migration and cytosekletal signaling induced by SDF1. Moreover, inhibition of Src activity induced G1 cell cycle arrest; however, it had minimal effect on survival of WM cells, and no significant effect on survival of normal cells. Conclusions Taken together, these studies delineate the role of Src kinase activity in WM and provide the framework for future clinical trials using Src inhibitors in combination with other drugs to improve the outcome of patients with WM. PMID:19755386

  14. Establishing the role of tyrosine kinase 2 in cancer

    PubMed Central

    Übel, Caroline; Mousset, Stephanie; Trufa, Denis; Sirbu, Horia; Finotto, Susetta

    2013-01-01

    Tyrosine kinase 2 (TYK2) is a member of the Janus family of non-receptor tyrosine kinases involved in cytokine signaling. TYK2 deficiency is associated with increased susceptibility to mycobacterial and viral infections, hyper IgE syndrome as well as with allergic asthma. However the precise role of TYK2 in oncogenesis and tumor progression is not clear yet. Tyk2-deficient mice are prone to develop tumors because they lack efficient cytotoxic CD8+ T-cell antitumor responses as a result of deficient Type I interferon signaling. However, as TYK2 functions downstream of growth factor receptors that are often hyperactivated in cancer, inhibiting TYK2 might also have beneficial effects for cancer treatment. PMID:23482926

  15. Establishing the role of tyrosine kinase 2 in cancer.

    PubMed

    Ubel, Caroline; Mousset, Stephanie; Trufa, Denis; Sirbu, Horia; Finotto, Susetta

    2013-01-01

    Tyrosine kinase 2 (TYK2) is a member of the Janus family of non-receptor tyrosine kinases involved in cytokine signaling. TYK2 deficiency is associated with increased susceptibility to mycobacterial and viral infections, hyper IgE syndrome as well as with allergic asthma. However the precise role of TYK2 in oncogenesis and tumor progression is not clear yet. Tyk2-deficient mice are prone to develop tumors because they lack efficient cytotoxic CD8(+) T-cell antitumor responses as a result of deficient Type I interferon signaling. However, as TYK2 functions downstream of growth factor receptors that are often hyperactivated in cancer, inhibiting TYK2 might also have beneficial effects for cancer treatment.

  16. Targeting Angiogenesis in Colorectal Cancer: Tyrosine Kinase Inhibitors.

    PubMed

    Kircher, Sheetal Mehta; Nimeiri, Halla S; Benson, Al B

    2016-01-01

    Colorectal cancer is commonly diagnosed throughout the world, and treatment options have greatly expanded over the last 2 decades. Targeting angiogenesis has been a major focus of study in a variety of malignancy types. Targeting angiogenesis has been achieved by several mechanisms in colorectal cancer, including use of antiangiogenic small molecule tyrosine kinase inhibitors (TKIs). There have been many attempts and failures to prove efficacy of TKIs in the treatment of colorectal cancer including sorafenib, sunitinib, vatalanib, and tivozanib. Regorafenib was the first TKI to demonstrate efficacy and is an orally active inhibitor of angiogenic (including the vascular endothelial growth factor receptors 1, 2, and 3), stromal, and oncogenic receptor tyrosine kinases. There are ongoing investigations of both regorafenib and ninetanib; however, there remains a critical need to better understand novel combinations with TKIs that could prove more efficacious than available options.

  17. Assessment of tumor response to tyrosine kinase inhibitors

    PubMed Central

    Lowery, Amanda; Han, Zhaozhong

    2015-01-01

    This review briefly summarizes recent developments in the use of non-invasive imaging to assess tumor response to TKI therapy. Receptor tyrosine kinases play important roles in cancer development. A new class of drugs, tyrosine kinase inhibitors (TKI) can induce rapid and dramatic tumor suppression when administered to carefully selected patient groups. Identifying these patients with responding tumors prior to or shortly after the initiation of therapy remains challenging. The gold standard of response assessment has been by invasive biopsies used in biological and biochemical procedures. Advances in non-invasive imaging at the anatomical, functional and molecular level have enabled the early detection of tumor response; sometimes within days of beginning treatment. The growing area of molecular imaging has spurred the discovery of novel targeting peptides to bind TKI responding tumors. The emergence of targeted, quick responding imaging probes advances the field of cancer management towards the goal of personalized medicine. PMID:21622159

  18. Receptor for bombesin with associated tyrosine kinase activity.

    PubMed Central

    Cirillo, D M; Gaudino, G; Naldini, L; Comoglio, P M

    1986-01-01

    The neuropeptide bombesin is known for its potent mitogenic activity on murine 3T3 fibroblasts and other cells. Recently it has been implicated in the pathogenesis of small cell lung carcinoma, in which it acts through an autocrine loop of growth stimulation. Phosphotyrosine (P-Tyr) antibodies have been successfully used to recognize the autophosphorylated receptors for known growth factors. In Swiss 3T3 fibroblasts, phosphotyrosine antibodies identified a 115,000-Mr cell surface protein (p115) that became phosphorylated on tyrosine as a specific response to bombesin stimulation of quiescent cells. The extent of phosphorylation was dose dependent and correlated with the mitogenic effect induced by bombesin, measured by [3H]thymidine incorporation. Tyrosine phosphorylation of p115 was detectable minutes after the addition of bombesin, and its time course paralleled that described for the binding of bombesin to its receptor. Immunocomplexes of phosphorylated p115 and phosphotyrosine antibodies bound 125I-labeled [Tyr4]bombesin in a specific and saturable manner and displayed an associated tyrosine kinase activity enhanced by bombesin. Furthermore, the 125I-labeled bombesin analog gastrin-releasing peptide, bound to intact live cells, was coprecipitated with p115. These data strongly suggest that p115 participates in the structure and function of the surface receptor for bombesin, a new member of the family of growth factor receptors with associated tyrosine kinase activity. Images PMID:2432404

  19. Protein kinase Calpha activation by RET: evidence for a negative feedback mechanism controlling RET tyrosine kinase.

    PubMed

    Andreozzi, Francesco; Melillo, Rosa Marina; Carlomagno, Francesca; Oriente, Francesco; Miele, Claudia; Fiory, Francesca; Santopietro, Stefania; Castellone, Maria Domenica; Beguinot, Francesco; Santoro, Massimo; Formisano, Pietro

    2003-05-15

    We have studied the role of protein kinase C (PKC) in signaling of the RET tyrosine kinase receptor. By using a chimeric receptor (E/R) in which RET kinase can be tightly controlled by the addition of epidermal growth factor (EGF), we have found that RET triggering induces a strong increase of PKCalpha, PKCdelta and PKCzeta activity and that PKCalpha, not PKCdelta and PKCzeta, forms a ligand-dependent protein complex with E/R. We have identified tyrosine 1062 in the RET carboxyl-terminal tail as the docking site for PKCalpha. Block of PKC activity by bisindolylmaleimide or chronic phorbol esters treatment decreased EGF-induced serine/threonine phosphorylation of E/R, while it caused a similarly sized increase of EGF-induced E/R tyrosine kinase activity and mitogenic signaling. Conversely, acute phorbol esters treatment, which promotes PKC activity, increased the levels of E/R serine/threonine phosphorylation and significantly decreased its phosphotyrosine content. A threefold reduction of tyrosine phosphorylation levels of the constitutively active RET/MEN2A oncoprotein was observed upon coexpression with PKCalpha. We conclude that RET binds to and activates PKCalpha. PKCalpha, in turn, causes RET phosphorylation and downregulates RET tyrosine kinase and downstream signaling, thus functioning as a negative feedback loop to modulate RET activity.

  20. Perspective: Dynamics of receptor tyrosine kinase signaling complexes.

    PubMed

    Mayer, Bruce J

    2012-08-14

    Textbook descriptions of signal transduction complexes provide a static snapshot view of highly dynamic events. Despite enormous strides in identifying the key components of signaling complexes and the underlying mechanisms of signal transduction, our understanding of the dynamic behavior of these complexes has lagged behind. Using the example of receptor tyrosine kinases, this perspective takes a fresh look at the dynamics of the system and their potential impact on signal processing.

  1. Tyrosine kinase inhibitors in advanced NSCLC: A case report.

    PubMed

    Alves, Ana Ferreira; Liebermann, Marco

    2008-10-01

    Erlotinib is a molecule that selectively inhibits epidermal growth factor receptor (EGFR) tyrosine kinase activity. The authors present a case that exemplifies the use of erlotinib as second line therapy for non-small cell lung cancer (NSCLC). This case is about a 76 years old woman, non-smoker, with advanced lung adenocarcinoma (stage IIIB) previously treated with two cycles of standard chemotherapy, which were interrupted by serious adverse reactions. Rev Port Pneumol 2008; XIV (Supl 3): S23-S28.

  2. Eph-mediated tyrosine phosphorylation of citron kinase controls abscission

    PubMed Central

    Jungas, Thomas; Perchey, Renaud T.; Fawal, Mohamad; Callot, Caroline; Froment, Carine; Burlet-Schiltz, Odile; Besson, Arnaud

    2016-01-01

    Cytokinesis is the last step of cell division, culminating in the physical separation of daughter cells at the end of mitosis. Cytokinesis is a tightly regulated process that until recently was mostly viewed as a cell-autonomous event. Here, we investigated the role of Ephrin/Eph signaling, a well-known local cell-to-cell communication pathway, in cell division. We show that activation of Eph signaling in vitro leads to multinucleation and polyploidy, and we demonstrate that this is caused by alteration of the ultimate step of cytokinesis, abscission. Control of abscission requires Eph kinase activity, and Src and citron kinase (CitK) are downstream effectors in the Eph-induced signal transduction cascade. CitK is phosphorylated on tyrosines in neural progenitors in vivo, and Src kinase directly phosphorylates CitK. We have identified the specific tyrosine residues of CitK that are phosphorylated and show that tyrosine phosphorylation of CitK impairs cytokinesis. Finally, we show that, similar to CitK, Ephrin/Eph signaling controls neuronal ploidy in the developing neocortex. Our study indicates that CitK integrates intracellular and extracellular signals provided by the local environment to coordinate completion of cytokinesis. PMID:27551053

  3. Paxillin-kinase-linker tyrosine phosphorylation regulates directional cell migration.

    PubMed

    Yu, Jianxin A; Deakin, Nicholas O; Turner, Christopher E

    2009-11-01

    Directed cell migration requires the coordination of growth factor and cell adhesion signaling and is of fundamental importance during embryonic development, wound repair, and pathological conditions such as tumor metastasis. Herein, we demonstrate that the ArfGAP, paxillin-kinase-linker (PKL/GIT2), is tyrosine phosphorylated in response to platelet-derived growth factor (PDGF) stimulation, in an adhesion dependent manner and is necessary for directed cell migration. Using a combination of pharmacological inhibitors, knockout cells and kinase mutants, FAK, and Src family kinases were shown to mediate PDGF-dependent PKL tyrosine phosphorylation. In fibroblasts, expression of a PKL mutant lacking the principal tyrosine phosphorylation sites resulted in loss of wound-induced cell polarization as well as directional migration. PKL phosphorylation was necessary for PDGF-stimulated PKL binding to the focal adhesion protein paxillin and expression of paxillin or PKL mutants defective in their respective binding motifs recapitulated the polarization defects. RNA interference or expression of phosphorylation mutants of PKL resulted in disregulation of PDGF-stimulated Rac1 and PAK activities, reduction of Cdc42 and Erk signaling, as well as mislocalization of betaPIX. Together these studies position PKL as an integral component of growth factor and cell adhesion cross-talk signaling, controlling the development of front-rear cell polarity and directional cell migration.

  4. Tyrosine phosphorylation on spleen tyrosine kinase (Syk) is differentially regulated in human and murine platelets by protein kinase C isoforms.

    PubMed

    Buitrago, Lorena; Bhavanasi, Dheeraj; Dangelmaier, Carol; Manne, Bhanu Kanth; Badolia, Rachit; Borgognone, Alessandra; Tsygankov, Alexander Y; McKenzie, Steven E; Kunapuli, Satya P

    2013-10-04

    Protein kinase C (PKC) isoforms differentially regulate platelet functional responses downstream of glycoprotein VI (GPVI) signaling, but the role of PKCs regulating upstream effectors such as Syk is not known. We investigated the role of PKC on Syk tyrosine phosphorylation using the pan-PKC inhibitor GF109203X (GFX). GPVI-mediated phosphorylation on Syk Tyr-323, Tyr-352, and Tyr-525/526 was rapidly dephosphorylated, but GFX treatment inhibited this dephosphorylation on Tyr-525/526 in human platelets but not in wild type murine platelets. GFX treatment did not affect tyrosine phosphorylation on FcRγ chain or Src family kinases. Phosphorylation of Lat Tyr-191 and PLCγ2 Tyr-759 was also increased upon treatment with GFX. We evaluated whether secreted ADP is required for such dephosphorylation. Exogenous addition of ADP to GFX-treated platelets did not affect tyrosine phosphorylation on Syk. FcγRIIA- or CLEC-2-mediated Syk tyrosine phosphorylation was also potentiated with GFX in human platelets. Because potentiation of Syk phosphorylation is not observed in murine platelets, PKC-deficient mice cannot be used to identify the PKC isoform regulating Syk phosphorylation. We therefore used selective inhibitors of PKC isoforms. Only PKCβ inhibition resulted in Syk hyperphosphorylation similar to that in platelets treated with GFX. This result indicates that PKCβ is the isoform responsible for Syk negative regulation in human platelets. In conclusion, we have elucidated a novel pathway of Syk regulation by PKCβ in human platelets.

  5. Getting Syk: Spleen Tyrosine Kinase as a Therapeutic Target

    PubMed Central

    Geahlen, Robert L.

    2014-01-01

    Syk is a cytoplasmic protein-tyrosine kinase well known for its ability to couple immune cell receptors to intracellular signaling pathways that regulate cellular responses to extracellular antigens and antigen-immunoglobulin complexes of particular importance to the initiation of inflammatory responses. Thus, Syk is an attractive target for therapeutic kinase inhibitors designed to ameliorate symptoms and consequences of acute and chronic inflammation. Its more recently recognized role as a promoter of cell survival in numerous cancer cell types ranging from leukemia to retinoblastoma has attracted considerable interest as a target for a new generation of anticancer drugs. This review discusses the biological processes in which Syk participates that have made this kinase such a compelling drug target. PMID:24975478

  6. Identification of ALK germline mutation (3605delG) in pediatric anaplastic medulloblastoma.

    PubMed

    Coco, Simona; De Mariano, Marilena; Valdora, Francesca; Servidei, Tiziana; Ridola, Vita; Andolfo, Immacolata; Oberthuer, André; Tonini, Gian Paolo; Longo, Luca

    2012-10-01

    The anaplastic lymphoma kinase (ALK) gene has been found either rearranged or mutated in several neoplasms such as anaplastic large-cell lymphoma, non-small-cell lung cancer, neuroblastoma and anaplastic thyroid cancer. Medulloblastoma (MB) is an embryonic pediatric cancer arising from nervous system, a tissue in which ALK is expressed during embryonic development. We performed an ALK mutation screening in 52 MBs and we found a novel heterozygous germline deletion of a single base in exon 23 (3605delG) in a case with marked anaplasia. This G deletion results in a frameshift mutation producing a premature stop codon in exon 25 of ALK tyrosine kinase domain. We also screened three human MB cell lines without finding any mutation of ALK gene. Quantitative expression analysis of 16 out of 52 samples showed overexpression of ALK mRNA in three MBs. In the present study, we report the first mutation of ALK found in MB. Moreover, a deletion of ALK gene producing a stop codon has not been detected in human tumors up to now. Further investigations are now required to elucidate whether the truncated form of ALK may have a role in signal transduction.

  7. Screening for ALK abnormalities in central nervous system metastases of non-small-cell lung cancer: ALK abnormalities in CNS metastases of NSCLC.

    PubMed

    Nicoś, Marcin; Jarosz, Bożena; Krawczyk, Paweł; Wojas-Krawczyk, Kamila; Kucharczyk, Tomasz; Sawicki, Marek; Pankowski, Juliusz; Trojanowski, Tomasz; Milanowski, Janusz

    2016-11-23

    Anaplastic lymphoma kinase (ALK) gene rearrangement was reported in 3-7% of primary non-small-cell lung cancer (NSCLC) and its presence is commonly associated with adenocarcinoma (AD) type and non-smoking history. ALK tyrosine kinase inhibitors (TKIs) such as crizotinib, alectinib and ceritinib showed efficiency in patients with primary NSCLC harboring ALK gene rearrangement. Moreover, response to ALK TKIs was observed in central nervous system (CNS) metastatic lesions of NSCLC. However, there are no reports concerning the frequency of ALK rearrangement in CNS metastases. We assessed the frequency of ALK abnormalities in 145 formalin fixed paraffin embedded (FFPE) tissue samples from CNS metastases of NSCLC using immunohistochemical (IHC) automated staining (BenchMark GX, Ventana, USA) and fluorescence in situ hybridization (FISH) technique (Abbot Molecular, USA). The studied group was heterogeneous in terms of histopathology and smoking status. ALK abnormalities were detected in 4.8% (7/145) of CNS metastases. ALK abnormalities were observed in six AD (7.5%; 6/80) and in single patients with adenosuqamous lung carcinoma. Analysis of clinical and demographic factors indicated that expression of abnormal ALK was significantly more frequently observed (p=0.0002; χ(2) =16.783) in former-smokers. Comparison of IHC and FISH results showed some discrepancies, which were caused by unspecific staining of macrophages and glial/nerve cells, which constitute the background of CNS tissues. Our results indicate high frequency of ALK gene rearrangement in CNS metastatic sites of NSCLC that are in line with prior studies concerning evaluation of the presence of ALK abnormalities in such patients. However, we showed that assessment of ALK by IHC and FISH methods in CNS tissues require additional standardizations. This article is protected by copyright. All rights reserved.

  8. Tyrosine phosphorylation of protein kinase CK2 by Src-related tyrosine kinases correlates with increased catalytic activity.

    PubMed Central

    Donella-Deana, Arianna; Cesaro, Luca; Sarno, Stefania; Ruzzene, Maria; Brunati, Anna Maria; Marin, Oriano; Vilk, Greg; Doherty-Kirby, Amanda; Lajoie, Gilles; Litchfield, David W; Pinna, Lorenzo A

    2003-01-01

    Casein kinase-2 (CK2) is a pleiotropic and constitutively active serine/threonine protein kinase composed of two catalytic (alpha and/or alpha') and two regulatory beta-subunits, whose regulation is still not well understood. In the present study, we show that the catalytic subunits of human CK2, but not the regulatory beta-subunits, are readily phosphorylated by the Src family protein tyrosine kinases Lyn and c-Fgr to a stoichiometry approaching 2 mol phosphotyrosine/mol CK2alpha with a concomitant 3-fold increase in catalytic activity. We also show that endogenous CK2alpha becomes tyrosine-phosphorylated in pervanadate-treated Jurkat cells. Both tyrosine phosphorylation and stimulation of activity are suppressed by the specific Src inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4- d ]pyrimidine. By comparison, mutations giving rise to inactive forms of CK2alpha do not abrogate and, in some cases, stimulate Lyn and c-Fgr-dependent tyrosine phosphorylation of CK2. Several radiolabelled phosphopeptides could be resolved by HPLC, following tryptic digestion of CK2alpha that had been phosphoradiolabelled by incubation with [(32)P]ATP and c-Fgr. The most prominent phosphopeptide co-migrates with a synthetic peptide encompassing the 248-268 sequence, phosphorylated previously by c-Fgr at Tyr(255) in vitro. The identification of Tyr(255) as a phosphorylated residue was also supported by MS sequencing of both the phosphorylated and non-phosphorylated 248-268 tryptic fragments from CK2alpha and by on-target phosphatase treatment. A CK2alpha mutant in which Tyr(255) was replaced by phenylalanine proved less susceptible to phosphorylation and refractory to stimulation by c-Fgr. PMID:12628006

  9. Receptor tyrosine kinase signaling: a view from quantitative proteomics.

    PubMed

    Dengjel, Joern; Kratchmarova, Irina; Blagoev, Blagoy

    2009-10-01

    Growth factor receptor signaling via receptor tyrosine kinases (RTKs) is one of the basic cellular communication principals found in all metazoans. Extracellular signals are transferred via membrane spanning receptors into the cytoplasm, reversible tyrosine phosphorylation being the hallmark of all RTKs. In recent years proteomic approaches have yielded detailed descriptions of cellular signaling events. Quantitative proteomics is able to characterize the exact position and strength of post-translational modifications (PTMs) providing essential information for understanding the molecular basis of signal transduction. Numerous new post-translational modification sites have been identified by quantitative mass spectrometry-based proteomics. In addition, plentiful new players in signal transduction have been identified underlining the complexity and the modular architecture of most signaling networks. In this review, we outline the principles of signal transduction via RTKs and highlight some of the new insights obtained from proteomic approaches such as protein microarrays and quantitative mass spectrometry.

  10. Targeting autophagy enhances the anti-tumoral action of crizotinib in ALK-positive anaplastic large cell lymphoma

    PubMed Central

    Desquesnes, Aurore; Le Gonidec, Sophie; AlSaati, Talal; Beau, Isabelle; Lamant, Laurence; Meggetto, Fabienne; Espinos, Estelle; Codogno, Patrice; Brousset, Pierre; Giuriato, Sylvie

    2015-01-01

    Anaplastic Lymphoma Kinase-positive Anaplastic Large Cell Lymphomas (ALK+ ALCL) occur predominantly in children and young adults. Their treatment, based on aggressive chemotherapy, is not optimal since ALCL patients can still expect a 30% 2-year relapse rate. Tumor relapses are very aggressive and their underlying mechanisms are unknown. Crizotinib is the most advanced ALK tyrosine kinase inhibitor and is already used in clinics to treat ALK-associated cancers. However, crizotinib escape mechanisms have emerged, thus preventing its use in frontline ALCL therapy. The process of autophagy has been proposed as the next target for elimination of the resistance to tyrosine kinase inhibitors. In this study, we investigated whether autophagy is activated in ALCL cells submitted to ALK inactivation (using crizotinib or ALK-targeting siRNA). Classical autophagy read-outs such as autophagosome visualization/quantification by electron microscopy and LC3-B marker turn-over assays were used to demonstrate autophagy induction and flux activation upon ALK inactivation. This was demonstrated to have a cytoprotective role on cell viability and clonogenic assays following combined ALK and autophagy inhibition. Altogether, our results suggest that co-treatment with crizotinib and chloroquine (two drugs already used in clinics) could be beneficial for ALK-positive ALCL patients. PMID:26338968

  11. Receptor tyrosine kinases and schistosome reproduction: new targets for chemotherapy

    PubMed Central

    Morel, Marion; Vanderstraete, Mathieu; Hahnel, Steffen; Grevelding, Christoph G.; Dissous, Colette

    2014-01-01

    Schistosome parasites still represent a serious public health concern and a major economic problem in developing countries. Pathology of schistosomiasis is mainly due to massive egg production by these parasites and to inflammatory responses raised against the eggs which are trapped in host tissues. Tyrosine kinases (TKs) are key molecules that control cell differentiation and proliferation and they already represent important targets in cancer therapy. During recent years, it has been shown that receptor tyrosine kinases (RTK) signaling was active in reproductive organs and that it could regulate sexual maturation of schistosomes and egg production. This opens interesting perspectives for the control of transmission and pathogenesis of schistosomiasis based on new therapies targeting schistosome RTKs. This review relates the numerous data showing the major roles of kinase signaling in schistosome reproduction. It describes the conserved and particular features of schistosome RTKs, their implication in gametogenesis and reproduction processes and summarizes recent works indicating that RTKs and their signaling partners are interesting chemotherapeutical targets in new programs of control. PMID:25101117

  12. R3 receptor tyrosine phosphatases: conserved regulators of receptor tyrosine kinase signaling and tubular organ development.

    PubMed

    Jeon, Mili; Zinn, Kai

    2015-01-01

    R3 receptor tyrosine phosphatases (RPTPs) are characterized by extracellular domains composed solely of long chains of fibronectin type III repeats, and by the presence of a single phosphatase domain. There are five proteins in mammals with this structure, two in Drosophila and one in Caenorhabditis elegans. R3 RPTPs are selective regulators of receptor tyrosine kinase (RTK) signaling, and a number of different RTKs have been shown to be direct targets for their phosphatase activities. Genetic studies in both invertebrate model systems and in mammals have shown that R3 RPTPs are essential for tubular organ development. They also have important functions during nervous system development. R3 RPTPs are likely to be tumor suppressors in a number of types of cancer.

  13. R3 receptor tyrosine phosphatases: conserved regulators of receptor tyrosine kinase signaling and tubular organ development

    PubMed Central

    Jeon, Mili; Zinn, Kai

    2014-01-01

    Summary R3 receptor tyrosine phosphatases (RPTPs) are characterized by extracellular domains composed solely of long chains of fibronectin type III repeats, and by the presence of a single phosphatase domain. There are five proteins in mammals with this structure, two in Drosophila, and one in Caenorhabditis elegans. R3 RPTPs are selective regulators of receptor tyrosine kinase (RTK) signaling, and a number of different RTKs have been shown to be direct targets for their phosphatase activities. Genetic studies in both invertebrate model systems and in mammals have shown that R3 RPTPs are essential for tubular organ development. They also have important functions during nervous system development. R3 RPTPs are likely to be tumor suppressors in a number of types of cancer. PMID:25242281

  14. Genomic organization of Bruton`s tyrosine kinase

    SciTech Connect

    Rohrer, J.; Conley, M.E.

    1994-09-01

    Bruton`s tyrosine kinase (Btk), is a nonreceptor tyrosine kinase that has been identified as the defective gene in X-linked agammaglobulinemia (XLA). XLA patients have profound hypogammaglobulinemia and markedly reduced numbers of B cells while their T cell and phagocyte numbers remain normal. To determine the genomic organization of Btk, intron/exon borders were identified by sequencing cosmid DNA using cDNA primers. Nineteen exons spanning 37 kb of genomic DNA were identified. All the intron/exon splice junctions followed the GT/AG rule. The translational ATG start codon was in exon 2 which was 6 kb downstream of exon 1. Exon 19, 519 bp in length and 3.8 kb distal to exon 18, was the largest exon and included the 450 bp of the 3{prime} untranslated region. Exons 6 through 18 formed the largest cluster of exons with no intron being longer than 1550 bp. There was no apparent correlation between the exon boundaries of Btk and the functional domains of the protein or the exon boundaries of src, the nonreceptor protein tyrosine kinase prototype. The region 500 bp upstream of the presumed transcriptional start site was sequenced and found to have a G+C content of 52%. No TATA-type promoter elements in the -20 bp to -30 bp region were identified. However, at position -48 bp, a TGTGAA motif was found that bears some similarity to the TATA box. This sequence was preceded by a perfect inverted CCAAT box at position -90 bp. Three retinoic acid binding sites were also identified at positions -50 bp, -83 bp and -197 bp. Defining the genomic structure of Btk will permit us to identify regulatory elements in this gene and to identify mutations in genomic DNA of patients with XLA.

  15. Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling.

    PubMed

    Christensen, Søren T; Clement, Christian A; Satir, Peter; Pedersen, Lotte B

    2012-01-01

    Primary cilia are microtubule-based sensory organelles that coordinate signalling pathways in cell-cycle control, migration, differentiation and other cellular processes critical during development and for tissue homeostasis. Accordingly, defects in assembly or function of primary cilia lead to a plethora of developmental disorders and pathological conditions now known as ciliopathies. In this review, we summarize the current status of the role of primary cilia in coordinating receptor tyrosine kinase (RTK) signalling pathways. Further, we present potential mechanisms of signalling crosstalk and networking in the primary cilium and discuss how defects in ciliary RTK signalling are linked to human diseases and disorders.

  16. Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling

    PubMed Central

    Christensen, Søren T; Clement, Christian A; Satir, Peter; Pedersen, Lotte B

    2015-01-01

    Primary cilia are microtubule-based sensory organelles that coordinate signalling pathways in cell-cycle control, migration, differentiation and other cellular processes critical during development and for tissue homeostasis. Accordingly, defects in assembly or function of primary cilia lead to a plethora of developmental disorders and pathological conditions now known as ciliopathies. In this review, we summarize the current status of the role of primary cilia in coordinating receptor tyrosine kinase (RTK) signalling pathways. Further, we present potential mechanisms of signalling crosstalk and networking in the primary cilium and discuss how defects in ciliary RTK signalling are linked to human diseases and disorders. PMID:21956154

  17. Discovery and preclinical characterization of novel small molecule TRK and ROS1 tyrosine kinase inhibitors for the treatment of cancer and inflammation.

    PubMed

    Narayanan, Ramesh; Yepuru, Muralimohan; Coss, Christopher C; Wu, Zhongzhi; Bauler, Matthew N; Barrett, Christina M; Mohler, Michael L; Wang, Yun; Kim, Juhyun; Snyder, Linda M; He, Yali; Levy, Nelson; Miller, Duane D; Dalton, James T

    2013-01-01

    Receptor tyrosine kinases (RTKs), in response to their growth factor ligands, phosphorylate and activate downstream signals important for physiological development and pathological transformation. Increased expression, activating mutations and rearrangement fusions of RTKs lead to cancer, inflammation, pain, neurodegenerative diseases, and other disorders. Activation or over-expression of ALK, ROS1, TRK (A, B, and C), and RET are associated with oncogenic phenotypes of their respective tissues, making them attractive therapeutic targets. Cancer cDNA array studies demonstrated over-expression of TRK-A and ROS1 in a variety of cancers, compared to their respective normal tissue controls. We synthesized a library of small molecules that inhibit the above indicated RTKs with picomolar to nanomolar potency. The lead molecule GTx-186 inhibited RTK-dependent cancer cell and tumor growth. In vitro and in vivo growth of TRK-A-dependent IMR-32 neuroblastoma cells and ROS1-overexpressing NIH3T3 cells were inhibited by GTx-186. GTx-186 also inhibited inflammatory signals mediated by NFκB, AP-1, and TRK-A and potently reduced atopic dermatitis and air-pouch inflammation in mice and rats. Moreover, GTx-186 effectively inhibited ALK phosphorylation and ALK-dependent cancer cell growth. Collectively, the RTK inhibitor GTx-186 has a unique kinase profile with potential to treat cancer, inflammation, and neuropathic pain.

  18. Inhibition of Tyrosine Kinase Signaling After Trauma-Hemorrhage

    PubMed Central

    Jarrar, Doraid; Wang, Ping; Song, Grace Y.; Cioffi, William G.; Bland, Kirby I.; Chaudry, Irshad H.

    2000-01-01

    Objective To determine whether administration of a tyrosine kinase inhibitor after trauma-hemorrhage has any beneficial effects on cardiovascular parameters and hepatocellular function and on survival rate after subsequent sepsis. Background Increased inflammatory cytokine release and concomitant activation of intracellular signaling pathways contributes to multiple organ dysfunction and increased susceptibility to subsequent sepsis after severe hemorrhagic shock. Methods Male Sprague-Dawley rats underwent a midline laparotomy (i.e., soft-tissue trauma induced) and were then bled to and maintained at a mean arterial pressure of 40 mmHg until 40% of the maximal shed blood volume was returned in the form of Ringer’s lactate. The rats were then resuscitated with four times the shed blood volume in the form of Ringer’s lactate during a 60-minute period. A tyrosine kinase inhibitor, AG 556 (7.5 mg/kg), or vehicle was administered intraperitoneally at the middle of resuscitation. At 24 hours after resuscitation, various in vivo parameters such as heart performance, cardiac index, and hepatocellular function (i.e., the maximum velocity and the overall efficiency of indocyanine green clearance) were determined. Phosphorylation state of the mitogen-activated protein kinases p44/42 and p38 in the liver was assessed by Western blot analysis. In additional groups of rats, sepsis was induced by cecal ligation and puncture at 20 hours after hemorrhage. The necrotic cecum was excised 10 hours thereafter, and the survival rate was monitored for a period of 10 days. Results AG 556 treatment restored the depressed cardiovascular and hepatocellular functions after trauma-hemorrhage and resuscitation, which was associated with reduced phosphorylation of mitogen-activated protein kinases p44/42 and p38. Moreover, treatment with AG 556 significantly increased the survival rate of rats after trauma-hemorrhage and induction of subsequent sepsis compared with vehicle-treated rats

  19. Role of Receptor Tyrosine Kinase Signaling in Renal Fibrosis

    PubMed Central

    Liu, Feng; Zhuang, Shougang

    2016-01-01

    Renal fibrosis can be induced in different renal diseases, but ultimately progresses to end stage renal disease. Although the pathophysiologic process of renal fibrosis have not been fully elucidated, it is characterized by glomerulosclerosis and/or tubular interstitial fibrosis, and is believed to be caused by the proliferation of renal inherent cells, including glomerular epithelial cells, mesangial cells, and endothelial cells, along with defective kidney repair, renal interstitial fibroblasts activation, and extracellular matrix deposition. Receptor tyrosine kinases (RTKs) regulate a variety of cell physiological processes, including metabolism, growth, differentiation, and survival. Many studies from in vitro and animal models have provided evidence that RTKs play important roles in the pathogenic process of renal fibrosis. It is also showed that tyrosine kinases inhibitors (TKIs) have anti-fibrotic effects in basic research and clinical trials. In this review, we summarize the evidence for involvement of specific RTKs in renal fibrosis process and the employment of TKIs as a therapeutic approach for renal fibrosis. PMID:27331812

  20. Negative regulation of ErbB family receptor tyrosine kinases.

    PubMed

    Sweeney, C; Carraway, K L

    2004-01-26

    Receptors of the EGF receptor or ErbB family of growth factor receptor tyrosine kinases are frequently overexpressed in a variety of solid tumours, and the aberrant activation of their tyrosine kinase activities is thought to contribute to tumour growth and progression. Much effort has been put into developing inhibitors of ErbB receptors, and both antibody and small-molecule approaches have exhibited clinical success. Recently, a number of endogenous negative regulatory proteins have been identified that suppress the signalling activity of ErbB receptors in cells. These include intracellular RING finger E3 ubiquitin ligases such as cbl and Nrdp1 that mediate ErbB receptor degradation, and may include a wide variety of secreted and transmembrane proteins that suppress receptor activation by growth factor ligands. It will be of interest to determine the extent to which tumour cells suppress these pathways to promote their progression, and whether restoration of endogenous receptor-negative regulatory pathways may be exploited for therapeutic benefit.

  1. A patient previously treated with ALK inhibitors for central nervous system lesions from ALK rearranged lung cancer: a case report

    PubMed Central

    Kashima, Jumpei; Okuma, Yusuke; Hishima, Tsunekazu

    2016-01-01

    Background Patients with anaplastic lymphoma kinase (ALK)-rearranged non-small-cell lung cancer (NSCLC) are now preferentially treated with tyrosine kinase inhibitors (TKIs). However, patients treated with ALK inhibitors end up with acquired resistance. Case presentation We present a patient with recurrent ALK-rearranged NSCLC that developed multiple brain metastases and meningitis carcinomatosa after sequential treatment with several lines of cytotoxic chemotherapy, crizotinib, and alectinib. After the patient underwent retreatment with crizotinib as salvage therapy because of poor performance status, the intracranial metastatic foci and meningeal thickening were shrank within 1 week. Conclusion Our experience with this case suggests that alectinib may restore sensitivity to crizotinib or amplified pathway such as MET which bestowed alectinib resistance was inhibited with crizotinib. PMID:27785052

  2. Unlocking Doors without Keys: Activation of Src by Truncated C-terminal Intracellular Receptor Tyrosine Kinases Lacking Tyrosine Kinase Activity

    PubMed Central

    Mezquita, Belén; Mezquita, Pau; Pau, Montserrat; Mezquita, Jovita; Mezquita, Cristóbal

    2014-01-01

    One of the best examples of the renaissance of Src as an open door to cancer has been the demonstration that just five min of Src activation is sufficient for transformation and also for induction and maintenance of cancer stem cells [1]. Many tyrosine kinase receptors, through the binding of their ligands, become the keys that unlock the structure of Src and activate its oncogenic transduction pathways. Furthermore, intracellular isoforms of these receptors, devoid of any tyrosine kinase activity, still retain the ability to unlock Src. This has been shown with a truncated isoform of KIT (tr-KIT) and a truncated isoform of VEGFR-1 (i21-VEGFR-1), which are intracellular and require no ligand binding, but are nonetheless able to activate Src and induce cell migration and invasion of cancer cells. Expression of the i21-VEGFR-1 is upregulated by the Notch signaling pathway and repressed by miR-200c and retinoic acid in breast cancer cells. Both Notch inhibitors and retinoic acid have been proposed as potential therapies for invasive breast cancer. PMID:24709904

  3. Exploiting receptor tyrosine kinase co-activation for cancer therapy

    PubMed Central

    Tan, Aik-Choon; Vyse, Simon; Huang, Paul H

    2017-01-01

    Studies over the past decade have shown that Receptor Tyrosine Kinase (RTK) co-activation is prevalent in many cancer types. Compelling data demonstrates that cancers are likely to have evolved RTK co-activation as a generic means for driving tumour growth and providing a buffering system to limit the lethal effects of microenvironmental insults including therapy. In this review, we summarise the general principles of RTK co-activation gleaned from key studies over the last decade. We discuss direct and indirect approaches to exploit RTK co-activation for cancer therapy and describe recent developments in computational approaches to predict kinase co-dependencies by integrating drug screening data and kinase inhibitor selectivity profiles. We offer a perspective on the outstanding questions in the field focusing on the implications of RTK co-activation on tumour heterogeneity and cancer evolution and conclude by surveying emerging computational and experimental approaches that will provide further insights into the biology of RTK co-activation and deliver new developments in effective cancer therapies. PMID:27452454

  4. Regulation of therapeutic resistance in cancers by receptor tyrosine kinases

    PubMed Central

    Chen, Mei-Kuang; Hung, Mien-Chie

    2016-01-01

    In response to DNA damage lesions due to cellular stress, DNA damage response (DDR) pathways are activated to promote cell survival and genetic stability or unrepaired lesion-induced cell death. Current cancer treatments predominantly utilize DNA damaging agents, such as irradiation and chemotherapy drugs, to inhibit cancer cell proliferation and induce cell death through the activation of DDR. However, a portion of cancer patients is reported to develop therapeutic resistance to these DDR-inducing agents. One significant resistance mechanism in cancer cells is oncogenic kinase overexpression, which promotes cell survival by enhancing DNA damage repair pathways and evading cell cycle arrest. Among the oncogenic kinases, overexpression of receptor tyrosine kinases (RTKs) is reported in many of solid tumors, and numerous clinical trials targeting RTKs are currently in progress. As the emerging trend in cancer treatment combines DNA damaging agents and RTK inhibitors, it is important to understand the substrates of RTKs relative to the DDR pathways. In addition, alteration of RTK expression and their phosphorylated substrates can serve as biomarkers to stratify patients for combination therapies. In this review, we summarize the deleterious effects of RTKs on the DDR pathways and the emerging biomarkers for personalized therapy. PMID:27186434

  5. Clinicopathological features and relation between anaplastic lymphoma kinase (ALK) mutation and histological subtype of lung adenocarcinoma in Eastern European Caucasian population

    PubMed Central

    Zaric, Bojan; Stojsic, Vladimir; Panjkovic, Milana; Tegeltija, Dragana; Stepanov, Vanesa; Kovacevic, Tomi; Sarcev, Tatjana; Radosavljevic, Davorin; Milovancev, Aleksandar; Adamidis, Vasilis; Zarogoulidis, Paul; Hohenforst-Schmidt, Wolfgang; Trakada, Georgia; Rapti, Aggeliki; Perin, Branislav

    2016-01-01

    Introduction: The incidence of echinoderm microtubule-associated protein-like4-anaplastic lymphoma kinase (EML4-ALK) mutation among surgically treated patients with adenocarcinoma of the lung of the Eastern European ethnicity is underreported. The aim of this trial was the determination of EML4-ALK mutation frequency in investigated population, and the evaluation of correlations between lung adenocarcinoma subtype and clinical characteristics with mutation status. Patients and methods: This was a prospective trial which included 195 patients with adenocarcinoma of the lung who underwent surgical treatment. ALK mutation screening was performed by immunohistochemistry (IHC). IHC scores of 2+ and 3+ were regarded as positive. Confirmatory FISH was performed in all IHC positive and in 2:1 ratio in negative patients. Results: Overall ALK mutation rate established by IHC was 6.2%, while FISH confirmed rate of 5.1%. The FISH confirmed ALK positivity in 7.6% Hungarians, 5.5% Serbians, and 6.6% Slovakians. Acinar subtype of adenocarcinoma of the lung was significantly (p=0.02) related to EML4-ALK positive mutation status. Most of the patients were males (56.9%), smokers (50.8%), or former smokers (28.7%) with acinar (55.4%) or solid (35.9%) adenocarcinoma of the lung. Sensitivity and specificity of IHC were 100% and 98.9% respectively. Conclusions: ALK mutation rate in surgically treated patients with adenocarcinoma of the lung was found to be 6.2% by IHC and 5.1% by FISH. Acinar subtype of the adenocarcinoma of the lung was significantly related to ALK positive mutation. PMID:27994656

  6. Polyomavirus middle-T antigen associates with the kinase domain of Src-related tyrosine kinases.

    PubMed Central

    Dunant, N M; Senften, M; Ballmer-Hofer, K

    1996-01-01

    Middle-T antigen of mouse polyomavirus, an oncogenic DNA virus, associates with and activates the cellular tyrosine kinases c-Src, c-Yes, and Fyn. This interaction is essential for polyomavirus-mediated transformation of cells in culture and tumor formation in animals. To determine the domain of c-Src directing association with middle-T, mutant c-Src proteins lacking the amino-terminal unique domain and the myristylation signal, the SH2 domain, the SH3 domain, or all three of these domains were coexpressed with middle-T in NIH 3T3 cells. All mutants were found to associate with middle-T, demonstrating that the kinase domain of c-Src, including the carboxy-terminal regulatory tail, is sufficient for association with middle-T. Moreover, we found that Hck, another member of the Src kinase family, does not bind middle-T, while chimeric kinases consisting of the amino-terminal domains of c-Src fused to the kinase domain of Hck or the amino-terminal domains of Hck fused to the kinase domain of c-Src associated with middle-T. Hck mutated at its carboxy-terminal regulatory residue, tyrosine 501, was also found to associate with middle-T. These results suggest that in Hck, the postulated intramolecular interaction between the carboxy-terminal regulatory tyrosine and the SH2 domain prevents association with middle-T. This intramolecular interaction apparently also limits the ability of c-Src to associate with middle-T, since removal of the SH2 or SH3 domain increases the efficiency with which middle-T binds c-Src. PMID:8627648

  7. Regulatory Phosphorylation of Ikaros by Bruton's Tyrosine Kinase

    PubMed Central

    Zhang, Jian; Ishkhanian, Rita; Uckun, Fatih M.

    2013-01-01

    Diminished Ikaros function has been implicated in the pathogenesis of acute lymphoblastic leukemia (ALL), the most common form of childhood cancer. Therefore, a stringent regulation of Ikaros is of paramount importance for normal lymphocyte ontogeny. Here we provide genetic and biochemical evidence for a previously unknown function of Bruton's tyrosine kinase (BTK) as a partner and posttranslational regulator of Ikaros, a zinc finger-containing DNA-binding protein that plays a pivotal role in immune homeostasis. We demonstrate that BTK phosphorylates Ikaros at unique phosphorylation sites S214 and S215 in the close vicinity of its zinc finger 4 (ZF4) within the DNA binding domain, thereby augmenting its nuclear localization and sequence-specific DNA binding activity. Our results further demonstrate that BTK-induced activating phosphorylation is critical for the optimal transcription factor function of Ikaros. PMID:23977012

  8. Design and Synthesis of Novel Macrocyclic Mer Tyrosine Kinase Inhibitors.

    PubMed

    Wang, Xiaodong; Liu, Jing; Zhang, Weihe; Stashko, Michael A; Nichols, James; Miley, Michael J; Norris-Drouin, Jacqueline; Chen, Zhilong; Machius, Mischa; DeRyckere, Deborah; Wood, Edgar; Graham, Douglas K; Earp, H Shelton; Kireev, Dmitri; Frye, Stephen V

    2016-12-08

    Mer tyrosine kinase (MerTK) is aberrantly elevated in various tumor cells and has a normal anti-inflammatory role in the innate immune system. Inhibition of MerTK may provide dual effects against these MerTK-expressing tumors through reducing cancer cell survival and redirecting the innate immune response. Recently, we have designed novel and potent macrocyclic pyrrolopyrimidines as MerTK inhibitors using a structure-based approach. The most active macrocycles had an EC50 below 40 nM in a cell-based MerTK phosphor-protein ELISA assay. The X-ray structure of macrocyclic analogue 3 complexed with MerTK was also resolved and demonstrated macrocycles binding in the ATP binding pocket of the MerTK protein as anticipated. In addition, the lead compound 16 (UNC3133) had a 1.6 h half-life and 16% oral bioavailability in a mouse PK study.

  9. Mechanisms of resistance to EGFR tyrosine kinase inhibitors

    PubMed Central

    Huang, Lihua; Fu, Liwu

    2015-01-01

    Since the discovery that non-small cell lung cancer (NSCLC) is driven by epidermal growth factor receptor (EGFR) mutations, the EGFR tyrosine kinase inhibitors (EGFR-TKIs, e.g., gefitinib and elrotinib) have been effectively used for clinical treatment. However, patients eventually develop drug resistance. Resistance to EGFR-TKIs is inevitable due to various mechanisms, such as the secondary mutation (T790M), activation of alternative pathways (c-Met, HGF, AXL), aberrance of the downstream pathways (K-RAS mutations, loss of PTEN), impairment of the EGFR-TKIs-mediated apoptosis pathway (BCL2-like 11/BIM deletion polymorphism), histologic transformation, ATP binding cassette (ABC) transporter effusion, etc. Here we review and summarize the known resistant mechanisms to EGFR-TKIs and provide potential targets for development of new therapeutic strategies. PMID:26579470

  10. Receptor Tyrosine Kinases: Molecular Switches Regulating CNS Axon Regeneration

    PubMed Central

    Vigneswara, Vasanthy; Kundi, Sarina; Ahmed, Zubair

    2012-01-01

    The poor or lack of injured adult central nervous system (CNS) axon regeneration results in devastating consequences and poor functional recovery. The interplay between the intrinsic and extrinsic factors contributes to robust inhibition of axon regeneration of injured CNS neurons. The insufficient or lack of trophic support for injured neurons is considered as one of the major obstacles contributing to their failure to survive and regrow their axons after injury. In the CNS, many of the signalling pathways associated with neuronal survival and axon regeneration are regulated by several classes of receptor tyrosine kinases (RTK) that respond to a variety of ligands. This paper highlights and summarises the most relevant recent findings pertinent to different classes of the RTK family of molecules, with a particular focus on elucidating their role in CNS axon regeneration. PMID:22848811

  11. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor–Resistant Disease

    PubMed Central

    Ohashi, Kadoaki; Maruvka, Yosef E.; Michor, Franziska; Pao, William

    2013-01-01

    Purpose EGFR-mutant lung cancer was first described as a new clinical entity in 2004. Here, we present an update on new controversies and conclusions regarding the disease. Methods This article reviews the clinical implications of EGFR mutations in lung cancer with a focus on epidermal growth factor receptor tyrosine kinase inhibitor resistance. Results The discovery of EGFR mutations has altered the ways in which we consider and treat non–small-cell lung cancer (NSCLC). Patients whose metastatic tumors harbor EGFR mutations are expected to live longer than 2 years, more than double the previous survival rates for lung cancer. Conclusion The information presented in this review can guide practitioners and help them inform their patients about EGFR mutations and their impact on the treatment of NSCLC. Efforts should now concentrate on making EGFR-mutant lung cancer a chronic rather than fatal disease. PMID:23401451

  12. Tyrosine Kinase Receptor Landscape in Lung Cancer: Therapeutical Implications

    PubMed Central

    Quintanal-Villalonga, A.; Paz-Ares, Luis

    2016-01-01

    Lung cancer is a heterogeneous disease responsible for the most cases of cancer-related deaths. The majority of patients are clinically diagnosed at advanced stages, with a poor survival rate. For this reason, the identification of oncodrivers and novel biomarkers is decisive for the future clinical management of this pathology. The rise of high throughput technologies popularly referred to as “omics” has accelerated the discovery of new biomarkers and drivers for this pathology. Within them, tyrosine kinase receptors (TKRs) have proven to be of importance as diagnostic, prognostic, and predictive tools and, due to their molecular nature, as therapeutic targets. Along this review, the role of TKRs in the different lung cancer histologies, research on improvement of anti-TKR therapy, and the current approaches to manage anti-TKR resistance will be discussed. PMID:27528792

  13. The Receptor Tyrosine Kinase AXL in Cancer Progression

    PubMed Central

    Rankin, Erinn B.; Giaccia, Amato J.

    2016-01-01

    The AXL receptor tyrosine kinase (AXL) has emerged as a promising therapeutic target for cancer therapy. Recent studies have revealed a central role of AXL signaling in tumor proliferation, survival, stem cell phenotype, metastasis, and resistance to cancer therapy. Moreover, AXL is expressed within cellular components of the tumor microenvironment where AXL signaling contributes to the immunosuppressive and protumorigenic phenotypes. A variety of AXL inhibitors have been developed and are efficacious in preclinical studies. These agents offer new opportunities for therapeutic intervention in the prevention and treatment of advanced disease. Here we review the literature that has illuminated the cellular and molecular mechanisms by which AXL signaling promotes tumor progression and we will discuss the therapeutic potential of AXL inhibition for cancer therapy. PMID:27834845

  14. Tyrosine Kinase Inhibitors Regulate OPG through Inhibition of PDGFRβ

    PubMed Central

    Tay, Mei Lin; Lin, Jian-Ming; Bava, Usha; Callon, Karen; Cornish, Jillian; Naot, Dorit; Grey, Andrew

    2016-01-01

    Nilotinib and imatinib are tyrosine kinase inhibitors (TKIs) used in the treatment of chronic myeloid leukemia (CML) and gastrointestinal stromal tumors (GIST). In vitro, imatinib and nilotinib inhibit osteoclastogenesis, and in patients they reduce levels of bone resorption. One of the mechanisms that might underlie these effects is an increase in the production of osteoprotegerin (OPG). In the current work we report that platelet-derived growth factor receptor beta (PDGFRβ) signaling regulates OPG production in vitro. In addition, we have shown that TKIs have effects on RANKL signaling through inhibition of the PDGFRβ and other target receptors. These findings have implications for our understanding of the mechanisms by which TKIs affect osteoclastogenesis, and the role of PDGFRβ signaling in regulating osteoclastogenesis. Further studies are indicated to confirm the clinical effects of PDGFRβ-inhibitors and to elaborate the intracellular pathways that underpin these effects. PMID:27737004

  15. Resensitization to Crizotinib by the Lorlatinib ALK Resistance Mutation L1198F.

    PubMed

    Shaw, Alice T; Friboulet, Luc; Leshchiner, Ignaty; Gainor, Justin F; Bergqvist, Simon; Brooun, Alexei; Burke, Benjamin J; Deng, Ya-Li; Liu, Wei; Dardaei, Leila; Frias, Rosa L; Schultz, Kate R; Logan, Jennifer; James, Leonard P; Smeal, Tod; Timofeevski, Sergei; Katayama, Ryohei; Iafrate, A John; Le, Long; McTigue, Michele; Getz, Gad; Johnson, Ted W; Engelman, Jeffrey A

    2016-01-07

    In a patient who had metastatic anaplastic lymphoma kinase (ALK)-rearranged lung cancer, resistance to crizotinib developed because of a mutation in the ALK kinase domain. This mutation is predicted to result in a substitution of cysteine by tyrosine at amino acid residue 1156 (C1156Y). Her tumor did not respond to a second-generation ALK inhibitor, but it did respond to lorlatinib (PF-06463922), a third-generation inhibitor. When her tumor relapsed, sequencing of the resistant tumor revealed an ALK L1198F mutation in addition to the C1156Y mutation. The L1198F substitution confers resistance to lorlatinib through steric interference with drug binding. However, L1198F paradoxically enhances binding to crizotinib, negating the effect of C1156Y and resensitizing resistant cancers to crizotinib. The patient received crizotinib again, and her cancer-related symptoms and liver failure resolved. (Funded by Pfizer and others; ClinicalTrials.gov number, NCT01970865.).

  16. The bHLH transcription factor Hand is regulated by Alk in the Drosophila embryonic gut

    SciTech Connect

    Varshney, Gaurav K.; Palmer, Ruth H. . E-mail: Ruth.Palmer@ucmp.umu.se

    2006-12-29

    During embryonic development the midgut visceral muscle is formed by fusion of cells within the visceral mesoderm, a process initiated by the specification of a specialised cell type, the founder cell, within this tissue. Activation of the receptor tyrosine kinase Anaplastic lymphoma kinase (Alk) in the developing visceral muscle of Drosophila melanogaster initiates a signal transduction pathway required for muscle fusion. In this paper, we have investigated downstream components which are regulated by this novel signalling pathway. Here we show that Alk-mediated signal transduction drives the expression of the bHLH transcription factor Hand in vivo. Loss of Alk function results in a complete lack of Hand expression in this tissue, whereas Alk gain of function results in an expansion of Hand expression. Finally, we have investigated the process of muscle fusion in the gut of Hand mutant animals and can find no obvious defects in this process, suggesting that Hand is not critical for visceral muscle fusion per se.

  17. Tyrosine kinase FYN negatively regulates NOX4 in cardiac remodeling

    PubMed Central

    Matsushima, Shouji; Kuroda, Junya; Zhai, Peiyong; Liu, Tong; Ikeda, Shohei; Nagarajan, Narayani; Yokota, Takashi; Kinugawa, Shintaro; Hsu, Chiao-Po; Li, Hong; Tsutsui, Hiroyuki

    2016-01-01

    NADPH oxidases (Noxes) produce ROS that regulate cell growth and death. NOX4 expression in cardiomyocytes (CMs) plays an important role in cardiac remodeling and injury, but the posttranslational mechanisms that modulate this enzyme are poorly understood. Here, we determined that FYN, a Src family tyrosine kinase, interacts with the C-terminal domain of NOX4. FYN and NOX4 colocalized in perinuclear mitochondria, ER, and nuclear fractions in CMs, and FYN expression negatively regulated NOX4-induced O2– production and apoptosis in CMs. Mechanistically, we found that direct phosphorylation of tyrosine 566 on NOX4 was critical for this FYN-mediated negative regulation. Transverse aortic constriction activated FYN in the left ventricle (LV), and FYN-deficient mice displayed exacerbated cardiac hypertrophy and dysfunction and increased ROS production and apoptosis. Deletion of Nox4 rescued the exaggerated LV remodeling in FYN-deficient mice. Furthermore, FYN expression was markedly decreased in failing human hearts, corroborating its role as a regulator of cardiac cell death and ROS production. In conclusion, FYN is activated by oxidative stress and serves as a negative feedback regulator of NOX4 in CMs during cardiac remodeling. PMID:27525436

  18. Solubilized placental membrane protein inhibits insulin receptor tyrosine kinase activity

    SciTech Connect

    Strout, H.V. Jr.; Slater, E.E.

    1987-05-01

    Regulation of insulin receptor (IR) tyrosine kinase (TK) activity may be important in modulating insulin action. Utilizing an assay which measures IR phosphorylation of angiotensin II (AII), the authors investigated whether fractions of TX-100 solubilized human placental membranes inhibited IR dependent AII phosphorylation. Autophosphorylated IR was incubated with membrane fractions before the addition of AII, and kinase inhibition measured by the loss of TSP incorporated in AII. An inhibitory activity was detected which was dose, time, and temperature dependent. The inhibitor was purified 200-fold by sequential chromatography on wheat germ agglutinin, DEAE, and hydroxyapatite. This inhibitory activity was found to correlate with an 80 KD protein which was electroeluted from preparative slab gels and rabbit antiserum raised. Incubation of membrane fractions with antiserum before the IRTK assay immunoprecipitated the inhibitor. Protein immunoblots of crude or purified fractions revealed only the 80 KD protein. Since IR autophosphorylation is crucial to IRTK activity, the authors investigated the state of IR autophosphorylation after treatment with inhibitor; no change was detected by phosphoamino acid analysis.

  19. Bruton's tyrosine kinase (BTK) inhibitors in clinical trials.

    PubMed

    Burger, Jan A

    2014-03-01

    BTK is a cytoplasmic, non-receptor tyrosine kinase that transmits signals from a variety of cell-surface molecules, including the B-cell receptor (BCR) and tissue homing receptors. Genetic BTK deletion causes B-cell immunodeficiency in humans and mice, making this kinase an attractive therapeutic target for B-cell disorders. The BTK inhibitor ibrutinib (PCI-32765, brand name: Imbruvica) demonstrated high clinical activity in B-cell malignancies, especially in patients with chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), and Waldenstrom's macroglobulinemia (WM). Therefore, ibrutinib was granted a 'breakthrough therapy' designation for these indications and was recently approved for the treatment of relapsed MCL by the U.S. Food and Drug Administration. Other BTK inhibitors in earlier clinical development include CC-292 (AVL-292), and ONO-4059. In CLL and MCL, ibrutinib characteristically induces redistribution of malignant B cells from tissue sites into the peripheral blood, along with rapid resolution of enlarged lymph nodes and a surge in lymphocytosis. With continuous ibrutinib therapy, growth- and survival-inhibitory activities of ibrutinib result in the normalization of lymphocyte counts and remissions in a majority of patients. This review discusses the clinical advances with BTK inhibitor therapy, as well as its pathophysiological basis, and outlines perspectives for future use of BTK inhibitors.

  20. The EGFR Family: Not So Prototypical Receptor Tyrosine Kinases

    PubMed Central

    Lemmon, Mark A.; Schlessinger, Joseph; Ferguson, Kathryn M.

    2014-01-01

    The epidermal growth factor receptor (EGFR) was among the first receptor tyrosine kinases (RTKs) for which ligand binding was studied and for which the importance of ligand-induced dimerization was established. As a result, EGFR and its relatives have frequently been termed “prototypical” RTKs. Many years of mechanistic studies, however, have revealed that—far from being prototypical—the EGFR family is quite unique. As we discuss in this review, the EGFR family uses a distinctive “receptor-mediated” dimerization mechanism, with ligand binding inducing a dramatic conformational change that exposes a dimerization arm. Intracellular kinase domain regulation in this family is also unique, being driven by allosteric changes induced by asymmetric dimer formation rather than the more typical activation-loop phosphorylation. EGFR family members also distinguish themselves from other RTKs in having an intracellular juxtamembrane (JM) domain that activates (rather than autoinhibits) the receptor and a very large carboxy-terminal tail that contains autophosphorylation sites and serves an autoregulatory function. We discuss recent advances in mechanistic aspects of all of these components of EGFR family members, attempting to integrate them into a view of how RTKs in this important class are regulated at the cell surface. PMID:24691965

  1. Tyrosine phosphorylation of glutamate receptors by non-receptor tyrosine kinases: roles in depression-like behavior

    PubMed Central

    Mao, Li-Min; Wang, John Q.

    2016-01-01

    Several key members of the non-receptor tyrosine kinase (nRTK) family are abundantly present within excitatory synapses in the mammalian brain. These neuron-enriched nRTKs interact with glutamate receptors and phosphorylate the receptors at tyrosine sites. The N-methyl-D-aspartate receptor is a direct substrate of nRTKs and has been extensively investigated in its phosphorylation responses to nRTKs. The α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor is the other glutamate receptor subtype that is subject to nRTK-mediated tyrosine phosphorylation. Recently, group I metabotropic glutamate receptors (mGluR1/5) were found to be sensitive to nRTKs. Robust tyrosine phosphorylation may occur in C-terminal tails of mGluR5. Tyrosine phosphorylation of glutamate receptors is either constitutive or induced activity-dependently by changing cellular and/or synaptic input. Through inducing tyrosine phosphorylation, nRTKs regulate trafficking, subcellular distribution, and function of modified receptors. Available data show that nRTK-glutamate receptor interactions and tyrosine phosphorylation of the receptors undergo drastic adaptations in mood disorders such as major depressive disorder. The remodeling of the nRTK-glutamate receptor interplay contributes to the long-lasting pathophysiology and symptomology of depression. This review summarizes the recent progress in tyrosine phosphorylation of glutamate receptors and analyzes the role of nRTKs in regulating glutamate receptors and depression-like behavior. PMID:26942227

  2. Oncogenic ALK regulates EMT in non-small cell lung carcinoma through repression of the epithelial splicing regulatory protein 1

    PubMed Central

    Menotti, Matteo; Poggio, Teresa; Panizza, Elena; Wang, Qi; Minero, Valerio G.; Fagoonee, Sharmila; Compagno, Mara; Altruda, Fiorella; Monti, Stefano; Chiarle, Roberto

    2016-01-01

    A subset of Non-Small Cell Lung Carcinoma (NSCLC) carries chromosomal rearrangements involving the Anaplastic Lymphoma Kinase (ALK) gene. ALK-rearranged NSCLC are typically adenocarcinoma characterized by a solid signet-ring cell pattern that is frequently associated with a metastatic phenotype. Recent reports linked the presence of ALK rearrangement to an epithelial-mesenchymal transition (EMT) phenotype in NSCLC, but the extent and the mechanisms of an ALK-mediated EMT in ALK-rearranged NSCLC are largely unknown. We found that the ALK-rearranged H2228 and DFCI032, but not the H3122, cell lines displayed a mesenchymal phenotype. In these cell lines, oncogenic ALK activity dictated an EMT phenotype by directly suppressing E-cadherin and up-regulating vimentin expression, as well as expression of other genes involved in EMT. We found that the epithelial splicing regulatory protein 1 (ESRP1), a key regulator of the splicing switch during EMT, was repressed by EML4-ALK activity. The treatment of NSCLC cells with ALK tyrosine kinase inhibitors (TKIs) led to up-regulation of ESRP1 and E-cadherin, thus reverting the phenotype from mesenchymal to epithelial (MET). Consistently, ESRP1 knock-down impaired E-cadherin up-regulation upon ALK inhibition, whereas enforced expression of ESRP1 was sufficient to increase E-cadherin expression. These findings demonstrate an ALK oncogenic activity in the regulation of an EMT phenotype in a subset of NSCLC with potential implications for the biology of ALK-rearranged NSCLC in terms of metastatic propensity and resistance to therapy. PMID:27119231

  3. Activation of the EGF receptor tyrosine kinase by divalent metal ions: comparison of holoreceptor and isolated kinase domain properties.

    PubMed

    Koland, J G; Cerione, R A

    1990-05-22

    The activation of the epidermal growth factor (EGF) receptor tyrosine kinase activity is thought to represent a key initial step in EGF-mediated mitogenesis. The mechanisms underlying the regulation of the EGF receptor tyrosine kinase activity were examined through comparisons of the holoreceptor, purified from human placenta, and a soluble 42 kDa tyrosine kinase domain (TKD), generated by the limited trypsin proteolysis of the holoreceptor. The results of these studies highlight the importance of divalent metal ions (Me2+), i.e., Mn2+ and Mg2+, as activators of the tyrosine kinase activity. Manganese is an extremely effective activator of the holoreceptor tyrosine kinase, and under some conditions (low ionic strength) it completely alleviates the need for EGF to stimulate activity. In contrast, Mg2+ only weakly stimulates the holoreceptor tyrosine kinase activity in the absence of EGF, but promotes essentially full activity in the presence of the growth factor. Like the holoreceptor, the soluble TKD is highly active in the presence of Mn2+. However, the isolated TKD is completely inactive in the presence of Mg2+, and, in fact, Mg2+ inhibits the Mn2(+)-stimulated tyrosine kinase activity. The differences in the effects of Mn2+ and Mg2+ on the isolated TKD were further demonstrated by monitoring the effects of Me2+ on the modification of a reactive cysteine residue(s) on the TKD. While Mn2+ potentiates the inhibition by cysteine-directed reagents of the tyrosine kinase activity, Mg2+ has no effect on either the rate or the extent of the inhibition. Both the regulation by Mn2+ of the kinase activity of the TKD and the potentiation by Mn2+ of the cysteine reactivity of the TKD occur over a millimolar concentration range, which implicates a direct binding interaction by the metal ion. Overall, these results demonstrate that there are two key activator sites on the EGF receptor, i.e., the EGF binding site on the extracellular domain and a Me2+ binding site on the

  4. RANBP2-ALK fusion combined with monosomy 7 in acute myelomonocytic leukemia.

    PubMed

    Lim, Ji-Hun; Jang, Seongsoo; Park, Chan-Jeoung; Cho, Young-Uk; Lee, Je-Hwan; Lee, Kyoo-Hyung; Lee, Jin-Ok; Shin, Jong-Yeon; Kim, Jong-Il; Huh, Jooryung; Seo, Eul-Ju

    2014-01-01

    Anaplastic lymphoma receptor tyrosine kinase (ALK) is located on chromosome 2p23; the chromosomal rearrangements of this gene are common genetic alterations, resulting in the creation of multiple fusion genes involved in tumorigenesis. However, the presence of an ALK fusion in myeloid malignancies is extremely rare. We report a case of acute myelomonocytic leukemia in a 31-year-old woman with an unusual rearrangement between RAN-binding protein 2 (RANBP2) and ALK and a karyotype of 45,XX,inv(2)(p23q21),-7[20]. We detected an ALK rearrangement using fluorescence in situ hybridization, identified the ALK fusion partner by using RNA transcriptome sequencing, and demonstrated the RANBP2-ALK fusion transcript by reverse transcriptase--PCR and Sanger sequencing. Immunohistochemistry for ALK showed strong staining of the nuclear membrane in leukemic cells. The patient had an unfavorable clinical course. Our results, together with a literature review, suggest the RANBP2-ALK fusion combined with monosomy 7 may be related to a unique clonal hematologic disorder of childhood and adolescence, characterized by myelomonocytic leukemia and a poor prognosis.

  5. Regulation and function of syk tyrosine kinase in mast cell signaling and beyond.

    PubMed

    de Castro, Rodrigo Orlandini

    2011-01-01

    The protein tyrosine kinase Syk plays a critical role in FcεRI signaling in mast cells. Binding of Syk to phosphorylated immunoreceptor tyrosine-based activation motifs (p-ITAM) of the receptor subunits results in conformational changes and tyrosine phosphorylation at multiple sites that leads to activation of Syk. The phosphorylated tyrosines throughout the molecule play an important role in the regulation of Syk-mediated signaling. Reconstitution of receptor-mediated signaling in Syk(-/-) cells by wild-type Syk or mutants which have substitution of these tyrosines with phenylalanine together with in vitro assays has been useful strategies to understand the regulation and function of Syk.

  6. FAK and Src kinases are required for netrin-induced tyrosine phosphorylation of UNC5.

    PubMed

    Li, Weiquan; Aurandt, Jennifer; Jürgensen, Claudia; Jürgense, Claudia; Rao, Yi; Guan, Kun-Liang

    2006-01-01

    During neuronal development, netrin and its receptors UNC5 and DCC (deleted in colorectal cancer) guide axonal growth cones in navigating to their targets. Netrin also plays important roles in the regulation of cell migration, tissue morphogenesis and tumor growth. Here, we show that netrin induces UNC5 tyrosine phosphorylation and that this effect of netrin is dependent on its co-receptor DCC. UNC5 tyrosine phosphorylation is known to be important for netrin to induce cell migration and axonal repulsion. Src tyrosine kinase activity is required for netrin to stimulate UNC5 tyrosine phosphorylation in neurons and transfected cells. The SH2 domain of Src kinase directly interacts with the cytosolic domain of UNC5 in a tyrosine-phosphorylation-dependent manner. Furthermore, the tyrosine kinase focal adhesion kinase (FAK) is also involved in netrin-induced UNC5 tyrosine phosphorylation. Both Src and FAK can phosphorylate UNC5. Our data suggest a model in which netrin stimulates UNC5 tyrosine phosphorylation and signaling in a manner dependent on the co-receptor DCC, through the recruitment of Src and FAK kinases.

  7. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK

    PubMed Central

    Katayama, Ryohei; Khan, Tahsin M.; Benes, Cyril; Lifshits, Eugene; Ebi, Hiromichi; Rivera, Victor M.; Shakespeare, William C.; Iafrate, A. John; Engelman, Jeffrey A.; Shaw, Alice T.

    2011-01-01

    The echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion oncogene represents a molecular target in a small subset of non-small cell lung cancers (NSCLCs). This fusion leads to constitutive ALK activation with potent transforming activity. In a pivotal phase 1 clinical trial, the ALK tyrosine kinase inhibitor (TKI) crizotinib (PF-02341066) demonstrated impressive antitumor activity in the majority of patients with NSCLC harboring ALK fusions. However, despite these remarkable initial responses, cancers eventually develop resistance to crizotinib, usually within 1 y, thereby limiting the potential clinical benefit. To determine how cancers acquire resistance to ALK inhibitors, we established a model of acquired resistance to crizotinib by exposing a highly sensitive EML4-ALK–positive NSCLC cell line to increasing doses of crizotinib until resistance emerged. We found that cells resistant to intermediate doses of crizotinib developed amplification of the EML4-ALK gene. Cells resistant to higher doses (1 μM) also developed a gatekeeper mutation, L1196M, within the kinase domain, rendering EML4-ALK insensitive to crizotinib. This gatekeeper mutation was readily detected using a unique and highly sensitive allele-specific PCR assay. Although crizotinib was ineffectual against EML4-ALK harboring the gatekeeper mutation, we observed that two structurally different ALK inhibitors, NVP-TAE684 and AP26113, were highly active against the resistant cancer cells in vitro and in vivo. Furthermore, these resistant cells remained highly sensitive to the Hsp90 inhibitor 17-AAG. Thus, we have developed a model of acquired resistance to ALK inhibitors and have shown that second-generation ALK TKIs or Hsp90 inhibitors are effective in treating crizotinib-resistant tumors harboring secondary gatekeeper mutations. PMID:21502504

  8. Precision medicine in NSCLC and pathology: how does ALK fit in the pathway?

    PubMed

    Kerr, K M; López-Ríos, F

    2016-09-01

    The evolution of personalised medicine in lung cancer has dramatically impacted diagnostic pathology. Current challenges centre on the growing demands placed on small tissue samples by molecular diagnostic techniques. In this review, expert recommendations are provided regarding successful identification of anaplastic lymphoma kinase (ALK)-rearranged non-small-cell lung cancer (NSCLC). Steps to correctly process and conserve tumour tissue during diagnostic testing are essential to ensure tissue availability. For example, storing extra tissue sections ready for molecular diagnostic steps allows faster testing and preserves tissue. Fluorescence in situ hybridisation (FISH) is commonly used to detect ALK rearrangements, with most laboratories favouring screening by immunohistochemistry followed by a confirmatory FISH assay. Reverse transcription-polymerase chain reaction can also identify ALK fusion gene mRNA transcripts but can be limited by the quality of RNA and the risk that rare fusion variants may not be captured. Next-generation sequencing (NGS) technology has recently provided an alternative method for detecting ALK rearrangements. While current experience is limited, NGS is set to become the most efficient approach as an increasing number of genetic abnormalities is required to be tested. Upfront, reflex testing for ALK gene rearrangement should become routine as ALK tyrosine kinase inhibitor therapy moves into the first-line setting. Guidelines recommend that EGFR and ALK tests are carried out in parallel on all confirmed and potential adenocarcinomas, and this is more efficient in terms of tissue usage and testing turnaround time for both of these actionable gene alterations. The practice of sequential testing is not recommended. Identification of ALK rearrangements is now essential for the diagnosis of NSCLC, underpinned by the benefits of ALK inhibitors. As scientific understanding and diagnostic technology develops, ALK testing will continue to be an

  9. PTB domain-directed substrate targeting in a tyrosine kinase from the unicellular choanoflagellate Monosiga brevicollis.

    PubMed

    Prieto-Echagüe, Victoria; Chan, Perry M; Craddock, Barbara P; Manser, Edward; Miller, W Todd

    2011-04-26

    Choanoflagellates are considered to be the closest living unicellular relatives of metazoans. The genome of the choanoflagellate Monosiga brevicollis contains a surprisingly high number and diversity of tyrosine kinases, tyrosine phosphatases, and phosphotyrosine-binding domains. Many of the tyrosine kinases possess combinations of domains that have not been observed in any multicellular organism. The role of these protein interaction domains in M. brevicollis kinase signaling is not clear. Here, we have carried out a biochemical characterization of Monosiga HMTK1, a protein containing a putative PTB domain linked to a tyrosine kinase catalytic domain. We cloned, expressed, and purified HMTK1, and we demonstrated that it possesses tyrosine kinase activity. We used immobilized peptide arrays to define a preferred ligand for the third PTB domain of HMTK1. Peptide sequences containing this ligand sequence are phosphorylated efficiently by recombinant HMTK1, suggesting that the PTB domain of HMTK1 has a role in substrate recognition analogous to the SH2 and SH3 domains of mammalian Src family kinases. We suggest that the substrate recruitment function of the noncatalytic domains of tyrosine kinases arose before their roles in autoinhibition.

  10. Signal transduction in podocytes—spotlight on receptor tyrosine kinases

    PubMed Central

    Reiser, Jochen; Sever, Sanja; Faul, Christian

    2014-01-01

    The mammalian kidney filtration barrier is a complex multicellular, multicomponent structure that maintains homeostasis by regulating electrolytes, acid–base balance, and blood pressure (via maintenance of salt and water balance). To perform these multiple functions, podocytes—an important component of the filtration apparatus—must process a series of intercellular signals. Integrating these signals with diverse cellular responses enables a coordinated response to various conditions. Although mature podocytes are terminally differentiated and cannot proliferate, they are able to respond to growth factors. It is possible that the initial response of podocytes to growth factors is beneficial and protective, and might include the induction of hypertrophic cell growth. However, extended and/or uncontrolled growth factor signalling might be maladaptive and could result in the induction of apoptosis and podocyte loss. Growth factors signal via the activation of receptor tyrosine kinases (RTKs) on their target cells and around a quarter of the 58 RTK family members that are encoded in the human genome have been identified in podocytes. Pharmacological inhibitors of many RTKs exist and are currently used in experimental and clinical cancer therapy. The identification of pathological RTK-mediated signal transduction pathways in podocytes could provide a starting point for the development of novel therapies for glomerular disorders. PMID:24394191

  11. Have adjuvant tyrosine kinase inhibitors lost their shine?

    PubMed Central

    Sabari, Joshua K.

    2016-01-01

    Despite broad advances in molecularly targeted therapies, lung cancer remains the leading cause of cancer related mortality in the United States. Epidermal growth factor receptor (EGFR) mutations occur in approximately 17% of advanced non-small cell lung cancer (NSCLC) in the US population. The remarkable efficacy of small-molecule EGFR tyrosine kinase inhibitors (TKIs) in this unique subset of patients has revolutionized the therapeutic approach to lung cancer. The success of these agents in the metastatic setting leads to the logical question of what role these drugs may have in the adjuvant setting for patients with earlier stage disease. RADIANT, an international randomized, double-blind, placebo controlled phase III study in patients with completely resected stage IB to IIIA NSLC whose tumors expressed EGFR by IHC and EGFR amplification by FISH, attempted to answer the question of whether erlotinib would improve disease free survival and overall survival in the adjuvant setting. While RADIANT does not conclude for or against adjuvant use of EGFR-TKIs, all data points towards benefit in a selected population. As clinicians, we must continue to enroll to potentially practice changing therapeutic neoadjuvant and adjuvant chemotherapy studies internationally. PMID:27568486

  12. Proteolytic cleavage, trafficking, and functions of nuclear receptor tyrosine kinases.

    PubMed

    Chen, Mei-Kuang; Hung, Mien-Chie

    2015-10-01

    Intracellular localization has been reported for over three-quarters of receptor tyrosine kinase (RTK) families in response to environmental stimuli. Internalized RTK may bind to non-canonical substrates and affect various cellular processes. Many of the intracellular RTKs exist as fragmented forms that are generated by γ-secretase cleavage of the full-length receptor, shedding, alternative splicing, or alternative translation initiation. Soluble RTK fragments are stabilized and intracellularly transported into subcellular compartments, such as the nucleus, by binding to chaperone or transcription factors, while membrane-bound RTKs (full-length or truncated) are transported from the plasma membrane to the ER through the well-established Rab- or clathrin adaptor protein-coated vesicle retrograde trafficking pathways. Subsequent nuclear transport of membrane-bound RTK may occur via two pathways, INFS or INTERNET, with the former characterized by release of receptors from the ER into the cytosol and the latter characterized by release of membrane-bound receptor from the ER into the nucleoplasm through the inner nuclear membrane. Although most non-canonical intracellular RTK signaling is related to transcriptional regulation, there may be other functions that have yet to be discovered. In this review, we summarize the proteolytic processing, intracellular trafficking and nuclear functions of RTKs, and discuss how they promote cancer progression, and their clinical implications.

  13. Leukocyte tyrosine kinase functions in pigment cell development.

    PubMed

    Lopes, Susana S; Yang, Xueyan; Müller, Jeanette; Carney, Thomas J; McAdow, Anthony R; Rauch, Gerd-Jörg; Jacoby, Arie S; Hurst, Laurence D; Delfino-Machín, Mariana; Haffter, Pascal; Geisler, Robert; Johnson, Stephen L; Ward, Andrew; Kelsh, Robert N

    2008-03-07

    A fundamental problem in developmental biology concerns how multipotent precursors choose specific fates. Neural crest cells (NCCs) are multipotent, yet the mechanisms driving specific fate choices remain incompletely understood. Sox10 is required for specification of neural cells and melanocytes from NCCs. Like sox10 mutants, zebrafish shady mutants lack iridophores; we have proposed that sox10 and shady are required for iridophore specification from NCCs. We show using diverse approaches that shady encodes zebrafish leukocyte tyrosine kinase (Ltk). Cell transplantation studies show that Ltk acts cell-autonomously within the iridophore lineage. Consistent with this, ltk is expressed in a subset of NCCs, before becoming restricted to the iridophore lineage. Marker analysis reveals a primary defect in iridophore specification in ltk mutants. We saw no evidence for a fate-shift of neural crest cells into other pigment cell fates and some NCCs were subsequently lost by apoptosis. These features are also characteristic of the neural crest cell phenotype in sox10 mutants, leading us to examine iridophores in sox10 mutants. As expected, sox10 mutants largely lacked iridophore markers at late stages. In addition, sox10 mutants unexpectedly showed more ltk-expressing cells than wild-type siblings. These cells remained in a premigratory position and expressed sox10 but not the earliest neural crest markers and may represent multipotent, but partially-restricted, progenitors. In summary, we have discovered a novel signalling pathway in NCC development and demonstrate fate specification of iridophores as the first identified role for Ltk.

  14. Differential Receptor Tyrosine Kinase PET Imaging for Therapeutic Guidance

    PubMed Central

    Wehrenberg-Klee, Eric; Turker, N. Selcan; Heidari, Pedram; Larimer, Benjamin; Juric, Dejan; Baselga, José; Scaltriti, Maurizio

    2016-01-01

    Inhibitors of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway hold promise for the treatment of breast cancer, but resistance to these treatments can arise via feedback loops that increase surface expression of the receptor tyrosine kinases (RTK) epidermal growth factor receptor 1 (EGFR) and human epidermal growth factor receptor 3 (HER3), leading to persistent growth pathway signaling. We developed PET probes that provide a method of imaging this response in vivo, determining which tumors may use this escape pathway while avoiding the need for repeated biopsies. Methods: Anti-EGFR-F(ab′)2 and anti-HER3-F(ab′)2 were generated from monoclonal antibodies by enzymatic digestion, conjugated to DOTA, and labeled with 64Cu. A panel of breast cancer cell lines was treated with increasing concentrations of the AKT inhibitor GDC-0068 or the PI3K inhibitor GDC-0941. Pre- and posttreatment expression of EGFR and HER3 was compared using Western blot and correlated to probe accumulation with binding studies. Nude mice xenografts of HCC-70 or MDA-MB-468 were treated with either AKT inhibitor or PI3K inhibitor and imaged with either EGFR or HER3 PET probe. Results: Changes in HER3 and EGFR PET probe accumulation correlate to RTK expression change as assessed by Western blot (R2 of 0.85–0.98). EGFR PET probe PET/CT imaging of HCC70 tumors shows an SUV of 0.32 ± 0.03 for vehicle-, 0.50 ± 0.01 for GDC-0941–, and 0.62 ± 0.01 for GDC-0068–treated tumors, respectively (P < 0.01 for both comparisons to vehicle). HER3 PET probe PET/CT imaging of MDAMB468 tumors shows an SUV of 0.35 ± 0.02 for vehicle- and 0.73 ± 0.05 for GDC-0068–treated tumors (P < 0.01). Conclusion: Our imaging studies, using PET probes specific to EGFR and HER3, show that changes in RTK expression indicative of resistance to PI3K and AKT inhibitors can be seen within days of therapy initiation and are of sufficient magnitude as to allow reliable

  15. Identification and Targeting of Tyrosine Kinase Activity in Prostate Cancer Initiation, Progression, and Metastasis

    DTIC Science & Technology

    2012-10-01

    Tyrosine Kinase Activity in Prostate Cancer Initiation, Progression, and Metastasis PRINCIPAL INVESTIGATOR: Justin Drake CONTRACTING...PROJECT NUMBER Justin Drake and Owen Witte 5e. TASK NUMBER Email: jdrake@mednet.ucla.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S...of tyrosine kinase networks during prostate cancer progression Justin M. Drakea, Nicholas A. Grahamb,c, Tanya Stoyanovaa, Amir Sedghia, Andrew S

  16. Drug-drug interactions with tyrosine-kinase inhibitors: a clinical perspective.

    PubMed

    van Leeuwen, Roelof W F; van Gelder, Teun; Mathijssen, Ron H J; Jansman, Frank G A

    2014-07-01

    In the past decade, many tyrosine-kinase inhibitors have been introduced in oncology and haemato-oncology. Because this new class of drugs is extensively used, serious drug-drug interactions are an increasing risk. In this Review, we give a comprehensive overview of known or suspected drug-drug interactions between tyrosine-kinase inhibitors and other drugs. We discuss all haemato-oncological and oncological tyrosine-kinase inhibitors that had been approved by Aug 1, 2013, by the US Food and Drug Administration or the European Medicines Agency. Various clinically relevant drug interactions with tyrosine-kinase inhibitors have been identified. Most interactions concern altered bioavailability due to altered stomach pH, metabolism by cytochrome P450 isoenzymes, and prolongation of the QTc interval. To guarantee the safe use of tyrosine-kinase inhibitors, a drugs review for each patient is needed. This Review provides specific recommendations to guide haemato-oncologists, oncologists, and clinical pharmacists, through the process of managing drug-drug interactions during treatment with tyrosine-kinase inhibitors in daily clinical practice.

  17. Tannic acid, a potent inhibitor of epidermal growth factor receptor tyrosine kinase.

    PubMed

    Yang, Er Bin; Wei, Liu; Zhang, Kai; Chen, Yu Zong; Chen, Wei Ning

    2006-03-01

    Increasing evidence supports the hypothesis that tannic acid, a plant polyphenol, exerts anticarcinogenic activity in chemically induced cancers. In the present study, tannic acid was found to strongly inhibit tyrosine kinase activity of epidermal growth factor receptor (EGFr) in vitro (IC50 = 323 nM). In contrast, the inhibition by tannic acid of p60(c-src) tyrosine kinase (IC50 = 14 microM) and insulin receptor tyrosine kinase (IC50 = 5 microM) was much weaker. The inhibition of EGFr tyrosine kinase by tannic acid was competitive with respect to ATP and non-competitive with respect to peptide substrate. In cultured cells, growth factor-induced tyrosine phosphorylation of growth factor receptors, including EGFr, platelet-derived growth factor receptor, and basic fibroblast growth factor receptor, was inhibited by tannic acid. No inhibition of insulin-induced tyrosine phosphorylation of insulin receptor and insulin-receptor substrate-1 was observed. EGF-stimulated growth of HepG2 cells was inhibited in the presence of tannic acid. The inhibition of serine/threonine-specific protein kinases, including cAMP-dependent protein kinase, protein kinase C and mitogen-activated protein kinase, by tannic acid was only detected at relatively high concentration, IC50 being 3, 325 and 142 microM respectively. The molecular modeling study suggested that tannic acid could be docked into the ATP binding pockets of either EGFr or insulin receptor. These results demonstrate that tannic acid is an in vitro potent inhibitor of EGFr tyrosine kinase.

  18. Characterization of a Mn sup 2+ -dependent membrane serine kinase that is activated by tyrosine phosphorylation

    SciTech Connect

    Singh, T.J. )

    1991-03-11

    It is hypothesized that the insulin receptor (IR) tyrosine kinase may directly phosphorylate and activate one or more serine kinases. The identities of such serine kinases as well as their modes of activation are unclear. The authors have described a serine kinase from rat liver membranes that copurifies with the IR on wheat germ agglutinin (WGA)-sepharose. The kinase is activated after phosphorylation of the WGA-sepharose-purified fraction by casein kinase-1, casein kinase-2, or casein kinase-3. A tyrosine kinase, possibly IR tyrosine kinase, also participates in the activation process since a phosphotyrosine phosphatase inhibitor such as vanadate, p-nitrophenyl phosphate, or phosphotyrosine is required in reaction mixtures for activation to be observed. By contrast, phosphoserine and phosphothreonine do not support activation. The activated kinase can use IR {beta}-subunit, myelin basic protein (MBP), and histones as substrates. IR {beta}-subunit phosphorylation was stimulated by MBP, histones, and polylysine, and inhibited by heparin and poly(glu, tyr). The kinase prefers Mn{sup 2+} over Mg{sup 2+} as a metal cofactor.

  19. Novel bone-targeted Src tyrosine kinase inhibitor drug discovery.

    PubMed

    Shakespeare, William C; Metcalf, Chester A; Wang, Yihan; Sundaramoorthi, Raji; Keenan, Terence; Weigele, Manfred; Bohacek, Regine S; Dalgarno, David C; Sawyer, Tomi K

    2003-09-01

    Bone-targeted Src tyrosine kinase (STK) inhibitors have recently been developed for the treatment of osteoporosis and cancer-related bone diseases. The concept of bone targeting derives from bisphosphonates, and from the evolution of such molecules in terms of therapeutic efficacy for the treatment of bone disorders. Interestingly, some of the earliest bisphosphonates were recognized for their ability to inhibit calcium carbonate precipitation (scaling) by virtue of their affinity to chelate calcium. This chelating property was subsequently exploited in the development of bisphosphonate analogs as inhibitors of the bone-resorbing cells known as osteoclasts, giving rise to breakthrough medicines, such as Fosamax (for the treatment of osteoporosis) and Zometa (for the treatment of osteoporosis and bone metastases). Relative to these milestone achievements, there is a tremendous opportunity to explore beyond the limited chemical space (functional group diversity) of such bisphosphonates to design novel bone-targeting moieties, which may be used to develop other classes of promising small-molecule drugs affecting different biological pathways. Here, we review studies focused on bone-targeted inhibitors of STK, a key enzyme in osteoclast-dependent bone resorption. Two strategies are described relative to bone-targeted STK inhibitor drug discovery: (i) the development of novel Src homology (SH)-2 inhibitors incorporating non-hydrolyzable phosphotyrosine mimics and exhibiting molecular recognition and bone-targeting properties, leading to the in vivo-effective lead compound AP-22408; and (ii) the development of novel ATP-based Src kinase inhibitors incorporating bone-targeting moieties, leading to the in vivo-effective lead compound AP-23236. In summary, AP-22408 and AP-23236, which differ mechanistically by virtue of blocking Src-dependent non-catalytic or catalytic activities in osteoclasts, exemplify ARIAD Pharmaceuticals' structure-based design of novel bone

  20. Cardiotoxicity Associated with the Tyrosine Kinase Inhibitor Sunitinib

    PubMed Central

    Chu, Tammy F.; Rupnick, Maria A.; Kerkela, Risto; Dallabrida, Susan M.; Zurakowski, David; Nguyen, Lisa; Woulfe, Kathleen; Pravda, Elke; Cassiola, Flavia; Desai, Jayesh; George, Suzanne; Morgan, Jeffrey A.; Harris, David; Ismail, Nesreen S.; Chen, Jey-Hsin; Schoen, Frederick J.

    2008-01-01

    Background Tyrosine kinase inhibitors (TKIs) have advanced cancer treatment. Sunitinib, a recently-approved, multi-targeted TKI, prolongs survival for patients with metastatic renal cell carcinoma (RCC) and gastrointestinal stromal tumor (GIST), but concerns about cardiac safety have arisen with this agent. Methods To determine the cardiovascular risk associated with sunitinib, we reviewed all cardiovascular events in patients with imatinib-resistant, metastatic GIST at the Dana-Farber Cancer Institute enrolled in a Phase I/II protocol evaluating the efficacy of the drug (n=75). Sunitinib’s effects on left ventricular ejection fraction (LVEF) and blood pressure (BP) were also examined. Studies in isolated cardiomyocytes and mice investigated potential mechanisms of sunitinib-associated cardiac effects. Findings Eleven percent (8/75) of subjects suffered a cardiovascular event with congestive heart failure (CHF) occurring in 8% (6/75) of the population. Twenty-eight percent (10/36) of patients treated at the FDA-approved dose had LVEF declines of ≥ 10 EF%, and nineteen percent (7/36) experienced LVEF declines of ≥ 15 EF%. Sunitinib induced significant increases in mean systolic and diastolic BP in patients, and 47% (35/75) of individuals developed hypertension (HTN) (>150/100 mmHg). CHF and LV dysfunction generally responded to withholding drug and instituting medical management. In mice and cultured cardiomyocytes, sunitinib caused mitochondrial injury and cardiomyocyte apoptosis. Interpretation Sunitinib treatment can lead to HTN, LVEF decline, and/or CHF. Experimental studies suggest that this is due, at least in part, to direct cardiomyocyte toxicity which may be exacerbated by HTN. Patients treated with sunitinib should receive close monitoring and prompt treatment for HTN and/or LVEF decline. PMID:18083403

  1. Mefloquine neurotoxicity is mediated by non-receptor tyrosine kinase.

    PubMed

    Milatovic, Dejan; Jenkins, Jerry W; Hood, Jonathan E; Yu, Yingchun; Rongzhu, Lu; Aschner, Michael

    2011-10-01

    Among several available antimalarial drugs, mefloquine has proven to be effective against drug-resistant Plasmodium falciparum and remains the drug of choice for both therapy and chemoprophylaxis. However, mefloquine is known to cause adverse neurological and/or psychiatric symptoms, which offset its therapeutic advantage. The exact mechanisms leading to the adverse neurological effects of mefloquine are poorly defined. Alterations in neurotransmitter release and calcium homeostasis, the inhibition of cholinesterases and the interaction with adenosine A(2A) receptors have been hypothesized to play prominent roles in mediating the deleterious effects of this drug. Our recent data have established that mefloquine can also trigger oxidative damage and subsequent neurodegeneration in rat cortical primary neurons. Furthermore, we have utilized a system biology-centered approach and have constructed a pathway model of cellular responses to mefloquine, identifying non-receptor tyrosine kinase 2 (Pyk2) as a critical target in mediating mefloquine neurotoxicity. In this study, we sought to establish an experimental validation of Pyk2 using gene-silencing techniques (siRNA). We have examined whether the downregulation of Pyk2 in primary rat cortical neurons alters mefloquine neurotoxicity by evaluating cell viability, apoptosis and oxidative stress. Results from our study have confirmed that mefloquine neurotoxicity is associated with apoptotic response and oxidative injury, and we have demonstrated that mefloquine affects primary rat cortical neurons, at least in part, via Pyk2. The implication of these findings may prove beneficial in suppressing the neurological side effects of mefloquine and developing effective therapeutic modalities to offset its adverse effects.

  2. DISCOIDIN DOMAIN RECEPTOR TYROSINE KINASES: NEW PLAYERS IN CANCER PROGRESSION

    PubMed Central

    Valiathan, Rajeshwari R.; Marco, Marta; Leitinger, Birgit; Kleer, Celina G.; Fridman, Rafael

    2012-01-01

    Almost all human cancers display dysregulated expression and/or function of one or more receptor tyrosine kinases (RTKs). The strong causative association between altered RTK function and cancer progression has translated into novel therapeutic strategies that target these cell surface receptors in the treatment of cancer. Yet, the full spectrum of RTKs that may alter the oncogenic process is not completely understood. Accumulating evidence suggests that a unique set of RTKs known as the Discoidin Domain Receptors (DDRs) play a role in cancer progression by regulating the interactions of tumor cells with their surrounding collagen matrix. The DDRs are the only RTKs that specifically bind to, and are activated by collagen. Hence, the DDRs are part of the signaling networks that translate information from the extracellular matrix thereby acting as key regulators of cell-matrix interactions. Under physiological conditions, DDRs control cell and tissue homeostasis by acting as collagen sensors, transducing signals that regulate cell polarity, tissue morphogenesis, and cell differentiation. In cancer, DDRs are hijacked by tumor cells to disrupt normal cell-matrix communication and initiate pro-migratory and pro-invasive programs. Importantly, several cancer types exhibit DDR mutations, which are thought to alter receptor function and contribute to cancer progression. Other evidence suggests that the actions of DDRs in cancer are complex, either promoting or suppressing tumor cell behavior in a DDR type/isoform specific and context dependent manner. Thus, there is still a considerable gap in our knowledge of DDR actions in cancer tissues. This review summarizes the current knowledge on DDR expression and function in cancer and discusses the potential implications of DDRs in cancer biology. It is hoped that this effort will encourage more research into these poorly understood but unique RTKs, which have the potential of becoming novel therapeutics targets in cancer. PMID

  3. Clinical outcomes of advanced non-small-cell lung cancer patients with EGFR mutation, ALK rearrangement and EGFR/ALK co-alterations

    PubMed Central

    Chen, Hua-Jun; Zhou, Qing; Yan, Li-Xu; Xie, Zhi; Su, Jian; Chen, Zhi-Hong; Tu, Hai-Yan; Yan, Hong-Hong; Wang, Zhen; Xu, Chong-Rui; Jiang, Ben-Yuan; Wang, Bin-Chao; Bai, Xiao-Yan; Zhong, Wen-Zhao; Wu, Yi-Long; Yang, Jin-Ji

    2016-01-01

    The co-occurrence of epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements constitutes a rare molecular subtype of non-small-cell lung cancer (NSCLC). Herein, we assessed the clinical outcomes and incidence of acquired resistance to tyrosine kinase inhibitors (TKIs) in this subtype. So we enrolled 118 advanced NSCLC treated with TKIs. EGFR mutations and ALK rearrangements were detected by DNA sequencing or Scorpion amplification refractory mutation system and fluorescence in situ hybridization respectively. Immunohistochemistry was used to evaluate the activation of associated proteins. We found that nine in ten patients with EGFR/ALK co-alterations had good response with first-line EGFR TKI, and the objective response rate (ORR) of EGFR TKIs was 80% (8/10) for EGFR/ALK co-altered and 65.5% (55/84) for EGFR-mutant (P = 0.57), with a median progression-free survival (PFS) of 11.2 and 13.2 months, (hazard ratio [HR]=0.95, 95% [CI], 0.49-1.84, P= 0.87). ORR of crizotinib was 40% (2/5) for EGFR/ALK co-altered and 73.9% (17/23) for ALK-rearranged (P= 0.29), with a median PFS of 1.9 and 6.9 months (hazard ratio [HR], 0.40; 95% [CI] 0.15-1.10, P = 0.08). The median overall survival (OS) was 21.3, 23.7, and 18.5 months in EGFR-mutant, ALK-rearranged, and EGFR/ALK co-altered (P= 0.06), and there existed a statistically significant difference in OS between ALK-rearranged and EGFR/ALK co-altered (P=0.03). Taken together, the first-line EGFR-TKI might be the reasonable care for advanced NSCLC harbouring EGFR/ALK co-alterations, whether or nor to use sequential crizotinib should be guided by the status of ALK rearrangement and the relative level of phospho-EGFR and phospho-ALK. PMID:27533086

  4. DNA sequence, structure, and tyrosine kinase activity of the Drosophila melanogaster abelson proto-oncogene homolog

    SciTech Connect

    Henkemeyer, M.J.; Bennett, R.L.; Gertler, F.B.; Hoffmann, F.M.

    1988-02-01

    The authors report their molecular characterization of the Drosophila melanogaster Abelson gene (abl), a gene in which recessive loss-of-function mutations result in lethality at the pupal stage of development. This essential gene consists of 10 exons extending over 26 kilobase pairs of genomic DNA. The DNA sequence encodes a protein of 1,520 amino acids with strong sequence similarity to the human c-abl proto-oncogene beginning in the type 1b 5' exon and extending through the region essential for tyrosine kinase activity. When the tyrosine kinase homologous region was expressed in Escherichia coli, phosphorylation of proteins on tyrosine residues was observed with an antiphosphotyrosine antibody. These results show that the abl gene is highly conserved through evolution and encodes a functional tyrosine protein kinase required for Drosophila development.

  5. Automation of ALK gene rearrangement testing with fluorescence in situ hybridization (FISH): a feasibility study.

    PubMed

    Zwaenepoel, Karen; Merkle, Dennis; Cabillic, Florian; Berg, Erica; Belaud-Rotureau, Marc-Antoine; Grazioli, Vittorio; Herelle, Olga; Hummel, Michael; Le Calve, Michele; Lenze, Dido; Mende, Stefanie; Pauwels, Patrick; Quilichini, Benoit; Repetti, Elena

    2015-02-01

    In the past several years we have observed a significant increase in our understanding of molecular mechanisms that drive lung cancer. Specifically in the non-small cell lung cancer sub-types, ALK gene rearrangements represent a sub-group of tumors that are targetable by the tyrosine kinase inhibitor Crizotinib, resulting in significant reductions in tumor burden. Phase II and III clinical trials were performed using an ALK break-apart FISH probe kit, making FISH the gold standard for identifying ALK rearrangements in patients. FISH is often considered a labor and cost intensive molecular technique, and in this study we aimed to demonstrate feasibility for automation of ALK FISH testing, to improve laboratory workflow and ease of testing. This involved automation of the pre-treatment steps of the ALK assay using various protocols on the VP 2000 instrument, and facilitating automated scanning of the fluorescent FISH specimens for simplified enumeration on various backend scanning and analysis systems. The results indicated that ALK FISH can be automated. Significantly, both the Ikoniscope and BioView system of automated FISH scanning and analysis systems provided a robust analysis algorithm to define ALK rearrangements. In addition, the BioView system facilitated consultation of difficult cases via the internet.

  6. Protein-tyrosine Phosphatase and Kinase Specificity in Regulation of SRC and Breast Tumor Kinase* ♦

    PubMed Central

    Fan, Gaofeng; Aleem, Saadat; Yang, Ming; Miller, W. Todd; Tonks, Nicholas K.

    2015-01-01

    Despite significant evidence to the contrary, the view that phosphatases are “nonspecific” still pervades the field. Systems biology approaches to defining how signal transduction pathways are integrated at the level of whole organisms also often downplay the contribution of phosphatases, defining them as “erasers” that serve merely to restore the system to its basal state. Here, we present a study that counteracts the idea of “nonspecific phosphatases.” We have characterized two structurally similar and functionally related kinases, BRK and SRC, which are regulated by combinations of activating autophosphorylation and inhibitory C-terminal sites of tyrosine phosphorylation. We demonstrated specificity at the level of the kinases in that SRMS phosphorylated the C terminus of BRK, but not SRC; in contrast, CSK is the kinase responsible for C-terminal phosphorylation of SRC, but not BRK. For the phosphatases, we observed that RNAi-mediated suppression of PTP1B resulted in opposing effects on the activity of BRK and SRC and have defined the mechanisms underlying this specificity. PTP1B inhibited BRK by directly dephosphorylating the Tyr-342 autophosphorylation site. In contrast, PTP1B potentiated SRC activity, but not by dephosphorylating SRC itself directly; instead, PTP1B regulated the interaction between CBP/PAG and CSK. SRC associated with, and phosphorylated, the transmembrane protein CBP/PAG at Tyr-317, resulting in CSK recruitment. We identified PAG as a substrate of PTP1B, and dephosphorylation abolished recruitment of the inhibitory kinase CSK. Overall, these findings illustrate how the combinatorial effects of PTKs and PTPs may be integrated to regulate signaling, with both classes of enzymes displaying exquisite specificity. PMID:25897081

  7. Phosphorylation of phosphatase inhibitor-2 (i-2) by a bovine thymus tyrosine protein kinase, p40

    SciTech Connect

    DePaoli-Roach, A.A.; Votaw, P.; Zioncheck, T.F.; Harrison, M.L.; Geahlen, R.L.

    1987-05-01

    Phosphatase inhibitor-2, a heat stable protein of Mr 22,800, is a regulatory component of the ATP-Mg-dependent phosphatase. It has been shown that in the cell tyrosine kinase activation can result in altered phosphorylation at serine and/or threonine residues, but the mechanism involved is unknown. The authors have found that i-2 is a substrate for a tyrosine specific protein kinase, p40, purified from bovine thymus. The purified enzyme is a monomer of Mr 40,000 that is autophosphorylated at tyrosine residue(s). The stoichiometry of phosphorylation of i-2 by this tyrosine protein kinase is up to 1 mol of phosphate per mol of i-2. Phosphoaminoacid analysis revealed that all the phosphate introduced was associated with tyrosine residues. Mapping of TSP-tryptic peptides by TLE and isoelectric focusing showed one major labeled fragment. Using the ATP-Mg-dependent phosphatase, a lesser extent of phosphorylation of i-2 by p40 was obtained although partial activation of the phosphatase was observed. The effect on the activity was not due to FA/GSK-3 contamination. These results could provide an important link between tyrosine protein kinase activity and modulation of phosphorylation at serine and/or threonine residues.

  8. Anaplastic lymphoma kinase (ALK 1) staining and molecular analysis in inflammatory myofibroblastic tumours of the bladder: a preliminary clinicopathological study of nine cases and review of the literature.

    PubMed

    Freeman, Alex; Geddes, Nicola; Munson, Philippa; Joseph, Jean; Ramani, Pramila; Sandison, Ann; Fisher, Cyril; Parkinson, M Connie

    2004-07-01

    Inflammatory myofibroblastic tumours (IMFT) may arise at any anatomical site, including lung, soft tissues, retroperitoneum and bladder. Although morphologically similar, these lesions encompass a spectrum of entities with differing aetiology, ranging from reactive/regenerative proliferations to low-grade neoplasms with a risk of local recurrence, but no significant metastatic potential. Vesical IMFT usually presents as a polypoid mass with a pale firm cut surface and can be of considerable size, mimicking a malignant tumour clinically and radiologically. Its good outcome, however, warrants conservative surgical excision, emphasising the importance of identification and distinction from malignant tumours of the bladder that may require more radical surgery and/or adjuvant therapy. We conducted a preliminary retrospective, comparative immunocytochemical study of 20 bladder tumours, including nine IMFTs, five spindle cell (sarcomatoid) carcinomas, two rhabdomyosarcomas, two leiomyosarcomas and two neurofibromas. The results confirmed IMFT positivity for smooth muscle actin, desmin and cytokeratin in 78-89% cases, resulting in potential confusion with sarcomatoid carcinoma or leiomyosarcoma. In contrast, cytoplasmic anaplastic lymphoma kinase (ALK 1) staining was present in eight IMFT (89%), but was not seen in any other lesion examined. The ALK 1 staining was confirmed by fluorescence in situ hybridisation, with translocation of the ALK gene present in 15-60% tumour cells in four of six IMFT examined, but not in four cases of sarcomatoid carcinoma or three of leiomyosarcoma. In conclusion, ALK 1 staining may be of value in the distinction of vesical IMFT from morphologically similar entities, and often reflects ALK gene translocations in these lesions.

  9. Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity.

    PubMed Central

    Guy, P M; Platko, J V; Cantley, L C; Cerione, R A; Carraway, K L

    1994-01-01

    Protein kinases share a number of highly conserved or invariant amino acid residues in their catalytic domains, suggesting that these residues are necessary for kinase activity. In p180erbB3, a receptor tyrosine kinase belonging to the epidermal growth factor (EGF) receptor subfamily, three of these residues are altered, suggesting that this protein might have an impaired protein tyrosine kinase activity. To test this hypothesis, we have expressed human EGF receptor and bovine p180erbB3 in insect cells via baculovirus infection and have compared their autophosphorylation and substrate phosphorylation activities. We have found that, while the EGF receptor readily undergoes EGF-stimulated autophosphorylation and catalyzes the incorporation of phosphate into the model substrates (E4Y1)n (random 4:1 copolymer of glutamic acid and tyrosine) and GST-p85 (glutathione S-transferase fusion protein with the 85-kDa subunit of phosphatidylinositol 3-kinase), p180erbB3 autophosphorylation and substrate phosphorylation are at least 2 orders of magnitude less efficient. However, p180erbB3 is capable of binding the ATP analog 5'-p-fluorosulfonylbenzoyladenosine, indicating that the lack of observed kinase activity is probably not due to nonfunctional or denatured receptors expressed by the insect cells. On the basis of these results, we propose that p180erbB3 possesses an impaired intrinsic tyrosine kinase activity. Images PMID:8058768

  10. Temporal quantitation of mutant Kit tyrosine kinase signaling attenuated by a novel thiophene kinase inhibitor OSI-930.

    PubMed

    Petti, Filippo; Thelemann, April; Kahler, Jen; McCormack, Siobhan; Castaldo, Linda; Hunt, Tony; Nuwaysir, Lydia; Zeiske, Lynn; Haack, Herbert; Sullivan, Laura; Garton, Andrew; Haley, John D

    2005-08-01

    OSI-930, a potent thiophene inhibitor of the Kit, KDR, and platelet-derived growth factor receptor tyrosine kinases, was used to selectively inhibit tyrosine phosphorylation downstream of juxtamembrane mutant Kit in the mast cell leukemia line HMC-1. Inhibition of Kit kinase activity resulted in a rapid dephosphorylation of Kit and inhibition of the downstream signaling pathways. Attenuation of Ras-Raf-Erk (phospho-Erk, phospho-p38), phosphatidyl inositol-3' kinase (phospho-p85, phospho-Akt, phospho-S6), and signal transducers and activators of transcription signaling pathways (phospho-STAT3/5/6) were measured by affinity liquid chromatography tandem mass spectrometry, by immunoblot, and by tissue microarrays of fixed cell pellets. To more globally define additional components of Kit signaling temporally altered by kinase inhibition, a novel multiplex quantitative isobaric peptide labeling approach was used. This approach allowed clustering of proteins by temporal expression patterns. Kit kinase, which dephosphorylates rapidly upon kinase inhibition, was shown to regulate both Shp-1 and BDP-1 tyrosine phosphatases and the phosphatase-interacting protein PSTPIP2. Interactions with SH2 domain adapters [growth factor receptor binding protein 2 (Grb2), Cbl, Slp-76] and SH3 domain adapters (HS1, cortactin, CD2BP3) were attenuated by inhibition of Kit kinase activity. Functional crosstalk between Kit and the non-receptor tyrosine kinases Fes/Fps, Fer, Btk, and Syk was observed. Inhibition of Kit modulated phosphorylation-dependent interactions with pathways controlling focal adhesion (paxillin, leupaxin, p130CAS, FAK1, the Src family kinase Lyn, Wasp, Fhl-3, G25K, Ack-1, Nap1, SH3P12/ponsin) and septin-actin complexes (NEDD5, cdc11, actin). The combined use of isobaric protein quantitation and expression clustering, immunoblot, and tissue microarray strategies allowed temporal measurement signaling pathways modulated by mutant Kit inhibition in a model of mast cell

  11. Enhancement of cytosolic tyrosine kinase activity by propylthiouracil-induced hyperplasia in the rat thyroid.

    PubMed

    Polychronakos, C; Piscina, R; Fantus, I G

    1989-01-01

    Hyperplasia of the thyroid gland induced by propylthiouracil (PTU) is a well established model of rapid cell proliferation in vivo. Recent evidence indicates that tyrosine kinase activity is associated with growth factor receptors and oncogene protein products and may have an important regulatory action in the control of cell growth. Thus, we examined tyrosine kinase activity in rat thyroid membrane and cytosol preparations at rest and during PTU-induced hyperplasia. Although kinase activity was present in a crude microsomal membrane preparation, no change was observed during thyroid growth. In contrast, tyrosine kinase activity assayed with the artificial substrate poly(Glu,Na:Tyr) 4:1 was present in normal rat thyroid cytosol and increased 2- to 6-fold during the rapid phase of hyperplasia in the first 5-10 days of PTU treatment. It declined to control values by day 15, when the size and DNA content of the thyroid reached a plateau. Preincubation of the cytosolic preparations with several peptides known to bind to and activate growth factor receptor tyrosine kinases failed to enhance the activity, suggesting, along with the cytosolic localization, that the activity was distinct from these receptors. By gel filtration chromatography and polyacrylamide gel electrophoresis, tyrosine kinase activity was associated with a 55 kDa protein. Partial purification over a poly(Glu,Na:Tyr)4:1-Sepharose column, yielded a protein that appeared capable of autophosphorylation. It is suggested that this tyrosine kinase plays a role in mediating the growth-promoting effects of this model of thyroid cell hyperplasia.

  12. Structures of human Bruton's tyrosine kinase in active and inactive conformations suggest a mechanism of activation for TEC family kinases

    SciTech Connect

    Marcotte, Douglas J.; Liu, Yu-Ting; Arduini, Robert M.; Hession, Catherine A.; Miatkowski, Konrad; Wildes, Craig P.; Cullen, Patrick F.; Hong, Victor; Hopkins, Brian T.; Mertsching, Elisabeth; Jenkins, Tracy J.; Romanowski, Michael J.; Baker, Darren P.; Silvian, Laura F.

    2010-11-15

    Bruton's tyrosine kinase (BTK), a member of the TEC family of kinases, plays a crucial role in B-cell maturation and mast cell activation. Although the structures of the unphosphorylated mouse BTK kinase domain and the unphosphorylated and phosphorylated kinase domains of human ITK are known, understanding the kinase selectivity profiles of BTK inhibitors has been hampered by the lack of availability of a high resolution, ligand-bound BTK structure. Here, we report the crystal structures of the human BTK kinase domain bound to either Dasatinib (BMS-354825) at 1.9 {angstrom} resolution or to 4-amino-5-(4-phenoxyphenyl)-7H-pyrrolospyrimidin- 7-yl-cyclopentane at 1.6 {angstrom} resolution. This data provides information relevant to the development of small molecule inhibitors targeting BTK and the TEC family of nonreceptor tyrosine kinases. Analysis of the structural differences between the TEC and Src families of kinases near the Trp-Glu-Ile motif in the N-terminal region of the kinase domain suggests a mechanism of regulation of the TEC family members.

  13. Self-regulation of exopolysaccharide production in Bacillus subtilis by a tyrosine kinase.

    PubMed

    Elsholz, Alexander K W; Wacker, Sarah A; Losick, Richard

    2014-08-01

    We report that the Bacillus subtilis exopolysaccharide (EPS) is a signaling molecule that controls its own production. EPS synthesis depends on a tyrosine kinase that consists of a membrane component (EpsA) and a kinase component (EpsB). EPS interacts with the extracellular domain of EpsA, which is a receptor, to control kinase activity. In the absence of EPS, the kinase is inactivated by autophosphorylation. The presence of EPS inhibits autophosphorylation and instead promotes the phosphorylation of a glycosyltransferase in the biosynthetic pathway, thereby stimulating the production of EPS. Thus, EPS production is subject to a positive feedback loop that ties its synthesis to its own concentration. Tyrosine kinase-mediated self-regulation could be a widespread feature of the control of exopolysaccharide production in bacteria.

  14. A novel bacterial tyrosine kinase essential for cell division and differentiation

    PubMed Central

    Wu, Jianguo; Ohta, Noriko; Zhao, Ji-Liang; Newton, Austin

    1999-01-01

    Protein kinases play central roles in the regulation of eukaryotic and prokaryotic cell growth, division, and differentiation. The Caulobacter crescentus divL gene encodes a novel bacterial tyrosine kinase essential for cell viability and division. Although the DivL protein is homologous to the ubiquitous bacterial histidine protein kinases (HPKs), it differs from previously studied members of this protein kinase family in that it contains a tyrosine residue (Tyr-550) in the conserved H-box instead of a histidine residue, which is the expected site of autophosphorylation. DivL is autophosphorylated on Tyr-550 in vitro, and this tyrosine residue is essential for cell viability and regulation of the cell division cycle. Purified DivL also catalyzes phosphorylation of CtrA and activates transcription in vitro of the cell cycle-regulated fliF promoter. Suppressor mutations in ctrA bypass the conditional cell division phenotype of cold-sensitive divL mutants, providing genetic evidence that DivL function in cell cycle and developmental regulation is mediated, at least in part, by the global response regulator CtrA. DivL is the only reported HPK homologue whose function has been shown to require autophosphorylation on a tyrosine, and, thus, it represents a new class of kinases within this superfamily of protein kinases. PMID:10557274

  15. Elucidation of a four-site allosteric network in fibroblast growth factor receptor tyrosine kinases

    PubMed Central

    Chen, Huaibin; Marsiglia, William M; Cho, Min-Kyu; Huang, Zhifeng; Deng, Jingjing; Blais, Steven P; Gai, Weiming; Bhattacharya, Shibani; Neubert, Thomas A; Traaseth, Nathaniel J; Mohammadi, Moosa

    2017-01-01

    Receptor tyrosine kinase (RTK) signaling is tightly regulated by protein allostery within the intracellular tyrosine kinase domains. Yet the molecular determinants of allosteric connectivity in tyrosine kinase domain are incompletely understood. By means of structural (X-ray and NMR) and functional characterization of pathogenic gain-of-function mutations affecting the FGF receptor (FGFR) tyrosine kinase domain, we elucidated a long-distance allosteric network composed of four interconnected sites termed the ‘molecular brake’, ‘DFG latch’, ‘A-loop plug’, and ‘αC tether’. The first three sites repress the kinase from adopting an active conformation, whereas the αC tether promotes the active conformation. The skewed design of this four-site allosteric network imposes tight autoinhibition and accounts for the incomplete mimicry of the activated conformation by pathogenic mutations targeting a single site. Based on the structural similarity shared among RTKs, we propose that this allosteric model for FGFR kinases is applicable to other RTKs. DOI: http://dx.doi.org/10.7554/eLife.21137.001 PMID:28166054

  16. Lichen planopilaris-like eruption during treatment with tyrosine kinase inhibitor nilotinib*

    PubMed Central

    Leitão, Juliana Ribeiro; Valente, Neusa Yuriko Sakai; Kakizaki, Priscila; Veronez, Isis Suga; Pires, Mario Cezar

    2016-01-01

    Tyrosine kinase inhibitors are effective as a target therapy for malignant neoplasms. Imatinib was the first tyrosine kinase inhibitor used. After its introduction, several other drugs have appeared with a similar mechanism of action, but less prone to causing resistance. Even though these drugs are selective, their toxicity does not exclusively target cancer cells, and skin toxicity is the most common non-hematologic adverse effect. We report an eruption similar to lichen planopilaris that developed during therapy with nilotinib, a second generation tyrosine kinase inhibitor, in a patient with chronic myeloid leukemia resistant to imatinib. In a literature review, we found only one report of non-scarring alopecia due to the use of nilotinib.

  17. Inhibition of an Erythrocyte Tyrosine Kinase with Imatinib Prevents Plasmodium falciparum Egress and Terminates Parasitemia

    PubMed Central

    Kesely, Kristina R.; Pantaleo, Antonella; Turrini, Francesco M.; Olupot-Olupot, Peter

    2016-01-01

    With half of the world’s population at risk for malaria infection and with drug resistance on the rise, the search for mutation-resistant therapies has intensified. We report here a therapy for Plasmodium falciparum malaria that acts by inhibiting the phosphorylation of erythrocyte membrane band 3 by an erythrocyte tyrosine kinase. Because tyrosine phosphorylation of band 3 causes a destabilization of the erythrocyte membrane required for parasite egress, inhibition of the erythrocyte tyrosine kinase leads to parasite entrapment and termination of the infection. Moreover, because one of the kinase inhibitors to demonstrate antimalarial activity is imatinib, i.e. an FDA-approved drug authorized for use in children, translation of the therapy into the clinic will be facilitated. At a time when drug resistant strains of P. falciparum are emerging, a strategy that targets a host enzyme that cannot be mutated by the parasite should constitute a therapeutic mechanism that will retard evolution of resistance. PMID:27768734

  18. Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis.

    PubMed

    Napier, Ruth J; Rafi, Wasiulla; Cheruvu, Mani; Powell, Kimberly R; Zaunbrecher, M Analise; Bornmann, William; Salgame, Padmini; Shinnick, Thomas M; Kalman, Daniel

    2011-11-17

    The lengthy course of treatment with currently used antimycobacterial drugs and the resulting emergence of drug-resistant strains have intensified the need for alternative therapies against Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis. We show that Mtb and Mycobacterium marinum use ABL and related tyrosine kinases for entry and intracellular survival in macrophages. In mice, the ABL family tyrosine kinase inhibitor, imatinib (Gleevec), when administered prophylactically or therapeutically, reduced both the number of granulomatous lesions and bacterial load in infected organs and was also effective against a rifampicin-resistant strain. Further, when coadministered with current first-line drugs, rifampicin or rifabutin, imatinib acted synergistically. These data implicate host tyrosine kinases in entry and intracellular survival of mycobacteria and suggest that imatinib may have therapeutic efficacy against Mtb. Because imatinib targets host, it is less likely to engender resistance compared to conventional antibiotics and may decrease the development of resistance against coadministered drugs.

  19. Inhibition of an Erythrocyte Tyrosine Kinase with Imatinib Prevents Plasmodium falciparum Egress and Terminates Parasitemia.

    PubMed

    Kesely, Kristina R; Pantaleo, Antonella; Turrini, Francesco M; Olupot-Olupot, Peter; Low, Philip S

    2016-01-01

    With half of the world's population at risk for malaria infection and with drug resistance on the rise, the search for mutation-resistant therapies has intensified. We report here a therapy for Plasmodium falciparum malaria that acts by inhibiting the phosphorylation of erythrocyte membrane band 3 by an erythrocyte tyrosine kinase. Because tyrosine phosphorylation of band 3 causes a destabilization of the erythrocyte membrane required for parasite egress, inhibition of the erythrocyte tyrosine kinase leads to parasite entrapment and termination of the infection. Moreover, because one of the kinase inhibitors to demonstrate antimalarial activity is imatinib, i.e. an FDA-approved drug authorized for use in children, translation of the therapy into the clinic will be facilitated. At a time when drug resistant strains of P. falciparum are emerging, a strategy that targets a host enzyme that cannot be mutated by the parasite should constitute a therapeutic mechanism that will retard evolution of resistance.

  20. Src Tyrosine Kinase Alters Gating of Hyperpolarization-Activated HCN4 Pacemaker Channel through Tyr531

    PubMed Central

    Li, Chen-Hong; Zhang, Qi; Teng, Bunyen; Mustafa, S. Jamal; Huang, Jian-Ying; Yu, Han-Gang

    2009-01-01

    We recently discovered that the constitutively active Src tyrosine kinase can enhance the HCN4 channel activity by binding to the channel protein. To investigate the mechanism of modulation by Src of HCN channels, we studied the effects of a selective inhibitor of Src tyrosine kinase, PP2, on HCN4 and its mutant channels ex pressed in HEK293 cells using whole-cell patch clamp technique. We found that PP2 can inhibit HCN4 currents by negatively shifting the voltage dependence of channel activation, decreasing the whole-cell channel conductance, and slowing activation and deactivation kinetics. Screening putative tyrosine residues subject to phosphorylation yielded two candidates: Tyr531 and Tyr554. Substituting HCN4-Tyr531 with phenylalanine largely abolished the effects of PP2 on HCN4 channels. Replacing HCN4-Tyr554 by phenylalanine did not abolish the effects of PP2 on voltage-dependent activation, but did eliminate PP2-induced slowing of channel kinetics. The inhibitory effects of HCN channels associated with reduced Src tyrosine activity is confirmed in HL-1 cardiomyocytes. Finally, we found that PP2 can decrease the heart rate in a mouse model. These results demonstrate that Src tyrosine kinase enhances HCN4 currents by shifting their activation to more positive potentials and increasing the whole-cell channel conductance as well as speeding the channel kinetics. The tyrosine residue that mediates most of Src actions on HCN4 channels is Tyr531. PMID:17977941

  1. Receptor tyrosine kinase amplification is predictive of distant metastasis in patients with oral squamous cell carcinoma.

    PubMed

    Oikawa, Yu; Morita, Kei-Ichi; Kayamori, Kou; Tanimoto, Kousuke; Sakamoto, Kei; Katoh, Hiroto; Ishikawa, Shumpei; Inazawa, Johji; Harada, Hiroyuki

    2017-02-01

    This study aimed to clarify the genomic factors associated with the diagnosis and prognosis of oral squamous cell carcinoma via next-generation sequencing. We evaluated data from 220 cases of oral squamous cell carcinoma. Genomic DNA was eluted using formalin-fixed, paraffin-embedded samples, and targeted resequencing of 50 cancer-related genes was performed. In total, 311 somatic mutations were detected in 220 patients, consisting of 68 synonymous mutations and 243 non-synonymous mutations. Genes carrying mutations included TP53, CDKN2A, and PIK3CA in 79 (35.9%), 35 (15.9%), and 19 patients (8.6%), respectively. Copy number analysis detected amplification of PIK3CA and AKT1 in 38 (17.3%) and 11 patients (5.0%), respectively. Amplification of receptor tyrosine kinases was found in 37 patients (16.8%). Distant metastasis was noted in nine of 37 patients (24%) with receptor tyrosine kinase amplification, accounting for 43% of the 21 cases of distant metastasis. The cumulative 5-year survival rate was 64.6% in the receptor tyrosine kinase amplification group vs 85.2% in the no receptor tyrosine kinase amplification group. Moreover, we identified significantly poorer prognosis in the TP53 mutation/receptor tyrosine kinase amplification group, for which the cumulative 5-year survival rate was 41.6%. In conclusion, the results of this study demonstrated that receptor tyrosine kinase amplification is a prognostic factor for distant metastasis of oral squamous cell carcinoma, indicating the necessity of using next-generation sequencing in clinical sequencing.

  2. ACK1/TNK2 Tyrosine Kinase: Molecular Signaling and Evolving Role in Cancers

    PubMed Central

    Mahajan, Kiran; Mahajan, Nupam P.

    2014-01-01

    Deregulated tyrosine kinase signaling alters cellular homeostasis to drive cancer progression. The emergence of a non-receptor tyrosine kinase, ACK1 as an oncogenic kinase, has uncovered novel mechanisms by which tyrosine kinase signaling promotes cancer progression. While early studies focused on ACK1 (also known as activated Cdc42-associated kinase 1 or TNK2) as a cytosolic effecter of activated transmembrane receptor tyrosine kinases (RTKs), wherein it shuttles between the cytosol and the nucleus to rapidly transduce extracellular signals from the RTKs to the intracellular effectors, recent data unfold a new aspect of its functionality as an epigenetic regulator. ACK1 interacts with the Estrogen Receptor (ER)/histone demethylase KDM3A (JHDM2a) complex, modifies KDM3A by tyrosine phosphorylation to regulate transcriptional outcome at HOXA1 locus to promote the growth of tamoxifen-resistant breast cancer. It is also well established that ACK1 regulates the activity of Androgen Receptor (AR) by tyrosine phosphorylation to fuel the growth of hormone-refractory prostate cancers. Further, recent explosion in genomic sequencing has revealed recurrent ACK1 gene amplification and somatic mutations in a variety of human malignancies, providing a molecular basis for its role in neoplastic transformation. In this review, we will discuss the various facets of ACK1 signaling, including its newly uncovered epigenetic regulator function, which enables cells to bypass the blockade to major survival pathways to promote resistance to standard cancer treatments. Not surprisingly, cancer cells appear to acquire an `addiction’ to ACK1 mediated survival, particularly under stress conditions, such as growth factor deprivation or genotoxic insults or hormone deprivation. With the accelerated development of potent and selective ACK1 inhibitors, targeted treatment for cancers harboring aberrant ACK1 activity may soon become a clinical reality. PMID:25347744

  3. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy

    PubMed Central

    Webb, Thomas R; Slavish, Jake; George, Rani E; Look, A Thomas; Xue, Liquan; Jiang, Qin; Cui, Xiaoli; Rentrop, Walter B; Morris, Stephan W

    2009-01-01

    Anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase in the insulin receptor superfamily, was initially identified in constitutively activated oncogenic fusion forms – the most common being nucleophosmin-ALK – in anaplastic large-cell lymphomas, and subsequent studies have identified ALK fusions in diffuse large B-cell lymphomas, systemic histiocytosis, inflammatory myofibroblastic tumors, esophageal squamous cell carcinomas and non-small-cell lung carcinomas. More recently, genomic DNA amplification and protein overexpression, as well as activating point mutations, of ALK have been described in neuroblastomas. In addition to those cancers for which a causative role for aberrant ALK activity is well validated, more circumstantial links implicate the full-length, normal ALK receptor in the genesis of other malignancies – including glioblastoma and breast cancer – via a mechanism of receptor activation involving autocrine and/or paracrine growth loops with the reported ALK ligands, pleiotrophin and midkine. This review summarizes normal ALK biology, the confirmed and putative roles of ALK in the development of human cancers and efforts to target ALK using small-molecule kinase inhibitors. PMID:19275511

  4. Using ovality to predict nonmutagenic, orally efficacious pyridazine amides as cell specific spleen tyrosine kinase inhibitors.

    PubMed

    Lucas, Matthew C; Bhagirath, Niala; Chiao, Eric; Goldstein, David M; Hermann, Johannes C; Hsu, Pei-Yuan; Kirchner, Stephan; Kennedy-Smith, Joshua J; Kuglstatter, Andreas; Lukacs, Christine; Menke, John; Niu, Linghao; Padilla, Fernando; Peng, Ying; Polonchuk, Liudmila; Railkar, Aruna; Slade, Michelle; Soth, Michael; Xu, Daigen; Yadava, Preeti; Yee, Calvin; Zhou, Mingyan; Liao, Cheng

    2014-03-27

    Inhibition of spleen tyrosine kinase has attracted much attention as a mechanism for the treatment of cancers and autoimmune diseases such as asthma, rheumatoid arthritis, and systemic lupus erythematous. We report the structure-guided optimization of pyridazine amide spleen tyrosine kinase inhibitors. Early representatives of this scaffold were highly potent and selective but mutagenic in an Ames assay. An approach that led to the successful identification of nonmutagenic examples, as well as further optimization to compounds with reduced cardiovascular liabilities is described. Select pharmacokinetic and in vivo efficacy data are presented.

  5. Effects of tyrosine kinase and phosphatase inhibitors on mitosis progression in synchronized tobacco BY-2 cells.

    PubMed

    Sheremet, Ya A; Yemets, A I; Azmi, A; Vissenberg, K; Verbelen, J P; Blume, Ya B

    2012-01-01

    To test whether reversible tubulin phosphorylation plays any role in the process of plant mitosis the effects of inhibitors of tyrosine kinases, herbimycin A, genistein and tyrphostin AG 18, and of an inhibitor of tyrosine phosphatases, sodium orthovanadate, on microtubule organization and mitosis progression in a synchronized BY-2 culture has been investigated. It was found that treatment with inhibitors of tyrosine kinases of BY-2 cells at the G2/M transition did not lead to visible disturbances of mitotic microtubule structures, while it did reduce the frequency of their appearance. We assume that a decreased tyrosine phosphorylation level could alter the microtubule dynamic instability parameters during interphase/prophase transition. All types of tyrosine kinase inhibitors used caused a prophase delay: herbimycin A and genistein for 2 h, and tyrphostin AG18 for 1 h. Thereafter the peak of mitosis was displaced for 1 h by herbimycin A or genistein exposure, but after tyrphostin AG18 treatment the timing of the mitosis-peak was comparable to that in control cells. Enhancement of tyrosine phosphorylation induced by the tyrosine phosphatase inhibitor resulted in the opposite effect on BY-2 mitosis transition. Culture treatment with sodium orthovanadate during 1 h resulted in an accelerated start of the prophase and did not lead to the alteration in time of the mitotic index peak formation, as compared to control cells. We suppose that the reversible tyrosine phosphorylation can be involved in the regulation of interphase to M phase transition possibly through regulation of microtubule dynamics in plant cells.

  6. Interactions between Type III receptor tyrosine phosphatases and growth factor receptor tyrosine kinases regulate tracheal tube formation in Drosophila.

    PubMed

    Jeon, Mili; Scott, Matthew P; Zinn, Kai

    2012-06-15

    The respiratory (tracheal) system of the Drosophila melanogaster larva is an intricate branched network of air-filled tubes. Its developmental logic is similar in some ways to that of the vertebrate vascular system. We previously described a unique embryonic tracheal tubulogenesis phenotype caused by loss of both of the Type III receptor tyrosine phosphatases (RPTPs), Ptp4E and Ptp10D. In Ptp4E Ptp10D double mutants, the linear tubes in unicellular and terminal tracheal branches are converted into bubble-like cysts that incorporate apical cell surface markers. This tube geometry phenotype is modulated by changes in the activity or expression of the epidermal growth factor receptor (Egfr) tyrosine kinase (TK). Ptp10D physically interacts with Egfr. Here we demonstrate that the Ptp4E Ptp10D phenotype is the consequence of the loss of negative regulation by the RPTPs of three growth factor receptor TKs: Egfr, Breathless and Pvr. Reducing the activity of any of the three kinases by tracheal expression of dominant-negative mutants suppresses cyst formation. By competing dominant-negative and constitutively active kinase mutants against each other, we show that the three RTKs have partially interchangeable activities, so that increasing the activity of one kinase can compensate for the effects of reducing the activity of another. This implies that SH2-domain downstream effectors that are required for the phenotype are likely to be able to interact with phosphotyrosine sites on all three receptor TKs. We also show that the phenotype involves increases in signaling through the MAP kinase and Rho GTPase pathways.

  7. Interactions between Type III receptor tyrosine phosphatases and growth factor receptor tyrosine kinases regulate tracheal tube formation in Drosophila

    PubMed Central

    Jeon, Mili; Scott, Matthew P.; Zinn, Kai

    2012-01-01

    Summary The respiratory (tracheal) system of the Drosophila melanogaster larva is an intricate branched network of air-filled tubes. Its developmental logic is similar in some ways to that of the vertebrate vascular system. We previously described a unique embryonic tracheal tubulogenesis phenotype caused by loss of both of the Type III receptor tyrosine phosphatases (RPTPs), Ptp4E and Ptp10D. In Ptp4E Ptp10D double mutants, the linear tubes in unicellular and terminal tracheal branches are converted into bubble-like cysts that incorporate apical cell surface markers. This tube geometry phenotype is modulated by changes in the activity or expression of the epidermal growth factor receptor (Egfr) tyrosine kinase (TK). Ptp10D physically interacts with Egfr. Here we demonstrate that the Ptp4E Ptp10D phenotype is the consequence of the loss of negative regulation by the RPTPs of three growth factor receptor TKs: Egfr, Breathless and Pvr. Reducing the activity of any of the three kinases by tracheal expression of dominant-negative mutants suppresses cyst formation. By competing dominant-negative and constitutively active kinase mutants against each other, we show that the three RTKs have partially interchangeable activities, so that increasing the activity of one kinase can compensate for the effects of reducing the activity of another. This implies that SH2-domain downstream effectors that are required for the phenotype are likely to be able to interact with phosphotyrosine sites on all three receptor TKs. We also show that the phenotype involves increases in signaling through the MAP kinase and Rho GTPase pathways. PMID:23213447

  8. Role of the Yes and Csk tyrosine kinases in the development of a pathological state in the human retina.

    PubMed

    Baranova, Lyudmila; Emelyanova, Valentina; Volotovski, Igor

    2010-07-01

    Amplification and a cloning of fragments of genes of human retina tyrosine kinases, the nucleotide sequences of which feature a high homology to the gene families of the Yes and Csk tyrosine kinases, and a cloning of the complete coding sequence of the cDNA of the Csk tyrosine kinase gene of the human lymphocytes have been carried out. It has been established that this sequence contains 1,624 bp and encodes a protein that, with a 99% homology, corresponds to the human tyrosine kinase. A comparative analysis of the nucleotide sequences of the full-size cDNA of the Csk tyrosine kinase of the lymphocytes of healthy donors and of patients with an eye choroidal melanoma has shown that a risk of development of an eye choroidal melanoma can be estimated by the frequency of occurrence of a mutant allele in the 10th exon.

  9. Tyrosine kinase inhibitors - small molecular weight compounds inhibiting EGFR.

    PubMed

    Hegymegi-Barakonyi, Bálint; Eros, Dániel; Szántai-Kis, Csaba; Breza, Nóra; Bánhegyi, Péter; Szabó, Gábor Viktor; Várkondi, Edit; Peták, István; Orfi, László; Kéri, György

    2009-06-01

    Abnormally elevated EGFR kinase activity can lead to various pathological states, including proliferative diseases such as cancer. The development of selective protein kinase inhibitors has become an important area of drug discovery for the potential treatment of a variety of solid tumors such as breast, ovarian and colorectal cancers, NSCLC, and carcinoma of the head and neck. There are three small molecule EGFR kinase inhibitor drugs in clinical use (gefitinib, erlotinib and lapatinib), and several others are currently undergoing clinical development. This review summarizes the development of EGFR kinase inhibitors, and includes descriptions of the binding modes, the importance of a multiple-targets strategy, the effects of sensitizing and resistance mutations in the EGFR, and molecular diagnostic approaches. In addition, the use of target fishing for selectivity profiling, off-target identification and quantitative structure-activity relationship modeling for the prediction of EGFR inhibition is discussed.

  10. Endothelial Bmx tyrosine kinase activity is essential for myocardial hypertrophy and remodeling

    PubMed Central

    Holopainen, Tanja; Räsänen, Markus; Anisimov, Andrey; Tuomainen, Tomi; Zheng, Wei; Tvorogov, Denis; Hulmi, Juha J.; Andersson, Leif C.; Cenni, Bruno; Tavi, Pasi; Mervaala, Eero; Kivelä, Riikka; Alitalo, Kari

    2015-01-01

    Cardiac hypertrophy accompanies many forms of heart disease, including ischemic disease, hypertension, heart failure, and valvular disease, and it is a strong predictor of increased cardiovascular morbidity and mortality. Deletion of bone marrow kinase in chromosome X (Bmx), an arterial nonreceptor tyrosine kinase, has been shown to inhibit cardiac hypertrophy in mice. This finding raised the possibility of therapeutic use of Bmx tyrosine kinase inhibitors, which we have addressed here by analyzing cardiac hypertrophy in gene-targeted mice deficient in Bmx tyrosine kinase activity. We found that angiotensin II (Ang II)-induced cardiac hypertrophy is significantly reduced in mice deficient in Bmx and in mice with inactivated Bmx tyrosine kinase compared with WT mice. Genome-wide transcriptomic profiling showed that Bmx inactivation suppresses myocardial expression of genes related to Ang II-induced inflammatory and extracellular matrix responses whereas expression of RNAs encoding mitochondrial proteins after Ang II administration was maintained in Bmx-inactivated hearts. Very little or no Bmx mRNA was expressed in human cardiomyocytes whereas human cardiac endothelial cells expressed abundant amounts. Ang II stimulation of endothelial cells increased Bmx phosphorylation, and Bmx gene silencing inhibited downstream STAT3 signaling, which has been implicated in cardiac hypertrophy. Furthermore, activation of the mechanistic target of rapamycin complex 1 pathway by Ang II treatment was decreased in the Bmx-deficient hearts. Our results demonstrate that inhibition of the cross-talk between endothelial cells and cardiomyocytes by Bmx inactivation suppresses Ang II-induced signals for cardiac hypertrophy. These results suggest that the endothelial Bmx tyrosine kinase could provide a target to attenuate the development of cardiac hypertrophy. PMID:26430242

  11. Activation of spleen tyrosine kinase (Syk) at fertilization in Rhinella arenarum eggs.

    PubMed

    Mouguelar, Valeria S; Coux, Gabriela

    2014-01-01

    Recently, we have provided evidence for the involvement of a cytosolic tyrosine-phosphorylatable 70 kDa oocyte protein in Rhinella arenarum (Anura: Bufonidae) fertilization. The aim of the present work was to characterize its phosphorylation, determine the identity of this protein and establish its biological role during the fertilization process. Tyrosine phosphorylation of the 70 kDa protein was not observed in eggs activated with the calcium ionophore A23187. Pretreatment of oocytes with the tyrosine kinase inhibitor genistein effectively blocked the fertilization-dependent phosphorylation of the 70 kDa protein. In order to identify this protein, we examined the presence in amphibian oocytes of non-receptor 70 kDa tyrosine kinase members of the Syk/Zap70 and Tec families by RT-PCR using degenerate primers. We found that R. arenarum oocytes contain the transcripts coding for Syk and Tec kinases. Western blot analysis confirmed the presence of Syk protein in unfertilized oocytes and eggs. Studies using phospho-Syk specific antibodies showed that fertilization rapidly (less than 10 minutes) induces phosphorylation on Syk tyrosine residues (352 and 525/526) that are necessary for the activation of the enzyme. Finally, specific inhibition of Syk with the R406 compound provoked a diminished fertilization score, thereby confirming a functional role of the Syk protein during R. arenarum fertilization. To our knowledge this is the first time that Syk is described as a player in the signaling cascade activated after fertilization.

  12. Tyrosine kinase activation in breast carcinoma with correlation to HER-2/neu gene amplification and receptor overexpression.

    PubMed

    Bhargava, R; Naeem, R; Marconi, S; Luszcz, J; Garb, J; Gasparini, R; Otis, C N

    2001-12-01

    The HER-2/neu oncogene encodes a transmembrane receptor with intrinsic tyrosine kinase activity. A pilot study was performed to investigate downstream effects of HER-2/neu (or related growth factor receptor) activation by identifying phosphorylated tyrosine. Fifty-four breast carcinomas were evaluated for HER-2/neu overexpression by the HercepTest (Dako, Carpinteria, CA) and the monoclonal CB11 antibody (Ventana, Tucson, AZ). Phosphotyrosine (an indication of tyrosine kinase activity) was detected by an antiphosphotyrosine mouse monoclonal antibody (Upstate Biotechnology, Lake Placid, NY). The gene amplification status was evaluated in 50 of the 54 cases by fluorescence in situ hybridization (FISH) using the Ventana gene probe. The HER-2/neu oncogene amplification was detected in 28% (14 of 50) of cases. Of the 14 cases showing oncogene amplification, tyrosine kinase activity was detected in 9 (64.2%) cases. There was moderate agreement between HER-2/neu gene amplification and tyrosine kinase activity (kappa = 0.43). Immunohistochemical staining of 3+ (with both HercepTest and CB11) showed better agreement with HER-2/neu oncogene amplification and increased tyrosine kinase activity than 2+ immunohistochemical staining. Overall, oncogene amplification and overexpression correlated with increased tyrosine kinase activity, supporting the mechanism of tyrosine kinase activation by HER-2/neu amplification and overexpression. However, 7 cases showing increased tyrosine kinase activity did not show gene amplification or 3+ receptor expression (by either HercepTest or CB11), raising the possibility of other growth factor receptors operating via the tyrosine kinase pathway. There was no apparent correlation between tyrosine kinase activity and hormone receptor status (estrogen or progesterone). Increased tyrosine kinase activity is more commonly associated with higher-grade tumors and thus may correlate with aggressive biologic behavior in breast carcinoma. The results of

  13. Tyrosine kinase inhibitors target cancer stem cells in renal cell cancer.

    PubMed

    Czarnecka, Anna M; Solarek, Wojciech; Kornakiewicz, Anna; Szczylik, Cezary

    2016-03-01

    This study was designed to analyze the impact of multi-targeted tyrosine kinase inhibitors on the cancer stem cell subpopulation in renal cell cancer. The second objective was to evaluate the effect of tumor growth inhibition related to a tumor niche factor - oxygen deprivation - as hypoxia develops along with the anti-angiogenic activity of tyrosine kinase inhibitors in renal tumors. Cells were treated with tyrosine kinase inhibitors, sunitinib, sorafenib and axitinib, in 2D and 3D culture conditions. Cell proliferation along with drug toxicity were evaluated. It was shown that the proliferation rate of cancer stem cells was decreased by the tyrosine kinase inhibitors. The efficacy of the growth inhibition was limited by hypoxic conditions and 3D intratumoral cell-cell interactions. We conclude that understanding the complex molecular interaction feedback loops between differentiated cancer cells, cancer stem cells and the tumor microenvironment in 3D culture should aid the identification of novel treatment targets and to evalute the efficacy of renal cancer therapies. Cell-cell interaction may represent a critical microenvironmental factor regulating cancer stem cell self-renewal potential, enhancing the stem cell phenotype and limiting drug toxicity. At the same time the role of hypoxia in renal cancer stem cell biology is also significant.

  14. Evaluation of RET Tyrosine Kinase as a Novel Driver of Prostatic Small Cell Neuroendocrine Carcinoma

    DTIC Science & Technology

    2015-08-01

    neuroendocrine carcinoma (SCNC) accounts for only 1% of diagnosed prostate cancers prior to aggressive therapy. However, after administration of... aggressive therapy, tumor resistance is inevitable resulting in the acquisition of SCNC tumors in well over 20% of patients. SCNC tumors are highly... aggressive , metastasize readily, and often lead to death of the patient within months after diagnosis. Tyrosine kinases represent an untapped area for

  15. Tyrosine kinase inhibitor-associated syndrome of inappropriate secretion of anti-diuretic hormone.

    PubMed

    Hill, Jordan; Shields, Jenna; Passero, Vida

    2016-10-01

    Hyponatremia is a common complication among cancer patients. Certain antineoplastic agents have been associated with syndrome of inappropriate secretion of anti-diuretic hormone-induced hyponatremia. The most common agents associated with secretion of anti-diuretic hormone are vinca alkaloids, platinum compounds, and alkylating agents. We report a case of secretion of anti-diuretic hormone associated with tyrosine kinase inhibitors.

  16. Role of Tyrosine Kinase Inhibitors in Indolent and Other Mature B-Cell Neoplasms

    PubMed Central

    Kutsch, Nadine; Marks, Reinhard; Ratei, Richard; Held, Thomas K; Schmidt-Hieber, Martin

    2015-01-01

    Targeting tyrosine kinases represents a highly specific treatment approach for different malignancies. This also includes non-Hodgkin lymphoma since it is well known that these enzymes are frequently involved in the lymphomagenesis. Hereby, tyrosine kinases might either be dysregulated intrinsically or be activated within signal transduction pathways leading to tumor survival and growth. Among others, Bruton’s tyrosine kinase (Btk) is of particular interest as a potential therapeutic target. Btk is stimulated by B-cell receptor signaling and activates different transcription factors such as nuclear factor κB. The Btk inhibitor ibrutinib has been approved for the treatment of chronic lymphocytic leukemia and mantle-cell lymphoma recently. Numerous clinical trials evaluating this agent in different combinations (eg, with rituximab or classical chemotherapeutic agents) as a treatment option for aggressive and indolent lymphoma are under way. Here, we summarize the role of tyrosine kinase inhibitors in the treatment of indolent and other non-Hodgkin lymphomas (eg, mantle-cell lymphoma). PMID:26327780

  17. Role of the Non-Receptor Tyrosine Kinase ACK2 in EGF Receptor Degradation

    DTIC Science & Technology

    2005-04-01

    DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for Public Release; Distribution Unlimited 13 . ABSTRACT (Maximum 200 Words...SUBJECT TERMS 15. NUMBER OF PAGES Tyrosine kinase, EGF receptor; ErbB-2/Neu, signaling, small 13 molecules 16. PRICE CODE 17. SECURITY...12 References ...................................................................................... 13 Appendices

  18. A novel mutation leading to a deletion in the SH3 domain of Bruton's tyrosine kinase.

    PubMed

    Mesci, Lütfiye; Ozdag, Hilal; Turul, Tuba; Ersoy, Fügen; Tezcan, Ilhan; Sanal, Ozden

    2006-01-01

    X-linked agammaglobulinemia (XLA) is a primary B cell immunodeficiency disorder, caused by a defect in the Bruton tyrosine kinase (BTK) gene. Here, we describe a novel four base pair mutation (838delGAGT) in intron 9 of the BTK gene leading to the skipping of exon 9 in a 2.5-year-old boy with this disorder.

  19. Effects of tyrosine kinase inhibitor on the motility and ATP concentrations of fowl spermatozoa.

    PubMed

    Ashizawa, K; Higashio, M; Tsuzuki, Y

    1998-02-01

    The possible role of tyrosine kinase in the regulation of fowl sperm motility was investigated by using a stable analogue of erbstatin, methyl 2,5-dihydroxycinnamate (2,5-MeC), a specific inhibitor of tyrosine kinase. This inhibited the motility of intact spermatozoa at 30 degrees C in a dose-dependent manner. In contrast, the motility of demembranated spermatozoa was not inhibited by the same concentrations of 2,5-MeC. At 40 degrees C, both intact and demembranated spermatozoa were almost immotile with or without 2,5-MeC. Additionally, intact spermatozoa, stimulated by the addition of Ca2+ or calyculin A, a specific inhibitor of protein phosphatases, lost their motility with the subsequent addition of 2,5-MeC at 40 degrees C. However, unlike the motility, the ATP concentrations of spermatozoa were maintained in about 30-35 nmol ATP/10(9) cells during these incubation periods. The activity of tyrosine kinase of spermatozoa at 30 degrees C, estimated by measuring the phosphorylation of a synthetic peptide substrate, RR-SRC, was 0.17 pmol/min per milligram of protein. This activity was lower than that of fowl testes or chick brain but higher than that of chick liver. These results suggest that tyrosine kinase activity, which is not retained in the axoneme and/or accessory cytoskeletal components, may be involved in the maintenance of flagellar movement of fowl spermatozoa at 30 degrees C.

  20. Tyrosine Kinase Ligand-Receptor Pair Prediction by Using Support Vector Machine

    PubMed Central

    Yarimizu, Masayuki; Wei, Cao; Komiyama, Yusuke; Ueki, Kokoro; Nakamura, Shugo; Sumikoshi, Kazuya; Terada, Tohru; Shimizu, Kentaro

    2015-01-01

    Receptor tyrosine kinases are essential proteins involved in cellular differentiation and proliferation in vivo and are heavily involved in allergic diseases, diabetes, and onset/proliferation of cancerous cells. Identifying the interacting partner of this protein, a growth factor ligand, will provide a deeper understanding of cellular proliferation/differentiation and other cell processes. In this study, we developed a method for predicting tyrosine kinase ligand-receptor pairs from their amino acid sequences. We collected tyrosine kinase ligand-receptor pairs from the Database of Interacting Proteins (DIP) and UniProtKB, filtered them by removing sequence redundancy, and used them as a dataset for machine learning and assessment of predictive performance. Our prediction method is based on support vector machines (SVMs), and we evaluated several input features suitable for tyrosine kinase for machine learning and compared and analyzed the results. Using sequence pattern information and domain information extracted from sequences as input features, we obtained 0.996 of the area under the receiver operating characteristic curve. This accuracy is higher than that obtained from general protein-protein interaction pair predictions. PMID:26347773

  1. Co-active receptor tyrosine kinases mitigate the effect of FGFR inhibitors in FGFR1-amplified lung cancers with low FGFR1 protein expression.

    PubMed

    Kotani, H; Ebi, H; Kitai, H; Nanjo, S; Kita, K; Huynh, T G; Ooi, A; Faber, A C; Mino-Kenudson, M; Yano, S

    2016-07-07

    Targeted therapies are effective in subsets of lung cancers with EGFR mutations and anaplastic lymphoma kinase (ALK) translocations. Large-scale genomics have recently expanded the lung cancer landscape with FGFR1 amplification found in 10-20% of squamous cell carcinomas (SCCs). However, the response rates have been low for biomarker-directed fibroblast growth factor receptor (FGFR) inhibitor therapy in SCC, which contrasts to the relatively high rates of response seen in EGFR mutant and ALK-translocated lung cancers treated with epidermal growth factor receptor (EGFR) inhibitors and ALK inhibitors, respectively. In order to better understand the low response rates of FGFR1-amplified lung cancers to FGFR inhibitors, relationships between gene copy number, mRNA expression and protein expression of FGFR1 were assessed in cell lines, tumor specimens and data from The Cancer Genome Atlas. The importance of these factors for the sensitivity to FGFR inhibitors was determined by analyzing drug screen data and conducting in vitro and in vivo experiments. We report that there was a discrepancy between FGFR1 amplification level and FGFR1 protein expression in a number of these cell lines, and the cancers with unexpectedly low FGFR1 expression were uniformly resistant to the different FGFR inhibitors. Further interrogation of the receptor tyrosine kinase activity in these discordant cell lines revealed co-activation of HER2 and platelet-derived growth factor receptor-α (PDGFRα) caused by gene amplification or ligand overexpression maintained phosphoinositide 3-kinase (PI3K) and MEK/ERK signaling even in the presence of FGFR inhibitor. Accordingly, co-inhibition of FGFR1 and HER2 or PDGFRα led to enhanced drug responses. In contrast, FGFR1-amplified high FGFR1 protein-expressing lung cancers are sensitive to FGFR inhibitor monotherapy by downregulating ERK signaling. Addition of a PI3K inhibitor to these high FGFR1 protein-expressing cancers further sensitized them to FGFR

  2. Anchor-based classification and type-C inhibitors for tyrosine kinases

    PubMed Central

    Hsu, Kai-Cheng; Sung, Tzu-Ying; Lin, Chih-Ta; Chiu, Yi-Yuan; Hsu, John T.-A.; Hung, Hui-Chen; Sun, Chung-Ming; Barve, Indrajeet; Chen, Wen-Liang; Huang, Wen-Chien; Huang, Chin-Ting; Chen, Chun-Hwa; Yang, Jinn-Moon

    2015-01-01

    Tyrosine kinases regulate various biological processes and are drug targets for cancers. At present, the design of selective and anti-resistant inhibitors of kinases is an emergent task. Here, we inferred specific site-moiety maps containing two specific anchors to uncover a new binding pocket in the C-terminal hinge region by docking 4,680 kinase inhibitors into 51 protein kinases, and this finding provides an opportunity for the development of kinase inhibitors with high selectivity and anti-drug resistance. We present an anchor-based classification for tyrosine kinases and discover two type-C inhibitors, namely rosmarinic acid (RA) and EGCG, which occupy two and one specific anchors, respectively, by screening 118,759 natural compounds. Our profiling reveals that RA and EGCG selectively inhibit 3% (EGFR and SYK) and 14% of 64 kinases, respectively. According to the guide of our anchor model, we synthesized three RA derivatives with better potency. These type-C inhibitors are able to maintain activities for drug-resistant EGFR and decrease the invasion ability of breast cancer cells. Our results show that the type-C inhibitors occupying a new pocket are promising for cancer treatments due to their kinase selectivity and anti-drug resistance. PMID:26077136

  3. Functional analysis of the T-cell-restricted protein tyrosine kinase Txk.

    PubMed Central

    Ellis, J H; Sutmuller, R P; Sims, M J; Cooksley, S

    1998-01-01

    T lymphocytes express a range of tyrosine kinases that are involved in signalling processes driving cell activation, proliferation and differentation. Two tyrosine kinases expressed only in T cells, the Itk/Emt and Txk gene products, are members of the Tec family of kinases. The role of Tec kinases in cellular function is poorly understood, although a Tec kinase specific to B cells, Btk, is essential for B-cell development. To explore the contribution of the T-cell-specific Tec kinases to lymphocyte function, we have expressed human Txk in the baculovirus system and conducted the first characterization of its activity. We find that Txk exhibits a substrate preference in vitro quite distinct from that of the major T-cell kinases Lck and ZAP70, suggesting that Tec-family kinases might act on a distinct range of substrates. We also investigated the interactions of Txk with the cytoplasmic domains of the key signalling molecules CD3zeta, CD28 and CTLA4 and find that none of these are phosphorylated by Txk, nor are they ligands for the SH2 or SH3 domains of Txk. We conclude that it is unlikely that Txk has a role in the early signal transduction events associated with these key pathways controlling T-cell activation. PMID:9761724

  4. Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion turnover and transient tyrosine kinase activity

    PubMed Central

    1994-01-01

    The molecular mechanisms whereby hyaluronan (HA) stimulates cell motility was investigated in a C-H-ras transformed 10T 1/2 fibroblast cell line (C3). A significant (p < 0.001) stimulation of C3 cell motility with HA (10 ng/ml) was accompanied by an increase in protein tyrosine phosphorylation as detected by anti-phosphotyrosine antibodies using immunoblot analysis and immunofluorescence staining of cells. Tyrosine phosphorylation of several proteins was found to be both rapid and transient with phosphorylation occurring within 1 min of HA addition and dissipating below control levels 10-15 min later. These responses were also elicited by an antibody generated against a peptide sequence within the HA receptor RHAMM. Treatment of cells with tyrosine kinase inhibitors (genistein, 10 micrograms/ml or herbimycin A, 0.5 micrograms/ml) or microinjection of anti-phosphotyrosine antibodies inhibited the transient protein tyrosine phosphorylation in response to HA as well as prevented HA stimulation of cell motility. To determine a link between HA-stimulated tyrosine phosphorylation and the resulting cell locomotion, cytoskeletal reorganization was examined in C3 cells plated on fibronectin and treated with HA or anti-RHAMM antibody. These agents caused a rapid assembly and disassembly of focal adhesions as revealed by immunofluorescent localization of vinculin. The time course with which HA and antibody induced focal adhesion turnover exactly paralleled the induction of transient protein tyrosine phosphorylation. In addition, phosphotyrosine staining colocalized with vinculin within structures in the lamellapodia of these cells. Notably, the focal adhesion kinase, pp125FAK, was rapidly phosphorylated and dephosphorylated after HA stimulation. These results suggest that HA stimulates locomotion via a rapid and transient protein tyrosine kinase signaling event mediated by RHAMM. They also provide a possible molecular basis for focal adhesion turnover, a process that is

  5. Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia

    PubMed Central

    Green, Alexa S.; Maciel, Thiago T.; Hospital, Marie-Anne; Yin, Chae; Mazed, Fetta; Townsend, Elizabeth C.; Pilorge, Sylvain; Lambert, Mireille; Paubelle, Etienne; Jacquel, Arnaud; Zylbersztejn, Florence; Decroocq, Justine; Poulain, Laury; Sujobert, Pierre; Jacque, Nathalie; Adam, Kevin; So, Jason C. C.; Kosmider, Olivier; Auberger, Patrick; Hermine, Olivier; Weinstock, David M.; Lacombe, Catherine; Mayeux, Patrick; Vanasse, Gary J.; Leung, Anskar Y.; Moura, Ivan C.; Bouscary, Didier; Tamburini, Jerome

    2015-01-01

    ABSTRACT Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is frequently detected in acute myeloid leukemia (AML) patients and is associated with a dismal long-term prognosis. FLT3 tyrosine kinase inhibitors provide short-term disease control, but relapse invariably occurs within months. Pim protein kinases are oncogenic FLT3-ITD targets expressed in AML cells. We show that increased Pim kinase expression is found in relapse samples from AML patients treated with FLT3 inhibitors. Ectopic Pim-2 expression induces resistance to FLT3 inhibition in both FLT3-ITD–induced myeloproliferative neoplasm and AML models in mice. Strikingly, we found that Pim kinases govern FLT3-ITD signaling and that their pharmacological or genetic inhibition restores cell sensitivity to FLT3 inhibitors. Finally, dual inhibition of FLT3 and Pim kinases eradicates FLT3-ITD+ cells including primary AML cells. Concomitant Pim and FLT3 inhibition represents a promising new avenue for AML therapy. PMID:26601252

  6. Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs

    PubMed Central

    Hines, John; Gough, Jonathan D.; Corson, Timothy W.; Crews, Craig M.

    2013-01-01

    Posttranslational knockdown of a specific protein is an attractive approach for examining its function within a system. Here we introduce phospho-dependent proteolysis targeting chimeras (phosphoPROTACs), a method to couple the conditional degradation of targeted proteins to the activation state of particular kinase-signaling pathways. We generated two phosphoPROTACs that couple the tyrosine phosphorylation sequences of either the nerve growth factor receptor, TrkA (tropomyosin receptor kinase A), or the neuregulin receptor, ErbB3 (erythroblastosis oncogene B3), with a peptide ligand for the E3 ubiquitin ligase von Hippel Lindau protein. These phosphoPROTACs recruit either the neurotrophic signaling effector fibroblast growth factor receptor substrate 2α or the survival-promoting phosphatidylinositol-3-kinase, respectively, to be ubiquitinated and degraded upon activation of specific receptor tyrosine kinases and phosphorylation of the phosphoPROTACs. We demonstrate the ability of these phosphoPROTACs to suppress the short- and long-term effects of their respective activating receptor tyrosine kinase pathways both in vitro and in vivo. In addition, we show that activation of phosphoPROTACs is entirely dependent on their kinase-mediated phosphorylation, as phenylalanine-containing null variants are inactive. Furthermore, stimulation of unrelated growth factor receptors does not induce target protein knockdown. Although comparable in efficiency to RNAi, this approach has the added advantage of providing a degree of temporal and dosing control as well as cell-type selectivity unavailable using nucleic acid-based strategies. By varying the autophosphorylation sequence of a phosphoPROTAC, it is conceivable that other receptor tyrosine kinase/effector pairings could be similarly exploited to achieve other biological effects. PMID:23674677

  7. Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs.

    PubMed

    Hines, John; Gough, Jonathan D; Corson, Timothy W; Crews, Craig M

    2013-05-28

    Posttranslational knockdown of a specific protein is an attractive approach for examining its function within a system. Here we introduce phospho-dependent proteolysis targeting chimeras (phosphoPROTACs), a method to couple the conditional degradation of targeted proteins to the activation state of particular kinase-signaling pathways. We generated two phosphoPROTACs that couple the tyrosine phosphorylation sequences of either the nerve growth factor receptor, TrkA (tropomyosin receptor kinase A), or the neuregulin receptor, ErbB3 (erythroblastosis oncogene B3), with a peptide ligand for the E3 ubiquitin ligase von Hippel Lindau protein. These phosphoPROTACs recruit either the neurotrophic signaling effector fibroblast growth factor receptor substrate 2α or the survival-promoting phosphatidylinositol-3-kinase, respectively, to be ubiquitinated and degraded upon activation of specific receptor tyrosine kinases and phosphorylation of the phosphoPROTACs. We demonstrate the ability of these phosphoPROTACs to suppress the short- and long-term effects of their respective activating receptor tyrosine kinase pathways both in vitro and in vivo. In addition, we show that activation of phosphoPROTACs is entirely dependent on their kinase-mediated phosphorylation, as phenylalanine-containing null variants are inactive. Furthermore, stimulation of unrelated growth factor receptors does not induce target protein knockdown. Although comparable in efficiency to RNAi, this approach has the added advantage of providing a degree of temporal and dosing control as well as cell-type selectivity unavailable using nucleic acid-based strategies. By varying the autophosphorylation sequence of a phosphoPROTAC, it is conceivable that other receptor tyrosine kinase/effector pairings could be similarly exploited to achieve other biological effects.

  8. EphB4 Receptor Tyrosine Kinase in Prostate Cancer

    DTIC Science & Technology

    2011-09-01

    Hassanieh  L,   Ley  EJ,  Scehnet  J,  Kumar  NG,   Hawes  D,  Press  MF,  Weaver  FA,  Gill  PS.  Receptor  tyrosine...J. Pathol. 174 (2009) 1492. [33] T.D. Bartley, R.W. Hunt, A.A. Welcher, W.J. Boyle , V.P. Parker, R.A. Lindberg, H.S. Lu, A.M. Colombero, R.L

  9. Attenuation of endothelin-1-induced calcium response by tyrosine kinase inhibitors in vascular smooth muscle cells.

    PubMed

    Liu, C Y; Sturek, M

    1996-06-01

    Although tyrosine kinases play an important role in cell growth and have been implicated in regulation of smooth muscle contraction, their role in agonist-induced myoplasmic Ca2+ responses is unclear. We examined effects of the tyrosine kinase inhibitors genistein and methyl 2,5-dihydroxycinnamate (MDHC) on the endothelin-1 (ET-1)-induced Ca2+ response and determined underlying mechanisms for the effects. Freshly isolated smooth muscle cells from porcine coronary arteries were loaded with fura 2 ester, and myoplasmic free Ca2+ (Ca2+ (m)) concentration was estimated with fura 2 microfluorometry. Both genistein and MDHC inhibited the initial transient Cam2+ response to ET by 54 and 81%, respectively (P < 0.05), in the presence of extracellular Ca2+. Genistein also significantly delayed the Cam2+ response, with the latent period from ET-1 application to the beginning of the Cam2+ response being increased from 1.08 +/- 0.17 to 2.65 +/- 0.52 min (P < 0.05). In the absence of extracellular Ca2+, genistein inhibited the ET-1-induced Cam2+ response by 93% (P < 0.05). The Cam2+ responses to caffeine (5 mM) or inositol trisphosphate (IP3) applied intracellularly via a patch-clamp pipette were not affected by genistein. Both genistein and MDHC also abolished the sustained Cam2+ response to ET-1. However, the Cam2+ response to depolarization by 80 mM K+ was not inhibited by MDHC and only inhibited 22% by genistein (P < 0.05). These results indicate that 1) activation of tyrosine kinases is an important regulatory mechanism for the ET-1-induced Cam2+ response in vascular smooth muscle and 2) tyrosine kinases mediate ET-1-induced Ca2+ release with no direct effect on IP3-mediated Ca2+ release. Thus ET-1-mediated signaling upstream of IP3 interaction with the Ca2+ stores is regulated by tyrosine kinases.

  10. Specific dephosphorylation of phosphoproteins by protein-serine and -tyrosine kinases.

    PubMed

    Kole, H K; Abdel-Ghany, M; Racker, E

    1988-08-01

    Five protein kinases are shown to serve as specific phosphatases in the absence of ADP. Although the rates of hydrolysis are very slow compared to the forward phosphorylation rates under optimal conditions, they are of the same order as the reverse reaction in the presence of ADP. Because cells contain approximately equal to 3 mM ATP, neither the reverse reaction nor the phosphatase is likely to play a physiological role. beta-casein B phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (protein kinase A) is specifically dephosphorylated by protein kinase A but not by polypeptide-dependent protein kinase (protein kinase P). beta-casein B phosphorylated by protein kinase P is specifically dephosphorylated by protein kinase P but not by protein kinase A. Histone H1 phosphorylated by protein kinase C is dephosphorylated by the same enzyme in the absence of ADP. In all cases tested addition of ADP and F1-ATPase accelerates moderately the rate of dephosphorylation. Native H+-ATPase from yeast plasma membranes is isolated mainly in the phosphorylated form. It is dephosphorylated and rephosphorylated by protein kinase P but not by protein kinase A. Protein-tyrosine kinase of the epidermal growth factor receptor phosphorylates the random synthetic polypeptide poly(Glu80Tyr20). The phosphorylated polymer is specifically dephosphorylated in the absence of ADP by epidermal growth factor receptor preparations but not by insulin receptor preparations. The same polymer phosphorylated by insulin receptor is dephosphorylated by insulin receptor but not by epidermal growth factor receptor preparations. By using a cycle of dephosphorylation-rephosphorylation, it is possible to identify proteins that are phosphorylated by these protein kinases in vivo. Should this method be applicable to additional protein kinases, it should be possible to estimate the quantitative contribution of each protein kinase to a single phosphoprotein.

  11. Specific dephosphorylation of phosphoproteins by protein-serine and -tyrosine kinases.

    PubMed Central

    Kole, H K; Abdel-Ghany, M; Racker, E

    1988-01-01

    Five protein kinases are shown to serve as specific phosphatases in the absence of ADP. Although the rates of hydrolysis are very slow compared to the forward phosphorylation rates under optimal conditions, they are of the same order as the reverse reaction in the presence of ADP. Because cells contain approximately equal to 3 mM ATP, neither the reverse reaction nor the phosphatase is likely to play a physiological role. beta-casein B phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (protein kinase A) is specifically dephosphorylated by protein kinase A but not by polypeptide-dependent protein kinase (protein kinase P). beta-casein B phosphorylated by protein kinase P is specifically dephosphorylated by protein kinase P but not by protein kinase A. Histone H1 phosphorylated by protein kinase C is dephosphorylated by the same enzyme in the absence of ADP. In all cases tested addition of ADP and F1-ATPase accelerates moderately the rate of dephosphorylation. Native H+-ATPase from yeast plasma membranes is isolated mainly in the phosphorylated form. It is dephosphorylated and rephosphorylated by protein kinase P but not by protein kinase A. Protein-tyrosine kinase of the epidermal growth factor receptor phosphorylates the random synthetic polypeptide poly(Glu80Tyr20). The phosphorylated polymer is specifically dephosphorylated in the absence of ADP by epidermal growth factor receptor preparations but not by insulin receptor preparations. The same polymer phosphorylated by insulin receptor is dephosphorylated by insulin receptor but not by epidermal growth factor receptor preparations. By using a cycle of dephosphorylation-rephosphorylation, it is possible to identify proteins that are phosphorylated by these protein kinases in vivo. Should this method be applicable to additional protein kinases, it should be possible to estimate the quantitative contribution of each protein kinase to a single phosphoprotein. Images PMID:2901092

  12. Expression, purification and preliminary crystallographic studies on the catalytic region of the nonreceptor tyrosine kinase Fes

    SciTech Connect

    Gnemmi, Ilaria; Scotti, Claudia; Cappelletti, Donata; Canonico, Pier Luigi; Condorelli, Fabrizio; Rosano, Camillo

    2007-01-01

    The catalytic domain of human Fes tyrosine kinase has been cloned, expressed, purified and crystallized. The proto-oncogene tyrosine protein kinase c-fps/fes encodes a structurally unique protein (Fes) of the nonreceptor protein-tyrosine kinase (PTK) family. Its expression has been demonstrated in myeloid haematopoietic cells, vascular endothelial cells and in neurons. In human-derived and murine-derived cell lines, the activated form of this kinase can induce cellular transformation; moreover, it has been shown that Fes is involved in the regulation of cell–cell and cell–matrix interactions mediated by adherens junctions and focal adhesions. The N-terminus of Fes contains the FCH (Fps/Fes/Fer/CIP4 homology) domain, which is unique to the Fes/Fer kinase family. It is followed by three coiled-coil domains and an SH2 (Src-homology 2) domain. The catalytic region (Fes-CR) is located at the C-terminus of the protein. The successful expression, purification and crystallization of the catalytic part of Fes (Fes-CR) are described.

  13. A transforming mutation enhances the activity of the c-Kit soluble tyrosine kinase domain.

    PubMed Central

    Lam, L P; Chow, R Y; Berger, S A

    1999-01-01

    An activating mutation (DY814) located in the catalytic domain of the c-Kit receptor has been found in mastocytomas from human, mouse and rat. We evaluated the enzymic properties of purified wild-type (WT) and DY814 tyrosine kinase domains expressed in Pichia pastoris. A linker encoding the Flag epitope was fused to c-Kit cDNA species, enabling affinity purification of the proteins with anti-Flag antibodies. Yeast lysates expressing DY814 contained multiple tyrosine-phosphorylated proteins, whereas WT lysates had no detectable tyrosine phosphorylation. Purification of the WT and mutant kinases in the presence of vanadate demonstrated that both enzymes undergo autophosphorylation. Kinetic analyses of WT and DY814 kinases indicated that at 20 nM enzyme concentration the mutation increases the specific activity 10-fold and decreases the apparent Km for ATP 9-fold. WT activity displayed a hyperbolic dependence on enzyme concentration, consistent with a requirement for dimerization or aggregation for activity. This activity was also enhanced by anti-Flag antibodies. In contrast, the dependence of DY814 activity on enzyme concentration was primarily linear and only marginally enhanced by anti-Flag antibodies. Gel-filtration analysis showed that the WT kinase migrated as a monomer, whereas the DY814 mutant migrated as a dimer. These results indicate that this point mutation promotes dimerization of the c-Kit kinase, potentially contributing to its transforming potential in mast cells. PMID:9931308

  14. Targeting tyrosine-kinases and estrogen receptor abrogates resistance to endocrine therapy in breast cancer.

    PubMed

    Liu, Shuying; Meng, Xiaolong; Chen, Huiqin; Liu, Wenbin; Miller, Todd; Murph, Mandi; Lu, Yiling; Zhang, Fan; Gagea, Mihai; Arteaga, Carlos L; Mills, Gordon B; Meric-Bernstam, Funda; González-Angulo, Ana M

    2014-10-15

    Despite numerous therapies that effectively inhibit estrogen signaling in breast cancer, a significant proportion of patients with estrogen receptor (ER)-positive malignancy will succumb to their disease. Herein we demonstrate that long-term estrogen deprivation (LTED) therapy among ER-positive breast cancer cells results in the adaptive increase in ER expression and subsequent activation of multiple tyrosine kinases. Combination therapy with the ER down-regulator fulvestrant and dasatinib, a broad kinase inhibitor, exhibits synergistic activity against LTED cells, by reduction of cell proliferation, cell survival, cell invasion and mammary acinar formation. Screening kinase phosphorylation using protein arrays and functional proteomic analysis demonstrates that the combination of fulvestrant and dasatinib inhibits multiple tyrosine kinases and cancer-related pathways that are constitutively activated in LTED cells. Because LTED cells display increased insulin receptor (InsR)/insulin-like growth factor 1 receptor (IGF-1R) signaling, we added an ant-IGF-1 antibody to the combination with fulvestrant and dasatinib in an effort to further increase the inhibition. However, adding MK0646 only modestly increased the inhibition of cell growth in monolayer culture, but neither suppressed acinar formation nor inhibited cell migration in vitro and invasion in vivo. Therefore, combinations of fulvestrant and dasatinib, but not MK0646, may benefit patients with tyrosine-kinase-activated, endocrine therapy-resistant breast cancer.

  15. Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis

    PubMed Central

    Contri, Antonella; Brunati, Anna Maria; Trentin, Livio; Cabrelle, Anna; Miorin, Marta; Cesaro, Luca; Pinna, Lorenzo A.; Zambello, Renato; Semenzato, Gianpietro; Donella-Deana, Arianna

    2005-01-01

    B cell chronic lymphocytic leukemia (B-CLL) is a neoplastic disorder characterized by accumulation of B lymphocytes due to uncontrolled growth and resistance to apoptosis. Analysis of B cells freshly isolated from 40 patients with chronic lymphocytic leukemia demonstrated that the Src kinase Lyn, the switch molecule that couples the B cell receptor to downstream signaling, displays anomalous properties. Lyn is remarkably overexpressed at the protein level in leukemic cells as compared with normal B lymphocytes, with a substantial aliquot of the kinase anomalously present in the cytosol. Whereas in normal B lymphocytes Lyn activation is dependent on B cell–receptor stimulation, in resting malignant cells, the constitutive activity of the kinase accounts for high basal protein tyrosine phosphorylation and low responsiveness to IgM ligation. Addition of the Lyn inhibitors PP2 and SU6656 to leukemic cell cultures restores cell apoptosis, and treatment of malignant cells with drugs that induce cell apoptosis decreases both activity and amount of the tyrosine kinase. These findings suggest a direct correlation between high basal Lyn activity and defects in the induction of apoptosis in leukemic cells. They also support a critical role for Lyn in B-CLL pathogenesis and identify this tyrosine kinase as a potential therapeutic target. PMID:15650771

  16. Sensitivity Analysis of the NPM-ALK Signalling Network Reveals Important Pathways for Anaplastic Large Cell Lymphoma Combination Therapy

    PubMed Central

    Buetti-Dinh, Antoine; O’Hare, Thomas

    2016-01-01

    A large subset of anaplastic large cell lymphoma (ALCL) patients harbour a somatic aberration in which anaplastic lymphoma kinase (ALK) is fused to nucleophosmin (NPM) resulting in a constitutively active signalling fusion protein, NPM-ALK. We computationally simulated the signalling network which mediates pathological cell survival and proliferation through NPM-ALK to identify therapeutically targetable nodes through which it may be possible to regain control of the tumourigenic process. The simulations reveal the predominant role of the VAV1-CDC42 (cell division control protein 42) pathway in NPM-ALK-driven cellular proliferation and of the Ras / mitogen-activated ERK kinase (MEK) / extracellular signal-regulated kinase (ERK) cascade in controlling cell survival. Our results also highlight the importance of a group of interleukins together with the Janus kinase 3 (JAK3) / signal transducer and activator of transcription 3 (STAT3) signalling in the development of NPM-ALK derived ALCL. Depending on the activity of JAK3 and STAT3, the system may also be sensitive to activation of protein tyrosine phosphatase-1 (SHP1), which has an inhibitory effect on cell survival and proliferation. The identification of signalling pathways active in tumourigenic processes is of fundamental importance for effective therapies. The prediction of alternative pathways that circumvent classical therapeutic targets opens the way to preventive approaches for countering the emergence of cancer resistance. PMID:27669408

  17. Neuronal leucine-rich repeat 1 negatively regulates anaplastic lymphoma kinase in neuroblastoma

    PubMed Central

    Satoh, Shunpei; Takatori, Atsushi; Ogura, Atsushi; Kohashi, Kenichi; Souzaki, Ryota; Kinoshita, Yoshiaki; Taguchi, Tomoaki; Hossain, Md. Shamim; Ohira, Miki; Nakamura, Yohko; Nakagawara, Akira

    2016-01-01

    In neuroblastoma (NB), one of the most common paediatric solid tumours, activation of anaplastic lymphoma kinase (ALK) is often associated with poor outcomes. Although genetic studies have identified copy number alteration and nonsynonymous mutations of ALK, the regulatory mechanism of ALK signalling at protein levels is largely elusive. Neuronal leucine-rich repeat 1 (NLRR1) is a type 1 transmembrane protein that is highly expressed in unfavourable NB and potentially influences receptor tyrosine kinase signalling. Here, we showed that NLRR1 and ALK exhibited a mutually exclusive expression pattern in primary NB tissues by immunohistochemistry. Moreover, dorsal root ganglia of Nlrr1+/+ and Nlrr1−/− mice displayed the opposite expression patterns of Nlrr1 and Alk. Of interest, NLRR1 physically interacted with ALK in vitro through its extracellular region. Notably, the NLRR1 ectodomain impaired ALK phosphorylation and proliferation of ALK-mutated NB cells. A newly identified cleavage of the NLRR1 ectodomain also supported NLRR1-mediated ALK signal regulation in trans. Thus, we conclude that NLRR1 appears to be an extracellular negative regulator of ALK signalling in NB and neuronal development. Our findings may be beneficial to comprehend NB heterogeneity and to develop a novel therapy against unfavourable NB. PMID:27604320

  18. Tyrosine kinase inhibitors as modulators of ABC transporter-mediated drug resistance

    PubMed Central

    Shukla, Suneet; Chen, Zhe-Sheng; Ambudkar, Suresh V.

    2012-01-01

    Tyrosine kinases (TKs) are involved in key signaling events/pathways that regulate cancer cell proliferation, apoptosis, angiogenesis and metastasis. Deregulated activity of TKs has been implicated in several types of cancers. In recent years, tyrosine kinase inhibitors (TKIs) have been developed to inhibit specific kinases whose constitutive activity results in specific cancer types. These TKIs have been found to demonstrate effective anticancer activity and some of them have been approved by the Food and Drug Administration for clinical use or are in clinical trials. However, these targeted therapeutic agents are also transported by ATP-binding cassette (ABC) transporters, resulting in altered pharmacokinetics or development of resistance to these drugs in cancer patients. This review covers the recent findings on the interactions of clinically important TKIs with ABC drug transporters. Future research efforts in the development of novel TKIs with specific targets, seeking improved activity, should consider these underlying causes of resistance to TKIs in cancer cells. PMID:22325423

  19. PREX1 Protein Function Is Negatively Regulated Downstream of Receptor Tyrosine Kinase Activation by p21-activated Kinases (PAKs).

    PubMed

    Barrows, Douglas; He, John Z; Parsons, Ramon

    2016-09-16

    Downstream of receptor tyrosine kinase and G protein-coupled receptor (GPCR) stimulation, the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchange factor (PREX) family of guanine nucleotide exchange factors (GEFs) activates Rho GTPases, leading to important roles for PREX proteins in numerous cellular processes and diseases, including cancer. PREX1 and PREX2 GEF activity is activated by the second messengers PIP3 and Gβγ, and further regulation of PREX GEF activity occurs by phosphorylation. Stimulation of receptor tyrosine kinases by neuregulin and insulin-like growth factor 1 (IGF1) leads to the phosphorylation of PREX1; however, the kinases that phosphorylate PREX1 downstream of these ligands are not known. We recently reported that the p21-activated kinases (PAKs), which are activated by GTP-bound Ras-related C3 botulinum toxin substrate 1 (Rac1), mediate the phosphorylation of PREX2 after insulin receptor activation. Here we show that certain phosphorylation events on PREX1 after insulin, neuregulin, and IGF1 treatment are PAK-dependent and lead to a reduction in PREX1 binding to PIP3 Like PREX2, PAK-mediated phosphorylation also negatively regulates PREX1 GEF activity. Furthermore, the onset of PREX1 phosphorylation was delayed compared with the phosphorylation of AKT, supporting a model of negative feedback downstream of PREX1 activation. We also found that the phosphorylation of PREX1 after isoproterenol and prostaglandin E2-mediated GPCR activation is partially PAK-dependent and likely also involves protein kinase A, which is known to reduce PREX1 function. Our data point to multiple mechanisms of PREX1 negative regulation by PAKs within receptor tyrosine kinase and GPCR-stimulated signaling pathways that have important roles in diseases such as diabetes and cancer.

  20. Tyrosine kinase, aurora kinase and leucine aminopeptidase as attractive drug targets in anticancer therapy - characterisation of their inhibitors.

    PubMed

    Ziemska, Joanna; Solecka, Jolanta

    Cancers are the leading cause of deaths all over the world. Available anticancer agents used in clinics exhibit low therapeutic index and usually high toxicity. Wide spreading drug resistance of cancer cells induce a demanding need to search for new drug targets. Currently, many on-going studies on novel compounds with potent anticancer activity, high selectivity as well as new modes of action are conducted. In this work, we describe in details three enzyme groups, which are at present of extensive interest to medical researchers and pharmaceutical companies. These include receptor tyrosine kinases (e.g. EGFR enzymes) and non-receptor tyrosine kinases (Src enzymes), type A, B and C Aurora kinases and aminopeptidases, especially leucine aminopeptidase. We discuss classification of these enzymes, biochemistry as well as their role in the cell cycle under normal conditions and during cancerogenesis. Further on, the work describes enzyme inhibitors that are under in vitro, preclinical, clinical studies as well as drugs available on the market. Both, chemical structures of discovered inhibitors and the role of chemical moieties in novel drug design are discussed. Described enzymes play essential role in cell cycle, especially in mitosis (Aurora kinases), cell differentiation, growth and apoptosis (tyrosine kinases) as well as G1/S transition (leucine aminopeptidase). In cancer cells, they are overexpressed and only their inhibition may stop tumor progression. This review presents the clinical outcomes of selected inhibitors and argues the safety of drug usage in human volunteers. Clinical studies of EGFR and Src kinase inhibitors in different tumors clearly show the need for molecular selection of patients (to those with mutations in genes coding EGFR and Src) to achieve positive clinical response. Current data indicates the great necessity for new anticancer treatment and actions to limit off-target activity.

  1. Concurrent EGFR Mutation and ALK Translocation in Non-Small Cell Lung Cancer

    PubMed Central

    Thomas, Sachdev; Bank, Bruce; Fishkin, Paul; Mooney, Colin; Salgia, Ravi

    2016-01-01

    Epidermal growth factor receptor (EGFR) mutations and anaplastic large-cell lymphoma kinase (ALK) rearrangements are now routine biomarkers that have been incorporated into the practice of managing non-small cell lung cancer (NSCLC). Historically, the two molecular alterations have been viewed as mutually exclusive, but recent identified cases suggest otherwise. In this report, we describe cases of lung cancer with concurrent EGFR mutation and ALK rearrangement and identify their clinical characteristics. Non-small cell lung cancer patients with multiple molecular alterations were retrospectively analyzed from an academic referral center from 2011–2013. An additional review was conducted of reported cases with dual alterations. Four cases of NSCLC with alterations in both EGFR and ALK were identified and evaluated with 16 published cases for a total of 20 cases. The age of patients ranged from 37 to 77 years. Nine patients were never smokers. The disease control rates in patients treated with EGFR inhibitors and ALK inhibitors were 46% (6/13) and 71% (5/7), respectively. This series highlights the importance of comprehensive molecular profiling of newly diagnosed lung cancer, as NSCLC may be driven by concurrent molecular alterations. EGFR- and ALK-targeted therapies appear to have modest activity in patients with tumors possessing both alterations. Dual-altered NSCLC patients may have distinct clinical characteristics warranting further study. Combination targeted therapy or novel multi-targeted tyrosine kinase inhibitors may prove important in these patients, though necessary studies remain ongoing. PMID:27026837

  2. Src kinases and ERK activate distinct responses to Stitcher receptor tyrosine kinase signaling during wound healing in Drosophila.

    PubMed

    Tsarouhas, Vasilios; Yao, Liqun; Samakovlis, Christos

    2014-04-15

    Metazoans have evolved efficient mechanisms for epidermal repair and survival following injury. Several cellular responses and key signaling molecules that are involved in wound healing have been identified in Drosophila, but the coordination of cytoskeletal rearrangements and the activation of gene expression during barrier repair are poorly understood. The Ret-like receptor tyrosine kinase (RTK) Stitcher (Stit, also known as Cad96Ca) regulates both re-epithelialization and transcriptional activation by Grainy head (Grh) to induce restoration of the extracellular barrier. Here, we describe the immediate downstream effectors of Stit signaling in vivo. Drk (Downstream of receptor kinase) and Src family tyrosine kinases bind to the same docking site in the Stit intracellular domain. Drk is required for the full activation of transcriptional responses but is dispensable for re-epithelialization. By contrast, Src family kinases (SFKs) control both the assembly of a contractile actin ring at the wound periphery and Grh-dependent activation of barrier-repair genes. Our analysis identifies distinct pathways mediating injury responses and reveals an RTK-dependent activation mode for Src kinases and their central functions during epidermal wound healing in vivo.

  3. Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents.

    PubMed Central

    Knebel, A; Rahmsdorf, H J; Ullrich, A; Herrlich, P

    1996-01-01

    Several non-physiologic agents such as radiation, oxidants and alkylating agents induce ligand-independent activation of numerous receptor tyrosine kinases (RTKs) and of protein tyrosine kinases at the inner side of the plasma membrane (e.g. Dévary et al., 1992; Sachsenmaier et al., 1994; Schieven et al., 1994; Coffer et al., 1995). Here we show additional evidence for the activation of epidermal growth factor receptor (EGFR), and we show activation of v-ErbB, ErbB2 and platelet-derived growth factor receptor. As a common principle of action the inducing agents such as UVC, UVB, UVA, hydrogen peroxide and iodoacetamide inhibit receptor tyrosine dephosphorylation in a thiol-sensitive and, with the exception of the SH-alkylating agent, reversible manner. EGFR dephosphorylation can also be modulated by these non-physiologic agents in isolated plasma membranes in the presence of Triton X-100. Further, substrate (EGFR) and phosphatase have been separated: a membrane preparation of cells that have been treated with epidermal growth factor (EGF) and whose dephosphorylating enzymes have been permanently destroyed by iodoacetamide can be mixed with a membrane preparation from untreated cells which re-establishes EGFR dephosphorylation. This dephosphorylation can be modulated in vitro by UV and thiol agents. We conclude that RTKs exhibit significant spontaneous protein kinase activity; several adverse agents target (an) essential SH-group(s) carried by (a) membrane-bound protein tyrosine phosphatase(s). Images PMID:8895576

  4. Inhibition of formation of filopodia after axotomy by inhibitors of protein tyrosine kinases.

    PubMed

    Goldberg, D J; Wu, D Y

    1995-08-01

    The activity of motile protrusions of the growth cone--filopodia, veils, and lamellipodia--is essential for directed growth of a neuronal process. The regulation of the formation of these protrusions is not well understood. Numerous filopodia and veils or lamellipodia form within minutes of transection of an Aplysia axon in culture, as the initial components of growth cones of regenerating neurites. Axotomy, therefore, provides a robust and reliable protocol for analyzing the formation of these protrusions. We evaluated the involvement of protein phosphorylation in the regulation of protrusive activity. Of the inhibitors of protein kinases assayed, only the inhibitors of protein tyrosine kinases--genistein, lavendustin A, herbimycin A, and erbstatin analogue--suppressed the formation of protrusions, as assessed by high magnification video microscopy. These drugs did not work by preventing resealing of the axon, as evident from visual inspection and by the unimpaired effectiveness of genistein or lavendustin in preventing formation of filopodia when applied after resealing. Inhibition of protein tyrosine kinases not only prevented the formation of actin-based protrusions, but also caused deterioration of the actin network underlying the protrusive area of preexisting growth cones. Consistent with an involvement of protein tyrosine phosphorylation in the generation of protrusive structures, immunocytochemistry revealed that aggregates of phosphotyrosine appeared at the margins of the axon, from which protrusions emerge shortly after axotomy. These results suggest a role for protein tyrosine phosphorylation in the formation and maintenance of actin-based protrusive structures.

  5. Activation of the Lck tyrosine protein kinase by hydrogen peroxide requires the phosphorylation of Tyr-394.

    PubMed Central

    Hardwick, J S; Sefton, B M

    1995-01-01

    Exposure of cells to H2O2 mimics many of the effects of treatment of cells with extracellular ligands. Among these is the stimulation of tyrosine phosphorylation. In this study, we show that exposure of cells to H2O2 increases the catalytic activity of the lymphocyte-specific tyrosine protein kinase p56lck (Lck) and induces tyrosine phosphorylation of Lck at Tyr-394, the autophosphorylation site. Using mutant forms of Lck, we found that Tyr-394 is required for H2O2-induced activation of Lck, suggesting that phosphorylation of this site may activate Lck. In addition, H2O2 treatment induced phosphorylation at Tyr-394 in a catalytically inactive mutant of Lck in cells that do not express endogenous Lck. This demonstrates that a kinase other than Lck itself is capable of phosphorylating Lck at the so-called autophosphorylation site and raises the possibility that this as yet unidentified tyrosine protein kinase functions as an activator of Lck. Such an activating enzyme could play an important role in signal transduction in T cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7538674

  6. Loss of Tyrosine Phosphatase Dependent Inhibition Promotes Activation of Tyrosine Kinase c-Src in Detached Pancreatic Cells

    PubMed Central

    Connelly, Sarah F.; Isley, Beth A.; Baker, Cheryl H.; Gallick, Gary E.; Summy, Justin M.

    2010-01-01

    Despite an intense focus on novel therapeutic strategies, pancreatic adenocarcinoma remains one of the deadliest human malignancies. The frequent and rapid mortality associated with pancreatic cancer may be attributed to several factors, including late diagnosis, rapid tumor invasion into surrounding tissues, and formation of distant metastases. Both local invasion and metastasis require disruption of tumor cell contacts with the extracellular matrix. Detachment of normal cells from the extracellular matrix leads to a form of programmed cell death termed anoikis. Pancreatic cancer cells avert anoikis by activation of signaling pathways that allow for adhesion-independent survival. In the present studies, cellular signaling pathways activated in detached pancreatic cancer cells were examined. We demonstrate a rapid and robust activation of Src kinase in detached pancreatic cancer cells, relative to adherent. Src autophosphorylation rapidly returned to baseline levels upon reattachment to tissue culture plastic, in the presence or absence of specific extracellular matrix proteins. Treatment of pancreatic cancer cells with tyrosine phosphatase inhibitors increased steady-state Src autophosphorylation in adherent cells and abrogated the detachment-induced increase in Src autophosphorylation. Src was found to co-immunoprecipitate with the Src Homology 2 (SH2) domain containing protein tyrosine phosphatase (SHP-2) in pancreatic cancer cells, suggesting that SHP-2 may participate in regulation of Src autophosphorylation in adherent cells. Src family kinase (SFK) dependent increases in Akt and Jun N-terminal kinase (JNK) phosphorylation were observed in detached cells, indicating the potential for Src-dependent activation of survival and stress pathways in pancreatic cancer cells that have detached from the extracellular matrix. PMID:20945416

  7. A systematic analysis of the resistance and sensitivity of HER2YVMA receptor tyrosine kinase mutant to tyrosine kinase inhibitors in HER2-positive lung cancer.

    PubMed

    Shen, Xiaokun; Chen, Beibei; Ma, Zhaosheng; Xie, Bojian; Cao, Xinguang; Yang, Tiejun; Zhao, Yuzhou; Qin, Jianjun; Li, Jicheng; Cao, Feilin; Chen, Xiaobing

    2016-01-01

    Human epidermal growth factor receptor 2 (HER2) has become a well-established target for the treatment of HER2-positive lung cancer. However, a frequently observed in-frame mutation that inserts amino acid quadruplex Tyr776-Val777-Met778-Ala779 at G776 (G776(YVMA)) in HER2 kinase domain can cause drug resistance and sensitivity, largely limiting the application of reversible tyrosine kinase inhibitors in lung cancer therapy. A systematic investigation of the intermolecular interactions between the HER2(YVMA) mutant and clinical small-molecule inhibitors would help to establish a complete picture of drug response to HER2 G776(YVMA) insertion in lung cancer, and to design new tyrosine kinase inhibitors with high potency and selectivity to target the lung cancer-related HER2(YVMA) mutant. Here, we combined homology modeling, ligand grafting, structure minimization, molecular simulation and binding affinity analysis to profile a number of tyrosine kinase inhibitors against the G776(YVMA) insertion in HER2. It is found that the insertion is far away from HER2 active pocket and thus cannot contact inhibitor ligand directly. However, the insertion is expected to induce marked allosteric effect on some regions around the pocket, including A-loop and hinges connecting between the N- and C-lobes of HER2 kinase domain, which may exert indirect influence to inhibitor binding. Most investigated inhibitors exhibit weak binding strength to both wild-type and mutant HER2, which can be attributed to steric hindrance that impairs ligand compatibility with HER2 active pocket. However, the cognate inhibitor lapatinib and the non-cognate inhibitor bosutinib were predicted to have low affinity for wild-type HER2 but high affinity for HER2(YVMA) mutant, which was confirmed by subsequent kinase assay experiments; the inhibitory potencies of bosutinib against wild-type and mutant HER2 were determined to be IC(50) > 1000 and =27 nM, respectively, suggesting that the bosutinib might be

  8. Src tyrosine kinase alters gating of hyperpolarization-activated HCN4 pacemaker channel through Tyr531.

    PubMed

    Li, Chen-Hong; Zhang, Qi; Teng, Bunyen; Mustafa, S Jamal; Huang, Jian-Ying; Yu, Han-Gang

    2008-01-01

    We recently discovered that the constitutively active Src tyrosine kinase can enhance hyperpolarization-activated, cyclic nucleotide-gated (HCN) 4 channel activity by binding to the channel protein. To investigate the mechanism of modulation by Src of HCN channels, we studied the effects of a selective inhibitor of Src tyrosine kinase, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), on HCN4 and its mutant channels expressed in HEK 293 cells by using a whole cell patch-clamp technique. We found that PP2 can inhibit HCN4 currents by negatively shifting the voltage dependence of channel activation, decreasing the whole cell channel conductance, and slowing activation and deactivation kinetics. Screening putative tyrosine residues subject to phosphorylation yielded two candidates: Tyr(531) and Tyr(554). Substituting HCN4-Tyr(531) with phenylalanine largely abolished the effects of PP2 on HCN4 channels. Replacing HCN4-Tyr(554) with phenylalanine did not abolish the effects of PP2 on voltage-dependent activation but did eliminate PP2-induced slowing of channel kinetics. The inhibitory effects of HCN channels associated with reduced Src tyrosine activity is confirmed in HL-1 cardiomyocytes. Finally, we found that PP2 can decrease the heart rate in a mouse model. These results demonstrate that Src tyrosine kinase enhances HCN4 currents by shifting their activation to more positive potentials and increasing the whole cell channel conductance as well as speeding the channel kinetics. The tyrosine residue that mediates most of Src's actions on HCN4 channels is Tyr(531).

  9. The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity

    SciTech Connect

    Hasinoff, Brian B.

    2010-04-15

    The use of the new anticancer tyrosine kinase inhibitors (TKI) has revolutionized the treatment of certain cancers. However, the use of some of these results in cardiotoxicity. Large-scale profiling data recently made available for the binding of 7 of the 9 FDA-approved tyrosine kinase inhibitors to a panel of 317 kinases has allowed us to correlate kinase inhibitor binding selectivity scores with TKI-induced damage to neonatal rat cardiac myocytes. The tyrosine kinase selectivity scores, but not the serine-threonine kinase scores, were highly correlated with the myocyte damaging effects of the TKIs. Additionally, we showed that damage to myocytes gave a good rank order correlation with clinical cardiotoxicity. Finally, strength of TKI binding to colony-stimulating factor 1 receptor (CSF1R) was highly correlated with myocyte damage, thus possibly implicating this kinase in contributing to TKI-induced cardiotoxicity.

  10. Hydrophobic Core Variations Provide a Structural Framework for Tyrosine Kinase Evolution and Functional Specialization

    PubMed Central

    Kwon, Annie; Byrne, Dominic P.; Ferries, Samantha; Ruan, Zheng; Hanold, Laura E.; Katiyar, Samiksha; Kennedy, Eileen J.; Eyers, Patrick A.; Kannan, Natarajan

    2016-01-01

    Protein tyrosine kinases (PTKs) are a group of closely related enzymes that have evolutionarily diverged from serine/threonine kinases (STKs) to regulate pathways associated with multi-cellularity. Evolutionary divergence of PTKs from STKs has occurred through accumulation of mutations in the active site as well as in the commonly conserved hydrophobic core. While the functional significance of active site variations is well understood, relatively little is known about how hydrophobic core variations contribute to PTK evolutionary divergence. Here, using a combination of statistical sequence comparisons, molecular dynamics simulations, mutational analysis and in vitro thermostability and kinase assays, we investigate the structural and functional significance of key PTK-specific variations in the kinase core. We find that the nature of residues and interactions in the hydrophobic core of PTKs is strikingly different from other protein kinases, and PTK-specific variations in the core contribute to functional divergence by altering the stability and dynamics of the kinase domain. In particular, a functionally critical STK-conserved histidine that stabilizes the regulatory spine in STKs is selectively mutated to an alanine, serine or glutamate in PTKs, and this loss-of-function mutation is accommodated, in part, through compensatory PTK-specific interactions in the core. In particular, a PTK-conserved phenylalanine in the I-helix appears to structurally and functionally compensate for the loss of STK-histidine by interacting with the regulatory spine, which has far-reaching effects on enzyme activity, inhibitor sensing, and stability. We propose that hydrophobic core variations provide a selective advantage during PTK evolution by increasing the conformational flexibility, and therefore the allosteric potential of the kinase domain. Our studies also suggest that Tyrosine Kinase Like kinases such as RAF are intermediates in PTK evolutionary divergence inasmuch as they

  11. Lyn tyrosine kinase regulates androgen receptor expression and activity in castrate-resistant prostate cancer

    PubMed Central

    Zardan, A; Nip, K M; Thaper, D; Toren, P; Vahid, S; Beraldi, E; Fazli, L; Lamoureux, F; Gust, K M; Cox, M E; Bishop, J L; Zoubeidi, A

    2014-01-01

    Castrate-resistant prostate cancer (CRPC) progression is a complex process by which prostate cells acquire the ability to survive and proliferate in the absence or under very low levels of androgens. Most CRPC tumors continue to express the androgen receptor (AR) as well as androgen-responsive genes owing to reactivation of AR. Protein tyrosine kinases have been implicated in supporting AR activation under castrate conditions. Here we report that Lyn tyrosine kinase expression is upregulated in CRPC human specimens compared with hormone naive or normal tissue. Lyn overexpression enhanced AR transcriptional activity both in vitro and in vivo and accelerated CRPC. Reciprocally, specific targeting of Lyn resulted in a decrease of AR transcriptional activity in vitro and in vivo and prolonged time to castration. Mechanistically, we found that targeting Lyn kinase induces AR dissociation from the molecular chaperone Hsp90, leading to its ubiquitination and proteasomal degradation. This work indicates a novel mechanism of regulation of AR stability and transcriptional activity by Lyn and justifies further investigation of the Lyn tyrosine kinase as a therapeutic target for the treatment of CRPC. PMID:25133482

  12. Tyrosine phosphorylation of the BRI1 receptor kinase occurs via a posttranslational modification and is activated by the juxtamembrane domain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In metazoans, receptor kinases control many essential processes related to growth and development and response to the environment. The receptor kinases in plants and animals are structurally similar but evolutionarily distinct from one another, and thus while most animal receptor kinases are tyrosin...

  13. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity.

    PubMed

    Takayama, S; White, M F; Kahn, C R

    1988-03-05

    The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function

  14. Non-Invasive Methods to Monitor Mechanisms of Resistance to Tyrosine Kinase Inhibitors in Non-Small-Cell Lung Cancer: Where Do We Stand?

    PubMed Central

    Ulivi, Paola

    2016-01-01

    The induction of resistance mechanisms represents an important problem for the targeted therapy of patients with non-small-cell lung cancer (NSCLC). The best-known resistance mechanism induced during treatment with epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) is EGFR T790M mutation for which specific drugs are have been developed. However, other molecular alterations have also been reported as induced resistance mechanisms to EGFR-TKIs. Similarly, there is growing evidence of acquired resistance mechanisms to anaplastic lymphoma kinase (ALK)-TKI treatment. A better understanding of these acquired resistance mechanisms is essential in clinical practice as patients could be treated with specific drugs that are active against the induced alterations. The use of free circulating tumor nucleic acids or circulating tumor cells (CTCs) enables resistance mechanisms to be characterized in a non-invasive manner and reduces the need for tumor re-biopsy. This review discusses the main resistance mechanisms to TKIs and provides a comprehensive overview of innovative strategies to evaluate known resistance mechanisms in free circulating nucleic acids or CTCs and potential future orientations for these non-invasive approaches. PMID:27455248

  15. Non-Invasive Methods to Monitor Mechanisms of Resistance to Tyrosine Kinase Inhibitors in Non-Small-Cell Lung Cancer: Where Do We Stand?

    PubMed

    Ulivi, Paola

    2016-07-22

    The induction of resistance mechanisms represents an important problem for the targeted therapy of patients with non-small-cell lung cancer (NSCLC). The best-known resistance mechanism induced during treatment with epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) is EGFR T790M mutation for which specific drugs are have been developed. However, other molecular alterations have also been reported as induced resistance mechanisms to EGFR-TKIs. Similarly, there is growing evidence of acquired resistance mechanisms to anaplastic lymphoma kinase (ALK)-TKI treatment. A better understanding of these acquired resistance mechanisms is essential in clinical practice as patients could be treated with specific drugs that are active against the induced alterations. The use of free circulating tumor nucleic acids or circulating tumor cells (CTCs) enables resistance mechanisms to be characterized in a non-invasive manner and reduces the need for tumor re-biopsy. This review discusses the main resistance mechanisms to TKIs and provides a comprehensive overview of innovative strategies to evaluate known resistance mechanisms in free circulating nucleic acids or CTCs and potential future orientations for these non-invasive approaches.

  16. Receptor Tyrosine Kinase Signaling – A Proteomic Perspective

    PubMed Central

    Biarc, Jordane; Chalkley, Robert J.; Burlingame, A. L.; Bradshaw, Ralph A.

    2011-01-01

    The stimulation of various cellular processes through extracellular signals is of paramount importance in biological systems and is a central focus in the diagnosis, treatment and prevention of disease. The information transfer is accomplished in a variety of ways by the interaction of soluble, matrix-associated and cell bound ligands that either bind specifically to plasma membrane-associated proteins that act as receptors, or penetrate to the cytoplasmic/nuclear compartments to bind and activate receptors located there. The former class of entities generates intracellular signals that are transmitted and amplified by chemical modifications that are manifested as protein post-translational modifications (PTMs). These are both reversible and irreversible and range from phosphorylation of tyrosine, threonine and serine residues to endoproteolytic cleavages. Although the PTMs alter the activity and functions of many of the proteins in these cascades, the major outcomes of most of the signaling pathways are the activation/deactivation of transcriptional regulators with the concomitant changes in gene expression that generally underlie biological responses. PMID:21056590

  17. Targeting kinases with anilinopyrimidines: discovery of N-phenyl-N’-[4-(pyrimidin-4-ylamino)phenyl]urea derivatives as selective inhibitors of class III receptor tyrosine kinase subfamily

    PubMed Central

    Gandin, Valentina; Ferrarese, Alessandro; Dalla Via, Martina; Marzano, Cristina; Chilin, Adriana; Marzaro, Giovanni

    2015-01-01

    Kinase inhibitors are attractive drugs/drug candidates for the treatment of cancer. The most recent literature has highlighted the importance of multi target kinase inhibitors, although a correct balance between specificity and non-specificity is required. In this view, the discovery of multi-tyrosine kinase inhibitors with subfamily selectivity is a challenging goal. Herein we present the synthesis and the preliminary kinase profiling of a set of novel 4-anilinopyrimidines. Among the synthesized compounds, the N-phenyl-N’-[4-(pyrimidin-4-ylamino)phenyl]urea derivatives selectively targeted some members of class III receptor tyrosine kinase family. Starting from the structure of hit compound 19 we synthesized a further compound with an improved affinity toward the class III receptor tyrosine kinase members and endowed with a promising antitumor activity both in vitro and in vivo in a murine solid tumor model. Molecular modeling simulations were used in order to rationalize the behavior of the title compounds. PMID:26568452

  18. Molecular Testing for Selection of Patients With Lung Cancer for Epidermal Growth Factor Receptor and Anaplastic Lymphoma Kinase Tyrosine Kinase Inhibitors: American Society of Clinical Oncology Endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology Guideline

    PubMed Central

    Leighl, Natasha B.; Rekhtman, Natasha; Biermann, William A.; Huang, James; Mino-Kenudson, Mari; Ramalingam, Suresh S.; West, Howard; Whitlock, Sara; Somerfield, Mark R.

    2014-01-01

    Purpose The College of American Pathologists (CAP), the International Association for the Study of Lung Cancer (IASLC), and the Association for Molecular Pathology (AMP) guideline on molecular testing for the selection of patients with lung cancer for epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors was considered for endorsement. Methods American Society of Clinical Oncology (ASCO) staff reviewed the CAP/IASLC/AMP guideline for developmental rigor; an ASCO ad hoc review panel of experts reviewed the guideline content. Results The ASCO panel concurred that the recommendations are clear, thorough, and based on the most relevant scientific evidence in this content area and present options that will be acceptable to patients. The CAP/IASLC/AMP guideline comprises 37 recommendations (evidence grade A or B), expert consensus opinions, or suggestions that address the following five principal questions: (1) When should molecular testing be performed? (2) How should EGFR testing be performed? (3) How should ALK testing be performed? (4) Should other genes be routinely tested in lung adenocarcinoma? (5) How should molecular testing be implemented and operationalized? Conclusion The ASCO review panel endorses the CAP/IASLC/AMP guideline. This guideline represents an important advance toward standardization of EGFR and ALK testing practices and is of major clinical relevance in advancing the care of patients with lung cancer. In the Discussion section, the ASCO review panel highlights three evolving areas: advances in ALK testing methodology, considerations for selecting appropriate populations for molecular testing, and emergence of other targetable molecular alterations. PMID:25311215

  19. Substrate recognition by the Lyn protein-tyrosine kinase. NMR structure of the immunoreceptor tyrosine-based activation motif signaling region of the B cell antigen receptor.

    PubMed

    Gaul, B S; Harrison, M L; Geahlen, R L; Burton, R A; Post, C B

    2000-05-26

    The immunoreceptor tyrosine-based activation motif (ITAM) plays a central role in transmembrane signal transduction in hematopoietic cells by mediating responses leading to proliferation and differentiation. An initial signaling event following activation of the B cell antigen receptor is phosphorylation of the CD79a (Ig-alpha) ITAM by Lyn, a Src family protein-tyrosine kinase. To elucidate the structural basis for recognition between the ITAM substrate and activated Lyn kinase, the structure of an ITAM-derived peptide bound to Lyn was determined using exchange-transferred nuclear Overhauser NMR spectroscopy. The bound substrate structure has an irregular helix-like character. Docking based on the NMR data into the active site of the closely related Lck kinase strongly favors ITAM binding in an orientation similar to binding of cyclic AMP-dependent protein kinase rather than that of insulin receptor tyrosine kinase. The model of the complex provides a rationale for conserved ITAM residues, substrate specificity, and suggests that substrate binds only the active conformation of the Src family tyrosine kinase, unlike the ATP cofactor, which can bind the inactive form.

  20. Effect of single-chain antibody targeting of the ligand-binding domain in the anaplastic lymphoma kinase receptor

    PubMed Central

    Stylianou, DC; Auf der Maur, A; Kodack, DP; Henke, RT; Hohn, S; Toretsky, JA; Riegel, AT; Wellstein, A

    2013-01-01

    The tyrosine kinase receptor anaplastic lymphoma kinase (ALK) and its ligand, the growth factor pleiotrophin (PTN), are highly expressed during the development of the nervous system and have been implicated in the malignant progression of different tumor types. Here, we describe human single-chain variable fragment (scFv) antibodies that target the ligand-binding domain (LBD) in ALK and show the effect in vitro and in vivo. The ALK LBD was used as a bait in a yeast two-hybdrid system to select human scFv from a library with randomized complementarity-determining region 3 domains. Surface plasmon resonance showed high-affinity binding of the selected scFv. The anti-ALK scFv competed for binding of PTN to ALK in intact cells and inhibited PTN-dependent signal transduction through endogenous ALK. Invasion of an intact endothelial cell monolayer by U87MG human glioblastoma cells was inhibited by the anti-ALK scFv. In addition, the growth of established tumor xenografts in mice was reversed after the induction of the conditional expression of the anti-ALK scFv. In archival malignant brain tumors expression levels of ALK and PTN were found elevated and appear correlated with poor patient survival. This suggests a rate-limiting function of the PTN/ALK interaction that may be exploited therapeutically. PMID:19633684

  1. P-glycoprotein Mediates Ceritinib Resistance in Anaplastic Lymphoma Kinase-rearranged Non-small Cell Lung Cancer

    PubMed Central

    Katayama, Ryohei; Sakashita, Takuya; Yanagitani, Noriko; Ninomiya, Hironori; Horiike, Atsushi; Friboulet, Luc; Gainor, Justin F.; Motoi, Noriko; Dobashi, Akito; Sakata, Seiji; Tambo, Yuichi; Kitazono, Satoru; Sato, Shigeo; Koike, Sumie; John Iafrate, A.; Mino-Kenudson, Mari; Ishikawa, Yuichi; Shaw, Alice T.; Engelman, Jeffrey A.; Takeuchi, Kengo; Nishio, Makoto; Fujita, Naoya

    2015-01-01

    The anaplastic lymphoma kinase (ALK) fusion oncogene is observed in 3%–5% of non-small cell lung cancer (NSCLC). Crizotinib and ceritinib, a next-generation ALK tyrosine kinase inhibitor (TKI) active against crizotinib-refractory patients, are clinically available for the treatment of ALK-rearranged NSCLC patients, and multiple next-generation ALK-TKIs are currently under clinical evaluation. These ALK-TKIs exhibit robust clinical activity in ALK-rearranged NSCLC patients; however, the emergence of ALK-TKI resistance restricts the therapeutic effect. To date, various secondary mutations or bypass pathway activation-mediated resistance have been identified, but large parts of the resistance mechanism are yet to be identified. Here, we report the discovery of p-glycoprotein (P-gp/ABCB1) overexpression as a ceritinib resistance mechanism in ALK-rearranged NSCLC patients. P-gp exported ceritinib and its overexpression conferred ceritinib and crizotinib resistance, but not to PF-06463922 or alectinib, which are next-generation ALK inhibitors. Knockdown of ABCB1 or P-gp inhibitors sensitizes the patient-derived cancer cells to ceritinib, in vitro and in vivo. P-gp overexpression was identified in three out of 11 cases with in ALK-rearranged crizotinib or ceritinib resistant NSCLC patients. Our study suggests that alectinib, PF-06463922, or P-gp inhibitor with ceritinib could overcome the ceritinib or crizotinib resistance mediated by P-gp overexpression. PMID:26870817

  2. The Drosophila midkine/pleiotrophin homologues Miple1 and Miple2 affect adult lifespan but are dispensable for alk signaling during embryonic gut formation.

    PubMed

    Hugosson, Fredrik; Sjögren, Camilla; Birve, Anna; Hedlund, Ludmilla; Eriksson, Therese; Palmer, Ruth H

    2014-01-01

    Midkine (MDK) and Pleiotrophin (PTN) are small heparin-binding cytokines with closely related structures. The Drosophila genome harbours two genes encoding members of the MDK/PTN family of proteins, known as miple1 and miple2. We have investigated the role of Miple proteins in vivo, in particular with regard to their proposed role as ligands for the Alk receptor tyrosine kinase (RTK). Here we show that Miple proteins are neither required to drive Alk signaling during Drosophila embryogenesis, nor are they essential for development in the fruit fly. Additionally we show that neither MDK nor PTN can activate hALK in vivo when ectopically co-expressed in the fly. In conclusion, our data suggest that Alk is not activated by MDK/PTN related growth factors Miple1 and Miple 2 in vivo.

  3. TEC protein tyrosine kinase is involved in the Erk signaling pathway induced by HGF

    SciTech Connect

    Li, Feifei; Jiang, Yinan; Zheng, Qiping; Yang, Xiaoming; Wang, Siying

    2011-01-07

    Research highlights: {yields} TEC is rapidly tyrosine-phosphorylated and activated by HGF-stimulation in vivo or after partial hepatectomy in mice. {yields} TEC enhances the activity of Elk and serum response element (SRE) in HGF signaling pathway in hepatocyte. {yields} TEC promotes hepatocyte proliferation through the Erk-MAPK pathway. -- Abstract: Background/aims: TEC, a member of the TEC family of non-receptor type protein tyrosine kinases, has recently been suggested to play a role in hepatocyte proliferation and liver regeneration. This study aims to investigate the putative mechanisms of TEC kinase regulation of hepatocyte differentiation, i.e. to explore which signaling pathway TEC is involved in, and how TEC is activated in hepatocyte after hepatectomy and hepatocyte growth factor (HGF) stimulation. Methods: We performed immunoprecipitation (IP) and immunoblotting (IB) to examine TEC tyrosine phosphorylation after partial hepatectomy in mice and HGF stimulation in WB F-344 hepatic cells. The TEC kinase activity was determined by in vitro kinase assay. Reporter gene assay, antisense oligonucleotide and TEC dominant negative mutant (TEC{sup KM}) were used to examine the possible signaling pathways in which TEC is involved. The cell proliferation rate was evaluated by {sup 3}H-TdR incorporation. Results: TEC phosphorylation and kinase activity were increased in 1 h after hepatectomy or HGF treatment. TEC enhanced the activity of Elk and serum response element (SRE). Inhibition of MEK1 suppressed TEC phosphorylation. Blocking TEC activity dramatically decreased the activation of Erk. Reduced TEC kinase activity also suppressed the proliferation of WB F-344 cells. These results suggest TEC is involved in the Ras-MAPK pathway and acts between MEK1 and Erk. Conclusions: TEC promotes hepatocyte proliferation and regeneration and is involved in HGF-induced Erk signaling pathway.

  4. Evaluating the promiscuous nature of tyrosine kinase inhibitors assessed in A431 epidermoid carcinoma cells by both chemical- and phosphoproteomics.

    PubMed

    Giansanti, Piero; Preisinger, Christian; Huber, Kilian V M; Gridling, Manuela; Superti-Furga, Giulio; Bennett, Keiryn L; Heck, Albert J R

    2014-07-18

    Deregulation of protein tyrosine kinase signaling has been linked to many diseases, most notably cancer. As a consequence, small molecule inhibitors of protein tyrosine kinases may provide powerful strategies for treatment. Following the successful introduction of imatinib in the treatment of chronic myelogenous leukemia, such drugs are also now evaluated for other types of cancer. However, many developed kinase inhibitors are not very target-specific and therefore may induce side effects. The importance of such side effects is certainly cell-proteome dependent. Understanding the all-inclusive action of a tyrosine kinase inhibitor on each individual cell-type entails the identification of potential targets, combined with monitoring the downstream effects revealing the signaling networks involved. Here, we explored a multilevel quantitative mass spectrometry-based proteomic strategy to identify the direct targets and downstream signaling effect of four tyrosine kinase inhibitors (imatinib, dasatinib, bosutinib, and nilotinib) in epidermoid carcinoma cells, as a model system for skin-cancer. More than 25 tyrosine kinases showed affinity to the drugs, with imatinib and nilotinib displaying a high specificity, especially when compared to dasatinib and bosutinib. Consequently, the latter two drugs showed a larger effect on downstream phosphotyrosine signaling. Many of the proteins affected are key regulators in cell adhesion and invasion. Our data represents a multiplexed view on the promiscuous action of certain tyrosine kinase inhibitors that needs to be taking into consideration prior to the application of these drugs in the treatment of different forms of cancer.

  5. Role of Non-receptor Protein Tyrosine Kinases During Phospholipase C-γ1 Related Uterine Contractions in the Rat

    PubMed Central

    Phillippe, Mark; Sweet, Leigh M.; Bradley, Diana F.; Engle, Daniel

    2011-01-01

    Activated phospholipase Cγ1 (PLC-γ1), produced in response to tyrosine phosphorylation, appears to play an important role during uterine contractions. These studies sought to determine which non-receptor protein tyrosine kinases (PTKs) are involved in the tyrosine phosphorylation and activation of PLC-γ1 in uterine tissue from the rat. In vitro uterine contraction studies were performed utilizing isoform specific PTK inhibitors. Western blots were performed utilizing antibodies to phosphotyrosine-PLC-γ1, total PLC-γ1, c-Src kinase and Lck kinase. Spontaneous, stretch-stimulated, and bpV(phen) (a tyrosine phosphatase inhibitor) enhanced uterine contractions were significantly suppressed in response to Damnacanthal (a Lck kinase inhibitor) and PP1 (a c-Src kinase inhibitor); whereas, several other PTK isoform inhibitors had no significant effect. Damnacanthal and PP1 also significantly suppressed bpV(phen)-enhanced tyrosine phosphorylation of PLC-γ1 compared to other PTK isoform inhibitors. Western blots confirmed expression of the Lck and c-Src kinases in uterine tissue. In conclusion, the Lck and c-Src kinases appear to play an important role in regulating tyrosine phosphorylation of PLC-γ1 and contractile activity in the rat uterus. PMID:19208792

  6. Tyrosine Kinase Inhibitors and Vascular Toxicity: Impetus for a Classification System?

    PubMed

    Herrmann, Joerg

    2016-06-01

    The introduction of molecularly targeted therapies with tyrosine kinase inhibitors has revolutionized cancer therapy and has contributed to a steady decline in cancer-related mortality since the late 1990s. However, not only cardiac but also vascular toxicity has been reported for these agents, some as expected on-target effects (e.g., VEGF receptor inhibitors) and others as unanticipated events (e.g., BCR-Abl inhibitors). A sound understanding of these cardiovascular toxic effects is critical to advance mechanistic insight into vascular disease and clinical care. From a conceptual standpoint, there might be value in defining type I (permanent) and type II (transient) vascular toxicity. This review will focus on the tyrosine kinase inhibitors in current clinical use and their associated vascular side effects.

  7. Molecular involvement and prognostic importance of fms-like tyrosine kinase 3 in acute myeloid leukemia.

    PubMed

    Shahab, Sadaf; Shamsi, Tahirs; Ahmed, Nuzhat

    2012-01-01

    AML (Acute myeloid leukemia) is a form of blood cancer where growth of myeloid cells occurs in the bone marrow. The prognosis is poor in general for many reasons. One is the presence of leukaemia-specific recognition markers such as FLT3 (fms-like tyrosine kinase 3). Another name of FLT3 is stem cell tyrosine kinase-1 (STK1), which is known to take part in proliferation, differentiation and apoptosis of hematopoietic cells, usually being present on haemopoietic progenitor cells in the bone marrow. FLT3 act as an independent prognostic factor for AML. Although a vast literature is available about the association of FLT3 with AML there still is a need of a brief up to date overview which draw a clear picture about this association and their effect on overall survival.

  8. How tyrosine kinase inhibitors impair metabolism and endocrine system function: a systematic updated review.

    PubMed

    Breccia, Massimo; Molica, Matteo; Alimena, Giuliana

    2014-12-01

    Tyrosine kinase inhibitors (TKIs) advent has deeply changed the outcome of chronic myeloid leukemia (CML) patients, with improved rates of response and overall survival. However, for this success some patients paid the price of a number of peculiar side effects, the so-called off-target side effects, specific for each one TKI. These effects are due to non-selective inhibition of other tyrosine kinase receptors, such as PDGFR, c-KIT, Src, VEGF. Consequences of this inhibition, some metabolic changes during the treatment with TKIs are reported. Aim of present review is to report metabolic changes and potential mechanisms involved in the pathogenesis related to imatinib, second (nilotinib and dasatinib) and third generation (bosutinib and ponatinib) TKIs.

  9. Localization of a human receptor tyrosine kinase (ETK1) to chromosome region 3p11. 2

    SciTech Connect

    Wicks, I.P.; Boyd, A.W. ); Lapsys, N.M.; Baker, E.; Sutherland, G.R. ); Campbell, L.J. )

    1994-01-01

    The authors have recently described a human receptor tyrosine kinase (hek) that is expressed by some pre-B and thymic T cell lines, but is not detectable on normal adult human tissues. Gene cloning studies established that hek is a new member of the EPH family of receptor tyrosine kinases. The expression of hek may normally be developmentally regulated and inappropriate expression may contribute to oncogenesis. In the present study, they have used Southern blot analysis of somatic cell hybrids and fluorescence in situ hybridization to localize the hek gene to human chromosome region 3p11.2. Karyotype analysis of the cell lines that over-express hek showed no cytogenetically visible abnormality involving the hek locus. 29 refs., 1 fig., 2 tabs.

  10. Discovery of TAK-659 an orally available investigational inhibitor of Spleen Tyrosine Kinase (SYK).

    PubMed

    Lam, Betty; Arikawa, Yasuyoshi; Cramlett, Joshua; Dong, Qing; de Jong, Ron; Feher, Victoria; Grimshaw, Charles E; Farrell, Pamela J; Hoffman, Isaac D; Jennings, Andy; Jones, Benjamin; Matuszkiewicz, Jennifer; Miura, Joanne; Miyake, Hiroshi; Natala, Srinivasa Reddy; Shi, Lihong; Takahashi, Masashi; Taylor, Ewan; Wyrick, Corey; Yano, Jason; Zalevsky, Jonathan; Nie, Zhe

    2016-12-15

    Spleen Tyrosine Kinase (SYK) is a non-receptor cytoplasmic tyrosine kinase that is primarily expressed in hematopoietic cells. SYK is a key mediator for a variety of inflammatory cells, including B cells, mast cells, macrophages and neutrophils and therefore, an attractive approach for treatment of both inflammatory diseases and oncology indications. Using in house co-crystal structure information, and structure-based drug design, we designed and optimized a novel series of heteroaromatic pyrrolidinone SYK inhibitors resulting in the selection of the development candidate TAK-659. TAK-659 is currently undergoing Phase I clinical trials for advanced solid tumor and lymphoma malignancies, a Phase Ib study in advanced solid tumors in combination with nivolumab, and PhIb/II trials for relapsed/refractory AML.

  11. Activation of oncogenic tyrosine kinase signaling promotes insulin receptor-mediated cone photoreceptor survival

    PubMed Central

    Rajala, Ammaji; Wang, Yuhong; Rajala, Raju V.S.

    2016-01-01

    In humans, daylight vision is primarily mediated by cone photoreceptors. These cells die in age-related retinal degenerations. Prolonging the life of cones for even one decade would have an enormous beneficial effect on usable vision in an aging population. Photoreceptors are postmitotic, but shed 10% of their outer segments daily, and must synthesize the membrane and protein equivalent of a proliferating cell each day. Although activation of oncogenic tyrosine kinase and inhibition of tyrosine phosphatase signaling is known to be essential for tumor progression, the cellular regulation of this signaling in postmitotic photoreceptor cells has not been studied. In the present study, we report that a novel G-protein coupled receptor–mediated insulin receptor (IR) signaling pathway is regulated by non-receptor tyrosine kinase Src through the inhibition of protein tyrosine phosphatase IB (PTP1B). We demonstrated the functional significance of this pathway through conditional deletion of IR and PTP1B in cones, in addition to delaying the death of cones in a mouse model of cone degeneration by activating the Src. This is the first study demonstrating the molecular mechanism of a novel signaling pathway in photoreceptor cells, which provides a window of opportunity to save the dying cones in retinal degenerative diseases. PMID:27391439

  12. Identification of an oligodeoxynucleotide sequence motif that specifically inhibits phosphorylation by protein tyrosine kinases.

    PubMed

    Krieg, A M; Matson, S; Cheng, K; Fisher, E; Koretzky, G A; Koland, J G

    1997-04-01

    Protein tyrosine kinases (PTKs) have central roles in cellular signal transduction. We have identified a sequence motif (CGT[C]GA) in phosphorothioate-modified oligodeoxynucleotides (ODNs) that specifically inhibits the enzymatic activity of recombinant or immunoprecipitated PTK in vitro. Hexamer ODNs containing this motif block both substrate and autophosphorylation of at least four different PTKs but have no apparent effect on the enzymatic activity of a serine/threonine protein kinase. These data suggest possible new applications for ODNs and have implications for the design and interpretation of experiments using antisense or triplex ODNs.

  13. Novel N9-arenethenyl purines as potent dual Src/Abl tyrosine kinase inhibitors.

    PubMed

    Wang, Yihan; Shakespeare, William C; Huang, Wei-Sheng; Sundaramoorthi, Raji; Lentini, Scott; Das, Sasmita; Liu, Shuangying; Banda, Geeta; Wen, David; Zhu, Xiaotian; Xu, Qihong; Keats, Jeffrey; Wang, Frank; Wardwell, Scott; Ning, Yaoyu; Snodgrass, Joseph T; Broudy, Mark I; Russian, Karin; Dalgarno, David; Clackson, Tim; Sawyer, Tomi K

    2008-09-01

    Novel N(9)-arenethenyl purines, optimized potent dual Src/Abl tyrosine kinase inhibitors, are described. The key structural feature is a trans vinyl linkage at N(9) on the purine core which projects hydrophobic substituents into the selectivity pocket at the rear of the ATP site. Their synthesis was achieved through a Horner-Wadsworth-Emmons reaction of N(9)-phosphorylmethylpurines and substituted benzaldehydes or Heck reactions between 9-vinyl purines and aryl halides. Most compounds are potent inhibitors of both Src and Abl kinase, and several possess good oral bioavailability.

  14. Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells

    SciTech Connect

    Okabe, Seiichi Tauchi, Tetsuzo; Tanaka, Yuko; Ohyashiki, Kazuma

    2013-06-07

    Highlights: •Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells okabe et al. •Imatinib or nilotinib resistance was involved Src family kinase. •The BCR-ABL point mutation (E334V) was highly resistant to imatinib or nilotinib. •Ponatinib was a powerful strategy against imatinib or nilotinib resistant Ph-positive cells. -- Abstract: Because a substantial number of patients with chronic myeloid leukemia acquire resistance to ABL tyrosine kinase inhibitors (TKIs), their management remains a challenge. Ponatinib, also known as AP24534, is an oral multi-targeted TKI. Ponatinib is currently being investigated in a pivotal phase 2 clinical trial. In the present study, we analyzed the molecular and functional consequences of ponatinib against imatinib- or nilotinib-resistant (R) K562 and Ba/F3 cells. The proliferation of imatinib- or nilotinib-resistant K562 cells did not decrease after treatment with imatinib or nilotinib. Src family kinase Lyn was activated. Point mutation Ba/F3 cells (E334 V) were also highly resistant to imatinib and nilotinib. Treatment with ponatinib for 72 h inhibited the growth of imatinib- and nilotinib-resistant cells. The phosphorylation of BCR-ABL, Lyn, and Crk-L was reduced. This study demonstrates that ponatinib has an anti-leukemia effect by reducing ABL and Lyn kinase activity and this information may be of therapeutic relevance.

  15. Autoinhibition of Bruton's tyrosine kinase (Btk) and activation by soluble inositol hexakisphosphate

    PubMed Central

    Wang, Qi; Vogan, Erik M; Nocka, Laura M; Rosen, Connor E; Zorn, Julie A; Harrison, Stephen C; Kuriyan, John

    2015-01-01

    Bruton's tyrosine kinase (Btk), a Tec-family tyrosine kinase, is essential for B-cell function. We present crystallographic and biochemical analyses of Btk, which together reveal molecular details of its autoinhibition and activation. Autoinhibited Btk adopts a compact conformation like that of inactive c-Src and c-Abl. A lipid-binding PH-TH module, unique to Tec kinases, acts in conjunction with the SH2 and SH3 domains to stabilize the inactive conformation. In addition to the expected activation of Btk by membranes containing phosphatidylinositol triphosphate (PIP3), we found that inositol hexakisphosphate (IP6), a soluble signaling molecule found in both animal and plant cells, also activates Btk. This activation is a consequence of a transient PH-TH dimerization induced by IP6, which promotes transphosphorylation of the kinase domains. Sequence comparisons with other Tec-family kinases suggest that activation by IP6 is unique to Btk. DOI: http://dx.doi.org/10.7554/eLife.06074.001 PMID:25699547

  16. Nitric oxide reversibly inhibits the epidermal growth factor receptor tyrosine kinase.

    PubMed Central

    Estrada, C; Gómez, C; Martín-Nieto, J; De Frutos, T; Jiménez, A; Villalobo, A

    1997-01-01

    Although it has been demonstrated that NO inhibits the proliferation of different cell types, the mechanisms of its anti-mitotic action are not well understood. In this work we have studied the possible interaction of NO with the epidermal growth factor receptor (EGFR), using transfected fibroblasts which overexpress the human EGFR. The NO donors S-nitroso-N-acetylpenicillamine (SNAP), 1,1-diethyl-2-hydroxy-2-nitrosohydrazine (DEA-NO) and N-¿4-[1-(3-aminopropyl)-2-hydroxy-2-nitrosohydrazino]butyl¿propane -1, 3-diamine (DETA-NO) inhibited DNA synthesis of fibroblasts growing in the presence of fetal calf serum, epidermal growth factor (EGF) or EGF plus insulin, as assessed by [methyl-3H]thymidine incorporation. Neither 8-bromo-cGMP nor the cGMP-phosphodiesterase inhibitor zaprinast mimicked this effect, suggesting that NO is unlikely to inhibit cell proliferation via a cGMP-dependent pathway. SNAP, DEA-NO and DETA-NO also inhibited the transphosphorylation of the EGFR and its tyrosine kinase activity toward the exogenous substrate poly-l-(Glu-Tyr), as measured in permeabilized cells using [gamma-32P]ATP as phosphate donor. In contrast, 3-[morpholinosydnonimine hydrochloride] (SIN-1), a peroxynitrite-forming compound, did not significantly inhibit either DNA synthesis or the EGFR tyrosine kinase activity. The inhibitory action of DEA-NO on the EGFR tyrosine kinase was prevented by haemoglobin, an NO scavenger, but not by superoxide dismutase, and was reversed by dithiothreitol. The binding of EGF to its receptor was unaffected by DEA-NO. The inhibitory action of DEA-NO on the EGF-dependent transphosphorylation of the receptor was also demonstrated in intact cells by immunoblot analysis using an anti-phosphotyrosine antibody. Taken together, these results suggest that NO, but not peroxynitrite, inhibits in a reversible manner the EGFR tyrosine kinase activity by S-nitrosylation of the receptor. PMID:9291107

  17. Regulation of ERBB Receptor Tyrosine Kinase Activities in Breast Cancer by the KEK Proteins

    DTIC Science & Technology

    1999-11-01

    can also inhibit transformation in mouse mammary tumor cells with deregulated expression of receptors and ligands of the ErbB family. 14. SUBJECT...Reportable outcomes Conclusions References Appendices 7 4 5. INTRODUCTION: In 20-30% of breast tumors , ErbB2, a receptor tyrosine kinase (RTK) of the...inhibit transformation in mouse mammary tumor cells with deregulated expression of receptors and ligands of the ErbB family. In the second year of

  18. Identification and Targeting of Tyrosine Kinase Activity in Prostate Cancer Initiation, Progression, and Metastasis

    DTIC Science & Technology

    2013-12-01

    18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a . REPORT U b . ABSTRACT U c. THIS PAGE U UU 86 19b. TELEPHONE NUMBER...man. Parts a and b are completed. We have initiated Part c and currently developing a library of tyrosine kinases for functional validation. a . We...from primary prostate or metastatic tissue. ( B ) Further evaluation of a separate run of 10 metastatic CRPC lesions reveals patient-specific and

  19. Functions of the Lyn tyrosine kinase in health and disease

    PubMed Central

    2012-01-01

    Abstract Src family kinases such as Lyn are important signaling intermediaries, relaying and modulating different inputs to regulate various outputs, such as proliferation, differentiation, apoptosis, migration and metabolism. Intriguingly, Lyn can mediate both positive and negative signaling processes within the same or different cellular contexts. This duality is exemplified by the B-cell defect in Lyn−/− mice in which Lyn is essential for negative regulation of the B-cell receptor; conversely, B-cells expressing a dominant active mutant of Lyn (Lynup/up) have elevated activities of positive regulators of the B-cell receptor due to this hyperactive kinase. Lyn has well-established functions in most haematopoietic cells, viz. progenitors via influencing c-kit signaling, through to mature cell receptor/integrin signaling, e.g. erythrocytes, platelets, mast cells and macrophages. Consequently, there is an important role for this kinase in regulating hematopoietic abnormalities. Lyn is an important regulator of autoimmune diseases such as asthma and psoriasis, due to its profound ability to influence immune cell signaling. Lyn has also been found to be important for maintaining the leukemic phenotype of many different liquid cancers including acute myeloid leukaemia (AML), chronic myeloid leukaemia (CML) and B-cell lymphocytic leukaemia (BCLL). Lyn is also expressed in some solid tumors and here too it is establishing itself as a potential therapeutic target for prostate, glioblastoma, colon and more aggressive subtypes of breast cancer. Lay Abstract To relay information, a cell uses enzymes that put molecular markers on specific proteins so they interact with other proteins or move to specific parts of the cell to have particular functions. A protein called Lyn is one of these enzymes that regulate information transfer within cells to modulate cell growth, survival and movement. Depending on which type of cell and the source of the information input, Lyn can

  20. Dickkopf-3 Upregulates VEGF in Cultured Human Endothelial Cells by Activating Activin Receptor-Like Kinase 1 (ALK1) Pathway

    PubMed Central

    Busceti, Carla L.; Marchitti, Simona; Bianchi, Franca; Di Pietro, Paola; Riozzi, Barbara; Stanzione, Rosita; Cannella, Milena; Battaglia, Giuseppe; Bruno, Valeria; Volpe, Massimo; Fornai, Francesco; Nicoletti, Ferdinando; Rubattu, Speranza

    2017-01-01

    Dkk-3 is a member of the dickkopf protein family of secreted inhibitors of the Wnt pathway, which has been shown to enhance angiogenesis. The mechanism underlying this effect is currently unknown. Here, we used cultured HUVECs to study the involvement of the TGF-β and VEGF on the angiogenic effect of Dkk-3. Addition of hrDkk-3 peptide (1 or 10 ng/ml) to HUVECs for 6 or 12 h enhanced the intracellular and extracellular VEGF protein levels, as assessed by RTPCR, immunoblotting, immunocytochemistry and ELISA. The increase in the extracellular VEGF levels was associated to the VEGFR2 activation. Pharmacological blockade of VEGFR2 abrogated Dkk-3-induced endothelial cell tubes formation, indicating that VEGF is a molecular player of the angiogenic effects of Dkk-3. Moreover, Dkk-3 enhanced Smad1/5/8 phosphorylation and recruited Smad4 to the VEGF gene promoter, suggesting that Dkk-3 activated ALK1 receptor leading to a transcriptional activation of VEGF. This mechanism was instrumental to the increased VEGF expression and endothelial cell tubes formation mediated by Dkk-3, because both effects were abolished by siRNA-mediated ALK1 knockdown. In summary, we have found that Dkk-3 activates ALK1 to stimulate VEGF production and induce angiogenesis in HUVECs. PMID:28352232

  1. A promiscuous liaison between IL-15 receptor and Axl receptor tyrosine kinase in cell death control

    PubMed Central

    Budagian, Vadim; Bulanova, Elena; Orinska, Zane; Thon, Lutz; Mamat, Uwe; Bellosta, Paola; Basilico, Claudio; Adam, Dieter; Paus, Ralf; Bulfone-Paus, Silvia

    2005-01-01

    Discrimination between cytokine receptor and receptor tyrosine kinase (RTK) signaling pathways is a central paradigm in signal transduction research. Here, we report a ‘promiscuous liaison' between both receptors that enables interleukin (IL)-15 to transactivate the signaling pathway of a tyrosine kinase. IL-15 protects murine L929 fibroblasts from tumor necrosis factor α (TNFα)-induced cell death, but fails to rescue them upon targeted depletion of the RTK, Axl; however, Axl-overexpressing fibroblasts are TNFα-resistant. IL-15Rα and Axl colocalize on the cell membrane and co-immunoprecipitate even in the absence of IL-15, whereby the extracellular part of Axl proved to be essential for Axl/IL-15Rα interaction. Most strikingly, IL-15 treatment mimics stimulation by the Axl ligand, Gas6, resulting in a rapid tyrosine phosphorylation of both Axl and IL-15Rα, and activation of the phosphatidylinositol 3-kinase/Akt pathway. This is also seen in mouse embryonic fibroblasts from wild-type but not Axl−/− or IL-15Rα−/− mice. Thus, IL-15-induced protection from TNFα-mediated cell death involves a hitherto unknown IL-15 receptor complex, consisting of IL-15Rα and Axl RTK, and requires their reciprocal activation initiated by ligand-induced IL-15Rα. PMID:16308569

  2. A promiscuous liaison between IL-15 receptor and Axl receptor tyrosine kinase in cell death control.

    PubMed

    Budagian, Vadim; Bulanova, Elena; Orinska, Zane; Thon, Lutz; Mamat, Uwe; Bellosta, Paola; Basilico, Claudio; Adam, Dieter; Paus, Ralf; Bulfone-Paus, Silvia

    2005-12-21

    Discrimination between cytokine receptor and receptor tyrosine kinase (RTK) signaling pathways is a central paradigm in signal transduction research. Here, we report a 'promiscuous liaison' between both receptors that enables interleukin (IL)-15 to transactivate the signaling pathway of a tyrosine kinase. IL-15 protects murine L929 fibroblasts from tumor necrosis factor alpha (TNFalpha)-induced cell death, but fails to rescue them upon targeted depletion of the RTK, Axl; however, Axl-overexpressing fibroblasts are TNFalpha-resistant. IL-15Ralpha and Axl colocalize on the cell membrane and co-immunoprecipitate even in the absence of IL-15, whereby the extracellular part of Axl proved to be essential for Axl/IL-15Ralpha interaction. Most strikingly, IL-15 treatment mimics stimulation by the Axl ligand, Gas6, resulting in a rapid tyrosine phosphorylation of both Axl and IL-15Ralpha, and activation of the phosphatidylinositol 3-kinase/Akt pathway. This is also seen in mouse embryonic fibroblasts from wild-type but not Axl-/- or IL-15Ralpha-/- mice. Thus, IL-15-induced protection from TNFalpha-mediated cell death involves a hitherto unknown IL-15 receptor complex, consisting of IL-15Ralpha and Axl RTK, and requires their reciprocal activation initiated by ligand-induced IL-15Ralpha.

  3. The cytoplasmic tyrosine kinase Arg regulates gastrulation via control of actin organization.

    PubMed

    Bonacci, Gustavo; Fletcher, Jason; Devani, Madhav; Dwivedi, Harsh; Keller, Ray; Chang, Chenbei

    2012-04-01

    Coordinated cell movements are crucial for vertebrate gastrulation and are controlled by multiple signals. Although many factors are shown to mediate non-canonical Wnt pathways to regulate cell polarity and intercalation during gastrulation, signaling molecules acting in other pathways are less investigated and the connections between various signals and cytoskeleton are not well understood. In this study, we show that the cytoplasmic tyrosine kinase Arg modulates gastrulation movements through control of actin remodeling. Arg is expressed in the dorsal mesoderm at the onset of gastrulation, and both gain- and loss-of-function of Arg disrupted axial development in Xenopus embryos. Arg controlled migration of anterior mesendoderm, influenced cell decision on individual versus collective migration, and modulated spreading and protrusive activities of anterior mesendodermal cells. Arg also regulated convergent extension of the trunk mesoderm by influencing cell intercalation behaviors. Arg modulated actin organization to control dynamic F-actin distribution at the cell-cell contact or in membrane protrusions. The functions of Arg required an intact tyrosine kinase domain but not the actin-binding motifs in its carboxyl terminus. Arg acted downstream of receptor tyrosine kinases to regulate phosphorylation of endogenous CrkII and paxillin, adaptor proteins involved in activation of Rho family GTPases and actin reorganization. Our data demonstrate that Arg is a crucial cytoplasmic signaling molecule that controls dynamic actin remodeling and mesodermal cell behaviors during Xenopus gastrulation.

  4. Ret function in muscle stem cells points to tyrosine kinase inhibitor therapy for facioscapulohumeral muscular dystrophy

    PubMed Central

    Moyle, Louise A; Blanc, Eric; Jaka, Oihane; Prueller, Johanna; Banerji, Christopher RS; Tedesco, Francesco Saverio; Harridge, Stephen DR; Knight, Robert D; Zammit, Peter S

    2016-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) involves sporadic expression of DUX4, which inhibits myogenesis and is pro-apoptotic. To identify target genes, we over-expressed DUX4 in myoblasts and found that the receptor tyrosine kinase Ret was significantly up-regulated, suggesting a role in FSHD. RET is dynamically expressed during myogenic progression in mouse and human myoblasts. Constitutive expression of either RET9 or RET51 increased myoblast proliferation, whereas siRNA-mediated knockdown of Ret induced myogenic differentiation. Suppressing RET activity using Sunitinib, a clinically-approved tyrosine kinase inhibitor, rescued differentiation in both DUX4-expressing murine myoblasts and in FSHD patient-derived myoblasts. Importantly, Sunitinib also increased engraftment and differentiation of FSHD myoblasts in regenerating mouse muscle. Thus, DUX4-mediated activation of Ret prevents myogenic differentiation and could contribute to FSHD pathology by preventing satellite cell-mediated repair. Rescue of DUX4-induced pathology by Sunitinib highlights the therapeutic potential of tyrosine kinase inhibitors for treatment of FSHD. DOI: http://dx.doi.org/10.7554/eLife.11405.001 PMID:27841748

  5. Identification of therapeutic targets in ovarian cancer through active tyrosine kinase profiling

    PubMed Central

    Ocaña, Alberto; Pandiella, Atanasio

    2015-01-01

    The activation status of a set of pro-oncogenic tyrosine kinases in ovarian cancer patient samples was analyzed to define potential therapeutic targets. Frequent activation of HER family receptor tyrosine kinases, especially HER2, was observed. Studies in ovarian cancer cell lines confirmed the activation of HER2. Moreover, knockdown of HER2 caused a strong inhibition of their proliferation. Analyses of the action of agents that target HER2 indicated that the antibody drug conjugate trastuzumab-emtansine (T-DM1) caused a substantial antitumoral effect in vivo and in vitro, and potentiated the action of drugs used in the therapy of ovarian cancer. T-DM1 provoked cell cycle arrest in mitosis, and caused the appearance of aberrant mitotic spindles in cells treated with the drug. Biochemical experiments confirmed accumulation of the mitotic markers phospho-Histone H3 and phospho-BUBR1 in cells treated with the drug. Prolonged treatment of ovarian cancer cells with T-DM1 provoked the appearance of multinucleated cells which later led to cell death. Together, these data indicate that HER2 represents an important oncogene in ovarian cancer, and suggest that targeting this tyrosine kinase with T-DM1 may be therapeutically effective, especially in ovarian tumors with high content of HER2. PMID:26336133

  6. FLT3 tyrosine kinase inhibitors in acute myeloid leukemia: clinical implications and limitations

    PubMed Central

    Kayser, Sabine; Levis, Mark J.

    2015-01-01

    Internal tandem duplications of the FMS-like tyrosine kinase 3 (FLT3) gene are one of the most frequent gene mutations in acute myeloid leukemia (AML) and are associated with poor clinical outcome. The remission rate is high with intensive chemotherapy, but most patients eventually relapse. During the last decade, FLT3 mutations have emerged as an attractive target for a molecularly specific treatment strategy. Targeting FLT3 receptor tyrosine kinases in AML has shown encouraging results in the treatment of FLT3 mutated AML, but in most patients responses are incomplete and not sustained. Newer, more specific compounds seem to have a higher potency and selectivity against FLT3. During therapy with FLT3 tyrosine kinase inhibitors (TKIs) the induction of acquired resistance has emerged as a clinical problem. Therefore, optimization of the targeted therapy and potential treatment options to overcome resistance is currently the focus of clinical research. In this review we discuss the use and limitations of TKIs as a therapeutic strategy for the treatment of FLT3 mutated AML, including mechanisms of resistance to TKIs as well as possible novel strategies to improve FLT3 inhibitor therapy. PMID:23631653

  7. Time-resolved luminescence detection of spleen tyrosine kinase activity through terbium sensitization.

    PubMed

    Lipchik, Andrew M; Parker, Laurie L

    2013-03-05

    Disruption of regulatory protein phosphorylation can lead to disease and is particularly prevalent in cancers. Inhibitors that target deregulated kinases are therefore a major focus of chemotherapeutic development. Achieving sensitivity and specificity in high-throughput compatible kinase assays is key to successful inhibitor development. Here, we describe the application of time-resolved luminescence detection to the direct sensing of spleen tyrosine kinase (Syk) activity and inhibition using a novel peptide substrate. Chelation and luminescence sensitization of Tb(3+) allowed the direct detection of peptide phosphorylation without any antibodies or other labeling reagents. Characterizing the Tb(3+) coordination properties of the phosphorylated vs unphosphorylated form of the peptide revealed that an inner-sphere water was displaced upon phosphorylation, which likely was responsible for both enhancing the luminescence intensity and also extending the lifetime, which enabled gating of the luminescence signal to improve the dynamic range. Furthermore, a shift in the optimal absorbance maximum for excitation was observed, from 275 nm (for the unphosphorylated tyrosine peptide) to 266 nm (for the phosphorylated tyrosine peptide). Accordingly, time-resolved measurements with excitation at 266 nm via a monochromator enabled a 16-fold improvement in base signal-to-noise for distinguishing phosphopeptide from unphosphorylated peptide. This led to a high degree of sensitivity and quantitative reproducibility, demonstrating the amenability of this method to both research laboratory and high-throughput applications.

  8. SH2B1beta adaptor is a key enhancer of RET tyrosine kinase signaling.

    PubMed

    Donatello, S; Fiorino, A; Degl'Innocenti, D; Alberti, L; Miranda, C; Gorla, L; Bongarzone, I; Rizzetti, M G; Pierotti, M A; Borrello, M G

    2007-10-04

    The RET gene encodes two main isoforms of a receptor tyrosine kinase (RTK) implicated in various human diseases. Activating germ-line point mutations are responsible for multiple endocrine neoplasia type 2-associated medullary thyroid carcinomas, inactivating germ-line mutations for Hirschsprung's disease, while somatic rearrangements (RET/PTCs) are specific to papillary thyroid carcinomas. SH2B1beta, a member of the SH2B adaptors family, and binding partner for several RTKs, has been recently described to interact with proto-RET. Here, we show that both RET isoforms and its oncogenic derivatives bind to SH2B1beta through the SRC homology 2 (SH2) domain and a kinase activity-dependent mechanism. As a result, RET phosphorylates SH2B1beta, which in turn enhances its autophosphorylation, kinase activity, and downstream signaling. RET tyrosine residues 905 and 981 are important determinants for functional binding of the adaptor, as removal of both autophosphorylation sites displaces its recruitment. Binding of SH2B1beta appears to protect RET from dephosphorylation by protein tyrosine phosphatases, and might represent a likely mechanism contributing to its upregulation. Thus, overexpression of SH2B1beta, by enhancing phosphorylation/activation of RET transducers, potentiates the cellular differentiation and the neoplastic transformation thereby induced, and counteracts the action of RET inhibitors. Overall, our results identify SH2B1beta as a key enhancer of RET physiologic and pathologic activities.

  9. The transcription factor RUNX2 regulates receptor tyrosine kinase expression in melanoma

    PubMed Central

    Boregowda, Rajeev K.; Medina, Daniel J.; Markert, Elke; Bryan, Michael A.; Chen, Wenjin; Chen, Suzie; Rabkin, Anna; Vido, Michael J.; Gunderson, Samuel I.; Chekmareva, Marina; Foran, David J.; Lasfar, Ahmed; Goydos, James S.; Cohen-Solal, Karine A.

    2016-01-01

    Receptor tyrosine kinases-based autocrine loops largely contribute to activate the MAPK and PI3K/AKT pathways in melanoma. However, the molecular mechanisms involved in generating these autocrine loops are still largely unknown. In the present study, we examine the role of the transcription factor RUNX2 in the regulation of receptor tyrosine kinase (RTK) expression in melanoma. We have demonstrated that RUNX2-deficient melanoma cells display a significant decrease in three receptor tyrosine kinases, EGFR, IGF-1R and PDGFRβ. In addition, we found co-expression of RUNX2 and another RTK, AXL, in both melanoma cells and melanoma patient samples. We observed a decrease in phosphoAKT2 (S474) and phosphoAKT (T308) levels when RUNX2 knock down resulted in significant RTK down regulation. Finally, we showed a dramatic up regulation of RUNX2 expression with concomitant up-regulation of EGFR, IGF-1R and AXL in melanoma cells resistant to the BRAF V600E inhibitor PLX4720. Taken together, our results strongly suggest that RUNX2 might be a key player in RTK-based autocrine loops and a mediator of resistance to BRAF V600E inhibitors involving RTK up regulation in melanoma. PMID:27102439

  10. QSAR and molecular docking studies on oxindole derivatives as VEGFR-2 tyrosine kinase inhibitors.

    PubMed

    Kang, Cong-Min; Liu, Dong-Qing; Zhao, Xu-Hao; Dai, Ying-Jie; Cheng, Jia-Gao; Lv, Ying-Tao

    2016-01-01

    The three-dimensional quantitative structure-activity relationships (3D-QSAR) were established for 30 oxindole derivatives as vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase inhibitors by using comparative molecular field analysis (CoMFA) and comparative similarity indices analysis comparative molecular similarity indices analysis (CoMSIA) techniques. With the CoMFA model, the cross-validated value (q(2)) was 0.777, the non-cross-validated value (R(2)) was 0.987, and the external cross-validated value ([Formula: see text]) was 0.72. And with the CoMSIA model, the corresponding q(2), R(2) and [Formula: see text] values were 0.710, 0.988 and 0.78, respectively. Docking studies were employed to bind the inhibitors into the active site to determine the probable binding conformation. The binding mode obtained by molecular docking was in good agreement with the 3D-QSAR results. Based on the QSAR models and the docking binding mode, a set of new VEGFR-2 tyrosine kinase inhibitors were designed, which showed excellent predicting inhibiting potencies. The result revealed that both QSAR models have good predictive capability to guide the design and structural modification of homologic compounds. It is also helpful for further research and development of new VEGFR-2 tyrosine kinase inhibitors.

  11. Chemical inhibitors of c-Met receptor tyrosine kinase stimulate osteoblast differentiation and bone regeneration.

    PubMed

    Kim, Jung-Woo; Nam Lee, Mi; Jeong, Byung-Chul; Oh, Sin-Hye; Kook, Min-Suk; Koh, Jeong-Tae

    2017-03-16

    The c-Met receptor tyrosine kinase and its ligand, hepatocyte growth factor (HGF), have been recently introduced to negatively regulate bone morphogenetic protein (BMP)-induced osteogenesis. However, the effect of chemical inhibitors of c-Met receptor on osteoblast differentiation process has not been examined, especially the applicability of c-Met chemical inhibitors on in vivo bone regeneration. In this study, we demonstrated that chemical inhibitors of c-Met receptor tyrosine kinase, SYN1143 and SGX523, could potentiate the differentiation of precursor cells to osteoblasts and stimulate regeneration in calvarial bone defects of mice. Treatment with SYN1143 or SGX523 inhibited HGF-induced c-Met phosphorylation in MC3T3-E1 and C3H10T1/2 cells. Cell proliferation of MC3T3-E1 or C3H10T1/2 was not significantly affected by the concentrations of these inhibitors. Co-treatment with chemical inhibitor of c-Met and osteogenic inducing media enhanced osteoblast-specific genes expression and calcium nodule formation accompanied by increased Runx2 expression via c-Met receptor-dependent but Erk-Smad signaling independent pathway. Notably, the administration of these c-Met inhibitors significantly repaired critical-sized calvarial bone defects. Collectively, our results suggest that chemical inhibitors of c-Met receptor tyrosine kinase might be used as novel therapeutics to induce bone regeneration.

  12. Different structural alterations upregulate in vitro tyrosine kinase activity and transforming potency of the erbB-2 gene.

    PubMed Central

    Segatto, O; King, C R; Pierce, J H; Di Fiore, P P; Aaronson, S A

    1988-01-01

    Compared with normal erbB-2 gp185, mutant erbB-2 proteins generated by mutations either in the transmembrane domain or by NH2-terminal deletion are able to transform NIH 3T3 cells at a 10- to 100-fold greater efficiency. Mutant proteins of both classes show increased tyrosine kinase activity, suggesting that an abnormal level of receptor-associated tyrosine kinase activity is a major determinant of erbB-2 oncogenic potential. Images PMID:2907606

  13. Evolution of Bacterial Protein-Tyrosine Kinases and Their Relaxed Specificity Toward Substrates

    PubMed Central

    Shi, Lei; Kolar-Znika, Lorena; Boskovic, Ana; Jadeau, Fanny; Combet, Christophe; Grangeasse, Christophe; Franjevic, Damjan; Talla, Emmanuel; Mijakovic, Ivan

    2014-01-01

    It has often been speculated that bacterial protein-tyrosine kinases (BY-kinases) evolve rapidly and maintain relaxed substrate specificity to quickly adopt new substrates when evolutionary pressure in that direction arises. Here, we report a phylogenomic and biochemical analysis of BY-kinases, and their relationship to substrates aimed to validate this hypothesis. Our results suggest that BY-kinases are ubiquitously distributed in bacterial phyla and underwent a complex evolutionary history, affected considerably by gene duplications and horizontal gene transfer events. This is consistent with the fact that the BY-kinase sequences represent a high level of substitution saturation and have a higher evolutionary rate compared with other bacterial genes. On the basis of similarity networks, we could classify BY kinases into three main groups with 14 subgroups. Extensive sequence conservation was observed only around the three canonical Walker motifs, whereas unique signatures proposed the functional speciation and diversification within some subgroups. The relationship between BY-kinases and their substrates was analyzed using a ubiquitous substrate (Ugd) and some Firmicute-specific substrates (YvyG and YjoA) from Bacillus subtilis. No evidence of coevolution between kinases and substrates at the sequence level was found. Seven BY-kinases, including well-characterized and previously uncharacterized ones, were used for experimental studies. Most of the tested kinases were able to phosphorylate substrates from B. subtilis (Ugd, YvyG, and YjoA), despite originating from very distant bacteria. Our results are consistent with the hypothesis that BY-kinases have evolved relaxed substrate specificity and are probably maintained as rapidly evolving platforms for adopting new substrates. PMID:24728941

  14. Evidence that simulated microgravity may alter the vascular nonreceptor tyrosine kinase second messenger pathway

    NASA Technical Reports Server (NTRS)

    Kahwaji, C. I.; Sheibani, S.; Han, S.; Siu, W. O.; Kaka, A. H.; Fathy, T. M.; el-Abbadi, N. H.; Purdy, R. E.

    2000-01-01

    Simulated microgravity (hind limb unweighting; HU) reduces maximal contractile capacity to norepinephrine (NE) but not 5-hydroxytryptamine (5-HT) in the rat abdominal aorta of male Wistar rats. Our earlier study showed that voltage-operated calcium channels, the MAPK pathway [1], and vasoconstrictive prostaglandins contribute to the NE-induced contraction of control (C) but not HU, aorta rings. Genistein, a general tyrosine kinase inhibitor, caused a significant reduction in vascular contractility in C but not HU arteries. The present study explored the role of protein kinase C (PKC) and extracellular receptor-activated kinase 1 and 2 (ERK1/2) in the HU-induced vascular hyporesponsiveness to NE. Microgravity was simulated in Wistar rats by 20 day HU. The abdominal aorta was removed from control and HU rats, cut into 3 mm rings, and mounted in tissue baths to measure isometric contraction. Protein levels were determined using Western blot analysis. PD98059, a selective MAPKK inhibitor, caused a marked inhibition of NE-induced contraction in both C and HU arteries. Calphostin C, a PKC inhibitor, completely abolished the contractile response to NE in both C and HU tissues. Phosphorylated (activated) ERK1/2 protein mass was greater in C, compared to HU, aortas, and was reduced by genistein only in C tissues. MAPK total protein levels in the rat aorta were increased in the HU-treated, compared to C, animals. These results indicate that PKC represents an early transduction step in the contractile response to NE in the rat abdominal aorta. That inhibition of the step immediately before activation of MAPK reduced contraction in both C and HU tissues, while general tyrosine kinase inhibition with genistein blocked only the control responses, suggests that a nonreceptor tyrosine kinase may be involved in HU-induced vascular hyporesponsiveness to NE.

  15. Tyrosine kinases activate store-mediated Ca2+ entry in human platelets through the reorganization of the actin cytoskeleton.

    PubMed Central

    Rosado, J A; Graves, D; Sage, S O

    2000-01-01

    We have recently reported that store-mediated Ca(2+) entry in platelets is likely to be mediated by a reversible trafficking and coupling of the endoplasmic reticulum with the plasma membrane, a model termed 'secretion-like coupling'. In this model the actin cytoskeleton plays a key regulatory role. Since tyrosine kinases have been shown to be important for Ca(2+) entry in platelets and other cells, we have now investigated the possible involvement of tyrosine kinases in the secretion-like-coupling model. Treatment of platelets with thrombin or thapsigargin induced actin polymerization by a calcium-independent pathway. Methyl 2,5-dihydroxycinnamate, a tyrosine kinase inhibitor, prevented thrombin- or thapsigargin-induced actin polymerization. The effects of tyrosine kinases in store-mediated Ca(2+) entry were found to be entirely dependent on the actin cytoskeleton. PP1, an inhibitor of the Src family of proteins, partially inhibited store-mediated Ca(2+) entry. In addition, depletion of intracellular Ca(2+) stores stimulated cytoskeletal association of the cytoplasmic tyrosine kinase pp60(src), a process that was sensitive to treatment with cytochalasin D and PP1, but not to inhibition of Ras proteins using prenylcysteine analogues. Finally, combined inhibition of both Ras proteins and tyrosine kinases resulted in complete inhibition of Ca(2+) entry, suggesting that these two families of proteins have independent effects in the activation of store-mediated Ca(2+) entry in human platelets. PMID:11023829

  16. Molecular docking studies of banana flower flavonoids as insulin receptor tyrosine kinase activators as a cure for diabetes mellitus.

    PubMed

    Ganugapati, Jayasree; Baldwa, Aashish; Lalani, Sarfaraz

    2012-01-01

    Diabetes mellitus is a metabolic disorder caused due to insulin deficiency. Banana flower is a rich source of flavonoids that exhibit anti diabetic activity. Insulin receptor is a tetramer that belongs to a family of receptor tyrosine kinases. It contains two alpha subunits that form the extracellular domain and two beta subunits that constitute the intracellular tyrosine kinase domain. Insulin binds to the extracellular region of the receptor and causes conformational changes that lead to the activation of the tyrosine kinase. This leads to autophosphorylation, a step that is crucial in insulin signaling pathway. Hence, compounds that augment insulin receptor tyrosine kinase activity would be useful in the treatment of diabetes mellitus. The 3D structure of IR tyrosine kinase was obtained from PDB database. The list of flavonoids found in banana flower was obtained from USDA database. The structures of the flavonoids were obtained from NCBI Pubchem. Docking analysis of the flavonoids was performed using Autodock 4.0 and Autodock Vina. The results indicate that few of the flavonoids may be potential activators of IR tyrosine kinase.

  17. Molecular cloning, expression pattern, and molecular evolution of the spleen tyrosine kinase in lamprey, Lampetra japonica.

    PubMed

    Liu, Chang; Su, Peng; Li, Ranran; Zhang, Qiong; Zhu, Ting; Liu, Xin; Li, Qingwei

    2015-04-01

    Spleen tyrosine kinase (Syk), a member of Syk family of cytoplasmic non-receptor tyrosine kinases, is a key component of B cell receptor signaling and regulates multiple physiological functions of B lymphocytes in vertebrates. In the current study, a Syk homologue was identified in the lamprey Lampetra japonica (Lj-Syk). The cDNA fragment of Lj-Syk contains a 1953-bp open reading frame which encodes 651 amino acids, a 12-bp fragment of 5'-untranslated region, and a 1029-bp 3'-untranslated region. The same as vertebrate's Syks, Lj-Syk protein also contains a tyrosine kinase catalytic domain which functions as its kinase activity center and two Src homology 2 (SH2) domains which are the targets when Syk is recruited by phosphorylated immunoreceptor tyrosine-based activation motif. It is revealed by multiple sequence alignment that the tyrosine kinase catalytic domain and two SH2 domains are conserved throughout the Syk gene family in vertebrates. The evolutionary dynamics of Syks were analyzed by MEME software using conserved motifs as markers. Among 19 conserved motifs elicited from 22 Syks or Syk-like proteins, 12 motifs that locate at N-terminal, two tandem SH2, Inter SH2, and Tyrkc domains are conserved in Syks from jawless to jawed vertebrates. From the absence and existence of the other seven motifs, it can be concluded that the primary Syk gene evolved to modern functional gene through short insertion and deletion strategy in their gene sequence rather than gene duplication. The expression of lamprey Syk was examined by real-time quantitative PCR and Western blot methods in leukocyte cells, gills, supraneural myeloid bodies, kidneys, and hearts of lampreys before and after the animals were stimulated with lipopolysaccharide (LPS). The transcriptional level of lamprey Syk was upregulated in gill, kidney, heart, and leukocyte cells, and the protein expression level is upregulated in leukocyte cells and supraneural myeloid bodies after stimulated with LPS. It

  18. Anaplastic lymphoma kinase aberrations correlate with metastatic features in pediatric rhabdomyosarcoma

    PubMed Central

    Villa, Raffaella; Collini, Paola; Alaggio, Rita; Zin, Angelica; Bonvini, Paolo; Antonescu, Cristina R; Boldrini, Renata; Caserini, Roberto; Moro, Massimo; Centonze, Giovanni; Meazza, Cristina; Massimino, Maura; Bergamaschi, Luca; Luksch, Roberto; Chiaravalli, Stefano; Bisogno, Gianni; Zaffaroni, Nadia; Daidone, MariaGrazia

    2016-01-01

    Rhabdomyosarcoma (RMS) is the most frequent soft tissue tumor in childhood and arises from immature mesenchymal cells committed to skeletal muscle differentiation. Anaplastic Lymphoma Kinase (ALK) is a receptor tyrosine kinase aberrantly expressed in several cancers. Moreover, ALK full-length receptor protein has been observed in RMS, although its clinical and functional significance is yet controversial. The role of ALK and its clinical relevance were investigated in a selected cohort of 74 FFPE pediatric RMS and a panel of RMS cell lines, evaluating its gene and protein status, utilizing Fluorescent In Situ Hybridization (FISH), immunohistochemistry (IHC) and Western blot approaches. Moreover, to get insight into its possible therapeutic relevance, effects of ALK silencing on cell proliferation, invasion and apoptosis were studied in RMS cells. ALK IHC positivity was significantly correlated with gene copy number gain, the alveolar subtype, PAX3/7-FOXO1 rearrangements, the presence of metastasis at diagnosis and a worse overall outcome. Furthermore, EML4-ALK fusion gene associated with higher protein expression was identified in an embryonal RMS. ALK silencing in RH30 ALK positive cells strongly inhibited invasion capability. Overall, our data suggest a potential role of ALK in pediatric RMS. PMID:27385213

  19. Immunoreceptor tyrosine-based inhibitory motif (ITIM)-mediated inhibitory signaling is regulated by sequential phosphorylation mediated by distinct nonreceptor tyrosine kinases: a case study involving PECAM-1.

    PubMed

    Tourdot, Benjamin E; Brenner, Michelle K; Keough, Kathleen C; Holyst, Trudy; Newman, Peter J; Newman, Debra K

    2013-04-16

    The activation state of many blood and vascular cells is tightly controlled by a delicate balance between receptors that contain immunoreceptor tyrosine-based activation motifs (ITAMs) and those that contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Precisely how the timing of cellular activation by ITAM-coupled receptors is regulated by ITIM-containing receptors is, however, poorly understood. Using platelet endothelial cell adhesion molecule 1 (PECAM-1) as a prototypical ITIM-bearing receptor, we demonstrate that initiation of inhibitory signaling occurs via a novel, sequential process in which Src family kinases phosphorylate the C-terminal ITIM, thereby enabling phosphorylation of the N-terminal ITIM of PECAM-1 by other Src homology 2 domain-containing nonreceptor tyrosine kinases (NRTKs). NRTKs capable of mediating the second phosphorylation event include C-terminal Src kinase (Csk) and Bruton's tyrosine kinase (Btk). Btk and Csk function downstream of phosphatidylinositol 3-kinase (PI3K) activation during ITAM-dependent platelet activation. In ITAM-activated platelets that were treated with a PI3K inhibitor, PECAM-1 was phosphorylated but did not bind the tandem SH2 domain-containing tyrosine phosphatase SHP-2, indicating that it was not phosphorylated on its N-terminal ITIM. Csk bound to and phosphorylated PECAM-1 more efficiently than did Btk and required its SH2 domain to perform these functions. Additionally, the phosphorylation of the N-terminal ITIM of Siglec-9 by Csk is enhanced by the prior phosphorylation of its C-terminal ITIM, providing evidence that the ITIMs of other dual ITIM-containing receptors are also sequentially phosphorylated. On the basis of these findings, we propose that sequential ITIM phosphorylation provides a general mechanism for precise temporal control over the recruitment and activation of tandem SH2 domain-containing tyrosine phosphatases that dampen ITAM-dependent signals.

  20. A Role for the Tec Family Tyrosine Kinase Txk in T Cell Activation and Thymocyte Selection

    PubMed Central

    Sommers, Connie L.; Rabin, Ronald L.; Grinberg, Alexander; Tsay, Henry C.; Farber, Joshua; Love, Paul E.

    1999-01-01

    Recent data indicate that several members of the Tec family of protein tyrosine kinases function in antigen receptor signal transduction. Txk, a Tec family protein tyrosine kinase, is expressed in both immature and mature T cells and in mast cells. By overexpressing Txk in T cells throughout development, we found that Txk specifically augments the phospholipase C (PLC)-γ1–mediated calcium signal transduction pathway upon T cell antigen receptor (TCR) engagement. Although Txk is structurally different from inducible T cell kinase (Itk), another Tec family member expressed in T cells, expression of the Txk transgene could partially rescue defects in positive selection and signaling in itk−/− mice. Conversely, in the itk+/+ (wild-type) background, overexpression of Txk inhibited positive selection of TCR transgenic thymocytes, presumably due to induction of cell death. These results identify a role for Txk in TCR signal transduction, T cell development, and selection and suggest that the Tec family kinases Itk and Txk perform analogous functions. PMID:10562318

  1. Jedi-1 and MEGF10 signal engulfment of apoptotic neurons through the tyrosine kinase Syk.

    PubMed

    Scheib, Jami L; Sullivan, Chelsea S; Carter, Bruce D

    2012-09-19

    During the development of the peripheral nervous system there is extensive apoptosis, and these neuronal corpses need to be cleared to prevent an inflammatory response. Recently, Jedi-1 and MEGF10, both expressed in glial precursor cells, were identified in mouse as having an essential role in this phagocytosis (Wu et al., 2009); however, the mechanisms by which they promote engulfment remained unknown. Both Jedi-1 and MEGF10 are homologous to the Drosophila melanogaster receptor Draper, which mediates engulfment through activation of the tyrosine kinase Shark. Here, we identify Syk, the mammalian homolog of Shark, as a signal transducer for both Jedi-1 and MEGF10. Syk interacted with each receptor independently through the immunoreceptor tyrosine-based activation motifs (ITAMs) in their intracellular domains. The interaction was enhanced by phosphorylation of the tyrosines in the ITAMs by Src family kinases (SFKs). Jedi association with Syk and activation of the kinase was also induced by exposure to dead cells. Expression of either Jedi-1 or MEGF10 in HeLa cells facilitated engulfment of carboxylated microspheres to a similar extent, and there was no additive effect when they were coexpressed. Mutation of the ITAM tyrosines of Jedi-1 and MEGF10 prevented engulfment. The SFK inhibitor PP2 or a selective Syk inhibitor (BAY 61-3606) also blocked engulfment. Similarly, in cocultures of glial precursors and dying sensory neurons from embryonic mice, addition of PP2 or knock down of endogenous Syk decreased the phagocytosis of apoptotic neurons. These results indicate that both Jedi-1 and MEGF10 can mediate phagocytosis independently through the recruitment of Syk.

  2. Signal transduction pathway regulating prostaglandin EP3 receptor-induced neurite retraction: requirement for two different tyrosine kinases.

    PubMed Central

    Aoki, J; Katoh, H; Yasui, H; Yamaguchi, Y; Nakamura, K; Hasegawa, H; Ichikawa, A; Negishi, M

    1999-01-01

    We reported previously that activation of the prostaglandin E receptor EP3 subtype triggered neurite retraction through the small GTPase Rho-, and its target, RhoA-binding kinase alpha (ROKalpha)-, dependent pathway in EP3 receptor-expressing PC12 cells. Here we examined the involvement of tyrosine kinases in this pathway in nerve growth factor-differentiated PC12 cells. Tyrphostin A25, a tyrosine kinase inhibitor, blocked neurite retraction and cell rounding induced by activation of the EP3 receptor, however, it failed to block neurite retraction and cell rounding induced by microinjection of constitutively active RhoA, RhoAV14, indicating that a tyrphostin-sensitive tyrosine kinase was involved in the pathway from the EP3 receptor to Rho activation. On the other hand, genistein, another tyrosine kinase inhibitor, blocked neurite retraction and cell rounding induced by both activation of the EP3 receptor and microinjection of RhoAV14. However, genistein did not block neuronal morphological changes induced by microinjection of a constitutively active mutant of ROKalpha. These results indicate that two different tyrosine kinases, tyrphostin A25-sensitive and genistein-sensitive kinases, are involved in the EP3 receptor-mediated neurite retraction acting upstream and downstream of Rho, respectively. PMID:10333476

  3. Role of Protein Kinase C, PI3-kinase and Tyrosine Kinase in Activation of MAP Kinase by Glucose and Agonists of G-protein Coupled Receptors in INS-1 Cells

    PubMed Central

    Böcker, Dietmar

    2001-01-01

    MAP (mitogen-activated protein) kinase (also called Erk 1/2) plays a crucial role in cell proliferation and differentiation. Its impact on secretory events is less well established. The interplay of protein kinase C (PKC), PI3-kinase nd cellular tyrosine kinase with MAP kinase activity using inhibitors and compounds such as glucose, phorbol 12-myristate 13-acetate (PMA) and agonists of G-protein coupled receptors like gastrin releasing peptide (GRP), oxytocin (OT) and glucose-dependent insulinotropic peptide (GIP) was investigated in INS-1 cells, an insulin secreting cell line. MAP kinase activity was determined by using a peptide derived from the EGF receptor as a MAP kinase substrate and [ P 32 ]ATP. Glucose as well as GRP, OT and GIP exhibited a time-dependent increase in MAP kinase activity with a maximum at time point 2.5 min. All further experiments were performed using 2.5 min incubations. The flavone PD 098059 is known to bind to the inactive forms of MEK1 (MAPK/ERK-Kinase) thus preventing activation by upstream activators. 20 μM PD 098059 ( IC 50 =51 μM) inhibited MAP kinase stimulated by either glucose, GRP, OT, GIP or PMA. Inhibiton (“downregulation”) of PKC by a long term (22h) pretreatment with 1 μM PMA did not influence MAP kinase activity when augmented by either of the above mentioned compound. To investigate whether PI3-kinase and cellular tyrosine kinase are involved in G-protein mediated effects on MAP kinase, inhibitors were used: 100 nM wortmannin (PI3-kinase inhibitor) reduced the effects of GRP, OT and GIP but not that of PMA; 100 μM genistein (tyrosine kinase inhibitor) inhibited the stimulatory effect of either above mentioned compound on MAP kinase activation. Inhibition of MAP kinase by 20 μM PD 098059 did not influence insulin secretion modulated by either compound (glucose, GRP, OT or GIP). [ H 3 ]Thymidine incorporation, however, was severely inhibited by PD 098059. Thus MAP kinase is important for INS-1 cell proliferation but

  4. TR-FRET binding assay targeting unactivated form of Bruton's tyrosine kinase.

    PubMed

    Asami, Tokiko; Kawahata, Wataru; Sawa, Masaaki

    2015-01-01

    Bruton's Tyrosine Kinase (BTK) is one of the crucial kinases for the B cell maturation and mast cell activation, and specific inhibitors of BTK are considered to be attractive targets in drug discovery research. In this Letter, we have designed and synthesized a new fluorescent probe for TR-FRET-based high-throughput screening, to identify compounds that preferentially bind to an inactive conformation of BTK which has a unique structural feature. A set of kinase-focused compound library was screened using this assay method, and compound 31 was successfully identified as a potent inhibitor which preferentially bind to the inactive conformation of BTK. These results suggest that this screening method has a great potential for the discovery of novel selective BTK inhibitors.

  5. Spleen tyrosine kinase inhibitors for rheumatoid arthritis: where are we now?

    PubMed

    Scott, Ian C; Scott, David L

    2014-03-01

    The development of small-molecule inhibitors of inflammatory cascade signaling kinases offers a potential approach to treating rheumatoid arthritis (RA). Spleen tyrosine kinase is one such tyrosine kinase. Recent research efforts have focussed on the development and testing of a spleen tyrosine kinase inhibitor, fostamatinib. We reviewed the results of the clinical trials of fostamatinib in RA with the aim of outlining its clinical efficacy and the nature and frequency of its main adverse events. To date, this drug has been evaluated in over 3,200 RA patients enrolled in three phase II, one phase IIb and three phase III trials. These studies showed fostamatinib was effective. In four trials in which patients received 100 mg twice daily, fostamatinib reduced inflammatory synovitis; the relative risks of achieving American College of Rheumatology Responder rates compared with placebo in the combined studies ranged from 1.6 for 20 % of responders to 3.7 for 70 % of responders. There was a similar relative risk of achieving a clinically meaningful reduction in disability of 1.6 for the chance of patients achieving a reduction in health assessment questionnaire scores of 0.22 or more. Three of the trials examined the impact of fostamatinib on erosive radiographic damage using changes in the modified total Sharp score. None of them provided any evidence for a significant effect of fostamatinib on erosive damage over 6 months. All the trials included descriptions of adverse events. Hypertension was common, involving over 40 % of patients treated. Other common adverse events included diarrhoea, neutropenia and increases in hepatic enzyme levels. Some patients developed infections. On the conclusion of the phase III trials, one of the main pharmaceutical sponsors decided not to further develop fostamatinib for RA.

  6. A Novel Triazolopyridine-Based Spleen Tyrosine Kinase Inhibitor That Arrests Joint Inflammation

    PubMed Central

    Ferguson, Gregory D.; Delgado, Mercedes; Plantevin-Krenitsky, Veronique; Jensen-Pergakes, Kristen; Bates, R. J.; Torres, Sanaa; Celeridad, Maria; Brown, Heather; Burnett, Kelven; Nadolny, Lisa; Tehrani, Lida; Packard, Garrick; Pagarigan, Barbra; Haelewyn, Jason; Nguyen, Trish; Xu, Li; Tang, Yang; Hickman, Matthew; Baculi, Frans; Pierce, Steven; Miyazawa, Keiji; Jackson, Pilgrim; Chamberlain, Philip; LeBrun, Laurie; Xie, Weilin; Bennett, Brydon; Blease, Kate

    2016-01-01

    Autoantibodies and the immunoreceptors to which they bind can contribute to the pathogenesis of autoimmune diseases such as rheumatoid arthritis (RA). Spleen Tyrosine Kinase (Syk) is a non-receptor tyrosine kinase with a central role in immunoreceptor (FcR) signaling and immune cell functionality. Syk kinase inhibitors have activity in antibody-dependent immune cell activation assays, in preclinical models of arthritis, and have progressed into clinical trials for RA and other autoimmune diseases. Here we describe the characterization of a novel triazolopyridine-based Syk kinase inhibitor, CC-509. This compound is a potent inhibitor of purified Syk enzyme, FcR-dependent and FcR-independent signaling in primary immune cells, and basophil activation in human whole blood. CC-509 is moderately selective across the kinome and against other non-kinase enzymes or receptors. Importantly, CC-509 was optimized away from and has modest activity against cellular KDR and Jak2, kinases that when inhibited in a preclinical and clinical setting may promote hypertension and neutropenia, respectively. In addition, CC-509 is orally bioavailable and displays dose-dependent efficacy in two rodent models of immune-inflammatory disease. In passive cutaneous anaphylaxis (PCA), CC-509 significantly inhibited skin edema. Moreover, CC-509 significantly reduced paw swelling and the tissue levels of pro-inflammatory cytokines RANTES and MIP-1α in the collagen-induced arthritis (CIA) model. In summary, CC-509 is a potent, moderately selective, and efficacious inhibitor of Syk that has a differentiated profile when compared to other Syk compounds that have progressed into the clinic for RA. PMID:26756335

  7. A Novel Triazolopyridine-Based Spleen Tyrosine Kinase Inhibitor That Arrests Joint Inflammation.

    PubMed

    Ferguson, Gregory D; Delgado, Mercedes; Plantevin-Krenitsky, Veronique; Jensen-Pergakes, Kristen; Bates, R J; Torres, Sanaa; Celeridad, Maria; Brown, Heather; Burnett, Kelven; Nadolny, Lisa; Tehrani, Lida; Packard, Garrick; Pagarigan, Barbra; Haelewyn, Jason; Nguyen, Trish; Xu, Li; Tang, Yang; Hickman, Matthew; Baculi, Frans; Pierce, Steven; Miyazawa, Keiji; Jackson, Pilgrim; Chamberlain, Philip; LeBrun, Laurie; Xie, Weilin; Bennett, Brydon; Blease, Kate

    2016-01-01

    Autoantibodies and the immunoreceptors to which they bind can contribute to the pathogenesis of autoimmune diseases such as rheumatoid arthritis (RA). Spleen Tyrosine Kinase (Syk) is a non-receptor tyrosine kinase with a central role in immunoreceptor (FcR) signaling and immune cell functionality. Syk kinase inhibitors have activity in antibody-dependent immune cell activation assays, in preclinical models of arthritis, and have progressed into clinical trials for RA and other autoimmune diseases. Here we describe the characterization of a novel triazolopyridine-based Syk kinase inhibitor, CC-509. This compound is a potent inhibitor of purified Syk enzyme, FcR-dependent and FcR-independent signaling in primary immune cells, and basophil activation in human whole blood. CC-509 is moderately selective across the kinome and against other non-kinase enzymes or receptors. Importantly, CC-509 was optimized away from and has modest activity against cellular KDR and Jak2, kinases that when inhibited in a preclinical and clinical setting may promote hypertension and neutropenia, respectively. In addition, CC-509 is orally bioavailable and displays dose-dependent efficacy in two rodent models of immune-inflammatory disease. In passive cutaneous anaphylaxis (PCA), CC-509 significantly inhibited skin edema. Moreover, CC-509 significantly reduced paw swelling and the tissue levels of pro-inflammatory cytokines RANTES and MIP-1α in the collagen-induced arthritis (CIA) model. In summary, CC-509 is a potent, moderately selective, and efficacious inhibitor of Syk that has a differentiated profile when compared to other Syk compounds that have progressed into the clinic for RA.

  8. Tyrosine-specific phosphorylation of calmodulin by the insulin receptor kinase purified from human placenta.

    PubMed Central

    Sacks, D B; Fujita-Yamaguchi, Y; Gale, R D; McDonald, J M

    1989-01-01

    It has previously been demonstrated that calmodulin can be phosphorylated in vitro and in vivo by both tyrosine-specific and serine/threonine protein kinase. We demonstrate here that the insulin receptor tyrosine kinase purified from human placenta phosphorylates calmodulin. The highly purified receptors (prepared by insulin-Sepharose chromatography) were 5-10 times more effective in catalysing the phosphorylation of calmodulin than an equal number of partially purified receptors (prepared by wheat-germ agglutinin-Sepharose chromatography). Phosphorylation occurred exclusively on tyrosine residues, up to a maximum of 1 mol [0.90 +/- 0.14 (n = 5)] of phosphate incorporated/mol of calmodulin. Phosphorylation of calmodulin was dependent on the presence of certain basic proteins and divalent cations. Some of these basic proteins, i.e. polylysine, polyarginine, polyornithine, protamine sulphate and histones H1 and H2B, were also able to stimulate the phosphorylation of calmodulin via an insulin-independent activation of the receptor tyrosine kinase. Addition of insulin further increased incorporation of 32P into calmodulin. The magnitude of the effect of insulin was dependent on the concentration and type of basic protein used, ranging from 0.5- to 9.0-fold stimulation. Maximal phosphorylation of calmodulin was obtained at an insulin concentration of 10(-10) M, with half-maximal effect at 10(-11) M. Either Mg2+ or Mn2+ was necessary to obtain phosphorylation, but Mg2+ was far more effective than Mn2+. In contrast, maximal phosphorylation of calmodulin was observed in the absence of Ca2+. Inhibition of phosphorylation was observed as free Ca2+ concentration exceeded 0.1 microM, with almost complete inhibition at 30 microM free Ca2+. The Km for calmodulin was approx. 0.1 microM. To gain further insight into the effects of basic proteins in this system, we examined the binding of calmodulin to the insulin receptor and the polylysine. Calmodulin binds to the insulin

  9. Productive Replication of Ebola Virus Is Regulated by the c-Abl1 Tyrosine Kinase

    PubMed Central

    García, Mayra; Cooper, Arik; Shi, Wei; Bornmann, William; Carrion, Ricardo; Kalman, Daniel; Nabel, Gary J.

    2016-01-01

    Ebola virus causes a fulminant infection in humans resulting in diffuse bleeding, vascular instability, hypotensive shock, and often death. Because of its high mortality and ease of transmission from human to human, Ebola virus remains a biological threat for which effective preventive and therapeutic interventions are needed. An understanding of the mechanisms of Ebola virus pathogenesis is critical for developing antiviral therapeutics. Here, we report that productive replication of Ebola virus is modulated by the c-Abl1 tyrosine kinase. Release of Ebola virus–like particles (VLPs) in a cell culture cotransfection system was inhibited by c-Abl1–specific small interfering RNA (siRNA) or by Abl-specific kinase inhibitors and required tyrosine phosphorylation of the Ebola matrix protein VP40. Expression of c-Abl1 stimulated an increase in phosphorylation of tyrosine 13 (Y13) of VP40, and mutation of Y13 to alanine decreased the release of Ebola VLPs. Productive replication of the highly pathogenic Ebola virus Zaire strain was inhibited by c-Abl1–specific siRNAs or by the Abl-family inhibitor nilotinib by up to four orders of magnitude. These data indicate that c-Abl1 regulates budding or release of filoviruses through a mechanism involving phosphorylation of VP40. This step of the virus life cycle therefore may represent a target for antiviral therapy. PMID:22378924

  10. Productive replication of Ebola virus is regulated by the c-Abl1 tyrosine kinase.

    PubMed

    García, Mayra; Cooper, Arik; Shi, Wei; Bornmann, William; Carrion, Ricardo; Kalman, Daniel; Nabel, Gary J

    2012-02-29

    Ebola virus causes a fulminant infection in humans resulting in diffuse bleeding, vascular instability, hypotensive shock, and often death. Because of its high mortality and ease of transmission from human to human, Ebola virus remains a biological threat for which effective preventive and therapeutic interventions are needed. An understanding of the mechanisms of Ebola virus pathogenesis is critical for developing antiviral therapeutics. Here, we report that productive replication of Ebola virus is modulated by the c-Abl1 tyrosine kinase. Release of Ebola virus-like particles (VLPs) in a cell culture cotransfection system was inhibited by c-Abl1-specific small interfering RNA (siRNA) or by Abl-specific kinase inhibitors and required tyrosine phosphorylation of the Ebola matrix protein VP40. Expression of c-Abl1 stimulated an increase in phosphorylation of tyrosine 13 (Y(13)) of VP40, and mutation of Y(13) to alanine decreased the release of Ebola VLPs. Productive replication of the highly pathogenic Ebola virus Zaire strain was inhibited by c-Abl1-specific siRNAs or by the Abl-family inhibitor nilotinib by up to four orders of magnitude. These data indicate that c-Abl1 regulates budding or release of filoviruses through a mechanism involving phosphorylation of VP40. This step of the virus life cycle therefore may represent a target for antiviral therapy.

  11. SH2 domain proteins as high-affinity receptor tyrosine kinase substrates.

    PubMed

    Sierke, S L; Koland, J G

    1993-09-28

    Activation of a growth factor receptor tyrosine kinase (RTK) is accompanied by a rapid autophosphorylation of the receptor on tyrosine residues. Receptor activation has been shown to promote the association of signal-transducing proteins containing SH2 domains (second domain of src homology). These receptor-associated proteins can, in turn, be phosphorylated by the RTK, an event which presumably regulates their activities. It has been suggested that SH2 domains in signal-transducing proteins target these proteins as substrates of the activated RTK. To test this hypothesis, recombinant proteins were generated that contained tyrosine phosphorylation sites of the erbB3 receptor and/or the SH2 domain of c-src. Incorporation of the SH2 domain led to a decrease in KM and an increase in Vmax for the substrate. The KM determined for one chimeric SH2/erbB3 substrate was among the lowest reported for epidermal growth factor RTK substrates. Experiments with a truncated kinase lacking C-terminal autophosphorylation sites indicated that the reduction in KM for these substrates was mediated by interactions between the substrate SH2 domain and phosphotyrosine residues of the RTK. These interactions could also inhibit RTK activity. These results demonstrate that the SH2 domain can effectively target substrates to a RTK and that SH2 domain proteins can regulate RTK activity.

  12. Tyrosine phosphorylation of type Igamma phosphatidylinositol phosphate kinase by Src regulates an integrin-talin switch.

    PubMed

    Ling, Kun; Doughman, Renee L; Iyer, Vidhya V; Firestone, Ari J; Bairstow, Shawn F; Mosher, Deane F; Schaller, Michael D; Anderson, Richard A

    2003-12-22

    Engagement of integrin receptors with the extracellular matrix induces the formation of focal adhesions (FAs). Dynamic regulation of FAs is necessary for cells to polarize and migrate. Key interactions between FA scaffolding and signaling proteins are dependent on tyrosine phosphorylation. However, the precise role of tyrosine phosphorylation in FA development and maturation is poorly defined. Here, we show that phosphorylation of type Igamma phosphatidylinositol phosphate kinase (PIPKIgamma661) on tyrosine 644 (Y644) is critical for its interaction with talin, and consequently, localization to FAs. PIPKIgamma661 is specifically phosphorylated on Y644 by Src. Phosphorylation is regulated by focal adhesion kinase, which enhances the association between PIPKIgamma661 and Src. The phosphorylation of Y644 results in an approximately 15-fold increase in binding affinity to the talin head domain and blocks beta-integrin binding to talin. This defines a novel phosphotyrosine-binding site on the talin F3 domain and a "molecular switch" for talin binding between PIPKIgamma661 and beta-integrin that may regulate dynamic FA turnover.

  13. Functional interaction between nonreceptor tyrosine kinase c-Abl and SR-Rich protein RBM39.

    PubMed

    Mai, Sanyue; Qu, Xiuhua; Li, Ping; Ma, Qingjun; Liu, Xuan; Cao, Cheng

    2016-04-22

    RBM39, also known as splicing factor HCC1.4, acts as a transcriptional coactivator for the steroid nuclear receptors JUN/AP-1, ESR1/ER-α and ESR2/ER-β. RBM39 is involved in the regulation of the transcriptional responses of these steroid nuclear receptors and promotes transcriptional initiation. In this paper, we report that RBM39 interacts with the nonreceptor tyrosine kinase c-Abl. Both the Src homology (SH) 2 and SH3 domains of c-Abl interact with RBM39. The major tyrosine phosphorylation sites on RBM39 that are phosphorylated by c-Abl are Y95 and Y99, as demonstrated by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) and mutational analysis. c-Abl was shown boost the transcriptional coactivation activity of RBM39 for ERα and PRβ in a tyrosine kinase-dependent manner. The results suggest that mammalian c-Abl plays an important role in steroid hormone receptor-mediated transcription by regulating RBM39.

  14. SRC protein tyrosine kinase, c-Jun N-terminal kinase (JNK), and NF-kappaBp65 signaling in commercial and wild-type turkey leukocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies comparing signaling in wild-type turkey (WT) leukocytes and commercial turkey (CT) leukocytes found that the activity of protein tyrosine kinases (PTK) and MAP kinases, ERK 1/2 and p38, were significantly higher in WT leukocytes compared to CT lines upon exposure to both SE and OPSE on days...

  15. Structure of Escherichia coli tyrosine Kinase Etk Reveals a Novel Activation Mechanism

    SciTech Connect

    Lee,D.; Zheng, J.; She, Y.; Jia, Z.

    2008-01-01

    While protein tyrosine (Tyr) kinases (PTKs) have been extensively characterized in eukaryotes, far less is known about their emerging counterparts in prokaryotes. The inner-membrane Wzc/Etk protein belongs to the bacterial PTK family, which has an important function in regulating the polymerization and transport of virulence-determining capsular polysaccharide (CPS). The kinase uses a unique two-step activation process involving intra-phosphorylation of a Tyr residue, although the molecular mechanism remains unknown. Herein, we report the first crystal structure of a bacterial PTK, the C-terminal kinase domain of Escherichia coli Tyr kinase (Etk) at 2.5-Angstroms resolution. The fold of the Etk kinase domain differs markedly from that of eukaryotic PTKs. Based on the observed structure and supporting mass spectrometric evidence of Etk, a unique activation mechanism is proposed that involves the phosphorylated Tyr residue, Y574, at the active site and its specific interaction with a previously unidentified key Arg residue, R614, to unblock the active site. Both in vitro kinase activity and in vivo antibiotics resistance studies using structure-guided mutants further support the novel activation mechanism.

  16. Lyn tyrosine kinase regulates thrombopoietin-induced proliferation of hematopoietic cell lines and primary megakaryocytic progenitors.

    PubMed

    Lannutti, Brian J; Drachman, Jonathan G

    2004-05-15

    In this study we demonstrate that thrombopoietin (TPO)-stimulated Src family kinases (SFKs) inhibit cellular proliferation and megakaryocyte differentiation. Using the Src kinase inhibitors pyrolopyrimidine 1 and 2 (PP1, PP2), we show that TPO-dependent proliferation of BaF3/Mpl cells was enhanced at concentrations that are specific for SFKs. Similarly, proliferation is increased after introducing a dominant-negative form of Lyn into BaF3/Mpl cells. Murine marrow cells from Lyn-deficient mice or wild-type mice cultured in the presence of the Src inhibitor, PP1, yielded a greater number of mature megakaryocytes and increased nuclear ploidy. Truncation and targeted mutation of the Mpl cytoplasmic domain indicate that Y112 is critical for Lyn activation. Examining the molecular mechanism for this antiproliferative effect, we determined that SFK inhibitors did not affect tyrosine phosphorylation of Janus kinase 2 (JAK2), Shc, signal transducer and activator of transcription (STAT)5, or STAT3. In contrast, pretreatment of cells with PP2 increased Erk1/2 (mitogen-activated protein kinase [MAPK]) phosphorylation and in vitro kinase activity, particularly after prolonged TPO stimulation. Taken together, our results show that Mpl stimulation results in the activation of Lyn kinase, which appears to limit the proliferative response through a signaling cascade that regulates MAPK activity. These data suggest that SFKs modify the rate of TPO-induced proliferation and are likely to affect cell cycle regulation during megakaryocytopoiesis.

  17. Protein tyrosine kinases in bacterial pathogens are associated with virulence and production of exopolysaccharide.

    PubMed Central

    Ilan, O; Bloch, Y; Frankel, G; Ullrich, H; Geider, K; Rosenshine, I

    1999-01-01

    In eukaryotes, tyrosine protein phosphorylation has been studied extensively, while in bacteria, it is considered rare and is poorly defined. We demonstrate that Escherichia coli possesses a gene, etk, encoding an inner membrane protein that catalyses tyrosine autophosphorylation and phosphorylation of a synthetic co-polymer poly(Glu:Tyr). This protein tyrosine kinase (PTK) was termed Ep85 or Etk. All the E.coli strains examined possessed etk; however, only a subset of pathogenic strains expressed it. Etk is homologous to several bacterial proteins including the Ptk protein of Acinetobacter johnsonii, which is the only other known prokaryotic PTK. Other Etk homologues are AmsA of the plant pathogen Erwinia amylovora and Orf6 of the human pathogen Klebsiella pneumoniae. These proteins are involved in the production of exopolysaccharide (EPS) required for virulence. We demonstrated that like Etk, AmsA and probably also Orf6 are PTKs. Taken together, these findings suggest that tyrosine protein phosphorylation in prokaryotes is more common than was appreciated previously, and that Etk and its homologues define a distinct protein family of prokaryotic membrane-associated PTKs involved in EPS production and virulence. These prokaryotic PTKs may serve as a new target for the development of new antibiotics. PMID:10369665

  18. Hierarchical Disabled-1 Tyrosine Phosphorylation in Src family Kinase Activation and Neurite Formation

    PubMed Central

    Katyal, Sachin; Gao, Zhihua; Monckton, Elizabeth; Glubrecht, Darryl; Godbout, Roseline

    2013-01-01

    There are two developmentally regulated alternatively spliced forms of Disabled-1 (Dab1) in the chick retina: an early form (Dab1-E) expressed in retinal precursor cells and a late form (Dab1-L) expressed in neuronal cells. The main difference between these two isoforms is the absence of two Src family kinase (SFK) recognition sites in Dab1-E. Both forms retain two Abl/Crk/Nck recognition sites implicated in the recruitment of SH2 domain-containing signaling proteins. One of the Dab1-L-specific SFK recognition sites, at tyrosine(Y)-198, has been shown to be phosphorylated in Reelin-stimulated neurons. Here, we use Reelin-expressing primary retinal cultures to investigate the role of the four Dab1 tyrosine phosphorylation sites on overall tyrosine phosphorylation, Dab1 phosphorylation, SFK activation and neurite formation. We show that Y198 is essential but not sufficient for maximal Dab1 phosphorylation, SFK activation and neurite formation, with Y232 and Y220 playing particularly important roles in SFK activation and neuritogenesis, and Y185 having modifying effects secondary to Y232 and Y220. Our data support a role for all four Dab1 tyrosine phosphorylation sites in mediating the spectrum of activities associated with Reelin-Dab1 signaling in neurons. PMID:17350651

  19. Responses to crizotinib in patients with ALK-positive lung adenocarcinoma who tested immunohistochemistry (IHC)-positive and fluorescence in situ hybridization (FISH)-negative

    PubMed Central

    Yang, Lin; Mu, Xinlin; Wang, Yan; Zhao, Xinming; Li, Junling; Lin, Dongmei

    2016-01-01

    Although the Ventana immunohistochemistry (IHC) platform for detecting anaplastic lymphoma kinase gene (ALK) (D5F3) expression was recently approved by the US Food and Drugs Administration (FDA), fluorescence in situ hybridization (FISH) is still the “gold-standard” method recommended by the US National Comprehensive Cancer Network (NCCN) guideline for NSCLC. We evaluated 6 ALK-positive lung adenocarcinoma patients who tested Ventana IHC-positive and FISH-negative and assessed their clinical responses to the ALK tyrosine kinase inhibitor (TKI) crizotinib. Histologic and cytologic specimens from the 6 patients were stained with Ventana anti-ALK(D5F3) rabbit monoclonal primary antibody using the OptiView™ DAB IHC detection kit and OptiView™ amplification kit on a Ventana BenchMark XT processor. In addition, they were also tested by FISH, qRT-PCR, next-generation sequencing (NGS), and RNAscope ISH analysis. All patients received crizotinib treatment and their follow-up clinical data were recorded. The objective response rate achieved with crizotinib therapy was 66.7% (4/6 partial responses and 2/6 stable disease). One patient in whom a new fusion type (EML4->EXOC6B->ALK fusion) was identified obtained a partial response. These findings indicate that patients with ALK-positive lung adenocarcinoma who test Ventana IHC-positive and FISH-negative may still respond to crizotinib therapy. PMID:27418132

  20. Persistent cutaneous hyperpigmentation after tyrosine kinase inhibition with imatinib for GIST.

    PubMed

    Alexandrescu, Doru T; Dasanu, Constantin A; Farzanmehr, Haleh; Kauffman, Lisa

    2008-07-15

    Imatinib mesylate, a tyrosine kinase inhibitor targeting the Bcr-Abl protein, c-kit (KIT) and the platelet-derived growth factor receptors (PDGFR), is an important part of the therapeutic armamentarium used in chronic myelogenous leukemia and gastrointestinal stromal tumors. A multitude of dermatological toxicities occur with the clinical use of this drug, ranging from various acute rashes to Steven-Johnson syndrome. Hyperpigmentation of the skin is a less frequent side effect. This phenomenon may be linked to alterations in the c-kit signaling pathway, which plays an important role in melanogenesis. A similar cutaneous phenotypic expression is manifested in families carrying congenital tyrosine II domain mutations of c-kit. We present a unique case of long-term persistent hyperpigmentation that occurred after the treatment with imatinib and describe the possible pathogenetic mechanisms involved. Elucidation of the mechanisms of action of imatinib in the skin may open future directions for the treatment of pigmentary disorders.

  1. JAK tyrosine kinases promote hierarchical activation of Rho and Rap modules of integrin activation.

    PubMed

    Montresor, Alessio; Bolomini-Vittori, Matteo; Toffali, Lara; Rossi, Barbara; Constantin, Gabriela; Laudanna, Carlo

    2013-12-23

    Lymphocyte recruitment is regulated by signaling modules based on the activity of Rho and Rap small guanosine triphosphatases that control integrin activation by chemokines. We show that Janus kinase (JAK) protein tyrosine kinases control chemokine-induced LFA-1- and VLA-4-mediated adhesion as well as human T lymphocyte homing to secondary lymphoid organs. JAK2 and JAK3 isoforms, but not JAK1, mediate CXCL12-induced LFA-1 triggering to a high affinity state. Signal transduction analysis showed that chemokine-induced activation of the Rho module of LFA-1 affinity triggering is dependent on JAK activity, with VAV1 mediating Rho activation by JAKs in a Gαi-independent manner. Furthermore, activation of Rap1A by chemokines is also dependent on JAK2 and JAK3 activity. Importantly, activation of Rap1A by JAKs is mediated by RhoA and PLD1, thus establishing Rap1A as a downstream effector of the Rho module. Thus, JAK tyrosine kinases control integrin activation and dependent lymphocyte trafficking by bridging chemokine receptors to the concurrent and hierarchical activation of the Rho and Rap modules of integrin activation.

  2. Sch proteins are localized on endoplasmic reticulum membranes and are redistributed after tyrosine kinase receptor activation.

    PubMed Central

    Lotti, L V; Lanfrancone, L; Migliaccio, E; Zompetta, C; Pelicci, G; Salcini, A E; Falini, B; Pelicci, P G; Torrisi, M R

    1996-01-01

    The intracellular localization of Shc proteins was analyzed by immunofluorescence and immunoelectron microscopy in normal cells and cells expressing the epidermal growth factor receptor or the EGFR/erbB2 chimera. In unstimulated cells, the immunolabeling was localized in the central perinuclear area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane and endocytic structures, such as coated pits and endosomes, and with the peripheral cytosol. Receptor activation in cells expressing phosphorylation-defective mutants of Shc and erbB-2 kinase showed that receptor autophosphorylation, but not Shc phosphorylation, is required for redistribution of Shc proteins. The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and their massive recruitment to the plasma membrane, endocytic structures, and peripheral cytosol following receptor tyrosine kinase activation could account for multiple putative functions of the adaptor protein. PMID:8628261

  3. Erkitinib, a novel EGFR tyrosine kinase inhibitor screened using a ProteoChip system from a phytochemical library

    SciTech Connect

    Kim, Eung-Yoon; Choi, Young-Jin; Park, Chan-Won; Kang, In-Cheol

    2009-11-20

    Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer. Therefore PTK inhibitors are currently under intensive investigation as potential drug candidates. Herein, we report on a ProteoChip-based screening of an epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor, Erkitinibs, from phytochemical libraries. PLC-{gamma}-1 was used as a substrate immobilized on a ProteoChip and incubated with an EGFR kinase to phosphorylate tyrosine residues of the substrate, followed by a fluorescence detection of the substrate recognized by a phospho-specific monoclonal antibody. Erkitinibs inhibited HeLa cell proliferation in a dose-dependent manner. In conclusion, these data suggest that Erkitinibs can be a specific inhibitor of an EGFR kinase and can be further developed as a potent anti-tumor agent.

  4. Lysophosphatidylcholine potentiates vascular contractile responses in rat aorta via activation of tyrosine kinase.

    PubMed

    Suenaga, Hiroshi; Kamata, Katsuo

    2002-02-01

    We previously reported that while lysophosphatidylcholine (LPC) does not itself produce contraction, it significantly potentiates the contractile responses induced by high-K(+), UK14,304 (a selective alpha(2)-adrenoceptor agonist) and phorbol ester in the endothelium-denuded rat aorta. To further investigate this phenomenon, we examined the effects of genistein and tyrphostin B42 (both tyrosine kinase inhibitors) on the LPC-induced potentiation of the contractile responses to high-K(+) and UK14,304 in the endothelium-denuded rat aorta. Although genistein (3 x 10(-6) M, 10(-5) M) did not affect the high-K(+)-induced contractile response, it selectively inhibited the potentiating effect of LPC on the contraction and it strongly inhibited the LPC-induced augmentation of the associated increases in [Ca(2+)](i). Genistein also attenuated the LPC-induced augmentation effects on both the increase in [Ca(2+)](i) and contractile response induced by the UK14,304. In contrast, daidzein (10(-5) M) did not inhibit the potentiating effect of LPC. Tyrphostin B42 (3 x 10(-5) M) attenuated the potentiating effect of LPC on high K(+)-induced contractions. Western blot analysis showed that LPC increased the tyrosine phosphorylation of a number of proteins, including 42 and 44 kDa proteins and 53 - 64 kDa proteins. These protein phosphorylations were inhibited by genistein. Sodium orthovanadate (10(-4) M), a tyrosine phosphatase inhibitor, also markedly enhanced the high-K(+)-induced contractile responses. This enhancing effect was attenuated by genistein. These results suggest that the LPC-induced augmentation of contractile responses in the rat aorta is due to activation of tyrosine kinase, which in turn regulates Ca(2+) influx.

  5. Oncogenic signaling by Kit tyrosine kinase occurs selectively on the Golgi apparatus in gastrointestinal stromal tumors.

    PubMed

    Obata, Y; Horikawa, K; Takahashi, T; Akieda, Y; Tsujimoto, M; Fletcher, J A; Esumi, H; Nishida, T; Abe, R

    2017-02-13

    Gastrointestinal stromal tumors (GISTs) are caused by gain-of-function mutations in the Kit receptor tyrosine kinase. Most primary GIST patients respond to the Kit inhibitor imatinib, but this drug often becomes ineffective because of secondary mutations in the Kit kinase domain. The characteristic intracellular accumulation of imatinib-sensitive and -resistant Kit protein is well documented, but its relationship to oncogenic signaling remains unknown. Here, we show that in cancer tissue from primary GIST patients as well as in cell lines, mutant Kit accumulates on the Golgi apparatus, whereas normal Kit localizes to the plasma membrane (PM). In imatinib-resistant GIST with a secondary Kit mutation, Kit localizes predominantly on the Golgi apparatus. Both imatinib-sensitive and imatinib-resistant Kit (Kit(mut)) become fully auto-phosphorylated only on the Golgi and only if in a complex-glycosylated form. Kit(mut) accumulates on the Golgi during the early secretory pathway, but not after endocytosis. The aberrant kinase activity of Kit(mut) prevents its export from the Golgi to the PM. Furthermore, Kit(mut) on the Golgi signals and activates the phosphatidylinositol 3-kinase-Akt (PI3K-Akt) pathway, signal transducer and activator of transcription 5 (STAT5), and the Mek-Erk pathway. Blocking the biosynthetic transport of Kit(mut) to the Golgi from the endoplasmic reticulum inhibits oncogenic signaling. PM localization of Kit(mut) is not required for its signaling. Activation of Src-family tyrosine kinases on the Golgi is essential for oncogenic Kit signaling. These results suggest that the Golgi apparatus serves as a platform for oncogenic Kit signaling. Our study demonstrates that Kit(mut)'s pathogenicity is related to its mis-localization, and may offer a new strategy for treating imatinib-resistant GISTs.Oncogene advance online publication, 13 February 2017; doi:10.1038/onc.2016.519.

  6. Novel Bioluminescent Activatable Reporter for Src Tyrosine Kinase Activity in Living Mice

    PubMed Central

    Leng, Weibing; Li, Dezhi; Chen, Liang; Xia, Hongwei; Tang, Qiulin; Chen, Baoqin; Gong, Qiyong; Gao, Fabao; Bi, Feng

    2016-01-01

    Aberrant activation of the Src kinase is implicated in the development of a variety of human malignancies. However, it is almost impossible to monitor Src activity in an in vivo setting with current biochemical techniques. To facilitate the noninvasive investigation of the activity of Src kinase both in vitro and in vivo, we developed a genetically engineered, activatable bioluminescent reporter using split-luciferase complementation. The bioluminescence of this reporter can be used as a surrogate for Src activity in real time. This hybrid luciferase reporter was constructed by sandwiching a Src-dependent conformationally responsive unit (SH2 domain-Srcpep) between the split luciferase fragments. The complementation bioluminescence of this reporter was dependent on the Src activity status. In our study, Src kinase activity in cultured cells and tumor xenografts was monitored quantitatively and dynamically in response to clinical small-molecular kinase inhibitors, dasatinib and saracatinib. This system was also applied for high-throughput screening of Src inhibitors against a kinase inhibitor library in living cells. These results provide unique insights into drug development and pharmacokinetics/phoarmocodynamics of therapeutic drugs targeting Src signaling pathway enabling the optimization of drug administration schedules for maximum benefit. Using both Firefly and Renilla luciferase imaging, we have successfully monitored Src tyrosine kinase activity and Akt serine/threonine kinase activity concurrently in one tumor xenograft. This dual luciferase reporter imaging system will be helpful in exploring the complex signaling networks in vivo. The strategies reported here can also be extended to study and image other important kinases and the cross-talks among them. PMID:26941850

  7. Human cervical cancer cells use Ca2+ signalling, protein tyrosine phosphorylation and MAP kinase in regulatory volume decrease

    PubMed Central

    Shen, Meng-Ru; Chou, Cheng-Yang; Browning, Joseph A; Wilkins, Robert J; Ellory, J Clive

    2001-01-01

    This study was aimed at identifying the signalling pathways involved in the activation of volume-regulatory mechanisms of human cervical cancer cells. Osmotic swelling of human cervical cancer cells induced a substantial increase in intracellular Ca2+ ([Ca2+]i) by the activation of Ca2+ entry across the cell membrane, as well as Ca2+ release from intracellular stores. This Ca2+ signalling was critical for the normal regulatory volume decrease (RVD) response. The activation of swelling-activated ion and taurine transport was significantly inhibited by tyrosine kinase inhibitors (genistein and tyrphostin AG 1478) and potentiated by the tyrosine phosphatase inhibitor Na3VO4. However, the Src family of tyrosine kinases was not involved in regulation of the swelling-activated Cl− channel. Cell swelling triggered mitogen-activated protein (MAP) kinase cascades leading to the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/ERK2) and p38 kinase. The volume-responsive ERK1/ERK2 signalling pathway linked with the activation of K+ and Cl− channels, and taurine transport. However, the volume-regulatory mechanism was independent of the activation of p38 MAP kinase. The phosphorylated ERK1/ERK2 expression following a hypotonic shock was up-regulated by protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) and down-regulated by PKC inhibitor staurosporine. The response of ERK activation to hypotonicity also required Ca2+ entry and depended on tyrosine kinase and mitogen-activated/ERK-activating kinase (MEK) activity. Considering the results overall, osmotic swelling promotes the activation of tyrosine kinase and ERK1/ERK2 and raises intracellular Ca2+, all of which play a crucial role in the volume-regulatory mechanism of human cervical cancer cells. PMID:11731569

  8. Coexpression of receptor tyrosine kinase AXL and EGFR in human primary lung adenocarcinomas.

    PubMed

    Wu, Zhenzhou; Bai, Fan; Fan, Liyun; Pang, Wenshuai; Han, Ruiyu; Wang, Juan; Liu, Yueping; Yan, Xia; Duan, Huijun; Xing, Lingxiao

    2015-12-01

    AXL has been identified as a tyrosine kinase switch that causes resistance to inhibitors targeting epidermal growth factor receptor (EGFR) signaling in non-small cell lung cancer (NSCLC). However, the relationship between 2 receptor tyrosine kinases, AXL and EGFR, and the relevance of AXL expression with EGFR mutation status in treatment-naive human NSCLCs remain uncertain. In this study, we evaluated the coexpression pattern of AXL, EGFR, and pEGFR(1068) in 109 lung adenocarcinoma patients with or without an EGFR mutation. There were 68 (62.4%) patients with tumors harboring EGFR mutations such as 19 del and/or L858R; 2 patients were T790M positive. The expression of AXL, EGFR, and pEGFR(1068) was detected in 60 (55%), 68 (62.4%), and 57 (52.3%) of 109 patients, respectively. The positive rates of EGFR and pEGFR(1068) were associated with the L858R mutation alone or with the 19 del and L858R mutation status. Further analysis indicated that the percentage of AXL(+)/EGFR(+)/pEGFR(1068) coexpression in 68 EGFR-activating mutations patients was significantly higher than that in 39 EGFR wild-type patients (30.9% versus 10.3%, P=.015). Furthermore, in the subgroup of AXL(+) patients (35 mutation(+) and 23 wild-type patients), the coexpression rates of AXL(+)/pEGFR(1068+) and AXL(+)/EGFR(+)/pEGFR(1068+) in patients with EGFR mutations were significantly higher compared with those in wild-type patients (both P<.05). Our study emphasized that the AXL and EGFR receptor tyrosine kinases were coexpressed in a subgroup of treatment-naive lung adenocarcinomas with or without EGFR mutations. Anti-AXL therapeutics delivered up front in combination with an EGFR inhibitor might prevent or delay resistance in patients with AXL-positive, EGFR-mutant, or wild-type NSCLC.

  9. Deoxycholic acid differentially regulates focal adhesion kinase phosphorylation: role of tyrosine phosphatase ShP2.

    PubMed

    Khare, Sharad; Holgren, Cory; Samarel, Allen M

    2006-12-01

    Environmental factors, including dietary fats, are implicated in colonic carcinogenesis. Dietary fats modulate secondary bile acids including deoxycholic acid (DCA) concentrations in the colon, which are thought to contribute to the nutritional-related component of colon cancer risk. Here we demonstrate, for the first time, that DCA differentially regulated the site-specific phosphorylation of focal adhesion kinase (FAK). DCA decreased adhesion of HCA-7 cells to the substratum and induced dephosphorylation of FAK at tyrosine-576/577 (Tyr-576/577) and Tyr-925. Tyrosine phosphorylation of FAK at Tyr-397 remained unaffected by DCA stimulation. Interestingly, we found that c-Src was constitutively associated with FAK and DCA actually activated Src, despite no change in FAK-397 and an inhibition of FAK-576 phosphorylation. DCA concomitantly and significantly increased association of tyrosine phosphatase ShP2 with FAK. Incubation of immunoprecipitated FAK, in vitro, with glutathione-S-transferase-ShP2 fusion protein resulted in tyrosine dephosphorylation of FAK in a concentration-dependent manner. Antisense oligodeoxynucleotides directed against ShP2 decreased ShP2 protein levels and attenuated DCA-induced FAK dephosphorylation. Inhibition of FAK by adenoviral-mediated overexpression of FAK-related nonkinase and gene silencing of Shp2 both abolished DCA's effect on cell adhesion, thus providing a possible mechanism for inside-out signaling by DCA in colon cancer cells. Our results suggest that DCA differentially regulates focal adhesion complexes and that tyrosine phosphatase ShP2 has a role in DCA signaling.

  10. Tyrosine kinase inhibitors enhance ciprofloxacin-induced phototoxicity by inhibiting ABCG2.

    PubMed

    Mealey, Katrina L; Dassanayake, Sandamali; Burke, Neal S

    2014-01-01

    The tyrosine kinase inhibitor (TKI) class of anticancer agents inhibits ABCG2-mediated drug efflux. ABCG2 is an important component of the blood-retinal barrier, where it limits retinal exposure to phototoxic compounds such as fluoroquinolone antibiotics. Patients treated with TKIs would be expected to be at greater risk for retinal phototoxicity. Using an in vitro system, our results indicate that the TKIs gefitinib and imatinib abrogate the ability of ABCG2 to protect cells against ciprofloxacin-induced phototoxicity. We conclude that the concurrent administration of ABCG2 inhibitors with photoreactive fluoroquinolone antibiotics may result in retinal damage.

  11. A novel 2,5-diaminopyrimidine-based affinity probe for Bruton’s tyrosine kinase

    NASA Astrophysics Data System (ADS)

    Zuo, Yingying; Shi, Yanxia; Li, Xitao; Teng, Yingqi; Pan, Zhengying

    2015-11-01

    As a critical regulator of the B-cell receptor signaling pathway, Bruton’s tyrosine kinase (Btk) has attracted intensive drug discovery efforts for treating B-cell lineage cancers and autoimmune disorders. In particular, covalent inhibitors targeting Cys481 in Btk have demonstrated impressive clinical benefits, and their companion affinity probes have been crucial in the drug development process. Recently, we have discovered a novel series of 2,5-diaminopyrimidine-based covalent irreversible inhibitors of Btk. Here, we present the discovery of a novel affinity Btk probe based on the aforementioned scaffold and demonstrate its usage in evaluating the target engagement of Btk inhibitors in live cells.

  12. Bruton tyrosine kinase inhibitor ONO/GS-4059: from bench to bedside

    PubMed Central

    Wu, Jingjing; Zhang, Mingzhi; Liu, Delong

    2017-01-01

    The Bruton tyrosine kinase (BTK) inhibitor, ibrutinib, has been approved for the treatment of chronic lymphocytic leukemia, mantle cell lymphoma, and Waldenstroms macroglobulinemia. Acquired resistance to ibrutinib due to BTK C481S mutation has been reported. Mutations in PLC?2 can also mediate resistance to ibrutinib. Untoward effects due to off-target effects are also disadvantages of ibrutinib. More selective and potent BTK inhibitors (ACP-196, ONO/GS-4059, BGB-3111, CC-292) are being investigated. This review summarized the preclinical research and clinical data of ONO/GS-4059. PMID:27776353

  13. Novel mutation in the tyrosine kinase domain of FGFR2 in a patient with Pfeiffer syndrome.

    PubMed

    Zankl, Andreas; Jaeger, Gudrun; Bonafé, Luisa; Boltshauser, Eugen; Superti-Furga, Andrea

    2004-12-15

    Mutations in the fibroblast growth factor receptor 2 (FGFR2) cause a variety of craniosynostosis syndromes. The mutational spectrum tends to be narrow with the majority of mutations occurring in either exon IIIa or IIIc or in the intronic sequence preceding exon IIIc. Mutations outside of this hotspot are uncommon and the few identified mutations have demonstrated wide clinical variability, making it difficult to establish a clear-cut genotype-phenotype correlation. To better delineate the clinical picture associated with these unusual mutations, we describe a severely affected patient with Pfeiffer syndrome and a missense mutation in the tyrosine kinase (TK) domain of FGFR2.

  14. Escape from Cbl-mediated downregulation: a recurrent theme for oncogenic deregulation of receptor tyrosine kinases.

    PubMed

    Peschard, Pascal; Park, Morag

    2003-06-01

    Deregulation of growth factor receptor tyrosine kinases (RTKs) is linked to a large number of malignancies. This occurs through a variety of mechanisms that result in enhanced activity of the receptor. Considerable evidence now supports the idea that loss of negative regulation plays an important role in receptor deregulation. RTKs are removed from the cell surface via endocytosis and many are subsequently degraded in the lysosome. Lysosomal targeting has recently been linked with receptor ubiquitination. We review here molecular alterations that uncouple RTKs from ubiquitination and implicate loss of ubiquitination as a process that plays a significant role in the pathogenesis of cancer.

  15. Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells.

    PubMed Central

    Migliaccio, A; Di Domenico, M; Castoria, G; de Falco, A; Bontempo, P; Nola, E; Auricchio, F

    1996-01-01

    The mechanism by which estradiol acts on cell multiplication is still unclear. Under conditions of estradiol-dependent growth, estradiol treatment of human mammary cancer MCF-7 cells triggers rapid and transient activation of the mitogen-activated (MAP) kinases, erk-1 and erk-2, increases the active form of p21ras, tyrosine phosphorylation of Shc and p190 protein and induces association of p190 to p21ras-GAP. Both Shc and p190 are substrates of activated src and once phosphorylated, they interact with other proteins and upregulate p21ras. Estradiol activates the tyrosine kinase/p21ras/MAP-kinase pathway in MCF-7 cells with kinetics which are similar to those of peptide mitogens. It is only after introduction of the human wild-type 67 kDa estradiol receptor cDNA that Cos cells become estradiol-responsive in terms of erk-2 activity. This finding, together with the inhibition by the pure anti-estrogen ICI 182 780 of the stimulatory effect of estradiol on each step of the pathway in MCF-7 cells proves that the classic estradiol receptor is responsible for the transduction pathway activation. Transfection experiments of Cos cells with the estradiol receptor cDNA and in vitro experiments with c-src show that the estradiol receptor activates c-src and this activation requires occupancy of the receptor by hormone. Our experiments suggest that c-src is an initial and integral part of the signaling events mediated by the estradiol receptor. Images PMID:8635462

  16. Outcome of 82 chronic myeloid leukemia patients treated with nilotinib or dasatinib after failure of two prior tyrosine kinase inhibitors

    PubMed Central

    Rossi, Antonella Russo; Breccia, Massimo; Abruzzese, Elisabetta; Castagnetti, Fausto; Luciano, Luigiana; Gozzini, Antonella; Annunziata, Mario; Martino, Bruno; Stagno, Fabio; Cavazzini, Francesco; Tiribelli, Mario; Visani, Giuseppe; Pregno, Patrizia; Musto, Pellegrino; Fava, Carmen; Sgherza, Nicola; Albano, Francesco; Rosti, Gianantonio; Alimena, Giuliana; Specchia, Giorgina

    2013-01-01

    There have been few reports of a response to dasatinib or nilotinib after failure of two prior sequential tyrosine kinase inhibitors. We report the outcome of 82 chronic phase patients who received nilotinib or dasatinib as third-line alternative tyrosine kinase inhibitor therapy. Thirty-four patients failed to respond to nilotinib and were started on dasatinib as third-line tyrosine kinase inhibitor therapy while 48 patients were switched to nilotinib after dasatinib failure. Overall, we obtained a cytogenetic response in 32 of 82 patients and major molecular response in 13 patients; disease progression occurred in 12 patients. At last follow up, 70 patients (85.4%) were alive with a median overall survival of 46 months. Our results show that third-line tyrosine kinase inhibitor therapy in chronic myeloid leukemia patients after failure of two prior sequential tyrosine kinase inhibitors may induce a response that, in some instances, could prolong overall survival and affect event-free survival. PMID:22801965

  17. Alk1 and Alk2 are two new cell cycle-regulated haspin-like proteins in budding yeast.

    PubMed

    Nespoli, Alessandro; Vercillo, Raffaella; di Nola, Lisa; Diani, Laura; Giannattasio, Michele; Plevani, Paolo; Muzi-Falconi, Marco

    2006-07-01

    Haspin is a protein kinase identified in mouse and human cells, and genes coding for haspin-like proteins are present in virtually all eukaryotic genomes sequenced so far. Two haspin homologues, called Alk1 and Alk2, are present in the yeast Saccharomyces cerevisiae. Both Alk1 and Alk2 exhibit a weak auto-kinase activity in vitro, are phosphoproteins in vivo and are hyperphosphorylated in response to DNA damage. The amount and modification of the two proteins is greatly regulated during the cell cycle. In fact, Alk1 and Alk2 levels peak in mitosis and late-S/G2, respectively, and phosphorylation of both proteins is maximal in mitosis. Control of protein stability plays a major role in Alk2 regulation. The half-life of Alk2 is particularly short in G1; mutagenesis and genetic analysis indicate that its degradation is controlled by the APC pathway. Overexpression of ALK2, but not of ALK1, causes a mitotic arrest, which is correlated to the kinase activity of the protein. This finding, together with its cell cycle regulation, suggests a role for Alk2 in the control of mitosis.

  18. Completing the structural family portrait of the human EphB tyrosine kinase domains

    PubMed Central

    Overman, Ross C; Debreczeni, Judit E; Truman, Caroline M; McAlister, Mark S; Attwood, Teresa K

    2014-01-01

    The EphB receptors have key roles in cell morphology, adhesion, migration and invasion, and their aberrant action has been linked with the development and progression of many different tumor types. Their conflicting expression patterns in cancer tissues, combined with their high sequence and structural identity, present interesting challenges to those seeking to develop selective therapeutic molecules targeting this large receptor family. Here, we present the first structure of the EphB1 tyrosine kinase domain determined by X-ray crystallography to 2.5Å. Our comparative crystalisation analysis of the human EphB family kinases has also yielded new crystal forms of the human EphB2 and EphB4 catalytic domains. Unable to crystallize the wild-type EphB3 kinase domain, we used rational engineering (based on our new structures of EphB1, EphB2, and EphB4) to identify a single point mutation which facilitated its crystallization and structure determination to 2.2 Å. This mutation also improved the soluble recombinant yield of this kinase within Escherichia coli, and increased both its intrinsic stability and catalytic turnover, without affecting its ligand-binding profile. The partial ordering of the activation loop in the EphB3 structure alludes to a potential cis-phosphorylation mechanism for the EphB kinases. With the kinase domain structures of all four catalytically competent human EphB receptors now determined, a picture begins to emerge of possible opportunities to produce EphB isozyme-selective kinase inhibitors for mechanistic studies and therapeutic applications. PMID:24677421

  19. Spotlight on crizotinib in the first-line treatment of ALK-positive advanced non-small-cell lung cancer: patients selection and perspectives

    PubMed Central

    Leprieur, Etienne Giroux; Fallet, Vincent; Cadranel, Jacques; Wislez, Marie

    2016-01-01

    Around 4% of advanced non-small-cell lung cancers (NSCLCs) have an ALK rearrangement at the time of diagnosis. This molecular feature is more frequent in young patients, with no/light smoking habit and with adenocarcinoma pathological subtype. Crizotinib is a tyrosine kinase inhibitor, targeting ALK, ROS1, RON, and MET. The preclinical efficacy results led to a fast-track clinical development. The US Food and Drug Administration (FDA) approval was achieved after the Phase I clinical trial in 2011 in ALK-rearranged advanced NSCLC progressing after a first-line treatment. In 2013, the randomized Phase III trial PROFILE-1007 confirmed the efficacy of crizotinib in ALK-rearranged NSCLC, compared to cytotoxic chemotherapy, in second-line setting or more. In 2014, the PROFILE-1014 trial showed the superiority of crizotinib in the first-line setting compared to the pemetrexed platinum doublet chemotherapy. The response rate was 74%, and the progression-free survival was 10.9 months with crizotinib. Based on these results, crizotinib received approval from the FDA and European Medicines Agency for first-line treatment of ALK-rearranged NSCLC. The various molecular mechanisms at the time of the progression (ALK mutations or amplification, ALK-independent mechanisms) encourage performing re-biopsy at the time of progression under crizotinib. The best treatment strategy at the progression (crizotinib continuation beyond progression, switch to second-generation tyrosine kinase inhibitors, or cytotoxic chemotherapy) depends on the phenotype of the progression, the molecular status, and the physical condition of the patient. PMID:28210164

  20. The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer.

    PubMed

    Graham, Douglas K; DeRyckere, Deborah; Davies, Kurtis D; Earp, H Shelton

    2014-12-01

    The TYRO3, AXL (also known as UFO) and MERTK (TAM) family of receptor tyrosine kinases (RTKs) are aberrantly expressed in multiple haematological and epithelial malignancies. Rather than functioning as oncogenic drivers, their induction in tumour cells predominately promotes survival, chemoresistance and motility. The unique mode of maximal activation of this RTK family requires an extracellular lipid–protein complex. For example, the protein ligand, growth arrest-specific protein 6 (GAS6), binds to phosphatidylserine (PtdSer) that is externalized on apoptotic cell membranes, which activates MERTK on macrophages. This triggers engulfment of apoptotic material and subsequent anti-inflammatory macrophage polarization. In tumours, autocrine and paracrine ligands and apoptotic cells are abundant, which provide a survival signal to the tumour cell and favour an anti-inflammatory, immunosuppressive microenvironment. Thus, TAM kinase inhibition could stimulate antitumour immunity, reduce tumour cell survival, enhance chemosensitivity and diminish metastatic potential.

  1. The insect neuropeptide PTTH activates receptor tyrosine kinase torso to initiate metamorphosis.

    PubMed

    Rewitz, Kim F; Yamanaka, Naoki; Gilbert, Lawrence I; O'Connor, Michael B

    2009-12-04

    Holometabolous insects undergo complete metamorphosis to become sexually mature adults. Metamorphosis is initiated by brain-derived prothoracicotropic hormone (PTTH), which stimulates the production of the molting hormone ecdysone via an incompletely defined signaling pathway. Here we demonstrate that Torso, a receptor tyrosine kinase that regulates embryonic terminal cell fate in Drosophila, is the PTTH receptor. Trunk, the embryonic Torso ligand, is related to PTTH, and ectopic expression of PTTH in the embryo partially rescues trunk mutants. In larvae, torso is expressed specifically in the prothoracic gland (PG), and its loss phenocopies the removal of PTTH. The activation of Torso by PTTH stimulates extracellular signal-regulated kinase (ERK) phosphorylation, and the loss of ERK in the PG phenocopies the loss of PTTH and Torso. We conclude that PTTH initiates metamorphosis by activation of the Torso/ERK pathway.

  2. Protein tyrosine kinase 7 has a conserved role in Wnt/β-catenin canonical signalling

    PubMed Central

    Puppo, Francesca; Thomé, Virginie; Lhoumeau, Anne-Catherine; Cibois, Marie; Gangar, Akanksha; Lembo, Frédérique; Belotti, Edwige; Marchetto, Sylvie; Lécine, Patrick; Prébet, Thomas; Sebbagh, Michael; Shin, Won-Sik; Lee, Seung-Taek; Kodjabachian, Laurent; Borg, Jean-Paul

    2011-01-01

    The receptor protein tyrosine kinase 7 (PTK7) was recently shown to participate in noncanonical Wnt/planar cell polarity signalling during mouse and frog embryonic development. In this study, we report that PTK7 interacts with β-catenin in a yeast two-hybrid assay and mammalian cells. PTK7-deficient cells exhibit weakened β-catenin/T-cell factor transcriptional activity on Wnt3a stimulation. Furthermore, Xenopus PTK7 is required for the formation of Spemann's organizer and for Siamois promoter activation, events that require β-catenin transcriptional activity. Using epistatic assays, we demonstrate that PTK7 functions upstream from glycogen synthase kinase 3. Taken together, our data reveal a new and conserved role for PTK7 in the Wnt canonical signalling pathway. PMID:21132015

  3. Expression of epidermal growth factor receptor sequences as E. coli fusion proteins: applications in the study of tyrosine kinase function.

    PubMed

    Koland, J G; O'Brien, K M; Cerione, R A

    1990-01-15

    To investigate the functions of key domains of the epidermal growth factor receptor (EGFR), various EGFR-derived peptide sequences were expressed in Escherichia coli as glutathione S-transferase (GST) fusion proteins. The purified fusion proteins (GST-TK0-8) were tested as substrates for the tyrosine kinase activities of the EGFR and c-src. Both the GST-TK4 fusion protein, which contains the major C-terminal tyrosine autophosphorylation sites of the EGFR, and GST-TK7, which contains the connecting sequence between the EGFR kinase domain and the C-terminal autophosphorylation domain, were strongly phosphorylated by the EGFR and c-src. Hence the candidate tyrosine phosphorylation sites present in the connecting sequences of the EGFR, as well as the known autophosphorylation sites of the EGFR, can be phosphorylated by the two tyrosine kinases. The protein GST-TK7 was phosphorylated by c-src with a KM of 5-10 microM, which indicated a potential interaction between the connecting segment of the EGFR and the c-src kinase. The GST fusion proteins were also used to map the sites recognized by two anti-EGFR monoclonal antibodies and a polyclonal serum raised against an EGFR tyrosine kinase domain fragment. The recognition site of one monoclonal antibody was determined to be in a short sequence surrounding tyr1068, a primary site of autophosphorylation in the C-terminal domain of the receptor. The anti-peptide polyclonal serum recognized only sequences in the GST-TK7 fusion protein, and hence binds to the connecting sequence between the kinase core and the C-terminal domain. These antibodies will therefore be useful reagents for studying the function of two key structural elements of the EGFR tyrosine kinase. The GST-TK fusion proteins should have many other applications in the study of EGFR catalysis and mitogenic signalling.

  4. Ibrutinib inhibition of Bruton protein-tyrosine kinase (BTK) in the treatment of B cell neoplasms.

    PubMed

    Roskoski, Robert

    2016-11-01

    The Bruton non-receptor protein-tyrosine kinase (BTK), a deficiency of which leads to X-linked agammaglobulinemia, plays a central role in B cell antigen receptor signaling. Owing to the exclusivity of this enzyme in B cells, the acronym could represent B cell tyrosine kinase. BTK is activated by the Lyn and SYK protein kinases following activation of the B cell receptor. BTK in turn catalyzes the phosphorylation and activation of phospholipase Cγ2 leading to the downstream activation of the Ras/RAF/MEK/ERK pathway and the NF-κB pathways. Both pathways participate in the maturation of antibody-producing B cells. The BTK domains include a PH (pleckstrin homology) domain that interacts with membrane-associated phosphatidyl inositol trisphosphate, a TH (TEC homology) domain, which is followed by an SH3, SH2, and finally a protein kinase domain. Dysregulation of B cell receptor signaling occurs in several B cell neoplasms including mantle cell lymphoma, chronic lymphocytic leukemia, and Waldenström macroglobulinemia. Ibrutinib is FDA-approved as first-line or second line treatment for these diseases. The drug binds tightly in the ATP-binding pocket of BTK making salt bridges with residues within the hinge that connects the two lobes of the enzyme; then its unsaturated acrylamide group forms a covalent bond with BTK cysteine 481 to form an inactive adduct. In addition to the treatment of various B cell lymphomas, ibrutinib is under clinical trials for the treatment of numerous solid tumors owing to the role of tumor-promoting inflammation in the pathogenesis of neoplastic diseases.

  5. DDR1 receptor tyrosine kinase promotes prosurvival pathway through Notch1 activation.

    PubMed

    Kim, Hyung-Gu; Hwang, So-Young; Aaronson, Stuart A; Mandinova, Anna; Lee, Sam W

    2011-05-20

    DDR1 (discoidin domain receptor tyrosine kinase 1) kinase s highly expressed in a variety of human cancers and occasionally mutated in lung cancer and leukemia. It is now clear that aberrant signaling through the DDR1 receptor is closely associated with various steps of tumorigenesis, although little is known about the molecular mechanism(s) underlying the role of DDR1 in cancer. Besides the role of DDR1 in tumorigenesis, we previously identified DDR1 kinase as a transcriptional target of tumor suppressor p53. DDR1 is functionally activated as determined by its tyrosine phosphorylation, in response to p53-dependent DNA damage. In this study, we report the characterization of the Notch1 protein as an interacting partner of DDR1 receptor, as determined by tandem affinity protein purification. Upon ligand-mediated DDR1 kinase activation, Notch1 was activated, bound to DDR1, and activated canonical Notch1 targets, including Hes1 and Hey2. Moreover, DDR1 ligand (collagen I) treatment significantly increased the active form of Notch1 receptor in the nuclear fraction, whereas DDR1 knockdown cells show little or no increase of the active form of Notch1 in the nuclear fraction, suggesting a novel intracellular mechanism underlying autocrine activation of wild-type Notch signaling through DDR1. DDR1 activation suppressed genotoxic-mediated cell death, whereas Notch1 inhibition by a γ-secretase inhibitor, DAPT, enhanced cell death in response to stress. Moreover, the DDR1 knockdown cancer cells showed the reduced transformed phenotypes in vitro and in vivo xenograft studies. The results suggest that DDR1 exerts prosurvival effect, at least in part, through the functional interaction with Notch1.

  6. Nuclear localization of Lyn tyrosine kinase mediated by inhibition of its kinase activity

    SciTech Connect

    Ikeda, Kikuko; Nakayama, Yuji; Togashi, Yuuki; Obata, Yuuki; Kuga, Takahisa; Kasahara, Kousuke; Fukumoto, Yasunori; Yamaguchi, Naoto

    2008-11-01

    Src-family kinases, cytoplasmic enzymes that participate in various signaling events, are found at not only the plasma membrane but also subcellular compartments, such as the nucleus, the Golgi apparatus and late endosomes/lysosomes. Lyn, a member of the Src-family kinases, is known to play a role in DNA damage response and cell cycle control in the nucleus. However, it is still unclear how the localization of Lyn to the nucleus is regulated. Here, we investigated the mechanism of the distribution of Lyn between the cytoplasm and the nucleus in epitheloid HeLa cells and hematopoietic THP-1 cells. Lyn was definitely detected in purified nuclei by immunofluorescence and immunoblotting analyses. Nuclear accumulation of Lyn was enhanced upon treatment of cells with leptomycin B (LMB), an inhibitor of Crm1-mediated nuclear export. Moreover, Lyn mutants lacking the sites for lipid modification were highly accumulated in the nucleus upon LMB treatment. Intriguingly, inhibition of the kinase activity of Lyn by SU6656, Csk overexpression, or point mutation in the ATP-binding site induced an increase in nuclear Lyn levels. These results suggest that Lyn being imported into and rapidly exported from the nucleus preferentially accumulates in the nucleus by inhibition of the kinase activity and lipid modification.

  7. Reduced Proteolytic Shedding of Receptor Tyrosine Kinases is a Post-Translational Mechanism of Kinase Inhibitor Resistance

    PubMed Central

    Miller, Miles A.; Oudin, Madeleine J.; Sullivan, Ryan J.; Wang, Stephanie J.; Meyer, Aaron S.; Im, Hyungsoon; Frederick, Dennie T.; Tadros, Jenny; Griffith, Linda G.; Lee, Hakho; Weissleder, Ralph; Flaherty, Keith T.; Gertler, Frank B.; Lauffenburger, Douglas A.

    2016-01-01

    Kinase inhibitor resistance often involves upregulation of poorly understood “bypass” signaling pathways. Here, we show that extracellular proteomic adaptation is one path to bypass signaling and drug resistance. Proteolytic shedding of surface receptors, which can provide negative feedback on signaling activity, is blocked by kinase inhibitor treatment and enhances bypass signaling. In particular, MEK inhibition broadly decreases shedding of multiple receptor tyrosine kinases (RTKs) including HER4, MET, and most prominently AXL, an ADAM10 and ADAM17 substrate, thus increasing surface RTK levels and mitogenic signaling. Progression-free survival of melanoma patients treated with clinical BRAF/MEK inhibitors inversely correlates with RTK shedding reduction following treatment, as measured non-invasively in blood plasma. Disrupting protease inhibition by neutralizing TIMP1 improves MAPK inhibitor efficacy, and combined MAPK/AXL inhibition synergistically reduces tumor growth and metastasis in xenograft models. Altogether, extracellular proteomic rewiring through reduced RTK shedding represents a surprising mechanism for bypass signaling in cancer drug resistance. PMID:26984351

  8. Identification of tyrosine phosphorylation sites in human Gab-1 protein by EGF receptor kinase in vitro.

    PubMed

    Lehr, S; Kotzka, J; Herkner, A; Klein, E; Siethoff, C; Knebel, B; Noelle, V; Brüning, J C; Klein, H W; Meyer, H E; Krone, W; Müller-Wieland, D

    1999-01-05

    Grb2-associated binder-1 (Gab-1) has been identified recently in a cDNA library of glioblastoma tumors and appears to play a central role in cellular growth response, transformation, and apoptosis. Structural and functional features indicate that Gab-1 is a multisubstrate docking protein downstream in the signaling pathways of different receptor tyrosine kinases, including the epidermal growth factor receptor (EGFR). Therefore, the aim of the study was to characterize the phosphorylation of recombinant human Gab-1 (hGab-1) protein by EGFR in vitro. Using the pGEX system to express the entire protein and different domains of hGab-1 as glutathione S-transferase proteins, kinetic data for phosphorylation of these proteins by wheat germ agglutinine-purified EGFR and the recombinant EGFR (rEGFR) receptor kinase domain were determined. Our data revealed similar affinities of hGab-1-C for both receptor preparations (KM = 2.7 microM for rEGFR vs 3.2 microM for WGA EGFR) as well as for the different recombinant hGab-1 domains. To identify the specific EGFR phosphorylation sites, hGab-1-C was sequenced by Edman degradation and mass spectrometry. The entire protein was phosphorylated by rEGFR at eight tyrosine residues (Y285, Y373, Y406, Y447, Y472, Y619, Y657, and Y689). Fifty percent of the identified radioactivity was incorporated in tyrosine Y657 as the predominant peak in HPLC analysis, a site exhibiting features of a potential Syp (PTP1D) binding site. Accordingly, GST-pull down assays with A431 and HepG2 cell lysates showed that phosphorylated intact hGab-1 was able to bind Syp. This binding appears to be specific, because it was abolished by changing the Y657 of hGab-1 to F657. These results demonstrate that hGab-1 is a high-affinity substrate for the EGFR and the major tyrosine phosphorylation site Y657 in the C terminus is a specific binding site for the tyrosine phosphatase Syp.

  9. Design of a selective insulin receptor tyrosine kinase inhibitor and its effect on glucose uptake and metabolism in intact cells

    SciTech Connect

    Saperstein, R.; Vicario, P.P.; Strout, H.V.; Brady, E.; Slater, E.E.; Greenlee, W.J.; Onedyka, D.L.; Patchett, A.A.; Hangauer, D.G. )

    1989-06-27

    An inhibitor of the insulin receptor tyrosine kinase (IRTK), (hydroxy-2-napthalenylmethyl)phosphonic acid, was designed and synthesized and was shown to be an inhibitor of the biological effects of insulin in vitro. With a wheat germ purified human placental insulin receptor preparation, this compound inhibited the insulin-stimulated autophosphorylation of the 95-kDa {beta}-subunit of the insulin receptor. The ability of the kinase to phosphorylate an exogenous peptide substrate, angiotensin II, was also inhibited. Half-maximal inhibition of basal and insulin-stimulated human placental IRTK activity was found at concentrations of 150 and 100 {mu}M, respectively, with 2 mM angiotensin II as the peptide substrate. The inhibitor was found to be specific for tyrosine kinases over serine kinases and noncompetitive with ATP. The inhibitor was converted into various (acyloxy)methyl prodrugs in order to achieve permeability through cell membranes. These prodrugs inhibited insulin-stimulated autophosphorylation of the insulin receptor 95-kDa {beta}-subunit in intact CHO cells transfected with human insulin receptor. Inhibition of insulin-stimulated glucose oxidation in isolated rat adipocytes and 2-deoxyglucose uptake into CHO cells was observed with these prodrugs. The data provide additional evidence for the involvement of the insulin receptor tyrosine kinase in the regulation of glucose uptake and metabolism. These results and additional data reported herein suggest that this class of prodrugs and inhibitors will be useful for modulating the activity of a variety of tyrosine kinases.

  10. Rare SNPs in receptor tyrosine kinases are negative outcome predictors in multiple myeloma

    PubMed Central

    Langer, Christian; Knop, Stefan; Pischimarov, Jordan; Kull, Miriam; Stühmer, Thorsten; Steinbrunn, Torsten; Bargou, Ralf; Einsele, Hermann; Rosenwald, Andreas; Leich, Ellen

    2016-01-01

    Multiple myeloma (MM) is a plasma cell disorder that is characterized by a great genetic heterogeneity. Recent next generation sequencing studies revealed an accumulation of tumor-associated mutations in receptor tyrosine kinases (RTKs) which may also contribute to the activation of survival pathways in MM. To investigate the clinical role of RTK-mutations in MM, we deep-sequenced the coding DNA-sequence of EGFR, EPHA2, ERBB3, IGF1R, NTRK1 and NTRK2 which were previously found to be mutated in MM, in 75 uniformly treated MM patients of the “Deutsche Studiengruppe Multiples Myelom”. Subsequently, we correlated the detected mutations with common cytogenetic alterations and clinical parameters. We identified 11 novel non-synonymous SNVs or rare patient-specific SNPs, not listed in the SNP databases 1000 genomes and dbSNP, in 10 primary MM cases. The mutations predominantly affected the tyrosine-kinase and ligand-binding domains and no correlation with cytogenetic parameters was found. Interestingly, however, patients with RTK-mutations, specifically those with rare patient-specific SNPs, showed a significantly lower overall, event-free and progression-free survival. This indicates that RTK SNVs and rare patient-specific RTK SNPs are of prognostic relevance and suggests that MM patients with RTK-mutations could potentially profit from treatment with RTK-inhibitors. PMID:27246973

  11. Oral administration of Bruton's tyrosine kinase inhibitors impairs GPVI-mediated platelet function

    PubMed Central

    Aslan, Joseph E.; Healy, Laura D.; Wallisch, Michael; Thierheimer, Marisa L. D.; Loren, Cassandra P.; Pang, Jiaqing; Hinds, Monica T.; Gruber, András; McCarty, Owen J. T.

    2015-01-01

    The Tec family kinase Bruton's tyrosine kinase (Btk) plays an important signaling role downstream of immunoreceptor tyrosine-based activation motifs in hematopoietic cells. Mutations in Btk are involved in impaired B-cell maturation in X-linked agammaglobulinemia, and Btk has been investigated for its role in platelet activation via activation of the effector protein phospholipase Cγ2 downstream of the platelet membrane glycoprotein VI (GPVI). Because of its role in hematopoietic cell signaling, Btk has become a target in the treatment of chronic lymphocytic leukemia and mantle cell lymphoma; the covalent Btk inhibitor ibrutinib was recently approved by the US Food and Drug Administration for treatment of these conditions. Antihemostatic events have been reported in some patients taking ibrutinib, although the mechanism of these events remains unknown. We sought to determine the effects of Btk inhibition on platelet function in a series of in vitro studies of platelet activation, spreading, and aggregation. Our results show that irreversible inhibition of Btk with two ibrutinib analogs in vitro decreased human platelet activation, phosphorylation of Btk, P-selectin exposure, spreading on fibrinogen, and aggregation under shear flow conditions. Short-term studies of ibrutinib analogs administered in vivo also showed abrogation of platelet aggregation in vitro, but without measurable effects on plasma clotting times or on bleeding in vivo. Taken together, our results suggest that inhibition of Btk significantly decreased GPVI-mediated platelet activation, spreading, and aggregation in vitro; however, prolonged bleeding was not observed in a model of bleeding. PMID:26659727

  12. Activating mutations for the Met tyrosine kinase receptor in human cancer

    PubMed Central

    Jeffers, Michael; Schmidt, Laura; Nakaigawa, Noboru; Webb, Craig P.; Weirich, Gregor; Kishida, Takeshi; Zbar, Berton; Vande Woude, George F.

    1997-01-01

    Recently, mutations in the Met tyrosine kinase receptor have been identified in both hereditary and sporadic forms of papillary renal carcinoma. We have introduced the corresponding mutations into the met cDNA and examined the effect of each mutation in biochemical and biological assays. We find that the Met mutants exhibit increased levels of tyrosine phosphorylation and enhanced kinase activity toward an exogenous substrate when compared with wild-type Met. Moreover, NIH 3T3 cells expressing mutant Met molecules form foci in vitro and are tumorigenic in nude mice. Enzymatic and biological differences were evident among the various mutants examined, and the somatic mutations were generally more active than those of germ-line origin. A strong correlation between the enzymatic and biological activity of the mutants was observed, indicating that tumorigenesis by Met is quantitatively related to its level of activation. These results demonstrate that the Met mutants originally identified in human papillary renal carcinoma are oncogenic and thus are likely to play a determinant role in this disease, and these results raise the possibility that activating Met mutations also may contribute to other human malignancies. PMID:9326629

  13. Tyrosine kinase inhibitors: friends or foe in treatment of hepatic fibrosis?

    PubMed Central

    Zhang, Xing; Cui, Ruixia; Liu, Sinan; Meng, Fandi; Zhang, Jingyao; Tai, Minghui; Wan, Yong; Liu, Chang

    2016-01-01

    Aberrant activity of tyrosine kinases has been proved to be associated with multiple diseases including fibrotic diseases. Tyrosine kinases inhibitors (TKIs) might be a novel approach to transform the anti-fibrotic treatment. However, both beneficial and adverse effects are observed by researchers when using these TKIs in either preclinical animal models or patients with hepatic fibrosis. Since hepatotoxicity of TKIs is the leading cause for drug withdrawals thus limits its application in anti-fibrosis, not only efficacy but also safety of TKIs should be paid great concerns. It has been observed in a few studies that TKIs could induce relatively high rate of hepatic biochemical markers elevations and even result in liver failure. Fortunately, several strategies have been adopt to handle with the hepatotoxicity. Accumulating evidences suggest that hepatic stellate cells (HSC) play a pivotal role in hepatic fibrogenesis, so it might be a good option to develop selective TKIs specifically targeting HSCs. The present review will briefly summarize the anti-fibrotic mechanism of TKIs, adverse effects of TKIs as well as the novel developed selective delivery of TKIs. PMID:27588502

  14. Small-molecule inhibitors of the receptor tyrosine kinases: promising tools for targeted cancer therapies.

    PubMed

    Hojjat-Farsangi, Mohammad

    2014-08-08

    Chemotherapeutic and cytotoxic drugs are widely used in the treatment of cancer. In spite of the improvements in the life quality of patients, their effectiveness is compromised by several disadvantages. This represents a demand for developing new effective strategies with focusing on tumor cells and minimum side effects. Targeted cancer therapies and personalized medicine have been defined as a new type of emerging treatments. Small molecule inhibitors (SMIs) are among the most effective drugs for targeted cancer therapy. The growing number of approved SMIs of receptor tyrosine kinases (RTKs) i.e., tyrosine kinase inhibitors (TKIs) in the clinical oncology imply the increasing attention and application of these therapeutic tools. Most of the current approved RTK-TKIs in preclinical and clinical settings are multi-targeted inhibitors with several side effects. Only a few specific/selective RTK-TKIs have been developed for the treatment of cancer patients. Specific/selective RTK-TKIs have shown less deleterious effects compared to multi-targeted inhibitors. This review intends to highlight the importance of specific/selective TKIs for future development with less side effects and more manageable agents. This article provides an overview of: (1) the characteristics and function of RTKs and TKIs; (2) the recent advances in the improvement of specific/selective RTK-TKIs in preclinical or clinical settings; and (3) emerging RTKs for targeted cancer therapies by TKIs.

  15. Matrix metalloproteinases and protein tyrosine kinases: potential novel targets in acute lung injury and ARDS.

    PubMed

    Aschner, Yael; Zemans, Rachel L; Yamashita, Cory M; Downey, Gregory P

    2014-10-01

    Acute lung injury (ALI) and ARDS fall within a spectrum of pulmonary disease that is characterized by hypoxemia, noncardiogenic pulmonary edema, and dysregulated and excessive inflammation. While mortality rates have improved with the advent of specialized ICUs and lung protective mechanical ventilation strategies, few other therapies have proven effective in the management of ARDS, which remains a significant clinical problem. Further development of biomarkers of disease severity, response to therapy, and prognosis is urgently needed. Several novel pathways have been identified and studied with respect to the pathogenesis of ALI and ARDS that show promise in bridging some of these gaps. This review will focus on the roles of matrix metalloproteinases and protein tyrosine kinases in the pathobiology of ALI in humans, and in animal models and in vitro studies. These molecules can act independently, as well as coordinately, in a feed-forward manner via activation of tyrosine kinase-regulated pathways that are pivotal in the development of ARDS. Specific signaling events involving proteolytic processing by matrix metalloproteinases that contribute to ALI, including cytokine and chemokine activation and release, neutrophil recruitment, transmigration and activation, and disruption of the intact alveolar-capillary barrier, will be explored in the context of these novel molecular pathways.

  16. Radiation induction of the receptor tyrosine kinase gene Ptk-3 in normal rat astrocytes

    SciTech Connect

    Sakuma, S.; Hideyuki, S.; Akihiro, I.

    1995-07-01

    Radiation-induced gene expression was examined in rat astrocyte cultures using differential display of mRNA via reverse transcriptase-polymerase chain reaction. A 0.3-kb cDNA that was consistently observed in irradiated cultures but not in unirradiated cultures was cloned and sequenced. It was found to be identical to Ptk-3, a receptor tyrosine kinase gene identified recently. The protein encoded by Ptk-3 is a member of a novel class of receptor tyrosine kinases whose extracellular domain contains regions of homology with coagulation factors V and VIII and complement component C1. Northern blot analysis revealed that the expression of Ptk-3 was increased in rat astrocytes by 0.5 h after exposure to 10 Gy and remained at the same elevated level for at least 24 h. The maximum increase occurred after 5 Gy cloning studies indicated the presence of at least two Ptk-3 mRNA transcripts, which are probable the result of an alternative splicing mechanism. The short isoform lacks a 37 amino acid sequence in the glycine/proline-rich juxtamembrane region. The splicing pattern of the Ptk-3 gene was not altered by radiation. However, the ratios of the longer to the shorter mRNA transcripts differed between adult cortex, neonatal cortex and in vitro astrocyte cultures. 36 refs., 5 figs.

  17. Haemophilus ducreyi targets Src family protein tyrosine kinases to inhibit phagocytic signaling.

    PubMed

    Mock, Jason R; Vakevainen, Merja; Deng, Kaiping; Latimer, Jo L; Young, Jennifer A; van Oers, Nicolai S C; Greenberg, Steven; Hansen, Eric J

    2005-12-01

    Haemophilus ducreyi, the etiologic agent of the sexually transmitted disease chancroid, has been shown to inhibit phagocytosis of both itself and secondary targets in vitro. Immunodepletion of LspA proteins from H. ducreyi culture supernatant fluid abolished this inhibitory effect, indicating that the LspA proteins are necessary for the inhibition of phagocytosis by H. ducreyi. Fluorescence microscopy revealed that macrophages incubated with wild-type H. ducreyi, but not with a lspA1 lspA2 mutant, were unable to complete development of the phagocytic cup around immunoglobulin G-opsonized targets. Examination of the phosphotyrosine protein profiles of these two sets of macrophages showed that those incubated with wild-type H. ducreyi had greatly reduced phosphorylation levels of proteins in the 50-to-60-kDa range. Subsequent experiments revealed reductions in the catalytic activities of both Lyn and Hck, two members of the Src family of protein tyrosine kinases that are known to be involved in the proximal signaling steps of Fcgamma receptor-mediated phagocytosis. Additional experiments confirmed reductions in the levels of both active Lyn and active Hck in three different immune cell lines, but not in HeLa cells, exposed to wild-type H. ducreyi. This is the first example of a bacterial pathogen that suppresses Src family protein tyrosine kinase activity to subvert phagocytic signaling in hostcells.

  18. Imaging of EGFR and EGFR Tyrosine Kinase Overexpression in Tumors by Nuclear Medicine Modalities

    PubMed Central

    Mishani, Eyal; Abourbeh, Galith; Eiblmaier, Martin; Anderson, Carolyn J

    2008-01-01

    Protein tyrosine kinases (PTKs) play a pivotal role in signal transduction pathways and in the development and maintenance of various cancers. They are involved in multiple processes such as transcription, cell cycle progression, proliferation, angiogenesis and inhibition of apoptosis. Among the PTKs, the EGFR is one of the most widely studied and has emerged as a promising key target for the treatment of cancer. Indeed, several drugs directed at this receptor are FDA-approved and many others are at various stages of development. However, thus far, the therapeutic outcome of EGFR-targeted therapy is suboptimal and needs to be refined. Quantitative PET molecular imaging coupled with selective labelled biomarkers may facilitate in vivo EGFR-targeted drug efficacy by noninvasively assessing the expression of EGFR in tumor, guiding dose and regime by measuring target drug binding and receptor occupancy as well as potentially detecting the existence of a primary or secondary mutation leading to either drug interaction or failure of EGFR recognition by the drug. This review describes the attempts to develop labelled EGFR molecular imaging agents that are based either on low molecular weight tyrosine kinase inhibitors or monoclonal antibodies directed to the extracellular binding domain of the receptor to be used in nuclear medicine modalities. PMID:18991714

  19. Antibacterial and EGFR-tyrosine kinase inhibitory activities of polyhydroxylated xanthones from Garcinia succifolia.

    PubMed

    Duangsrisai, Susawat; Choowongkomon, Kiattawee; Bessa, Lucinda J; Costa, Paulo M; Amat, Nurmuhammat; Kijjoa, Anake

    2014-11-28

    Chemical investigation of the methanol extract of the wood of Garcinia succifolia Kurz (Clusiaceae) led to the isolation of 1,5-dihydroxyxanthone (1), 1,7-dihydroxyxanthone (2), 1,3,7-trihydroxyxanthone (3), 1,5,6-trihydroxyxanthone (4), 1,6,7-trihydroxyxanthone (5), and 1,3,6,7-tetrahydroxyxanthone (6). All of the isolated xanthones were evaluated for their antibacterial activity against bacterial reference strains, two Gram-positive (Staphylococcus aureus ATTC 25923, Bacillus subtillis ATCC 6633) and two Gram-negative (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853), and environmental drug-resistant isolates (S. aureus B1, Enteroccoccus faecalis W1, and E. coli G1), as well as for their epidermal growth factor receptor (EGFR) of tyrosine kinase inhibitory activity. Only 1,5,6-trihydroxy-(4), 1,6,7-trihydroxy-(5), and 1,3,6,7-tetrahydroxyxanthones (6) exhibited antibacterial activity against Gram-positive bacteria, however none was active against vancomycin-resistant E. faecalis. Additionally, 1,7-dihydroxyxanthone (2) showed synergism with oxacillin, but not with ampicillin. On the other hand, only 1,5-dihydroxyxanthone (1) and 1,7-dihydroxyxanthone (2) were found to exhibit the EGFR-tyrosine kinase inhibitory activity, with IC50 values of 90.34 and 223 nM, respectively.

  20. The receptor tyrosine kinase ROR1--an oncofetal antigen for targeted cancer therapy.

    PubMed

    Hojjat-Farsangi, Mohammad; Moshfegh, Ali; Daneshmanesh, Amir Hossein; Khan, Abdul Salam; Mikaelsson, Eva; Osterborg, Anders; Mellstedt, Håkan

    2014-12-01

    Targeted cancer therapies have emerged as new treatment options for various cancer types. Among targets, receptor tyrosine kinases (RTKs) are among the most promising. ROR1 is a transmembrane RTK of importance during the normal embryogenesis for the central nervous system, heart, lung and skeletal systems, but is not expressed in normal adult tissues. However, ROR1 is overexpressed in several human malignancies and may act as a survival factor for tumor cells. Its unique expression by malignant cells may provide a target for novel therapeutics including monoclonal antibodies (mAbs) and small molecule inhibitors of tyrosine kinases (TKI) for the treatment of cancer. Promising preclinical results have been reported in e.g. chronic lymphocytic leukemia, pancreatic carcinoma, lung and breast cancer. ROR1 might also be an interesting oncofetal antigen for active immunotherapy. In this review, we provide an overview of the ROR1 structure and functions in cancer and highlight emerging therapeutic options of interest for targeting ROR1 in tumor therapy.

  1. Dynamics of the Tec-family tyrosine kinase SH3 domains.

    PubMed

    Roberts, Justin M; Tarafdar, Sreya; Joseph, Raji E; Andreotti, Amy H; Smithgall, Thomas E; Engen, John R; Wales, Thomas E

    2016-04-01

    The Src Homology 3 (SH3) domain is an important regulatory domain found in many signaling proteins. X-ray crystallography and NMR structures of SH3 domains are generally conserved but other studies indicate that protein flexibility and dynamics are not. We previously reported that based on hydrogen exchange mass spectrometry (HX MS) studies, there is variable flexibility and dynamics among the SH3 domains of the Src-family tyrosine kinases and related proteins. Here we have extended our studies to the SH3 domains of the Tec family tyrosine kinases (Itk, Btk, Tec, Txk, Bmx). The SH3 domains of members of this family augment the variety in dynamics observed in previous SH3 domains. Txk and Bmx SH3 were found to be highly dynamic in solution by HX MS and Bmx was unstructured by NMR. Itk and Btk SH3 underwent a clear EX1 cooperative unfolding event, which was localized using pepsin digestion and mass spectrometry after hydrogen exchange labeling. The unfolding was localized to peptide regions that had been previously identified in the Src-family and related protein SH3 domains, yet the kinetics of unfolding were not. Sequence alignment does not provide an easy explanation for the observed dynamics behavior, yet the similarity of location of EX1 unfolding suggests that higher-order structural properties may play a role. While the exact reason for such dynamics is not clear, such motions can be exploited in intra- and intermolecular binding assays of proteins containing the domains.

  2. Quantity control of the ErbB3 receptor tyrosine kinase at the endoplasmic reticulum.

    PubMed

    Fry, William H D; Simion, Catalina; Sweeney, Colleen; Carraway, Kermit L

    2011-07-01

    The ErbB3 receptor tyrosine kinase contributes to a variety of developmental processes, and its overexpression and aberrant activation promote tumor progression and therapeutic resistance. Accumulating evidence suggests that tumor overexpression may be mediated by the loss of posttranscriptional negative regulatory mechanisms, such as protein degradation, that normally keep receptor levels in check. Our previous studies indicate that the RING finger E3 ubiquitin ligase Nrdp1, a protein lost in breast and other tumor types, suppresses ErbB3 levels by mediating ligand-independent receptor ubiquitination and degradation. Here we demonstrate that Nrdp1 preferentially associates with the nascent form of ErbB3 to accelerate its degradation, and we show that the two proteins colocalize at the endoplasmic reticulum (ER). Blocking the exit of ErbB3 from the ER does not affect the ability of Nrdp1 to mediate receptor ubiquitination or degradation, while functional disruption of the conserved ER-associated degradation (ERAD) pathway ATPase VCP/p97 leads to the Nrdp1-dependent accumulation of ubiquitinated ErbB3 but blocks receptor degradation. Further evidence indicates that the ErbB3 targeted by Nrdp1 for degradation is properly folded and fully functional. Collectively, these observations point to a novel mechanism of receptor tyrosine kinase quantity control wherein steady-state levels of signaling-competent receptor are dictated by an ER-localized degradation pathway.

  3. Quantity Control of the ErbB3 Receptor Tyrosine Kinase at the Endoplasmic Reticulum▿

    PubMed Central

    Fry, William H. D.; Simion, Catalina; Sweeney, Colleen; Carraway, Kermit L.

    2011-01-01

    The ErbB3 receptor tyrosine kinase contributes to a variety of developmental processes, and its overexpression and aberrant activation promote tumor progression and therapeutic resistance. Accumulating evidence suggests that tumor overexpression may be mediated by the loss of posttranscriptional negative regulatory mechanisms, such as protein degradation, that normally keep receptor levels in check. Our previous studies indicate that the RING finger E3 ubiquitin ligase Nrdp1, a protein lost in breast and other tumor types, suppresses ErbB3 levels by mediating ligand-independent receptor ubiquitination and degradation. Here we demonstrate that Nrdp1 preferentially associates with the nascent form of ErbB3 to accelerate its degradation, and we show that the two proteins colocalize at the endoplasmic reticulum (ER). Blocking the exit of ErbB3 from the ER does not affect the ability of Nrdp1 to mediate receptor ubiquitination or degradation, while functional disruption of the conserved ER-associated degradation (ERAD) pathway ATPase VCP/p97 leads to the Nrdp1-dependent accumulation of ubiquitinated ErbB3 but blocks receptor degradation. Further evidence indicates that the ErbB3 targeted by Nrdp1 for degradation is properly folded and fully functional. Collectively, these observations point to a novel mechanism of receptor tyrosine kinase quantity control wherein steady-state levels of signaling-competent receptor are dictated by an ER-localized degradation pathway. PMID:21576364

  4. Measurement of the formation of complexes in tyrosine kinase-mediated signal transduction

    SciTech Connect

    Ladbury, John E.

    2007-01-01

    The use of isothermal titration calorimetry (ITC) provides a full thermodynamic characterization of an interaction in one experiment. The determination of the affinity is an important value; however, the additional layer of information provided by the change in enthalpy and entropy can help in understanding the biology. This is demonstrated with respect to tyrosine kinase-mediated signal transduction. Isothermal titration calorimetry (ITC) provides highly complementary data to high-resolution structural detail. An overview of the methodology of the technique is provided. Ultimately, the correlation of the thermodynamic parameters determined by ITC with structural perturbation observed on going from the free to the bound state should be possible at an atomic level. Currently, thermodynamic data provide some insight as to potential changes occurring on complex formation. Here, this is demonstrated in the context of in vitro quantification of intracellular tyrosine kinase-mediated signal transduction and the issue of specificity of the important interactions. The apparent lack of specificity in the interactions of domains of proteins involved in early signalling from membrane-bound receptors is demonstrated using data from ITC.

  5. Cytokine signaling through the novel tyrosine kinase RAFTK in Kaposi's sarcoma cells.

    PubMed Central

    Liu, Z Y; Ganju, R K; Wang, J F; Ona, M A; Hatch, W C; Zheng, T; Avraham, S; Gill, P; Groopman, J E

    1997-01-01

    A number of cytokines, including basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), oncostatin M (OSM), IL-6, and tumor necrosis factor alpha (TNF-alpha), have been postulated to have a role in the pathogenesis of Kaposi's sarcoma (KS). The proliferative effects of bFGF and OSM may be via their reported activation of the c-Jun NH2-terminal kinase (JNK) signaling pathway in KS cells. We now report that KS cells express a recently identified focal adhesion kinase termed RAFTK which appears in other cell systems to coordinate surface signals between cytokine and integrin receptors and the cytoskeleton as well as act downstream to modulate JNK activation. We also report that the tyrosine kinase receptor FLT-4, present on normal lymphatic endothelium, is robustly expressed in KS cells. Treatment of KS cells with VEGF-related protein (VRP), the ligand for the FLT-4 receptor, as well as with the cytokines bFGF, OSM, IL-6, VEGF, or TNF-alpha resulted in phosphorylation and activation of RAFTK. Following its activation, there was an enhanced association of RAFTK with the cytoskeletal protein paxillin. This association was mediated by the hydrophobic COOH-terminal domain of the kinase. Furthermore, JNK activity was increased in KS cells after VEGF or VRP stimulation. We postulate that in these tumor cells RAFTK may be activated by a diverse group of stimulatory cytokines and facilitate signal transduction to the cytoskeleton and downstream to the growth promoting JNK pathway. PMID:9120025

  6. Characterization of the interactions between the active site of a protein tyrosine kinase and a divalent metal activator

    PubMed Central

    Lin, Xiaofeng; Ayrapetov, Marina K; Sun, Gongqin

    2005-01-01

    Background Protein tyrosine kinases are important enzymes for cell signalling and key targets for anticancer drug discovery. The catalytic mechanisms of protein tyrosine kinase-catalysed phosphorylation are not fully understood. Protein tyrosine kinase Csk requires two Mg2+ cations for activity: one (M1) binds to ATP, and the other (M2) acts as an essential activator. Results Experiments in this communication characterize the interaction between M2 and Csk. Csk activity is sensitive to pH in the range of 6 to 7. Kinetic characterization indicates that the sensitivity is not due to altered substrate binding, but caused by the sensitivity of M2 binding to pH. Several residues in the active site with potential of binding M2 are mutated and the effect on metal activation studied. An active mutant of Asn319 is generated, and this mutation does not alter the metal binding characteristics. Mutations of Glu236 or Asp332 abolish the kinase activity, precluding a positive or negative conclusion on their role in M2 coordination. Finally, the ability of divalent metal cations to activate Csk correlates to a combination of ionic radius and the coordination number. Conclusion These studies demonstrate that M2 binding to Csk is sensitive to pH, which is mainly responsible for Csk activity change in the acidic arm of the pH response curve. They also demonstrate critical differences in the metal activator coordination sphere in protein tyrosine kinase Csk and a protein Ser/Thr kinase, the cAMP-dependent protein kinase. They shed light on the physical interactions between a protein tyrosine kinase and a divalent metal activator. PMID:16305747

  7. Mechanisms of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Resistance and Strategies to Overcome Resistance in Lung Adenocarcinoma

    PubMed Central

    Chang, Yoon Soo; Choi, Chang-Min

    2016-01-01

    Somatic mutations that lead to hyperactivation of epidermal growth factor receptor (EGFR) signaling are detected in approximately 50% of lung adenocarcinoma in people from the Far East population and tyrosine kinase inhibitors are now the standard first line treatment for advanced disease. They have led to a doubling of progression-free survival and an increase in overall survival by more than 2 years. However, emergence of resistant clones has become the primary cause for treatment failure, and has created a new challenge in the daily management of patients with EGFR mutations. Identification of mechanisms leading to inhibitor resistance has led to new therapeutic modalities, some of which have now been adapted for patients with unsuccessful tyrosine kinase inhibitor treatment. In this review, we describe mechanisms of tyrosine kinase inhibitor resistance and the available strategies to overcoming resistance. PMID:27790276

  8. SOCS3 tyrosine phosphorylation as a potential bio-marker for myeloproliferative neoplasms associated with mutant JAK2 kinases

    PubMed Central

    Elliott, Joanne; Suessmuth, Yvonne; Scott, Linda M.; Nahlik, Krystyna; McMullin, Mary Frances; Constantinescu, Stefan N.; Green, Anthony R.; Johnston, James A.

    2009-01-01

    JAK2 V617F, identified in the majority of patients with myeloproliferative neoplasms, tyrosine phosphorylates SOCS3 and escapes its inhibition. Here, we demonstrate that the JAK2 exon 12 mutants described in a subset of V617F-negative MPN cases, also stabilize tyrosine phosphorylated SOCS3. SOCS3 tyrosine phosphorylation was also observed in peripheral blood mononuclear cells and granulocytes isolated from patients with JAK2 H538QK539L or JAK2 F537-K539delinsL mutations. JAK kinase inhibitors, which effectively inhibited the proliferation of cells expressing V617F or K539L, also caused a dose-dependent reduction in both mutant JAK2 and SOCS3 tyrosine phosphorylation. We propose, therefore, that SOCS3 tyrosine phosphorylation may be a novel bio-marker of myeloproliferative neoplasms resulting from a JAK2 mutation and a potential reporter of effective JAK2 inhibitor therapy currently in clinical development. PMID:19229050

  9. Activation of lysophosphatidic acid receptor by gintonin inhibits Kv1.2 channel activity: involvement of tyrosine kinase and receptor protein tyrosine phosphatase α.

    PubMed

    Lee, Jun-Ho; Choi, Sun-Hye; Lee, Byung-Hwan; Hwang, Sung-Hee; Kim, Hyeon-Joong; Rhee, Jeehae; Chung, Chihye; Nah, Seung-Yeol

    2013-08-26

    Gintonin is a novel ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand. The primary action of gintonin is to elicit a transient increase in [Ca(2+)]i via activation of LPA receptor subtypes. Voltage-gated potassium (Kv) channels play important roles in synaptic transmission in nervous systems. The previous reports have shown that Kv channels can be regulated by Gαq/11 protein-coupled receptor ligands. In the present study, we examined the effects of gintonin on Kv1.2 channel activity expressed in Xenopus oocytes after injection of RNA encoding the human Kv1.2 α subunit. Gintonin treatment inhibited Kv1.2 channel activity in reversible and concentration-dependent manners. The inhibitory effect of gintonin on Kv1.2 channel activity was blocked by active phospholipase C inhibitor, inositol 1,4,5-triphosphate receptor antagonist, and intracellular Ca(2+) chelator. The co-expression of active receptor protein tyrosine phosphatase α (RPTPα) with Kv1.2 channel greatly attenuated gintonin-mediated inhibition of Kv1.2 channel activity, but attenuation was not observed with catalytically inactive RPTPα. Furthermore, neither genistein, a tyrosine kinase inhibitor, nor site-directed mutation of a tyrosine residue (Y132 to Y132F), which is phosphorylated by tyrosine kinase of the N-terminal of the Kv1.2 channel α subunit, significantly attenuated gintonin-mediated inhibition of Kv1.2 channel activity. These results indicate that the gintonin-mediated Kv1.2 channel regulation involves the dual coordination of both tyrosine kinase and RPTPα coupled to this receptor. Finally, gintonin-mediated regulation of Kv1.2 channel activity might explain one of the modulations of gintonin-mediated neuronal activities in nervous systems.

  10. Src-family-tyrosine kinase Lyn is critical for TLR2-mediated NF-κB activation through the PI 3-kinase signaling pathway.

    PubMed

    Toubiana, Julie; Rossi, Anne-Lise; Belaidouni, Nadia; Grimaldi, David; Pene, Frederic; Chafey, Philippe; Comba, Béatrice; Camoin, Luc; Bismuth, Georges; Claessens, Yann-Erick; Mira, Jean-Paul; Chiche, Jean-Daniel

    2015-10-01

    TLR2 has a prominent role in host defense against a wide variety of pathogens. Stimulation of TLR2 triggers MyD88-dependent signaling to induce NF-κB translocation, and activates a Rac1-PI 3-kinase dependent pathway that leads to transactivation of NF-κB through phosphorylation of the P65 NF-κB subunit. This transactivation pathway involves tyrosine phosphorylations. The role of the tyrosine kinases in TLR signaling is controversial, with discrepancies between studies using only chemical inhibitors and knockout mice. Here, we show the involvement of the tyrosine-kinase Lyn in TLR2-dependent activation of NF-κB in human cellular models, by using complementary inhibition strategies. Stimulation of TLR2 induces the formation of an activation cluster involving TLR2, CD14, PI 3-kinase and Lyn, and leads to the activation of AKT. Lyn-dependent phosphorylation of the p110 catalytic subunit of PI 3-kinase is essential to the control of PI 3-kinase biological activity upstream of AKT and thereby to the transactivation of NF-κB. Thus, Lyn kinase activity is crucial in TLR2-mediated activation of the innate immune response in human mononuclear cells.

  11. Tyrosine Kinase Inhibitors for Non-Small Cell Lung Cancer and Eye Metastasis: Disease Relapse or a New Entity?

    PubMed Central

    ZAROGOULIDIS, Paul; LAMPAKI, Sofia; CHINELIS, Panos; LAZARIDIS, George; BAKA, Sofia; RAPTI, Aggeliki

    2016-01-01

    Lung cancer is still diagnosed during the advanced stage of the disease and most patients do not have the opportunity for surgical treatment, despite the new diagnostic equipment that has been made available in recent years, such as the radial and linear endobronchial ultrasound (EBUS) and electromagnetic fiberoptic bronchoscopy. However, novel targeted therapies with second generation tyrosine kinase inhibitors and immunotherapy are available. In this commentary, we will focus on eye metastasis after initiation of tyrosine kinase inhibitors due to epidermal growth factor mutation of lung cancer adenocarcinoma.

  12. Phosphorylation of Staphylococcus aureus Protein-Tyrosine Kinase Affects the Function of Glucokinase and Biofilm Formation

    PubMed Central

    Vasu, Dudipeta; Kumar, Pasupuleti Santhosh; Prasad, Uppu Venkateswara; Swarupa, Vimjam; Yeswanth, Sthanikam; Srikanth, Lokanathan; Sunitha, Manne Mudhu; Choudhary, Abhijith; Krishna Sarma, Potukuchi Venkata Gurunadha

    2017-01-01

    Background: When Staphylococcus aureus is grown in the presence of high concentration of external glucose, this sugar is phosphorylated by glucokinase (glkA) to form glucose-6-phosphate. This product subsequently enters into anabolic phase, which favors biofilm formation. The presence of ROK (repressor protein, open reading frame, sugar kinase) motif, phosphate-1 and -2 sites, and tyrosine kinase sites in glkA of S. aureus indicates that phosphorylation must regulate the glkA activity. The aim of the present study was to identify the effect of phosphorylation on the function of S. aureus glkA and biofilm formation. Methods: Pure glkA and protein-tyrosine kinase (BYK) of S. aureus ATCC 12600 were obtained by fractionating the cytosolic fractions of glkA1 and BYK-1 expressing recombinant clones through nickel metal chelate column. The pure glkA was used as a substrate for BYK, and the phosphorylation of glkA was confirmed by treating with reagent A and resolving in SDS-PAGE, as well as staining with reagent A. The kinetic parameters of glkA and phosphorylated glkA were determined spectrophotometrically, and in silico tools were used for validation. S. aureus was grown in brain heart infusion broth, which was supplemented with glucose, and then biofilm units were calculated. Results: Fourfold elevated glkA activity was observed upon the phosphorylation by BYK. Protein-protein docking analysis revealed that glkA structure docked close to the adenosine triphosphate-binding site of BYK structure corroborating the kinetic results. Further, S. aureus grown in the presence of elevated glucose concentration exhibited an increase in the rate of biofilm formation. Conclusion: The elevated function of glkA is an essential requirement for increased biofilm units in S. aureus, a key pathogenic factor that helps its survival and the progress of infection. PMID:27695030

  13. The Activation of c-Src Tyrosine Kinase: Conformational Transition Pathway and Free Energy Landscape.

    PubMed

    Fajer, Mikolai; Meng, Yilin; Roux, Benoît

    2016-10-28

    Tyrosine kinases are important cellular signaling allosteric enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Their activity must be tightly controlled, and malfunction can lead to a variety of diseases, particularly cancer. The nonreceptor tyrosine kinase c-Src, a prototypical model system and a representative member of the Src-family, functions as complex multidomain allosteric molecular switches comprising SH2 and SH3 domains modulating the activity of the catalytic domain. The broad picture of self-inhibition of c-Src via the SH2 and SH3 regulatory domains is well characterized from a structural point of view, but a detailed molecular mechanism understanding is nonetheless still lacking. Here, we use advanced computational methods based on all-atom molecular dynamics simulations with explicit solvent to advance our understanding of kinase activation. To elucidate the mechanism of regulation and self-inhibition, we have computed the pathway and the free energy landscapes for the "inactive-to-active" conformational transition of c-Src for different configurations of the SH2 and SH3 domains. Using the isolated c-Src catalytic domain as a baseline for comparison, it is observed that the SH2 and SH3 domains, depending upon their bound orientation, promote either the inactive or active state of the catalytic domain. The regulatory structural information from the SH2-SH3 tandem is allosterically transmitted via the N-terminal linker of the catalytic domain. Analysis of the conformational transition pathways also illustrates the importance of the conserved tryptophan 260 in activating c-Src, and reveals a series of concerted events during the activation process.

  14. Protein tyrosine kinase signaling in the mouse oocyte cortex during sperm-egg interactions and anaphase resumption.

    PubMed

    McGinnis, Lynda K; Luo, Jinping; Kinsey, William H

    2013-04-01

    Fertilization triggers activation of a series of pre-programmed signal transduction pathways in the oocyte that establish a block to polyspermy, induce meiotic resumption, and initiate zygotic development. Fusion between sperm and oocyte results in rapid changes in oocyte intracellular free-calcium levels, which in turn activate multiple protein kinase cascades in the ooplasm. The present study examined the possibility that sperm-oocyte interaction involves localized activation of oocyte protein tyrosine kinases, which could provide an alternative signaling mechanism to that triggered by the fertilizing sperm. Confocal immunofluorescence analysis with antibodies to phosphotyrosine and phosphorylated protein tyrosine kinases allowed detection of minute signaling events localized to the site of sperm-oocyte interaction that were not amenable to biochemical analysis. The results provide evidence for localized accumulation of phosphotyrosine at the site of sperm contact, binding, or fusion, which suggests active protein tyrosine kinase signaling prior to and during sperm incorporation. The PYK2 kinase was found to be concentrated and activated at the site of sperm-oocyte interaction, and likely participates in this response. Widespread activation of PYK2 and FAK kinases was subsequently observed within the oocyte cortex, indicating that sperm incorporation is followed by more global signaling via these kinases during meiotic resumption. The results demonstrate an alternate signaling pathway triggered in mammalian oocytes by sperm contact, binding, or fusion with the oocyte.

  15. Biochemical characterization of the protein tyrosine kinase homology domain of the ErbB3 (HER3) receptor protein.

    PubMed

    Sierke, S L; Cheng, K; Kim, H H; Koland, J G

    1997-03-15

    The putative protein tyrosine kinase domain (TKD) of the ErbB3 (HER3) receptor protein was generated as a histidine-tagged recombinant protein (hisTKD-B3) and characterized enzymologically. CD spectroscopy indicated that the hisTKD-B3 protein assumed a native conformation with a secondary structure similar to that of the epidermal growth factor (EGF) receptor TKD. However, when compared with the EGF receptor-derived protein, hisTKD-B3 exhibited negligible intrinsic protein tyrosine kinase activity. Immune complex kinase assays of full-length ErbB3 proteins also yielded no evidence of catalytic activity. A fluorescence assay previously used to characterize the nucleotide-binding properties of the EGF receptor indicated that the ErbB3 protein was unable to bind nucleotide. The hisTKD-B3 protein was subsequently found to be an excellent substrate for the EGF receptor protein tyrosine kinase, which suggested that in vivo phosphorylation of ErbB3 in response to EGF could be attributed to a direct cross-phosphorylation by the EGF receptor protein tyrosine kinase.

  16. Biochemical characterization of the protein tyrosine kinase homology domain of the ErbB3 (HER3) receptor protein.

    PubMed Central

    Sierke, S L; Cheng, K; Kim, H H; Koland, J G

    1997-01-01

    The putative protein tyrosine kinase domain (TKD) of the ErbB3 (HER3) receptor protein was generated as a histidine-tagged recombinant protein (hisTKD-B3) and characterized enzymologically. CD spectroscopy indicated that the hisTKD-B3 protein assumed a native conformation with a secondary structure similar to that of the epidermal growth factor (EGF) receptor TKD. However, when compared with the EGF receptor-derived protein, hisTKD-B3 exhibited negligible intrinsic protein tyrosine kinase activity. Immune complex kinase assays of full-length ErbB3 proteins also yielded no evidence of catalytic activity. A fluorescence assay previously used to characterize the nucleotide-binding properties of the EGF receptor indicated that the ErbB3 protein was unable to bind nucleotide. The hisTKD-B3 protein was subsequently found to be an excellent substrate for the EGF receptor protein tyrosine kinase, which suggested that in vivo phosphorylation of ErbB3 in response to EGF could be attributed to a direct cross-phosphorylation by the EGF receptor protein tyrosine kinase. PMID:9148746

  17. Phosphorylation of cystic fibrosis transmembrane conductance regulator (CFTR) serine-511 by the combined action of tyrosine kinases and CK2: the implication of tyrosine-512 and phenylalanine-508.

    PubMed

    Cesaro, Luca; Marin, Oriano; Venerando, Andrea; Donella-Deana, Arianna; Pinna, Lorenzo A

    2013-12-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) harbors, close to Phe-508, whose deletion is the commonest cause of cystic fibrosis, a conserved potential CK2 phospho-acceptor site (Ser511), which however is not susceptible to phosphorylation by CK2. To shed light on this apparent paradox, a series of systematically substituted peptides encompassing Ser511 were assayed for their ability to be phosphorylated. The main outcomes of our study are the following: (a) Tyr512 plays a prominent role as a negative determinant as its replacement by Ala restores Ser511 phosphorylation by CK2; (b) an even more pronounced phosphorylation of Ser511 is promoted if Tyr512 is replaced by phospho-tyrosine instead of alanine; (c) Tyr512 and, to a lesser extent, Tyr515 are readily phosphorylated by Lyn, a protein tyrosine kinase of the Src family, in a manner which is enhanced by the concomitant Phe508 deletion. Collectively taken, our data, in conjunction with the notion that Tyr515 is phosphorylated in vivo, disclose the possibility that CFTR Ser511 can be phosphorylated by the combined action of tyrosine kinases and CK2 and disclose a new mechanism of hierarchical phosphorylation where the role of the priming kinase is that of removing negative determinant(s).

  18. Roles of tyrosine kinase-, 1-phosphatidylinositol 3-kinase-, and mitogen-activated protein kinase-signaling pathways in ethanol-induced contractions of rat aortic smooth muscle: possible relation to alcohol-induced hypertension.

    PubMed

    Yang, Zhi-wei; Wang, Jun; Zheng, Tao; Altura, Bella T; Altura, Burton M

    2002-08-01

    Insights into the relations between and among ethanol-induced contractions in rat aorta, tyrosine kinases (including src family of cytoplasmic tyrosine kinases), 1-phosphatidylinositol 3-kinases (PI-3Ks), mitogen-activated protein kinases (MAPKs), and regulation of intracellular free Ca(2+) ([Ca(2+)](i)) were investigated in the present study. Ethanol-induced concentration-dependent contractions in isolated rat aortic rings were attenuated greatly by pretreatment of the arteries with low concentrations of an antagonist of protein tyrosine kinases (genistein), an src homology domain 2 (SH2) inhibitor peptide, a highly specific antagonist of p38 MAPK (SB-203580), a potent, selective antagonist of two specific MAPK kinases-MEK1/MEK2 (U0126)-and a selective antagonist of mitogen-activated protein kinase kinase (MAPKK) (PD-98059), as well as by treatment with wortmannin or LY-294002 (both are selective antagonists of PI-3Ks). Inhibitory concentration 50 (IC(50)) levels obtained for these seven antagonists were consistent with reported inhibition constant (Ki) values for these tyrosine kinase, MAPK, and MAPKK antagonists. Ethanol-induced transient and sustained increases in [Ca(2+)](i) in primary single smooth muscle cells from rat aorta were markedly attenuated in the presence of genistein, an SH2 domain inhibitor peptide, SB-203580, U0126, PD-98059, wortmannin, and LY-294002. A variety of specific antagonists of known endogenously formed vasoconstrictors did not inhibit or attenuate either the ethanol-induced contractions or the elevations of [Ca(2+)](i). Results of the present study support the suggestion that activation of tyrosine kinases (including the src family of cytoplasmic tyrosine kinases), PI-3Ks, and MAPK seems to play an important role in ethanol-induced contractions and the elevation of [Ca(2+)](i) in smooth muscle cells from rat aorta. These signaling pathways thus may be important in hypertension in human beings associated with chronic alcohol

  19. Therapeutic efficacy of the bromodomain inhibitor OTX015/MK-8628 in ALK-positive anaplastic large cell lymphoma: an alternative modality to overcome resistant phenotypes

    PubMed Central

    Vurchio, Valentina; Yang, Shao Ning; Moon, John; Kwee, Ivo; Rinaldi, Andrea; Pan, Heng; Crescenzo, Ramona; Cheng, Mangeng; Cerchietti, Leandro; Elemento, Olivier; Riveiro, Maria E.; Cvitkovic, Esteban; Bertoni, Francesco; Inghirami, Giorgio

    2016-01-01

    Anaplastic large cell lymphomas (ALCL) represent a peripheral T-cell lymphoma subgroup, stratified based on the presence or absence of anaplastic lymphoma kinase (ALK) chimeras. Although ALK-positive ALCLs have a more favorable outcome than ALK-negative ALCL, refractory and/or relapsed forms are common and novel treatments are needed. Here we investigated the therapeutic potential of a novel bromodomain inhibitor, OTX015/MK-8628 in ALK-positive ALCLs. The effects of OTX015 on a panel of ALK+ ALCL cell lines was evaluated in terms of proliferation, cell cycle and downstream signaling, including gene expression profiling analyses. Synergy was tested with combination targeted therapies. Bromodomain inhibition with OTX015 led primarily to ALCL cell cycle arrest in a dose-dependent manner, along with downregulation of MYC and its downstream regulated genes. MYC overexpression did not compensate this OTX015-mediated phenotype. Transcriptomic analysis of OTX015-treated ALCL cells identified a gene signature common to various hematologic malignancies treated with bromodomain inhibitors, notably large cell lymphoma. OTX015-modulated genes included transcription factors (E2F2, NFKBIZ, FOS, JUNB, ID1, HOXA5 and HOXC6), members of multiple signaling pathways (ITK, PRKCH, and MKNK2), and histones (clusters 1-3). Combination of OTX015 with the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib led to cell cycle arrest then cell death, and combination with suboptimal doses of the ALK inhibitor CEP28122 caused cell cycle arrest. When OTX015 was associated with GANT61, a selective GLI1/2 inhibitor, C1156Y-resistant ALK ALCL growth was impaired. These findings support OTX015 clinical trials in refractory ALCL in combination with inhibitors of interleukin-2-inducible kinase or SHH/GLI1. PMID:27793034

  20. Identification and regulation of receptor tyrosine kinases Rse and Mer and their ligand Gas6 in testicular somatic cells.

    PubMed

    Chan, M C; Mather, J P; McCray, G; Lee, W M

    2000-01-01

    Receptor tyrosine kinases act to convey extracellular signals to intracellular signaling pathways and ultimately control cell proliferation and differentiation. Rse, Axl, and Mer belong to a newly identified family of cell adhesion molecule-related receptor tyrosine kinase. They bind the vitamin K-dependent protein growth arrest-specific gene 6 (Gas6), which is also structurally related to the anticoagulation factor Protein S. The aim of this study is to investigate the possible role of Rse/Axl/Mer tyrosine kinase receptors and their ligand in regulating testicular functions. Gene expression of Rse, Axl, Mer, and Gas6 in the testis was studied by reverse transcriptase-polymerase chain reaction (RT-PCR) and Northern blot analysis. The results indicated that receptors Rse and Mer and the ligand Gas6 were expressed in the rat endothelial cell line (TR1), mouse Leydig cell line (TM3), rat peritubular myoid cell line (TRM), mouse Sertoli cell line (TM4), and primary rat Sertoli cells. Axl was not expressed in the testicular somatic cells by RT-PCR or Northern blot analysis. The highest level of expression of Gas6 messenger RNA (mRNA) was observed in the Sertoli cells, and its expression was responsive to the addition of forskolin in vitro. The effects of serum, insulin, and transferrin on Gas6 expression by TM4 cells were examined. It was shown that they all exhibited an up-regulating effect on Gas6 expression. The forskolin-stimulated Gas6 expression was accompanied by an increase in tyrosine phosphorylation of the Rse receptor in vitro, suggesting that Gas6 may exhibit an autocrine effect in the Sertoli cells through multiple tyrosine kinase receptors. Our studies so far have demonstrated that tyrosine kinase receptors Rse and Mer and their ligand Gas6 are widely expressed in the testicular somatic cell lines and may play a marked role in promoting testicular cell survival.

  1. The ROR2 tyrosine kinase receptor regulates dendritic spine morphogenesis in hippocampal neurons.

    PubMed

    Alfaro, Iván E; Varela-Nallar, Lorena; Varas-Godoy, Manuel; Inestrosa, Nibaldo C

    2015-07-01

    Wnt signaling regulates synaptic development and function and contributes to the fine-tuning of the molecular and morphological differentiation of synapses. We have shown previously that Wnt5a activates non-canonical Wnt signaling to stimulate postsynaptic differentiation in excitatory hippocampal neurons promoting the clustering of the postsynaptic scaffold protein PSD-95 and the development of dendritic spines. At least three different kinds of Wnt receptors have been associated with Wnt5a signaling: seven trans-membrane Frizzled receptors and the tyrosine kinase receptors Ryk and ROR2. We report here that ROR2 is distributed in the dendrites of hippocampal neurons in close proximity to synaptic contacts and it is contained in dendritic spine protrusions. We demonstrate that ROR2 is necessary to maintain dendritic spine number and morphological distribution in cultured hippocampal neurons. ROR2 overexpression increased dendritic spine growth without affecting the density of dendritic spine protrusions in a form dependent on its extracellular Wnt binding cysteine rich domain (CRD) and kinase domain. Overexpression of dominant negative ROR2 lacking the extracellular CRD decreased spine density and the proportion of mushroom like spines, while ROR2 lacking the C-terminal and active kinase domains only affected spine morphology. Our results indicate a crucial role of the ROR2 in the formation and maturation of the postsynaptic dendritic spines in hippocampal neurons.

  2. Role of tyrosine-kinase inhibitors in myeloproliferative neoplasms: comparative lessons learned

    PubMed Central

    Pinilla-Ibarz, Javier; Sweet, Kendra L; Corrales-Yepez, Gabriela M; Komrokji, Rami S

    2016-01-01

    An important pathogenetic distinction in the classification of myeloproliferative neoplasms (MPNs) is the presence or absence of the BCR–ABL fusion gene, which encodes a unique oncogenic tyrosine kinase. The BCR–ABL fusion, caused by the formation of the Philadelphia chromosome (Ph) through translocation, constitutes the disease-initiating event in chronic myeloid leukemia. The development of successive BCR–ABL-targeted tyrosine-kinase inhibitors has led to greatly improved outcomes in patients with chronic myeloid leukemia, including high rates of complete hematologic, cytogenetic, and molecular responses. Such levels of treatment success have long been elusive for patients with Ph-negative MPNs, because of the difficulties in identifying specific driver proteins suitable as drug targets. However, in recent years an improved understanding of the complex pathobiology of classic Ph-negative MPNs, characterized by variable, overlapping multimutation profiles, has prompted the development of better and more broadly targeted (to pathway rather than protein) treatment options, particularly JAK inhibitors. In classic Ph-negative MPNs, overactivation of JAK-dependent signaling pathways is a central pathogenic mechanism, and mutually exclusive mutations in JAK2, MPL, and CALR linked to aberrant JAK activation are now recognized as key drivers of disease progression in myelofibrosis (MF). In clinical trials, the JAK1/JAK2 inhibitor ruxolitinib – the first therapy approved for MF worldwide – improved disease-related splenomegaly and symptoms independent of JAK2V617F mutational status, and prolonged survival compared with placebo or standard therapy in patients with advanced MF. In separate trials, ruxolitinib also provided comprehensive hematologic control in patients with another Ph-negative MPN – polycythemia vera. However, complete cytogenetic or molecular responses with JAK inhibitors alone are normally not observed, underscoring the need for novel

  3. Src Family Tyrosine Kinase Signaling Regulates FilGAP through Association with RBM10

    PubMed Central

    Yamada, Hazuki; Tsutsumi, Koji; Nakazawa, Yuki; Shibagaki, Yoshio; Hattori, Seisuke; Ohta, Yasutaka

    2016-01-01

    FilGAP is a Rac-specific GTPase-activating protein (GAP) that suppresses lamellae formation. In this study, we have identified RBM10 (RNA Binding Motif domain protein 10) as a FilGAP-interacting protein. Although RBM10 is mostly localized in the nuclei in human melanoma A7 cells, forced expression of Src family tyrosine kinase Fyn induced translocation of RBM10 from nucleus into cell peripheries where RBM10 and FilGAP are co-localized. The translocation of RBM10 from nucleus appears to require catalytic activity of Fyn since kinase-negative Fyn mutant failed to induce translocation of RBM10 in A7 cells. When human breast carcinoma MDA-MB-231 cells are spreading on collagen-coated coverslips, endogenous FilGAP and RBM10 were localized at the cell periphery with tyrosine-phosphorylated proteins. RBM10 appears to be responsible for targeting FilGAP at the cell periphery because depletion of RBM10 by siRNA abrogated peripheral localization of FilGAP during cell spreading. Association of RBM10 with FilGAP may stimulate RacGAP activity of FilGAP. First, forced expression of RBM10 suppressed FilGAP-mediated cell spreading on collagen. Conversely, depletion of endogenous RBM10 by siRNA abolished FilGAP-mediated suppression of cell spreading on collagen. Second, FilGAP suppressed formation of membrane ruffles induced by Fyn and instead produced spiky cell protrusions at the cell periphery. This protrusive structure was also induced by depletion of Rac, suggesting that the formation of protrusions may be due to suppression of Rac by FilGAP. We found that depletion of RBM10 markedly reduced the formation of protrusions in cells transfected with Fyn and FilGAP. Finally, depletion of RBM10 blocked FilGAP-mediated suppression of ruffle formation induced by EGF. Taken together, these results suggest that Src family tyrosine kinase signaling may regulate FilGAP through association with RBM10. PMID:26751795

  4. ALK F1174V mutation confers sensitivity while ALK I1171 mutation confers resistance to alectinib. The importance of serial biopsy post progression.

    PubMed

    Ou, Sai-Hong; Milliken, Jeffrey C; Azada, Michele C; Miller, Vincent A; Ali, Siraj M; Klempner, Samuel J

    2016-01-01

    Many acquired resistant mutations to the anaplastic lymphoma kinase (ALK) gene have been identified during treatment of ALK-rearranged non-small cell lung cancer (NSCLC) patients with crizotinib, ceritinib, and alectinib. These various acquired resistant ALK mutations confer differential sensitivities to various ALK inhibitors and may provide guidance on how to sequence the use of many of the second generation ALK inhibitors. We described a patient who developed an acquired ALK F1174V resistant mutation on progression from crizotinib that responded to alectinib for 18 months but then developed an acquired ALK I1171S mutation to alectinib. Both tumor samples had essentially the same genomic profile by comprehensive genomic profiling otherwise. This is the first patient report that demonstrates ALK F1174V mutation is sensitive to alectinib and further confirms missense acquired ALK I1171 mutation is resistant to alectinib. Sequential tumor re-biopsy for comprehensive genomic profiling (CGP) is important to appreciate the selective pressure during treatment with various ALK inhibitors underpinning the evolution of the disease course of ALK+NSCLC patients while on treatment with the various ALK inhibitors. This approach will likely help inform the optimal sequencing strategy as more ALK inhibitors become available. This case report also validates the importance of developing structurally distinct ALK inhibitors for clinical use to overcome non-cross resistant ALK mutations.

  5. Partial purification and characterization of a pp60v-src-related tyrosine kinase from bovine brain.

    PubMed Central

    Neer, E J; Lok, J M

    1985-01-01

    We have identified and substantially purified a tyrosine protein kinase from normal bovine brain that is immunologically related to the product of the Rous sarcoma virus oncogene (pp60v-src). The enzyme, a 61-kDa protein (p61), is solubilized with detergent from bovine cerebral cortical membranes and purified by column chromatography. In the purest preparations, this protein is phosphorylated only on tyrosine, but it can also be a substrate for serine- and threonine-specific protein kinases. The p61 protein phosphorylates the heavy chain of immunoglobulins from rabbits bearing Rous sarcoma virus-induced tumors (TBR IgG) but not normal IgG. TBR IgG precipitates the 61-kDa phosphoprotein and protein kinase activity from purified preparations. The activity of the purified brain tyrosine kinase is 10 times higher in the presence of 7-10 mM Mn2+ and 6 mM Mg2+ than it is with 6 mM Mg2+ alone. With Mn2+, the p61 enzyme has a Km for ATP of 2 microM. All preparations of p61 also contain a 64-kDa protein (p64) that is phosphorylated on tyrosine. Measurement of the Stokes radius of p61 and p64 by gel filtration shows that they are not physically associated in buffer containing the nonionic detergent Lubrol 12A9. The p64 protein is not precipitated by TBR IgG. We do not know whether p64 is only a substrate for the p61 tyrosine kinase or is itself a kinase. Images PMID:2412227

  6. Oncogenic forms of the neu/HER2 tyrosine kinase are permanently coupled to phospholipase C gamma.

    PubMed Central

    Peles, E; Levy, R B; Or, E; Ullrich, A; Yarden, Y

    1991-01-01

    The neu/HER2 proto-oncogene encodes a transmembrane tyrosine kinase homologous to receptors for polypeptide growth factors. The oncogenic potential for the presumed receptor is released through multiple genetic mechanisms including a specific point mutation, truncation at the extracellular domain and overexpression of the protooncogene. Here we show that all these modes of oncogenic activation result in a constitutively phosphorylated neu protein and an increase in tyrosine phosphorylation of a phosphatidylinositol-specific phospholipase (PLC gamma). The examined transforming neu/HER2 proteins, unlike the normal gene product, also co-immunoprecipitated with PLC gamma molecules. A kinase-defective mutant of a transforming neu failed to mediate both tyrosine phosphorylation and association with PLC gamma, suggesting direct interaction of the neu kinase with PLC gamma. This possibility was examined by employing a chimeric protein composed of the extracellular ligand-binding domain of the epidermal growth factor receptor and the neu cytoplasmic portion. The chimeric receptor mediated rapid ligand-dependent modification of PLC gamma on tyrosine residues. It also physically associated, in a ligand-dependent manner, with the phosphoinositidase. Based on the presented results we suggest that the mechanism of cellular transformation by the neu/HER2 receptor involves tyrosine phosphorylation and activation of PLC gamma. Images PMID:1676673

  7. Modification of Hypoxic Respiratory Response by Protein Tyrosine Kinase in Brainstem Ventral Respiratory Neuron Group

    PubMed Central

    Wang, Hui; Huai, Ruituo; Yang, Junqing; Li, Yanchun

    2016-01-01

    Protein tyrosine kinase (PTK) mediated the tyrosine phosphorylation modification of neuronal receptors and ion channels. Whether such modification resulted in changes of physiological functions was not sufficiently studied. In this study we examined whether the hypoxic respiratory response—which is the enhancement of breathing in hypoxic environment could be affected by the inhibition of PTK at brainstem ventral respiratory neuron column (VRC). Experiments were performed on urethane anesthetized adult rabbits. Phrenic nerve discharge was recorded as the central respiratory motor output. Hypoxic respiratory response was produced by ventilating the rabbit with 10% O2-balance 90% N2 for 5 minutes. The responses of phrenic nerve discharge to hypoxia were observed before and after microinjecting PTK inhibitor genistein, AMPA receptor antagonist CNQX, or inactive PTK inhibitor analogue daidzein at the region of ambiguus nucleus (NA) at levels 0–2 mm rostral to obex where the inspiratory subgroup of VRC were recorded. Results were as follows: 1. the hypoxic respiratory response was significantly attenuated after microinjection of genistein and/or CNQX, and no additive effect (i.e., further attenuation of hypoxic respiratory response) was observed when genistein and CNQX were microinjected one after another at the same injection site. Microinjection of daidzein had no effect on hypoxic respiratory response. 2. Fluorescent immunostaining showed that hypoxia significantly increased the number of phosphotyrosine immunopositive neurons in areas surrounding NA and most of these neurons were also immunopositive to glutamate AMPA receptor subunit GluR1. These results suggested that PTK played an important role in regulating the hypoxic respiratory response, possibly through the tyrosine phosphorylation modification of glutamate AMPA receptors on the respiratory neurons of ventral respiratory neuron column. PMID:27798679

  8. An overview of the binding models of FGFR tyrosine kinases in complex with small molecule inhibitors.

    PubMed

    Cheng, Weiyan; Wang, Mixiang; Tian, Xin; Zhang, Xiaojian

    2017-01-27

    The fibroblast growth factor receptor (FGFR) family receptor tyrosine kinase (RTK) includes four structurally related members, termed as FGFR1, FGFR2, FGFR3, and FGFR4. Given its intimate role in the progression of several solid tumors, excessive FGFR signaling provides an opportunity for anticancer therapy. Along with extensive pharmacological studies validating the therapeutic potential of targeting the FGFRs for cancer treatment, co-crystal structures of FGFRs/inhibitors are continuously coming up to study the mechanism of actions and explore new inhibitors. Herein, we review the reported co-crystals of FGFRs in complex with the corresponding inhibitors, main focusing our attention on the binding models and the pharmacological activities of the inhibitors.

  9. Probing the Binding Site of Abl Tyrosine Kinase Using in Situ Click Chemistry

    PubMed Central

    2013-01-01

    Modern combinatorial chemistry is used to discover compounds with desired function by an alternative strategy, in which the biological target is directly involved in the choice of ligands assembled from a pool of smaller fragments. Herein, we present the first experimental result where the use of in situ click chemistry has been successfully applied to probe the ligand-binding site of Abl and the ability of this enzyme to form its inhibitor. Docking studies show that Abl is able to allow the in situ click chemistry between specific azide and alkyne fragments by binding to Abl-active sites. This report allows medicinal chemists to use protein-directed in situ click chemistry for exploring the conformational space of a ligand-binding pocket and the ability of the protein to guide its inhibitor. This approach can be a novel, valuable tool to guide drug design synthesis in the field of tyrosine kinases. PMID:24900659

  10. Discovery of GS-9973, a selective and orally efficacious inhibitor of spleen tyrosine kinase.

    PubMed

    Currie, Kevin S; Kropf, Jeffrey E; Lee, Tony; Blomgren, Peter; Xu, Jianjun; Zhao, Zhongdong; Gallion, Steve; Whitney, J Andrew; Maclin, Deborah; Lansdon, Eric B; Maciejewski, Patricia; Rossi, Ann Marie; Rong, Hong; Macaluso, Jennifer; Barbosa, James; Di Paolo, Julie A; Mitchell, Scott A

    2014-05-08

    Spleen tyrosine kinase (Syk) is an attractive drug target in autoimmune, inflammatory, and oncology disease indications. The most advanced Syk inhibitor, R406, 1 (or its prodrug form fostamatinib, 2), has shown efficacy in multiple therapeutic indications, but its clinical progress has been hampered by dose-limiting adverse effects that have been attributed, at least in part, to the off-target activities of 1. It is expected that a more selective Syk inhibitor would provide a greater therapeutic window. Herein we report the discovery and optimization of a novel series of imidazo[1,2-a]pyrazine Syk inhibitors. This work culminated in the identification of GS-9973, 68, a highly selective and orally efficacious Syk inhibitor which is currently undergoing clinical evaluation for autoimmune and oncology indications.

  11. Structural Basis of Neurohormone Perception by the Receptor Tyrosine Kinase Torso.

    PubMed

    Jenni, Simon; Goyal, Yogesh; von Grotthuss, Marcin; Shvartsman, Stanislav Y; Klein, Daryl E

    2015-12-17

    In insects, brain-derived Prothoracicotropic hormone (PTTH) activates the receptor tyrosine kinase (RTK) Torso to initiate metamorphosis through the release of ecdysone. We have determined the crystal structure of silkworm PTTH in complex with the ligand-binding region of Torso. Here we show that ligand-induced Torso dimerization results from the sequential and negatively cooperative formation of asymmetric heterotetramers. Mathematical modeling of receptor activation based upon our biophysical studies shows that ligand pulses are "buffered" at low receptor levels, leading to a sustained signal. By contrast, high levels of Torso develop the signal intensity and duration of a noncooperative system. We propose that this may allow Torso to coordinate widely different functions from a single ligand by tuning receptor levels. Phylogenic analysis indicates that Torso is found outside arthropods, including human parasitic roundworms. Together, our findings provide mechanistic insight into how this receptor system, with roles in embryonic and adult development, is regulated.

  12. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer

    DOE PAGES

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; ...

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lungmore » cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.« less

  13. Toward the semisynthesis of multidomain transmembrane receptors: Modification of Eph tyrosine kinases

    PubMed Central

    Singla, Nikhil; Himanen, Juha Pekka; Muir, Tom W.; Nikolov, Dimitar B.

    2008-01-01

    Expressed protein ligation (EPL) is a protein engineering approach that allows the modification or assembly of a target protein from multiple recombinant and synthetic polypeptides. EPL has been previously used to modify intracellular proteins and small integral membrane proteins for structural and functional studies. Here we describe the semisynthetic site-specific modification of the complete, multidomain extracellular regions of both A and B classes of Eph receptor tyrosine kinases. We show that the ectodomains of these receptors can be ligated to different peptides under carefully established experimental conditions, while their biological activity is retained. This work extends the boundaries of the EPL technique for semisynthesis of multidomain, extracellular, disulfide-bonded, and glycosylated proteins and highlights its potential application for reconstituting entire single-pass transmembrane proteins. PMID:18628240

  14. Receptor tyrosine kinase mutations in developmental syndromes and cancer: two sides of the same coin

    PubMed Central

    McDonell, Laura M.; Kernohan, Kristin D.; Boycott, Kym M.; Sawyer, Sarah L.

    2015-01-01

    Receptor tyrosine kinases (RTKs) are a family of ligand-binding cell surface receptors that regulate a wide range of essential cellular activities, including proliferation, differentiation, cell-cycle progression, survival and apoptosis. As such, these proteins play an important role during development and throughout life; germline mutations in genes encoding RTKs cause several developmental syndromes, while somatic alterations contribute to the pathogenesis of many aggressive cancers. This creates an interesting paradigm in which mutation timing, type and location in a gene leads to different cell signaling and biological responses, and ultimately phenotypic outcomes. In this review, we highlight the roles of RTKs in developmental disorders and cancer. The multifaceted roles of these receptors, their genetic signatures and their signaling during developmental morphogenesis and oncogenesis are discussed. Additionally, we propose that comparative analysis of RTK mutations responsible for developmental syndromes may shed light on those driving tumorigenesis. PMID:26152202

  15. The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity.

    PubMed

    Chan, Pamela Y; Carrera Silva, Eugenio A; De Kouchkovsky, Dimitri; Joannas, Leonel D; Hao, Liming; Hu, Donglei; Huntsman, Scott; Eng, Celeste; Licona-Limón, Paula; Weinstein, Jason S; Herbert, De'Broski R; Craft, Joseph E; Flavell, Richard A; Repetto, Silvia; Correale, Jorge; Burchard, Esteban G; Torgerson, Dara G; Ghosh, Sourav; Rothlin, Carla V

    2016-04-01

    Host responses against metazoan parasites or an array of environmental substances elicit type 2 immunity. Despite its protective function, type 2 immunity also drives allergic diseases. The mechanisms that regulate the magnitude of the type 2 response remain largely unknown. Here, we show that genetic ablation of a receptor tyrosine kinase encoded byTyro3in mice or the functional neutralization of its ortholog in human dendritic cells resulted in enhanced type 2 immunity. Furthermore, the TYRO3 agonist PROS1 was induced in T cells by the quintessential type 2 cytokine, interleukin-4. T cell-specificPros1knockouts phenocopied the loss ofTyro3 Thus, a PROS1-mediated feedback from adaptive immunity engages a rheostat, TYRO3, on innate immune cells to limit the intensity of type 2 responses.

  16. Metabolic glycoengineering sensitizes drug-resistant pancreatic cancer cells to tyrosine kinase inhibitors erlotinib and gefitinib.

    PubMed

    Mathew, Mohit P; Tan, Elaine; Saeui, Christopher T; Bovonratwet, Patawut; Liu, Lingshu; Bhattacharya, Rahul; Yarema, Kevin J

    2015-03-15

    Metastatic human pancreatic cancer cells (the SW1990 line) that are resistant to the EGFR-targeting tyrosine kinase inhibitor drugs (TKI) erlotinib and gefitinib were treated with 1,3,4-O-Bu3ManNAc, a 'metabolic glycoengineering' drug candidate that increased sialylation by ∼2-fold. Consistent with genetic methods previously used to increase EGFR sialylation, this small molecule reduced EGF binding, EGFR transphosphorylation, and downstream STAT activation. Significantly, co-treatment with both the sugar pharmacophore and the existing TKI drugs resulted in strong synergy, in essence re-sensitizing the SW1990 cells to these drugs. Finally, 1,3,4-O-Bu3ManNAz, which is the azido-modified counterpart to 1,3,4-O-Bu3ManNAc, provided a similar benefit thereby establishing a broad-based foundation to extend a 'metabolic glycoengineering' approach to clinical applications.

  17. CD44 regulates dendrite morphogenesis through Src tyrosine kinase-dependent positioning of the Golgi.

    PubMed

    Skupien, Anna; Konopka, Anna; Trzaskoma, PaweI; Labus, Josephine; Gorlewicz, Adam; Swiech, Lukasz; Babraj, Matylda; Dolezyczek, Hubert; Figiel, Izabela; Ponimaskin, Evgeni; Wlodarczyk, Jakub; Jaworski, Jacek; Wilczynski, Grzegorz M; Dzwonek, Joanna

    2014-12-01

    The acquisition of proper dendrite morphology is a crucial aspect of neuronal development towards the formation of a functional network. The role of the extracellular matrix and its cellular receptors in this process has remained enigmatic. We report that the CD44 adhesion molecule, the main hyaluronan receptor, is localized in dendrites and plays a crucial inhibitory role in dendritic tree arborization in vitro and in vivo. This novel function is exerted by the activation of Src tyrosine kinase, leading to the alteration of Golgi morphology. The mechanism operates during normal brain development, but its inhibition might have a protective influence on dendritic trees under toxic conditions, during which the silencing of CD44 expression prevents dendritic shortening induced by glutamate exposure. Overall, our results indicate a novel role for CD44 as an essential regulator of dendritic arbor complexity in both health and disease.

  18. The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity

    PubMed Central

    Chan, Pamela Y.; Carrera Silva, Eugenio A.; De Kouchkovsky, Dimitri; Joannas, Leonel D.; Hao, Liming; Hu, Donglei; Huntsman, Scott; Eng, Celeste; Licona-Limón, Paula; Weinstein, Jason S.; Herbert, De’Broski R.; Craft, Joseph E.; Flavell, Richard A.; Repetto, Silvia; Correale, Jorge; Burchard, Esteban G.; Torgerson, Dara G.; Ghosh, Sourav; Rothlin, Carla V.

    2016-01-01

    Host responses against metazoan parasites or an array of environmental substances elicit type 2 immunity. Despite its protective function, type 2 immunity also drives allergic diseases. The mechanisms that regulate the magnitude of the type 2 response remain largely unknown. Here, we show that genetic ablation of a receptor tyrosine kinase encoded by Tyro3 in mice or the functional neutralization of its ortholog in human dendritic cells resulted in enhanced type 2 immunity. Furthermore, the TYRO3 agonist PROS1 was induced in T cells by the quintessential type 2 cytokine, interleukin-4. T cell–specific Pros1 knockouts phenocopied the loss of Tyro3. Thus, a PROS1-mediated feedback from adaptive immunity engages a rheostat, TYRO3, on innate immune cells to limit the intensity of type 2 responses. PMID:27034374

  19. Using 2nd generation tyrosine kinase inhibitors in frontline management of chronic phase chronic myeloid leukemia

    PubMed Central

    Jayakar, Vishal

    2014-01-01

    Choices in medicine come with responsibility. With several TKI's (Tyrosine kinase inhibitors) available for front-line management of CML (Chronic Myeloid Leukemia), an astute clinician has to personalise, rationalise and take a pragmatic approach towards selection of the best drug for the ‘patient in question’. Though it is hotly debated as to which TKI will triumph, the truth of this debate lies in individualising treatment rather than a general ‘all size fits all’ approach with imatinib. I personally believe that the second generation TKI's will suit most patient clinical profiles rather than prescribing imatinib to all and I have strived to make a strong case for them in front line treatment of CML. Though Imatinib may remain the first line choice for some patients, my efforts in this debate are mainly geared towards breaking the myth that imatinib is the sole ‘block buster’ on the CML landscape PMID:24665456

  20. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer

    SciTech Connect

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; Dobroff, Andrey S.; Edwards, Julianna K.; Cimino, Daniel F.; Moeller, Benjamin J.; Kelly, Patrick; Nunez, Maria I.; Tang, Ximing; Liu, Diane D.; Lee, J. Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R. M.; Lobb, Roy R.; Edelman, Martin J.; Sidman, Richard L.; Wistuba, Ignacio I.; Arap, Wadih; Pasqualini, Renata

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.

  1. Extracellular assembly and activation principles of oncogenic class III receptor tyrosine kinases.

    PubMed

    Verstraete, Kenneth; Savvides, Savvas N

    2012-11-01

    Intracellular signalling cascades initiated by class III receptor tyrosine kinases (RTK-IIIs) and their cytokine ligands contribute to haematopoiesis and mesenchymal tissue development. They are also implicated in a wide range of inflammatory disorders and cancers. Recent snapshots of RTK-III ectodomains in complex with cognate cytokines have revealed timely insights into the structural determinants of RTK-III activation, evolution and pathology. Importantly, candidate 'driver' and 'passenger' mutations that have been identified in RTK-IIIs can now be collectively mapped for the first time to structural scaffolds of the corresponding RTK-III ectodomains. Such insights will generate a renewed interest in dissecting the mechanistic effects of such mutations and their therapeutic relevance.

  2. Activation of tyrosine kinase c-Abl contributes to α-synuclein–induced neurodegeneration

    PubMed Central

    Lee, Su Hyun; Kim, Donghoon; Karuppagounder, Senthilkumar S.; Kumar, Manoj; Mao, Xiaobo; Shin, Joo Ho; Lee, Yunjong; Pletnikova, Olga; Troncoso, Juan C.; Dawson, Valina L.; Dawson, Ted M.; Ko, Han Seok

    2016-01-01

    Aggregation of α-synuclein contributes to the formation of Lewy bodies and neurites, the pathologic hallmarks of Parkinson disease (PD) and α-synucleinopathies. Although a number of human mutations have been identified in familial PD, the mechanisms that promote α-synuclein accumulation and toxicity are poorly understood. Here, we report that hyperactivity of the nonreceptor tyrosine kinase c-Abl critically regulates α-synuclein–induced neuropathology. In mice expressing a human α-synucleinopathy–associated mutation (hA53Tα-syn mice), deletion of the gene encoding c-Abl reduced α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Conversely, overexpression of constitutively active c-Abl in hA53Tα-syn mice accelerated α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Moreover, c-Abl activation led to an age-dependent increase in phosphotyrosine 39 α-synuclein. In human postmortem samples, there was an accumulation of phosphotyrosine 39 α-synuclein in brain tissues and Lewy bodies of PD patients compared with age-matched controls. Furthermore, in vitro studies show that c-Abl phosphorylation of α-synuclein at tyrosine 39 enhances α-synuclein aggregation. Taken together, this work establishes a critical role for c-Abl in α-synuclein–induced neurodegeneration and demonstrates that selective inhibition of c-Abl may be neuroprotective. This study further indicates that phosphotyrosine 39 α-synuclein is a potential disease indicator for PD and related α-synucleinopathies. PMID:27348587

  3. syk protein tyrosine kinase regulates Fc receptor gamma-chain-mediated transport to lysosomes.

    PubMed Central

    Bonnerot, C; Briken, V; Brachet, V; Lankar, D; Cassard, S; Jabri, B; Amigorena, S

    1998-01-01

    B- and T-cell receptors, as well as most Fc receptors (FcR), are part of a large family of membrane proteins named immunoreceptors and are expressed on all cells of the immune system. Immunoreceptors' biological functions rely on two of their fundamental attributes: signal transduction and internalization. The signals required for these two functions are present in the chains associated with immunoreceptors, within conserved amino acid motifs called immunoreceptor tyrosine-based activation motifs (ITAMs). We have examined the role of the protein tyrosine kinase (PTK) syk, a critical effector of immunoreceptor-mediated cell signalling through ITAMs, in FcR-associated gamma-chain internalization and lysosomal targeting. A point mutation in the immunoreceptor-associated gamma-chain ITAM affecting syk activation, as well as overexpression of a syk dominant negative mutant, inhibited signal transduction without affecting receptor coated-pit localization or internalization. In contrast, blocking of gamma-chain-mediated syk activation impaired FcR transport from endosomes to lysosomes and selectively inhibited the presentation of certain T-cell epitopes. Therefore, activation of the PTK syk is dispensable for receptor internalization, but necessary for cell signalling and for gamma-chain-mediated FcR delivery to lysosomes. PMID:9707420

  4. Human RON receptor tyrosine kinase induces complete epithelial-to-mesenchymal transition but causes cellular senescence

    SciTech Connect

    Cote, Marceline; Miller, A. Dusty; Liu, Shan-Lu . E-mail: shan-lu.liu@mcgill.ca

    2007-08-17

    The RON receptor tyrosine kinase is a member of the MET proto-oncogene family and is important for cell proliferation, differentiation, and cancer development. Here, we created a series of Madin-Darby canine kidney (MDCK) epithelial cell clones that express different levels of RON, and have investigated their biological properties. While low levels of RON correlated with little morphological change in MDCK cells, high levels of RON expression constitutively led to morphological scattering or complete and stabilized epithelial-to-mesenchymal transition (EMT). Unexpectedly, MDCK clones expressing higher levels of RON exhibited retarded proliferation and senescence, despite increased motility and invasiveness. RON was constitutively tyrosine-phosphorylated in MDCK cells expressing high levels of RON and undergoing EMT, and the MAPK signaling pathway was activated. This study reveals for the first time that RON alone is sufficient to induce complete and stabilized EMT in MDCK cells, and overexpression of RON does not cause cell transformation but rather induces cell cycle arrest and senescence, leading to impaired cell proliferation.

  5. Purified human platelet-derived growth factor receptor has ligand-stimulated tyrosine kinase activity.

    PubMed Central

    Bishayee, S; Ross, A H; Womer, R; Scher, C D

    1986-01-01

    The platelet-derived growth factor receptor (PDGF-R), a 180-kDa single-chain polypeptide, was purified from membranes of the human osteogenic sarcoma cell line MG-63. Purification was achieved by treatment of membranes with PDGF and ATP, followed by solubilization with nonionic detergent and successive chromatography on solid-phase anti-phosphotyrosine monoclonal antibody and DEAE-cellulose. The PDGF-R, which was estimated to be 50-80% pure by NaDodSO4/polyacrylamide gel electrophoresis of 32P-labeled preparations, was free of contaminating epidermal growth factor receptor and had no detectable phosphatase activity. It specifically bound 125I-labeled PDGF, a reaction quantified by binding of the ligand-PDGF-R complex to the anti-phosphotyrosine antibody. The purified receptor displayed PDGF-stimulatable tyrosine kinase activity, assayed by autophosphorylation of PDGF-R at tyrosine residues and by phosphorylation of angiotensin II. The Km for ATP in the autophosphorylation reaction was 7.5 microM. Addition of PDGF did not change the Km but increased the Vmax 1.7-fold. Images PMID:3018745

  6. Bmx Tyrosine Kinase Has a Redundant Function Downstream of Angiopoietin and Vascular Endothelial Growth Factor Receptors in Arterial Endothelium

    PubMed Central

    Rajantie, Iiro; Ekman, Niklas; Iljin, Kristiina; Arighi, Elena; Gunji, Yuji; Kaukonen, Jaakko; Palotie, Aarno; Dewerchin, Mieke; Carmeliet, Peter; Alitalo, Kari

    2001-01-01

    The Bmx gene, a member of the Tec tyrosine kinase gene family, is known to be expressed in subsets of hematopoietic and endothelial cells. In this study, mice were generated in which the first coding exon of the Bmx gene was replaced with the lacZ reporter gene by a knock-in strategy. The homozygous mice lacking Bmx activity were fertile and had a normal life span without an obvious phenotype. Staining of their tissues using β-galactosidase substrate to assess the sites of Bmx expression revealed strong signals in the endothelial cells of large arteries and in the endocardium starting between days 10.5 and 12.5 of embryogenesis and continuing in adult mice, while the venular endothelium showed a weak signal only in the superior and inferior venae cavae. Of the five known endothelial receptor tyrosine kinases tested, activated Tie-2 induced tyrosyl phosphorylation of the Bmx protein and both Tie-2 and vascular endothelial growth factor receptor 1 (VEGFR-1) stimulated Bmx tyrosine kinase activity. Thus, the Bmx tyrosine kinase has a redundant role in arterial endothelial signal transduction downstream of the Tie-2 and VEGFR-1 growth factor receptors. PMID:11416142

  7. Use of double-stranded RNA-mediated interference to determine the substrates of protein tyrosine kinases and phosphatases.

    PubMed Central

    Muda, Marco; Worby, Carolyn A; Simonson-Leff, Nancy; Clemens, James C; Dixon, Jack E

    2002-01-01

    Despite the wealth of information generated by genome-sequencing projects, the identification of in vivo substrates of specific protein kinases and phosphatases is hampered by the large number of candidate enzymes, overlapping enzyme specificity and sequence similarity. In the present study, we demonstrate the power of RNA interference (RNAi) to dissect signal transduction cascades involving specific kinases and phosphatases. RNAi is used to identify the cellular tyrosine kinases upstream of the phosphorylation of Down-Syndrome cell-adhesion molecule (Dscam), a novel cell-surface molecule of the immunoglobulin-fibronectin super family, which has been shown to be important for axonal path-finding in Drosophila. Tyrosine phosphorylation of Dscam recruits the Src homology 2 domain of the adaptor protein Dock to the receptor. Dock, the ortho- logue of mammalian Nck, is also essential for correct axonal path-finding in Drosophila. We further determined that Dock is tyrosine-phosphorylated in vivo and identified DPTP61F as the protein tyrosine phosphatase responsible for maintaining Dock in its non-phosphorylated state. The present study illustrates the versatility of RNAi in the identification of the physiological substrates for protein kinases and phosphatases. PMID:12014990

  8. PROLACTIN-INDUCED TYROSINE PHOSPHORYLATION, ACTIVATION AND RECEPTOR ASSOCIATION OF FOCAL ADHESION KINASE (FAK) IN MAMMARY EPITHELIAL CELLS

    EPA Science Inventory

    Prolactin-Induced Tyrosine Phosphorylation, Activation and Receptor
    Association of Focal Adhesion Kinase (FAK) in Mammary Epithelial Cells.
    Suzanne E. Fenton1 and Lewis G. Sheffield2. 1U.S. Environmental Protection
    Agency, MD-72, Research Triangle Park, NC 27711, and

  9. Effects of 4 multitargeted receptor tyrosine kinase inhibitors on regional hemodynamics in conscious, freely moving rats

    PubMed Central

    Carter, Joanne J.; Fretwell, Laurice V.; Woolard, Jeanette

    2017-01-01

    VEGF inhibitors, including receptor tyrosine kinase inhibitors, are used as adjunct therapies in a number of cancer treatments. An emerging issue with these drugs is that most cause hypertension. To gain insight into the physiological mechanisms involved, we evaluated their regional hemodynamic effects in conscious rats. Male Sprague Dawley rats (350–450 g) were chronically implanted with pulsed Doppler flow probes (renal and mesenteric arteries, and the descending abdominal aorta) and catheters (jugular vein, peritoneal cavity, and distal abdominal aorta). Regional hemodynamics were measured over 4 d, before and after daily administration of cediranib (3 and 6 mg/kg, 3 and 6 mg/kg/h for 1 h, i.v.), sorafenib (10 and 20 mg/kg, 10 and 20 mg kg/h for 1 h, i.v.), pazopanib (30 and100 mg/kg, i.p.), or vandetanib (12.5 and 25 mg/kg, i.p.). All drugs evoked significant increases (P < 0.05; n = 7–8) in mean arterial pressure, which were generally accompanied by significant mesenteric and hindquarters, but not renal, vasoconstrictions. The hypertensive effects of cediranib were unaffected by losartan (10 mg/kg/h), bosentan (20 mg/kg/h), or a combination of phentolamine and propranolol (each 1 mg/kg/h), suggesting a need for new strategies to overcome them.—Carter, J. J., Fretwell, L. V., Woolard, J. Effects of 4 multitargeted receptor tyrosine kinase inhibitors on regional hemodynamics in conscious, freely moving rats. PMID:27986807

  10. Separate domains of the insulin receptor contain sites of autophosphorylation and tyrosine kinase activity

    SciTech Connect

    Goren, H.J.; White, M.F.; Khan, C.R.

    1987-04-21

    The authors have studied the structure and function of the solubilized insulin receptor before and after partial proteolytic digestion to define domains in the ..beta..-subunit that undergo autophosphorylation and contain the tyrosine kinase activity. Wheat germ agglutinin purified insulin receptor from Fao cells was digested briefly at 22/sup 0/C with low concentrations of trypsin, staphylococcal V8 protease, or elastase. Autophosphorylation of the ..beta..-subunit was carried out before and after digestion, and the (/sup 32/P)phosphoproteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, detected by autoradiography, and analyzed by tryptic peptide mapping by use of reverse-phase high-performance liquid chromatography. The 85-kDa fragment was not immunoprecipitated by an antibody directed against the C-terminal domain of the ..beta..-subunit (..cap alpha..Pep-1), indicating that this region of the receptor was lost. The 85-kDa fragment contained about half of the (/sup 32/P)phosphate originally found in the ..beta..-subunit, and tryptic peptide mapping showed that two major tryptic phosphopeptides (previously called pY2 and pY3) were removed. Three other tryptic phosphopeptides (pY1, pY1a, and pY4) were found in the 85- and 70-kDa fragments. To determined the structural requirements for kinase activity, the insulin receptor was subjected to tryptic digestion for 30 s-30 min, such that the receptor was composed exclusively of 85- and 70-kDa fragments of the ..beta..-subunit. The 85-kDa fragment exhibited autophosphorylation at pY1, pY1a, and pY4. Both the 85- and 70-kDa fragments phosphorylated tyrosine residues in a synthetic decapeptide that has the sequence of the C-terminal domain of the ..beta..-subunit of human insulin rare in the receptor.

  11. Philadelphia chromosome-positive leukemia stem cells in acute lymphoblastic leukemia and tyrosine kinase inhibitor therapy.

    PubMed

    Thomas, Xavier

    2012-06-26

    Leukemia stem cells (LSCs), which constitute a minority of the tumor bulk, are functionally defined on the basis of their ability to transfer leukemia into an immunodeficient recipient animal. The presence of LSCs has been demonstrated in acute lymphoblastic leukemia (ALL), of which ALL with Philadelphia chromosome-positive (Ph(+)). The use of imatinib, a tyrosine kinase inhibitor (TKI), as part of front-line treatment and in combination with cytotoxic agents, has greatly improved the proportions of complete response and molecular remission and the overall outcome in adults with newly diagnosed Ph(+) ALL. New challenges have emerged with respect to induction of resistance to imatinib via Abelson tyrosine kinase mutations. An important recent addition to the arsenal against Ph(+) leukemias in general was the development of novel TKIs, such as nilotinib and dasatinib. However, in vitro experiments have suggested that TKIs have an antiproliferative but not an antiapoptotic or cytotoxic effect on the most primitive ALL stem cells. None of the TKIs in clinical use target the LSC. Second generation TKI dasatinib has been shown to have a more profound effect on the stem cell compartment but the drug was still unable to kill the most primitive LSCs. Allogeneic stem cell transplantation (SCT) remains the only curative treatment available for these patients. Several mechanisms were proposed to explain the resistance of LSCs to TKIs in addition to mutations. Hence, TKIs may be used as a bridge to SCT rather than monotherapy or combination with standard chemotherapy. Better understanding the biology of Ph(+) ALL will open new avenues for effective management. In this review, we highlight recent findings relating to the question of LSCs in Ph(+) ALL.

  12. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates

    PubMed Central

    Brunet, Frédéric G.; Volff, Jean-Nicolas; Schartl, Manfred

    2016-01-01

    The receptor tyrosine kinase (RTK) gene family, involved primarily in cell growth and differentiation, comprises proteins with a common enzymatic tyrosine kinase intracellular domain adjacent to a transmembrane region. The amino-terminal portion of RTKs is extracellular and made of different domains, the combination of which characterizes each of the 20 RTK subfamilies among mammals. We analyzed a total of 7,376 RTK sequences among 143 vertebrate species to provide here the first comprehensive census of the jawed vertebrate repertoire. We ascertained the 58 genes previously described in the human and mouse genomes and established their phylogenetic relationships. We also identified five additional RTKs amounting to a total of 63 genes in jawed vertebrates. We found that the vertebrate RTK gene family has been shaped by the two successive rounds of whole genome duplications (WGD) called 1R and 2R (1R/2R) that occurred at the base of the vertebrates. In addition, the Vegfr and Ephrin receptor subfamilies were expanded by single gene duplications. In teleost fish, 23 additional RTK genes have been retained after another expansion through the fish-specific third round (3R) of WGD. Several lineage-specific gene losses were observed. For instance, birds have lost three RTKs, and different genes are missing in several fish sublineages. The RTK gene family presents an unusual high gene retention rate from the vertebrate WGDs (58.75% after 1R/2R, 64.4% after 3R), resulting in an expansion that might be correlated with the evolution of complexity of vertebrate cellular communication and intracellular signaling. PMID:27260203

  13. A novel protein tyrosine kinase Tec identified in lamprey, Lampetra japonica.

    PubMed

    Li, Ranran; Su, Peng; Liu, Chang; Zhang, Qiong; Zhu, Ting; Pang, Yue; Liu, Xin; Li, Qingwei

    2015-08-01

    Protein tyrosine kinase Tec, a kind of non-receptor tyrosine kinase, is primarily found to be expressed in T cells, B cells, hematopoietic cells, and liver cells as a cytoplasmic protein. Tec has been proved to be a critical modulator of T cell receptor signaling pathway. In the present study, a homolog of Tec was identified in the lamprey, Lampetra japonica. The full-length Tec cDNA of L. japonica (Lja-Tec) contains a 1923 bp open reading frame that encodes a 641-amino acid protein. The multi-alignment of the deduced amino acid sequence of Lja-Tec with typical vertebrate Tecs showed that it possesses all conserved domains of the Tec family proteins, indicating that an ortholog of Tec exists in the extant jawless vertebrate. In the phylogenetic tree that was reconstructed with 24 homologs of jawless and jawed vertebrates, the Tecs from lampreys and hagfish were clustered as a single clade. The genetic distance between the outgroup and agnathan Tecs' group is closer than that between outgroup and gnathostome Tecs' group, indicating that its origin was far earlier than any of the jawed vertebrates. The mRNA levels of Lja-Tec in lymphocyte-like cells and gills were detected by real-time quantitative polymerase chain reaction. Results showed that it was significantly upregulated under stimulation with mixed pathogens. This result was further confirmed by western blot analysis. All these results indicated that Lja-Tec plays an important role in immune response. Our data will provide a reference for the further study of lamprey Tec and its immunological function in jawless vertebrates.

  14. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates.

    PubMed

    Brunet, Frédéric G; Volff, Jean-Nicolas; Schartl, Manfred

    2016-06-03

    The receptor tyrosine kinase (RTK) gene family, involved primarily in cell growth and differentiation, comprises proteins with a common enzymatic tyrosine kinase intracellular domain adjacent to a transmembrane region. The amino-terminal portion of RTKs is extracellular and made of different domains, the combination of which characterizes each of the 20 RTK subfamilies among mammals. We analyzed a total of 7,376 RTK sequences among 143 vertebrate species to provide here the first comprehensive census of the jawed vertebrate repertoire. We ascertained the 58 genes previously described in the human and mouse genomes and established their phylogenetic relationships. We also identified five additional RTKs amounting to a total of 63 genes in jawed vertebrates. We found that the vertebrate RTK gene family has been shaped by the two successive rounds of whole genome duplications (WGD) called 1R and 2R (1R/2R) that occurred at the base of the vertebrates. In addition, the Vegfr and Ephrin receptor subfamilies were expanded by single gene duplications. In teleost fish, 23 additional RTK genes have been retained after another expansion through the fish-specific third round (3R) of WGD. Several lineage-specific gene losses were observed. For instance, birds have lost three RTKs, and different genes are missing in several fish sublineages. The RTK gene family presents an unusual high gene retention rate from the vertebrate WGDs (58.75% after 1R/2R, 64.4% after 3R), resulting in an expansion that might be correlated with the evolution of complexity of vertebrate cellular communication and intracellular signaling.

  15. Class III Receptor Tyrosine Kinases in Acute Leukemia – Biological Functions and Modern Laboratory Analysis

    PubMed Central

    Berenstein, Rimma

    2015-01-01

    Acute myeloid leukemia (AML) is a complex disease caused by deregulation of multiple signaling pathways. Mutations in class III receptor tyrosine kinases (RTKs) have been implicated in alteration of cell signals concerning the growth and differentiation of leukemic cells. Point mutations, insertions, or deletions of RTKs as well as chromosomal translocations induce constitutive activation of the receptor, leading to uncontrolled proliferation of undifferentiated myeloid blasts. Aberrations can occur in all domains of RTKs causing either the ligand-independent activation or mimicking the activated conformation. The World Health Organization recommended including RTK mutations in the AML classification since their detection in routine laboratory diagnostics is a major factor for prognostic stratification of patients. Polymerase chain reaction (PCR)–based methods are well-validated for the detection of fms-related tyrosine kinase 3 (FLT3) mutations and can easily be applied for other RTKs. However, when methodological limitations are reached, accessory techniques can be applied. For a higher resolution and more quantitative approach compared to agarose gel electrophoresis, PCR fragments can be separated by capillary electrophoresis. Furthermore, high-resolution melting and denaturing high-pressure liquid chromatography are reliable presequencing screening methods that reduce the sample amount for Sanger sequencing. Because traditional DNA sequencing is time-consuming, next-generation sequencing (NGS) is an innovative modern possibility to analyze a high amount of samples simultaneously in a short period of time. At present, standardized procedures for NGS are not established, but when this barrier is resolved, it will provide a new platform for rapid and reliable laboratory diagnostic of RTK mutations in patients with AML. In this article, the biological and physiological role of RTK mutations in AML as well as possible laboratory methods for their detection will be

  16. Effects of tyrosine kinase inhibitors on the contractility of rat mesenteric resistance arteries.

    PubMed Central

    Toma, C; Jensen, P E; Prieto, D; Hughes, A; Mulvany, M J; Aalkjaer, C

    1995-01-01

    1. A pharmacological characterization of tyrosine kinase inhibitors (TKI) belonging to two distinct groups (competitors at the ATP-binding site and the substrate-binding site, respectively) was performed, based on their effects on the contractility of rat mesenteric arteries. 2. Both the ATP-site competitors (genistein and its inactive analogue, daidzein) and the substrate-site competitors (tyrphostins A-23, A-47 and the inactive analogue, A-1) reversibly inhibited noradrenaline (NA, (10 microM)) and KCl (125 mM) induced contractions, concentration-dependently. Genistein was slightly but significantly more potent than daidzein; the tyrphostins were all less potent than genistein, and there were no significant differences between the individual potencies. The tyrosine kinase substrate-site inhibitor bis-tyrphostin had no inhibitory effect. 3. Genistein, daidzein, A-23 and A-47 each suppressed the contraction induced by Ca2+ (1 microM) in alpha-toxin permeabilized arteries. A-1 and bis-tyrphostin had little or no effect on contraction of the permeabilized arteries. 4. Genistein was significantly more potent than daidzein with respect to inhibition of the contraction induced by 200 nM Ca2+ in the presence of NA (100 microM) and GTP (3 microM). The effect of A-23, A-47, A-1 and bis-tyrphostin was similar in permeabilized arteries activated with Ca2+ (200 nM) + NA (100 microM) + GTP (3 microM) and permeabilized arteries activated with 1 microM Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7620718

  17. Analysis of aminoacids pattern in receptor tyrosine kinase using Boolean association rule.

    PubMed

    Kalita, Pranjal; Kumar, Brindha Senthil; Krishnaswamy, Soundararajan; Nachimuthu, Senthil Kumar

    2012-01-01

    Cancers are characterized by unrestricted cell division and independency of growth factor and other external signal responsiveness. Eukaryotic parental cells of tumors, on the other hand, constitute tissues and other higher structures like organs and systems and are capable of performing various functions in a highly co-ordinated fashion. Hence, cancer cells may be considered as entities capable of incessant growth and cell division but lacking any evolutionarily advanced intracellular or intercellular regulation. Since receptor tyrosine kinases are highly altered and exist in deregulated/constitutively active forms in cancer cells - achieved through various epigenetic mechanisms - we hypothesize the functional RTKs in cancer cells to resemble their counterparts in more primitive species. Analysis of RTK sequences of various species and of cancer is, therefore, expected to prove this hypothesis. Association rule in data mining can reveal the hidden biological information. This study utilizes the Boolean association rule to mine the occurrence pattern of glycine, arginine and alanine in receptor tyrosine kinases (RTKs) of invertebrates, vertebrates and cancer related vertebrate RTKs based on protein sequence informations. The results reveal that vertebrate cancer RTKs resembles prokaryotes and invertebrate RTKs showing an increasing trend of glycine, alanine and decreasing trend in arginine composition. The aminoacid compositions of vertebrates: invertebrates: prokaryotes: vertebrate cancer with respect to Glycine (>=6.1) were 42.86: 50.0: 85.71: 100%, Alanine (>=6.2) were 10.72: 66.67: 85.71: 100%, whereas Arginine (>=5.9) were 21.43: 16.67: 14.29: 0%, respectively. In conclusion, results from this study supports our hypothesis that cancer cells may resemble lower organisms since functionally cancer cells are unresponsive to external signals and various regulatory mechanisms typically found in higher eukaryotes are largely absent.

  18. Suppression of VEGF-induced angiogenesis by the protein tyrosine kinase inhibitor, lavendustin A.

    PubMed Central

    Hu, D E; Fan, T P

    1995-01-01

    1. Vascular endothelial growth factor (VEGF) is a heparin-binding angiogenic factor which specifically acts on endothelial cells via distinct membrane-spanning tyrosine kinase receptors. Here we used the rat sponge implant model to test the hypothesis that the angiogenic activity of VEGF can be suppressed by protein tyrosine kinase (PTK) inhibitors. 2. Neovascular responses in subcutaneous sponge implants were determined by measurements of relative sponge blood flow by use of a 133Xe clearance technique, and confirmed by histological studies and morphometric analysis. 3. Daily local administration of 250 ng VEGF165 accelerated the rate of 133Xe clearance from the sponges and induced an intense neovascularisation. This VEGF165-induced angiogenesis was inhibited by daily co-administration of the selective PTK inhibitor, lavendustin A (10 micrograms), but not its negative control, lavendustin B (10 micrograms). Blood flow measurements and morphometric analysis of 8-day-old sponges showed that lavendustin A reduced the 133Xe clearance of VEGF165-treated sponges from 32.9 +/- 1.5% to 20.9 +/- 1.6% and the total fibrovascular growth area from 62.4 +/- 6.1% to 21.6 +/- 6.8% (n = 12, P < 0.05). 4. Co-injection of suramin (3 mg), an inhibitor of heparin-binding growth factors, also suppressed the VEGF165-elicited neovascular response. In contrast, neither lavendustin A nor suramin produced any effect on the basal sponge-induced angiogenesis. 5. When given alone, low doses of VEGF165 (25 ng) or basic fibroblast growth factor (bFGF; 10 ng) did not modify the basal sponge-induced neovascularisation.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 2 PMID:7533611

  19. Differential protein stability of EGFR mutants determines responsiveness to tyrosine kinase inhibitors

    PubMed Central

    Ray, Paramita; Tan, Yee Sun; Somnay, Vishal; Mehta, Ranjit; Sitto, Merna; Ahsan, Aarif; Nyati, Shyam; Naughton, John P.; Bridges, Alexander; Zhao, Lili; Rehemtulla, Alnawaz; Lawrence, Theodore S.; Ray, Dipankar; Nyati, Mukesh K.

    2016-01-01

    Non-small cell lung cancer (NSCLC) patients carrying specific EGFR kinase activating mutations (L858R, delE746-A750) respond well to tyrosine kinase inhibitors (TKIs). However, drug resistance develops within a year. In about 50% of such patients, acquired drug resistance is attributed to the enrichment of a constitutively active point mutation within the EGFR kinase domain (T790M). To date, differential drug-binding and altered ATP affinities by EGFR mutants have been shown to be responsible for differential TKI response. As it has been reported that EGFR stability plays a role in the survival of EGFR driven cancers, we hypothesized that differential TKI-induced receptor degradation between the sensitive L858R and delE746-A750 and the resistant T790M may also play a role in drug responsiveness. To explore this, we have utilized an EGFR-null CHO overexpression system as well as NSCLC cell lines expressing various EGFR mutants and determined the effects of erlotinib treatment. We found that erlotinib inhibits EGFR phosphorylation in both TKI sensitive and resistant cells, but the protein half-lives of L858R and delE746-A750 were significantly shorter than L858R/T790M. Third generation EGFR kinase inhibitor (AZD9291) inhibits the growth of L858R/T790M-EGFR driven cells and also induces EGFR degradation. Erlotinib treatment induced polyubiquitination and proteasomal degradation, primarily in a c-CBL-independent manner, in TKI sensitive L858R and delE746-A750 mutants when compared to the L858R/T790M mutant, which correlated with drug sensitivity. These data suggest an additional mechanism of TKI resistance, and we postulate that agents that degrade L858R/T790M-EGFR protein may overcome TKI resistance. PMID:27612423

  20. Antitumor effect of the tyrosine kinase inhibitor nilotinib on gastrointestinal stromal tumor (GIST) and imatinib-resistant GIST cells.

    PubMed

    Sako, Hiroyuki; Fukuda, Kazumasa; Saikawa, Yoshiro; Nakamura, Rieko; Takahashi, Tsunehiro; Wada, Norihito; Kawakubo, Hirohumi; Takeuchi, Hiroya; Ohmori, Tai; Kitagawa, Yuko

    2014-01-01

    Despite the benefits of imatinib for treating gastrointestinal stromal tumors (GIST), the prognosis for high risk GIST and imatinib-resistant (IR) GIST remains poor. The mechanisms of imatinib resistance have not yet been fully clarified. The aim of the study was to establish imatinib-resistant cell lines and investigate nilotinib, a second generation tyrosine kinase inhibitor (TKI), in preclinical models of GIST and imatinib-resistant GIST. For a model of imatinib-resistant GIST, we generated resistant cells from GK1C and GK3C cell lines by exposing them to imatinib for 6 months. The parent cell lines GK1C and GK3C showed imatinib sensitivity with IC50 of 4.59±0.97 µM and 11.15±1.48 µM, respectively. The imatinib-resistant cell lines GK1C-IR and GK3C-IR showed imatinib resistance with IC50 values of 11.74±0.17 µM (P<0.001) and 41.37±1.07 µM (P<0.001), respectively. The phosphorylation status of key cell signaling pathways, receptor tyrosine kinase KIT (CD117), platelet-derived growth factor receptor alpha (PDGFRA) and downstream signaling kinases: serine-threonine kinase Akt (AKT) and extracellular signal-regulated kinase 1/2 (ERK1/2) or the non-receptor tyrosine kinase: proto-oncogene tyrosine-protein kinase Src (SRC), was analyzed in established cell lines and ERK1/2 phosphorylation was found to be increased compared to the parental cells. Nilotinib demonstrated significant antitumor efficacy against GIST xenograft lines and imatinib-resistant GIST cell lines. Thus, nilotinib may have clinical potential for patients with GIST or imatinib-resistant GIST.

  1. The activation of the neutrophil respiratory burst by anti-neutrophil cytoplasm autoantibody (ANCA) from patients with systemic vasculitis requires tyrosine kinases and protein kinase C activation

    PubMed Central

    Radford, D J; Lord, J M; Savage, C O S

    1999-01-01

    The ability of antineutrophil cytoplasm autoantibodies (ANCA) from patients with systemic vasculitis to stimulate protein kinase C (PKC) and tyrosine kinases was examined in human neutrophils. Using the superoxide dismutase-inhibitable reduction of ferricytochrome C, the kinetics of ANCA-induced superoxide (O2−) production were characterized and subsequently manipulated by specific inhibitors of PKC and tyrosine kinases. With this approach, ANCA IgG, but not normal IgG or ANCA F(ab′)2 fragments caused a time and dose dependent release of O2− from TNF-α primed neutrophils. The kinetics of ANCA-induced O2− production showed an initial 10–15 min lag phase compared to the N-formyl-l-methionyl-l-leucyl-l-phenylalanine response, suggesting differences in the signalling pathways recruited by these two stimuli. Inhibitor studies revealed that ANCA-activation involved members of both the Ca2+-dependent and -independent PKC isoforms and also tyrosine kinases. ANCA IgG resulted in the translocation of the βII isoform of PKC at a time corresponding to the end of the lag phase of O2− production, suggesting that PKC activity may be instrumental in processes regulating the activity of the NADPH oxidase in response to ANCA. Tyrosine phosphorylation of numerous proteins also peaked 10–15 min after stimulation with ANCA but not normal IgG. These data suggest that PKC and tyrosine kinases regulate O2− production from neutrophils stimulated with autoantibodies from patients with systemic vasculitis. PMID:10540175

  2. The ALK inhibitor PF-06463922 is effective as a single agent in neuroblastoma driven by expression of ALK and MYCN

    PubMed Central

    Guan, J.; Tucker, E. R.; Wan, H.; Chand, D.; Danielson, L. S.; Ruuth, K.; El Wakil, A.; Witek, B.; Jamin, Y.; Umapathy, G.; Robinson, S. P.; Johnson, T. W.; Smeal, T.; Martinsson, T.; Chesler, L.; Palmer, R. H.

    2016-01-01

    ABSTRACT The first-in-class inhibitor of ALK, c-MET and ROS1, crizotinib (Xalkori), has shown remarkable clinical efficacy in treatment of ALK-positive non-small cell lung cancer. However, in neuroblastoma, activating mutations in the ALK kinase domain are typically refractory to crizotinib treatment, highlighting the need for more potent inhibitors. The next-generation ALK inhibitor PF-06463922 is predicted to exhibit increased affinity for ALK mutants prevalent in neuroblastoma. We examined PF-06463922 activity in ALK-driven neuroblastoma models in vitro and in vivo. In vitro kinase assays and cell-based experiments examining ALK mutations of increasing potency show that PF-06463922 is an effective inhibitor of ALK with greater activity towards ALK neuroblastoma mutants. In contrast to crizotinib, single agent administration of PF-06463922 caused dramatic tumor inhibition in both subcutaneous and orthotopic xenografts as well as a mouse model of high-risk neuroblastoma driven by Th-ALKF1174L/MYCN. Taken together, our results suggest PF-06463922 is a potent inhibitor of crizotinib-resistant ALK mutations, and highlights an important new treatment option for neuroblastoma patients. PMID:27483357

  3. Activated type I TGFbeta receptor (Alk5) kinase confers enhancedsurvival to mammary epithelial cells and accelerates mammary tumorprogression

    SciTech Connect

    Muraoka-Cook, Rebecca S.; Shin, Incheol; Yi, Jae Youn; Easterly,Evangeline; Barcellos-Hoff, Mary Helen; Yingling, Jonathan M.; Zent, Roy; Arteaga, Carlos L.

    2005-01-02

    The transforming growth factor-betas (TGF{beta}s) are members of a large superfamily of pleiotropic cytokines that also includes the activins and the bone morphogenetic proteins (BMPs). Members of the TGF{beta} family regulate complex physiological processes such cell proliferation, differentiation, adhesion, cell-cell and cell-matrix interactions, motility, and cell death, among others (Massague, 1998). Dysregulation of TGF{beta} signaling contributes to several pathological processes including cancer, fibrosis, and auto-immune disorders (Massague et al., 2000). The TGF{beta}s elicit their biological effects by binding to type II and type I transmembrane receptor serine-threonine kinases (T{beta}RII and T{beta}RI) which, in turn, phosphorylated Smad 2 and Smad 3. Phosphorylated Smad 2/3 associate with Smad 4 and, as a heteromeric complex, translocate to the nucleus where they regulate gene transcription. The inhibitory Smad7 down regulates TGF{beta} signaling by binding to activated T{beta}RI and interfering with its ability to phosphorylate Smad 2/3 (Derynck and Zhang, 2003; Shi and Massague, 2003). Signaling is also regulated by Smad proteolysis. TGF{beta} receptor-mediated activation results in multi-ubiquitination of Smad 2 in the nucleus and subsequent degradation of Smad 2 by the proteasome (Lo and Massague, 1999). Activation of TGF{beta} receptors also induces mobilization of a Smad 7-Smurf complex from the nucleus to the cytoplasm; this complex recognizes the activated receptors and mediates their ubiquitination and internalization via caveolin-rich vesicles, leading to termination of TGF{beta} signaling (Di Guglielmo et al., 2003). Other signal transducers/pathways have been implicated in TGF{beta} actions. These include the extracellular signal-regulated kinase (Erk), c-Jun N-terminal kinase (Jnk), p38 mitogen-activated protein kinase (MAPK), protein phosphatase PP2A, phosphatidylinositol-3 kinase (PI3K), and the family of Rho GTPases [reviewed in

  4. Gold nanoparticles enhance the effect of tyrosine kinase inhibitors in acute myeloid leukemia therapy

    PubMed Central

    Petrushev, Bobe; Boca, Sanda; Simon, Timea; Berce, Cristian; Frinc, Ioana; Dima, Delia; Selicean, Sonia; Gafencu, Grigore-Aristide; Tanase, Alina; Zdrenghea, Mihnea; Florea, Adrian; Suarasan, Sorina; Dima, Liana; Stanciu, Raluca; Jurj, Ancuta; Buzoianu, Anca; Cucuianu, Andrei; Astilean, Simion; Irimie, Alexandru; Tomuleasa, Ciprian; Berindan-Neagoe, Ioana

    2016-01-01

    Background and aims Every year, in Europe, acute myeloid leukemia (AML) is diagnosed in thousands of adults. For most subtypes of AML, the backbone of treatment was introduced nearly 40 years ago as a combination of cytosine arabinoside with an anthracycline. This therapy is still the worldwide standard of care. Two-thirds of patients achieve complete remission, although most of them ultimately relapse. Since the FLT3 mutation is the most frequent, it serves as a key molecular target for tyrosine kinase inhibitors (TKIs) that inhibit FLT3 kinase. In this study, we report the conjugation of TKIs onto spherical gold nanoparticles. Materials and methods The internalization of TKI-nanocarriers was proved by the strongly scattered light from gold nanoparticles and was correlated with the results obtained by transmission electron microscopy and dark-field microscopy. The therapeutic effect of the newly designed drugs was investigated by several methods including cell counting assay as well as the MTT assay. Results We report the newly described bioconjugates to be superior when compared with the drug alone, with data confirmed by state-of-the-art analyses of internalization, cell biology, gene analysis for FLT3-IDT gene, and Western blotting to assess degradation of the FLT3 protein. Conclusion The effective transmembrane delivery and increased efficacy validate its use as a potential therapeutic. PMID:26929621

  5. Spleen Tyrosine Kinase Regulates AP-1 Dependent Transcriptional Response to Minimally Oxidized LDL

    PubMed Central

    Choi, Soo-Ho; Wiesner, Philipp; Almazan, Felicidad; Kim, Jungsu; Miller, Yury I.

    2012-01-01

    Oxidative modification of low-density lipoprotein (LDL) turns it into an endogenous ligand recognized by pattern-recognition receptors. We have demonstrated that minimally oxidized LDL (mmLDL) binds to CD14 and mediates TLR4/MD-2-dependent responses in macrophages, many of which are MyD88-independent. We have also demonstrated that the mmLDL activation leads to recruitment of spleen tyrosine kinase (Syk) to TLR4 and TLR4 and Syk phosphorylation. In this study, we produced a macrophage-specific Syk knockout mouse and used primary Syk−/− macrophages in our studies. We demonstrated that Syk mediated phosphorylation of ERK1/2 and JNK, which in turn phosphorylated c-Fos and c-Jun, respectively, as assessed by an in vitro kinase assay. c-Jun phosphorylation was also mediated by IKKε. c-Jun and c-Fos bound to consensus DNA sites and thereby completed an AP-1 transcriptional complex and induced expression of CXCL2 and IL-6. These results suggest that Syk plays a key role in TLR4-mediated macrophage responses to host-generated ligands, like mmLDL, with subsequent activation of an AP-1 transcription program. PMID:22384232

  6. Delayed skin wound repair in proline-rich protein tyrosine kinase 2 knockout mice.

    PubMed

    Koppel, Aaron C; Kiss, Alexi; Hindes, Anna; Burns, Carole J; Marmer, Barry L; Goldberg, Gregory; Blumenberg, Miroslav; Efimova, Tatiana

    2014-05-15

    Proline-rich protein tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family. We used Pyk2 knockout (Pyk2-KO) mice to study the role of Pyk2 in cutaneous wound repair. We report that the rate of wound closure was delayed in Pyk2-KO compared with control mice. To examine whether impaired wound healing of Pyk2-KO mice was caused by a keratinocyte cell-autonomous defect, the capacities of primary keratinocytes from Pyk2-KO and wild-type (WT) littermates to heal scratch wounds in vitro were compared. The rate of scratch wound repair was decreased in Pyk2-KO keratinocytes compared with WT cells. Moreover, cultured human epidermal keratinocytes overexpressing the dominant-negative mutant of Pyk2 failed to heal scratch wounds. Conversely, stimulation of Pyk2-dependent signaling via WT Pyk2 overexpression induced accelerated scratch wound closure and was associated with increased expression of matrix metalloproteinase (MMP)-1, MMP-9, and MMP-10. The Pyk2-stimulated increase in the rate of scratch wound repair was abolished by coexpression of the dominant-negative mutant of PKCδ and by GM-6001, a broad-spectrum inhibitor of MMP activity. These results suggest that Pyk2 is essential for skin wound reepithelialization in vivo and in vitro and that it regulates epidermal keratinocyte migration via a pathway that requires PKCδ and MMP functions.

  7. Spleen Tyrosine Kinase Inhibition Attenuates Autoantibody Production and Reverses Experimental Autoimmune GN

    PubMed Central

    McAdoo, Stephen P.; Reynolds, John; Bhangal, Gurjeet; Smith, Jennifer; McDaid, John P.; Tanna, Anisha; Jackson, William D.; Masuda, Esteban S.; Cook, H. Terence; Pusey, Charles D.

    2014-01-01

    Spleen tyrosine kinase (SYK) has an important role in immunoreceptor signaling, and SYK inhibition has accordingly attenuated immune-mediated injury in several in vivo models. However, the effect of SYK inhibition on autoantibody production remains unclear, and SYK inhibition has not been studied in an autoimmune model of renal disease. We, therefore, studied the effect of SYK inhibition in experimental autoimmune GN, a rodent model of antiglomerular basement membrane disease. We show glomerular SYK expression and activation by immunohistochemistry in both experimental and clinical disease, and we show that treatment with fostamatinib, a small molecule kinase inhibitor selective for SYK, completely prevents the induction of experimental autoimmune GN. In established experimental disease, introduction of fostamatinib treatment led to cessation of autoantibody production, reversal of renal injury, preservation of biochemical renal function, and complete protection from lung hemorrhage. B cell ELISpot and flow cytometric analysis suggest that short-term fostamatinib treatment inhibits the generation and activity of antigen-specific B cells without affecting overall B-cell survival. Additionally, fostamatinib inhibited proinflammatory cytokine production by nephritic glomeruli ex vivo and cultured bone marrow-derived macrophages in vitro, suggesting additional therapeutic effects independent of effects on autoantibody production that are likely related to inhibited Fc receptor signaling within macrophages in diseased glomeruli. Given these encouraging results in an in vivo model that is highly applicable to human disease, we believe clinical studies targeting SYK in GN are now warranted. PMID:24700868

  8. Fasting potentiates the anticancer activity of tyrosine kinase inhibitors by strengthening MAPK signaling inhibition

    PubMed Central

    Caffa, Irene; D'Agostino, Vito; Damonte, Patrizia; Soncini, Debora; Cea, Michele; Monacelli, Fiammetta; Odetti, Patrizio; Ballestrero, Alberto; Provenzani, Alessandro; Longo, Valter D.; Nencioni, Alessio

    2015-01-01

    Tyrosine kinase inhibitors (TKIs) are now the mainstay of treatment in many types of cancer. However, their benefit is frequently short-lived, mandating the search for safe potentiation strategies. Cycles of fasting enhance the activity of chemo-radiotherapy in preclinical cancer models and dietary approaches based on fasting are currently explored in clinical trials. Whether combining fasting with TKIs is going to be potentially beneficial remains unknown. Here we report that starvation conditions increase the ability of commonly administered TKIs, including erlotinib, gefitinib, lapatinib, crizotinib and regorafenib, to block cancer cell growth, to inhibit the mitogen-activated protein kinase (MAPK) signaling pathway and to strengthen E2F-dependent transcription inhibition. In cancer xenografts models, both TKIs and cycles of fasting slowed tumor growth, but, when combined, these interventions were significantly more effective than either type of treatment alone. In conclusion, cycles of fasting or of specifically designed fasting-mimicking diets should be evaluated in clinical studies as a means to potentiate the activity of TKIs in clinical use. PMID:25909220

  9. Cooperation of imipramine blue and tyrosine kinase blockade demonstrates activity against chronic myeloid leukemia

    PubMed Central

    Laidlaw, Kamilla M.E.; Berhan, Samuel; Liu, Suhu; Silvestri, Giovannino; Holyoake, Tessa L.; Frank, David A.; Aggarwal, Bharat; Bonner, Michael Y.; Perrotti, Danilo

    2016-01-01

    The use of tyrosine kinase inhibitors (TKI), including nilotinib, has revolutionized the treatment of chronic myeloid leukemia (CML). However current unmet clinical needs include combating activation of additional survival signaling pathways in persistent leukemia stem cells after long-term TKI therapy. A ubiquitous signaling alteration in cancer, including CML, is activation of reactive oxygen species (ROS) signaling, which may potentiate stem cell activity and mediate resistance to both conventional chemotherapy and targeted inhibitors. We have developed a novel nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, imipramine blue (IB) that targets ROS generation. ROS levels are known to be elevated in CML with respect to normal hematopoietic stem/progenitor cells and not corrected by TKI. We demonstrate that IB has additive benefit with nilotinib in inhibiting proliferation, viability, and clonogenic function of TKI-insensitive quiescent CD34+ CML chronic phase (CP) cells while normal CD34+ cells retained their clonogenic capacity in response to this combination therapy in vitro. Mechanistically, the pro-apoptotic activity of IB likely resides in part through its dual ability to block NF-κB and re-activate the tumor suppressor protein phosphatase 2A (PP2A). Combining BCR-ABL1 kinase inhibition with NADPH oxidase blockade may be beneficial in eradication of CML and worthy of further investigation. PMID:27438151

  10. Fasting potentiates the anticancer activity of tyrosine kinase inhibitors by strengthening MAPK signaling inhibition.

    PubMed

    Caffa, Irene; D'Agostino, Vito; Damonte, Patrizia; Soncini, Debora; Cea, Michele; Monacelli, Fiammetta; Odetti, Patrizio; Ballestrero, Alberto; Provenzani, Alessandro; Longo, Valter D; Nencioni, Alessio

    2015-05-20

    Tyrosine kinase inhibitors (TKIs) are now the mainstay of treatment in many types of cancer. However, their benefit is frequently short-lived, mandating the search for safe potentiation strategies. Cycles of fasting enhance the activity of chemo-radiotherapy in preclinical cancer models and dietary approaches based on fasting are currently explored in clinical trials. Whether combining fasting with TKIs is going to be potentially beneficial remains unknown. Here we report that starvation conditions increase the ability of commonly administered TKIs, including erlotinib, gefitinib, lapatinib, crizotinib and regorafenib, to block cancer cell growth, to inhibit the mitogen-activated protein kinase (MAPK) signaling pathway and to strengthen E2F-dependent transcription inhibition. In cancer xenografts models, both TKIs and cycles of fasting slowed tumor growth, but, when combined, these interventions were significantly more effective than either type of treatment alone. In conclusion, cycles of fasting or of specifically designed fasting-mimicking diets should be evaluated in clinical studies as a means to potentiate the activity of TKIs in clinical use.

  11. Imipramine protects retinal ganglion cells from oxidative stress through the tyrosine kinase receptor B signaling pathway

    PubMed Central

    Han, Ming-lei; Liu, Guo-hua; Guo, Jin; Yu, Shu-juan; Huang, Jing

    2016-01-01

    Retinal ganglion cell (RGC) degeneration is irreversible in glaucoma and tyrosine kinase receptor B (TrkB)-associated signaling pathways have been implicated in the process. In this study, we attempted to examine whether imipramine, a tricyclic antidepressant, may protect hydrogen peroxide (H2O2)-induced RGC degeneration through the activation of the TrkB pathway in RGC-5 cell lines. RGC-5 cell lines were pre-treated with imipramine 30 minutes before exposure to H2O2. Western blot assay showed that in H2O2 -damaged RGC-5 cells, imipramine activated TrkB pathways through extracellular signal-regulated protein kinase/TrkB phosphorylation. TUNEL staining assay also demonstrated that imipramine ameliorated H2O2 -induced apoptosis in RGC-5 cells. Finally, TrkB-IgG intervention was able to reverse the protective effect of imipramine on H2O2 -induced RGC-5 apoptosis. Imipramine therefore protects RGCs from oxidative stress-induced apoptosis through the TrkB signaling pathway. PMID:27127489

  12. Dialkoxyquinazolines: Screening Epidermal Growth Factor ReceptorTyrosine Kinase Inhibitors for Potential Tumor Imaging Probes

    SciTech Connect

    VanBrocklin, Henry F.; Lim, John K.; Coffing, Stephanie L.; Hom,Darren L.; Negash, Kitaw; Ono, Michele Y.; Hanrahan, Stephen M.; Taylor,Scott E.; Vanderpoel, Jennifer L.; Slavik, Sarah M.; Morris, Andrew B.; Riese II, David J.

    2005-09-01

    The epidermal growth factor receptor (EGFR), a long-standingdrug development target, is also a desirable target for imaging. Sixteendialkoxyquinazoline analogs, suitable for labeling with positron-emittingisotopes, have been synthesized and evaluated in a battery of in vitroassays to ascertain their chemical and biological properties. Thesecharacteristics provided the basis for the adoption of a selection schemato identify lead molecules for labeling and in vivo evaluation. A newEGFR tyrosine kinase radiometric binding assay revealed that all of thecompounds possessed suitable affinity (IC50 = 0.4 - 51 nM) for the EGFRtyrosine kinase. All of the analogs inhibited ligand-induced EGFRtyrosine phosphorylation (IC50 = 0.8 - 20 nM). The HPLC-estimatedoctanol/water partition coefficients ranged from 2.0-5.5. Four compounds,4-(2'-fluoroanilino)- and 4-(3'-fluoroanilino)-6,7-diethoxyquinazoline aswell as 4-(3'-chloroanilino)- and4-(3'-bromoanilino)-6,7-dimethoxyquinazoline, possess the bestcombination of characteristics that warrant radioisotope labeling andfurther evaluation in tumor-bearing mice.

  13. The Drosophila Shark tyrosine kinase is required for embryonic dorsal closure

    PubMed Central

    Fernandez, Rafael; Takahashi, Fumitaka; Liu, Zhao; Steward, Ruth; Stein, David; Stanley, E. Richard

    2000-01-01

    Dorsal closure (DC) in the Drosophila embryo requires the coordinated interaction of two different functional domains of the epidermal cell layer—the leading edge (LE) and the lateral epidermis. In response to activation of a conserved c-Jun amino-terminal kinase (JNK) signaling module, the dorsal-most layer of cells, which constitute the LE of the stretching epithelial sheet, secrete Dpp, a member of the TGFβ superfamily. Dpp and other LE cell-derived signaling molecules stimulate the bilateral dorsal elongation of cells of the dorsolateral epidermis over the underlaying amnioserosa and the eventual fusion of their LEs along the dorsal midline. We have found that flies bearing a Shark tyrosine kinase gene mutation, shark1, exhibit a DC-defective phenotype. Dpp fails to be expressed in shark1 mutant LE cells. Consistent with these observations, epidermal-specific reconstitution of shark function or overexpression of an activated form of c-Jun in the shark1 mutant background, rescues the DC defect. Thus, Shark regulates the JNK signaling pathway leading to Dpp expression in LE cells. Furthermore, constitutive activation of the Dpp pathway throughout the epidermis fails to rescue the shark1 DC defect, suggesting that Shark may function in additional pathways in the LE and/or lateral epithelium. PMID:10716948

  14. The tyrosine kinase Stitcher activates Grainy head and epidermal wound healing in Drosophila.

    PubMed

    Wang, Shenqiu; Tsarouhas, Vasilios; Xylourgidis, Nikos; Sabri, Nafiseh; Tiklová, Katarína; Nautiyal, Naumi; Gallio, Marco; Samakovlis, Christos

    2009-07-01

    Epidermal injury initiates a cascade of inflammation, epithelial remodelling and integument repair at wound sites. The regeneration of the extracellular barrier and damaged tissue repair rely on the precise orchestration of epithelial responses triggered by the injury. Grainy head (Grh) transcription factors induce gene expression to crosslink the extracellular barrier in wounded flies and mice. However, the activation mechanisms and functions of Grh factors in re-epithelialization remain unknown. Here we identify stitcher (stit), a new Grh target in Drosophila melanogaster. stit encodes a Ret-family receptor tyrosine kinase required for efficient epidermal wound healing. Live imaging analysis reveals that Stit promotes actin cable assembly during wound re-epithelialization. Stit activation also induces extracellular signal-regulated kinase (ERK) phosphorylation along with the Grh-dependent expression of stit and barrier repair genes at the wound sites. The transcriptional stimulation of stit on injury triggers a positive feedback loop increasing the magnitude of epithelial responses. Thus, Stit activation upon wounding coordinates cytoskeletal rearrangements and the level of Grh-mediated transcriptional wound responses.

  15. Lemur Tyrosine Kinase 2, a novel target in prostate cancer therapy.

    PubMed

    Shah, Kalpit; Bradbury, Neil A

    2015-06-10

    Progression from early forms of prostate cancer to castration-resistant disease is associated with an increase in signal transduction activity. The majority of castration-resistance cancers persist in the expression of the androgen receptor (AR), as well as androgen-dependent genes. The AR is regulated not only by it associated steroid hormone, but also by manifold regulatory and signaling molecules, including several kinases. We undertook evaluation of the role of Lemur Tyrosine Kinase 2 (LMTK2) in modulating AR activity, as several Genome Wide Association Studies (GWAS) have shown a marked association of LMTK2 activity with the development of prostate cancer. We confirm that not only is LMTK2 mRNA reduced in prostate cancer tissue, but also LMTK2 protein levels are markedly diminished. Knockdown of LMTK2 protein in prostate cell lines greatly increased the transcription of androgen-responsive genes. In addition, LMTK2 knockdown led to an increase in prostate cancer stem cell populations in LNCaP cells, indicative of increased tumorogenicity. Using multiple approaches, we also demonstrate that LMTK2 interacts with the AR, thus putting LMTK2 as a component of a signaling complex modulating AR activity. Our finding that LMTK2 is a negative regulator of AR activity defines a novel cellular pathway for activation of AR-responsive genes in castrate resistant-prostate cancer. Moreover, pharmacologic manipulation of LMTK2 activity will provide a novel therapeutic target for more effective treatments for patients with castrate-resistant prostate cancer.

  16. Combination therapy with copanlisib and ABL tyrosine kinase inhibitors against Philadelphia chromosome-positive resistant cells

    PubMed Central

    Okabe, Seiichi; Tauchi, Tetsuzo; Tanaka, Yuko; Sakuta, Juri; Ohyashiki, Kazuma

    2016-01-01

    ABL tyrosine kinase inhibitor (TKI) therapy has improved the survival of patients with Philadelphia (Ph) chromosome-positive leukemia. However, ABL TKIs cannot eradicate leukemia stem cells. Therefore, new therapeutic approaches for Ph-positive leukemia are needed. Aberrant activation of phosphoinositide 3-kinase (PI3K) signaling is important for the initiation and maintenance of human cancers. Copanlisib (BAY80-6946) is a potent inhibitor of PI3Kα and PI3K-δ. Here we investigated the efficacy of combination therapy of copanlisib with an ABL TKI (imatinib, nilotinib, or ponatinib) using BCR-ABL-positive cells. Although the effects of the ABL TKI treatment were reduced in the presence of the feeder cell line, HS-5, copanlisib inhibited cell growth. Upon combining ABL TKI and copanlisib, cell growth was reduced. Ponatinib and copanlisib combined therapy reduced tumor volume and increased survival in mouse allograft models, respectively. These results indicate that the PI3Kα and -δ inhibitors overcame the chemoprotective effects of the feeder cells and enhanced ABL TKI cytotoxicity. Thus, co-treatment with ABL TKI and copanlisib may be a powerful strategy against ABL TKI-resistant cells, including those harboring the related T315I mutation. PMID:27437766

  17. Combination therapy with copanlisib and ABL tyrosine kinase inhibitors against Philadelphia chromosome-positive resistant cells.

    PubMed

    Okabe, Seiichi; Tauchi, Tetsuzo; Tanaka, Yuko; Sakuta, Juri; Ohyashiki, Kazuma

    2016-08-16

    ABL tyrosine kinase inhibitor (TKI) therapy has improved the survival of patients with Philadelphia (Ph) chromosome-positive leukemia. However, ABL TKIs cannot eradicate leukemia stem cells. Therefore, new therapeutic approaches for Ph-positive leukemia are needed. Aberrant activation of phosphoinositide 3-kinase (PI3K) signaling is important for the initiation and maintenance of human cancers. Copanlisib (BAY80-6946) is a potent inhibitor of PI3Kα and PI3K-δ. Here we investigated the efficacy of combination therapy of copanlisib with an ABL TKI (imatinib, nilotinib, or ponatinib) using BCR-ABL-positive cells. Although the effects of the ABL TKI treatment were reduced in the presence of the feeder cell line, HS-5, copanlisib inhibited cell growth. Upon combining ABL TKI and copanlisib, cell growth was reduced. Ponatinib and copanlisib combined therapy reduced tumor volume and increased survival in mouse allograft models, respectively. These results indicate that the PI3Kα and -δ inhibitors overcame the chemoprotective effects of the feeder cells and enhanced ABL TKI cytotoxicity. Thus, co-treatment with ABL TKI and copanlisib may be a powerful strategy against ABL TKI-resistant cells, including those harboring the related T315I mutation.

  18. Design and synthesis of quinazolinone tagged acridones as cytotoxic agents and their effects on EGFR tyrosine kinase.

    PubMed

    Babu, Yarlagadda Rajesh; Bhagavanraju, Mantripragada; Reddy, Gade Deepak; Peters, Godefridus J; Prasad, Velivela V S Rajendra

    2014-09-01

    In a quest for finding potent cytotoxic molecules, we have designed and synthesized a new scaffold by tagging quinazolinones with an acridone moiety. The new acridone-4-carboximide derivatives were evaluated for their cytotoxic potentials against the MCF7 breast cancer cell line and three colon cancer cell lines (LS174T, SW1398, and WiDr). Compound 26 showed relatively potent cytotoxic activity among the derivatives, against all the cell lines tested. Mechanistic studies for the selected derivatives 7, 8, 16, 17, 25, and 26 were conducted through in vitro EGFR tyrosine kinase inhibition studies. The results indicate that compound 26 has a better EGFR tyrosine kinase inhibitory profile. The in vitro EGFR inhibition data was correlated with the cytotoxic properties, and molecular docking studies were performed with regard to the receptor autophosphorylation sites of the protein kinase domain of the EGFR.

  19. A novel lead compound CM-118: antitumor activity and new insight into the molecular mechanism and combination therapy strategy in c-Met- and ALK-dependent cancers.

    PubMed

    Meng, Lanfang; Shu, Mengjun; Chen, Yaqing; Yang, Dexiao; He, Qun; Zhao, Hui; Feng, Zhiyong; Liang, Chris; Yu, Ker

    2014-06-01

    The anaplastic lymphoma kinase (ALK) and the c-Met receptor tyrosine kinase play essential roles in the pathogenesis in multiple human cancers and present emerging targets for cancer treatment. Here, we describe CM-118, a novel lead compound displaying low nanomolar biochemical potency against both ALK and c-Met with selectivity over>90 human kinases. CM-118 potently abrogated hepatocyte growth factor (HGF)-induced c-Met phosphorylation and cell migration, phosphorylation of ALK, EML4-ALK, and ALK resistance mutants in transfected cells. CM-118 inhibited proliferation and/or induced apoptosis in multiple c-Met- and ALK-addicted cancer lines with dose response profile correlating target blockade. We show that the CM-118-induced apoptosis in c-Met-amplified H1993 NSCLC cells involved a rapid suppression of c-Met activity and c-Met-to-EGFR cross-talk, and was profoundly potentiated by EGFR inhibitors as shown by the increased levels of apoptotic proteins cleaved-PARP and Bim as well as reduction of the survival protein Mcl-1. Bim-knockdown or Mcl-1 overexpression each significantly attenuated apoptosis. We also revealed a key role by mTOR in mediating CM-118 action against the EML4-ALK-dependent NSCLC cells. Abrogation of EML4-ALK in H2228 cells profoundly reduced signaling capacity of the rapamycin-sensitive mTOR pathway leading to G 1 cell cycle arrest and mitochondrial hyperpolarization, a metabolic perturbation linked to mTOR inhibition. Depletion of mTOR or mTORC1 inhibited H2228 cell growth, and mTOR inhibitors potentiated CM-118's antitumor activity in vitro and in vivo. Oral administration of CM-118 at a wide range of well tolerated dosages diminished c-Met- and ALK phosphorylation in vivo, and caused tumor regression or growth inhibition in multiple c-Met- and ALK-dependent tumor xenografts in mice. CM-118 exhibits favorable pharmacokinetic and drug metabolism properties hence presents a candidate for clinical evaluation.

  20. Sunitinib: a multitargeted receptor tyrosine kinase inhibitor in the era of molecular cancer therapies.

    PubMed

    Papaetis, Georgios S; Syrigos, Kostas N

    2009-01-01

    Sunitinib is an oral oxindole multitargeted kinase inhibitor that inhibits certain receptor tyrosine kinases (RTKs). These include vascular endothelial growth factor receptors (VEGFR type 1 and 2), platelet-derived growth factor receptors (PDGFR-alpha and PDGFR-beta), stem cell factor receptor (KIT), FMS-like tyrosine kinase-3 (FLT3), glial cell-line derived neurotrophic factor receptor (RET) and the receptor of macrophage-colony stimulating factor (CSF1R). Examination of the antitumor effect of sunitinib in a variety of cell lines in vitro suggested an antiproliferative activity that is dependent on the presence of constitutively active RTK targets. The use of sunitinib as first-line therapy in advanced renal cell carcinoma (RCC) has improved the overall survival compared with that observed after cytokine therapy, while its administration in patients with gastrointestinal stromal tumors (GISTs) after progression or intolerance to imatinib achieved an objective response of 7%. Sunitinib is currently approved for the treatment of GISTs in this setting, and as first-line therapy for the treatment of advanced RCC. The relatively long half-life of sunitinib and its major metabolite allow for a once-daily dosing schedule. An interesting antitumor activity of sunitinib was reported in phase II studies of patients with a variety of malignancies, such as hepatocellular cancer, pancreatic neuroendocrine tumors, and non-small cell lung cancer; results of phase III studies are urgently anticipated. Fatigue is one of the most common adverse effects of sunitinib, as 50-70% of patients with advanced RCC and GIST complained of this adverse effect. Other adverse effects are diarrhea, anorexia, nausea and vomiting, oral changes and bleeding events. Most toxicities are reversible and should not result in discontinuation of sunitinib. If necessary, dose adjustments or interruptions should be made. Hypothyroidism has been described in the first 2 weeks of sunitinib therapy and its

  1. Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells

    PubMed Central

    Abbaspour Babaei, Maryam; Kamalidehghan, Behnam; Saleem, Mohammad; Huri, Hasniza Zaman; Ahmadipour, Fatemeh

    2016-01-01

    c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c-Kit for future cancer therapy. In addition, it has c-Kit inhibitor drug properties and their functions have been listed in tables and demonstrated in schematic pictures. This review also has collected previous studies that targeted c-Kit as a novel strategy for cancer therapy. This paper further emphasizes the advantages of this approach, as well as the limitations that must be addressed in the future. Finally, although c-Kit is an attractive target for cancer therapy, based on the outcomes of treatment of patients with c-Kit inhibitors, it is unlikely that Kit inhibitors alone can lead to cure. It seems that c-Kit mutations alone are not sufficient for tumorogenesis, but do play a crucial role in cancer occurrence. PMID:27536065

  2. Analysis of Somatic Mutations in Cancer: Molecular Mechanisms of Activation in the ErbB Family of Receptor Tyrosine Kinases

    PubMed Central

    Shih, Andrew J.; Telesco, Shannon E.; Radhakrishnan, Ravi

    2011-01-01

    The ErbB/EGFR/HER family of kinases consists of four homologous receptor tyrosine kinases which are important regulatory elements in many cellular processes, including cell proliferation, differentiation, and migration. Somatic mutations in, or over-expression of, the ErbB family is found in many cancers and is correlated with a poor prognosis; particularly, clinically identified mutations found in non-small-cell lung cancer (NSCLC) of ErbB1 have been shown to increase its basal kinase activity and patients carrying these mutations respond remarkably to the small tyrosine kinase inhibitor gefitinib. Here, we analyze the potential effects of the currently catalogued clinically identified mutations in the ErbB family kinase domains on the molecular mechanisms of kinase activation. Recently, we identified conserved networks of hydrophilic and hydrophobic interactions characteristic to the active and inactive conformation, respectively. Here, we show that the clinically identified mutants influence the kinase activity in distinctive fashion by affecting the characteristic interaction networks. PMID:21701703

  3. Spleen tyrosine kinase (SYK) is a potential target for the treatment of cutaneous lupus erythematosus patients.

    PubMed

    Braegelmann, Christine; Hölzel, Michael; Ludbrook, Valerie; Dickson, Marion; Turan, Nil; Ferring-Schmitt, Sandra; Sternberg, Sonja; Bieber, Thomas; Kuhn, Annegret; Wenzel, Joerg

    2016-05-01

    Spleen tyrosine kinase (SYK) is a protein kinase involved in cell proliferation and the regulation of inflammatory pathways. Due to the increasing evidence that kinase inhibitors have potential as specific anti-inflammatory drugs, we have investigated the potential for SYK inhibition as a therapeutic target in autoimmune diseases, particularly cutaneous lupus erythematosus (CLE). Skin samples of patients with different CLE subtypes and appropriate controls were analysed for the expression of SYK and SYK-associated pro-inflammatory mediators via gene expression analysis and immunohistochemistry. The functional role of SYK in keratinocytes was investigated in vitro, using LE-typical pro-inflammatory stimuli and a selective inhibitor of SYK. SYK-associated genes are strongly upregulated in CLE skin lesions. Importantly, phosphorylated SYK (pSYK) is strongly expressed by several immune cell types and also keratinocytes in CLE skin. In vitro, immunostimulatory nucleic acids are capable of inducing SYK phosphorylation in keratinocytes leading to the induction of pro-inflammatory cytokines, while small-molecule SYK inhibition decreases the expression of these proteins. The results demonstrate that pSYK is expressed by immune cells and keratinocytes in skin lesions of CLE patients. LE-typical stimuli induce the expression of pSYK in vitro. Small-molecule SYK inhibition leads to a reduction of pSYK expression and downregulation of pro-inflammatory cytokines in keratinocytes. We therefore believe that pSYK provides a potential future drug target for the treatment of patients who suffer from CLE and related skin disorders. Specifically, our study reveals evidence supporting the use of topical SYK inhibitors in treating lupus.

  4. Truncation and Activation of Dual Specificity Tyrosine Phosphorylation-regulated Kinase 1A by Calpain I

    PubMed Central

    Jin, Nana; Yin, Xiaomin; Gu, Jianlan; Zhang, Xinhua; Shi, Jianhua; Qian, Wei; Ji, Yuhua; Cao, Maohong; Gu, Xiaosong; Ding, Fei; Iqbal, Khalid; Gong, Cheng-Xin; Liu, Fei

    2015-01-01

    Hyperphosphorylation and dysregulation of exon 10 splicing of Tau are pivotally involved in pathogenesis of Alzheimer disease (AD) and/or other tauopathies. Alternative splicing of Tau exon 10, which encodes the second microtubule-binding repeat, generates Tau isoforms containing three and four microtubule-binding repeats, termed 3R-Taus and 4R-Taus, respectively. Dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) lies at the Down syndrome critical region of chromosome 21. Overexpression of this kinase may contribute to the early Tau pathology in Down syndrome via phosphorylation of Tau and dysregulation of Tau exon 10. Here, we report that Dyrk1A was truncated at the C terminus and was associated with overactivation of calpain I in AD brain. Calpain I proteolyzed Dyrk1A in vitro first at the C terminus and further at the N terminus and enhanced its kinase activity toward Tau via increased Vmax but not Km. C-terminal truncation of Dyrk1A resulted in stronger activity than its full-length protein in promotion of exon 10 exclusion and phosphorylation of Tau. Dyrk1A was truncated in kainic acid-induced excitotoxic mouse brains and coincided with an increase in 3R-Tau expression and phosphorylation of Tau via calpain activation. Moreover, truncation of Dyrk1A was correlated with an increase in the ratio of 3R-Tau/4R-Tau and Tau hyperphosphorylation in AD brain. Collectively, these findings suggest that truncation/activation of Dyrk1A by Ca2+/calpain I might contribute to Tau pathology via promotion of exon 10 exclusion and hyperphosphorylation of Tau in AD brain. PMID:25918155

  5. Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications.

    PubMed

    Ardini, Elena; Menichincheri, Maria; Banfi, Patrizia; Bosotti, Roberta; De Ponti, Cristina; Pulci, Romana; Ballinari, Dario; Ciomei, Marina; Texido, Gemma; Degrassi, Anna; Avanzi, Nilla; Amboldi, Nadia; Saccardo, Maria Beatrice; Casero, Daniele; Orsini, Paolo; Bandiera, Tiziano; Mologni, Luca; Anderson, David; Wei, Ge; Harris, Jason; Vernier, Jean-Michel; Li, Gang; Felder, Eduard; Donati, Daniele; Isacchi, Antonella; Pesenti, Enrico; Magnaghi, Paola; Galvani, Arturo

    2016-04-01

    Activated ALK and ROS1 tyrosine kinases, resulting from chromosomal rearrangements, occur in a subset of non-small cell lung cancers (NSCLC) as well as other tumor types and their oncogenic relevance as actionable targets has been demonstrated by the efficacy of selective kinase inhibitors such as crizotinib, ceritinib, and alectinib. More recently, low-frequency rearrangements of TRK kinases have been described in NSCLC, colorectal carcinoma, glioblastoma, and Spitzoid melanoma. Entrectinib, whose discovery and preclinical characterization are reported herein, is a novel, potent inhibitor of ALK, ROS1, and, importantly, of TRK family kinases, which shows promise for therapy of tumors bearing oncogenic forms of these proteins. Proliferation profiling against over 200 human tumor cell lines revealed that entrectinib is exquisitely potent in vitro against lines that are dependent on the drug's pharmacologic targets. Oral administration of entrectinib to tumor-bearing mice induced regression in relevant human xenograft tumors, including the TRKA-dependent colorectal carcinoma KM12, ROS1-driven tumors, and several ALK-dependent models of different tissue origins, including a model of brain-localized lung cancer metastasis. Entrectinib is currently showing great promise in phase I/II clinical trials, including the first documented objective responses to a TRK inhibitor in colorectal carcinoma and in NSCLC. The drug is, thus, potentially suited to the therapy of several molecularly defined cancer settings, especially that of TRK-dependent tumors, for which no approved drugs are currently available. Mol Cancer Ther; 15(4); 628-39. ©2016 AACR.

  6. Bruton's tyrosine kinase activity is negatively regulated by Sab, the Btk-SH3 domain-binding protein.

    PubMed

    Yamadori, T; Baba, Y; Matsushita, M; Hashimoto, S; Kurosaki, M; Kurosaki, T; Kishimoto, T; Tsukada, S

    1999-05-25

    Bruton's tyrosine kinase (Btk) is a cytoplasmic tyrosine kinase that is crucial for human and murine B cell development, and its deficiency causes human X-linked agammaglobulinemia and murine X-linked immunodeficiency. In this report, we describe the function of the Btk-binding protein Sab (SH3-domain binding protein that preferentially associates with Btk), which we reported previously as a newly identified Src homology 3 domain-binding protein. Sab was shown to inhibit the auto- and transphosphorylation activity of Btk, which prompted us to propose that Sab functions as a transregulator of Btk. Forced overexpression of Sab in B cells led to the reduction of B cell antigen receptor-induced tyrosine phosphorylation of Btk and significantly reduced both early and late B cell antigen receptor-mediated events, including calcium mobilization, inositol 1, 4,5-trisphosphate production, and apoptotic cell death, where the involvement of Btk activity has been demonstrated previously. Together, these results indicate the negative regulatory role of Sab in the B cell cytoplasmic tyrosine kinase pathway.

  7. Bruton’s tyrosine kinase activity is negatively regulated by Sab, the Btk-SH3 domain-binding protein

    PubMed Central

    Yamadori, Tomoki; Baba, Yoshihiro; Matsushita, Masato; Hashimoto, Shoji; Kurosaki, Mari; Kurosaki, Tomohiro; Kishimoto, Tadamitsu; Tsukada, Satoshi

    1999-01-01

    Bruton’s tyrosine kinase (Btk) is a cytoplasmic tyrosine kinase that is crucial for human and murine B cell development, and its deficiency causes human X-linked agammaglobulinemia and murine X-linked immunodeficiency. In this report, we describe the function of the Btk-binding protein Sab (SH3-domain binding protein that preferentially associates with Btk), which we reported previously as a newly identified Src homology 3 domain-binding protein. Sab was shown to inhibit the auto- and transphosphorylation activity of Btk, which prompted us to propose that Sab functions as a transregulator of Btk. Forced overexpression of Sab in B cells led to the reduction of B cell antigen receptor-induced tyrosine phosphorylation of Btk and significantly reduced both early and late B cell antigen receptor-mediated events, including calcium mobilization, inositol 1,4,5-trisphosphate production, and apoptotic cell death, where the involvement of Btk activity has been demonstrated previously. Together, these results indicate the negative regulatory role of Sab in the B cell cytoplasmic tyrosine kinase pathway. PMID:10339589

  8. The discovery of novel vascular endothelial growth factor receptor tyrosine kinases inhibitors: pharmacophore modeling, virtual screening and docking studies.

    PubMed

    Yu, Hui; Wang, Zhanli; Zhang, Liangren; Zhang, Jufeng; Huang, Qian

    2007-03-01

    We have applied pharmacophore generation, database searching and docking methodologies to discover new structures for the design of vascular endothelial growth factor receptors, the tyrosine kinase insert domain-containing receptor kinase inhibitors. The chemical function based pharmacophore models were built for kinase insert domain-containing receptor kinase inhibitors from a set of 10 known inhibitors using the algorithm HipHop, which is implemented in the CATALYST software. The highest scoring HipHop model consists of four features: one hydrophobic, one hydrogen bond acceptor, one hydrogen bond donor and one ring aromatic function. Using the algorithm CatShape within CATALYST, the bound conformation of 4-amino-furo [2, 3-d] pyrimidine binding to kinase insert domain-containing receptor kinase was used to generate a shape query. A merged shape and hypothesis query that is in an appropriate alignment was then built. The combined shape and hypothesis model was used as a query to search Maybridge database for other potential lead compounds. A total of 39 compounds were retrieved as hits. The hits obtained were docked into kinase insert domain-containing receptor kinase active site. One novel potential lead was proposed based on CATALYST fit value, LigandFit docking scores, and examination of how the hit retain key interactions known to be required for kinase binding. This compound inhibited vascular endothelial growth factor stimulated kinase insert domain-containing receptor phosphorylation in human umbilical vein endothelial cells.

  9. The Non-receptor Tyrosine Kinase Tec Controls Assembly and Activity of the Noncanonical Caspase-8 Inflammasome

    PubMed Central

    Zwolanek, Florian; Riedelberger, Michael; Stolz, Valentina; Jenull, Sabrina; Istel, Fabian; Köprülü, Afitap Derya; Ellmeier, Wilfried; Kuchler, Karl

    2014-01-01

    Tec family kinases are intracellular non-receptor tyrosine kinases implicated in numerous functions, including T cell and B cell regulation. However, a role in microbial pathogenesis has not been described. Here, we identified Tec kinase as a novel key mediator of the inflammatory immune response in macrophages invaded by the human fungal pathogen C. albicans. Tec is required for both activation and assembly of the noncanonical caspase-8, but not of the caspase-1 inflammasome, during infections with fungal but not bacterial pathogens, triggering the antifungal response through IL-1β. Furthermore, we identify dectin-1 as the pathogen recognition receptor being required for Syk-dependent Tec activation. Hence, Tec is a novel innate-specific inflammatory kinase, whose genetic ablation or inhibition by small molecule drugs strongly protects mice from fungal sepsis. These data demonstrate a therapeutic potential for Tec kinase inhibition to combat invasive microbial infections by attenuating the host inflammatory response. PMID:25474208

  10. Helicobacter pylori cell translocating kinase (CtkA/JHP0940) is pro-apoptotic in mouse macrophages and acts as auto-phosphorylating tyrosine kinase.

    PubMed

    Tenguria, Shivendra; Ansari, Suhail A; Khan, Nooruddin; Ranjan, Amit; Devi, Savita; Tegtmeyer, Nicole; Lind, Judith; Backert, Steffen; Ahmed, Niyaz

    2014-11-01

    The Helicobacter pylori gene JHP0940 has been shown to encode a serine/threonine kinase which can induce cytokines in gastric epithelial cells relevant to chronic gastric inflammation. Here we demonstrate that JHP0940 can be secreted by the bacteria, triggers apoptosis in cultured mouse macrophages and acts as an auto-phosphorylating tyrosine kinase. Recombinant JHP0940 protein was found to decrease the viability of RAW264.7 cells (a mouse macrophage cell line) up to 55% within 24h of co-incubation. The decreased cellular viability was due to apoptosis, which was confirmed by TUNEL assay and Fas expression analysis by flow-cytometry. Further, we found that caspase-1 and IL-1beta were activated upon treatment with JHP0940. These results point towards possible action through the host inflammasome. Our in vitro studies using tyrosine kinase assays further demonstrated that JHP0940 acts as auto-phosphorylating tyrosine kinase and induces pro-inflammatory cytokines in RAW264.7 cells. Upon exposure with JHP0940, these cells secreted IL-1beta, TNF-alpha and IL-6, in a dose- and time-dependent manner, as detected by ELISA and transcript profiling by q-RT-PCR. The pro-inflammatory, pro-apoptotic and other regulatory responses triggered by JHP0940 lead to the assumption of its possible role in inducing chronic inflammation for enhanced bacterial persistence and escape from host innate immune responses by apoptosis of macrophages.

  11. Computational Study of the “DFG-Flip” Conformational Transition in c-Abl and c-Src Tyrosine Kinases

    PubMed Central

    2015-01-01

    Protein tyrosine kinases are crucial to cellular signaling pathways regulating cell growth, proliferation, metabolism, differentiation, and migration. To maintain normal regulation of cellular signal transductions, the activities of tyrosine kinases are also highly regulated. The conformation of a three-residue motif Asp-Phe-Gly (DFG) near the N-terminus of the long “activation” loop covering the catalytic site is known to have a critical impact on the activity of c-Abl and c-Src tyrosine kinases. A conformational transition of the DFG motif can switch the enzyme from an active (DFG-in) to an inactive (DFG-out) state. In the present study, the string method with swarms-of-trajectories was used to computationally determine the reaction pathway connecting the two end-states, and umbrella sampling calculations were carried out to characterize the thermodynamic factors affecting the conformations of the DFG motif in c-Abl and c-Src kinases. According to the calculated free energy landscapes, the DFG-out conformation is clearly more favorable in the case of c-Abl than that of c-Src. The calculations also show that the protonation state of the aspartate residue in the DFG motif strongly affects the in/out conformational transition in c-Abl, although it has a much smaller impact in the case of c-Src due to local structural differences. PMID:25548962

  12. The Physarum polycephalum Genome Reveals Extensive Use of Prokaryotic Two-Component and Metazoan-Type Tyrosine Kinase Signaling.

    PubMed

    Schaap, Pauline; Barrantes, Israel; Minx, Pat; Sasaki, Narie; Anderson, Roger W; Bénard, Marianne; Biggar, Kyle K; Buchler, Nicolas E; Bundschuh, Ralf; Chen, Xiao; Fronick, Catrina; Fulton, Lucinda; Golderer, Georg; Jahn, Niels; Knoop, Volker; Landweber, Laura F; Maric, Chrystelle; Miller, Dennis; Noegel, Angelika A; Peace, Rob; Pierron, Gérard; Sasaki, Taeko; Schallenberg-Rüdinger, Mareike; Schleicher, Michael; Singh, Reema; Spaller, Thomas; Storey, Kenneth B; Suzuki, Takamasa; Tomlinson, Chad; Tyson, John J; Warren, Wesley C; Werner, Ernst R; Werner-Felmayer, Gabriele; Wilson, Richard K; Winckler, Thomas; Gott, Jonatha M; Glöckner, Gernot; Marwan, Wolfgang

    2015-11-27

    Physarum polycephalum is a well-studied microbial eukaryote with unique experimental attributes relative to other experimental model organisms. It has a sophisticated life cycle with several distinct stages including amoebal, flagellated, and plasmodial cells. It is unusual in switching between open and closed mitosis according to specific life-cycle stages. Here we present the analysis of the genome of this enigmatic and important model organism and compare it with closely related species. The genome is littered with simple and complex repeats and the coding regions are frequently interrupted by introns with a mean size of 100 bases. Complemented with extensive transcriptome data, we define approximately 31,000 gene loci, providing unexpected insights into early eukaryote evolution. We describe extensive use of histidine kinase-based two-component systems and tyrosine kinase signaling, the presence of bacterial and plant type photoreceptors (phytochromes, cryptochrome, and phototropin) and of plant-type pentatricopeptide repeat proteins, as well as metabolic pathways, and a cell cycle control system typically found in more complex eukaryotes. Our analysis characterizes P. polycephalum as a prototypical eukaryote with features attributed to the last common ancestor of Amorphea, that is, the Amoebozoa and Opisthokonts. Specifically, the presence of tyrosine kinases in Acanthamoeba and Physarum as representatives of two distantly related subdivisions of Amoebozoa argues against the later emergence of tyrosine kinase signaling in the opisthokont lineage and also against the acquisition by horizontal gene transfer.

  13. An SH2 domain-based tyrosine kinase assay using biotin ligase modified with a terbium(III) complex.

    PubMed

    Sueda, Shinji; Shinboku, Yuki; Kusaba, Takeshi

    2013-01-01

    Src homology 2 (SH2) domains are modules of approximately 100 amino acids and are known to bind phosphotyrosine-containing sequences with high affinity and specificity. In the present work, we developed an SH2 domain-based assay for Src tyrosine kinase using a unique biotinylation reaction from archaeon Sulfolobus tokodaii. S. tokodaii biotinylation has a unique property that biotin protein ligase (BPL) forms a stable complex with its biotinylated substrate protein (BCCP). Here, an SH2 domain from lymphocyte-specific tyrosine kinase was genetically fused to a truncated BCCP, and the resulting fusion protein was labeled through biotinylation with BPL carrying multiple copies of a luminescent Tb(3+) complex. The labeled SH2 fusion proteins were employed to detect a phosphorylated peptide immobilized on the surface of the microtiter plate, where the phosphorylated peptide was produced by phosphorylation to the substrate peptide by Src tyrosine kinase. Our assay allows for a reliable determination of the activity of Src kinase lower than 10 pg/μL by a simple procedure.

  14. The Physarum polycephalum Genome Reveals Extensive Use of Prokaryotic Two-Component and Metazoan-Type Tyrosine Kinase Signaling

    PubMed Central

    Schaap, Pauline; Barrantes, Israel; Minx, Pat; Sasaki, Narie; Anderson, Roger W.; Bénard, Marianne; Biggar, Kyle K.; Buchler, Nicolas E.; Bundschuh, Ralf; Chen, Xiao; Fronick, Catrina; Fulton, Lucinda; Golderer, Georg; Jahn, Niels; Knoop, Volker; Landweber, Laura F.; Maric, Chrystelle; Miller, Dennis; Noegel, Angelika A.; Peace, Rob; Pierron, Gérard; Sasaki, Taeko; Schallenberg-Rüdinger, Mareike; Schleicher, Michael; Singh, Reema; Spaller, Thomas; Storey, Kenneth B.; Suzuki, Takamasa; Tomlinson, Chad; Tyson, John J.; Warren, Wesley C.; Werner, Ernst R.; Werner-Felmayer, Gabriele; Wilson, Richard K.; Winckler, Thomas; Gott, Jonatha M.; Glöckner, Gernot; Marwan, Wolfgang

    2016-01-01

    Physarum polycephalum is a well-studied microbial eukaryote with unique experimental attributes relative to other experimental model organisms. It has a sophisticated life cycle with several distinct stages including amoebal, flagellated, and plasmodial cells. It is unusual in switching between open and closed mitosis according to specific life-cycle stages. Here we present the analysis of the genome of this enigmatic and important model organism and compare it with closely related species. The genome is littered with simple and complex repeats and the coding regions are frequently interrupted by introns with a mean size of 100 bases. Complemented with extensive transcriptome data, we define approximately 31,000 gene loci, providing unexpected insights into early eukaryote evolution. We describe extensive use of histidine kinase-based two-component systems and tyrosine kinase signaling, the presence of bacterial and plant type photoreceptors (phytochromes, cryptochrome, and phototropin) and of plant-type pentatricopeptide repeat proteins, as well as metabolic pathways, and a cell cycle control system typically found in more complex eukaryotes. Our analysis characterizes P. polycephalum as a prototypical eukaryote with features attributed to the last common ancestor of Amorphea, that is, the Amoebozoa and Opisthokonts. Specifically, the presence of tyrosine kinases in Acanthamoeba and Physarum as representatives of two distantly related subdivisions of Amoebozoa argues against the later emergence of tyrosine kinase signaling in the opisthokont lineage and also against the acquisition by horizontal gene transfer. PMID:26615215

  15. Role of lymphocyte-specific protein tyrosine kinase (LCK) in the expansion of glioma-initiating cells by fractionated radiation

    SciTech Connect

    Kim, Rae-Kwon; Yoon, Chang-Hwan; Hyun, Kyung-Hwan; Lee, Hyejin; An, Sungkwan; Park, Myung-Jin; Kim, Min-Jung; Lee, Su-Jae

    2010-11-26

    Research highlights: {yields} Activation of Lymphocyte-specific protein tyrosine kinase (LCK) is involved in the fractionated radiation-induced expansion of glioma stem-like cells. {yields} Inhibition of LCK prevents acquisition of fractionated radiation-induced resistance to chemotherapeutic treatment. {yields} LCK activity is critical for the maintenance of self-renewal in glioma stem-like cells. -- Abstract: Brain cancers frequently recur or progress as focal masses after treatment with ionizing radiation. Radiation used to target gliomas may expand the cancer stem cell population and enhance the aggressiveness of tumors; however, the mechanisms underlying the expansion of cancer stem cell population after radiation have remained unclear. In this study, we show that LCK (lymphocyte-specific protein tyrosine kinase) is involved in the fractionated radiation-induced expansion of the glioma-initiating cell population and acquisition of resistance to anticancer treatments. Fractionated radiation caused a selective increase in the activity of LCK, a Src family non-receptor tyrosine kinase. The activities of other Src family kinases Src, Fyn, and Lyn were not significantly increased. Moreover, knockdown of LCK expression with a specific small interfering RNA (siRNA) effectively blocked fractionated radiation-induced expansion of the CD133{sup +} cell population. siRNA targeting of LCK also suppressed fractionated radiation-induced expression of the glioma stem cell marker proteins CD133, Nestin, and Musashi. Expression of the known self-renewal-related proteins Notch2 and Sox2 in glioma cells treated with fractionated radiation was also downregulated by LCK inhibition. Moreover, siRNA-mediated knockdown of LCK effectively restored the sensitivity of glioma cells to cisplatin and etoposide. These results indicate that the non-receptor tyrosine kinase LCK is critically involved in fractionated radiation-induced expansion of the glioma-initiating cell population and

  16. Amphiregulin triggered epidermal growth factor receptor activation confers in vivo crizotinib-resistance of EML4-ALK lung cancer and circumvention by epidermal growth factor receptor inhibitors.

    PubMed

    Taniguchi, Hirokazu; Takeuchi, Shinji; Fukuda, Koji; Nakagawa, Takayuki; Arai, Sachiko; Nanjo, Shigeki; Yamada, Tadaaki; Yamaguchi, Hiroyuki; Mukae, Hiroshi; Yano, Seiji

    2017-01-01

    Crizotinib, a first-generation anaplastic lymphoma kinase (ALK) tyrosine-kinase inhibitor, is known to be effective against echinoderm microtubule-associated protein-like 4 (EML4)-ALK-positive non-small cell lung cancers. Nonetheless, the tumors subsequently become resistant to crizotinib and recur in almost every case. The mechanism of the acquired resistance needs to be deciphered. In this study, we established crizotinib-resistant cells (A925LPE3-CR) via long-term administration of crizotinib to a mouse model of pleural carcinomatous effusions; this model involved implantation of the A925LPE3 cell line, which harbors the EML4-ALK gene rearrangement. The resistant cells did not have the secondary ALK mutations frequently occurring in crizotinib-resistant cells, and these cells were cross-resistant to alectinib and ceritinib as well. In cell clone #2, which is one of the clones of A925LPE3-CR, crizotinib sensitivity was restored via the inhibition of epidermal growth factor receptor (EGFR) by means of an EGFR tyrosine-kinase inhibitor (erlotinib) or an anti-EGFR antibody (cetuximab) in vitro and in the murine xenograft model. Cell clone #2 did not have an EGFR mutation, but the expression of amphiregulin (AREG), one of EGFR ligands, was significantly increased. A knockdown of AREG with small interfering RNAs restored the sensitivity to crizotinib. These data suggest that overexpression of EGFR ligands such as AREG can cause resistance to crizotinib, and that inhibition of EGFR signaling may be a promising strategy to overcome crizotinib resistance in EML4-ALK lung cancer.

  17. Nerve growth factor rapidly stimulates tyrosine phosphorylation of phospholipase C-gamma 1 by a kinase activity associated with the product of the trk protooncogene.

    PubMed

    Vetter, M L; Martin-Zanca, D; Parada, L F; Bishop, J M; Kaplan, D R

    1991-07-01

    Nerve growth factor (NGF) promotes the survival and differentiation of specific populations of neurons. The molecular mechanisms by which cells respond to NGF are poorly understood, but two clues have emerged recently. First, NGF rapidly stimulates tyrosine phosphorylation of several unidentified proteins in the NGF-responsive pheochromocytoma cell line PC12 [Maher, P. (1988) Proc. Natl. Acad. Sci. USA 85, 6788-6791]. Second, the protein-tyrosine kinase encoded by the protooncogene trk (p140trk), a member of the receptor class of tyrosine kinases, becomes activated and phosphorylated on tyrosine after NGF treatment of PC12 cells [Kaplan, D. R., Martin-Zanca, D. & Parada, L. F. (1991) Nature (London) 350, 158-160]. We now report that NGF rapidly induces tyrosine phosphorylation of phospholipase C-gamma 1 (PLC-gamma 1), and we present evidence that the responsible tyrosine kinase is either p140trk or a closely associated protein. Treatment of responsive cells with NGF elicited phosphorylation of PLC-gamma 1 on tyrosine and serine. PLC-gamma 1 immunoprecipitated from NGF-stimulated cells was phosphorylated in vitro by coprecipitating protein kinase activity, and the phosphorylations occurred principally on tyrosine. The responsible kinase could be depleted from cellular lysates by antibodies specific for p140trk. This procedure also depleted a 140-kDa protein that normally coprecipitated with PLC-gamma 1 and became phosphorylated on tyrosine in vivo in response to NGF. Analysis of tryptic peptides from PLC-gamma 1 indicated that the residues phosphorylated in vitro by p140trk-associated kinase activity were largely congruent with those phosphorylated in vivo after NGF treatment. Our findings identify PLC-gamma 1 as a likely substrate for the trk-encoded tyrosine kinase, and they provide a link between NGF-dependent activation of p140trk and the stimulation of intracellular second messenger pathways.

  18. Non-small cell lung cancer (NSCLC) and central nervous system (CNS) metastases: role of tyrosine kinase inhibitors (TKIs) and evidence in favor or against their use with concurrent cranial radiotherapy

    PubMed Central

    Economopoulou, Panagiota

    2016-01-01

    Central nervous system (CNS) metastases, including brain metastases (BM) and leptomeningeal metastases (LM) represent a frequent complication of non-small cell lung cancer (NSCLC). Patients with BM comprise a heterogeneous group, with a median survival that ranges from 3 to 14 months. However, in the majority of patients, the occurrence of CNS metastases is usually accompanied by severe morbidity and substantial deterioration in quality of life. Local therapies, such as whole brain radiotherapy (WBRT), stereotactic radiosurgery (SRS) or surgical resection, either alone or as part of a multimodality treatment are available treatment strategies for BM and the choice of therapy varies depending on patient group and prognosis. Meanwhile, introduction of tyrosine kinase inhibitors (TKIs) in clinical practice has led to individualization of therapy based upon the presence of the exact abnormality, resulting in a major therapeutic improvement in patients with NSCLC who harbor epidermal growth factor receptor (EGFR) activating mutations or anaplastic lymphoma kinase (ALK) gene rearrangements, respectively. Based on their clinical activity in systemic disease, such molecular agents could offer the promise of improved BM control without substantial toxicity; however, their role in combination with radiotherapy is controversial. In this review, we discuss the controversy regarding the use of TKIs in combination with radiotherapy and illustrate future perspectives in the treatment of BM in NSCLC. PMID:28149754

  19. Rational Design of a Dephosphorylation-Resistant Reporter Enables Single-Cell Measurement of Tyrosine Kinase Activity.

    PubMed

    Turner, Abigail H; Lebhar, Michael S; Proctor, Angela; Wang, Qunzhao; Lawrence, David S; Allbritton, Nancy L

    2016-02-19

    Although peptide-based reporters of protein tyrosine kinase (PTK) activity have been used to study PTK enzymology in vitro, the application of these reporters to intracellular conditions is compromised by their dephosphorylation, preventing PTK activity measurements. Nonproteinogenic amino acids may be utilized to rationally design selective peptidic ligands by accessing greater chemical and structural diversity than is available using the native amino acids. We describe a peptidic reporter that, upon phosphorylation by the epidermal growth factor receptor (EGFR), is resistant to dephosphorylation both in vitro and in cellulo. The reporter contains a conformationally constrained phosphorylatable moiety (7-(S)-hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) in the place of L-tyrosine and is efficiently phosphorylated in A431 epidermoid carcinoma cells. Dephosphorylation of the reporter occurs 3 orders of magnitude more slowly compared with that of the conventional tyrosine-containing reporter.

  20. Receptor Tyrosine Kinase Ubiquitylation Involves the Dynamic Regulation of Cbl-Spry2 by Intersectin 1 and the Shp2 Tyrosine Phosphatase

    PubMed Central

    Okur, Mustafa Nazir; Russo, Angela

    2014-01-01

    Ubiquitylation of receptor tyrosine kinases (RTKs) regulates their trafficking and lysosomal degradation. The multidomain scaffolding protein intersectin 1 (ITSN1) is an important regulator of this process. ITSN1 stimulates ubiquitylation of the epidermal growth factor receptor (EGFR) through enhancing the activity of the Cbl E3 ubiquitin ligase. However, the precise mechanism through which ITSN1 enhances Cbl activity is unclear. Here, we demonstrate that ITSN1 interacts with and recruits the Shp2 tyrosine phosphatase to Spry2 to enhance its dephosphorylation, thereby disrupting the inhibitory effect of Spry2 on Cbl and enhancing EGFR ubiquitylation. In contrast, expression of a catalytically inactive Shp2 mutant reversed the effect of ITSN1 on Spry2 dephosphorylation and decreased Cbl-mediated EGFR ubiquitylation. In addition, disruption of ITSN1 binding to Spry2 through point mutation of the Pro-rich ITSN1 binding site in Spry2 resulted in decreased Shp2-Spry2 interaction and enhanced Spry2 tyrosine phosphorylation. This study demonstrates that ITSN1 enhances Cbl activity, in part, by modulating the interaction of Cbl with Spry2 through recruitment of Shp2 phosphatase to the Cbl-Spry2 complex. These findings reveal a new level of complexity in the regulation of RTKs by Cbl through ITSN1 binding with Shp2 and Spry2. PMID:24216759

  1. Axl receptor tyrosine kinase is a novel target of apigenin for the inhibition of cell proliferation.

    PubMed

    Kim, Kyung-Chan; Choi, Eun-Ha; Lee, Chuhee

    2014-08-01

    The Axl receptor tyrosine kinase (RTK), along with Tyro 3 and Mer, belongs to the TAM subfamily that promotes survival, stimulates proliferation and/or inhibits apoptosis. In various types of human cancer, including breast, lung and prostate cancer, Axl expression is increased and correlates with an advanced clinical stage. In this study, we examined whether apigenin has an effect on Axl expression, which in turn can affect cell proliferation. The treatment of the non‑small cell lung cancer (NSCLC) cells, A549 and H460, with apigenin decreased Axl mRNA and protein expression in a dose‑dependent manner. Axl promoter activity was also inhibited by apigenin, indicating that apigenin suppressed Axl expression at the transcriptional level. Upon treatment with apigenin, the viability of both the A549 and H460 cells was gradually decreased and the anti-proliferative effects were further confirmed by the dose‑dependent decrease in the clonogenic ability of the apigenin‑treated cells. Subsequently, we found that the viability and clonogenic ability of the cells treated with apigenin was less or more affected by transfection of the cells with a Axl-expressing plasmid or Axl targeting siRNA, compared to transfection with the empty vector or control siRNA, respectively. In addition, apigenin increased the expression of p21, a cyclin-dependent kinase inhibitor, but reduced the expression of X-linked inhibitor of apoptosis protein (XIAP). These cell cycle arrest and pro-apoptotic effects of apigenin were also attenuated or augmented by the up- or downregulation of Axl expression, respectively, which suggests that Axl is a novel target of apigenin through which it exerts its inhibitory effects on cell proliferation. Taken together, our data indicate that apigenin downregulates Axl expression, which subsequently results in the inhibition of NSCLC cell proliferation through the increase and decrease of p21 and XIAP expression, respectively.

  2. δ-Tocopherol inhibits receptor tyrosine kinase-induced AKT activation in prostate cancer cells.

    PubMed

    Wang, Hong; Hong, Jungil; Yang, Chung S

    2016-11-01

    The cancer preventive activity of vitamin E is suggested by epidemiological studies and supported by animal studies with vitamin E forms, γ-tocopherol and δ-tocopherol (δ-T). Several recent large-scale cancer prevention trials with high dose of α-tocopherol, however, yielded disappointing results. Whether vitamin E prevents or promotes cancer is a serious concern. A better understanding of the molecular mechanisms of action of the different forms of tocopherols would enhance our understanding of this topic. In this study, we demonstrated that δ-T was the most effective tocopherol form in inhibiting prostate cancer cell growth, by inducing cell cycle arrest and apoptosis. By profiling the effects of δ-T on the cell signaling using the phospho-kinase array, we found that the most inhibited target was the phosphorylation of AKT on T308. Further study on the activation of AKT by EGFR and IGFR revealed that δ-T attenuated the EGF/IGF-induced activation of AKT (via the phosphorylation of AKT on T308 induced by the activation of PIK3). Expression of dominant active PIK3 and AKT in prostate cancer cell line DU145 in which PIK3, AKT, and PTEN are wild type caused the cells to be reflectory to the inhibition of δ-T, supporting that δ-T inhibits the PIK3-mediated activation of AKT. Our data also suggest that δ-T interferes with the EGF-induced EGFR internalization, which leads to the inhibition of the receptor tyrosine kinase-dependent activation of AKT. In summary, our results revealed a novel mechanism of δ-T in inhibiting prostate cancer cell growth, supporting the cancer preventive activity δ-T. © 2015 Wiley Periodicals, Inc.

  3. Protein tyrosine kinase 6 promotes ERBB2-induced mammary gland tumorigenesis in the mouse

    PubMed Central

    Peng, M; Ball-Kell, S M; Tyner, A L

    2015-01-01

    Protein tyrosine kinase 6 (PTK6) expression, activation, and amplification of the PTK6 gene have been reported in ERBB2/HER2-positive mammary gland cancers. To explore contributions of PTK6 to mammary gland tumorigenesis promoted by activated ERBB2, we crossed Ptk6−/− mice with the mouse mammary tumor virus-ERBB2 transgenic mouse line expressing activated ERBB2 and characterized tumor development and progression. ERBB2-induced tumorigenesis was significantly delayed and diminished in mice lacking PTK6. PTK6 expression was induced in the mammary glands of ERBB2 transgenic mice before tumor development and correlated with activation of signal transducer and activator of transcription 3 (STAT3) and increased proliferation. Disruption of PTK6 impaired STAT3 activation and proliferation. Phosphorylation of the PTK6 substrates focal adhesion kinase (FAK) and breast cancer anti-estrogen resistance 1 (BCAR1; p130CAS) was decreased in Ptk6−/− mammary gland tumors. Reduced numbers of metastases were detected in the lungs of Ptk6−/− mice expressing activated ERBB2, compared with wild-type ERBB2 transgenic mice. PTK6 activation was detected at the edges of ERBB2-positive tumors. These data support roles for PTK6 in both ERBB2-induced mammary gland tumor initiation and metastasis, and identify STAT3, FAK, and BCAR1 as physiologically relevant PTK6 substrates in breast cancer. Including PTK6 inhibitors as part of a treatment regimen could have distinct benefits in ERBB2/HER2-positive breast cancers. PMID:26247733

  4. Resistance Mechanisms for the Bruton’s Tyrosine Kinase Inhibitor Ibrutinib

    PubMed Central

    Woyach, Jennifer A.; Furman, Richard R.; Liu, Ta-Ming; Ozer, Hatice Gulcin; Zapatka, Marc; Ruppert, Amy S.; Xue, Ling; Li, Daniel Hsieh-Hsin; Steggerda, Susanne M.; Versele, Matthias; Dave, Sandeep S.; Zhang, Jenny; Yilmaz, Ayse Selen; Jaglowski, Samantha M.; Blum, Kristie A.; Lozanski, Arletta; Lozanski, Gerard; James, Danelle F.; Barrientos, Jacqueline C.; Lichter, Peter; Stilgenbauer, Stephan; Buggy, Joseph J.; Chang, Betty Y.; Johnson, Amy J.; Byrd, John C.

    2014-01-01

    BACKGROUND Ibrutinib is an irreversible inhibitor of Bruton’s tyrosine kinase (BTK) and is effective in chronic lymphocytic leukemia (CLL). Resistance to irreversible kinase inhibitors and resistance associated with BTK inhibition have not been characterized. Although only a small proportion of patients have had a relapse during ibrutinib therapy, an understanding of resistance mechanisms is important. We evaluated patients with relapsed disease to identify mutations that may mediate ibrutinib resistance. METHODS We performed whole-exome sequencing at baseline and the time of relapse on samples from six patients with acquired resistance to ibrutinib therapy. We then performed functional analysis of identified mutations. In addition, we performed Ion Torrent sequencing for identified resistance mutations on samples from nine patients with prolonged lymphocytosis. RESULTS We identified a cysteine-to-serine mutation in BTK at the binding site of ibrutinib in five patients and identified three distinct mutations in PLCγ2 in two patients. Functional analysis showed that the C481S mutation of BTK results in a protein that is only reversibly inhibited by ibrutinib. The R665W and L845F mutations in PLCγ2 are both potentially gain-of-function mutations that lead to autonomous B-cell–receptor activity. These mutations were not found in any of the patients with prolonged lymphocytosis who were taking ibrutinib. CONCLUSIONS Resistance to the irreversible BTK inhibitor ibrutinib often involves mutation of a cysteine residue where ibrutinib binding occurs. This finding, combined with two additional mutations in PLCγ2 that are immediately downstream of BTK, underscores the importance of the B-cell–receptor pathway in the mechanism of action of ibrutinib in CLL. (Funded by the National Cancer Institute and others.) PMID:24869598

  5. Comprehensive translational control of tyrosine kinase expression by upstream open reading frames.

    PubMed

    Wethmar, K; Schulz, J; Muro, E M; Talyan, S; Andrade-Navarro, M A; Leutz, A

    2016-03-31

    Post-transcriptional control has emerged as a major regulatory event in gene expression and often occurs at the level of translation initiation. Although overexpression or constitutive activation of tyrosine kinases (TKs) through gene amplification, translocation or mutation are well-characterized oncogenic events, current knowledge about translational mechanisms of TK activation is scarce. Here, we report the presence of translational cis-regulatory upstream open reading frames (uORFs) in the majority of transcript leader sequences of human TK mRNAs. Genetic ablation of uORF initiation codons in TK transcripts resulted in enhanced translation of the associated downstream main protein-coding sequences (CDSs) in all cases studied. Similarly, experimental removal of uORF start codons in additional non-TK proto-oncogenes, and naturally occurring loss-of-uORF alleles of the c-met proto-oncogene (MET) and the kinase insert domain receptor (KDR), was associated with increased CDS translation. Based on genome-wide sequence analyses we identified polymorphisms in 15.9% of all human genes affecting uORF initiation codons, associated Kozak consensus sequences or uORF-related termination codons. Together, these data suggest a comprehensive role of uORF-mediated translational control and delineate how aberrant induction of proto-oncogenes through loss-of-function mutations at uORF initiation codons may be involved in the etiology of cancer. We provide a detailed map of uORFs across the human genome to stimulate future research on the pathogenic role of uORFs.

  6. An unusual receptor tyrosine kinase of Schistosoma mansoni contains a Venus Flytrap module.

    PubMed

    Vicogne, Jérôme; Pin, Jean Philippe; Lardans, Vinca; Capron, Monique; Noël, Christophe; Dissous, Colette

    2003-01-01

    Previous studies have suggested that successful development of the parasitic helminth Schistosoma mansoni must be dependent on an adaptative molecular dialogue with its hosts and on the existence of receptors for growth factors and hormones. Attempts to identify a homolog of the insulin receptor (IR) have led us to characterize a new receptor tyrosine kinase (RTK) molecule in S. mansoni. SmRTK-1 is an integral membrane protein with a single membrane-spanning sequence separating an extracellular ligand-binding domain and a cytoplasmic TK domain. Structural and phylogenetic analyses of the kinase domain of SmRTK-1 confirmed its similarity to IR catalytic domains. However, sequence analysis of the extracellular domain of SmRTK-1 revealed similarity with various proteins (such as drug receptors) that share a structure known as the Venus Flytrap (VFT) module. Alignment with other VFT modules for which the structure has been solved was used to generate a 3D model of the putative VFT module of SmRTK-1. Phylogenetic analysis indicated that the SmRTK-1 VFT module was closer to that of the GABA(B) receptor. Numerous RTK genes recently discovered in vertebrate and invertebrate species code for large families of modular proteins with diverse structures and ligand-binding specificities. SmRTK-1 probably represents a new class of RTK whose function remains to be determined. RTKs are present in all metazoans and associated with the control of metabolism, growth and development. The preferential localization of SmRTK-1 in sporocyst germinal cells and ovocytes could be in favor of its function in schistosome growth and differentiation.

  7. Tyrosine phosphorylation of phosphoinositide-dependent kinase 1 by the insulin receptor is necessary for insulin metabolic signaling.

    PubMed

    Fiory, Francesca; Alberobello, Anna Teresa; Miele, Claudia; Oriente, Francesco; Esposito, Iolanda; Corbo, Vincenzo; Ruvo, Menotti; Tizzano, Barbara; Rasmussen, Thomas E; Gammeltoft, Steen; Formisano, Pietro; Beguinot, Francesco

    2005-12-01

    In L6 myoblasts, insulin receptors with deletion of the C-terminal 43 amino acids (IR(Delta43)) exhibited normal autophosphorylation and IRS-1/2 tyrosine phosphorylation. The L6 cells expressing IR(Delta43) (L6(IRDelta43)) also showed no insulin effect on glucose uptake and glycogen synthase, accompanied by a >80% decrease in insulin induction of 3-phosphoinositide-dependent protein kinase 1 (PDK-1) activity and tyrosine phosphorylation and of protein kinase B (PKB) phosphorylation at Thr(308). Insulin induced the phosphatidylinositol 3 kinase-dependent coprecipitation of PDK-1 with wild-type IR (IR(WT)), but not IR(Delta43). Based on overlay blotting, PDK-1 directly bound IR(WT), but not IR(Delta43). Insulin-activated IR(WT), and not IR(Delta43), phosphorylated PDK-1 at tyrosines 9, 373, and 376. The IR C-terminal 43-amino-acid peptide (C-terminal peptide) inhibited in vitro PDK-1 tyrosine phosphorylation by the IR. Tyr-->Phe substitution prevented this inhibitory action. In the L6(hIR) cells, the C-terminal peptide coprecipitated with PDK-1 in an insulin-stimulated fashion. This peptide simultaneously impaired the insulin effect on PDK-1 coprecipitation with IR(WT), on PDK-1 tyrosine phosphorylation, on PKB phosphorylation at Thr(308), and on glucose uptake. Upon insulin exposure, PDK-1 membrane persistence was significantly reduced in L6(IRDelta43) compared to control cells. In L6 cells expressing IR(WT), the C-terminal peptide also impaired insulin-dependent PDK-1 membrane persistence. Thus, PDK-1 directly binds to the insulin receptor, followed by PDK-1 activation and insulin metabolic effects.

  8. Distinct cellular properties of oncogenic KIT receptor tyrosine kinase mutants enable alternative courses of cancer cell inhibition

    PubMed Central

    Shi, Xiarong; Sousa, Leiliane P.; Mandel-Bausch, Elizabeth M.; Tome, Francisco; Reshetnyak, Andrey V.; Hadari, Yaron; Schlessinger, Joseph; Lax, Irit

    2016-01-01

    Large genomic sequencing analysis as part of precision medicine efforts revealed numerous activating mutations in receptor tyrosine kinases, including KIT. Unfortunately, a single approach is not effective for inhibiting cancer cells or treating cancers driven by all known oncogenic KIT mutants. Here, we show that each of the six major KIT oncogenic mutants exhibits different enzymatic, cellular, and dynamic properties and responds distinctly to different KIT inhibitors. One class of KIT mutants responded well to anti-KIT antibody treatment alone or in combination with a low dose of tyrosine kinase inhibitors (TKIs). A second class of KIT mutants, including a mutant resistant to imatinib treatment, responded well to a combination of TKI with anti-KIT antibodies or to anti-KIT toxin conjugates, respectively. We conclude that the preferred choice of precision medicine treatments for cancers driven by activated KIT and other RTKs may rely on clear understanding of the dynamic properties of oncogenic mutants. PMID:27482095

  9. Novel neurotrophic tyrosine kinase receptor type 1 gene mutation associated with congenital insensitivity to pain with anhidrosis.

    PubMed

    Lin, Yi-Pei; Su, Yi-Ning; Weng, Wen-Chin; Lee, Wang-Tso

    2010-12-01

    Congenital insensitivity to pain with anhidrosis (hereditary sensory and autonomic neuropathy type IV) is a rare autosomal recessive disorder caused by a defect in neurotrophic tyrosine kinase receptor and nerve growth factor, as reported in previous studies. This report is of a 6-month-old male infant with typical symptoms and signs of congenital insensitivity to pain with anhidrosis. He had a homozygous insertion mutation with c.2086_2087 ins C of neurotrophic tyrosine kinase receptor type 1 (NTRK1) gene with both parents as heterozygous carriers. This mutation may have a strong relation to hereditary sensory and autonomic neuropathy type IV Taiwanese patients. This is the youngest reported patient in Taiwan and first reported with congenital insensitivity to pain with mutation of NTRK1 gene inherited from the parents. Early diagnosis may provide appropriate medical care and education for these children and their families for better prognosis.

  10. ANKRD54 preferentially selects Bruton's Tyrosine Kinase (BTK) from a Human Src-Homology 3 (SH3) domain library.

    PubMed

    Gustafsson, Manuela O; Mohammad, Dara K; Ylösmäki, Erkko; Choi, Hyunseok; Shrestha, Subhash; Wang, Qing; Nore, Beston F; Saksela, Kalle; Smith, C I Edvard

    2017-01-01

    Bruton's Tyrosine Kinase (BTK) is a cytoplasmic protein tyrosine kinase with a fundamental role in B-lymphocyte development and activation. The nucleocytoplasmic shuttling of BTK is specifically modulated by the Ankyrin Repeat Domain 54 (ANKRD54) protein and the interaction is known to be exclusively SH3-dependent. To identify the spectrum of the ANKRD54 SH3-interactome, we applied phage-display screening of a library containing all the 296 human SH3 domains. The BTK-SH3 domain was the prime interactor. Quantitative western blotting analysis demonstrated the accuracy of the screening procedure. Revealing the spectrum and specificity of ANKRD54-interactome is a critical step toward functional analysis in cells and tissues.

  11. A platinum-based hybrid drug design approach to circumvent acquired resistance to molecular targeted tyrosine kinase inhibitors

    NASA Astrophysics Data System (ADS)

    Wei, Yuming; Poon, Daniel C.; Fei, Rong; Lam, Amy S. M.; Au-Yeung, Steve C. F.; To, Kenneth K. W.

    2016-05-01

    Three molecular targeted tyrosine kinase inhibitors (TKI) were conjugated to classical platinum-based drugs with an aim to circumvent TKI resistance, predominately mediated by the emergence of secondary mutations on oncogenic kinases. The hybrids were found to maintain specificity towards the same oncogenic kinases as the original TKI. Importantly, they are remarkably less affected by TKI resistance, presumably due to their unique structure and the observed dual mechanism of anticancer activity (kinase inhibition and DNA damage). The study is also the first to report the application of a hybrid drug approach to switch TKIs from being efflux transporter substrates into non-substrates. TKIs cannot penetrate into the brain for treating metastases because of efflux transporters at the blood brain barrier. The hybrids were found to escape drug efflux and they accumulate more than the original TKI in the brain in BALB/c mice. Further development of the hybrid compounds is warranted.

  12. A platinum-based hybrid drug design approach to circumvent acquired resistance to molecular targeted tyrosine kinase inhibitors

    PubMed Central

    Wei, Yuming; Poon, Daniel C.; Fei, Rong; Lam, Amy S. M.; Au-Yeung, Steve C. F.; To, Kenneth K. W.

    2016-01-01

    Three molecular targeted tyrosine kinase inhibitors (TKI) were conjugated to classical platinum-based drugs with an aim to circumvent TKI resistance, predominately mediated by the emergence of secondary mutations on oncogenic kinases. The hybrids were found to maintain specificity towards the same oncogenic kinases as the original TKI. Importantly, they are remarkably less affected by TKI resistance, presumably due to their unique structure and the observed dual mechanism of anticancer activity (kinase inhibition and DNA damage). The study is also the first to report the application of a hybrid drug approach to switch TKIs from being efflux transporter substrates into non-substrates. TKIs cannot penetrate into the brain for treating metastases because of efflux transporters at the blood brain barrier. The hybrids were found to escape drug efflux and they accumulate more than the original TKI in the brain in BALB/c mice. Further development of the hybrid compounds is warranted. PMID:27150583

  13. Protein kinase C and tyrosine kinase pathways regulate lipopolysaccharide-induced nitric oxide synthase activity in RAW 264.7 murine macrophages.

    PubMed Central

    Paul, A; Pendreigh, R H; Plevin, R

    1995-01-01

    1. In RAW 264.7 macrophages, lipopolysaccharide (LPS) and gamma-interferon (IFN gamma) alone or in combination stimulated the induction of nitric oxide synthase (iNOS) activity and increased the expression of the 130 kDa isoform of NOS. 2. LPS-induced NOS activity was reduced by incubation with CD14 neutralising antibodies and abolished in macrophages deprived of serum. 3. LPS stimulated a small increase in protein kinase C (PKC) activity in RAW 264.7 macrophages which was dependent on the presence of serum. However, IFN gamma did not potentiate LPS-stimulated PKC activity. 4. The protein kinase C inhibitor, Ro-318220, abolished both LPS- and IFN gamma-stimulated protein kinase C activity and the induction of NOS activity. 5. LPS- and IFN gamma-induced NOS activity was reduced by the tyrosine kinase inhibitor genestein. Genestein also reduced LPS-stimulated protein kinase C activity but did not affect the response to the protein kinase C activator, tetradecanoylphorbol acetate (TPA). 6. Nicotinamide, an inhibitor of poly-ADP ribosylation, abolished LPS- and IFN gamma-induced NOS activity. 7. Brefeldin A, an inhibitor of a factor which stimulates nucleotide exchange activity on the 21 kDa ADP-ribosylation factor, ARF, reduced LPS- and IFN gamma-induced NOS activity by approximately 80%. 8. These results suggest the involvement of protein kinase C, tyrosine kinase and poly-ADP ribosylation pathways in the regulation of the induction of nitric oxide synthase in RAW 264.7 macrophages by LPS and IFN gamma. Images Figure 2 PMID:7533621

  14. Dermatologic Toxicities from Monoclonal Antibodies and Tyrosine Kinase Inhibitors against EGFR: Pathophysiology and Management

    PubMed Central

    Abdullah, Shaad E.; Haigentz, Missak; Piperdi, Bilal

    2012-01-01

    Epidermal growth factor receptor (EGFR) inhibition has now been well established as an effective treatment for various cancers. The EGFR belongs to the ErbB family of tyrosine kinase receptors which regulate tumor cell differentiation, survival and proliferation. Activation of EGFR drives tumorigenesis in lung, head and neck, colorectal and pancreatic cancers. Irrespective of the type of cancer being treated and the mechanism by which tumor EGFR drives tumorigenesis, the major side effect of EGFR inhibition is a papulopustular (also described as maculopapular or acneiform) rash which occurs in about two thirds of treated patients. Interestingly, this rash has been commonly correlated with better clinical outcomes (objective tumor response and patient survival). The pathophysiology of dermatological toxicity from EGFR inhibitors is an important area of clinical research, and the proper management of the rash is essential to increase the therapeutic index from this class of drugs. In this paper, we review the dermatologic toxicities associated with EGFR inhibitors with an emphasis on its pathophysiology and clinical management. PMID:22997576

  15. Induction of human pancreatic beta cell replication by inhibitors of dual specificity tyrosine regulated kinase

    PubMed Central

    Wang, Peng; Alvarez-Perez, Juan-Carlos; Felsenfeld, Dan P.; Liu, Hongtao; Sivendran, Sharmila; Bender, Aaron; Kumar, Anil; Sanchez, Roberto; Scott, Donald K.; Garcia-Ocaña, Adolfo; Stewart, Andrew F.

    2015-01-01

    Types 1 and 2 diabetes affect some 380 million people worldwide. Both result ultimately from a deficiency of functional pancreatic insulin-producing beta cells. Beta cells proliferate in humans during a brief temporal window beginning around the time of birth, with peak beta cell labeling indices achieving approximately 2% in first year of life1-4. In embryonic life and after early childhood, beta cell replication rates are very low. While beta cell expansion seems an obvious therapeutic approach to beta cell deficiency, adult human beta cells have proven recalcitrant to such efforts1-8. Hence, there remains an urgent need for diabetes therapeutic agents that can induce regeneration and expansion of adult human beta cells in vivo or ex vivo. Here, we report the results of a high-throughput small molecule screen (HTS) revealing a novel class of human beta cell mitogenic compounds, analogues of the small molecule, harmine. We also define dual specificity tyrosine-regulated kinase-1a (DYRK1A) as the likely target of harmine, and the Nuclear Factors of activated T-cells (NFAT) family of transcription factors as likely mediators of human beta cell proliferation as well as beta cell differentiation. These observations suggest that harmine analogues (“harmalogs”) may have unique therapeutic promise for human diabetes therapy. Enhancing potency and beta cell specificity are important future challenges. PMID:25751815

  16. Mediation of transitional B cell maturation in the absence of functional Bruton's tyrosine kinase.

    PubMed

    Tanwar, Shalini; Dhar, Atika; Varanasi, Vineeth; Mukherjee, Tapas; Boppana, Ramanamurthy; Basak, Soumen; Bal, Vineeta; George, Anna; Rath, Satyajit

    2017-04-05

    X-linked immune-deficient (Xid) mice, carrying a mutation in Bruton's tyrosine kinase (Btk), have multiple B cell lineage differentiation defects. We now show that, while Xid mice showed only mild reduction in the frequency of the late transitional (T2) stage of peripheral B cells, the defect became severe when the Xid genotype was combined with either a CD40-null, a TCRbeta-null or an MHC class II (MHCII)-null genotype. Purified Xid T1 and T2 B cells survived poorly in vitro compared to wild-type (WT) cells. BAFF rescued WT but not Xid T1 and T2 B cells from death in culture, while CD40 ligation equivalently rescued both. Xid transitional B cells ex vivo showed low levels of the p100 protein substrate for non-canonical NF-kappaB signalling. In vitro, CD40 ligation induced equivalent activation of the canonical but not of the non-canonical NF-kappaB pathway in Xid and WT T1 and T2 B cells. CD40 ligation efficiently rescued p100-null T1 B cells from neglect-induced death in vitro. These data indicate that CD40-mediated signals, likely from CD4 T cells, can mediate peripheral transitional B cell maturation independent of Btk and the non-canonical NF-kappaB pathway, and thus contribute to the understanding of the complexities of peripheral B cell maturation.

  17. Site-Specific N-Glycosylation of Endothelial Cell Receptor Tyrosine Kinase VEGFR-2.

    PubMed

    Chandler, Kevin Brown; Leon, Deborah R; Meyer, Rosana D; Rahimi, Nader; Costello, Catherine E

    2017-02-03

    Vascular endothelial growth factor receptor-2 (VEGFR-2) is an important receptor tyrosine kinase (RTK) that plays critical roles in both physiologic and pathologic angiogenesis. The extracellular domain of VEGFR-2 is composed of seven immunoglobulin-like domains, each with multiple potential N-glycosylation sites (sequons). N-glycosylation plays a central role in RTK ligand binding, trafficking, and stability. However, despite its importance, the functional role of N-glycosylation of VEGFR-2 remains poorly understood. The objectives of the present study were to characterize N-glycosylation sites in VEGFR-2 via enzymatic release of the glycans and concomitant incorporation of (18)O into formerly N-glycosylated sites followed by tandem mass spectrometry (MS/MS) analysis to determine N-glycosylation site occupancy and the site-specific N-glycan heterogeneity of VEGFR-2 glycopeptides. The data demonstrated that all seven VEGFR-2 immunoglobulin-like domains have at least one occupied N-glycosylation site. MS/MS analyses of glycopeptides and deamidated, deglycosylated (PNGase F-treated) peptides from ectopically expressed VEGFR-2 in porcine aortic endothelial (PAE) cells identified N-glycans at the majority of the 17 potential N-glycosylation sites on VEGFR-2 in a site-specific manner. The data presented here provide direct evidence for site-specific, heterogeneous N-glycosylation and N-glycosylation site occupancy on VEGFR-2. The study has important implications for the therapeutic targeting of VEGFR-2, ligand binding, trafficking, and signaling.

  18. Anks1a regulates COPII-mediated anterograde transport of receptor tyrosine kinases critical for tumorigenesis

    PubMed Central

    Lee, Haeryung; Noh, Hyuna; Mun, Jiyoung; Gu, Changkyu; Sever, Sanja; Park, Soochul

    2016-01-01

    ErbB2 signalling, which is amplified by EphA2 binding, is an important therapeutic target for breast cancer. Despite the importance of the EphA2/ErbB2 complex in promoting breast tumorigenesis, the mechanism by which these receptor tyrosine kinases (RTKs) are exported from the endoplasmic reticulum (ER) remains poorly understood. Here we report that the PTB adaptor Anks1a is specifically localized to the ER on its own serine phosphorylation. Once there, Anks1a acts as an important regulator of COPII-mediated EphA2 ER export. The Anks1a ankyrin repeat domain binds EphA2 and causes it to accumulate at sites of ER exit. Simultaneously, the Anks1a PTB domain binds Sec23. This induces internalization of EphA2 via COPII vesicles, while Anks1a remains behind on the ER membrane. EphA2 also binds ErbB2 in the ER and seems to load ErbB2 into growing COPII carriers. Together, our study reveals a novel mechanism that regulates the loading of RTKs into COPII vesicles. PMID:27619642

  19. Synergism of FAK and tyrosine kinase inhibition in Ph+ B-ALL

    PubMed Central

    Churchman, Michelle L.; Richmond, Jennifer; Robbins, Alissa; Jones, Luke; Shapiro, Irina M.; Pachter, Jonathan A.; Weaver, David T.; Houghton, Peter J.; Smith, Malcolm A.; Lock, Richard B.

    2016-01-01

    BCR-ABL1+ B progenitor acute lymphoblastic leukemia (Ph+ B-ALL) is an aggressive disease that frequently responds poorly to currently available therapies. Alterations in IKZF1, which encodes the lymphoid transcription factor Ikaros, are present in over 80% of Ph+ ALL and are associated with a stem cell–like phenotype, aberrant adhesion molecule expression and signaling, leukemic cell adhesion to the bone marrow stem cell niche, and poor outcome. Here, we show that FAK1 is upregulated in Ph+ B-ALL with further overexpression in IKZF1-altered cells and that the FAK inhibitor VS-4718 potently inhibits aberrant FAK signaling and leukemic cell adhesion, potentiating responsiveness to tyrosine kinase inhibitors, inducing cure in vivo. Thus, targeting FAK with VS-4718 is an attractive approach to overcome the deleterious effects of FAK overexpression in Ph+ B-ALL, particularly in abrogating the adhesive phenotype induced by Ikaros alterations, and warrants evaluation in clinical trials for Ph+ B-ALL, regardless of IKZF1 status. PMID:27123491

  20. LIG Family Receptor Tyrosine Kinase-Associated Proteins Modulate Growth Factor Signals During Neural Development

    PubMed Central

    Mandai, Kenji; Guo, Ting; Hillaire, Coryse St.; Meabon, James S.; Kanning, Kevin C.; Bothwell, Mark; Ginty, David D.

    2009-01-01

    SUMMARY Genome-wide screens were performed to identify transmembrane proteins that mediate axonal growth, guidance and target field innervation of somatosensory neurons. One gene, Linx (alias Islr2), encoding a leucine-rich repeat and immunoglobulin (LIG) family protein, is expressed in a subset of developing sensory and motor neurons. Domain and genomic structures of Linx and other LIG family members suggest that they are evolutionarily related to Trk receptor tyrosine kinases (RTKs). Several LIGs, including Linx are expressed in subsets of somatosensory and motor neurons and select members interact with TrkA and Ret RTKs. Moreover, axonal projection defects in mice harboring a null mutation in Linx resemble those in mice lacking Ngf, TrkA and Ret. In addition, Linx modulates NGF–TrkA- and GDNF–GFRα1/Ret-mediated axonal extension in cultured sensory and motor neurons, respectively. These findings show that LIGs physically interact with RTKs and modulate their activities to control axonal extension, guidance and branching. PMID:19755105

  1. Advances in mass spectrometry based strategies to study receptor tyrosine kinases.

    PubMed

    Vyse, Simon; Desmond, Howard; Huang, Paul H

    2017-03-01

    Receptor tyrosine kinases (RTKs) are key transmembrane environmental sensors that are capable of transmitting extracellular information into phenotypic responses, including cell proliferation, survival and metabolism. Advances in mass spectrometry (MS)-based phosphoproteomics have been instrumental in providing the foundations of much of our current understanding of RTK signalling networks and activation dynamics. Furthermore, new insights relating to the dere