Science.gov

Sample records for alkali atoms sims

  1. Positron-alkali atom scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.; Ward, S. J.

    1990-01-01

    Positron-alkali atom scattering was recently investigated both theoretically and experimentally in the energy range from a few eV up to 100 eV. On the theoretical side calculations of the integrated elastic and excitation cross sections as well as total cross sections for Li, Na and K were based upon either the close-coupling method or the modified Glauber approximation. These theoretical results are in good agreement with experimental measurements of the total cross section for both Na and K. Resonance structures were also found in the L = 0, 1 and 2 partial waves for positron scattering from the alkalis. The structure of these resonances appears to be quite complex and, as expected, they occur in conjunction with the atomic excitation thresholds. Currently both theoretical and experimental work is in progress on positron-Rb scattering in the same energy range.

  2. New Atomic Ion SIMS Facility at the Naval Research Laboratory

    NASA Astrophysics Data System (ADS)

    Grabowski, K. S.; Fazel, K. C.; Fahey, A. J.

    2014-12-01

    Mass spectrometry of particulates and few micrometer regions of samples by Secondary Ion Mass Spectrometry (SIMS) is a very useful analytical tool. However, there are limitations caused by interferences from molecular species, such as hydrides, oxides, and carbides. Above mass 90 u, these interferences (> 104 M/ΔM) can exceed the resolving power of SIMS. Accelerator Mass Spectrometry (AMS) is capable of eliminating such molecular ion interferences, but lacks spatial information and generally requires use of negative ions. This requirement limits its sensitivity, since actinide and lanthanide elements preferentially generate positive atomic ions (~104 : 1). The Naval Research Laboratory (NRL) has installed a hybrid SIMS-AMS system, using a Single Stage AMS as a replacement for the normal Cameca IMS 4f SIMS electron multiplier detector. The NRL design enables analysis of either positive or negative ions. Thus, this system offers the potential to provide SIMS-like particle and micro-scale analysis without a forest of signals from molecular species, and is capable of measuring important positive atomic ions. This should improve measurement sensitivity and precision to determine isotopic distributions of actinides, lanthanides, and transition metals; and elemental abundances of trace species in particles or small features. Initial measurements show that molecule intensities can be reduced by seven orders of magnitude while atomic ion intensities are only diminished ~50%. We have chosen to call this instrument an atomic ion SIMS, or ai-SIMS, for short. The effect of basic operational parameters such as ion energy, charge state, molecule destruction gas and its pressure will be described, and examples of the benefits and capabilities of ai-SIMS will be presented.

  3. Hall Determination of Atomic Radii of Alkali Metals

    ERIC Educational Resources Information Center

    Houari, Ahmed

    2008-01-01

    I will propose here an alternative method for determining atomic radii of alkali metals based on the Hall measurements of their free electron densities and the knowledge of their crystal structure. (Contains 2 figures.)

  4. Static SIMS Analysis of Carbonate on Basic Alkali-bearing Surfaces

    SciTech Connect

    Groenewold, Gary Steven; Gianotto, Anita Kay; Cortez, Marnie Michelle; Appelhans, Anthony David; Olsen, J.E.; Shaw, A. D.; Karahan, C.; Avci, R.

    2003-02-01

    Carbonate is a somewhat enigmatic anion in static secondary ion mass spectrometry (SIMS) because abundant ions containing intact CO32- are not detected when analyzing alkaline-earth carbonate minerals common to the geochemical environment. In contrast, carbonate can be observed as an adduct ion when it is bound with alkali cations. In this study, carbonate was detected as the adduct Na2CO3·Na+ in the spectra of sodium carbonate, bicarbonate, hydroxide, oxalate, formate and nitrite and to a lesser extent nitrate. The appearance of the adduct Na2CO3·Na+ on hydroxide, oxalate, formate and nitrite surfaces was interpreted in terms of these basic surfaces fixing CO2 from the ambient atmosphere. The low abundance of Na2CO3·Na+ in the static SIMS spectrum of sodium nitrate, compared with a significantly higher abundance in salts having stronger conjugate bases, suggested that the basicity of the conjugate anions correlated with aggressive CO2 fixation; however, the appearance of Na2CO3·Na+ could not be explained simply in terms of solution basicity constants. The oxide molecular ion Na2O+ and adducts NaOH·Na+ and Na2O·Na+ also constituted part of the carbonate spectral signature, and were observed in spectra from all the salts studied. In addition to the carbonate and oxide ions, a low-abundance oxalate ion series was observed that had the general formula Na2-xHxC2O4·Na+, where 0 < x < 2. Oxalate adsorption from the laboratory atmosphere was demonstrated but the oxalate ion series also was likely to be formed from reductive coupling occurring during the static SIMS bombardment event. The remarkable spectral similarity observed when comparing the sodium salts indicated that their surfaces shared common chemical speciation and that the chemistry of the surfaces was very different from the bulk of the particle. Copyright © 2003 John Wiley & Sons, Ltd.

  5. Near atomically smooth alkali antimonide photocathode thin films

    NASA Astrophysics Data System (ADS)

    Feng, Jun; Karkare, Siddharth; Nasiatka, James; Schubert, Susanne; Smedley, John; Padmore, Howard

    2017-01-01

    Nano-roughness is one of the major factors degrading the emittance of electron beams that can be generated by high efficiency photocathodes, such as the thermally reacted alkali antimonide thin films. In this paper, we demonstrate a co-deposition based method for producing alkali antimonide cathodes that produce near atomic smoothness with high reproducibility. We calculate the effect of the surface roughness on the emittance and show that such smooth cathode surfaces are essential for operation of alkali antimonide cathodes in high field, low emittance radio frequency electron guns and to obtain ultracold electrons for ultrafast electron diffraction applications.

  6. Optical response of alkali metal atoms confined in nanoporous glass

    SciTech Connect

    Burchianti, A; Marinelli, C; Mariotti, E; Bogi, A; Marmugi, L; Giomi, S; Maccari, M; Veronesi, S; Moi, L

    2014-03-28

    We study the influence of optical radiation on adsorption and desorption processes of alkali metal atoms confined in nanoporous glass matrices. Exposure of the sample to near-IR or visible light changes the atomic distribution inside the glass nanopores, forcing the entire system to evolve towards a different state. This effect, due to both atomic photodesorption and confinement, causes the growth and evaporation of metastable nanoparticles. It is shown that, by a proper choice of light characteristics and pore size, these processes can be controlled and tailored, thus opening new perspectives for fabrication of nanostructured surfaces. (nanoobjects)

  7. Absence of neutral alkali atoms in rhodizite

    USGS Publications Warehouse

    Donnay, G.; Thorpe, A.N.; Senftle, F.E.; Sioda, R.

    1966-01-01

    The formula CsB12Be4Al4O28 has been proposed by others for the mineral rhodizite. Electron-spin-resonance and magnetic susceptibility measurements prove the absence of neutral cesium atoms. An ionic formula CsB11Be4Al4O 26(OH)2is proposed.

  8. Scattering of positrons and electrons by alkali atoms

    NASA Technical Reports Server (NTRS)

    Stein, T. S.; Kauppila, W. E.; Kwan, C. K.; Lukaszew, R. A.; Parikh, S. P.; Wan, Y. J.; Zhou, S.; Dababneh, M. S.

    1990-01-01

    Absolute total scattering cross sections (Q sub T's) were measured for positrons and electrons colliding with sodium, potassium, and rubidium in the 1 to 102 eV range, using the same apparatus and experimental approach (a beam transmission technique) for both projectiles. The present results for positron-sodium and -rubidium collisions represent the first Q sub T measurements reported for these collision systems. Features which distinguish the present comparisons between positron- and electron-alkali atom Q sub T's from those for other atoms and molecules (room-temperature gases) which have been used as targets for positrons and electrons are the proximity of the corresponding positron- and electron-alkali atom Q sub T's over the entire energy range of overlap, with an indication of a merging or near-merging of the corresponding positron and electron Q sub T's near (and above) the relatively low energy of about 40 eV, and a general tendency for the positron-alkali atom Q sub T's to be higher than the corresponding electron values as the projectile energy is decreased below about 40 eV.

  9. Electron densities and alkali atoms in exoplanet atmospheres

    SciTech Connect

    Lavvas, P.; Koskinen, T.; Yelle, R. V.

    2014-11-20

    We describe a detailed study on the properties of alkali atoms in extrasolar giant planets, and specifically focus on their role in generating the atmospheric free electron densities, as well as their impact on the transit depth observations. We focus our study on the case of HD 209458b, and we show that photoionization produces a large electron density in the middle atmosphere that is about two orders of magnitude larger than the density anticipated from thermal ionization. Our purely photochemical calculations, though, result in a much larger transit depth for K than observed for this planet. This result does not change even if the roles of molecular chemistry and excited state chemistry are considered for the alkali atoms. In contrast, the model results for the case of exoplanet XO-2b are in good agreement with the available observations. Given these results we discuss other possible scenarios, such as changes in the elemental abundances, changes in the temperature profiles, and the possible presence of clouds, which could potentially explain the observed HD 209458b alkali properties. We find that most of these scenarios cannot explain the observations, with the exception of a heterogeneous source (i.e., clouds or aerosols) under specific conditions, but we also note the discrepancies among the available observations.

  10. Nonlinear pressure shifts of alkali-metal atoms in xenon

    NASA Astrophysics Data System (ADS)

    McGuyer, Bart; Xia, Tian; Jau, Yuan-Yu; Happer, William

    2011-05-01

    Compact, portable atomic frequency standards are based on the microwave resonance frequencies of alkali-metal atoms in inert buffer gases. The frequency shift of these resonances due to collisions with the buffer gas is known as the pressure shift. We demonstrate that the microwave resonance frequencies of ground-state 87Rb and 133Cs atoms have a nonlinear dependence on the pressure of the buffer gas Xe. Previous work has demonstrated a nonlinear dependence in Ar and Kr, but not He and N2, which is thought to be due to the loosely-bound van der Waals molecules that are known to form between alkali-metal and buffer-gas atoms in Ar, Kr, and Xe, but not He and N2. Surprisingly, we find that the nonlinearities in Xe are of the opposite sign to those in Ar and Kr, even though the overall shifts for each of these gases are negative. This discrepancy suggests that though the shifts due to the molecules in Ar and Kr are positive, the shifts due to the molecules in Xe are negative. No nonlinearities were observed in the buffer gas Ne to within our experimental accuracy, which suggests that molecules do not form in Ne. Additionally, we present improved measurements of the shifts of Rb and Cs in He and N2 and of Rb in Ar and Kr. This work was supported by the Air Force Office of Scientific Research and the Department of Defense through the NDSEG program.

  11. Radio-frequency dressed lattices for ultracold alkali atoms

    NASA Astrophysics Data System (ADS)

    Sinuco-León, German A.; Garraway, Barry M.

    2015-05-01

    Ultracold atomic gases in periodic potentials are powerful platforms for exploring quantum physics in regimes dominated by many-body effects as well as for developing applications that benefit from quantum mechanical effects. Further advances face a range of challenges including the realization of potentials with lattice constants smaller than optical wavelengths as well as creating schemes for effective addressing and manipulation of single sites. In this paper we propose a dressed-based scheme for creating periodic potential landscapes for ultracold alkali atoms with the capability of overcoming such difficulties. The dressed approach has the advantage of operating in a low-frequency regime where decoherence and heating effects due to spontaneous emission do not take place. These results highlight the possibilities of atom-chip technology in the future development of quantum simulations and quantum technologies, and provide a realistic scheme for starting such an exploration.

  12. Atomic forces between noble gas atoms, alkali ions, and halogen ions for surface interactions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Outlaw, R. A.; Heinbockel, J. H.

    1988-01-01

    The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base developed from analysis of the two-body potential data, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas surfaces and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  13. Reactive scattering of electronically excited alkali atoms with molecules

    SciTech Connect

    Mestdagh, J.M.; Balko, B.A.; Covinsky, M.H.; Weiss, P.S.; Vernon, M.F.; Schmidt, H.; Lee, Y.T.

    1987-06-01

    Representative families of excited alkali atom reactions have been studied using a crossed beam apparatus. For those alkali-molecule systems in which reactions are also known for ground state alkali and involve an early electron transfer step, no large differences are observed in the reactivity as Na is excited. More interesting are the reactions with hydrogen halides (HCl): it was found that adding electronic energy into Na changes the reaction mechanism. Early electron transfer is responsible of Na(5S, 4D) reactions, but not of Na(3P) reactions. Moreover, the NaCl product scattering is dominated by the HCl/sup -/ repulsion in Na(5S, 4D) reactions, and by the NaCl-H repulsion in the case of Na(3P). The reaction of Na with O/sub 2/ is of particular interest since it was found to be state specific. Only Na(4D) reacts, and the reaction requires restrictive constraints on the impact parameter and the reactants' relative orientation. The reaction with NO/sub 2/ is even more complex since Na(4D) leads to the formation of NaO by two different pathways. It must be mentioned however, that the identification of NaO as product in these reactions has yet to be confirmed.

  14. The reaction dynamics of alkali dimer molecules and electronically excited alkali atoms with simple molecules

    SciTech Connect

    Hou, Hongtao

    1995-12-01

    This dissertation presents the results from the crossed molecular beam studies on the dynamics of bimolecular collisions in the gas phase. The primary subjects include the interactions of alkali dimer molecules with simple molecules, and the inelastic scattering of electronically excited alkali atoms with O2. The reaction of the sodium dimers with oxygen molecules is described in Chapter 2. Two reaction pathways were observed for this four-center molecule-molecule reaction, i.e. the formations of NaO2 + Na and NaO + NaO. NaO2 products exhibit a very anisotropic angular distribution, indicating a direct spectator stripping mechanism for this reaction channel. The NaO formation follows the bond breaking of O2, which is likely a result of a charge transfer from Na2 to the excited state orbital of O2-. The scattering of sodium dimers from ammonium and methanol produced novel molecules, NaNH3 and Na(CH3OH), respectively. These experimental observations, as well as the discussions on the reaction dynamics and the chemical bonding within these molecules, will be presented in Chapter 3. The lower limits for the bond dissociation energies of these molecules are also obtained. Finally, Chapter 4 describes the energy transfer between oxygen molecules and electronically excited sodium atoms.

  15. Non-Adiabatic Atomic Transitions: Computational Cross Section Calculations of Alkali Metal-Noble Gas Collisions

    DTIC Science & Technology

    2011-09-01

    collisions were computationally simulated. The alkali metals were potassium, rubidium, and cesium and the noble gas partners were helium, neon, and argon...195 20. Spin-Orbit split energies of Potassium, Rubidium, and Cesium ...composed of an alkali metal typically Rubidium[26, 37] or Cesium [5, 18]. The unique character of the alkali atoms, having a single valence electron in

  16. Sputter-induced erosion of alkali metal surfaces - AES, XPS and SIMS studies

    SciTech Connect

    Krauss, A.R.

    1982-01-01

    This paper will discuss the manner in which the techniques of Auger-electron spectroscopy (AES), X-ray-photoelectron spectroscopy (XPS), secondary-ion mass spectroscopy (SIMS) and ion-scattering spectroscopy (ISS) may be used to study the use of high secondary-ion-yield surfaces as a means of reducing plasma-impurity influx in magnetic-confinement fusion devices.

  17. Spectroscopic and Kinetic Measurements of Alkali Atom-Rare Gas Excimers

    DTIC Science & Technology

    2009-11-04

    vapors – Exciplex molecules absorb over much greater bandwidth • Control of inherent high optical gain to minimize ASE and optimize laser oscillation...Exciplex assisted diode Pumped Alkali Laser (XPAL) • Education of a future generation of laser scientists VG09-227-2 Physical Sciences Inc. Novel Approach...This new laser exploits the optical properties of weakly-bound alkali/rare-gas exciplexes for pumping the 2P1/2, 3/2 alkali atomic excited states 4

  18. Experimental and Theoretical Studies of Pressure Broadened Alkali-Metal Atom Resonance Lines

    NASA Technical Reports Server (NTRS)

    Shindo, F.; Zhu, C.; Kirby, K.; Babb, J. F.

    2006-01-01

    We are carrying out a joint theoretical and experimental research program to study the broadening of alkali atom resonance lines due to collisions with helium and molecular hydrogen for applications to spectroscopic studies of brown dwarfs and extrasolar giant planets.

  19. Interactions and low-energy collisions between an alkali ion and an alkali atom of a different nucleus

    NASA Astrophysics Data System (ADS)

    Rakshit, Arpita; Ghanmi, Chedli; Berriche, Hamid; Deb, Bimalendu

    2016-05-01

    We study theoretically interaction potentials and low-energy collisions between different alkali atoms and alkali ions. Specifically, we consider systems such as X + {{{Y}}}+, where X({{{Y}}}+) is either Li(Cs+) or Cs(Li+), Na(Cs+) or Cs(Na+) and Li(Rb+) or Rb(Li+). We calculate the molecular potentials of the ground and first two excited states of these three systems using a pseudopotential method and compare our results with those obtained by others. We derive ground-state scattering wave functions and analyze the cold collisional properties of these systems for a wide range of energies. We find that, in order to get convergent results for the total scattering cross sections for energies of the order 1 K, one needs to take into account at least 60 partial waves. The low-energy scattering properties calculated in this paper may serve as a precursor for experimental exploration of quantum collisions between an alkali atom and an alkali ion of a different nucleus.

  20. Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1986-01-01

    The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  1. [Measurement of atomic number of alkali vapor and pressure of buffer gas based on atomic absorption].

    PubMed

    Zheng, Hui-jie; Quan, Wei; Liu, Xiang; Chen, Yao; Lu, Ji-xi

    2015-02-01

    High sensitivitymagnetic measurementscanbe achieved by utilizing atomic spinmanipulation in the spin-exchange-relaxation-free (SERF) regime, which uses an alkali cell as a sensing element. The atomic number density of the alkali vapor and the pressure of the buffer gasare among the most important parameters of the cell andrequire accurate measurement. A method has been proposed and developedto measure the atomic number density and the pressure based on absorption spectroscopy, by sweeping the absorption line and fittingthe experiment data with a Lorentzian profile to obtainboth parameters. Due to Doppler broadening and pressure broadening, which is mainly dominated by the temperature of the cell and the pressure of buffer gas respectively, this work demonstrates a simulation of the errorbetween the peaks of the Lorentzian profile and the Voigt profile caused by bothfactors. The results indicates that the Doppler broadening contribution is insignificant with an error less than 0.015% at 313-513 K for a 4He density of 2 amg, and an error of 0.1% in the presence of 0.6-5 amg at 393 K. We conclude that the Doppler broadening could be ignored under above conditions, and that the Lorentzianprofile is suitably applied to fit the absorption spectrumobtainingboth parameters simultaneously. In addition we discuss the resolution and the instability due to thelight source, wavelength and the temperature of the cell. We find that the cell temperature, whose uncertainty is two orders of magnitude larger than the instability of the light source and the wavelength, is one of the main factors which contributes to the error.

  2. Communication: Angular momentum alignment and fluorescence polarization of alkali atoms photodetached from helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Hernando, Alberto; Beswick, J. Alberto; Halberstadt, Nadine

    2013-12-01

    The theory of photofragments angular momentum polarization is applied to the photodetachment of an electronically excited alkali atom from a helium nanocluster (N = 200). The alignment of the electronic angular momentum of the bare excited alkali atoms produced is calculated quantum mechanically by solving the excited states coupled equations with potentials determined by density functional theory (DFT). Pronounced oscillations as a function of excitation energy are predicted for the case of Na@(He)200, in marked contrast with the absorption cross-section and angular distribution of the ejected atoms which are smooth functions of the energy. These oscillations are due to quantum interference between different coherently excited photodetachment pathways. Experimentally, these oscillations should be reflected in the fluorescence polarization and polarization-resolved photoelectron yield of the ejected atoms, which are proportional to the electronic angular momentum alignment. In addition, this result is much more general than the test case of NaHe200 studied here. It should be observable for larger droplets, for higher excited electronic states, and for other alkali as well as for alkali-earth atoms. Detection of these oscillations would show that the widely used pseudo-diatomic model can be valid beyond the prediction of absorption spectra and could help in interpreting parts of the dynamics, as already hinted by some experimental results on angular anisotropy of bare alkali fragments.

  3. Communication: Angular momentum alignment and fluorescence polarization of alkali atoms photodetached from helium nanodroplets

    SciTech Connect

    Hernando, Alberto; Beswick, J. Alberto; Halberstadt, Nadine

    2013-12-14

    The theory of photofragments angular momentum polarization is applied to the photodetachment of an electronically excited alkali atom from a helium nanocluster (N = 200). The alignment of the electronic angular momentum of the bare excited alkali atoms produced is calculated quantum mechanically by solving the excited states coupled equations with potentials determined by density functional theory (DFT). Pronounced oscillations as a function of excitation energy are predicted for the case of Na@(He){sub 200}, in marked contrast with the absorption cross-section and angular distribution of the ejected atoms which are smooth functions of the energy. These oscillations are due to quantum interference between different coherently excited photodetachment pathways. Experimentally, these oscillations should be reflected in the fluorescence polarization and polarization-resolved photoelectron yield of the ejected atoms, which are proportional to the electronic angular momentum alignment. In addition, this result is much more general than the test case of NaHe{sub 200} studied here. It should be observable for larger droplets, for higher excited electronic states, and for other alkali as well as for alkali-earth atoms. Detection of these oscillations would show that the widely used pseudo-diatomic model can be valid beyond the prediction of absorption spectra and could help in interpreting parts of the dynamics, as already hinted by some experimental results on angular anisotropy of bare alkali fragments.

  4. First-principles study of ternary graphite compounds cointercalated with alkali atoms (Li, Na, and K) and alkylamines towards alkali ion battery applications

    NASA Astrophysics Data System (ADS)

    Ri, Gum-Chol; Yu, Chol-Jun; Kim, Jin-Song; Hong, Song-Nam; Jong, Un-Gi; Ri, Mun-Hyok

    2016-08-01

    First-principles calculations were carried out to investigate the structural, energetic, and electronic properties of ternary graphite compounds cointercalated with alkali atoms (AM = Li, Na, and K) and normal alkylamine molecules (nCx; x = 1, 2, 3, 4), denoted as AM-nCx-GICs. From the optimization of the orthorhombic unit cells for the crystalline compounds, it was found that, with the increase in the atomic number of alkali atoms, the layer separations decrease in contrast to AM-GICs, while the bond lengths between alkali atoms and graphene layer, and nitrogen atom of alkylamine increase. The calculated formation energies and interlayer binding energies of AM-nC3-GICs indicate that the compounds is increasingly stabilized from Li to K, and the energy barriers for migration of alkali atoms suggest that alkali cation with larger ionic radius diffuses more smoothly in graphite, being similar to AM-GICs. Through the analysis of electronic properties, it was established that more extent of electronic charge is transferred from more electropositive alkali atom to the carbon ring of graphene layer, and the hybridization of valence electron orbitals between alkylamine molecules and graphene layer is occurred.

  5. Visualization of alkali-denatured supercoiled plasmid DNA by atomic force microscopy

    SciTech Connect

    Yu Jia; Zhang Zhenfeng; Cao Kou; Huang Xitai

    2008-09-26

    To study the alkali denaturation of supercoiled DNA, plasmid pBR322 was treated with gradient concentrations of NaOH solution. The results of gel electrophoresis showed that the alkali denaturation of the supercoiled DNA occurred in a narrow range of pH value (12.88-12.90). The alkali-denatured supercoiled DNA ran, as a sharp band, faster than the supercoiled DNA. The supercoiled plasmid DNA of pBR322, pACYC184 and pJGX15A were denatured by NaOH, and then visualized by atomic force microscopy. Compared with the supercoiled DNA, the atomic force microscopy images of the alkali-denatured supercoiled DNA showed rough surface with many kinks, bulges on double strands with inhomogeneous diameters. The apparent contour lengths of the denatured DNA were shortened by 16%, 16% and 50% for pBR322, pACYC184 and pJGX15A, respectively. All evidence suggested that the alkali-denatured supercoiled DNA had a stable conformation with unregistered, topologically constrained double strands and intrastrand secondary structure.

  6. Tune-out wavelengths of alkali-metal atoms and their applications

    SciTech Connect

    Arora, Bindiya; Safronova, M. S.; Clark, Charles W.

    2011-10-15

    Using first-principles calculations, we identify ''tune-out'' optical wavelengths, {lambda}{sub zero}, for which the ground-state frequency-dependent polarizabilities of alkali-metal atoms vanish. Our approach uses high-precision, relativistic all-order method in which all single, double, and partial triple excitations of the Dirac-Fock wave functions are included to all orders of perturbation theory. We discuss the use of tune-out wavelengths for sympathetic cooling in two-species mixtures of alkali metals with group II and other elements of interest. Special cases in which these wavelengths coincide with strong resonance transitions in a target system are identified.

  7. Energy transfer from PO excited states to alkali metal atoms in the phosphorus chemiluminescence flame

    PubMed Central

    Khan, Ahsan U.

    1980-01-01

    Phosphorus chemiluminescence under ambient conditions of a phosphorus oxidation flame is found to offer an efficient electronic energy transferring system to alkali metal atoms. The lowest resonance lines, 2P3 / 2,½→2S½, of potassium and sodium are excited by energy transfer when an argon stream at 80°C carrying potassium or sodium atoms intersects a phosphorus vapor stream, either at the flame or in the postflame region. The lowest electronically excited metastable 4IIi state of PO or the (PO[unk]PO)* excimer is considered to be the probable energy donor. The (PO[unk]PO)* excimer results from the interaction of the 4IIi state of one PO molecule with the ground 2IIr state of another. Metastability of the donor state is strongly indicated by the observation of intense sensitized alkali atom fluorescence in the postflame region. PMID:16592925

  8. Bose-Einstein condensation in atomic alkali gases

    NASA Astrophysics Data System (ADS)

    Dodd, Robert J.

    1998-05-01

    I present a review of the time-independent Gross-Pitaevskii (GP), Bogoliubov, and finite-temperature Hartree-Fock-Bogoliubov (HFB) mean-field theories used to study trapped, Bose-Einstein condensed alkali gases. Numerical solutions of the (zero-temperature) GP equation are presented for attractive (negative scattering length) and repulsive (positive scattering length) interactions. Comparison is made with the Thomas-Fermi and (variational) trial wavefunction appr oximations that are used in the literature to study condensed gases. Numerical calculations of the (zero-temperature) Bogoliubov quasi-particle excitation frequencies are found to be in excellent agreement with the experimental results. The finite-temperature properties of condensed gases are examined using the Popov approximation (of the HFB theory) and a simple two-gas model. Specific, quantitative comparisons are made with experimental results for finite-temperature excitation frequencies. Qualitative comparisons are made between the results of the Popov approximation, two-gas model, and other published models for condensate fraction and thermal density distribution. The time-independent mean-field theories are found to be in excellent agreement with experimental results at relatively low temperatures (high condensate fractions). However, at higher temperatures (and condensate fractions of less than 50%) there are significant discrepancies between experimental data and theoretical calculations. This work was undertaken at the University of Maryland at College Park and was supported in part by the National Science Foundation (PHY-9601261) and the U.S. Office of Naval Research.

  9. Reactions between cold methyl halide molecules and alkali-metal atoms

    SciTech Connect

    Lutz, Jesse J.; Hutson, Jeremy M.

    2014-01-07

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH{sub 3}X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH{sub 3}X + A → CH{sub 3} + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  10. Photoabsorption by ground-state alkali-metal atoms.

    NASA Technical Reports Server (NTRS)

    Weisheit, J. C.

    1972-01-01

    Principal-series oscillator strengths and ground-state photoionization cross sections are computed for sodium, potassium, rubidium, and cesium. The degree of polarization of the photoelectrons is also predicted for each atom. The core-polarization correction to the dipole transition moment is included in all of the calculations, and the spin-orbit perturbation of valence-p-electron orbitals is included in the calculations of the Rb and Cs oscillator strengths and of all the photoionization cross sections. The results are compared with recent measurements.

  11. An embedded-atom-method model for alkali-metal vibrations.

    PubMed

    Wilson, R B; Riffe, D M

    2012-08-22

    We present an embedded-atom-method (EAM) model that accurately describes the vibrational dynamics in the alkali metals Li, Na, K, Rb and Cs. The bulk dispersion curves, frequency-moment Debye temperatures and temperature-dependent entropy Debye temperatures are all in excellent agreement with experimental results. The model is also well suited for studying surface vibrational dynamics in these materials, as illustrated by calculations for the Na(110) surface.

  12. Measurement method for the nuclear anapole moment of laser-trapped alkali-metal atoms

    SciTech Connect

    Gomez, E.; Aubin, S.; Sprouse, G. D.; Orozco, L. A.; DeMille, D. P.

    2007-03-15

    Weak interactions within a nucleus generate a nuclear spin dependent, parity-violating electromagnetic moment, the anapole moment. We analyze a method to measure the nuclear anapole moment through the electric dipole transition it induces between hyperfine states of the ground level. The method requires tight confinement of the atoms to position them at the antinode of a standing wave Fabry-Perot cavity driving the anapole-induced microwave E1 transition. We explore the necessary limits in the number of atoms, excitation fields, trap type, interrogation method, and systematic tests necessary for such measurements in francium, the heaviest alkali.

  13. Relativistic Quantum Mechanical Calculations on Alkali Atoms and Dimers from Cesium to Ununennium

    NASA Astrophysics Data System (ADS)

    Arinze, Chukwunonso; Ermler, Walter

    2015-03-01

    Ab initio calculations using relativistic effective core potentials, and intermediate angular momentum coupling of electrons are carried out on the alkali metal atoms, and dimers from cesium through ununennium. A spin-orbit configuration interaction (SOCI) method is employed that includes a spin-orbit coupling operator and a relativistic effective core potential in the Schrodinger Hamiltonian operator. The energy levels from these calculation are found to reproduce the positions of the experimental spectral lines and predict lines not heretofore observed for both of these atoms.

  14. Electron- and Photon-stimulated Desorption of Alkali Atoms from Lunar Sample and a Model Mineral Surface

    NASA Technical Reports Server (NTRS)

    Yakshinskiy, B. V.; Madey, T. E.

    2003-01-01

    We report recent results on an investigation of source mechanisms for the origin of alkali atoms in the tenuous planetary atmospheres, with focus on non-thermal processes (photon stimulated desorption (PSD), electron stimulated desorption (ESD), and ion sputtering). Whereas alkaline earth oxides (MgO, CaO) are far more abundant in lunar samples than alkali oxides (Na2O, K2O), the atmosphere of the Moon contains easily measurable concentrations of Na and K, while Ca and Mg are undetected there; traces of Ca have recently been seen in the Moon's atmosphere (10-3 of Na). The experiments have included ESD, PSD and ion sputtering of alkali atoms from model mineral surface (amorphous SiO2) and from a lunar basalt sample obtained from NASA. The comparison is made between ESD and PSD efficiency of monovalent alkalis (Na, K) and divalent alkaline earths (Ba, Ca).The ultrahigh vacuum measurement scheme for ESD and PSD of Na atoms includes a highly sensitive alkali metal detector based on surface ionization, and a time-of-flight technique. For PSD measurements, a mercury arc light source (filtered and chopped) is used. We find that bombardment of the alkali covered surfaces by ultraviolet photons or by low energy electrons (E>4 eV) causes desorption of hot alkali atoms. This results are consistent with the model developed to explain our previous measurements of sodium desorption from a silica surface and from water ice: electron- or photon-induced charge transfer from the substrate to the ionic adsorbate causes formation of a neutral alkali atom in a repulsive configuration, from which desorption occurs. The two-electron charge transfer to cause desorption of divalent alkaline eath ions is a less likely process.The data support the suggestion that PSD by UV solar photons is a dominant source process for alkalis in the tenuous lunar atmosphere.

  15. s-wave elastic scattering of antihydrogen off atomic alkali-metal targets

    SciTech Connect

    Sinha, Prabal K.; Ghosh, A. S.

    2006-03-15

    We have investigated the s-wave elastic scattering of antihydrogen atoms off atomic alkali-metal targets (Li, Na, K, and Rb) at thermal energies (10{sup -16}-10{sup -4} a.u.) using an atomic orbital expansion technique. The elastic cross sections of these systems at thermal energies are found to be very high compared to H-H and H-He systems. The theoretical models employed in this study are so chosen to consider long-range forces dynamically in the calculation. The mechanism of cooling suggests that Li may be considered to be a good candidate as a buffer gas for enhanced cooling of antihydrogen atoms to ultracold temperature.

  16. (abstract) Fundamental Mechanisms of Electrode Kinetics and Alkali Metal Atom Transport at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kisor, A.; Kikkert, S. K.

    1993-01-01

    The mechanisms of electrode kinetics and mass transport of alkali metal oxidation and alkali metal cation reduction at the solid electrolyte/porous electrode boundary as well as alkali metal transport through porous metal electrodes has important applications in optimizing device performance in alkali metal thermal to electric converter (AMTEC) cells which are high temperature, high current density electrochemical cells. Basic studies of these processes also affords the opportunity to investigate a very basic electrochemical reaction over a wide range of conditions; and a variety of mass transport modes at high temperatures via electrochemical techniques. The temperature range of these investigations covers 700K to 1240K; the alkali metal vapor pressures range from about 10(sup -2) to 10(sup 2) Pa; and electrodes studied have included Mo, W, Mo/Na(sub 2)MoO(sub 4), W/Na(sub 2)WO(sub 4), WPt(sub x), and WRh(sub x) (1.0 < x < 6.0 ) with Na at Na-beta'-alumina, and Mo with K at K-beta'-alumina. Both liquid metal/solid electrolyte/alkali metal vapor and alkali metal vapor/solid electrolyte/vapor cells have been used to characterize the reaction and transport processes. We have previously reported evidence of ionic, free molecular flow, and surface transport of sodium in several types of AMTEC electrodes.

  17. Large O2 Cluster Ions as Sputter Beam for ToF-SIMS Depth Profiling of Alkali Metals in Thin SiO2 Films.

    PubMed

    Holzer, Sabine; Krivec, Stefan; Kayser, Sven; Zakel, Julia; Hutter, Herbert

    2017-02-21

    A sputter beam, consisting of large O2 clusters, was used to record depth profiles of alkali metal ions (Me(+)) within thin SiO2 layers. The O2 gas cluster ion beam (O2-GCIB) exhibits an erosion rate comparable to the frequently used O2(+) projectiles. However, because of its high sputter yield the necessary beam current is considerably lower (factor 50), resulting in a decreased amount of excess charges at the SiO2 surface. Hence, a reduced electric field is obtained within the remaining dielectric layer. This drastically mitigates the Me(+) migration artifact, commonly observed in depth profiles of various dielectric materials, if analyzed by time-of-flight secondary ion mass spectrometry (ToF-SIMS) in dual beam mode. It is shown, that the application of O2-GCIB results in a negligible residual ion migration for Na(+) and K(+). This enables artifact-free depth profiling with high sensitivity and low operational effort. Furthermore, insight into the migration behavior of Me(+) during O2(+) sputtering is given by switching the sputter beam from O2(+) to O2 clusters and vice versa. K(+) is found to be transported through the SiO2 layer only within the proceeding sputter front. For Na(+) a steadily increasing fraction is observed, which migrates through the unaffected SiO2 layer toward the adjacent Si/SiO2 interface.

  18. Two-Photon Photoemission Study of the Coverage-Dependent Electronic Structure of Chemisorbed Alkali Atoms on a Ag(111) Surface

    SciTech Connect

    Wang, Lei-Ming; Sametoglu, Vahit; Winkelmann, Aimo; Zhao, Jin; Petek, Hrvoje

    2011-09-01

    We report a systematic investigation of the electronic structure of chemisorbed alkali atoms (Li-Cs) on a Ag(111) surface by two-photon photoemission spectroscopy. Angle-resolved two-photon photoemission spectra are obtained for 0-0.1 monolayer coverage of alkali atoms. The interfacial electronic structure as a function of periodic properties and the coverage of alkali atoms is observed and interpreted assuming ionic adsorbate/substrate interaction. The energy of the alkali atom σ-resonance at the limit of zero coverage is primarily determined by the image charge interaction, whereas at finite alkali atom coverages, it follows the formation of a dipolar surface field. The coverage- and angle-dependent two-photon photoemission spectra provide information on the photoinduced charge-transfer excitation of adsorbates on metal surfaces. This work complements the previous work on alkali/ Cu(111) chemisorption

  19. Measurements of atomic beam velocities with phase choppers and precision measurements of alkali atomic polarizabilities

    NASA Astrophysics Data System (ADS)

    Hromada, Ivan, Jr.

    Atom interferometers, in which de Broglie waves are coherently split and recombined to make interference fringes, now serve as precision measurement tools for several quantities in physics. Examples include measurements of Newton's constant, the fine structure constant, van der Waals potentials, and atomic polarizabilities. To make next-generation measurements of static electric dipole atomic polarizabilities with an atom beam interferometer, I worked on new methods to precisely measure the velocity distribution for atom beams. I will explain how I developed and used phase choppers to measure lithium, sodium, potassium, and cesium atomic beam velocities with 0.07% accuracy. I also present new measurements of polarizability for these atoms. I classify systematic errors into two broad categories: (1) fractional errors that are similar for all different types of atoms in our experiments, and (2), errors that scale with de Broglie wavelength or inverse atomic momentum in our experiments. This distinction is important for estimating the uncertainty in our measurements of ratios of atomic polarizabilities, e.g., alpha Cs/alphaNa = 2.488(12).

  20. Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks

    NASA Astrophysics Data System (ADS)

    Abdullah, S.; Affolderbach, C.; Gruet, F.; Mileti, G.

    2015-04-01

    We report an aging study on micro-fabricated alkali vapor cells using neon as a buffer gas. An experimental atomic clock setup is used to measure the cell's intrinsic frequency, by recording the clock frequency shift at different light intensities and extrapolating to zero intensity. We find a drift of the cell's intrinsic frequency of (-5.2 ± 0.6) × 10-11/day and quantify deterministic variations in sources of clock frequency shifts due to the major physical effects to identify the most probable cause of the drift. The measured drift is one order of magnitude stronger than the total frequency variations expected from clock parameter variations and corresponds to a slow reduction of buffer gas pressure inside the cell, which is compatible with the hypothesis of loss of Ne gas from the cell due to its permeation through the cell windows. A negative drift on the intrinsic cell frequency is reproducible for another cell of the same type. Based on the Ne permeation model and the measured cell frequency drift, we determine the permeation constant of Ne through borosilicate glass as (5.7 ± 0.7) × 10-22 m2 s-1 Pa-1 at 81 °C. We propose this method based on frequency metrology in an alkali vapor cell atomic clock setup based on coherent population trapping for measuring permeation constants of inert gases.

  1. Higher-order C{sub n} dispersion coefficients for the alkali-metal atoms

    SciTech Connect

    Mitroy, J.; Bromley, M.W.J.

    2005-04-01

    The van der Waals coefficients, from C{sub 11} through to C{sub 16} resulting from second-, third-, and fourth-order perturbation theory are estimated for the alkali-metal (Li, Na, K, and Rb) atoms. The dispersion coefficients are also computed for all possible combinations of the alkali-metal atoms and hydrogen. The parameters are determined from sum rules after diagonalizing a semiempirical fixed core Hamiltonian in a large basis. Comparisons of the radial dependence of the C{sub n}/r{sup n} potentials give guidance as to the radial regions in which the various higher-order terms can be neglected. It is seen that including terms up to C{sub 10}/r{sup 10} results in a dispersion interaction that is accurate to better than 1% whenever the inter-nuclear spacing is larger than 20a{sub 0}. This level of accuracy is mainly achieved due to the fortuitous cancellation between the repulsive (C{sub 11},C{sub 13},C{sub 15}) and attractive (C{sub 12},C{sub 14},C{sub 16}) dispersion forces.

  2. Precision measurements of atomic lifetimes in alkali like systems. Progress report, September 15, 1995--January 15, 1998

    SciTech Connect

    Tanner, C.E.

    1998-01-01

    Precision measurements of atomic lifetimes are important to the analysis of data from many areas of physics and provide fundamental atomic structure information. Scientists in the fields of astrophysics, geophysics, and plasma fusion all depend on oscillator strengths to determine the relative abundances of elements. Assessing the operation of discharge lamps and atomic resonance line filters also depends on knowing accurately atomic oscillator strengths. Often relative values of oscillator strengths are measured precisely, but accurate atomic lifetimes are needed to obtain absolute values. In addition, the interpretation of parity nonconservation (PNC) experiments requires accurate knowledge of the atomic structure including radial matrix elements. Many of these scientific needs are addressed theoretically with sophisticated many-electron atomic structure calculations. In this program they address these needs experimentally with a precision that surpasses current theoretical accuracy. The lifetime measurements also play the important roles of assessing the accuracy of many-electron atomic structure calculations and of guiding further theoretical development. Alkali like atoms, with a single electron outside of a closed shell, provide the simplest open shell systems for detailed comparisons between experiment and theory. To date, the research has focused on measurements of excited state lifetimes in neutral alkali systems along with the development of the necessary equipment and techniques for studying alkali-like ionic systems. The accomplishments of this program are summarized in Section 2 and are supported by the reprints and preprints that appear in the Appendix.

  3. Time-resolved photoemission study of the electronic structure and dynamics of chemisorbed alkali atoms on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Zhang, Shengmin; Wang, Cong; Cui, Xuefeng; Wang, Yanan; Argondizzo, Adam; Zhao, Jin; Petek, Hrvoje

    2016-01-01

    We investigate the electronic structure and photoexcitation dynamics of alkali atoms (Rb and Cs) chemisorbed on transition-metal Ru(0001) single-crystal surface by angle- and time-resolved multiphoton photoemission. Three- and four-photon photoemission (3PP and 4PP) spectroscopic features due to the σ and π resonances arising from the n s and n p states of free alkali atoms are observed from ˜2 eV below the vacuum level in the zero-coverage limit. As the alkali coverage is increased to a maximum of 0.02 monolayers, the resonances are stabilized by formation of a surface dipole layer, but in contrast to alkali chemisorption on noble metals, both resonances form dispersive bands with nearly free-electron mass. Density functional theory calculations attribute the band formation to substrate-mediated interaction involving hybridization with the unoccupied d bands of the substrate. Time-resolved measurements quantify the phase and population relaxation times in the three-photon photoemission (3PP) process via the σ and π resonances. Differences between alkali-atom chemisorption on noble and transition metals are discussed.

  4. Diode-Pumped Alkali Atom Lasers 03-LW-024 Final Report

    SciTech Connect

    Page, R H; Beach, R J

    2005-02-16

    The recent work at LLNL on alkali-atom lasers has been remarkably successful and productive. Three main phases (so far) can be identified. First, the concept and demonstration of red lasers using (Ti:sapphire pumping) took place; during this time, Rubidium and Cesium resonance-line lasers were tested, and theoretical models were developed and shown to describe experimental results very reliably. Work done during this first phase has been well documented, and the models from that period are still in use for their predictions and for designing power-scaled lasers. [1 - 3] Second, attempts were made to produce a blue alkali-vapor laser using sequentially-resonant two-step pumping (again, using Ti:sapphire lasers.) Although a blue laser did not result, the physical limitations of our approach are now better-defined. Third, diode-pumped operation of a red laser (Rubidium) was attempted, and we eventually succeeded in demonstrating the world's first diode-pumped gas laser. [4] Because we have a defensible concept for producing an efficient, compact, lightweight, power-scaled laser (tens of kW,) we are in a position to secure outside funding, and would like to find a sponsor. For descriptions of work done during the ''first phase,'' see References [1 - 3] ''Phase two'' work is briefly described in the section ''Blue laser,'' and ''phase three'' work is presented in the section entitled ''Diode-pumped red laser.''

  5. Model for fast, nonadiabatic collisions between alkali atoms and diatomic molecules

    NASA Astrophysics Data System (ADS)

    Hickman, A. P.

    1980-11-01

    Equations for collisions involving two potential surfaces are presented in the impact parameter approximation. In this approximation, a rectilinear classical trajectory is assumed for the translational motion, leading to a time-dependent Schroedinger's equation for the remaining degrees of freedom. Model potentials are considered for collisions of alkali atoms with diatomic molecules that lead to a particularly simple form of the final equations. Using the Magnus approximation, these equations are solved for parameters chosen to model the process Cs+O2→Cs++O2-, and total cross sections for ion-pair formation are obtained as a function of energy. The results exhibit oscillations that correspond qualitatively to those seen in recent measurements. In addition, the model predicts that the oscillations will become less pronounced as the initial vibrational level of O2 is increased.

  6. Quantum Degenerate Mixtures of Alkali and Alkaline-Earth-Like Atoms

    SciTech Connect

    Hara, Hideaki; Takasu, Yosuke; Yamaoka, Yoshifumi; Doyle, John M.; Takahashi, Yoshiro

    2011-05-20

    We realize simultaneous quantum degeneracy in mixtures consisting of the alkali and alkaline-earth-like atoms Li and Yb. This is accomplished within an optical trap by sympathetic cooling of the fermionic isotope {sup 6}Li with evaporatively cooled bosonic {sup 174}Yb and, separately, fermionic {sup 173}Yb. Using cross-thermalization studies, we also measure the elastic s-wave scattering lengths of both Li-Yb combinations, |a{sub {sup 6}Li-{sup 174}Yb}|=1.0{+-}0.2 nm and |a{sub {sup 6}Li-{sup 173}Yb}|=0.9{+-}0.2 nm. The equality of these lengths is found to be consistent with mass-scaling analysis. The quantum degenerate mixtures of Li and Yb, as realized here, can be the basis for creation of ultracold molecules with electron spin degrees of freedom, studies of novel Efimov trimers, and impurity probes of superfluid systems.

  7. Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks

    SciTech Connect

    Abdullah, S.; Affolderbach, C.; Gruet, F.; Mileti, G.

    2015-04-20

    We report an aging study on micro-fabricated alkali vapor cells using neon as a buffer gas. An experimental atomic clock setup is used to measure the cell's intrinsic frequency, by recording the clock frequency shift at different light intensities and extrapolating to zero intensity. We find a drift of the cell's intrinsic frequency of (−5.2 ± 0.6) × 10{sup −11}/day and quantify deterministic variations in sources of clock frequency shifts due to the major physical effects to identify the most probable cause of the drift. The measured drift is one order of magnitude stronger than the total frequency variations expected from clock parameter variations and corresponds to a slow reduction of buffer gas pressure inside the cell, which is compatible with the hypothesis of loss of Ne gas from the cell due to its permeation through the cell windows. A negative drift on the intrinsic cell frequency is reproducible for another cell of the same type. Based on the Ne permeation model and the measured cell frequency drift, we determine the permeation constant of Ne through borosilicate glass as (5.7 ± 0.7) × 10{sup −22} m{sup 2} s{sup −1 }Pa{sup −1} at 81 °C. We propose this method based on frequency metrology in an alkali vapor cell atomic clock setup based on coherent population trapping for measuring permeation constants of inert gases.

  8. Atomic many-body effects and Lamb shifts in alkali metals

    NASA Astrophysics Data System (ADS)

    Ginges, J. S. M.; Berengut, J. C.

    2016-05-01

    We present a detailed study of the radiative potential method [V. V. Flambaum and J. S. M. Ginges, Phys. Rev. A 72, 052115 (2005), 10.1103/PhysRevA.72.052115], which enables the accurate inclusion of quantum electrodynamics (QED) radiative corrections in a simple manner in atoms and ions over the range 10 ≤Z ≤120 , where Z is the nuclear charge. Calculations are performed for binding energy shifts to the lowest valence s , p , and d waves over the series of alkali-metal atoms Na to E119. The high accuracy of the radiative potential method is demonstrated by comparison with rigorous QED calculations in frozen atomic potentials, with deviations on the level of 1%. The many-body effects of core relaxation and second- and higher-order perturbation theory on the interaction of the valence electron with the core are calculated. The inclusion of many-body effects tends to increase the size of the shifts, with the enhancement particularly significant for d waves; for K to E119, the self-energy shifts for d waves are only an order of magnitude smaller than the s -wave shifts. It is shown that taking into account many-body effects is essential for an accurate description of the Lamb shift.

  9. Intrinsic differences in atomic ordering of calcium (alumino)silicate hydrates in conventional and alkali-activated cements

    SciTech Connect

    White, Claire E.; Daemen, Luke L.; Hartl, Monika; Page, Katharine

    2015-01-15

    The atomic structures of calcium silicate hydrate (C–S–H) and calcium (–sodium) aluminosilicate hydrate (C–(N)–A–S–H) gels, and their presence in conventional and blended cement systems, have been the topic of significant debate over recent decades. Previous investigations have revealed that synthetic C–S–H gel is nanocrystalline and due to the chemical similarities between ordinary Portland cement (OPC)-based systems and low-CO{sub 2} alkali-activated slags, researchers have inferred that the atomic ordering in alkali-activated slag is the same as in OPC–slag cements. Here, X-ray total scattering is used to determine the local bonding environment and nanostructure of C(–A)–S–H gels present in hydrated tricalcium silicate (C{sub 3}S), blended C{sub 3}S–slag and alkali-activated slag, revealing the large intrinsic differences in the extent of nanoscale ordering between C–S–H derived from C{sub 3}S and alkali-activated slag systems, which may have a significant influence on thermodynamic stability, and material properties at higher length scales, including long term durability of alkali-activated cements.

  10. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. [atomic spectra and electronic structure of alkali metals

    NASA Technical Reports Server (NTRS)

    Hartmann, S. R.; Happer, W.

    1974-01-01

    The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.

  11. Collimated, single-pass atom source from a pulsed alkali metal dispenser for laser-cooling experiments

    SciTech Connect

    Moore, Kevin L.; Purdy, Thomas P.; Murch, Kater W.; Leslie, Sabrina; Gupta, Subhadeep; Stamper-Kurn, Dan M.

    2005-02-01

    We have developed an improved scheme for loading atoms into a magneto-optical trap (MOT) from a directed rubidium alkali metal dispenser in <10{sup -10} Torr ultrahigh vacuum conditions. A current-driven dispenser was surrounded with a cold absorbing 'shroud' held at {<=}0 deg. C, pumping rubidium atoms not directed into the MOT. This nearly eliminates background atoms and reduces the detrimental rise in pressure normally associated with these devices. The system can be well-described as a current-controlled, rapidly switched, two-temperature thermal beam, and was used to load a MOT with 3x10{sup 8} atoms.

  12. Tof-Sims Application for Evaluating the Atomic Structure of New Bone Substitute Material

    NASA Astrophysics Data System (ADS)

    Oteri, G.; Pisanom, M.; Cicciù, M.

    2016-05-01

    The aim of this experimental study is to evaluate, in vitro, the chemical composition and the micromorphological structure of a bone substitute material surface. This material is based on calcium triphosphate and hydroxyapatite microgranules. Some results of a preliminary surface study of the above mentioned bioceramic materials are reported. The study has been carried out by means of time-of-flight secondary ion mass spectrometry (TOF-SIMS), complemented by X-ray photoelectron spectrometry (XPS) measurements. Whereas XPS data supplies the average surface composition of the system, TOF-SIMS supplies laterally and depth resolved information on the sample. This preliminary study confirms the properties of osteoconduction and scaffold features of the material. Moreover, a possible osteoinductive capability could be due to the presence of surface micropores, which could help in the attraction of bone morphogenetic protein (BMP), thus promoting the osteogenesis.

  13. Finite-field evaluation of the Lennard-Jones atom-wall interaction constant C{sub 3} for alkali-metal atoms

    SciTech Connect

    Johnson, W.R.; Dzuba, V.A.; Safronova, U.I.; Safronova, M.S.

    2004-02-01

    A finite-field scaling method is applied to evaluate the Lennard-Jones interaction constant C{sub 3} for alkali-metal atoms. The calculations are based on the relativistic single-double approximation in which single and double excitations of Dirac-Hartree-Fock wave functions are included to all orders in perturbation theory.

  14. Shifts in the ESR Spectra of Alkali-Metal Atoms (Li, Na, K, Rb) on Helium Nanodroplets

    PubMed Central

    Hauser, Andreas W; Gruber, Thomas; Filatov, Michael; Ernst, Wolfgang E

    2013-01-01

    He-droplet-induced changes of the hyperfine structure constants of alkali-metal atoms are investigated by a combination of relativistically corrected ab initio methods with a simulation of the helium density distribution based on He density functional theory. Starting from an accurate description of the variation of the hyperfine structure constant in the M–He diatomic systems (M=Li, Na, K, Rb) as a function of the interatomic distance we simulate the shifts induced by droplets of up to 10 000 4He atoms. All theoretical predictions for the relative shifts in the isotropic hyperfine coupling constants of the alkali-metal atoms attached to helium droplets of different size are then tied to a single, experimentally derived parameter of Rb. PMID:23125112

  15. Study on water-dispersible colloids in saline-alkali soils by atomic force microscopy and spectrometric methods.

    PubMed

    Liu, Zhiguo; Xu, Fengjie; Zu, Yuangang; Meng, Ronghua; Wang, Wenjie

    2016-06-01

    Recent studies have revealed that water-dispersible colloids play an important role in the transport of nutrients and contaminants in soils. In this study, water-dispersible colloids extracted from saline-alkali soils have been characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV absorption spectra. AFM observation indicated that the water-dispersible colloids contain some large plates and many small spherical particles. XRD, XPS, and UV absorption measurement revealed that the water-dispersible colloids are composed of kaolinite, illite, calcite, quartz and humic acid. In addition, UV absorption measurement demonstrated that the humic acids are associated with clay minerals. Water-dispersible colloids in the saline-alkali soils after hydrolyzed polymaleic anhydride treatment and an agricultural soil (nonsaline-alkali soil) were also investigated for comparison. The obtained results implied that the saline-alkali condition facilitates the formation of a large quantity of colloids. The use of AFM combined with spectrometric methods in the present study provides new knowledge on the colloid characteristics of saline-alkali soils. Microsc. Res. Tech. 79:525-531, 2016. © 2016 Wiley Periodicals, Inc.

  16. Structure of the alkali-metal-atom + strontium molecular ions: Towards photoassociation and formation of cold molecular ions

    SciTech Connect

    Aymar, M.; Dulieu, O.; Guerout, R.

    2011-08-14

    The potential energy curves, permanent and transition dipole moments, and the static dipolar polarizability, of molecular ions composed of one alkali-metal atom and a strontium ion are determined with a quantum chemistry approach. The molecular ions are treated as effective two-electron systems and are treated using effective core potentials including core polarization, large gaussian basis sets, and full configuration interaction. In the perspective of upcoming experiments aiming at merging cold atom and cold ion traps, possible paths for radiative charge exchange, photoassociation of a cold lithium or rubidium atom and a strontium ion are discussed, as well as the formation of stable molecular ions.

  17. Low-temperature indium-bonded alkali vapor cell for chip-scale atomic clocks

    NASA Astrophysics Data System (ADS)

    Straessle, R.; Pellaton, M.; Affolderbach, C.; Pétremand, Y.; Briand, D.; Mileti, G.; de Rooij, N. F.

    2013-02-01

    A low-temperature sealing technique for micro-fabricated alkali vapor cells for chip-scale atomic clock applications is developed and evaluated. A thin-film indium bonding technique was used for sealing the cells at temperatures of ≤140 °C. These sealing temperatures are much lower than those reported for other approaches, and make the technique highly interesting for future micro-fabricated cells, using anti-relaxation wall coatings. Optical and microwave spectroscopy performed on first indium-bonded cells without wall coatings are used to evaluate the cleanliness of the process as well as a potential leak rate of the cells. Both measurements confirm a stable pressure inside the cell and therefore an excellent hermeticity of the indium bonding. The double-resonance measurements performed over several months show an upper limit for the leak rate of 1.5 × 10-13 mbar.l/s. This is in agreement with additional leak-rate measurements using a membrane deflection method on indium-bonded test structures.

  18. Collisions of alkali-metal atoms Cs and Rb in the ground state. Spin exchange cross sections

    NASA Astrophysics Data System (ADS)

    Kartoshkin, V. A.

    2016-09-01

    Collisions of alkali-metal atoms 133Cs and 85Rb in the ground state are considered in the energy interval of 10-4-10-2 au. Complex cross sections of the spin exchange, which allow one to calculate the processes of polarization transfer and the relaxation times, as well as the magnetic resonance frequency shifts caused by spin exchange Cs-Rb collisions, are obtained.

  19. Transition rates for lithium-like ions, sodium-like ions, and neutral alkali-metal atoms

    SciTech Connect

    Johnson, W.R.; Liu, Z.W.; Sapirstein, J.

    1996-11-01

    Third-order many-body perturbation theory is used to obtain E1 transition amplitudes for ions of the lithium and sodium isoelectronic sequences and for the neutral alkali-metal atoms potassium, rubidium, cesium, and francium. Complete angular reductions of the first, second, and third-order amplitudes are given. Tables of transition energies and rates are given for the 2p{sub {1/2}} {yields} 2s{sub {1/2}}, 2p{sub 3/2} {yields} 2s{sub {1/2}}, 3s{sub {1/2}} {yields} 2p{sub {1/2}}, and 3s{sub {1/2}} {yields} 2p{sub 3/2} transitions in the lithium isoelectronic sequence and for the corresponding 3p{sub 1/2} {yields} 3s{sub 1/2}, 3p{sub 3/2} {yields} 3s{sub {1/2}}, 4s{sub {1/2}} {yields} 3p{sub 1/2}, and 4s{sub {1/2}} {yields} 3p{sub 3/2} transitions in the sodium sequence. For neutral alkali atoms, amplitudes of np{sub {1/2}} {yields} ns{sub {1/2}}, np{sub 3/2} {yields} ns{sub {1/2}}, (n + 1)s{sub {1/2}} {yields} np{sub {1/2}}, and (n + 1)s{sub {1/2}} {yields} np{sub 3/2} transitions are evaluated, where n is the principal quantum number of the valence electron in the atomic ground state, Semi-empirical corrections for the omitted fourth- and higher-order terms in perturbation theory are given for the neutral alkali-metal atoms. Comparisons with previous high-precision calculations and with experiment are made. 42 refs., 1 fig., 12 tabs.

  20. One- and two-photon spectroscopy of highly excited states of alkali-metal atoms on helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Pifrader, Alexandra; Allard, Olivier; Auböck, Gerald; Callegari, Carlo; Ernst, Wolfgang E.; Huber, Robert; Ancilotto, Francesco

    2010-10-01

    Alkali-metal atoms captured on the surface of superfluid helium droplets are excited to high energies (≈3 eV) by means of pulsed lasers, and their laser-induced-fluorescence spectra are recorded. We report on the one-photon excitation of the (n +1)p←ns transition of K, Rb, and Cs (n =4, 5, and 6, respectively) and on the two-photon one-color excitation of the 5d←5s transition of Rb. Gated-photon-counting measurements are consistent with the relaxation rates of the bare atoms, hence consistent with the reasonable expectation that atoms quickly desorb from the droplet and droplet-induced relaxation need not be invoked.

  1. Studies of Pressure-Broadening of Alkali Atom Resonance Lines for Modeling Atmospheres of Extrasolar Giant Planets and Brown Dwarfs

    NASA Technical Reports Server (NTRS)

    Kirby, Kate; Babb, J.; Yoshino, K.

    2004-01-01

    In L-dwarfs and T-dwarfs the resonance lines of sodium and potassium are so profoundly pressure-broadened that their wings extend several hundred nanometers from line center. With accurate knowledge of the line profiles as a function of temperature and pressure: such lines can prove to be valuable diagnostics of the atmospheres of such objects. We have initiated a joint program of theoretical and experimental research to study the line-broadening of alkali atom resonance lines due to collisions with species such as helium and molecular hydrogen. Although potassium and sodium are the alkali species of most interest in the atmospheres of cool brown dwarfs and extrasolar giant planets, some of our theoretical focus this year has involved the calculation of pressure-broadening of lithium resonance lines by He, as a test of a newly developed suite of computer codes. In addition, theoretical calculations have been carried out to determine the leading long range van der Waals coefficients for the interactions of ground and excited alkali metal atoms with helium atoms, to within a probable error of 2%. Such data is important in determining the behavior of the resonance line profiles in the far wings. Important progress has been made on the experimental aspects of the program since the arrival of a postdoctoral fellow in September. A new absorption cell has been designed, which incorporates a number of technical improvements over the previous cell, including a larger cell diameter to enhance the signal, and fittings which allow for easier cleaning, thereby significantly reducing the instrument down-time.

  2. Alkali metal ion battery with bimetallic electrode

    DOEpatents

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  3. Sensitive determination of the spin polarization of optically pumped alkali-metal atoms using near-resonant light

    PubMed Central

    Ding, Zhichao; Long, Xingwu; Yuan, Jie; Fan, Zhenfang; Luo, Hui

    2016-01-01

    A new method to measure the spin polarization of optically pumped alkali-metal atoms is demonstrated. Unlike the conventional method using far-detuned probe light, the near-resonant light with two specific frequencies was chosen. Because the Faraday rotation angle of this approach can be two orders of magnitude greater than that with the conventional method, this approach is more sensitive to the spin polarization. Based on the results of the experimental scheme, the spin polarization measurements are found to be in good agreement with the theoretical predictions, thereby demonstrating the feasibility of this approach. PMID:27595707

  4. Sensitive determination of the spin polarization of optically pumped alkali-metal atoms using near-resonant light.

    PubMed

    Ding, Zhichao; Long, Xingwu; Yuan, Jie; Fan, Zhenfang; Luo, Hui

    2016-09-06

    A new method to measure the spin polarization of optically pumped alkali-metal atoms is demonstrated. Unlike the conventional method using far-detuned probe light, the near-resonant light with two specific frequencies was chosen. Because the Faraday rotation angle of this approach can be two orders of magnitude greater than that with the conventional method, this approach is more sensitive to the spin polarization. Based on the results of the experimental scheme, the spin polarization measurements are found to be in good agreement with the theoretical predictions, thereby demonstrating the feasibility of this approach.

  5. Sensitive determination of the spin polarization of optically pumped alkali-metal atoms using near-resonant light

    NASA Astrophysics Data System (ADS)

    Ding, Zhichao; Long, Xingwu; Yuan, Jie; Fan, Zhenfang; Luo, Hui

    2016-09-01

    A new method to measure the spin polarization of optically pumped alkali-metal atoms is demonstrated. Unlike the conventional method using far-detuned probe light, the near-resonant light with two specific frequencies was chosen. Because the Faraday rotation angle of this approach can be two orders of magnitude greater than that with the conventional method, this approach is more sensitive to the spin polarization. Based on the results of the experimental scheme, the spin polarization measurements are found to be in good agreement with the theoretical predictions, thereby demonstrating the feasibility of this approach.

  6. Quantum dynamics of an excited alkali atom in a noble gas cluster: lithium attached to a helium cluster.

    PubMed

    Pacheco, Alexander B; Thorndyke, Brian; Reyes, Andrés; Micha, David A

    2007-12-28

    An alkali atom-noble gas cluster system is considered as a model for solvation effects in optical spectra, within a quantum-classical description based on the density operator of a many-atom system and its partial Wigner transform. This leads to an eikonal-time-dependent molecular orbital treatment suitable for a time-dependent description of the coupling of light emission and atom dynamics in terms of the time-dependent electric dipole of the whole system. As an application, we consider an optically excited lithium atom as the dopant in a helium cluster at 0.5 K. We describe the motions of the excited Li atom interacting with a cluster of He atoms and calculate the time-dependent electric dipole of the Li-He(99) system during the dynamics. The electronic Hamiltonian is taken as a sum of three-body Li-He diatomic potentials including electronic polarization and repulsion, with l-dependent atomic pseudopotentials for Li and He, while we use a modified pair potential for He-He. The calculations involve the coupling of 12 quantum states with 300 classical degrees of freedom. We present results for the dynamics and spectra of a Li atom interacting with a model cluster surface of He atoms and also interacting with a droplet of He. We have found that the Li atom is attracted or repulsed from the He surface, depending on the orientation of its 2p orbitals. The spectra and dynamics of Li inside and at the surface of a cluster are found to be strongly dependent on its electronic states, its velocity direction, and whether light is present during emission or not.

  7. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    SciTech Connect

    Liu, X. H.; Luo, H.; Qu, T. L. Yang, K. Y.; Ding, Z. C.

    2015-10-15

    We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of {sup 87}Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the {sup 87}Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the {sup 87}Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  8. Three-body recombination in cold helium-helium-alkali-metal-atom collisions

    SciTech Connect

    Suno, Hiroya; Esry, B. D.

    2009-12-15

    Three-body recombination in helium-helium-alkali-metal collisions at cold temperatures is studied using the adiabatic hyperspherical representation. The rates for the three-body recombination processes {sup 4}He+{sup 4}He+X->{sup 4}He+{sup 4}HeX and {sup 4}He+{sup 4}He+X->{sup 4}He{sub 2}+X, with X={sup 7}Li, {sup 23}Na, {sup 39}K, {sup 85}Rb, and {sup 133}Cs, are calculated at nonzero collision energies by including not only zero total angular momentum, J=0, states but also J>0 states. The three-body recombination rates show a relatively weak dependence on the alkali-metal species, differing from each other only by about one order of magnitude, except for the {sup 4}He-{sup 4}He-{sup 23}Na system.

  9. Alkali vapor pressure modulation on the 100 ms scale in a single-cell vacuum system for cold atom experiments

    SciTech Connect

    Dugrain, Vincent; Reichel, Jakob; Rosenbusch, Peter

    2014-08-15

    We describe and characterize a device for alkali vapor pressure modulation on the 100 ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors.

  10. The combination of atomic force microscopy and sugar analysis to evaluate alkali-soluble Canna edulis Ker pectin.

    PubMed

    Zhang, Juan; Cui, Junhui; Xiao, Lin; Wang, Zhengwu

    2014-08-01

    Alkali-soluble pectin, which has been extracted from Canna edulis Ker, was characterized by single sugar determination and atomic force microscopy (AFM). The results indicated that the amounts of four predominant sugars including arabinose (Ara), glucose (Glc), galactose (Gal) and galacturonic acid (GalA) significantly decreased during the process of mild acid hydrolysis. The decreasing rates of these four sugars followed a sequential order of Ara>Gal>Glc>GalA. The homogalacturonan (HG) chain present in pectin, and the quantity of branched material is greater than the sample containing the main neutral sugars. The results indicated that the neutral sugar and HG side chains are attached to pectin as part of the rhamnogalacturonan I (RGI) complex. Moreover, hydrolysis leads to the reduction of mean lengths of backbone and branch, as well as the number/weight-average molecular weight. Meanwhile, the amount of short chain fractions increased during hydrolysis. Furthermore, the decrease of the polymerization degree of alkali-soluble C. edulis pectin as a function of the hydrolysis time could be described by a first-order exponential decay function.

  11. Dispersion coefficients for H and He interactions with alkali-metal and alkaline-earth-metal atoms

    SciTech Connect

    Mitroy, J.; Bromley, M.W.J.

    2003-12-01

    The van der Waals coefficients C{sub 6}, C{sub 8}, and C{sub 10} for H and He interactions with the alkali-metal (Li, Na, K, and Rb) and alkaline-earth-metal (Be, Mg, Ca, and Sr) atoms are determined from oscillator strength sum rules. The oscillator strengths were computed using a combination of ab initio and semiempirical methods. The dispersion parameters generally agree with close to exact variational calculations for Li-H and Li-He at the 0.1% level of accuracy. For larger systems, there is agreement with relativistic many-body perturbation theory estimates of C{sub 6} at the 1% level. These validations for selected systems attest to the reliability of the present dispersion parameters. About half the present parameters lie within the recommended bounds of the Standard and Certain compilation [J. Chem. Phys. 83, 3002 (1985)].

  12. Comparison of various alkali gas-cell atomic-frequency standards. Technical report

    SciTech Connect

    Camparo, J.C.; Frueholz, R.P.

    1988-02-12

    The present calculations indicate that a Rubidium gas cell standard shows the greatest potential for frequency stability, and in this regard nature has been uncommonly propitious. One should not, however, interpret this result as a superiority of the Rb87 standard in all regards. For example, if it is of primary importance to construct a miniature gas-cell standard, then cesium might prove to be more advantageous given the fact that its minimum-volume cavity occupies less than half the volume of a corresponding Rb87 cavity. Additionally, magnetic field sensitivities are less for Cs133 as a consequence of its greater hyperfine transition frequency. The only statement one should make regarding the present results is that, of all the possible alkali gas-cell standards that could be considered, a Rb87 standard appears to yield the best attainable short-noise-limited performance.

  13. Green's-function approach to nonresonance multiphoton absorption in the alkali-metal atoms

    NASA Astrophysics Data System (ADS)

    McGuire, E. J.

    1981-01-01

    An exact Green's function is constructed for the one-electron Schrödinger equation using a central potential obtained from a piecewise linear approximation to -rV(r) of Herman and Skillman. With the Green's function two- and three-photon ionization cross sections are calculated for He(1s)(2s) 1S, 3S, and the alkali metals, and compared to other calculations and experiments. Resonances in the cross sections occur at model eigenvalues rather than experimental energy levels. It is demonstrated that the resonances can be made to occur at experimental values either by simple shifts in the wavelength scale, by adjusting the ionization energy in the calculation, or by including the eigenvalue differences in a finite sum. However, as these are perturbation-theory calculations and not applicable at very high intensities or on resonance, only the wings of the resonance structure are included in the calculation.

  14. Atomic arrangement of alkali adatoms on the Si(001)-2 × 1 surface

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Blügel, S.; Ishida, H.; Terakura, K.

    1991-02-01

    Adsorption sites of Na and Li on the Si(001)-2 × 1 surface at the saturation coverage are determined theoretically by using the simulated annealing method proposed by Williams and Soler. For Na, the most stable configuration is the combination of the hollow site along the dimer chain and the trough site on top of the third layer Si atom in contradiction to an earlier calculation. The substrate relaxation is a crucial factor for stabilizing this configuration. On the other hand Li atoms are adsorbed at low symmetry positions. For both of Na and Li, we observe a significant movement of the substrate atoms towards the ideal surface configuration.

  15. Alkali metal atoms in strong magnetic fields: "Guiding" atomic transitions foretell the characteristics of all transitions of the D1 line

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Hakhumyan, G.; Papoyan, A.; Sarkisyan, D.

    2015-03-01

    It has been shown that the D1 line of atomic vapors of alkali metals excited by π-polarized radiation in a strong transverse magnetic field includes specific "guiding" (indicating) atomic transitions between the magnetic sublevels of the hyperfine structure. The dependence of the frequency shift of the guiding transitions on the magnetic field, as well as on their dipole moments, is asymptotic for all other transitions. An experiment with a nanocell with Rb vapor with a thickness of half the wavelength (λ/2 method) for ensuring a sub-Doppler spectral resolution has completely confirmed the presence of guiding transitions. Two groups of six transitions for 85Rb and two groups of four transitions for 87Rb have been detected in the absorption spectra in magnetic fields above 4 kG. A guiding transition has been identified in each of four groups. Four transitions forbidden at B = 0 have been also detected; with an increase in the magnetic field, their probabilities also approach the probabilities of the guiding transitions.

  16. Nonlinear pressure shifts of alkali-metal atoms in inert gases.

    PubMed

    Gong, F; Jau, Y-Y; Happer, W

    2008-06-13

    Precise measurements show that the microwave resonance frequencies of ground-state Rb or Cs atoms have a nonlinear dependence on the pressure of the buffer gases Ar and Kr. No nonlinearities were observed in the gases He or N(2). These observations strongly suggest that the nonlinearities are due to the van der Waals molecules that form in Ar and Kr, but not in He or N(2). The nonlinear part of the shifts is largest in the pressure range of a few tens of torr, similar to the operating pressures of gas-cell atomic clocks. The observed shifts are very well described by a simple function, parametrized by the effective three-body formation rate of molecules and by the effective product of the collisionally limited lifetime times the shift of the hyperfine coupling coefficient in the molecule.

  17. Atom Resonance Lines for Modeling Atmosphere: Studies of Pressure-Broadening of Alkali Atom Resonance Lines for Modeling Atmospheres of Extrasolar Giant Planets and Brown Dwarfs

    NASA Technical Reports Server (NTRS)

    Hasan, Hashima (Technical Monitor); Kirby, K.; Babb, J.; Yoshino, K.

    2005-01-01

    We report on progress made in a joint program of theoretical and experimental research to study the line-broadening of alkali atom resonance lines due to collisions with species such as helium and molecular hydrogen. Accurate knowledge of the line profiles of Na and K as a function of temperature and pressure will allow such lines to serve as valuable diagnostics of the atmospheres of brown dwarfs and extra-solar giant planets. A new experimental apparatus has been designed, built and tested over the past year, and we are poised to begin collecting data on the first system of interest, the potassium resonance lines perturbed by collisions with helium. On the theoretical front, calculations of line-broadening due to sodium collisions with helium are nearly complete, using accurate molecular potential energy curves and transition moments just recently computed for this system. In addition we have completed calculations of the three relevant potential energy curves and associated transition moments for K - He, using the MOLPRO quantum chemistry codes. Currently, calculations of the potential surfaces describing K-H2 are in progress.

  18. Double resonance fequency light shift compensation in optically oriented laser-pumped alkali atoms

    SciTech Connect

    Baranov, A. A. Ermak, S. V.; Sagitov, E. A.; Smolin, R. V.; Semenov, V. V.

    2015-09-15

    The contributions of the vector and scalar components to the magnetically dependent microwave transition frequency light shift are analyzed and the compensation of these components is experimentally demonstrated for the {sup 87}Rb atoms optically oriented by a laser tuned to the D{sub 2} line of the head doublet. The Allan variance is studied as a function of the averaging time for a tandem of optically pumped quantum magnetometers (OPQMs), one of which is based on a low-frequency spin oscillator while another is based on a quantum microwave discriminator with a resonance frequency that corresponds to magnetically dependent transitions between HFS sublevels with the extremal value of the magnetic quantum number. It is shown that the compensation of the scalar and vector components of the light shift in OPQMs reduces the Allan variance at averaging times that exceed hundreds of seconds compared to a quantum discriminator based on the magnetically independent 0–0 transition. In this case, the minimal Allan variance in OPQMs at the end resonance is achieved at considerably longer averaging times than in the case of the quantum discriminator that is tuned to the 0–0 transition frequency.

  19. Doping the alkali atom: an effective strategy to improve the electronic and nonlinear optical properties of the inorganic Al12N12 nanocage.

    PubMed

    Niu, Min; Yu, Guangtao; Yang, Guanghui; Chen, Wei; Zhao, Xingang; Huang, Xuri

    2014-01-06

    Under ab initio computations, several new inorganic electride compounds with high stability, M@x-Al12N12 (M = Li, Na, and K; x = b66, b64, and r6), were achieved for the first time by doping the alkali metal atom M on the fullerene-like Al12N12 nanocage, where the alkali atom is located over the Al-N bond (b66/b64 site) or six-membered ring (r6 site). It is revealed that independent of the doping position and atomic number, doping the alkali atom can significantly narrow the wide gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) (EH-L = 6.12 eV) of the pure Al12N12 nanocage in the range of 0.49-0.71 eV, and these doped AlN nanocages can exhibit the intriguing n-type characteristic, where a high energy level containing the excess electron is introduced as the new HOMO orbital in the original gap of pure Al12N12. Further, the diffuse excess electron also brings these doped AlN nanostructures the considerable first hyperpolarizabilities (β0), which are 1.09 × 10(4) au for Li@b66-Al12N12, 1.10 × 10(4), 1.62 × 10(4), 7.58 × 10(4) au for M@b64-Al12N12 (M = Li, Na, and K), and 8.89 × 10(5), 1.36 × 10(5), 5.48 × 10(4) au for M@r6-Al12N12 (M = Li, Na, and K), respectively. Clearly, doping the heavier Na/K atom over the Al-N bond can get the larger β0 value, while the reverse trend can be observed for the series with the alkali atom over the six-membered ring, where doping the lighter Li atom can achieve the larger β0 value. These fascinating findings will be advantageous for promoting the potential applications of the inorganic AlN-based nanosystems in the new type of electronic nanodevices and high-performance nonlinear optical (NLO) materials.

  20. The long-range non-additive three-body dispersion interactions for the rare gases, alkali, and alkaline-earth atoms.

    PubMed

    Tang, Li-Yan; Yan, Zong-Chao; Shi, Ting-Yun; Babb, James F; Mitroy, J

    2012-03-14

    The long-range non-additive three-body dispersion interaction coefficients Z(111), Z(112), Z(113), and Z(122) are computed for many atomic combinations using standard expressions. The atoms considered include hydrogen, the rare gases, the alkali atoms (up to Rb), and the alkaline-earth atoms (up to Sr). The term Z(111) arising from three mutual dipole interactions is known as the Axilrod-Teller-Muto coefficient or the DDD (dipole-dipole-dipole) coefficient. Similarly, the terms Z(112), Z(113), and Z(122) arise from the mutual combinations of dipole (1), quadrupole (2), and octupole (3) interactions between atoms and they are sometimes known, respectively, as dipole-dipole-quadrupole, dipole-dipole-octupole, and dipole-quadrupole-quadrupole coefficients. Results for the four Z coefficients are given for the homonuclear trimers, for the trimers involving two like-rare-gas atoms, and for the trimers with all combinations of the H, He, and Li atoms. An exhaustive compilation of all coefficients between all possible atomic combinations is presented as supplementary data.

  1. Dispersion coefficients for the interactions of the alkali-metal and alkaline-earth-metal ions and inert-gas atoms with a graphene layer

    NASA Astrophysics Data System (ADS)

    Kaur, Kiranpreet; Arora, Bindiya; Sahoo, B. K.

    2015-09-01

    Largely motivated by a number of applications, the van der Waals dispersion coefficients C3 of the alkali-metal ions Li+,Na+,K+, and Rb+, the alkaline-earth-metal ions Ca+,Sr+,Ba+, and Ra+, and the inert-gas atoms He, Ne, Ar, and Kr with a graphene layer are determined precisely within the framework of the Dirac model. For these calculations, we evaluate the dynamic polarizabilities of the above atomic systems very accurately by evaluating the transition matrix elements employing relativistic many-body methods and using the experimental values of the excitation energies. The dispersion coefficients are given as functions of the separation distance of an atomic system from the graphene layer and the ambiance temperature during the interactions. For easy extraction of these coefficients, we give a logistic fit to the functional forms of the dispersion coefficients in terms of the separation distances at room temperature.

  2. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS{sub 2}

    SciTech Connect

    Li, X. D.; Fang, Y. M.; Wu, S. Q. E-mail: wsq@xmu.edu.cn; Zhu, Z. Z. E-mail: wsq@xmu.edu.cn

    2015-05-15

    Single adsorption of different atoms on pristine two-dimensional monolayer MoS{sub 2} have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS{sub 2}. Additionally, local or long-range magnetic moments of two-dimensional MoS{sub 2} sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS{sub 2} monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  3. Spectrum, radial wave functions, and hyperfine splittings of the Rydberg states in heavy alkali-metal atoms

    NASA Astrophysics Data System (ADS)

    Sanayei, Ali; Schopohl, Nils

    2016-07-01

    We present numerically accurate calculations of the bound-state spectrum of the highly excited valence electron in the heavy alkali-metal atoms solving the radial Schrödinger eigenvalue problem with a modern spectral collocation method that applies also for a large principal quantum number n ≫1 . As an effective single-particle potential we favor the reputable potential of Marinescu et al. [Phys. Rev. A 49, 982 (1994)], 10.1103/PhysRevA.49.982. Recent quasiclassical calculations of the quantum defect of the valence electron agree for orbital angular momentum l =0 ,1 ,2 ,... overall remarkably well with the results of the numerical calculations, but for the Rydberg states of rubidium and also cesium with l =3 this agreement is less fair. The reason for this anomaly is that in rubidium and cesium the potential acquires for l =3 deep inside the ionic core a second classical region, thus invalidating a standard Wentzel-Kramers-Brillouin (WKB) calculation with two widely spaced turning points. Comparing then our numerical solutions of the radial Schrödinger eigenvalue problem with the uniform analytic WKB approximation of Langer constructed around the remote turning point rn,j ,l (" close=")n -δ0)">+ we observe everywhere a remarkable agreement, apart from a tiny region around the inner turning point rn,j ,l (-). For s states the centrifugal barrier is absent and no inner turning point exists: rn,j ,0 (-)=0 . With the help of an ansatz proposed by Fock we obtain for the s states a second uniform analytic approximation to the radial wave function complementary to the WKB approximation of Langer, which is exact for r →0+ . From the patching condition, that is, for l =0 the Langer and Fock solutions should agree in the intermediate region 0

  4. Ab initio interaction potentials and scattering lengths for ultracold mixtures of metastable helium and alkali-metal atoms

    NASA Astrophysics Data System (ADS)

    Kedziera, Dariusz; Mentel, Łukasz; Żuchowski, Piotr S.; Knoop, Steven

    2015-06-01

    We have obtained accurate ab initio +4Σ quartet potentials for the diatomic metastable triplet helium+alkali-metal (Li, Na, K, Rb) systems, using all-electron restricted open-shell coupled cluster singles and doubles with noniterative triples corrections CCSD(T) calculations and accurate calculations of the long-range C6 coefficients. These potentials provide accurate ab initio quartet scattering lengths, which for these many-electron systems is possible, because of the small reduced masses and shallow potentials that result in a small amount of bound states. Our results are relevant for ultracold metastable triplet helium+alkali-metal mixture experiments.

  5. (Super)alkali atoms interacting with the σ electron cloud: a novel interaction mode triggers large nonlinear optical response of M@P₄ and M@C₃H₆ (M=Li, Na, K and Li₃O).

    PubMed

    Zhao, Xingang; Yu, Guangtao; Huang, Xuri; Chen, Wei; Niu, Min

    2013-12-01

    Under high-level ab initio calculations, the geometrical structures and nonlinear optical properties of M@P₄ (M=Li, Na, K and Li₃O) and M@C₃H₆ (M=Li and Li₃O) were investigated; all were found to exhibit considerable first hyperpolarizabilities (18110, 1440, 22490, 50487, 2757 and 31776 au, respectively). The computational results revealed that when doping the (super)alkali atom M into the tetrahedral P₄ molecule, the original dual spherical aromaticity of the P₄ moiety is broken and new σ electron cloud is formed on the face of P₄ part interacting with the M atom. It was found that interaction of the (super)alkali atom with the σ electron cloud is a novel mode to produce diffuse excess electrons effectively to achieve a considerable β₀ value. Further, beyond the alkali atom, employing the superalkali unit can be a more effective approach to significantly enhance the first hyperpolarizability of the systems, due to the much lower vertical ionization potential. These results were further supported by the case of the (super)alkali atom interacting with the cyclopropane C₃H₆ molecule with its typical σ aromatic electron cloud. Moreover, the β₀ values of the M@P₄ series are nonmonotonic dependent on alkali atomic number, namely, 1440 au (M = Na) < 18110 au (Li) < 22490 au (K), inferring that the distance between the alkali atom and the interacting surface with the σ electron cloud in P4 is a crucial geometrical factor in determining their first hyperpolarizabilities. These intriguing findings will be advantageous for promoting the design of novel high-performance nonlinear optical materials.

  6. Simulation of FREE→FREE Absorption Spectra and the Calculation of Interaction Potentials for Alkali-Rare Gas Atom Pairs

    NASA Astrophysics Data System (ADS)

    Hewitt, J. Darby; Spinka, Thomas M.; Readle, Jason. D.; Eden, J. Gary

    2013-06-01

    We have simulated free→free (X^2Σ^+_{1/2}→B^2Σ^+_{1/2}) absorption spectra for alkali-rare gas pairs. By comparing simulation results with experimental data, we have been able to iteratively determine the form for the B^2Σ^+_{1/2} interaction potential for the system for a range in internuclear separation of 1.5-20 Å. Simulation methods will be presented, as will our results pertaining to Cs-Ar.

  7. Atomic arrangement and electron band structure of Si(1 1 1)-ß-\\sqrt{3}\\times \\sqrt{3} -Bi reconstruction modified by alkali-metal adsorption: ab initio study

    NASA Astrophysics Data System (ADS)

    Eremeev, S. V.; Chukurov, E. N.; Gruznev, D. V.; Zotov, A. V.; Saranin, A. A.

    2015-08-01

    Using ab initio calculations, atomic structure and electronic properties of Si(1 1 1)\\sqrt{3}× \\sqrt{3} -Bi surface modified by adsorption of 1/3 monolayer of alkali metals, Li, Na, K, Rb and Cs, have been explored. Upon adsorption of all metals, a similar atomic structure develops at the surface where twisted chained Bi trimers are arranged into a honeycomb network and alkali metal atoms occupy the {{T}4} sites in the center of each honeycomb unit. Among other structural characteristics, the greatest variation concerns the relative heights at which alkali metals reside with respect to Bi-trimer layer. Except for Li, the other metals reside higher than Bi layer and their heights increase with atomic number. All adsorbed surface structures display similar electron band structures of which the most essential feature is metallic surface-state band with a giant spin splitting. This electronic property allows one to consider the Si(1 1 1)\\sqrt{3}× \\sqrt{3} -Bi surfaces modified by alkali metal adsorption as a set of material systems showing promise for spintronic applications.

  8. Atomic arrangement and electron band structure of Si(1 1 1)-ß-√3 x √3-Bi reconstruction modified by alkali-metal adsorption: ab initio study.

    PubMed

    Eremeev, S V; Chukurov, E N; Gruznev, D V; Zotov, A V; Saranin, A A

    2015-08-05

    Using ab initio calculations, atomic structure and electronic properties of Si(1 1 1)[Formula: see text]-Bi surface modified by adsorption of 1/3 monolayer of alkali metals, Li, Na, K, Rb and Cs, have been explored. Upon adsorption of all metals, a similar atomic structure develops at the surface where twisted chained Bi trimers are arranged into a honeycomb network and alkali metal atoms occupy the [Formula: see text] sites in the center of each honeycomb unit. Among other structural characteristics, the greatest variation concerns the relative heights at which alkali metals reside with respect to Bi-trimer layer. Except for Li, the other metals reside higher than Bi layer and their heights increase with atomic number. All adsorbed surface structures display similar electron band structures of which the most essential feature is metallic surface-state band with a giant spin splitting. This electronic property allows one to consider the Si(1 1 1)[Formula: see text]-Bi surfaces modified by alkali metal adsorption as a set of material systems showing promise for spintronic applications.

  9. Charge exchange and cluster formation in an rf Paul trap: interaction of alkali atoms with C +60

    NASA Astrophysics Data System (ADS)

    Pollack, Stuart; Cameron, Douglas; Rokni, Mordechai; Hill, Winfield; Parks, J. H.

    1996-06-01

    A Paul ion trap was used to study the formation of clusters under controlled temperature and pressure conditions. Exposure of cold C +60 ions to Li flux leads to the formation of Li nC +60 clusters ( n = 1-18) occurring by the sequential association of Li atoms. Cluster formation dependence on He pressure displayed a competition between vibrational relaxation and unimolecular dissociation. Collisions with Na, K, Rb and Cs atoms resulted in dissociative charge exchange. Decay rates of C +60 ions resulting from these low-energy charge exchange collisions were consistent with Langevin capture rates.

  10. SIM-Lite Update

    NASA Technical Reports Server (NTRS)

    Shao, Michael

    2008-01-01

    Discussion focus on: SIM-Lite Instrument Update - 6m baseline, 50cm, approximately 900M cost; Technology Update - Systematic errors and floor; SIM-Lite terrestrial planet discovery capability; Double blind multiple planet study summary; and the changing landscape of exoplanet science and the role of SIM-Lite. Slides include technology to flight component engineering; instrumental systematic errors; ultra deep search for Earth clones; double blind test, astrometric detection of Earths in multiplanet systems; the current era of exoplanet science and where SIM-Lite fits in; the next frontier and where SIM-Lite fits in, why SIM is unique in discovering Earths; imaging planet status is uncertain without masses and ages; SIM role in establishing how planetary systems form and evolve; and SIM probes of broad planet mass range around young stars.

  11. Changes in the shape of atomic lines of alkali metals in sonoluminescence spectra of solutions of surfactants and halogenides

    NASA Astrophysics Data System (ADS)

    Kazachek, M. V.; Gordeychuk, T. V.

    2013-11-01

    The multibubble sonoluminescence spectra of aqueous solutions of sodium dodecyl sulfate, of the mixture of sodium dodecyl sulfate with lithium and potassium chlorides, and of sodium and potassium halogenides were measured near the lines of metals at an ultrasonic frequency of 20 kHz. The Na, Li, and K lines in spectra of surfactant solutions are noticeably narrower than those obtained in solutions of metal chlorides. The width of Na lines in spectra of metal fluorides, chlorides, and iodides remains constant, while that of the K line increases with increasing atomic weight of a halogen. The results are discussed in the context of the effect that the bonding strength of an atom possibly has on the formation of metal lines in sonoluminescence spectra.

  12. TRINAT apparatus for measurements of correlations from the beta decay of magneto-optically trapped polarized alkali atoms

    NASA Astrophysics Data System (ADS)

    Gorelov, Alexandre; Behr, J. A.; Kurchaninov, L.; Olchanski, K.; Smale, S.; Behling, S.; Melconian, D.; Fenker, B.; Mehlman, M.; Shilding, P. D.; Anholm, M.; Ashery, D.; Gwinner, G.; Trinat Collaboration

    2013-10-01

    Measurements of correlations from beta decay of highly polarized atoms from MOT requires a fast transition between trapping and polarization/measurement cycles to reduce an unwanted expansion of decaying atoms. To achieve this, we have developed an apparatus employing AC MOT, which required placing high-current and low-inductance coils of magnetic quadrupole inside the stainless steel vacuum vessel and allowed us to reduce a time gap between trapping and measurement cycles (the quadrupole magnetic field in the trap region has to become less than 50 mG) to less than 100 μs. The nuclear detection system consists of an electrostatic spectrometer of recoiling ions and shake-off electrons with MCP based detectors in back-to-back geometry as well as two scintillator based β - telescopes, normal to the MCP-MCP axis. This system allowed us to successfully measure the beta asymmetry in the β+ decay of polarized 37K atoms with significantly reduced backgrounds. Time-varying magnetic field from the AC MOT and stationary guiding electric field allowed us to probe the energy distribution of the shakeoff electrons in the range 5 -30 eV. NSERC, NRC through TRIUMF, DOE ER40773 and ER41747, State of Texas, Israel Science Foundation.

  13. Optimal densities of alkali metal atoms in an optically pumped K-Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization.

    PubMed

    Ito, Yosuke; Sato, Daichi; Kamada, Keigo; Kobayashi, Tetsuo

    2016-07-11

    An optically pumped K-Rb hybrid atomic magnetometer can be a useful tool for biomagnetic measurements due to the high spatial homogeneity of its sensor property inside a cell. However, because the property varies depending on the densities of potassium and rubidium atoms, optimization of the densities is essential. In this study, by using the Bloch equations of K and Rb and considering the spatial distribution of the spin polarization, we confirmed that the calculation results of spin polarization behavior are in good agreement with the experimental data. Using our model, we calculated the spatial distribution of the spin polarization and found that the optimal density of K atoms is 3 × 1019 m-3 and the optimal density ratio is nK/nRb ~ 400 to maximize the output signal and enhance spatial homogeneity of the sensor property.

  14. The optical pumping of alkali atoms using coherent radiation from semi-conductor injection lasers and incoherent radiation from resonance lamps

    NASA Technical Reports Server (NTRS)

    Singh, G.

    1973-01-01

    An experimental study for creating population differences in the ground states of alkali atoms (Cesium 133) is presented. Studies made on GaAs-junction lasers and the achievement of population inversions among the hyperfine levels in the ground state of Cs 133 by optically pumping it with radiation from a GaAs diode laser. Laser output was used to monitor the populations in the ground state hyperfine levels as well as to perform the hyperfine pumping. A GaAs laser operated at about 77 K was used to scan the 8521 A line of Cs 133. Experiments were performed both with neon-filled and with paraflint-coated cells containing the cesium vapor. Investigations were also made for the development of the triple resonance coherent pulse technique and for the detection of microwave induced hyperfine trasistions by destroying the phase relationships produced by a radio frequency pulse. A pulsed cesium resonance lamp developed, and the lamp showed clean and reproducible switching characteristics.

  15. Precision measurements of cross-sections for inelastic processes in collisions of alkali metal ions with atoms of rare gases

    NASA Astrophysics Data System (ADS)

    Lomsadze, R. A.; Gochitashvili, M. R.; Kezerashvili, R. Ya.

    2017-01-01

    A multifaceted experimental study of collisions of Na+ and K+ ions in the energy range of 0.5-10 keV with He and Ar atoms is presented. Absolute cross-sections for charge-exchange, ionization, stripping and excitation processes were measured using a refined version of the transfer electric field method, angle- and energy-dependent collection of product ions, energy loss and optical spectroscopy methods. The experimental data and the schematic correlation diagrams are employed to analyze and determine the mechanisms for these processes.

  16. Site Preference in Multimetallic Nanoclusters: Incorporation of Alkali Metal Ions or Copper Atoms into the Alkynyl-Protected Body-Centered Cubic Cluster [Au7 Ag8 (C≡C(t) Bu)12 ]().

    PubMed

    Wang, Yu; Su, Haifeng; Ren, Liting; Malola, Sami; Lin, Shuichao; Teo, Boon K; Häkkinen, Hannu; Zheng, Nanfeng

    2016-11-21

    The synthesis, structure, substitution chemistry, and optical properties of the gold-centered cubic monocationic cluster [Au@Ag8 @Au6 (C≡C(t) Bu)12 ](+) are reported. The metal framework of this cluster can be described as a fragment of a body-centered cubic (bcc) lattice with the silver and gold atoms occupying the vertices and the body center of the cube, respectively. The incorporation of alkali metal atoms gave rise to [Mn Ag8-n Au7 (C≡C(t) Bu)12 ](+) clusters (n=1 for M=Na, K, Rb, Cs and n=2 for M=K, Rb), with the alkali metal ion(s) presumably occupying the vertex site(s), whereas the incorporation of copper atoms produced [Cun Ag8 Au7-n (C≡C(t) Bu)12 ](+) clusters (n=1-6), with the Cu atom(s) presumably occupying the capping site(s). The parent cluster exhibited strong emission in the near-IR region (λmax =818 nm) with a quantum yield of 2 % upon excitation at λ=482 nm. Its photoluminescence was quenched upon substitution with a Na(+) ion. DFT calculations confirmed the superatom characteristics of the title compound and the sodium-substituted derivatives.

  17. Assessing the potential of ToF-SIMS as a complementary approach to investigate cement-based materials — Applications related to alkali–silica reaction

    SciTech Connect

    Bernard, Laetitia; Leemann, Andreas

    2015-02-15

    In this study, the potential of time-of-flight secondary ion mass spectrometry (ToF-SIMS) for the application in cement-based materials is assessed in combination and comparison with scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). Mortar, concrete and samples from model systems providing products formed by the alkali–silica reaction (ASR) were studied. ToF-SIMS provides qualitative data on alkalis in cases where EDX reaches its limits in regard to detectable concentration, lateral resolution and atomic number of the elements. Due to its high in-depth resolution of a few atomic monolayers, thin layers of reaction products can be detected on the surfaces and chemically analyzed with ToF-SIMS. Additionally, it delivers information on the molecular conformation within the ASR product, its hydrogen content and its isotope ratios, information not provided by EDX. Provided the samples are carefully prepared, ToF-SIMS opens up new possibilities in the analysis of cement-based materials.

  18. The SIM Time Network.

    PubMed

    Lombardi, Michael A; Novick, Andrew N; Lopez R, J Mauricio; Jimenez, Francisco; de Carlos Lopez, Eduardo; Boulanger, Jean-Simon; Pelletier, Raymond; de Carvalho, Ricardo J; Solis, Raul; Sanchez, Harold; Quevedo, Carlos Andres; Pascoe, Gregory; Perez, Daniel; Bances, Eduardo; Trigo, Leonardo; Masi, Victor; Postigo, Henry; Questelles, Anthony; Gittens, Anselm

    2011-01-01

    The Sistema Interamericano de Metrologia (SIM) is a regional metrology organization (RMO) whose members are the national metrology institutes (NMIs) located in the 34 nations of the Organization of American States (OAS). The SIM/OAS region extends throughout North, Central, and South America and the Caribbean Islands. About half of the SIM NMIs maintain national standards of time and frequency and must participate in international comparisons in order to establish metrological traceability to the International System (SI) of units. The SIM time network (SIMTN) was developed as a practical, cost effective, and technically sound way to automate these comparisons. The SIMTN continuously compares the time standards of SIM NMIs and produces measurement results in near real-time by utilizing the Internet and the Global Positioning System (GPS). Fifteen SIM NMIs have joined the network as of December 2010. This paper provides a brief overview of SIM and a technical description of the SIMTN. It presents international comparison results and examines the measurement uncertainties. It also discusses the metrological benefits that the network provides to its participants.

  19. The SIM Time Network

    PubMed Central

    Lombardi, Michael A.; Novick, Andrew N.; Lopez R, J. Mauricio; Jimenez, Francisco; de Carlos Lopez, Eduardo; Boulanger, Jean-Simon; Pelletier, Raymond; de Carvalho, Ricardo J.; Solis, Raul; Sanchez, Harold; Quevedo, Carlos Andres; Pascoe, Gregory; Perez, Daniel; Bances, Eduardo; Trigo, Leonardo; Masi, Victor; Postigo, Henry; Questelles, Anthony; Gittens, Anselm

    2011-01-01

    The Sistema Interamericano de Metrologia (SIM) is a regional metrology organization (RMO) whose members are the national metrology institutes (NMIs) located in the 34 nations of the Organization of American States (OAS). The SIM/OAS region extends throughout North, Central, and South America and the Caribbean Islands. About half of the SIM NMIs maintain national standards of time and frequency and must participate in international comparisons in order to establish metrological traceability to the International System (SI) of units. The SIM time network (SIMTN) was developed as a practical, cost effective, and technically sound way to automate these comparisons. The SIMTN continuously compares the time standards of SIM NMIs and produces measurement results in near real-time by utilizing the Internet and the Global Positioning System (GPS). Fifteen SIM NMIs have joined the network as of December 2010. This paper provides a brief overview of SIM and a technical description of the SIMTN. It presents international comparison results and examines the measurement uncertainties. It also discusses the metrological benefits that the network provides to its participants. PMID:26989584

  20. Interaction of wide band gap single crystals with 248 nm excimer laser radiation. XII. The emission of negative atomic ions from alkali halides

    SciTech Connect

    Kimura, Kenichi; Langford, S. C.; Dickinson, J. T.

    2007-12-01

    Many wide band gap materials yield charged and neutral emissions when exposed to sub-band-gap laser radiation at power densities below the threshold for optical breakdown and plume formation. In this work, we report the observation of negative alkali ions from several alkali halides under comparable conditions. We observe no evidence for negative halogen ions, in spite of the high electron affinities of the halogens. Significantly, the positive and negative alkali ions show a high degree of spatial and temporal overlap. A detailed study of all the relevant particle emissions from potassium chloride (KCl) suggests that K{sup -} is formed by the sequential attachment of two electrons to K{sup +}.

  1. Combined nano-SIMS/AFM/EBSD analysis and atom probe tomography, of carbon distribution in austenite/ε-martensite high-Mn steels.

    PubMed

    Seol, Jae-Bok; Lee, B-H; Choi, P; Lee, S-G; Park, C-G

    2013-09-01

    We introduce a new experimental approach for the identification of the atomistic position of interstitial carbon in a high-Mn binary alloy consisting of austenite and ε-martensite. Using combined nano-beam secondary ion mass spectroscopy, atomic force microscopy and electron backscatter diffraction analyses, we clearly observe carbon partitioning to austenite. Nano-beam secondary ion mass spectroscopy and atom probe tomography studies also reveal carbon trapping at crystal imperfections as identified by transmission electron microscopy. Three main trapping sites can be distinguished: phase boundaries between austenite and ε-martensite, stacking faults in austenite, and prior austenite grain boundaries. Our findings suggest that segregation and/or partitioning of carbon can contribute to the austenite-to-martensite transformation of the investigated alloy.

  2. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  3. Atom-Probe Tomography, TEM and ToF-SIMS study of borosilicate glass alteration rim: A multiscale approach to investigating rate-limiting mechanisms

    NASA Astrophysics Data System (ADS)

    Gin, S.; Jollivet, P.; Barba Rossa, G.; Tribet, M.; Mougnaud, S.; Collin, M.; Fournier, M.; Cadel, E.; Cabie, M.; Dupuy, L.

    2017-04-01

    Significant efforts have been made into understanding the dissolution of silicate glasses and minerals, but there is still debate about the formation processes and the properties of surface layers. Here, we investigate glass coupons of ISG glass - a 6 oxide borosilicate glass of nuclear interest - altered at 90 °C in conditions close to saturation and for durations ranging from 1 to 875 days. Altered glass coupons were characterized from atomic to macroscopic levels to better understand how surface layers become protective. With this approach, it was shown that a rough interface, whose physical characteristics have been modeled, formed in a few days and then propagated into the pristine material at a rate controlled by the reactive transport of water within the growing alteration layer. Several observations such as stiff interfacial B, Na, and Ca profiles and damped profiles within the rest of the alteration layer are not consistent with the classical inter-diffusion model, or with the interfacial dissolution-precipitation model. A new paradigm is proposed to explain these features. Inter-diffusion, a process based on water ingress into the glass and ion-exchange, may only explain the formation of the rough interface in the early stage of glass corrosion. A thin layer of altered glass is formed by this process, and as the layer grows, the accessibility of water to the reactive interface becomes rate-limiting. As a consequence, only the most easily accessible species are dissolved. The others remain undissolved in the alteration layer, probably fixed in highly hydrolysis resistant clusters. A new estimation of water diffusivity in the glass when covered by the passivating layer was determined from the shift between B and H profiles, and was 10-23 m2.s-1, i.e. approximately 3 orders of magnitude lower than water diffusivity in the pristine material. Overall, in the absence of secondary crystalline phases that could consume the major components of the alteration

  4. A Simple Model for Fine Structure Transitions in Alkali-Metal Noble-Gas Collisions

    DTIC Science & Technology

    2015-03-01

    fine- structure transition rates of the alkali atoms . The integration of this integral is primarily performed nu- merically, using an adaptive Romberg...Previous work on the fine structure transitions of alkali atoms as they collide with noble gas atoms includes a full quantum mechanical calculation of...adiabaticity in alkali atom fine structure mixing”. SPIE LASE, 896207–896207. International Society for Optics and Photonics, 2014. 4. Griffiths, David J

  5. Milk-alkali syndrome

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000332.htm Milk-alkali syndrome To use the sharing features on this page, please enable JavaScript. Milk-alkali syndrome is a condition in which there ...

  6. The role of the alkali and chalcogen atoms on the stability of the layered chalcogenide \\mathbf{{{A}_{2}}{{M}^{II}}M_{3}^{\\,IV}{{Q}_{8}}} (A  =  alkali-metal M  =  metal-cations Q  =  chalcogen) compounds: a density functional theory investigation within van der Waals corrections

    NASA Astrophysics Data System (ADS)

    Besse, Rafael; Da Silva, Juarez L. F.

    2017-01-01

    There is a great interest to design two-dimensional (2D) chalcogenide materials, however, our atomistic understanding of the major physical parameters that drive the formation of 2D or three-dimensional (3D) chalcogenides is far from satisfactory, in particular, for complex quaternary systems. To address this problem, we selected a set of quaternary 2D and 3D chalcogenide compounds, namely, {{\\text{A}}2}\\text{ZnS}{{\\text{n}}3}{{\\text{Q}}8} (A  =  Li, K, Cs; Q  =  S, Se, Te), which were investigated by density functional theory calculations within van der Waals (vdW) corrections. Employing experimental crystal structures and well designed crystal modifications, we found that the average atomic radius of the alkali-metal, A, and chalcogen, Q, species play a crucial role in the stability of the 2D structures. For example, the 2D structures are energetically favored for smaller (R<1.5~{\\mathring{\\text{A}}}) and larger (R>1.8~{\\mathring{\\text{A}}}) average atomic radius, while 3D structures are favored at intermediate average atomic radius. Those results are explained in terms of strain minimization and Coulomb repulsion of the anionic species in the structure framework. Furthermore, the equilibrium lattice parameters are in excellent agreement with experimental results. Thus, the present insights can help in the design of stable quartenary 2D chalcogenide compounds.

  7. Ab initio study of the adsorption, diffusion, and intercalation of alkali metal atoms on the (0001) surface of the topological insulator Bi{sub 2}Se{sub 3}

    SciTech Connect

    Ryabishchenkova, A. G. Otrokov, M. M.; Kuznetsov, V. M.; Chulkov, E. V.

    2015-09-15

    Ab initio study of the adsorption, diffusion, and intercalation of alkali metal adatoms on the (0001) step surface of the topological insulator Bi{sub 2}Se{sub 3} has been performed for the case of low coverage. The calculations of the activation energies of diffusion of adatoms on the surface and in van der Waals gaps near steps, as well as the estimate of diffusion lengths, have shown that efficient intercalation through steps is possible only for Li and Na. Data obtained for K, Rb, and Cs atoms indicate that their thermal desorption at high temperatures can occur before intercalation. The results have been discussed in the context of existing experimental data.

  8. The role of SIMS in cultural heritage studies

    NASA Astrophysics Data System (ADS)

    Dowsett, Mark; Adriaens, Annemie

    2004-11-01

    Secondary ion mass spectrometry (SIMS) is a highly sensitive chemical analysis technique available in variants, which are top monolayer specific (static SIMS) or which can extract micro-volume analyses or depth profiles (dynamic SIMS). The technique offers ppm or even ppb atomic sensitivity for the consumption of extremely small sample volumes. In the area of cultural heritage, SIMS has been applied to a diverse range of problems including technology and authenticity, origin and provenance, degradation processes, such as corrosion and weathering, and conservation. In this paper, the basic attributes and limitations of the technique are described. An outline is given of applications to glasses (obsidian dating, conservation of stained glass and Venetian glass), metals (simulated archaeological bronzes), pigments and human remains, focusing on conservation problems such as the assessment and suppression of corrosion, other degrading processes, identification of materials using speciation. The topic of ultra low energy SIMS, newly applied to cultural heritage materials, is briefly described.

  9. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Schmalzer, D.K.; Steindler, M.J.; Lee, S.H.D.; Swift, W.M.

    1992-12-01

    This project supports the DOE/METC Fossil Energy Program for the development of Pressurized fluidized bed combustion (PFBC) technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an alternative to the on-line alkali analyzer for field application. RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no high temperature/high pressure (HTHP) sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-reaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial-grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6{und M}-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed in the following.

  10. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Schmalzer, D.K.; Steindler, M.J.; Lee, S.H.D.; Swift, W.M.

    1992-01-01

    This project supports the DOE/METC Fossil Energy Program for the development of Pressurized fluidized bed combustion (PFBC) technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an alternative to the on-line alkali analyzer for field application. RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no high temperature/high pressure (HTHP) sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-reaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial-grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6[und M]-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed in the following.

  11. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1992-01-01

    This project supports the DOE/METC Fossil Energy Program for the development of PFBC technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an altemative to the on-line alkali analyzer for field application. As shown in Fig. 1, the RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no HTHP sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-leaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6M-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite [8]. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed.

  12. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1992-11-01

    This project supports the DOE/METC Fossil Energy Program for the development of PFBC technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an altemative to the on-line alkali analyzer for field application. As shown in Fig. 1, the RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no HTHP sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-leaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6M-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite [8]. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed.

  13. Self-discharge in bimetallic cells containing alkali metal

    NASA Technical Reports Server (NTRS)

    Foster, M. S.; Hesson, J. C.; Shimotake, H.

    1969-01-01

    Theoretical analysis of thermally regenerative bimetallic cells with alkali metal anodes shows a relation between the current drawn and the rate of discharge under open-circuit conditions. The self-discharge rate of the cell is due to the dissolution and ionization of alkali metal atoms in the fused-salt electrolyte

  14. SIM Configuration Evolution

    NASA Technical Reports Server (NTRS)

    Aaron, Kim M.

    2000-01-01

    The Space Interferometry Mission (SIM) is a space-based 10 m baseline Michelson interferometer. Planned for launch in 2005 aboard a Delta III launch vehicle, or equivalent, its primary objective is to measure the positions of stars and other celestial objects with an unprecedented accuracy of 4 micro arc seconds. With such an instrument, tremendous advancement can be expected in our understanding of stellar and galactic dynamics. Using triangulation from opposite sides of the orbit around the sun (i.e. by using parallax) one can measure the distance to any observable object in our galaxy. By directly measuring the orbital wobble of nearby stars, the mass and orbit of planets can be determined over a wide range of parameters. The distribution of velocity within nearby galaxies will be measurable. Observations of these and other objects will improve the calibration of distance estimators by more than an order of magnitude. This will permit a much better determination of the Hubble Constant as well as improving our overall understanding of the evolution of the universe. SIM has undergone several transformations, especially over the past year and a half since the start of Phase A. During this phase of a project, it is desirable to perform system-level trade studies, so the substantial evolution of the design that has occurred is quite appropriate. Part of the trade-off process has addressed two major underlying architectures: SIM Classic; and Son of SIM. The difference between these two architectures is related to the overall arrangement of the optical elements and the associated metrology system. Several different configurations have been developed for each architecture. Each configuration is the result of design choices that are influenced by many competing considerations. Some of the more important aspects will be discussed. The Space Interferometry Mission has some extremely challenging goals: millikelvin thermal stability, nanometer stabilization of optics

  15. TOF-SIMS analysis of polymers

    NASA Astrophysics Data System (ADS)

    Wien, Karl

    1997-08-01

    When solid polymers are irradiated with heavy ions, atomic and molecular particles are ejected from the uppermost layers of the surface. A technique to determine the mass spectrum of the charged fraction of these particles is time-of-flight secondary-ion-mass spectrometry, TOF-SIMS. The present article describes, how the mass spectra measured with polymers are generally structured and under which conditions the various types of secondary ions like cationized oligomers, fragment ions and "fingerprint" ions are observable. The mechanisms leading to formation and ejection of the ions are not well understood. At bombarding energies of 10 keV, they are mainly based on atomic collision processes, at 100 MeV on the electronic excitation of the solid in the vicinity of the nuclear track. Processes, which are capable to desorb large organic molecules, seem not to work with oligomers of similar mass. Mass spectrometry of "real world" polymers, i.e. thick samples, depends mostly on the low-mass fingerprint spectrum, which can be produced by keV MeV SIMS. Modern TOF-SIMS instruments are equipped with a pulsed ion gun and an energy focussing ion mirror. They provide high mass resolution ( {m}/{Δm} ⋍ 10000 ) and high transmission (20-50%). Examples of applications are given, like the determination of mean molecular weights or investigations of radiation induced modifications of polymers.

  16. Binding to Redox-Inactive Alkali and Alkaline Earth Metal Ions Strongly Deactivates the C-H Bonds of Tertiary Amides toward Hydrogen Atom Transfer to Reactive Oxygen Centered Radicals.

    PubMed

    Salamone, Michela; Carboni, Giulia; Mangiacapra, Livia; Bietti, Massimo

    2015-09-18

    The effect of alkali and alkaline earth metal ions on the reactions of the cumyloxyl radical (CumO(•)) with N,N-dimethylformamide (DMF) and N,N-dimethylacetamide (DMA) was studied by laser flash photolysis. In acetonitrile, a >2 order of magnitude decrease in the rate constant for hydrogen atom transfer (HAT) from the C-H bonds of these substrates (kH) was measured after addition of Li(+). This behavior was explained in terms of a strong interaction between Li(+) and the oxygen atom of both DMF and DMA that increases the extent of positive charge on the amide, leading to C-H bond deactivation toward HAT to the electrophilic radical CumO(•). Similar effects were observed after addition of Ca(2+), which was shown to strongly bind up to four equivalents of the amide substrates. With Mg(2+), weak C-H deactivation was observed for the first two substrate equivalents followed by stronger deactivation for two additional equivalents. No C-H deactivation was observed in DMSO after addition of Li(+) and Mg(2+). These results point toward the important role played by metal ion Lewis acidity and solvent Lewis basicity, indicating that C-H deactivation can be modulated by varying the nature of the metal cation and solvent and allowing for careful control over the HAT reactivity of amide substrates.

  17. Generation and characterization of alkali metal clusters in Y-FAU zeolites. An ESR and MAS NMR spectroscopic study

    NASA Astrophysics Data System (ADS)

    Hannus, István; Béres, Attila; Nagy, János B.; Halász, János; Kiricsi, Imre

    1997-06-01

    Charged and neutral metal clusters of various compositions and sizes can be prepared by controlling the alkali metal content by the decomposition of alkali azides and the composition of the host zeolite by ion-exchange. ESR signals show that electron transfer from alkali metal atoms to alkali metal cations does occur, but in a direction opposite to that predicted by the gas-phase thermochemistry. Alkali metal clusters proved to be very active basic catalytic centers.

  18. Terahertz radiation in alkali vapor plasmas

    SciTech Connect

    Sun, Xuan; Zhang, X.-C.

    2014-05-12

    By taking advantage of low ionization potentials of alkali atoms, we demonstrate terahertz wave generation from cesium and rubidium vapor plasmas with an amplitude nearly one order of magnitude larger than that from nitrogen gas at low pressure (0.02–0.5 Torr). The observed phenomena are explained by the numerical modeling based upon electron tunneling ionization.

  19. The HexSim Model

    EPA Science Inventory

    HexSim version 2.0 is soon to be released by EPA's Western Ecology Division (WED). More than three years of work have gone into the development of this tool, which grew out of an EPA model called PATCH. HexSim makes it possible for non-programmers to develop sophisticated simula...

  20. Precursor Luminescence near the Collapse of Laser-Induced Bubbles in Alkali-Salt Solutions

    PubMed Central

    Chu, Han-Ching; Vo, Sonny; Williams, Gary A.

    2014-01-01

    A precursor luminescence pulse consisting of atomic line emission is observed as much as 150 nanoseconds prior to the collapse point of laser-created bubbles in alkali-metal solutions. The timing of the emission from neutral Na, Li, and K atoms is strongly dependent on the salt concentration, which appears to result from resonant radiation trapping by the alkali atoms in the bubble. The alkali emission ends at the onset of the blackbody luminescence pulse at the bubble collapse point, and the duration of the blackbody pulse is found to be reduced by up to 30% as the alkali-salt concentration is increased. PMID:19519032

  1. Alkali Metal Cluster Theory.

    NASA Astrophysics Data System (ADS)

    Chen, Jian

    Available from UMI in association with The British Library. Requires signed TDF. In this thesis, we apply the tight-binding Hubbard model to alkali metal clusters with Hartree-Fock self-consistent methods and perturbation methods for the numerical calculations. We have studied the relation between the equilibrium structures and the range of the hopping matrix elements in the Hubbard Hamiltonian. The results show that the structures are not sensitive to the interaction range but are determined by the number of valence electrons each atom has. Inertia tensors are used to analyse the symmetries of the clusters. The principal axes of the clusters are determined and they are the axes of rotational symmetries of clusters if the clusters have any. The eigenvalues of inertia tensors which are the indication of the deformation of clusters are compared between our model and the ellipsoidal jellium model. The agreement is good for large clusters. At a finite temperature, the thermal motion fluctuates the structures. We defined a fluctuation function with the distance matrix of a cluster. The fluctuation has been studied with the Monte-Carlo simulation method. Our studies show that the clusters remain in the solid state when temperature is low. The small values of fluctuation functions indicates the thermal vibration of atoms around their equilibrium positions. If the temperature is high, the atoms are delocalized. The cluster melts and enters the liquid region. The cluster melting is simulated by the Monte-Carlo simulation with the fluctuation function we defined. Energy levels of clusters are calculated from the Hubbard model. Ionization potentials and magic numbers are also obtained from these energy levels. The results confirm that the Hubbard model is a good approximation for a small cluster. The excitation energy is presented by the difference between the original level and excited level, and the electron-hole interactions. We also have studied cooling of clusters

  2. Draft INFL Guideline on SIMS

    SciTech Connect

    Kristo, M J

    2012-04-02

    Secondary Ion Mass Spectrometry (SIMS) is used for elemental and isotopic analysis of solid samples. The greatest strength of SIMS is the ability to analyze very small areas (as small as 50 nm using the CAMECA NanoSIMS, for example) and to generate high-spatial resolution maps of the distribution of elements and isotopes within the sample. The measurement of the isotopic composition of sample is usually straightforward, only requiring the analysis of the sample and that of an isotopic reference material for determination of the mass bias of the instrument. Quantification of elements, however, involves the analysis of matrix matched standards for the determination of the relative sensitivity factor (a function of both the element to be analyzed and the matrix). SIMS is commonly used in nuclear forensics for exploring the heterogeneity of the material on fine spatial scale.

  3. SIM Measurements Near and Far

    NASA Astrophysics Data System (ADS)

    Patterson, Richard J.; Anglada, G.; Kaplinghat, M.; Kuchner, M. J.; Olling, R.

    2010-01-01

    The results from four SIM Science Studies are presented. The "GAIA-SIM Legacy Project" analyzes the long-term astrometric benefits that arise from the currently sequential ordering of the GAIA and SIM missions. Several issues will affect any attempts to utilize the combined datasets, such as the reference frames used, and the precise coordinate definition of the observable quantities in both missions. The second project "Determining the nature of dark matter using proper motions of stars in the Milky Way satellites" is focused on developing methods that would allow the interpretation of SIM observations of these targets in order to derive the slope of the density of dark matter near the centers of dwarf spheroidal galaxies. Since steep density cusps are predicted from cold dark matter models, and shallow density slopes are expected in warm dark matter models, these observations should allow one to determine the microphysical properties of the dark matter particle. "Sizes and Shapes of Kuiper Belt Objects and Centaurs with SIM" investigated the use of SIM to target these primordial solar system objects, in order to measure precise sizes and shapes. This will involve using non-sidereal tracking, as well as visibility measurements using the co-linear guide interferometer baseline. The fourth project "1% Luminoisty-Independent Distances to nearby Galaxies with the Rotational Parallax Technique" investigates the use of this geometric method that can be used to sample a large part of the stellar disk of external galaxies (which allows non-axisymmetric motions to be determined). Accurate RP distances will facilitate detailed comparisons between almost all standard candles (MW, M31, M33, LMC, and NGC 4258). These cross-checks are crucial if we are to believe galaxy distances (and H0) at the 1% level. The SIM Science studies have been funded by the SIM Project Office, NASA/JPL.

  4. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  5. Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research

    SciTech Connect

    Subhash Chandra

    2008-05-30

    The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysis of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.

  6. Vibrations of alkali metal overlayers on metal surfaces

    NASA Astrophysics Data System (ADS)

    Rusina, G. G.; Eremeev, S. V.; Echenique, P. M.; Benedek, G.; Borisova, S. D.; Chulkov, E. V.

    2008-06-01

    We review the current progress in the understanding of vibrations of alkalis adsorbed on metal surfaces. The analysis of alkali vibrations was made on the basis of available theoretical and experimental results. We also include in this discussion our recent calculations of vibrations in K/Pt(111) and Li(Na)/Cu(001) systems. The dependence of alkali adlayer localized modes on atomic mass, adsorption position and coverage as well as the dependence of vertical vibration frequency on the substrate orientation is discussed. The square root of atomic mass dependence of the vertical vibration energy has been confirmed by using computational data for alkalis on the Al(111) and Cu(001) substrates. We have confirmed that in a wide range of submonolayer coverages the stretch mode energy remains nearly constant while the energy of in-plane polarized modes increases with the increase of alkali coverage. It was shown that the spectrum of both stretch and in-plane vibrations can be very sensitive to the adsorption position of alkali atoms and substrate orientation.

  7. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  8. PhoSim: Photon Simulator

    NASA Astrophysics Data System (ADS)

    Peterson, John R.; Jernigan, J. Garrett

    2013-07-01

    The Photon Simulator (PhoSim) is a set of fast photon Monte Carlo codes used to calculate the physics of the atmosphere, telescope, and detector by using modern numerical techniques applied to comprehensive physical models. PhoSim generates images by collecting photons into pixels. The code takes the description of what astronomical objects are in the sky at a particular time (the instance catalog) as well as the description of the observing configuration (the operational parameters) and produces a realistic data stream of images that are similar to what a real telescope would produce. PhoSim was developed for large aperture wide field optical telescopes, such as the planned design of LSST. The initial version of the simulator also targeted the LSST telescope and camera design, but the code has since been broadened to include existing telescopes of a related nature. The atmospheric model, in particular, includes physical approximations that are limited to this general context.

  9. QuakeSim Project Networking

    NASA Astrophysics Data System (ADS)

    Kong, D.; Donnellan, A.; Pierce, M. E.

    2012-12-01

    QuakeSim is an online computational framework focused on using remotely sensed geodetic imaging data to model and understand earthquakes. With the rise in online social networking over the last decade, many tools and concepts have been developed that are useful to research groups. In particular, QuakeSim is interested in the ability for researchers to post, share, and annotate files generated by modeling tools in order to facilitate collaboration. To accomplish this, features were added to the preexisting QuakeSim site that include single sign-on, automated saving of output from modeling tools, and a personal user space to manage sharing permissions on these saved files. These features implement OpenID and Lightweight Data Access Protocol (LDAP) technologies to manage files across several different servers, including a web server running Drupal and other servers hosting the computational tools themselves.

  10. Ideas about Acids and Alkalis.

    ERIC Educational Resources Information Center

    Toplis, Rob

    1998-01-01

    Investigates students' ideas, conceptions, and misconceptions about acids and alkalis before and after a teaching sequence in a small-scale research project. Concludes that student understanding of acids and alkalis is lacking. (DDR)

  11. Intensity Scaling for Diode Pumped Alkali Lasers

    DTIC Science & Technology

    2012-01-01

    unphased diode lasers is absorbed in the near IR by atomic potassium, rubidium , or cesium. The gain cell for a DPAL system using a heat pipe design is...demonstrated linear scaling of a rubidium laser to 32 times threshold.3 In our present work, we explore scaling to pump in- tensities of >100kW/cm2. The...of output power. Each alkali atom in the laser medium may be required to cycle as many as 1010 pump photons per second. We demonstrated a rubidium

  12. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  13. Formation and stability of high-spin alkali clusters.

    PubMed

    Schulz, C P; Claas, P; Schumacher, D; Stienkemeier, F

    2004-01-09

    Helium nanodroplet isolation has been applied to agglomerate alkali clusters at temperatures of 380 mK. The very weak binding to the surface of the droplets allows a selection of only weakly bound, high-spin states. Here we show that larger clusters of alkali atoms in high-spin states can be formed. The lack of strong bonds from pairing electrons makes these systems nonmetallic, van der Waals-like complexes of metal atoms. We find that sodium and potassium readily form such clusters containing up to 25 atoms. In contrast, this process is suppressed for rubidium and cesium. Apparently, for these heavy alkalis, larger high-spin aggregates are not stable and depolarize spontaneously upon cluster formation.

  14. Formation and Stability of High-Spin Alkali Clusters

    NASA Astrophysics Data System (ADS)

    Schulz, C. P.; Claas, P.; Schumacher, D.; Stienkemeier, F.

    2004-01-01

    Helium nanodroplet isolation has been applied to agglomerate alkali clusters at temperatures of 380mK. The very weak binding to the surface of the droplets allows a selection of only weakly bound, high-spin states. Here we show that larger clusters of alkali atoms in high-spin states can be formed. The lack of strong bonds from pairing electrons makes these systems nonmetallic, vanderWaals like complexes of metal atoms. We find that sodium and potassium readily form such clusters containing up to 25atoms. In contrast, this process is suppressed for rubidium and cesium. Apparently, for these heavy alkalis, larger high-spin aggregates are not stable and depolarize spontaneously upon cluster formation.

  15. Spectroscopic and theoretical study on alkali metal phenylacetates

    NASA Astrophysics Data System (ADS)

    Regulska, E.; Świsłocka, R.; Samsonowicz, M.; Lewandowski, W.

    2013-07-01

    The influence of lithium, sodium, potassium, rubidium and cesium cations on the electronic system of phenylacetic acid was studied. The FT-IR, FT-Raman and 1H and 13C NMR spectra were recorded for studied compounds. Characteristic shifts in IR and NMR spectra along alkali metal phenylacetates were observed. Good correlations between the wavenumbers of the vibrational bands in the IR spectra of phenylacetates and some alkali metal parameters such as ionic potential, electronegativity, inverse of atomic mass, atomic radius and ionization energy were found. The density functional hybrid method B3LYP with 6-311++G** basis set was used to calculate optimized geometrical structures of studied compounds. Aromaticity indices, atomic charges, dipole moments and energies were calculated as well as the wavenumbers and intensities of IR spectra and chemical shifts in NMR spectra. The theoretical parameters were compared to experimental characteristic of alkali metal phenylacetates.

  16. Positron collisions with alkali-metal atoms

    NASA Technical Reports Server (NTRS)

    Gien, T. T.

    1990-01-01

    The total cross sections for positron and electron collisions with potassium, sodium, lithium and rubidium are calculated, employing the modified Glauber approximation. The Modified Glauber cross sections for positron collision with potassium and sodium at low intermediate energies are found to agree reasonably well with existing experimental data.

  17. The Inhomogeneous Light Shift in Alkali Atoms.

    DTIC Science & Technology

    1985-06-24

    could be easily confused with this effect. It is our contention that this was exactly the case with the asymmetries observed by Arditi and Picque for the...Goodwin, ed., Advances in Quantum Electronics, (Academic Press, New York, 1975). 21. M. Arditi and J. L. Picqug, J. Phys. B. 8 (14), L331 (1975). 38 0

  18. Calculation of Radiative Corrections to E1 matrix elements in the Neutral Alkalis

    SciTech Connect

    Sapirstein, J; Cheng, K T

    2004-09-28

    Radiative corrections to E1 matrix elements for ns-np transitions in the alkali metal atoms lithium through francium are evaluated. They are found to be small for the lighter alkalis but significantly larger for the heavier alkalis, and in the case of cesium much larger than the experimental accuracy. The relation of the matrix element calculation to a recent decay rate calculation for hydrogenic ions is discussed, and application of the method to parity nonconservation in cesium is described.

  19. Chlor-Alkali Technology.

    ERIC Educational Resources Information Center

    Venkatesh, S.; Tilak, B. V.

    1983-01-01

    Chlor-alkali technology is one of the largest electrochemical industries in the world, the main products being chlorine and caustic soda (sodium hydroxide) generated simultaneously by the electrolysis of sodium chloride. This technology is reviewed in terms of electrochemical principles and manufacturing processes involved. (Author/JN)

  20. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    DOEpatents

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  1. Communication: Dopant-induced solvation of alkalis in liquid helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Renzler, Michael; Daxner, Matthias; Kranabetter, Lorenz; Kaiser, Alexander; Hauser, Andreas W.; Ernst, Wolfgang E.; Lindinger, Albrecht; Zillich, Robert; Scheier, Paul; Ellis, Andrew M.

    2016-11-01

    Alkali metal atoms and small alkali clusters are classic heliophobes and when in contact with liquid helium they reside in a dimple on the surface. Here we show that alkalis can be induced to submerge into liquid helium when a highly polarizable co-solute, C60, is added to a helium nanodroplet. Evidence is presented that shows that all sodium clusters, and probably single Na atoms, enter the helium droplet in the presence of C60. Even clusters of cesium, an extreme heliophobe, dissolve in liquid helium when C60 is added. The sole exception is atomic Cs, which remains at the surface.

  2. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  3. Alkalis in alternative biofuels

    SciTech Connect

    Miles, T.R.; Miles, T.R. Jr.; Bryers, R.W.; Baxter, L.L.; Jenkins, B.M.; Oden, L.L.

    1994-12-31

    The alkali content and behavior of inorganic material of annually produced biofuels severely limits their use for generating electrical power in conventional furnaces. A recent eighteen-month investigation of the chemistry and firing characteristics of 26 different biofuels has been conducted. Firing conditions were simulated in the laboratory for eleven biofuels. This paper describes some results from the investigation including fuel properties, deposits, deposition mechanisms, and implications for biomass boiler design, fuel sampling and characterizations. Urban wood fuel, agricultural residues, energy crops, and other potential alternate fuels are included in the study. Conventional methods for establishing fuel alkali content and determining ash sticky temperatures were deceptive. The crux of the problem was found to be the high concentration of potassium in biofuels and its reactions with other fuel constituents which lower the ``sticky temperature`` of the ash to the 650 C to 760 C (1,200 F-1,400 F).

  4. Ratio estimation in SIMS analysis

    NASA Astrophysics Data System (ADS)

    Ogliore, R. C.; Huss, G. R.; Nagashima, K.

    2011-09-01

    The determination of an isotope ratio by secondary ion mass spectrometry (SIMS) traditionally involves averaging a number of ratios collected over the course of a measurement. We show that this method leads to an additive positive bias in the expectation value of the estimated ratio that is approximately equal to the true ratio divided by the counts of the denominator isotope of an individual ratio. This bias does not decrease as the number of ratios used in the average increases. By summing all counts in the numerator isotope, then dividing by the sum of counts in the denominator isotope, the estimated ratio is less biased: the bias is approximately equal to the ratio divided by the summed counts of the denominator isotope over the entire measurement. We propose a third ratio estimator (Beale's estimator) that can be used when the bias from the summed counts is unacceptably large for the hypothesis being tested. We derive expressions for the variance of these ratio estimators as well as the conditions under which they are normally distributed. Finally, we investigate a SIMS dataset showing the effects of ratio bias, and discuss proper ratio estimation for SIMS analysis.

  5. Alkali-vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.; Krupke, W. F.

    2010-02-01

    We report on the results from several of our alkali laser systems. We show highly efficient performance from an alexandrite-pumped rubidium laser. Using a laser diode stack as a pump source, we demonstrate up to 145 W of average power from a CW system. We present a design for a transversely pumped demonstration system that will show all of the required laser physics for a high power system.

  6. WEC-Sim (Wave Energy Converter - SIMulator)

    SciTech Connect

    2014-11-26

    WEC-Sim (Wave Energy Converter SIMulator) is a code developed by Sandia National Laboratories and the National Renewable Energy Laboratory to model wave energy converters (WECs) when they are subject to operational waves. The code is a time-domain modeling tool developed in MATLAB/Simulink using the multi-body dynamics solver SimMechanics. In WEC-Sim, WECs are modeled by connecting rigid bodies to one another with joint or constraint blocks from the WEC-Sim library. WEC-Sim is a publicly available, open-source code to model WECs.

  7. SIM Lite Astrometric Observatory progress report

    NASA Astrophysics Data System (ADS)

    Marr, James C., IV; Shao, Michael; Goullioud, Renaud

    2010-07-01

    The SIM Lite Astrometric Observatory (aka SIM Lite), a micro-arcsecond astrometry space mission, has been developed in response to NASA's indefinite deferral of the SIM PlanetQuest mission. The SIM Lite mission, while significantly more affordable than the SIM PlanetQuest mission concept, still addresses the full breadth of SIM science envisioned by two previous National Research Council (NRC) Astrophysics Decadal Surveys at the most stringent "Goal" level of astrometric measurement performance envisioned in those surveys. Over the past two years, the project has completed the conceptual design of the SIM Lite mission using only the completed SIM technology; published a 250 page book describing the science and mission design (available at the SIM website: http://sim.jpl.nasa.gov); been subject to an independent cost and technical readiness assessment by the Aerospace Corporation; and submitted a number of information responses to the NRC Astro2010 Decadal Survey. The project also conducted an exoplanet-finding capability double blind study that clearly demonstrated the ability of the mission to survey 60 to 100 nearby sun-like dwarf stars for terrestrial, habitable zone planets in complex planetary systems. Additionally, the project has continued Engineering Risk Reduction activities by building brassboard (form, fit & function to flight) version of key instrument elements and subjecting them to flight qualification environmental and performance testing. This paper summarizes the progress over the last two years and the current state of the SIM Lite project.

  8. SIM Lite Astrometric Observatory Progress Report

    NASA Technical Reports Server (NTRS)

    Marr, James C., IV; Shao, Michael; Goullioud, Renaud

    2010-01-01

    The SIM Lite Astrometric Observatory (aka SIM Lite), a micro-arcsecond astrometry space mission, has been developed in response to NASA's indefinite deferral of the SIM PlanetQuest mission. The SIM Lite mission, while significantly more affordable than the SIM PlanetQuest mission concept, still addresses the full breadth of SIM science envisioned by two previous National Research Council (NRC) Astrophysics Decadal Surveys at the most stringent 'Goal' level of astrometric measurement performance envisioned in those surveys. Over the past two years, the project has completed the conceptual design of the SIM Lite mission using only the completed SIM technology; published a 250 page book describing the science and mission design (available at the SIM website: http://sim.jpl.nasa.gov); been subject to an independent cost and technical readiness assessment by the Aerospace Corporation; and submitted a number of information responses to the NRC Astro2010 Decadal Survey. The project also conducted an exoplanet-finding capability double blind study that clearly demonstrated the ability of the mission to survey 60 to 100 nearby sun-like dwarf stars for terrestrial, habitable zone planets in complex planetary systems. Additionally, the project has continued Engineering Risk Reduction activities by building brassboard (form, fit and function to flight) version of key instrument elements and subjecting them to flight qualification environmental and performance testing. This paper summarizes the progress over the last two years and the current state of the SIM Lite project.

  9. Sequencing Information Management System (SIMS). Final report

    SciTech Connect

    Fields, C.

    1996-02-15

    A feasibility study to develop a requirements analysis and functional specification for a data management system for large-scale DNA sequencing laboratories resulted in a functional specification for a Sequencing Information Management System (SIMS). This document reports the results of this feasibility study, and includes a functional specification for a SIMS relational schema. The SIMS is an integrated information management system that supports data acquisition, management, analysis, and distribution for DNA sequencing laboratories. The SIMS provides ad hoc query access to information on the sequencing process and its results, and partially automates the transfer of data between laboratory instruments, analysis programs, technical personnel, and managers. The SIMS user interfaces are designed for use by laboratory technicians, laboratory managers, and scientists. The SIMS is designed to run in a heterogeneous, multiplatform environment in a client/server mode. The SIMS communicates with external computational and data resources via the internet.

  10. Reaction of aromatic compounds with nucleophilic reagents in liquid ammonia. VIII. The origin of the oxygen atom of the hydroxy group in the products from the hydroxylation of 1-nitronaphthalene with alkali and molecular oxygen

    SciTech Connect

    Malykhin, E.V.; Shteingarts, V.D.

    1987-10-20

    In the reaction of 1-nitronaphthalene with K/sup 18/OH and /sup 16/O/sub 2/ in liquid ammonia 1-nitro-2- and 4-nitro-1-naphthols labeled with the /sup 18/O isotope in the hydroxyl group are formed. The ratio of the isomers and the content of the /sup 18/O isotope depend on the ratio of 1-nitronaphthalene and alkali, on the temperature, and on the presence of moisture in the ammonia. The amount of the /sup 18/O isotope in the hydroxylation products indicates that in contrast to the analogous reaction of nitrobenzene and its derivatives the hydroxy function of the products in this case is formed not only from the alkali but also to a significant degree form the oxygen of the O/sub 2/.

  11. Observation of Raman self-focusing in an alkali-metal vapor cell

    NASA Astrophysics Data System (ADS)

    Proite, N. A.; Unks, B. E.; Green, J. T.; Yavuz, D. D.

    2008-02-01

    We report an experimental demonstration of Raman self-focusing and self-defocusing in a far-off resonant alkali-metal atomic system. The key idea is to drive a hyperfine transition in an alkali-metal atom to a maximally coherent state with two laser beams. In this regime, the two-photon detuning from the Raman resonance controls the nonlinear index of the medium.

  12. The SIM Lite Astrometric Observatory

    NASA Astrophysics Data System (ADS)

    Unwin, Stephen C.

    2009-05-01

    SIM Lite is an observatory mission dedicated to precision astrometry. With a single measurement accuracy of 1 microarcsecond (µas) and a noise floor below 0.035 µas it will have the capability to do an extensive search for Earth-mass planets in the `habitable zone’ around several dozen of the nearest stars. SIM Lite maintains its wide-angle accuracy of 4 µas for all targets down to V = 19, limited only by observing time. This opens up a wide array of astrophysical problems. As a flexibly pointed instrument, it is a natural complement to sky surveys such as JMAPS and Gaia, and will tackle questions that don't require the acquisition of statistics on a large number of targets. It will provide accurate masses for the first time for a variety of exotic star types, including X-ray binaries; it will study the structure and evolution of our Galaxy through tidal streams from dwarf spheroidals and the trajectories of halo stars and galaxies. Its faint-target capability will enable the use of astrometric and photometric variability as a probe of the disk accretion and jet formation processes in blazars. SIM Lite will have an extensive GO (General Observer) program, open to all categories of astrometric science. The project successfully completed a series of technology milestones in 2005, and is currently under study by by NASA as a flight mission. The research described in this talk was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  13. Transport properties of alkali metal doped fullerides

    SciTech Connect

    Yadav, Daluram Yadav, Nishchhal

    2015-07-31

    We have studied the intercage interactions between the adjacent C{sub 60} cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C{sub 60} phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, T{sub c}, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C{sub 60} phonons as 5 K, which is much lower as compared to reported T{sub c} (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  14. High power diode pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.

    2008-05-01

    Diode pumped alkali lasers have developed rapidly since their first demonstration. These lasers offer a path to convert highly efficient, but relatively low brightness, laser diodes into a single high power, high brightness beam. General Atomics has been engaged in the development of DPALs with scalable architectures. We have examined different species and pump characteristics. We show that high absorption can be achieved even when the pump source bandwidth is several times the absorption bandwidth. In addition, we present experimental results for both potassium and rubidium systems pumped with a 0.2 nm bandwidth alexandrite laser. These data show slope efficiencies of 67% and 72% respectively.

  15. Lithium and Sodium Resistance of Alkali Metal Vapor Resistant Glasses

    NASA Astrophysics Data System (ADS)

    Kishinevski, Anatoly; Hall, Matthew

    2014-05-01

    A common challenge in atomic physics is that of containing an alkali metal vapor at an elevated temperature and concurrently being able to excite and probe atomic transitions within. Typically glass is used as the material to construct the container, as it is easy to manipulate into any geometry and offers thermal, mechanical, and optical properties that no other material is capable. Unfortunately it has been well established that alkali metal gasses/vapors react readily with silica containing glass and results in a progressive darkening of the material. As the darkening reaction progresses, the optical transmission properties of the glass progressively degrade to an eventual point of uselessness. Alkali metals have been used extensively in frequency standards and magnetometers. The finite life of these alkali metal vapor-containing devices has been accepted despite varying attempts by different teams to solve this problem. As a viable solution, it has been identified there exist a family of glass compositions that contain a marginal amount of silica, may be lampworked using traditional glassblowing techniques, and that offer substantially better alkali vapor resistance. The evaluation of these glasses and their resistance to sodium and lithium vapor at varying pressures and temperatures are discussed.

  16. On-chip fabrication of alkali-metal vapor cells utilizing an alkali-metal source tablet

    NASA Astrophysics Data System (ADS)

    Tsujimoto, K.; Ban, K.; Hirai, Y.; Sugano, K.; Tsuchiya, T.; Mizutani, N.; Tabata, O.

    2013-11-01

    We describe a novel on-chip microfabrication technique for the alkali-metal vapor cell of an optically pumped atomic magnetometer (OPAM), utilizing an alkali-metal source tablet (AMST). The newly proposed AMST is a millimeter-sized piece of porous alumina whose considerable surface area holds deposited alkali-metal chloride (KCl) and barium azide (BaN6), source materials that effectively produce alkali-metal vapor at less than 400 °C. Our experiments indicated that the most effective pore size of the AMST is between 60 and 170 µm. The thickness of an insulating glass spacer holding the AMST was designed to confine generated alkali metal to the interior of the vapor cell during its production, and an integrated silicon heater was designed to seal the device using a glass frit, melted at an optimum temperature range of 460-490 °C that was determined by finite element method thermal simulation. The proposed design and AMST were used to successfully fabricate a K cell that was then operated as an OPAM with a measured sensitivity of 50 pT. These results demonstrate that the proposed concept for on-chip microfabrication of alkali-metal vapor cells may lead to effective replacement of conventional glassworking approaches.

  17. Breakdown of ionic character of molecular alkali bromides in inner-valence photoionization

    SciTech Connect

    Karpenko, A. Iablonskyi, D.; Kettunen, J. A.; Cao, W.; Huttula, M.; Aksela, H.; Urpelainen, S.

    2014-05-28

    The inner-valence region of alkali bromide XBr (X=Li, Na, K, Rb) vapours has been studied experimentally by means of synchrotron radiation excited photoelectron spectroscopy. Experimental spectra were analyzed by comparing them with available theoretical results and previous experiments. Ionic character of alkali bromides is seen to change in the inner-valence region with increasing atomic number of the alkali atom. A mechanism involving mixing between Br 4s and Rb 4p orbitals has been suggested to account for the fine structure observed in inner-valence ionization region of RbBr.

  18. High-resolution SIMS depth profiling of nanolayers.

    SciTech Connect

    Baryshev, S. V.; Zinovev, A. V.; Tripa, C. E.; Pellin, M. J.; Peng, Q.; Elam, J. W.; Veryovkin, I. V.

    2012-10-15

    Although the fundamental physical limits for depth resolution of secondary ion mass spectrometry are well understood in theory, the experimental work to achieve and demonstrate them is still ongoing. We report results of high-resolution TOF SIMS (time-of-flight secondary ion mass spectrometry) depth profiling experiments on a nanolayered structure, a stack of 16 alternating MgO and ZnO {approx}5.5 nm layers grown on a Si substrate by atomic layer deposition. The measurements were performed using a newly developed approach implementing a low-energy direct current normally incident Ar{sup +} ion beam for ion milling (250 eV and 500 eV energy), in combination with a pulsed 5 keV Ar{sup +} ion beam at 60{sup o} incidence for TOF SIMS analysis. By this optimized arrangement, a noticeably improved version of the dual-beam (DB) approach to TOF SIMS depth profiling is introduced, which can be dubbed gentleDB. The mixing-roughness-information model was applied to detailed analysis of experimental results. It revealed that the gentleDB approach allows ultimate depth resolution by confining the ion beam mixing length to about two monolayers. This corresponds to the escape depth of secondary ions, the fundamental depth resolution limitation in SIMS. Other parameters deduced from the measured depth profiles indicated that a single layer thickness is equal to 6 nm so that the 'flat' layer thickness d is 3 nm and the interfacial roughness {sigma} is 1.5 nm, thus yielding d + 2{sigma} = 6 nm. We have demonstrated that gentleDB TOF SIMS depth profiling with noble gas ion beams is capable of revealing the structural features of a stack of nanolayers, resolving its original surface and estimating the roughness of interlayer interfaces, information which is difficult to obtain by traditional approaches.

  19. The SIM PlanetQuest Science Program

    NASA Technical Reports Server (NTRS)

    Edberg, Stephen J.; Traub, Wesley A.; Unwin, Stephen C.; Marr, James C., IV

    2007-01-01

    SIM PlanetQuest (hereafter, just SIM) is a NASA mission to measure the angular positions of stars with unprecedented accuracy. We outline the main astrophysical science programs planned for SIM, and related opportunities for community participation. We focus especially on SIM's ability to detect exoplanets as small as the Earth around nearby stars. The planned synergy between SIM and other planet-finding missions including Kepler and GAIA, and planet-characterizing missions including the James Webb Space Telescope (JWST), Terrestrial Planet Finder--Coronagraph (TPF-C), and Terrestrial Planet Finder--Interferometer (TPF-I), is a key element in NASA's Navigator Program to find Earth-like planets, determine their habitability, and search for signs of life in the universe. SIM's technology development is now complete and the project is proceeding towards a launch in the next decade.

  20. Preparation of alkali metal dispersions

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Landel, R. F. (Inventor)

    1968-01-01

    A method is described for producing alkali metal dispersions of high purity. The dispersions are prepared by varying the equilibrium solubility of the alkali metal in a suitable organic solvent in the presence of aromatic hydrocarbons. The equilibrium variation is produced by temperature change. The size of the particles is controlled by controlling the rate of temperature change.

  1. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  2. Discovery of Planetary Systems With SIM

    DTIC Science & Technology

    2008-01-01

    planetary systems. In the past five years, over 70 extrasolar planets have been discovered by precision Doppler surveys, most by members of this SIM team...We are using the data base of information gleaned from our Doppler survey to choose the best targets for a new SIM planet search. In the same way that...our Doppler database now serves SIM, our team will return a recon- naissance database to focus Terresrial Planet Finder (TPF) into a more productive

  3. Synergistic capture mechanisms for alkali and sulphur species from combustion. Quarterly report No. 10, December 1992--February 1993

    SciTech Connect

    Peterson, T.W.; Shadman, F.; Wendt, J.O.L.; Wu, Baochun

    1993-07-26

    A number of sorbents with alumina-silicate base and sulfur capturing active sites have been developed for simultaneous removal of alkali metal compounds and sulfur dioxide. Current report will focus on bauxite sorbents, which includes experiments on sulfur dioxide absorption, alkali capturing and alkali/sulfur absorption simultaneously by bauxite-based sorbents. The alkali compound used here is sodium chloride. Experiments show an effective adsorption of sulfur or alkali separately, and the combined adsorption of alkali/sulfur. Atomic absorption analysis of reaction products shows that there is a much higher sodium content in the combined reaction products than that of the single reaction of alkali absorption by bauxite. Further X-ray diffraction analysis shows that there is sodium sulfate in the final products of simultaneous reaction, which indicates the formation and then condensation of sodium sulfate in the reaction system.

  4. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  5. Feasibility of supersonic diode pumped alkali lasers: Model calculations

    SciTech Connect

    Barmashenko, B. D.; Rosenwaks, S.

    2013-04-08

    The feasibility of supersonic operation of diode pumped alkali lasers (DPALs) is studied for Cs and K atoms applying model calculations, based on a semi-analytical model previously used for studying static and subsonic flow DPALs. The operation of supersonic lasers is compared with that measured and modeled in subsonic lasers. The maximum power of supersonic Cs and K lasers is found to be higher than that of subsonic lasers with the same resonator and alkali density at the laser inlet by 25% and 70%, respectively. These results indicate that for scaling-up the power of DPALs, supersonic expansion should be considered.

  6. AXAF SIM focus mechanism study

    NASA Astrophysics Data System (ADS)

    Tananbaum, H. D.; Whitbeck, E.

    1994-02-01

    The design requirements and initial design concept for the AXAF-I Science Instrument Module (SIM) were reviewed at Ball on September 29, 1993. The concept design SIM focus mechanism utilizes a planetary gearset, with redundant motors, to drive a large ring (called 'main housing bearing') via a spur gearset. This large drive ring actuates three tangent bar links (called 'push rods'), which in turn actuate three levers (called 'pin levers'). Each of the three pin levers rotates an 'eccentric pin,' which in turn moves the base of a bipod flexure in both the radial (normal to optical axis) and axial (focus along optical axis) directions. Three bipod flexures are employed, equally spaced at 120 degrees apart, the base of each being translated in the two directions as described above. A focus adjustment is made by rotating the drive ring, which drives the push rods and therefore the pin levers, which in turn rotate the eccentric pins, finally imparting the two motions to the base of each of the bipod flexures. The axial translation (focus adjustment) of the focused structure is the sum of the direct axial motion plus axial motion which comes from uniformly squeezing the three bipod bases radially inward. SAO documented the following concerns regarding the focus mechanism in memo WAP-FY94-001, dated October 7, 1993: (1) The focus adjustment depends, in large part, on the structural properties (stiffnesses and end fixities) of the bipod flexures, push rods, pin levers and eccentric pins. If these properties are not matched very well, then lateral translations as well as unwanted rotations of the focussed structure will accompany focus motion. In addition, the stackup of linkage tolerances and any nonuniform wear in the linkages will result in the same unwanted motions. Thermal gradients will also affect these motions. At the review Ball did not present supporting analyses to support their choice of this design concept. (2) The proposed 'primary' method of measuring focus

  7. Relativistic Quantum Chemistry of Heavy Elements: Interatomic potentials and Lines Shift for Systems 'Alkali Elements-Inert Gases'

    SciTech Connect

    Glushkov, A. V.; Khetselius, O.; Gurnitskaya, E.; Loboda, A.; Mischenko, E.

    2009-03-09

    New relativistic approach, based on the gauge-invariant perturbation theory (PT) with using the optimized wave functions basis's, is applied to calculating the inter atomic potentials, hyper fine structure (hfs) collision shift for alkali atoms in atmosphere of inert gases. Data for inter atomic potentials, collision shifts of the Rb and Cs atoms in atmosphere of the inert gas He are presented.

  8. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  9. High-temperature interactions of alkali vapors with solids during coal combustion and gasification

    SciTech Connect

    Punjak, W.A.

    1988-01-01

    A temperature and concentration programmed reaction method is used to investigate the mechanism by which organically bound alkali is released from carbonaceous substrates. Vaporization of the alkali is preceded by reduction of oxygen-bearing groups during which CO is generated. A residual amount of alkali remains after complete reduction. This residual level is greater for potassium, indicating that potassium has stronger interactions with graphitic substrates that sodium. Other mineral substrates were exposed to high temperature alkali chloride vapors under both nitrogen and simulated flue gas atmospheres to investigate their potential application as sorbents for the removal of alkali from coal conversion flue gases. The compounds containing alumina and silica are found to readily adsorb alkali vapors and the minerals kaolinite, bauxite and emathlite are identified as promising alkali sorbents. The fundamentals of alkali adsorption on kaolinite, bauxite and emathlite are compared and analyzed both experimentally and through theoretical modeling. The experiments were performed in a microgravimetric reactor system; the sorbents were characterized before and after alkali adsorption using scanning Auger microscopy, X-ray diffraction analysis, mercury porosimetry and atomic emission spectrophotometry. The results show that the process is not a simple physical condensation, but a complex combination of several diffusion steps and reactions.

  10. Modeling wildlife populations with HexSim

    EPA Science Inventory

    HexSim is a framework for constructing spatially-explicit, individual-based computer models designed for simulating terrestrial wildlife population dynamics and interactions. HexSim is useful for a broad set of modeling applications including population viability analysis for on...

  11. Secondary Ion Mass Spectrometry SIMS XI

    NASA Astrophysics Data System (ADS)

    Gillen, G.; Lareau, R.; Bennett, J.; Stevie, F.

    2003-05-01

    This volume contains 252 contributions presented as plenary, invited and contributed poster and oral presentations at the 11th International Conference on Secondary Ion Mass Spectrometry (SIMS XI) held at the Hilton Hotel, Walt Disney World Village, Orlando, Florida, 7 12 September, 1997. The book covers a diverse range of research, reflecting the rapid growth in advanced semiconductor characterization, ultra shallow depth profiling, TOF-SIMS and the new areas in which SIMS techniques are being used, for example in biological sciences and organic surface characterization. Papers are presented under the following categories: Isotopic SIMS Biological SIMS Semiconductor Characterization Techniques and Applications Ultra Shallow Depth Profiling Depth Profiling Fundamental/Modelling and Diffusion Sputter-Induced Topography Fundamentals of Molecular Desorption Organic Materials Practical TOF-SIMS Polyatomic Primary Ions Materials/Surface Analysis Postionization Instrumentation Geological SIMS Imaging Fundamentals of Sputtering Ion Formation and Cluster Formation Quantitative Analysis Environmental/Particle Characterization Related Techniques These proceedings provide an invaluable source of reference for both newcomers to the field and experienced SIMS users.

  12. Adsorption of alkali metals and their effect on electronic properties of grain boundaries in bulk of polycrystalline silicon

    SciTech Connect

    Olimov, L. O.

    2010-05-15

    The adsorption of alkali metals and their effect on the electronic properties of grain boundaries in bulk of polycrystalline silicon has been studied experimentally. The results obtained show that the potential barrier grows during diffusion and adsorption of alkali metal atoms along grain boundaries.

  13. Upgrading platform using alkali metals

    DOEpatents

    Gordon, John Howard

    2017-01-17

    A method for removing sulfur, nitrogen or metals from an oil feedstock. The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  14. Upgrading platform using alkali metals

    SciTech Connect

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  15. Some applications of SIMS in conservation science, archaeometry and cosmochemistry

    NASA Astrophysics Data System (ADS)

    McPhail, D. S.

    2006-07-01

    Some applications of SIMS in conservation science, archaeometry and cosmochemistry are described. Ultra-low energy SIMS depth profiling and TOF-SIMS imaging are used to study the corrosion of low-lime glass vessels from the V&A museum. Static SIMS and focused ion beam (FIB) SIMS are used to study the effects of laser cleaning on museum artefacts. Archaeological glass from Raqqa, Syria is studied with FIB-SIMS and micrometeorite impacts on space vessels are studied with FIB and FIB-SIMS. The new analytical challenges provided to the SIMS community by these materials are presented and the ethical issues associated with sampling and destructive analysis discussed.

  16. Is Electronegativity a Useful Descriptor for the "Pseudo-Alkali-Metal" NH4?

    SciTech Connect

    Whiteside, Alexander; Xantheas, Sotiris S.; Gutowski, Maciej S.

    2011-11-18

    Molecular ions in the form of "pseudo-atoms" are common structural motifs in chemistry, with properties that are transferrable between different compounds. We have determined the electronegativity of the "pseudo-alkali metal" ammonium (NH4) and evaluated its reliability as a descriptor in comparison to the electronegativities of the alkali metals. The computed properties of its binary complexes with astatine and of selected borohydrides confirm the similarity of NH4 to the alkali metal atoms, although the electronegativity of NH4 is relatively large in comparison to its cationic radius. We paid particular attention to the molecular properties of ammonium (angular anisotropy, geometric relaxation, and reactivity), which can cause deviations from the behaviour expected of a conceptual "true alkali metal" with this electronegativity. These deviations allow for the discrimination of effects associated with the polyatomic nature of NH4.

  17. Calculation of radiative corrections to E1 matrix elements in the neutral alkali metals

    SciTech Connect

    Sapirstein, J.; Cheng, K.T.

    2005-02-01

    Radiative corrections to E1 matrix elements for ns-np transitions in the alkali-metal atoms lithium through francium are evaluated. They are found to be small for the lighter alkali metals but significantly larger for the heavier alkali metals, and in the case of cesium much larger than the experimental accuracy. The relation of the matrix element calculation to a recent decay rate calculation for hydrogenic ions is discussed, and application of the method to parity nonconservation in cesium is described.

  18. Alkali ionization detector

    DOEpatents

    Hrizo, John; Bauerle, James E.; Witkowski, Robert E.

    1982-01-01

    A calibration filament containing a sodium-bearing compound is included in combination with the sensing filament and ion collector plate of a sodium ionization detector to permit periodic generation of sodium atoms for the in-situ calibration of the detector.

  19. An orthotropic source of thermal atoms

    SciTech Connect

    Dinneen, T.; Ghiorso, A.; Gould, H.

    1995-06-01

    A highly efficient source that produces a narrow beam of neutral atoms at thermal velocity with small angular divergence is described. It uses a high work function interior surface to evaporate alkali atoms as ions and a low work function neutralizer, biased to collect the ions and evaporated them as neutral atoms. The neutralizer is located opposite an exit aperture so that the beam characteristics are determined by the geometry of the neutralizer and aperture. The orthotropic source is especially well suited for atomic clocks and for efficient loading of short lived radioactive alkali atoms into an optical trap.

  20. Analysis of Nickel Silicides by SIMS and LEAP

    SciTech Connect

    Ronsheim, Paul; McMurray, Jeff; Flaitz, Philip; Parks, Christopher

    2007-09-26

    Ni-silicides formed by a variety of processing techniques were studied with secondary ion mass spectroscopy (SIMS) and local electrode atom probe (LEAP registered ) analysis. SIMS provided 1-D chemical analysis over an approximately 60 micron diameter area. LEAP provided 3-D atom identities and locations over an approximately 100-150 nm diameter area. It was determined that the 200 deg. C drive-in anneal results in a Ni{sub 3}Si{sub 2} phase, which is converted to NiSi at temperatures between 360 deg. C-400 deg. C. LEAP detects no As or Pt segregation after the 200 deg. C drive-in anneal, but did quantify As segregation of up to 7% of the material composition just inside the NiSi-Si interface after the phase-formation anneal. The presence of oxygen at the interface results in a silicide chemical surface roughness of up to 3.5 nm as compared to 0.5 nm with a clean, non-oxidized surface. Silicide stability was demonstrated over the phase-formation-temperature range of 360 deg. C - 400 deg. C including when a second rapid thermal anneal step was used. LEAP analysis was also able to quantify the surface roughness of the interface as a function of anneal temperature and the non-uniform Pt and As distribution across the silicide surface as viewed in 2-D surface projection.

  1. Diode pumped alkali vapor lasers for high power applications

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.; Komashko, A.

    2008-02-01

    General Atomics has been engaged in the development of diode pumped alkali vapor lasers. We have been examining the design space looking for designs that are both efficient and easily scalable to high powers. Computationally, we have looked at the effect of pump bandwidth on laser performance. We have also looked at different lasing species. We have used an alexandrite laser to study the relative merits of different designs. We report on the results of our experimental and computational studies.

  2. Resonances in low-energy positron-alkali scattering

    NASA Technical Reports Server (NTRS)

    Horbatsch, M.; Ward, S. J.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    Close-coupling calculations were performed with up to five target states at energies in the excitation threshold region for positron scattering from Li, Na and K. Resonances were discovered in the L = 0, 1 and 2 channels in the vicinity of the atomic excitation thresholds. The widths of these resonances vary between 0.2 and 130 MeV. Evidence was found for the existence of positron-alkali bound states in all cases.

  3. Spill-Resistant Alkali-Metal-Vapor Dispenser

    NASA Technical Reports Server (NTRS)

    Klipstein, William

    2005-01-01

    A spill-resistant vessel has been developed for dispensing an alkali-metal vapor. Vapors of alkali metals (most commonly, cesium or rubidium, both of which melt at temperatures slightly above room temperature) are needed for atomic frequency standards, experiments in spectroscopy, and experiments in laser cooling. Although the present spill-resistant alkali-metal dispenser was originally intended for use in the low-gravity environment of outer space, it can also be used in normal Earth gravitation: indeed, its utility as a vapor source was confirmed by use of cesium in a ground apparatus. The vessel is made of copper. It consists of an assembly of cylinders and flanges, shown in the figure. The uppermost cylinder is a fill tube. Initially, the vessel is evacuated, the alkali metal charge is distilled into the bottom of the vessel, and then the fill tube is pinched closed to form a vacuum seal. The innermost cylinder serves as the outlet for the vapor, yet prevents spilling by protruding above the surface of the alkali metal, no matter which way or how far the vessel is tilted. In the event (unlikely in normal Earth gravitation) that any drops of molten alkali metal have been shaken loose by vibration and are floating freely, a mesh cap on top of the inner cylinder prevents the drops from drifting out with the vapor. Liquid containment of the equivalent of 1.2 grams of cesium was confirmed for all orientations with rubbing alcohol in one of the prototypes later used with cesium.

  4. Hydrothermal alkali metal catalyst recovery process

    DOEpatents

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  5. Effect of temperature on the shape of spatial quasi-periodic oscillations of the refractive index of alkali atoms in an optically dense medium with a closed excitation contour of Δ type

    SciTech Connect

    Barantsev, K A; Litvinov, A N

    2014-10-31

    A theory of a closed excitation contour (Δ system) of a three-level atom in an optically dense medium is constructed with allowance for temperature. The spatial quasi-periodic oscillations of the refractive index in the system under study are shown to damp with increasing temperature. The range of temperatures at which these oscillations are most pronounced is found. (quantum optics)

  6. Ionic diffusion in quartz studied by transport measurements, SIMS and atomistic simulations

    NASA Astrophysics Data System (ADS)

    Sartbaeva, Asel; Wells, Stephen A.; Redfern, Simon A. T.; Hinton, Richard W.; Reed, Stephen J. B.

    2005-02-01

    Ionic diffusion in the quartz-β-eucryptite system is studied by DC transport measurements, SIMS and atomistic simulations. Transport data show a large transient increase in ionic current at the α-β phase transition of quartz (the Hedvall effect). The SIMS data indicate two diffusion processes, one involving rapid Li+ motion and the other involving penetration of Al and Li atoms into quartz at the phase transition. Atomistic simulations explain why the fine microstructure of twin domain walls in quartz near the transition does not hinder Li+ diffusion.

  7. Surface phonons on Al(111) surface covered by alkali metals

    NASA Astrophysics Data System (ADS)

    Rusina, G. G.; Eremeev, S. V.; Borisova, S. D.; Sklyadneva, I. Yu.; Chulkov, E. V.

    2005-06-01

    We investigated the vibrational and structural properties of the Al(111)-(3×3)R30°-AM (AM=Na,K,Li) adsorbed systems using interaction potentials from the embedded-atom method. The surface relaxation, surface phonon dispersion, and polarization of vibrational modes for the alkali adatoms and the substrate atoms as well as the local density of states are discussed. Our calculated structural parameters are in close agreement with experimental and ab initio results. The obtained vibrational frequencies compare fairly well with the available experimental data.

  8. Outer-core emission spectra of heavy alkali metals

    NASA Astrophysics Data System (ADS)

    Fink, R. L.; First, P. N.; Flynn, C. P.

    1988-09-01

    We report np5(n+1)s2-->np6(n+1)s emission spectra of K (n=3), Rb (n=4), and Cs (n=5), and compare emission-band characteristics through the series Na-Cs using earlier data for Na. The normalized band profiles of the different alkali metals are remarkably similar when scaled by the Fermi energy EF. However, the spin-orbit partner intensity ratios are far from the ideal value 2, reaching approximately 60 for Rb and above 65 for Cs, mainly owing to Coster-Kronig decays from higher levels. We confirm that the Mahan-Nozières-De Dominicis ``anomaly'' at EF is generally weaker in emission than in absorption. It decreases through the series to become undetectable for emission from Cs. A systematic increase of the core-hole-lifetime width occurs through the column of alkali metals from a reported estimate of 10 meV for Na to a value of 50 meV for Cs. A study of the Fermi-edge shape between 20 and 300 K reveals temperature-dependent phonon broadening in generally good agreement with theoretical predictions. Incomplete relaxation plays only a minor role in the edge processes of the heavy alkali metals. Additional Fermi-edge broadening and the shifted emission edges of surface atoms are observed for alkali-metal films 10-100 Å thick.

  9. New Science With SIM Lite: Introduction to the SIM Science Studies

    NASA Astrophysics Data System (ADS)

    Unwin, Stephen C.

    2009-01-01

    The Space Interferometry Mission Lite (SIM Lite) will be the first optical interferometer in space designed for precision astrometry to 4 microarcseconds, on targets as faint as V=19. This flexibly-scheduled instrument will tackle a range of problems in modern astrophysics. In 2008, the SIM Lite Project and the NASA Exoplanet Science Institute (NExScI) solicited proposals for an opportunity entitled "SIM Science Studies". A total of 19 SIM Lite study projects were selected by an independent review panel. This paper is an introduction to the broad range of science topics represented by the studies. The purpose of the Studies is to enhance the science return from SIM Lite by supporting researchers to conduct concept studies that will lead to the most scientifically productive observations. The scope included all areas of astrophysics that are enabled by precision astrometry - including, modeling of dynamical or physical processes to be studied with SIM, the selection of suitable targets, assessment of instrument performance, and design of observing sequences to take best advantage of SIM Lite's flexible scheduling. These studies will stimulate new groups of researchers from our astronomy community to prepare the groundwork for the most effective use of SIM observing time in the future. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  10. Solid-phase epitaxy of silicon amorphized by implantation of the alkali elements rubidium and cesium

    SciTech Connect

    Maier, R.; Haeublein, V.; Ryssel, H.; Voellm, H.; Feili, D.; Seidel, H.; Frey, L.

    2012-11-06

    The redistribution of implanted Rb and Cs profiles in amorphous silicon during solid-phase epitaxial recrystallization has been investigated by Rutherford backscattering spectroscopy and secondary ion mass spectroscopy. For the implantation dose used in these experiments, the alkali atoms segregate at the a-Si/c-Si interface during annealing resulting in concentration peaks near the interface. In this way, the alkali atoms are moved towards the surface. Rutherford backscattering spectroscopy in ion channeling configuration was performed to measure average recrystallization rates of the amorphous silicon layers. Preliminary studies on the influence of the alkali atoms on the solid-phase epitaxial regrowth rate reveal a strong retardation compared to the intrinsic recrystallization rate.

  11. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    DOEpatents

    Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  12. Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides

    DOEpatents

    Gordon, John Howard; Alvare, Javier

    2016-10-25

    Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte solution and may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.

  13. Stellar and Galactic Astrophysics with SIM

    NASA Astrophysics Data System (ADS)

    Gould, A.

    2001-05-01

    SIM will revolutionize stellar and Galactic astrophysics by tackling new questions that could never previously be addressed and making order of magnitude improvements in key parameters. SIM will measure R0 and Theta0 to <2 will enable precise measurements of the Milky Way mass and rotation curve. It will probe the Galactic 3-D mass distribution by 2 independent methods. By calibrating the RR Lyrae MV-[Fe/H] relation as well as obtaining direct distances to clusters and halo field objects, SIM will precisely date halo and globular-cluster formation as a function of metallicity. SIM will obtain 1 measurements for 200 stars of all types ranging from brown dwarfs (BD) to O stars from a broad range of metallicities, including both binaries and single stars, and it will yield precision measurements of white dwarf (WD) and black hole (BH) remnants as well. SIM microlensing will take an unbiased census of all objects in the Galactic bulge, both dark (BD WD NS BH) and luminous, and will resolve the nature of the dark-halo (MACHO) candidates currently being detected toward the LMC.

  14. Automated SIMS Isotopic Analysis Of Small Dust Particles

    NASA Astrophysics Data System (ADS)

    Nittler, L.; Alexander, C.; Gyngard, F.; Morgand, A.; Zinner, E. K.

    2009-12-01

    The isotopic compositions of sub-μm to μm sized dust grains are of increasing interest in cosmochemistry, nuclear forensics and terrestrial aerosol research. Because of its high sensitivity and spatial resolution, Secondary Ion Mass Spectrometry (SIMS) is the tool of choice for measuring isotopes in such small samples. Indeed, SIMS has enabled an entirely new sub-field of astronomy: presolar grains in meteorites. In recent years, the development of the Cameca NanoSIMS ion probe has extended the reach of isotopic measurements to particles as small as 100 nm in diameter, a regime where isotopic precision is strongly limited by the total number of atoms in the sample. Many applications require obtaining isotopic data on large numbers of particles, necessitating the development of automated techniques. One such method is isotopic imaging, wherein images of multiple isotopes are acquired, each containing multiple dispersed particles, and image processing is used to determine isotopic ratios for individual particles. This method is powerful, but relatively inefficient for raster-based imaging on the NanoSIMS. Modern computerized control of instrumentation has allowed for another approach, analogous to commercial automated SEM-EDS particle analysis systems, in which images are used solely to locate particles followed by fully automated grain-by-grain analysis. The first such system was developed on the Carnegie Institution’s Cameca ims-6f, and was used to generate large databases of presolar grains. We have recently developed a similar system for the NanoSIMS, whose high sensitivity allows for smaller grains to be analyzed with less sample consumption than is possible with the 6f system. The 6f and NanoSIMS systems are functionally identical: an image of dispersed grains is obtained with sufficient statistical precision for an algorithm to identify the positions of individual particles, the primary ion beam is deflected to each particle in turn and rastered in a small

  15. Electrical Resistivity of Alkali Elements.

    DTIC Science & Technology

    1976-01-01

    rubidium, cesium, and francium ) and contains recommended reference values (or provisional or typical values). The compiled data include all the...and information on the electrical resistivity of alkali elements (lithium, sodium, potassium, rubidium, cesium, and francium ) and contains...107Ic. Magnetic Flux Density Dependence o.. .. ... .... 112 4.6. Francium ..........................115j a. Temperature Dependence

  16. Discovery of Planetary Systems With SIM

    NASA Technical Reports Server (NTRS)

    Marcy, Geoffrey W.; Butler, Paul R.; Frink, Sabine; Fischer, Debra; Oppenheimer, Ben; Monet, David G.; Quirrenbach, Andreas; Scargle, Jeffrey D.

    2004-01-01

    We are witnessing the birth of a new observational science: the discovery and characterization of extrasolar planetary systems. In the past five years, over 70 extrasolar planets have been discovered by precision Doppler surveys, most by members of this SIM team. We are using the data base of information gleaned from our Doppler survey to choose the best targets for a new SIN planet search. In the same way that our Doppler database now serves SIM, our team will return a reconnaissance database to focus Terrestrial Planet Finder (TPF) into a more productive, efficient mission.

  17. Plasma formation in diode pumped alkali lasers sustained in Cs

    NASA Astrophysics Data System (ADS)

    Markosyan, Aram H.; Kushner, Mark J.

    2016-11-01

    In diode pumped alkali lasers (DPALs), lasing action occurs on the resonant lines of alkali atoms following pumping by broadband semiconductor lasers. The goal is to convert the efficient but usually poor optical quality of inexpensive diode lasers into the high optical quality of atomic vapor lasers. Resonant excitation of alkali vapor leads to plasma formation through the excitation transfer from the 2P states to upper lying states, which then are photoionized by the pump and intracavity radiation. A first principles global model was developed to investigate the operation of the He/Cs DPAL system and the consequences of plasma formation on the efficiency of the laser. Over a range of pump powers, cell temperatures, excitation frequency, and mole fraction of the collision mixing agent (N2 or C2H6), we found that sufficient plasma formation can occur that the Cs vapor is depleted. Although N2 is not a favored collisional mixing agent due to large rates of quenching of the 2P states, we found a range of pump parameters where laser oscillation may occur. The poor performance of N2 buffered systems may be explained in part by plasma formation. We found that during the operation of the DPAL system with N2 as the collisional mixing agent, plasma formation is in excess of 1014-1015 cm-3, which can degrade laser output intensity by both depletion of the neutral vapor and electron collisional mixing of the laser levels.

  18. NanoSIMS and more: New tools in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Hoppe, P.

    2016-01-01

    Primitive Solar System materials contain nm- to μm-sized presolar grains that formed in the winds of evolved stars and in the ejecta of stellar explosions. These samples of stardust can be analysed in terrestrial laboratories with sophisticated analytical instrumentation in great detail. Of particular importance are coordinated studies of individual grains by Secondary Ion Mass Spectrometry (SIMS), Resonance Ionization Mass Spectrometry (RIMS) and Focused Ion Beam/Transmission Electron Microscopy (FIB/TEM) from which detailed information on isotopic compositions and mineralogies can be obtained. A key tool is the NanoSIMS 50 ion probe which permits to do isotope measurements of light and many intermediate-mass elements with spatial resolutions of <100 nm. A new type of RIMS instrument, “CHILI”, is currently under construction and is aimed to provide <100 nm resolution for isotope studies of intermediate-mass and heavy elements. Another promising analysis technique for future studies is Atom Probe Tomography (APT) which might be useful to create 3D-elemental and isotopic maps of presolar grains at the nanometer scale.

  19. Multilayer silicon rich oxy-nitride films characterization by SIMS, VASE and AFM

    NASA Astrophysics Data System (ADS)

    Barozzi, M.; Vanzetti, L.; Iacob, E.; Bersani, M.; Anderle, M.; Pucker, G.; Kompocholis, C.; Ghulinyan, M.; Bellutti, P.

    2008-03-01

    In this work secondary ion mass spectrometry (SIMS), variable angle spectroscopy ellipsometry (VASE) and atomic force microscopy (AFM) are used to investigate the structure, composition and morphology of multilayer SRON films. Three/four SRON sequential layers were deposited on silicon wafers by PECVD and silicon, nitrogen and oxygen content was varied by changing the N2O/SiH4 ratio. The total thickness of the resulting SRON stack is about 50nm. SIMS analyses of NCs+, OCs+, SiCs+, in MCs+ methodology are performed by a Cameca SC-ultra instrument. Depth profiles are obtained at 500eV of primary beam impact energy with sample rotation. An approximate method to obtain silicon concentration is used. Total layer thickness are obtained from both SIMS and VASE measurements. In addition, we compare the thickness of the single layers obtained from VASE with the SIMS depth profiles. A detailed analysis of films morphology is obtained by AFM. The SRON stack is sputtered by SIMS until a certain layer is exposed, which is then analyzed by AFM. The sputtered layers are then etched in HF solution to better resolve the exposed nano-crystals.

  20. 40K-40Ca and 87Rb-86Sr Dating by SIMS: The Double-Plus Advantage

    NASA Astrophysics Data System (ADS)

    Harrison, T. M.; McKeegan, K. D.; Schmitt, A. K.

    2009-12-01

    retentivity of 40Ca* relative to 40Ar* in white micas. This approach offers the potential to develop a branched-decay thermochronometer (K-Ca-Ar) permitting simultaneous solution of temperature-time history from μm-scale isotopic variations. A further advantage is that even low resolution SIMS instruments (e.g., ims7f) can utilize the double-plus method. Initial investigations using the same double-plus approach for Rb-Sr dating show promise. While resolving 87Rb+ from 87Sr+ requires an MRP of ~290k, unattainable using any current SIMS instrument, 87Rb++ is so strongly suppressed that determination of 87Sr++ is possible with minor peak stripping. 87Rb/86Sr can be determined either from 85Rb+/88Sr+ at MRP≈ 8k or by the use of energy filtering. In addition to micas, these approaches may be applicable to any mineral systems enriched in alkali metals relative to alkaline earths, such as alkali feldspars, feldspathoids, and alkaline halides.

  1. Atomic magnetometer

    DOEpatents

    Schwindt, Peter [Albuquerque, NM; Johnson, Cort N [Albuquerque, NM

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  2. Caesium sputter ion source compatible with commercial SIMS instruments.

    SciTech Connect

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.; Materials Science Division; Univ. Warwick; Ioffe Physical-Technical Inst.; Ghent Univ.; Univ. Antwerp

    2006-01-01

    A simple design for a caesium sputter cluster ion source compatible with commercially available secondary ion mass spectrometers is reported. This source has been tested with the Cameca IMS 4f instrument using the cluster Si{sub n}{sup -} and Cu{sub n}{sup -} ions, and will shortly be retrofitted to the floating low energy ion gun (FLIG) of the type used on the Cameca 4500/4550 quadruple instruments. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of analytical capabilities of the SIMS instrument due to the non-additive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ions with the same impact energy.

  3. Sub-Shot-Noise Magnetometry with a Correlated Spin-Relaxation Dominated Alkali-Metal Vapor

    SciTech Connect

    Kominis, I. K.

    2008-02-22

    Spin noise sets fundamental limits to the precision of measurements using spin-polarized atomic vapors, such as performed with sensitive atomic magnetometers. Spin squeezing offers the possibility to extend the measurement precision beyond the standard quantum limit of uncorrelated atoms. Contrary to current understanding, we show that, even in the presence of spin relaxation, spin squeezing can lead to a significant reduction of spin noise, and hence an increase in magnetometric sensitivity, for a long measurement time. This is the case when correlated spin relaxation due to binary alkali-atom collisions dominates independently acting decoherence processes, a situation realized in thermal high atom-density magnetometers and clocks.

  4. Design data brochure: SIMS prototype system 2

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Information is provided on the design and performance of the IBM SIMS Prototype System 2, solar domestic hot water system, for single family residences. The document provides sufficient data to permit procurement, installation, operation, and maintenance by qualified architectural engineers or contractors.

  5. SIM-PlanetQuest: progress report

    NASA Astrophysics Data System (ADS)

    Marr, James C., IV

    2006-06-01

    SIM-PlanetQuest is a NASA astrophysics mission that is implementing the National Research Counsel's recommended Astrometric Interferometry Mission (AIM) to develop the first, in-space, optical, long-baseline Michelson Stellar Interferometer for performing micro-arcsecond-level astrometry. This level of astrometric precision will enable characterization of planetary systems around nearby stars and enable a number of key investigations in astrophysics including calibration of the cosmological distance scale, stellar and galactic structure and evolution, and dark matter/energy distribution. This paper provides an update on the SIM-PlanetQuest Mission covering the results of the 2005 mission redesign and the recent completion of the last in a series of technology "gates." The SIM-PlanetQuest mission redesign was directed by NASA to recover eroded mass and power margins and to meet specific implementation cost targets. The resulting mission redesign met all redesign objectives with minimal impact to mission science performance. This paper provides the mission redesign objectives and describes the resulting mission and system design including changes in science capability. SIM-PlanetQuest also completed the last of eight major technology development gates that were established in 2001 by NASA, completing the enabling technology development. The technology development program, the last gate, and its significance to the project's flight verification and validation (V&V) approach are briefly described (covered in more detail in a separate paper at this conference). An update on project programmatic status and plans is also provided.

  6. Chemical Imaging of the Cell Membrane by NanoSIMS

    SciTech Connect

    Weber, P K; Kraft, M L; Frisz, J F; Carpenter, K J; Hutcheon, I D

    2010-02-23

    The existence of lipid microdomains and their role in cell membrane organization are currently topics of great interest and controversy. The cell membrane is composed of a lipid bilayer with embedded proteins that can flow along the two-dimensional surface defined by the membrane. Microdomains, known as lipid rafts, are believed to play a central role in organizing this fluid system, enabling the cell membrane to carry out essential cellular processes, including protein recruitment and signal transduction. Lipid rafts are also implicated in cell invasion by pathogens, as in the case of the HIV. Therefore, understanding the role of lipid rafts in cell membrane organization not only has broad scientific implications, but also has practical implications for medical therapies. One of the major limitations on lipid organization research has been the inability to directly analyze lipid composition without introducing artifacts and at the relevant length-scales of tens to hundreds of nanometers. Fluorescence microscopy is widely used due to its sensitivity and specificity to the labeled species, but only the labeled components can be observed, fluorophores can alter the behavior of the lipids they label, and the length scales relevant to imaging cell membrane domains are between that probed by fluorescence resonance energy transfer (FRET) imaging (<10 nm) and the diffraction limit of light. Topographical features can be imaged on this length scale by atomic force microscopy (AFM), but the chemical composition of the observed structures cannot be determined. Immuno-labeling can be used to study the distribution of membrane proteins at high resolution, but not lipid composition. We are using imaging mass spectrometry by secondary ion mass spectrometry (SIMS) in concert with other high resolution imaging methods to overcome these limitations. The experimental approach of this project is to combine molecule-specific stable isotope labeling with high-resolution SIMS using a

  7. siMS Score: Simple Method for Quantifying Metabolic Syndrome

    PubMed Central

    Soldatovic, Ivan; Vukovic, Rade; Culafic, Djordje; Gajic, Milan; Dimitrijevic-Sreckovic, Vesna

    2016-01-01

    Objective To evaluate siMS score and siMS risk score, novel continuous metabolic syndrome scores as methods for quantification of metabolic status and risk. Materials and Methods Developed siMS score was calculated using formula: siMS score = 2*Waist/Height + Gly/5.6 + Tg/1.7 + TAsystolic/130—HDL/1.02 or 1.28 (for male or female subjects, respectively). siMS risk score was calculated using formula: siMS risk score = siMS score * age/45 or 50 (for male or female subjects, respectively) * family history of cardio/cerebro-vascular events (event = 1.2, no event = 1). A sample of 528 obese and non-obese participants was used to validate siMS score and siMS risk score. Scores calculated as sum of z-scores (each component of metabolic syndrome regressed with age and gender) and sum of scores derived from principal component analysis (PCA) were used for evaluation of siMS score. Variants were made by replacing glucose with HOMA in calculations. Framingham score was used for evaluation of siMS risk score. Results Correlation between siMS score with sum of z-scores and weighted sum of factors of PCA was high (r = 0.866 and r = 0.822, respectively). Correlation between siMS risk score and log transformed Framingham score was medium to high for age groups 18+,30+ and 35+ (0.835, 0.707 and 0.667, respectively). Conclusions siMS score and siMS risk score showed high correlation with more complex scores. Demonstrated accuracy together with superior simplicity and the ability to evaluate and follow-up individual patients makes siMS and siMS risk scores very convenient for use in clinical practice and research as well. PMID:26745635

  8. Alkali metal/sulfur battery

    DOEpatents

    Anand, Joginder N.

    1978-01-01

    Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

  9. Alkali metal cation-hexacyclen complexes: effects of alkali metal cation size on the structure and binding energy.

    PubMed

    Austin, C A; Rodgers, M T

    2014-07-24

    Threshold collision-induced dissociation (CID) of alkali metal cation-hexacyclen (ha18C6) complexes, M(+)(ha18C6), with xenon is studied using guided ion beam tandem mass spectrometry techniques. The alkali metal cations examined here include: Na(+), K(+), Rb(+), and Cs(+). In all cases, M(+) is the only product observed, corresponding to endothermic loss of the intact ha18C6 ligand. The cross-section thresholds are analyzed to extract zero and 298 K M(+)-ha18C6 bond dissociation energies (BDEs) after properly accounting for the effects of multiple M(+)(ha18C6)-Xe collisions, the kinetic and internal energy distributions of the M(+)(ha18C6) and Xe reactants, and the lifetimes for dissociation of the activated M(+)(ha18C6) complexes. Ab initio and density functional theory calculations are used to determine the structures of ha18C6 and the M(+)(ha18C6) complexes, provide molecular constants necessary for the thermodynamic analysis of the energy-resolved CID data, and theoretical estimates for the M(+)-ha18C6 BDEs. Calculations using a polarizable continuum model are also performed to examine solvent effects on the binding. In the absence of solvent, the M(+)-ha18C6 BDEs decrease as the size of the alkali metal cation increases, consistent with the noncovalent nature of the binding in these complexes. However, in the presence of solvent, the ha18C6 ligand exhibits selectivity for K(+) over the other alkali metal cations. The M(+)(ha18C6) structures and BDEs are compared to those previously reported for the analogous M(+)(18-crown-6) and M(+)(cyclen) complexes to examine the effects of the nature of the donor atom (N versus O) and the number donor atoms (six vs four) on the nature and strength of binding.

  10. 420nm alkali blue laser based on two-photon absorption

    NASA Astrophysics Data System (ADS)

    Tan, Yan-nan; Li, Yi-min; Liu, Tong; Gong, Fa-quan; Jia, Chun-yan; Hu, Shu; Gai, Bao-dong; Guo, Jing-wei; Liu, Wan-fa

    2015-02-01

    Based on two-photon absorption, a 420nm blue laser of alkali Rb vapor was demonstrated, and a dye laser was used as the pumping laser. Utilizing the energy level structure of Rb atom, lasering mechanism and two-photon absorption process are analyzed. Absorbing two 778.1nm photons, Rb atoms were excited from 52 S1/2 to 52 D5/2, then relaxed to 62 P3/2 with mid infrared photon radiation. 420nm blue laser was achieved by the transition 62 P3/2-->52 S1/2. To improve efficiency of the blue laser, two-photon resonant excitation pumped alkali vapor blue lasers are proposed, which will be good beam quality, high efficiency and scalable blue lasers. The development of diode pumped alkali vapor blue laser is expected.

  11. Elliptical polarization of near-resonant linearly polarized probe light in optically pumped alkali metal vapor

    NASA Astrophysics Data System (ADS)

    Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui

    2017-02-01

    Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements.

  12. Elliptical polarization of near-resonant linearly polarized probe light in optically pumped alkali metal vapor

    PubMed Central

    Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui

    2017-01-01

    Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements. PMID:28216649

  13. Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability.

    PubMed

    Knappe, S; Gerginov, V; Schwindt, P D D; Shah, V; Robinson, H G; Hollberg, L; Kitching, J

    2005-09-15

    A novel technique for microfabricating alkali atom vapor cells is described in which alkali atoms are evaporated into a micromachined cell cavity through a glass nozzle. A cell of interior volume 1 mm3, containing 87Rb and a buffer gas, was made in this way and integrated into an atomic clock based on coherent population trapping. A fractional frequency instability of 6 x 10(-12) at 1000 s of integration was measured. The long-term drift of the F=1, mF=0-->F=2, mF=0 hyperfine frequency of atoms in these cells is below 5 x 10(-11)/day.

  14. Simulation of oxide sputtering and SIMS depth profiling of delta-doped layer

    NASA Astrophysics Data System (ADS)

    Yamamura, Y.; Ishida, M.

    2003-01-01

    Using the dynamic Monte Carlo code, ACAT-DIFFUSE, the oxide sputtering and the SIMS depth profiling of a multilayered thin film sample was investigated. The ACAT-DIFFUSE code is based on the binary collision approximation, taking into account the generation of interstitial atoms and vacancies, annihilation of vacancies, diffusion and the relaxation of target materials according to the packing condition which include not only beam and target particles but also defects (interstitial atoms and vacancies). The observed shift of the delta layer peak to the surface in SIMS depth profiles can be reproduced by the ACAT-DIFFUSE simulation. It is found that this peak shift is mainly due to the relaxation or expansion caused by defects produced behind the delta layer, not due to preferential sputtering.

  15. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  16. Regenerable activated bauxite adsorbent alkali monitor probe

    SciTech Connect

    Lee, S.H.D.

    1991-01-22

    This invention relates to a regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor 5 concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC 10 exhaust gases.

  17. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  18. Note: An ion source for alkali metal implantation beneath graphene and hexagonal boron nitride monolayers on transition metals

    SciTech Connect

    Lima, L. H. de; Cun, H. Y.; Hemmi, A.; Kälin, T.; Greber, T.

    2013-12-15

    The construction of an alkali-metal ion source is presented. It allows the acceleration of rubidium ions to an energy that enables the penetration through monolayers of graphene and hexagonal boron nitride. Rb atoms are sublimated from an alkali-metal dispenser. The ionization is obtained by surface ionization and desorption from a hot high work function surface. The ion current is easily controlled by the temperature of ionizer. Scanning Tunneling Microscopy measurements confirm ion implantation.

  19. FoilSim: Basic Aerodynamics Software Created

    NASA Technical Reports Server (NTRS)

    Peterson, Ruth A.

    1999-01-01

    FoilSim is interactive software that simulates the airflow around various shapes of airfoils. The graphical user interface, which looks more like a video game than a learning tool, captures and holds the students interest. The software is a product of NASA Lewis Research Center s Learning Technologies Project, an educational outreach initiative within the High Performance Computing and Communications Program (HPCCP).This airfoil view panel is a simulated view of a wing being tested in a wind tunnel. As students create new wing shapes by moving slider controls that change parameters, the software calculates their lift. FoilSim also displays plots of pressure or airspeed above and below the airfoil surface.

  20. Water Content of Lunar Alkali Fedlspar

    NASA Technical Reports Server (NTRS)

    Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

    2016-01-01

    Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of < 1 ppm in urKREEP. Using these data, predict that the bulk water content of the magma ocean would have <10 ppm. In contrast, estimate water contents of 320 ppm for the bulk Moon and 1.4 wt % for urKREEP from plagioclase in ferroan anorthosites. Results and interpretation: NanoSIMS data from granitic clasts from Apollo sample 15405,78 show that alkali feldspar, a common mineral in K-enriched rocks, can have approx. 20 ppm of water, which implies magmatic water contents of approx. 1 wt % in the high-silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was

  1. High resolution isotopic analysis of U-bearing particles via fusion of SIMS and EDS images

    SciTech Connect

    Tarolli, Jay G.; Naes, Benjamin E.; Garcia, Benjamin J.; Fischer, Ashley E.; Willingham, David

    2016-01-01

    Image fusion of secondary ion mass spectrometry (SIMS) images and X-ray elemental maps from energy-dispersive spectroscopy (EDS) was performed to facilitate the isolation and re-analysis of isotopically unique U-bearing particles where the highest precision SIMS measurements are required. Image registration, image fusion and particle micromanipulation were performed on a subset of SIMS images obtained from a large area pre-screen of a particle distribution from a sample containing several certified reference materials (CRM) U129A, U015, U150, U500 and U850, as well as a standard reference material (SRM) 8704 (Buffalo River Sediment) to simulate particles collected on swipes during routine inspections of declared uranium enrichment facilities by the International Atomic Energy Agency (IAEA). In total, fourteen particles, ranging in size from 5 – 15 µm, were isolated and re-analyzed by SIMS in multi-collector mode identifying nine particles of CRM U129A, one of U150, one of U500 and three of U850. These identifications were made within a few percent errors from the National Institute of Standards and Technology (NIST) certified atom percent values for 234U, 235U and 238U for the corresponding CRMs. This work represents the first use of image fusion to enhance the accuracy and precision of isotope ratio measurements for isotopically unique U-bearing particles for nuclear safeguards applications. Implementation of image fusion is essential for the identification of particles of interests that fall below the spatial resolution of the SIMS images.

  2. Alkali Metal Variation and Twisting of the FeNNFe Core in Bridging Diiron Dinitrogen Complexes.

    PubMed

    McWilliams, Sean F; Rodgers, Kenton R; Lukat-Rodgers, Gudrun; Mercado, Brandon Q; Grubel, Katarzyna; Holland, Patrick L

    2016-03-21

    Alkali metal cations can interact with Fe-N2 complexes, potentially enhancing back-bonding or influencing the geometry of the iron atom. These influences are relevant to large-scale N2 reduction by iron, such as in the FeMoco of nitrogenase and the alkali-promoted Haber-Bosch process. However, to our knowledge there have been no systematic studies of a large range of alkali metals regarding their influence on transition metal-dinitrogen complexes. In this work, we varied the alkali metal in [alkali cation]2[LFeNNFeL] complexes (L = bulky β-diketiminate ligand) through the size range from Na(+) to K(+), Rb(+), and Cs(+). The FeNNFe cores have similar Fe-N and N-N distances and N-N stretching frequencies despite the drastic change in alkali metal cation size. The two diketiminates twist relative to one another, with larger dihedral angles accommodating the larger cations. In order to explain why the twisting has so little influence on the core, we performed density functional theory calculations on a simplified LFeNNFeL model, which show that the two metals surprisingly do not compete for back-bonding to the same π* orbital of N2, even when the ligand planes are parallel. This diiron system can tolerate distortion of the ligand planes through compensating orbital energy changes, and thus, a range of ligand orientations can give very similar energies.

  3. Design strategies for development of SCR catalyst: improvement of alkali poisoning resistance and novel regeneration method.

    PubMed

    Peng, Yue; Li, Junhua; Shi, Wenbo; Xu, Jiayu; Hao, Jiming

    2012-11-20

    Based on the ideas of the additives modification and regeneration method update, two different strategies were designed to deal with the traditional SCR catalyst poisoned by alkali metals. First, ceria doping on the V(2)O(5)-WO(3)/TiO(2) catalyst could promote the SCR performance even reducing the V loading, which resulted in the enhancement of the catalyst's alkali poisoning resistance. Then, a novel method, electrophoresis treatment, was employed to regenerate the alkali poisoned V(2)O(5)-WO(3)/TiO(2) catalyst. This novel technique could dramatically enhance the SCR activities of the alkali poisoned catalysts by removing approximately 95% K or Na ions from the catalyst and showed less hazardous to the environment. Finally, the deactivation mechanisms by the alkali metals were extensively studied by employing both the experimental and DFT theoretical approaches. Alkali atom mainly influences the active site V species rather than W oxides. The decrease of catalyst surface acidity might directly reduce the catalytic activity, while the reducibility of catalysts could be another important factor.

  4. Alkali Metal Variation and Twisting of the FeNNFe Core in Bridging Diiron Dinitrogen Complexes

    PubMed Central

    2016-01-01

    Alkali metal cations can interact with Fe–N2 complexes, potentially enhancing back-bonding or influencing the geometry of the iron atom. These influences are relevant to large-scale N2 reduction by iron, such as in the FeMoco of nitrogenase and the alkali-promoted Haber–Bosch process. However, to our knowledge there have been no systematic studies of a large range of alkali metals regarding their influence on transition metal–dinitrogen complexes. In this work, we varied the alkali metal in [alkali cation]2[LFeNNFeL] complexes (L = bulky β-diketiminate ligand) through the size range from Na+ to K+, Rb+, and Cs+. The FeNNFe cores have similar Fe–N and N–N distances and N–N stretching frequencies despite the drastic change in alkali metal cation size. The two diketiminates twist relative to one another, with larger dihedral angles accommodating the larger cations. In order to explain why the twisting has so little influence on the core, we performed density functional theory calculations on a simplified LFeNNFeL model, which show that the two metals surprisingly do not compete for back-bonding to the same π* orbital of N2, even when the ligand planes are parallel. This diiron system can tolerate distortion of the ligand planes through compensating orbital energy changes, and thus, a range of ligand orientations can give very similar energies. PMID:26925968

  5. SIMS analysis: Development and evaluation program summary

    SciTech Connect

    Groenewold, G.S.; Appelhans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1996-11-01

    This report provides an overview of the ``SIMS Analysis: Development and Evaluation Program``, which was executed at the Idaho National Engineering Laboratory from mid-FY-92 to the end of FY-96. It should be noted that prior to FY-1994 the name of the program was ``In-Situ SIMS Analysis``. This report will not go into exhaustive detail regarding program accomplishments, because this information is contained in annual reports which are referenced herein. In summary, the program resulted in the design and construction of an ion trap secondary ion mass spectrometer (IT-SIMS), which is capable of the rapid analysis of environmental samples for adsorbed surface contaminants. This instrument achieves efficient secondary ion desorption by use of a molecular, massive ReO{sub 4}{sup {minus}} primary ion particle. The instrument manages surface charge buildup using a self-discharging principle, which is compatible with the pulsed nature of the ion trap. The instrument can achieve high selectivity and sensitivity using its selective ion storage and MS/MS capability. The instrument was used for detection of tri-n-butyl phosphate, salt cake (tank cake) characterization, and toxic metal speciation studies (specifically mercury). Technology transfer was also an important component of this program. The approach that was taken toward technology transfer was that of component transfer. This resulted in transfer of data acquisition and instrument control software in FY-94, and ongoing efforts to transfer primary ion gun and detector technology to other manufacturers.

  6. Topochemical Analysis of Cell Wall Components by TOF-SIMS.

    PubMed

    Aoki, Dan; Fukushima, Kazuhiko

    2017-01-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a recently developing analytical tool and a type of imaging mass spectrometry. TOF-SIMS provides mass spectral information with a lateral resolution on the order of submicrons, with widespread applicability. Sometimes, it is described as a surface analysis method without the requirement for sample pretreatment; however, several points need to be taken into account for the complete utilization of the capabilities of TOF-SIMS. In this chapter, we introduce methods for TOF-SIMS sample treatments, as well as basic knowledge of wood samples TOF-SIMS spectral and image data analysis.

  7. Phonon spectra of alkali metals

    NASA Astrophysics Data System (ADS)

    Zeković, S.; Vukajlović, F.; Veljković, V.

    1982-10-01

    In this work we used a simple local model pseudopotential which includes screening for the phonon spectra calculations of alkali metals. The results obtained are in very good agreement with experimental data. In some branches of phonon spectra the differences between theoretical and experimental results are within 1-2%, while the maximum error is about 6%. The suggested form of the pseudopotential allows us to describe the phonon spectra of Na, K and Rb with only one, and, at the same time, a unique, parameter. In this case, the maximum disagreements from experiment are 9% for Na, 8% for K and 7% for Rb.

  8. Bioinorganic Chemistry of the Alkali Metal Ions.

    PubMed

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced.

  9. Implications of SU(2)_L x U(1) Symmetry for SIM(2) Invariant Neutrino Masses

    SciTech Connect

    Alan Dunn; Thomas Mehen

    2006-10-16

    We consider SU(2){sub L} x U(1) gauge invariant generalizations of a nonlocal, Lorentz violating mass term for neutrinos that preserves a SIM(2) subgroup. This induces Lorentz violating effects in QED as well as tree-level lepton family number violating interactions. Measurements of g{sub e} - 2 with trapped electrons severely constrain possible SIM(2) mass terms for electrons which violate C invariance. We study Lorentz violating effects in a C invariant and SIM(2) invariant extension of QED. We examine the Lorentz violating interactions of nonrelativistic electrons with electromagnetic fields to determine their impact on the spectroscopy of hydrogen-like atoms and g{sub e} - 2 measurements with trapped electrons. Generically, Lorentz violating corrections are suppressed by m{sub v}{sup 2}/m{sub e}{sup 2} and are within experimental limits. We study one-loop corrections to electron and photon self-energies and point out the need for a prescription to handle IR divergences induced by the nonlocality of the theory. We also calculate the tree level contribution to {mu} {yields} e + {gamma} from SIM(2) invariant mass terms.

  10. Process for the disposal of alkali metals

    DOEpatents

    Lewis, Leroy C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.

  11. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  12. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  13. Rim Sim: A Role-Play Simulation

    USGS Publications Warehouse

    Barrett, Robert C.; Frew, Suzanne L.; Howell, David G.; Karl, Herman A.; Rudin, Emily B.

    2003-01-01

    Rim Sim is a 6-hour, eight-party negotiation that focuses on creating a framework for the long-term disaster-recovery efforts. It involves a range of players from five countries affected by two natural disasters: a typhoon about a year ago and an earthquake about 6 months ago. The players are members of an International Disaster Working Group (IDWG) that has been created by an international commission. The IDWG has been charged with drawing up a framework for managing two issues: the reconstruction of regionally significant infrastructure and the design of a mechanism for allocating funding to each country for reconstruction of local infrastructure and ongoing humanitarian needs. The first issue will involve making choices among five options (two harbor options, two airport options, and one rail-line option), each of which will have three levels at which to rebuild. The second issue will involve five starting-point options. Participants are encouraged to invent other options for both issues. The goal of Rim Sim is to raise questions about traditional approaches to disaster-preparedness planning and reconstruction efforts in an international setting, in this case the Pacific Rim. Players must confront the reverberating effects of disasters and the problems of using science and technical information in decisionmaking, and are introduced to a consensus-building approach emphasizing face-to-face dialog and multinational cooperation in dealing with humanitarian concerns, as well as long-term efforts to reconstruct local and regional infrastructure. The Rim Sim simulation raises four key points: ripple effects of disasters, role of science, multiparty negotiation, and building personal relationships.

  14. QuakeSim 2.0

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Parker, Jay W.; Lyzenga, Gregory A.; Granat, Robert A.; Norton, Charles D.; Rundle, John B.; Pierce, Marlon E.; Fox, Geoffrey C.; McLeod, Dennis; Ludwig, Lisa Grant

    2012-01-01

    QuakeSim 2.0 improves understanding of earthquake processes by providing modeling tools and integrating model applications and various heterogeneous data sources within a Web services environment. QuakeSim is a multisource, synergistic, data-intensive environment for modeling the behavior of earthquake faults individually, and as part of complex interacting systems. Remotely sensed geodetic data products may be explored, compared with faults and landscape features, mined by pattern analysis applications, and integrated with models and pattern analysis applications in a rich Web-based and visualization environment. Integration of heterogeneous data products with pattern informatics tools enables efficient development of models. Federated database components and visualization tools allow rapid exploration of large datasets, while pattern informatics enables identification of subtle, but important, features in large data sets. QuakeSim is valuable for earthquake investigations and modeling in its current state, and also serves as a prototype and nucleus for broader systems under development. The framework provides access to physics-based simulation tools that model the earthquake cycle and related crustal deformation. Spaceborne GPS and Inter ferometric Synthetic Aperture (InSAR) data provide information on near-term crustal deformation, while paleoseismic geologic data provide longerterm information on earthquake fault processes. These data sources are integrated into QuakeSim's QuakeTables database system, and are accessible by users or various model applications. UAVSAR repeat pass interferometry data products are added to the QuakeTables database, and are available through a browseable map interface or Representational State Transfer (REST) interfaces. Model applications can retrieve data from Quake Tables, or from third-party GPS velocity data services; alternatively, users can manually input parameters into the models. Pattern analysis of GPS and seismicity data

  15. Peptide Fragmentation and Surface Structural Analysis by Means of ToF-SIMS Using Large Cluster Ion Sources.

    PubMed

    Yokoyama, Yuta; Aoyagi, Satoka; Fujii, Makiko; Matsuo, Jiro; Fletcher, John S; Lockyer, Nicholas P; Vickerman, John C; Passarelli, Melissa K; Havelund, Rasmus; Seah, Martin P

    2016-04-05

    Peptide or protein structural analysis is crucial for the evaluation of biochips and biodevices, therefore an analytical technique with the ability to detect and identify protein and peptide species directly from surfaces with high lateral resolution is required. In this report, the efficacy of ToF-SIMS to analyze and identify proteins directly from surfaces is evaluated. Although the physics governing the SIMS bombardment process precludes the ability for researchers to detect intact protein or larger peptides of greater than a few thousand mass unit directly, it is possible to obtain information on the partial structures of peptides or proteins using low energy per atom argon cluster ion beams. Large cluster ion beams, such as Ar clusters and C60 ion beams, produce spectra similar to those generated by tandem MS. The SIMS bombardment process also produces peptide fragment ions not detected by conventional MS/MS techniques. In order to clarify appropriate measurement conditions for peptide structural analysis, peptide fragmentation dependency on the energy of a primary ion beam and ToF-SIMS specific fragment ions are evaluated. It was found that the energy range approximately 6 ≤ E/n ≤ 10 eV/atom is most effective for peptide analysis based on peptide fragments and [M + H] ions. We also observed the cleaving of side chain moieties at extremely low-energy E/n ≤ 4 eV/atom.

  16. Finite Size Effects in Adsorption of Helium Mixtures by Alkali Substrates

    NASA Astrophysics Data System (ADS)

    Barranco, M.; Guilleumas, M.; Hernández, E. S.; Mayol, R.; Pi, M.; Szybisz, L.

    2004-08-01

    We investigate the behavior of mixed 3He-4He droplets on alkali surfaces at zero temperature, within the frame of Finite Range Density Functional theory. The properties of one single 3He atom on 4He_N4 droplets on different alkali surfaces are addressed, and the energetics and structure of 4He_N4+3He_N3 systems on Cs surfaces, for nanoscopic 4He drops, are analyzed through the solutions of the mean field equations for varying number N3 of 3He atoms. We discuss the size effects on the single particle spectrum of 3He atoms and on the shapes of both helium distributions.

  17. Physics of Optically Pumped Alkali-Metal Atoms

    DTIC Science & Technology

    2013-04-14

    collision broadening and will be almost completely determined by hyperfine structure, natural radiative broadening and Doppler broadening . 3 When pumped by...supported research, and will be an great advantage for work on greenhouse physics. Of particular interest is how collisions of CO2 molecules with the...nitrogen and oxygen molecules of the air affect the way CO2 absorbs and emits radiation. Incorrect modeling of collisional line broadening is one of

  18. Image segmentation for uranium isotopic analysis by SIMS: Combined adaptive thresholding and marker controlled watershed approach

    SciTech Connect

    Willingham, David G.; Naes, Benjamin E.; Heasler, Patrick G.; Zimmer, Mindy M.; Barrett, Christopher A.; Addleman, Raymond S.

    2016-05-31

    A novel approach to particle identification and particle isotope ratio determination has been developed for nuclear safeguard applications. This particle search approach combines an adaptive thresholding algorithm and marker-controlled watershed segmentation (MCWS) transform, which improves the secondary ion mass spectrometry (SIMS) isotopic analysis of uranium containing particle populations for nuclear safeguards applications. The Niblack assisted MCWS approach (a.k.a. SEEKER) developed for this work has improved the identification of isotopically unique uranium particles under conditions that have historically presented significant challenges for SIMS image data processing techniques. Particles obtained from five NIST uranium certified reference materials (CRM U129A, U015, U150, U500 and U850) were successfully identified in regions of SIMS image data 1) where a high variability in image intensity existed, 2) where particles were touching or were in close proximity to one another and/or 3) where the magnitude of ion signal for a given region was count limited. Analysis of the isotopic distributions of uranium containing particles identified by SEEKER showed four distinct, accurately identified 235U enrichment distributions, corresponding to the NIST certified 235U/238U isotope ratios for CRM U129A/U015 (not statistically differentiated), U150, U500 and U850. Additionally, comparison of the minor uranium isotope (234U, 235U and 236U) atom percent values verified that, even in the absence of high precision isotope ratio measurements, SEEKER could be used to segment isotopically unique uranium particles from SIMS image data. Although demonstrated specifically for SIMS analysis of uranium containing particles for nuclear safeguards, SEEKER has application in addressing a broad set of image processing challenges.

  19. Experimental Results for SimFuels

    SciTech Connect

    Buck, Edgar C.; Casella, Andrew M.; Skomurski, Frances N.; MacFarlan, Paul J.; Soderquist, Chuck Z.; Wittman, Richard S.; Mcnamara, Bruce K.

    2012-08-22

    Assessing the performance of Spent (or Used) Nuclear Fuel (UNF) in geological repository requires quantification of time-dependent phenomena that may influence its behavior on a time-scale up to millions of years. A high-level waste repository environment will be a dynamic redox system because of the time-dependent generation of radiolytic oxidants and reductants and the corrosion of Fe-bearing canister materials. One major difference between used fuel and natural analogues, including unirradiated UO2, is the intense radiolytic field. The radiation emitted by used fuel can produce radiolysis products in the presence of water vapor or a thin-film of water that may increase the waste form degradation rate and change radionuclide behavior. To study UNF, we have been working on producing synthetic UO2 ceramics, or SimFuels that can be used in testing and which will contain specific radionuclides or non-radioactive analogs so that we can test the impact of radiolysis on fuel corrosion without using actual spent fuel. Although, testing actual UNF would be ideal for understanding the long term behavior of UNF, it requires the use of hot cells and is extremely expensive. In this report, we discuss, factors influencing the preparation of SimFuels and the requirements for dopants to mimic the behavior of UNF. We have developed a reliable procedure for producing large grain UO2 at moderate temperatures. This process will be applied to a series of different formulations.

  20. SIMS and TEM Analysis of Niobium Bicrystals

    SciTech Connect

    Maheshwari, P; Griffis, D P; Stevie, F A; Zhou, C; Ciovati, G; Myneni, R; Spradlin, J K; Rigsbee, M

    2011-07-01

    The behaviour of interstitial impurities(C,O,N,H) on the Nb surface with respect to grain boundaries may affect cavity performance. Large grain Nb makes possible the selection of bicrystal samples with a well defined grain boundary. In this work, Dynamic SIMS was used to analyze two Nb bicrystal samples, one of them heat treated and the other non heat treated (control). H levels were found to be higher for the non heat treated sample and a difference in the H intensity and sputtering rate was also observed across the grain boundary for both the samples. TEM results showed that the bicrystal interface showed no discontinuity and the oxide layer was uniform across the grain boundary for both the samples. TOF-SIMS imaging was also performed to analyze the distribution of the impurities across the grain boundary in both the samples. C was observed to be segregated along the grain boundary for the control sample, while H and O showed a difference in signal intensity across the grain boundary. Crystal orientation appears to have an important role in the observed sputtering rate and impurity ion signal differences both across the grain boundary and between samples

  1. Alkali-Stabilized Pt-OHx Species Catalyze Low-Temperature Water-Gas Shift Reactions

    SciTech Connect

    Zhai, Y.; Pierre, D; Si, R; Deng, W; Ferrin, P; Nilekar, A; Peng, G; Herron, J; Bell, D; et. al.

    2010-01-01

    We report that alkali ions (sodium or potassium) added in small amounts activate platinum adsorbed on alumina or silica for the low-temperature water-gas shift (WGS) reaction (H{sub 2}O + CO {yields} H{sub 2} + CO{sub 2}) used for producing H{sub 2}. The alkali ion-associated surface OH groups are activated by CO at low temperatures ({approx}100 C) in the presence of atomically dispersed platinum. Both experimental evidence and density functional theory calculations suggest that a partially oxidized Pt-alkali-O{sub x}(OH){sub y} species is the active site for the low-temperature Pt-catalyzed WGS reaction. These findings are useful for the design of highly active and stable WGS catalysts that contain only trace amounts of a precious metal without the need for a reducible oxide support such as ceria.

  2. Latest applications of 3D ToF-SIMS bio-imaging.

    PubMed

    Fletcher, John S

    2015-03-10

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a rapidly developing technique for the characterization of a wide range of materials. Recently, advances in instrumentation and sample preparation approaches have provided the ability to perform 3D molecular imaging experiments. Polyatomic ion beams, such as C60, and gas cluster ion beams, often Arn (n = 500-4000), substantially reduce the subsurface damage accumulation associated with continued bombardment of organic samples with atomic beams. In this review, the capabilities of the technique are discussed and examples of the 3D imaging approach for the analysis of model membrane systems, plant single cell, and tissue samples are presented. Ongoing challenges for 3D ToF-SIMS imaging are also discussed along with recent developments that might offer improved 3D imaging prospects in the near future.

  3. New studies of optical pumping, spin resonances, and spin exchange in mixtures of inert gases and alkali-metal vapors

    NASA Astrophysics Data System (ADS)

    Jau, Yuan-Yu

    In this thesis, we present new studies of alkali-hyperfine resonances, new optical pumping of alkali-metal atoms, and the new measurements of binary spin-exchange cross-section between alkali-metal atoms and xenon atoms. We report a large light narrowing effect of the hyperfine end-resonance signals, which was predicted from our theory and observed in our experiments. By increasing the intensity of the circularly polarized pumping beam, alkali-metal atoms are optically pumped into a state of static polarization, and trapped into the hyperfine end-state. Spin exchange between alkali-metal atoms has minimal effect on the end-resonance of the highly spin-polarized atoms. This new result will possibly benefit the design of atomic clocks and magnetometer. We also studied the pressure dependence of the atomic-clock resonance linewidth and pointed out that the linewidth was overestimated by people in the community of atomic clock. Next, we present a series study of coherent population trapping (CPT), which is a promising technique with the same or better performance compared to the traditional microwave spectroscopy. For miniature atomic clocks, CPT method is thought to be particularly advantages. From our studies, we invented a new optical-pumping method, push-pull optical pumping, which can pump atoms into nearly pure 0-0 superposition state, the superposition state of the two ground-state hyperfine sublevels with azimuthal quantum number m = 0. We believe this new invention will bring a big advantage to CPT frequency standards, the quantum state preparation for cold atoms or hot vapor, etc. We also investigated the pressure dependence of CPT excitation and the line shape of the CPT resonance theoretically and experimentally. These two properties are important for CPT applications. A theoretical study of "photon cost" of optical pumping is also presented. Finally, we switch our attention to the problem of spin exchange between alkali-metal atoms and xenon gas. This

  4. Device and method for upgrading petroleum feedstocks and petroleum refinery streams using an alkali metal conductive membrane

    DOEpatents

    Gordon, John Howard; Alvare, Javier

    2016-09-13

    A reactor has two chambers, namely an oil feedstock chamber and a source chamber. An ion separator separates the oil feedstock chamber from the source chamber, wherein the ion separator allows alkali metal ions to pass from the source chamber, through the ion separator, and into the oil feedstock chamber. A cathode is at least partially housed within the oil feedstock chamber and an anode is at least partially housed within the source chamber. A quantity of an oil feedstock is within the oil feedstock chamber, the oil feedstock comprising at least one carbon atom and a heteroatom and/or one or more heavy metals, the oil feedstock further comprising naphthenic acid. When the alkali metal ion enters the oil feedstock chamber, the alkali metal reacts with the heteroatom, the heavy metals and/or the naphthenic acid, wherein the reaction with the alkali metal forms inorganic products.

  5. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  6. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  7. Advancements in flowing diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Pitz, Greg A.; Stalnaker, Donald M.; Guild, Eric M.; Oliker, Benjamin Q.; Moran, Paul J.; Townsend, Steven W.; Hostutler, David A.

    2016-03-01

    Multiple variants of the Diode Pumped Alkali Laser (DPAL) have recently been demonstrated at the Air Force Research Laboratory (AFRL). Highlights of this ongoing research effort include: a) a 571W rubidium (Rb) based Master Oscillator Power Amplifier (MOPA) with a gain (2α) of 0.48 cm-1, b) a rubidium-cesium (Cs) Multi-Alkali Multi-Line (MAML) laser that simultaneously lases at both 795 nm and 895 nm, and c) a 1.5 kW resonantly pumped potassium (K) DPAL with a slope efficiency of 50%. The common factor among these experiments is the use of a flowing alkali test bed.

  8. Nanoscale imaging of Li and B in nuclear waste glass, a comparison of ToF-SIMS, NanoSIMS, and APT: Nanoscale imaging of Li and B in nuclear waste glass

    SciTech Connect

    Wang, Zhaoying; Liu, Jia; Zhou, Yufan; Neeway, James J.; Schreiber, Daniel K.; Crum, Jarrod V.; Ryan, Joseph V.; Wang, Xue-Lin; Wang, Fuyi; Zhu, Zihua

    2016-06-02

    It has been very difficult to use popular elemental imaging techniques to image Li and B distribution in glass samples with nanoscale resolution. In this study, atom probe tomography (APT), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and nanoscale secondary ion mass spectrometry (NanoSIMS) were used to image the distribution of Li and B in two representative glass samples. APT can provide three-dimensional Li and B imaging with very high spatial resolution (≤ 2 nm). In addition, absolute quantification of Li and B is possible, though room remains to improve accuracy. However, the major drawbacks of APT include limited field of view (normally ≤ 100 × 100 × 500 nm3) and poor sample compatibility. As a comparison, ToF-SIMS and NanoSIMS are sample-friendly with flexible field of view (up to 500 × 500 μm2 and image stitching is feasible); however, lateral resolution is limited to only about 100 nm. Therefore, SIMS and APT can be regarded as complementary techniques for nanoscale imaging Li and B in glass and other novel materials.

  9. Alkali metal for ultraviolet band-pass filter

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  10. NanoSIMS Imaging Alternation Layers of a Leached SON68 Glass Via A FIB-made Wedged Crater

    SciTech Connect

    Wang, Yi-Chung; Schreiber, Daniel K.; Neeway, James J.; Thevuthasan, Suntharampillai; Evans, James E.; Ryan, Joseph V.; Zhu, Zihua; Wei, Wei

    2014-11-01

    Currently, nuclear wastes are commonly immobilized into glasses because of their long-term durability. Exposure to water for long periods of time, however, will eventually corrode the waste form and is the leading potential avenue for radionuclide release into the environment. Because such slow processes cannot be experimentally tested, the prediction of release requires a thorough understanding the mechanisms governing glass corrosion. In addition, due to the exceptional durability of glass, much of the testing must be performed on high-surface-area powders. A technique that can provide accurate compositional profiles with very precise depth resolution for non-flat samples would be a major benefit to the field. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) depth profiling is an excellent tool that has long been used to examine corrosion layers of glass. The roughness of the buried corrosion layers, however, causes the corresponding SIMS depth profiles to exhibit erroneously wide interfaces. In this study, NanoSIMS was used to image the cross-section of the corrosion layers of a leached SON68 glass sample. A wedged crater was prepared by a focused ion beam (FIB) instrument to obtain a 5× improvement in depth resolution for NanoSIMS measurements. This increase in resolution allowed us to confirm that the breakdown of the silica glass network is further from the pristine glass than a second dissolution front for boron, another glass former. The existence of these two distinct interfaces, separated by only ~20 nm distance in depth, was not apparent by traditional ToF-SIMS depth profiling but has been confirmed also by atom probe tomography. This novel sample geometry will be a major benefit to efficient NanoSIMS sampling of irregular interfaces at the nanometer scale that would otherwise be obscured within ToF-SIMS depth profiles.

  11. Chlorine Stable Isotope Measurements by SIMS: a Calibration with IRMS Technique.

    NASA Astrophysics Data System (ADS)

    Godon, A. V.; Webster, J. D.; Layne, G. D.; Jendrzejewski, N.; Pineau, F.; Mathez, E.; Javoy, M.

    2001-12-01

    Chlorine isotope distribution is not uniform in nature and the few chlorine isotope data reported in the literature cover a large range of δ 37Cl values (from -14 to +10 permil versus SMOC). Deep Earth reservoirs are isotopically distinct compared to seawater and other surficial reservoirs. Physio-chemical processes, such as diffusion or ion filtration can produce important isotopic variations. Data and experimental studies on chlorine isotope fractionation are needed to understand the origin of such fractionations and to constrain the global chlorine geochemical cycle, and this requires new analytical tools. Accordingly, we have conducted a calibration of Secondary Ion Mass Spectrometry (SIMS) using the gaseous Isotope Ratio Mass Spectrometry (IRMS) technique as the standard comparison method. Homogeneous silicate glasses, for use as SIMS chlorine-isotope standards, were prepared with an internally heated pressure vessel at the American Museum of Natural History. Rock powders ranging in composition from basalt to rhyolite were fused in Au and Au-Pd capsules, with Cl added as PtCl2 and other chloride salts, at 2 to 4 kilobars and 1000 to 1170° C. The purpose of these glasses is to determine the potential influence of composition on the mass fractionation factors for Cl isotope analysis by SIMS. The chemical homogeneity of the glass was checked by electron microprobe. In Paris GIS Lab., the chlorine was extracted from the glasses by NaOH alkali fusion at 500° C. After acidification at pH 2.2 and addition of KNO3 to adjust the ionic strength, AgCl was precipitated and recovered by filtration at 0.7 μ m. In a sealed capsule under vacuum, an excess of ICH3 was added to AgCl to produce ClCH3. This ClCH3 was then purified by gas chromatography. δ 37Cl measurements were performed with a gaseous dual inlet mass spectrometer on ClCH3+, with a precision better than 0.1 permil on 30 μ mol of Cl. SIMS measurements, using the IMS 1270 at Woods Hole Oceanographic

  12. Improved alkali-metal/silicate binders

    NASA Technical Reports Server (NTRS)

    Schutt, J.

    1978-01-01

    Family of inorganic binders utilizes potassium or sodium oxide/silicate dispersion and employs high mole ratio of silicon dioxide to alkali-metal binder. Binders are stable, inexpensive, extremely water resistant, and easy to apply.

  13. Alkali Metal Handling Practices at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Salvail, Patrick G.; Carter, Robert R.

    2002-01-01

    NASA Marshall Space Flight Center (MSFC) is NASA s principle propulsion development center. Research and development is coordinated and carried out on not only the existing transportation systems, but also those that may be flown in the near future. Heat pipe cooled fast fission cores are among several concepts being considered for the Nuclear Systems Initiative. Marshall Space Flight Center has developed a capability to handle high-purity alkali metals for use in heat pipes or liquid metal heat transfer loops. This capability is a low budget prototype of an alkali metal handling system that would allow the production of flight qualified heat pipe modules or alkali metal loops. The processing approach used to introduce pure alkali metal into heat pipe modules and other test articles are described in this paper.

  14. Alkali metal propellants for MPD thrusters

    NASA Technical Reports Server (NTRS)

    Polk, J. E.; Pivirotto, T. J.

    1991-01-01

    Experiments performed in the United States in the 1960s and early 1970s and in the Soviet Union with alkali metal-fuelled MPD thrusters indicate performance levels substantially better than those achieved with gaseous propellants. Cathode wear appears to be less in engines with alkali metal propellants also. A critical review of the available data indicates that the data are consistent and reliable. An analysis of testing and systems-level considerations shows that pumping requirements for testing are substantially decreased and reductions in tankage fraction can be expected. In addition, while care must be exercised in handling the alkali metals, it is not prohibitively difficult or hazardous. The greatest disadvantage seems to be the potential for spacecraft contamination, but there appear to be viable strategies for minimizing the impact of propellant deposition on spacecraft surfaces. Renewed examination of alkali metal-fuelled MPD thrusters for ambitious SEI missions is recommended.

  15. Research on the properties and interactions of simple atomic and ionic systems

    NASA Technical Reports Server (NTRS)

    Novick, R.

    1972-01-01

    Simple ionic systems were studied, such as metastable autoionizing states of the negative He ion, two-photon decay spectrum of metastable He ion, optical excitation with low energy ions, and lifetime measurements of singly ionized Li and metastable He ion. Simple atomic systems were also investigated. Metastable autoionizing atomic energy levels in alkali elements were included, along with lifetime measurements of Cr-53, group 2A isotopes, and alkali metal atoms using level crossing and optical double resonance spectroscopy.

  16. Desulfurizing Coal With an Alkali Treatment

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kalvinskas, J. J.

    1987-01-01

    Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.

  17. Adsorption in carbon nanotubes and computer simulation studies of wetting on alkali surfaces

    NASA Astrophysics Data System (ADS)

    Stan, George

    Absorption in carbon nanotubes and computer simulation studies of the wetting properties of rare gases on alkali metals are presented. In the confining environment of nanotubes, adsorbed atoms exhibit behavior characteristic of 1, 2, and 3 dimensions as a function of thermodynamic parameters (number of particles N and temperature T), geometry (isolated tubes or nanotube bundles), and microscopic variables (relative size of atom vs. tube radius). Small atoms fit easily inside nanotubes and are strongly bound within them. At low coverage, atoms moving inside nanotubes are adsorbed in a cylindrical shell close to the tube walls, while above a threshold value, atoms start to populate the vicinity of the axis of the tube. In a nanotube bundle, interstitial channels between the tubes are even more favorable energetically for small atoms than the interior of the tubes. An extremely anisotropic condensed state is formed due to interactions between atoms in neighboring interstitial channels. Mixtures of 3He and 4He atoms in interstitial channels obey an analog of Raoult's law for ideal solutions. A similar behavior is expected for H2 - D2 mixtures. At the opposite extreme of interaction strengths, alkali metal surfaces attract rare gases more weakly than any other surfaces. Grand Canonical Monte Carlo simulations of the wetting behavior of such systems are reported. In the case of the most weakly attractive surfaces, Cs, Rb and Li, nonwetting behaviors of Ne are found for all temperatures within about 2 K of the critical temperature, while a drying behavior is seen only near the Cs surface. At the slightly more attractive surface of Mg, a prewetting transition is found. A study of wetting of various rare gases adsorbed at alkali metal surfaces reveals a rich variety of behaviors at the triple temperature. The heuristic model of Cheng et al. is found to agree well with the general threshold for wetting at the triple point.

  18. SIM regional comparison of ac-dc current transfer difference SIM.EM-K12

    NASA Astrophysics Data System (ADS)

    Di Lillo, Lucas

    2015-01-01

    The ac-dc current transfer difference identified as SIM.EM.K-12 began in July 2010 and was completed in September 2012. Six NMIs in the SIM region and one NMI in the AFRIMET region took part: NRC (Canada), NIST (United States of America), CENAM (Mexico), INTI (Argentina), UTE (Uruguay), INMETRO (Brazil) and NIS (Egypt). The comparisons were proposed to assess the measurement capabilities in ac-dc current transfer difference of the participants NMIs. The ac-dc current transfer differences of the travelling standard had been measured at 10 mA and 5 A at 10 Hz, 55 Hz, 1 kHz, 10 kHz, 20 kHz, 50 kHz and 100 kHz. The test points were selected to link the results with the equivalent CCEM Key Comparisons (CCEM-K12), through three NMIs participating in both SIM and CCEM key comparisons (INTI, NRC and NIST). The report shows the degree of equivalence in the SIM region and also the degree of equivalence with the corresponding CCEM reference value. The results of all participants support the values and uncertainties of the applicable CMC entries for ac-dc current transfer difference in the Key Comparison Database held at the BIPM. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  19. SimITK: model driven engineering for medical imaging

    NASA Astrophysics Data System (ADS)

    Trezise, Melissa; Gobbi, David; Cordy, James; Abolmaesumi, Purang; Mousavi, Parvin

    2014-03-01

    The Insight Segmentation and Registration Toolkit (ITK) is a highly utilized open source medical imaging library providing chiefly the functionality to register, segment, and filter medical images. Although extremely powerful, ITK has a steep learning curve for users with little or no background in programming. It was for this reason that SimITK was developed. SimITK wraps ITK into the model driven engineering environment Simulink, a part of the Matlab development suite. The first released version of SimITK was a proof of concept, and demonstrated that ITK could be wrapped successfully in Simulink. In this paper a new version of SimITK is presented where ITK classes are wrapped using a fully automated process. In addition, SimITK is transitioned to successfully support ITK version 4, in order to remain current with the ITK project. SimITK includes thirty-seven image filters, twelve optimizers, and nineteen transform classes from ITK version 4 which are successfully wrapped and tested, and can be quickly and easily combined to perform medical imaging tasks. These classes were chosen to represent a broad range of usability, and to allow for greater flexibility when creating registration pipelines. SimITK has the potential to reduce the learning curve for ITK and allow the user to focus on developing workflows and algorithms. A release of SimITK along with tutorials and videos is available at www.simitkvtk.com.

  20. Biochemical imaging of tissues by SIMS for biomedical applications

    NASA Astrophysics Data System (ADS)

    Lee, Tae Geol; Park, Ji-Won; Shon, Hyun Kyong; Moon, Dae Won; Choi, Won Woo; Li, Kapsok; Chung, Jin Ho

    2008-12-01

    With the development of optimal surface cleaning techniques by cluster ion beam sputtering, certain applications of SIMS for analyzing cells and tissues have been actively investigated. For this report, we collaborated with bio-medical scientists to study bio-SIMS analyses of skin and cancer tissues for biomedical diagnostics. We pay close attention to the setting up of a routine procedure for preparing tissue specimens and treating the surface before obtaining the bio-SIMS data. Bio-SIMS was used to study two biosystems, skin tissues for understanding the effects of photoaging and colon cancer tissues for insight into the development of new cancer diagnostics for cancer. Time-of-flight SIMS imaging measurements were taken after surface cleaning with cluster ion bombardment by Bi n or C 60 under varying conditions. The imaging capability of bio-SIMS with a spatial resolution of a few microns combined with principal component analysis reveal biologically meaningful information, but the lack of high molecular weight peaks even with cluster ion bombardment was a problem. This, among other problems, shows that discourse with biologists and medical doctors are critical to glean any meaningful information from SIMS mass spectrometric and imaging data. For SIMS to be accepted as a routine, daily analysis tool in biomedical laboratories, various practical sample handling methodology such as surface matrix treatment, including nano-metal particles and metal coating, in addition to cluster sputtering, should be studied.

  1. Alteration of alkali reactive aggregates autoclaved in different alkali solutions and application to alkali-aggregate reaction in concrete

    SciTech Connect

    Lu Duyou; Xu Zhongzi; Tang Mingshu; Fournier, Benoit

    2006-06-15

    Surface alteration of typical aggregates with alkali-silica reactivity and alkali-carbonate reactivity, i.e. Spratt limestone (SL) and Pittsburg dolomitic limestone (PL), were studied by XRD and SEM/EDS after autoclaving in KOH, NaOH and LiOH solutions at 150 deg. C for 150 h. The results indicate that: (1) NaOH shows the strongest attack on both ASR and ACR aggregates, the weakest attack is with LiOH. For both aggregates autoclaved in different alkali media, the crystalline degree, morphology and distribution of products are quite different. More crystalline products are formed on rock surfaces in KOH than that in NaOH solution, while almost no amorphous product is formed in LiOH solution; (2) in addition to dedolomitization of PL in KOH, NaOH and LiOH solutions, cryptocrystalline quartz in PL involves in reaction with alkaline solution and forms typical alkali-silica product in NaOH and KOH solutions, but forms lithium silicate (Li{sub 2}SiO{sub 3}) in LiOH solution; (3) in addition to massive alkali-silica product formed in SL autoclaved in different alkaline solutions, a small amount of dolomite existing in SL may simultaneously dedolomitize and possibly contribute to expansion; (4) it is promising to use the duplex effect of LiOH on ASR and ACR to distinguish the alkali-silica reactivity and alkali-carbonate reactivity of aggregate when both ASR and ACR might coexist.

  2. SimTool - An object based approach to simulation construction

    NASA Technical Reports Server (NTRS)

    Crues, Edwin Z.; Yazbeck, Marwan E.; Edwards, H. C.; Barnette, Randall D.

    1993-01-01

    The creation and maintenance of large complex simulations can be a difficult and error prone task. A number of interactive and automated tools have been developed to aid in simulation construction and maintenance. Many of these tools are based upon object oriented analysis and design concepts. One such tool, SimTool, is an object based integrated tool set for the development, maintenance, and operation of large, complex and long lived simulations. This paper discusses SimTool's object based approach to simulation design, construction and execution. It also discusses the services provided to various levels of SimTool users to assist them in a wide range of simulation tasks. Also, with the aid of an implemented and working simulation example, this paper discusses SimTool's key design and operational features. Finally, this paper presents a condensed discussion of SimTool's Entity-Relationship-Attribute (ERA) modeling approach.

  3. Simulation on SIMS depth profiling of delta-doped layer including relaxation caused by defects

    NASA Astrophysics Data System (ADS)

    Ishida, M.; Nagao, S.; Yamamura, Y.

    2001-06-01

    Using the dynamic Monte Carlo (MC) code, ACAT-DIFFUSE, the SIMS depth profiling of a multilayered thin film (Ta 2O 5 (18 nm)/SiO 2 (0.5 nm)) sample was investigated. The ACAT-DIFFUSE code is based on the binary collision approximation, taking into account the generation of interstitial atoms and vacancies, annihilation of vacancies, diffusion of interstitial atoms and primary ions and the relaxation of target materials according to the packing condition which include not only beam and target particles but also defects (interstitial atoms and vacancies). The observed 1-3 nm shift of the delta layer peak to the surface in SIMS depth profiles can be reproduced by the ACAT-DIFFUSE simulation. It is found that this peak shift is mainly due to the relaxation or expansion caused by defects produced behind the delta layer, not due to the collision mixing which results mainly in broadening the observed delta layer peak. Therefore, as ion energy decreases or the angle of incidence becomes large, the peak shift becomes small, because the total amount of defects produced behind the delta layer is small before the delta layer is sputtered off.

  4. An Investigation of Hydrogen Depth Profiling Using ToF-SIMS

    SciTech Connect

    Zhu, Zihua; Shutthanandan, V.; Engelhard, Mark H.

    2012-02-01

    Hydrogen depth distributions in silicon, zinc oxide and glass are of great interest in material research and industry. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been used for hydrogen depth profiling for many years. However, some critical information, such as optimal instrumental settings and detection limits, is not easily available from previous publications. In this work, optimal instrumental settings and detection limits of hydrogen in silicon, zinc oxide and common glass were investigated. The recommended experimental settings for hydrogen depth profiling using ToF-SIMS are: (1) keeping pressure in the analysis chamber as low as possible, (2) using a cesium beam for sputtering and monitoring the H{sup -} signal, (3) employing monatomic ion analysis beams with the highest currents, and (4) using interlace mode. In addition, monatomic secondary ions from a matrix are recommended as references to normalize the H{sup -} signal. Detection limits of hydrogen are limited by pressure of residual gases in the analysis chamber. The base pressure of the analysis chamber (with samples) is about 7 x 10{sup -10} mbar in this study, and the corresponding detection limits of hydrogen in silicon, zinc oxide, and common glass are 1.3 x 10{sup 18} atoms/cm{sup 3}, 1.8 x 10{sup 18} atoms/cm{sup 3}, and 5.6 x 10{sup 18} atoms/cm{sup 3}, respectively.

  5. Chemical imaging of biological materials by NanoSIMS using isotopic and elemental labels

    SciTech Connect

    Weber, P K; Fallon, S J; Pett-Ridge, J; Ghosal, S; Hutcheon, I D

    2006-04-10

    The NanoSIMS 50 combines unprecedented spatial resolution (as good as 50 nm) with ultra-high sensitivity (minimum detection limit of {approx}200 atoms). The NanoSIMS 50 incorporates an array of detectors, enabling simultaneous collection of 5 species originating from the same sputtered volume of a sample. The primary ion beam (Cs{sup +} or O{sup -}) can be scanned across the sample to produce quantitative secondary ion images. This capability for multiple isotope imaging with high spatial resolution provides a novel new approach to the study of biological materials. Studies can be made of sub-regions of tissues, mammalian cells, and bacteria. Major, minor and trace element distributions can be mapped on a submicron scale, growth and metabolism can be tracked using stable isotope labels, and biogenic origin can be determined based on composition. We have applied this technique extensively to mammalian and prokaryotic cells and bacterial spores. The NanoSIMS technology enables the researcher to interrogate the fate of molecules of interest within cells and organs through elemental and isotopic labeling. Biological applications at LLNL will be discussed.

  6. Freeze-Etching and Vapor Matrix Deposition for ToF-SIMS Imaging of Single Cells

    PubMed Central

    Piehowski, Paul D.; Kurczy, Michael E.; Willingham, David; Parry, Shawn; Heien, Michael L.; Winograd, Nicholas; Ewing, Andrew G.

    2008-01-01

    Freeze-etching, the practice of removing excess surface water from a sample through sublimation into the vacuum of the analysis environment, has been extensively used in conjunction with electron microscopy. Here, we apply this technique to time-of-flight secondary-ion mass spectrometry (ToF-SIMS) imaging of cryogenically preserved single cells. By removing the excess water which condenses onto the sample in vacuo, a uniform surface is produced that is ideal for imaging by static SIMS. We demonstrate that the conditions employed to remove deposited water do not adversely affect cell morphology and do not redistribute molecules in the topmost surface layers. In addition, we found water can be controllably redeposited onto the sample at temperatures below −100 °C in vacuum. The redeposited water increases the ionization of characteristic fragments of biologically interesting molecules 2-fold without loss of spatial resolution. The utilization of freeze-etch methodology will increase the reliability of cryogenic sample preparations for SIMS analysis by providing greater control of the surface environment. Using these procedures, we have obtained high quality spectra with both atomic bombardment as well as C60+ cluster ion bombardment. PMID:18570446

  7. Laser cooling of nuclear spin 0 alkali 78Rb

    NASA Astrophysics Data System (ADS)

    Behr, J. A.; Gorelov, A.; Anholm, M.

    2015-05-01

    The textbook example for sub-Doppler cooling is a J = 1/2 I = 0 alkali atom in lin ⊥ lin molasses. In the σ+ σ- configuration of a standard MOT, the main sub-Doppler cooling mechanism relies on changing alignment (MF2 population) with the summed linear polarization orientation, but there is no such variation in AC Stark shift for F = 1/2. We have nevertheless looked for signs of sub-Doppler cooling by trapping I = 0 78Rb in a standard MOT and measuring the cloud size as a function of laser detuning and intensity. The 78Rb cloud size does not change significantly with lowered intensity, and expands slightly with detuning, consistent with minimal to no sub-Doppler cooling. Our geometry does show the well-known substantially smaller cloud size with detuning and intensity for I = 3/2 87Rb. Maintaining an I = 0 alkali cloud size with lowered intensity will help our planned β- ν correlation experiments in 38mK decay by suppressing possible production of photoassisted dimers. Supported by NSERC and NRC Canada through TRIUMF.

  8. Alkali-metal-catalyzed addition of primary and secondary phosphines to carbodiimides. A general and efficient route to substituted phosphaguanidines.

    PubMed

    Zhang, Wen-Xiong; Nishiura, Masayoshi; Hou, Zhaomin

    2006-09-28

    Organo alkali metal compounds such as (n)BuLi and (Me3Si)2NK act as excellent catalyst precursors for the addition of phosphine P-H bonds to carbodiimides, offering a general and atom-economical route to substituted phosphaguanidines, with excellent tolerability to aromatic C-Br and C-Cl bonds.

  9. Surface Morphology and Structure of Double-Phase Magnetic Alkali Borosilicate Glasses

    NASA Astrophysics Data System (ADS)

    Andreeva, N. V.; Naberezhnov, A. A.; Tomkovich, M. V.; Nacke, B.; Kichigin, V.; Rudskoy, A. I.; Filimonov, A. V.

    2016-11-01

    The surface morphology of double-phase magnetic alkali borosilicate glasses of four types obtained by induction melting is studied by the methods of atomic-force and scanning electron microscopy. The distribution of elements over the surface and the elemental composition of the glasses are determined. It is shown that a dendritic system of interrelated channels required for formation of porous matrixes with controlled mean pore diameter may be obtained in these objects depending on the heat treatment mode.

  10. NIST on a Chip: Realizing SI units with microfabricated alkali vapour cells

    NASA Astrophysics Data System (ADS)

    Kitching, J.; Donley, E. A.; Knappe, S.; Hummon, M.; Dellis, A. T.; Sherman, J.; Srinivasan, K.; Aksyuk, V. A.; Li, Q.; Westly, D.; Roxworthy, B.; Lal, A.

    2016-06-01

    We describe several ways in which microfabricated alkali atom vapour cells might potentially be used to accurately realize a variety of International System (SI) units, including the second, the meter, the kelvin, the ampere, and the volt, in a compact, low-cost “chip-scale” package. Such instruments may allow inexpensive in-situ calibrations at the user's location or widespread integration of accurate references into instrumentation and systems.

  11. Characterization of mineral-associated organic matter: a combined approach of AFM and NanoSIMS

    NASA Astrophysics Data System (ADS)

    Pohl, Lydia; Schurig, Christian; Eusterhues, Karin; Mueller, Carsten W.; Höschen, Carmen; Totsche, Kai-Uwe; Kögel-Knabner, Ingrid

    2016-04-01

    The heterogeneous spatial distribution and amount of organic matter (OM) in soils, especially at the micro- or submicron-scale, has major consequences for the soil microstructure and for the accessibility of OM to decomposing microbial communities. Processes occurring at the microscale control soil properties and processes at larger scales, such as macro-aggregation and carbon turnover. Since OM acts as substrate and most important driver for biogeochemical processes, particular attention should be paid to its spatial interaction with soil minerals. In contrast to bulk analysis, Nanoscale Secondary Ion Mass Spectrometry (NanoSIMS) offers the possibility to examine the composition and spatial distribution of OM within the intact organo-mineral matrix. Nevertheless, the yield of secondary electrons is influenced by the individual topography of the analysed particles, which aggravated the quantitative interpretation of the data. A combination of NanoSIMS and Atomic Force Microscopy (AFM), enabled us to visualize and quantify the topographical features of individual particles and correct the NanoSIMS data for this effect. We performed adsorption experiments with water-soluble soil OM in 6 concentration steps, which was extracted from forest floor layer of a Podzol, and adsorbed to illite. Upon the end of the sorption experiments the liquid phase and the solid phase were separated and the carbon content was analysed with TOC- and C/N-measurement, respectively. For the spatially resolved analyses, the samples were applied as thin layers onto silicon wafers and individual particles were chosen by means of the AFM. Subsequently, the identical particles were analysed with NanoSIMS to investigate the distribution of C, N, O, Si, P and Al. The recorded data were analysed for differences in elemental distribution between the different concentration steps. Additionally, we performed a correlation of the detectable counts with the topography of the particle within one

  12. Waveguide Harmonic Generator for the SIM

    NASA Technical Reports Server (NTRS)

    Chang, Daniel; Poberezhskiy, Ilya; Mulder, Jerry

    2008-01-01

    A second-harmonic generator (SHG) serves as the source of the visible laser beam in an onboard calibration scheme for NASA's planned Space Interferometry Mission (SIM), which requires an infrared laser beam and a visible laser beam coherent with the infrared laser beam. The SHG includes quasi-phase-matched waveguides made of MgO-doped, periodically poled lithium niobate, pigtailed with polarization- maintaining optical fibers. Frequency doubling by use of such waveguides affords the required combination of coherence and sufficient conversion efficiency for the intended application. The spatial period of the poling is designed to obtain quasi-phase- matching at a nominal middle excitation wavelength of 1,319.28 nm. The SHG is designed to operate at a warm bias (ambient temperature between 20 and 25 C) that would be maintained in its cooler environment by use of electric heaters; the heater power would be adjusted to regulate the temperature precisely and thereby maintain the required precision of the spatial period. At the state of development at the time of this reporting, the SHG had been packaged and subjected to most of its planned space-qualification tests.

  13. Port-O-Sim Object Simulation Application

    NASA Technical Reports Server (NTRS)

    Lanzi, Raymond J.

    2009-01-01

    Port-O-Sim is a software application that supports engineering modeling and simulation of launch-range systems and subsystems, as well as the vehicles that operate on them. It is flexible, distributed, object-oriented, and realtime. A scripting language is used to configure an array of simulation objects and link them together. The script is contained in a text file, but executed and controlled using a graphical user interface. A set of modules is defined, each with input variables, output variables, and settings. These engineering models can be either linked to each other or run as standalone. The settings can be modified during execution. Since 2001, this application has been used for pre-mission failure mode training for many Range Safety Scenarios. It contains range asset link analysis, develops look-angle data, supports sky-screen site selection, drives GPS (Global Positioning System) and IMU (Inertial Measurement Unit) simulators, and can support conceptual design efforts for multiple flight programs with its capacity for rapid six-degrees-of-freedom model development. Due to the assembly of various object types into one application, the application is applicable across a wide variety of launch range problem domains.

  14. SIMS analysis: Development and evaluation 1994 summary report

    SciTech Connect

    Groenewold, G.S.; Appelhans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1994-12-01

    Secondary ion mass spectrometry (SIMS) was evaluated for applicability to the characterization of salt cake and environmental samples. Salt cake is representative of waste found in radioactive waste storage tanks located at Hanford and at other DOE sites; it consists of nitrate, nitrite, hydroxide, and ferrocyanide salts, and the samples form the tanks are extremely radioactive. SIMS is an attractive technology for characterizing these samples because it has the capability for producing speciation information with little or no sample preparation, and it generates no additional waste. Experiments demonstrated that substantial speciation information could be readily generated using SIMS: metal clusters which include nitrate, nitrite, hydroxide, carbonate, cyanide, ferrocyanide and ferricyanide were observed. In addition, the mechanism of SIMS desorption of tributyl phosphate (TBP) was clearly identified, and minimum detection limit studies involving TBP were performed. Procurements leading to the construction of an ion trap SIMS instrument were initiated. Technology transfer of SIMS components to three instrument vendors was initiated. For FY-95, the SIMS evaluation program has been redirected toward identification of metal species on environmental samples.

  15. SimGraph: A Flight Simulation Data Visualization Workstation

    NASA Technical Reports Server (NTRS)

    Kaplan, Joseph A.; Kenney, Patrick S.

    1997-01-01

    Today's modern flight simulation research produces vast amounts of time sensitive data, making a qualitative analysis of the data difficult while it remains in a numerical representation. Therefore, a method of merging related data together and presenting it to the user in a more comprehensible format is necessary. Simulation Graphics (SimGraph) is an object-oriented data visualization software package that presents simulation data in animated graphical displays for easy interpretation. Data produced from a flight simulation is presented by SimGraph in several different formats, including: 3-Dimensional Views, Cockpit Control Views, Heads-Up Displays, Strip Charts, and Status Indicators. SimGraph can accommodate the addition of new graphical displays to allow the software to be customized to each user s particular environment. A new display can be developed and added to SimGraph without having to design a new application, allowing the graphics programmer to focus on the development of the graphical display. The SimGraph framework can be reused for a wide variety of visualization tasks. Although it was created for the flight simulation facilities at NASA Langley Research Center, SimGraph can be reconfigured to almost any data visualization environment. This paper describes the capabilities and operations of SimGraph.

  16. Spectral mode changes in an alkali rf discharge

    SciTech Connect

    Camparo, J. C.; Mackay, R.

    2007-03-01

    As a result of observations made by Shaw (M.S. thesis, Cornell University, 1964) in the mid-1960s, alkali rf discharges are known to operate in two spectral modes, the so-called ring mode and the red mode. Experience has shown that the ring mode is best for discharge lamps used in quantum-electronic devices such as atomic clocks and optically pumped magnetometers and that the performance of these devices seriously degrades when the lamp operates in the red mode. Understanding the origin of these modes therefore has application to understanding and improving various quantum-electronic devices. Here we show that Shaw's model for these modes is inconsistent with observation, and we propose an alternate model based on the role of radiation trapping in multistep ionization.

  17. Structure and energetics of helium films on alkali substrates

    NASA Astrophysics Data System (ADS)

    Boninsegni, Massimo; Szybisz, Leszek

    2004-07-01

    Low-temperature adsorption of He4 films on Alkali metal substrates is investigated theoretically by means of ground-state quantum Monte Carlo simulations. The most accurate potentials currently available are utilized to model the interaction of He4 atoms with the substrate. Continuous growth of film thickness as a function of chemical potential is observed on Li, Na, and K substrates. A superfluid monolayer forms on a Li substrate; on Na and K, thermodynamically stable films are a few layers thick. The uncertainties of the calculation and in the potentials, preclude a definitive conclusion on the existence of a stable He4 film on Rb. A comparison of the results of this calculation with those obtained using the Orsay-Trento density functional shows broad quantitative agreement.

  18. Buffer gas-assisted four-wave mixing resonances in alkali vapor excited by a single cw laser

    NASA Astrophysics Data System (ADS)

    Shmavonyan, Svetlana; Khanbekyan, Aleksandr; Khanbekyan, Alen; Mariotti, Emilio; Papoyan, Aram V.

    2016-12-01

    We report the observation of a fluorescence peak appearing in dilute alkali (Rb, Cs) vapor in the presence of a buffer gas when the cw laser radiation frequency is tuned between the Doppler-broadened hyperfine transition groups of an atomic D2 line. Based on steep laser radiation intensity dependence above the threshold and spectral composition of the observed features corresponding to atomic resonance transitions, we have attributed these features to the buffer gas-assisted four-wave mixing process.

  19. SIM PlanetQuest: Science with the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen (Editor); Turyshev, Slava (Editor)

    2004-01-01

    SIM - the Space Interferometry Mission - will perform precision optical astrometry on objects as faint as R magnitude 20. It will be the first space-based astrometric interferometer, operating in the optical band with a 10-m baseline. The Project is managed by the Jet Propulsion Laboratory, California Institute of Technology, in close collaboration with two industry partners, Lockheed Martin Missiles and Space, and TRW Inc., Space and Electronics Group. Launch of SIM is currently planned for 2009. In its wide-angle astrometric mode, SIM will yield 4 microarcsecond absolute position and parallax measurements. Astrometric planet searches will be done in a narrow-angle mode, with an accuracy of 4 microarcseconds or better in a single measurement. As a pointed rather than a survey instrument, SIM will maintain.its astrometric accuracy down to the faintest, magnitudes, opening up the opportunity for astrometry of active galactic nuclei to better than 10 pas. SIM will define a new astrometric reference frame, using a grid of approximately 1500 stars with positions accurate to 4 microarcseconds. The SIM Science Team comprises the Principal Investigators of ten Key Projects, and five Mission Scientists contributing their expertise to specific areas of the mission. Their science programs cover a wide range of topics in Galactic and extragalactic astronomy. They include: searches for low-mass planets - including analogs to our own solar system - tlie formation and dynamics of our Galaxy, calibration of the cosmic distance scale, and fundamental stellar astrophysics. All of the science observing on SIM is competitively awarded; the Science Team programs total about 40% of the total available, and the remainder will be assigned via future NASA competitions. This report is a compilation of science summaries by members of the Science Team, and it illustrates the wealth of scientific problems that microarcsecond-precision astrometry can contribute to. More information on SIM

  20. Quantitative imaging of trace B in Si and SiO{sub 2} using ToF-SIMS

    SciTech Connect

    Smentkowski, Vincent S.

    2015-09-15

    Changes in the oxidation state of an element can result in significant changes in the ionization efficiency and hence signal intensity during secondary ion mass spectrometry (SIMS) analysis; this is referred to as the SIMS matrix effect [Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, edited by R. G. Wilson, F. A. Stevie, and C. W. Magee (Wiley, New York, 1990)]. The SIMS matrix effect complicates quantitative analysis. Quantification of SIMS data requires the determination of relative sensitivity factors (RSFs), which can be used to convert the as measured intensity into concentration units [Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, edited by R. G. Wilson, F. A. Stevie, and C. W. Magee (Wiley, New York, 1990)]. In this manuscript, the authors report both: RSFs which were determined for quantification of B in Si and SiO{sub 2} matrices using a dual beam time of flight secondary ion mass spectrometry (ToF-SIMS) instrument and the protocol they are using to provide quantitative ToF-SIMS images and line scan traces. The authors also compare RSF values that were determined using oxygen and Ar ion beams for erosion, discuss the problems that can be encountered when bulk calibration samples are used to determine RSFs, and remind the reader that errors in molecular details of the matrix (density, volume, etc.) that are used to convert from atoms/cm{sup 3} to other concentration units will propagate into errors in the determined concentrations.

  1. ``Cooperativity blockage'' in the mixed alkali effect as revealed by molecular-dynamics simulations of alkali metasilicate glass

    NASA Astrophysics Data System (ADS)

    Habasaki, Junko; Ngai, K. L.; Hiwatari, Yasuaki

    2004-07-01

    The relaxation dynamics of a complex interacting system can be drastically changed when mixing with another component having different dynamics. In this work, we elucidate the effect of the less mobile guest ions on the dynamics of the more mobile host ions in mixed alkali glasses by molecular-dynamics (MD) simulations. One MD simulation was carried out on lithium metasilicate glass with the guest ions created by freezing some randomly chosen lithium ions at their initial locations at 700 K. A remarkable slowing down of the dynamics of the majority mobile Li ions was observed both in the self-part of the density-density correlation function, Fs(k,t), and in the mean-squared displacements. On the other hand, there is no significant change in the structure. The motion of the Li ions in the unadulterated Li metasilicate glass is dynamically heterogeneous. In the present work, the fast and slow ions were divided into two groups. The number of fast ions, which shows faster dynamics (Lévy flight) facilitated by cooperative jumps, decreases considerably when small amount of Li ions are frozen. Consequently there is a large overall reduction of the mobility of the Li ions. The result is also in accordance with the experimental finding in mixed alkali silicate glasses that the most dramatic reduction of ionic conductivity occurs in the dilute foreign alkali limit. Similar suppression of the cooperative jumps is observed in the MD simulation data of mixed alkali system, LiKSiO3. Naturally, the effect found here is appropriately described as "cooperativity blockage." Slowing down of the motion of Li ions also was observed when a small number of oxygen atoms chosen at random were frozen. The effect is smaller than the case of freezing some the Li ions, but it is not negligible. The cooperativity blockage is also implemented by confining the Li metasilicate glass inside two parallel walls formed by freezing Li ions in the same metasilicate glass. Molecular-dynamics simulations

  2. Sub-nanometer Level Model Validation of the SIM Interferometer

    NASA Technical Reports Server (NTRS)

    Korechoff, Robert P.; Hoppe, Daniel; Wang, Xu

    2004-01-01

    The Space Interferometer Mission (SIM) flight instrument will not undergo a full performance, end-to-end system test on the ground due to a number of constraints. Thus, analysis and physics-based models will play a significant role in providing confidence that SIM will meet its science goals on orbit. The various models themselves are validated against the experimental results obtained from the MicroArcsecond Metrology (MAM) testbed adn the Diffraction testbed (DTB). The metric for validation is provided by the SIM astrometric error budget.

  3. Improved atomic resonance gas cell for use in frequency standards

    NASA Technical Reports Server (NTRS)

    Huggett, G. R.

    1968-01-01

    Atomic resonance gas cell maintains a stable operating frequency in the presence of pressure fluctuations in the ambient atmosphere. The new cell includes an envelope which is transparent to radiation in the optical region and to microwave energy at the atomic resonance frequency of the alkali-metal vapor within the envelope.

  4. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  5. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  6. Alkali-aggregate reaction in concrete containing high-alkali cement and granite aggregate

    SciTech Connect

    Owsiak, Z

    2004-01-01

    The paper discusses results of the research into the influence of high-alkali Portland cement on granite aggregate. The deformation of the concrete structure occurred after 18 months. The research was carried out by means of a scanning electron microscope equipped with a high-energy dispersive X-ray analyzer that allowed observation of unpolished sections of concrete bars exhibiting the cracking pattern typical of the alkali-silica reaction. Both the microscopic observation and the X-ray elemental analysis confirm the presence of alkali-silica gel and secondary ettringite in the cracks.

  7. SIM key comparison for luminous flux. SIM.PR-K4

    NASA Astrophysics Data System (ADS)

    Matamoros, Carlos H.; Ohno, Yoshi; Zwinkels, Joanne; Cogno, Jorge A.; Couceiro, Iakyra B.

    2016-01-01

    In compliance with the established BIPM and CCPR policies and guidelines on comparisons, the SIM Photometry and Radiometry Working Group decided to conduct a key comparison on total luminous flux in order to provide an opportunity for its member National Metrology Institutes (NMIs) that did not participate in the CCPR-K4 comparison, to get a link to the reference value obtained for this quantity (the lumen) and to derive the corresponding degrees of equivalence. This SIM.PR-K4 was piloted by Centro Nacional de Metrología (CENAM), the NMI of Mexico and included the participation of five laboratories: CENAM (Mexico), INTI (Argentina), INMETRO (Brazil), NIST (USA, linking lab), and NRC (Canada, linking lab). The comparison, conducted in star type scheme, was run using three to four lamps per participant, and results are given in this report, including the unilateral degrees of equivalence. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCPR, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  8. Astrometric Planet Searches with SIM PlanetQuest

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Unwin, Stephen C.; Shao, Michael; Tanner, Angelle M.; Catanzarite, Joseph H.; March, Geoffrey W.

    2007-01-01

    SIM will search for planets with masses as small as the Earth's orbiting in the habitable zones' around more than 100 of the stars and could discover many dozen if Earth-like planets are common. With a planned 'Deep Survey' of 100-450 stars (depending on desired mass sensitivity) SIM will search for terrestrial planets around all of the candidate target stars for future direct detection missions such as Terrestrial Planet Finder and Darwin, SIM's 'Broad Survey' of 2010 stars will characterize single and multiple-planet systems around a wide variety of stellar types, including many now inaccessible with the radial velocity technique. In particular, SIM will search for planets around young stars providing insights into how planetary systems are born and evolve with time.

  9. ToF-SIMS and XPS study of ancient papers

    NASA Astrophysics Data System (ADS)

    Benetti, Francesca; Marchettini, Nadia; Atrei, Andrea

    2011-01-01

    The surface composition of 18th century papers was investigated by means of ToF-SIMS and XPS. The aim of the present study was to explore the possibility of using these surface sensitive methods to obtain information which can help to determine the manufacturing process, provenance and state of conservation of ancient papers. The ToF-SIMS results indicate that the analyzed papers were sized by gelatin and that alum was added as hardening agent. The paper sheets produced in near geographical areas but in different paper mills exhibit a similar surface composition and morphology of the fibers as shown by the ToF-SIMS measurements. The ToF-SIMS and the XPS results indicate that a significant fraction of the cellulose fibers is not covered by the gelatin layer. This was observed for the ancient papers and for a modern handmade paper manufactured according to the old recipes.

  10. Salts of alkali metal anions and process of preparing same

    DOEpatents

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  11. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  12. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  13. Mechanical and microstructural properties of alkali-activated fly ash geopolymers.

    PubMed

    Komljenović, M; Bascarević, Z; Bradić, V

    2010-09-15

    This paper investigates the properties of geopolymer obtained by alkali-activation of fly ash (FA), i.e. the influence of characteristics of the representative group of FA (class F) from Serbia, as well as that of the nature and concentration of various activators on mechanical and microstructural properties of geopolymers. Aqueous solutions of Ca(OH)(2), NaOH, NaOH+Na(2)CO(3), KOH and sodium silicate (water glass) of various concentrations were used as alkali activators. It was established that the nature and concentration of the activator was the most dominant parameter in the alkali-activation process. In respect of physical characteristics of FA, the key parameter was fineness. The geopolymer based on FA with the highest content of fine particles (<43 microm), showed the highest compressive strength in all cases. Regardless of FA characteristics, nature and concentration of the activator, the alkali-activation products were mainly amorphous. The formation of crystalline phases (zeolites) occurred in some cases, depending on the reaction conditions. The highest compressive strength was obtained using sodium silicate. Together with the increase of sodium silicate SiO(2)/Na(2)O mass ratio, the atomic Si/Al ratio in the reaction products was also increased. Under the experimental conditions of this investigation, high strength was directly related to the high Si/Al ratio.

  14. Chemical analysis of obsidian by a SIMS/EDX combined system

    NASA Astrophysics Data System (ADS)

    Kudriavtsev, Yuriy; Gallardo, Salvador; Avendaño, Miguel; Ramírez, Georgina; Asomoza, René; Manzanilla, Linda; Beramendi, Laura

    2015-01-01

    A recently built combined EDX-SIMS system was used for a quantitative standardless analysis of obsidians. By using the novel scheme of analysis described in the paper, concentrations of 47 elements were measured. The range of concentrations analyzed varied by up to 8 orders of magnitude, from 1015 atoms/cm3 to 1023 atoms/cm3, which cannot be attained by any other analytical method based on electron or X-ray irradiations. The experimentally measured concentrations were compared with the data of XRF analysis: the data proved to differ in less than a factor of two for the majority of elements. The technique we suggest can be used to analyze almost any solid material.

  15. Combined SIMS, NanoSIMS, FTIR, and SEM Studies of OH in Nominally Anhydrous Minerals (NAMs)

    NASA Astrophysics Data System (ADS)

    Mosenfelder, J. L.; Le Voyer, M.; Rossman, G. R.; Guan, Y.; Bell, D. R.; Asimow, P. D.; Eiler, J.

    2010-12-01

    The accurate analysis of trace concentrations of hydrogen in NAMs is a long-standing problem, with wide-ranging implications in geology and planetology. SIMS and FTIR are two powerful and complementary analytical tools capable of measuring concentrations down to levels of less than 1 ppm H2O. Both methods, however, are subject to matrix effects and rely on other techniques such as manometry or nuclear reaction analysis (NRA) for quantitative calibration. We compared FTIR and SIMS data for a wide variety of NAMs: olivine, orthopyroxene, clinopyroxene, pyrope and grossular garnet, rutile, zircon, kyanite, andalusite, and sillimanite. Some samples were also characterized using high-resolution FE-SEM to assess the potential contribution of submicrocopic inclusions to the analyses. For SIMS, we use high mass resolution (≥5000 MRP) to measure 16O1H, using 30Si and/or 18O as reference isotopes. We use both primary standards, measured independently using manometry or NRA (e.g., [1]), and secondary standards, measured using polarized FTIR referenced back to calibrations developed on primary standards. Our major focus was on on olivine, for which we collected repeated calibration data with both SIMS and NanoSIMS, bracketing measurements of H diffusion profiles in both natural and experimentally annealed crystals at levels of 5-100 ppm H2O. With both instruments we establish low blanks (≤5 ppm) and high precision (typically less than 5% 2-σ errors in 16O1H/30Si), critical requirements for the low concentration levels being measured. Assessment of over 300 analyses on 11 olivines allows us to evaluate the suitability of different standards, several of which are in use in other laboratories [2,3,4]. Seven olivines, with 0-125 ppm H2O, give highly reproducible results and allow us to establish well-constrained calibration slopes with high correlation coefficients (r2 = 0.98-99), in contrast to previous studies [2,3,4]. However, four kimberlitic megacrysts with 140-243 ppm H

  16. Mechanism of metal cationization in organic SIMS

    NASA Astrophysics Data System (ADS)

    Wojciechowski, I.; Delcorte, A.; Gonze, X.; Bertrand, P.

    2001-09-01

    A mechanism for metal cationization of phenyl group containing hydrocarbons is discussed. Intact molecules and their fragments are emitted from a thin organic layer covering a metal surface bombarded by fast ions. It is shown that the process of associative ionization of a neutral hydrocarbon molecule and a neutral excited metal atom, occurring above the surface, may contribute to the yield of cationized molecules. To demonstrate this we have calculated the potential energy curves for the model system C 6H 6+Me (Me=Ag, Cu, Au) making use of the density functional theory. The initial states of the metal atoms approaching the benzene ring along the C 6 symmetry axis were set as the ground, ionic, and excited in ( n-1)d 9ns 2 electronic configuration.

  17. The Enlisted Steady State-Simulation (ESS-SIM) Tool

    DTIC Science & Technology

    2014-07-01

    The Enlisted Steady State-Simulation ( ESS -SIM) Tool David M. Rodney • Peggy A. Golfin • Molly F. McIntosh DIM-2014-U-007587-Final July 2014 This...situation. We built and made use of a simulation model, ESS -Sim (Enlisted Steady- State Simulation), to obtain insights into attainable levels of...fleet manning and estimate the impact of policy changes on fleet man- ning. This information memorandum describes this model. Model overview We built ESS

  18. Radial Velocities and Binarity of Southern SIM Grid Stars

    DTIC Science & Technology

    2015-01-01

    MNRAS 446, 2055–2058 (2015) doi:10.1093/mnras/stu2239 Radial velocities and binarity of southern SIM grid stars Valeri V. Makarov1‹ and Stephen C...ABSTRACT We present analysis of precision radial velocities (RV) of 1134 mostly red giant stars in the southern sky, selected as candidate astrometric...grid objects for the Space Interferometry Mis- sion (SIM). Only a few (typically, two or three) spectroscopic observations per star have been collected

  19. SIMS prototype system 1 test results: Engineering analysis

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The space and domestic water solar heating system designated SIMS Prototype Systems 1 was evaluated. The test system used 720 ft (gross) of Solar Energy Products Air Collectors, a Solar Control Corporation SAM 20 Air Handler with Model 75-175 control unit, a Jackson Solar Storage tank with Rho Sigma Mod 106 controller, and 20 tons of rack storage. The test data analysis performed evaluates the system performance and documents the suitability of SIMS Prototype System 1 hardware for field installation.

  20. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  1. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  2. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  3. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  4. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  5. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  6. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  7. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  8. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  9. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  10. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in...

  11. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  12. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  13. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  14. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  15. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in...

  16. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  17. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in...

  18. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in...

  19. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  20. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  1. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  2. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in...

  3. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  4. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  5. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    SciTech Connect

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Jackson Kimball, D. F.; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-11

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  6. Lipid specific molecular ion emission as a function of the primary ion characteristics in TOF-SIMS.

    PubMed

    Adams, Kendra J; DeBord, John Daniel; Fernandez-Lima, Francisco

    2016-09-01

    In the present work, the emission characteristics of lipids as a function of the primary ion cluster size and energy were studied using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Characteristic fragmentation patterns for common lipids are described, and changes in secondary ion (SI) yields using various primary ion beams are reported. In particular, emission characteristics were studied for pairs of small polyatomic and nanoparticle primary ion beams (e.g., Bi3(+) versus Ar1000(+) and Au3(+) versus Au400(+4)) based on the secondary ion yield of characteristic fragment and intact molecular ions as a function of the lipid class. Detailed descriptions of the fragmentation patterns are shown for positive and negative mode TOF-SIMS. Results demonstrate that the lipid structure largely dictates the spectral presence of molecular and/or fragment ions in each ionization mode due to the localization of the charge carrier (head group or fatty acid chain). Our results suggest that the larger the energy per atom for small polyatomic projectiles (Bi3(+) and Au3(+)), the larger the SI yield; in the case of nanoparticle projectiles, the SI increase with primary ion energy (200-500 keV range) for Au400(+4) and with the decrease of the energy per atom (10-40 eV/atom range) for Arn=500-2000(+) clusters. The secondary ion yield of the molecular ion of lipids from a single standard or from a mixture of lipids does not significantly change with the primary ion identity in the positive ion mode TOF-SIMS and slightly decreases in the negative ion mode TOF-SIMS.

  7. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    DOEpatents

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  8. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries

    SciTech Connect

    Deng, Zhi; Mo, Yifei; Ong, Shyue Ping

    2016-03-25

    The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that are currently of the most commercial interest.

  9. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries

    DOE PAGES

    Deng, Zhi; Mo, Yifei; Ong, Shyue Ping

    2016-03-25

    The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that aremore » currently of the most commercial interest.« less

  10. Ingestion of caustic alkali farm products.

    PubMed

    Neidich, G

    1993-01-01

    Since the Poison Prevention Packaging Act took effect, the number of ingestions of caustic alkali from household products has been significantly reduced. Commercial caustic alkalis used on farms, however, were not included in this legislation. Fourteen children over a 5 year period were seen after ingestion of commercial caustic alkalis used on farms. Seven of the children had ingested liquid pipeline cleaners and seven had ingested solid agents used for a variety of reasons. Six of seven children ingesting liquid agents did so from nonoriginal containers into which the caustic had been transferred for convenience. All seven children ingesting solid agents did so from the original container. Eight of the 14 children were found to have second-degree or worse esophageal involvement. Both solid and liquid caustic agents used commercially on farms can cause significant morbidity. Development of a child-resistant container for daily transfer of liquid pipeline agents could be helpful in preventing injuries from liquid pipeline cleaners. Pediatric gastroenterologists as well as primary care physicians in rural areas should be familiar with this type of injury and should take an active role in instructing parents of children living on farms to prevent such injuries. Extension of the Poison Prevention Packaging Act to caustic alkalis used on farms needs to be considered.

  11. The Additive Coloration of Alkali Halides

    ERIC Educational Resources Information Center

    Jirgal, G. H.; and others

    1969-01-01

    Describes the construction and use of an inexpensive, vacuum furnace designed to produce F-centers in alkali halide crystals by additive coloration. The method described avoids corrosion or contamination during the coloration process. Examination of the resultant crystals is discussed and several experiments using additively colored crystals are…

  12. Cohesive Energy of the Alkali Metals.

    ERIC Educational Resources Information Center

    Poole, R. T.

    1980-01-01

    Describes a method, considered appropriate for presentation to undergraduate students in materials science and related courses, for the calculation of cohesive energies of the alkali metals. Uses a description based on the free electron model and gives results to within 0.1 eV of the experimental values. (Author/GS)

  13. Atomic-Based Calculations of Two-Detector Doppler-Broadening Spectra

    SciTech Connect

    Asoka-Kumar, P; Howell, R

    2001-10-11

    We present a simplified approach for calculating Doppler broadening spectra based purely on atomic calculations. This approach avoids the need for detailed atomic positions, and can provide the characteristic Doppler broadening momentum spectra for any element. We demonstrate the power of this method by comparing theory and experiment for a number of elemental metals and alkali halides. In the alkali halides, the annihilation appears to be entirely with halide electrons.

  14. Highly Forbidden Transitions in Alkalis: Preparations for a Parity Violation Experiment

    NASA Astrophysics Data System (ADS)

    Oliveira, Claudia

    Preparatory steps for the experimental investigation of the highly forbidden 5s → 6s transition in rubidium using an atom trap and laser cooling are reported. A magneto-optical trap (MOT) has been assembled including saturation spectroscopy and a dichroic vapor laser lock. A frequency-doubled diode laser system has been installed to perform the spectroscopy of the forbidden transition with cold Rb atoms in the trap. The properties of the ns → n's transition in the presence of an external electric field have been investigated theoretically. A first measurement will be exploring the Stark-induced transition amplitude and the very faint magnetic dipole amplitude. The rubidium experiment is a precursor study for a long-term project at TRIUMF, Canada's National Laboratory for nuclear and particle physics, to measure atomic parity violation in the equivalent 7s → 8s transition in francium, the heaviest alkali atom which has no stable isotopes.

  15. Calcium-Alkali Syndrome in the Modern Era

    PubMed Central

    Patel, Ami M.; Adeseun, Gbemisola A.; Goldfarb, Stanley

    2013-01-01

    The ingestion of calcium, along with alkali, results in a well-described triad of hypercalcemia, metabolic alkalosis, and renal insufficiency. Over time, the epidemiology and root cause of the syndrome have shifted, such that the disorder, originally called the milk-alkali syndrome, is now better described as the calcium-alkali syndrome. The calcium-alkali syndrome is an important cause of morbidity that may be on the rise, an unintended consequence of shifts in calcium and vitamin D intake in segments of the population. We review the pathophysiology of the calcium-alkali syndrome. PMID:24288027

  16. Electronic structure and stability of clusters, especially of alkali metals and carbon

    NASA Astrophysics Data System (ADS)

    March, N. H.

    1993-12-01

    The electronic structure of alkali metal atom clusters of various sizes is first discussed, using a spherically averaged pseudopotential model. The main technique employed is density functional theory, and a connection is established with predictions about dissociation energy from the theory of the inhomogeneous electron gas. This latter theory is then invoked explicitly to discuss the barrier to fission for doubly charged alkali metal atom clusters. In the case of asymmetric fission, comparison is made with experiment following the study of Garcias [F. Garcias, J.A. Alonso, J.M. Lopez and M. Barranco, Phys. Rev. B, 43 (1991) 9459], while for symmetric fission a connection is again made between fission barrier and concepts which follow from the general theory of the inhomogeneous electron gas. Finally, and more briefly, both density functional calculations and quantum-chemical studies of carbon clusters are referred to. After a summary of the work of Adamowicz on small linear C clusters [L. Adamowicz, J. Chem. Phys., 94 (1991) 1241], results on C 60 and its singly and doubly charged anions, and on (C 60) 2, are summarized, the potential relevance to alkali doped buckminsterfullerene superconductivity being emphasized as an important direction for future work.

  17. Push-pull laser-atomic oscillator.

    PubMed

    Jau, Y-Y; Happer, W

    2007-11-30

    A vapor of alkali-metal atoms in the external cavity of a semiconductor laser, pumped with a time-independent injection current, can cause the laser to self-modulate at the "field-independent 0-0 frequency" of the atoms. Push-pull optical pumping by the modulated light drives most of the atoms into a coherent superposition of the two atomic sublevels with an azimuthal quantum number m=0. The atoms modulate the optical loss of the cavity at the sharply defined 0-0 hyperfine frequency. As in a maser, the system is not driven by an external source of microwaves, but a very stable microwave signal can be recovered from the modulated light or from the modulated voltage drop across the laser diode. Potential applications for this new phenomenon include atomic clocks, the production of long-lived coherent atomic states, and the generation of coherent optical combs.

  18. Push-Pull Laser-Atomic Oscillator

    SciTech Connect

    Jau, Y.-Y.; Happer, W.

    2007-11-30

    A vapor of alkali-metal atoms in the external cavity of a semiconductor laser, pumped with a time-independent injection current, can cause the laser to self-modulate at the 'field-independent 0-0 frequency' of the atoms. Push-pull optical pumping by the modulated light drives most of the atoms into a coherent superposition of the two atomic sublevels with an azimuthal quantum number m=0. The atoms modulate the optical loss of the cavity at the sharply defined 0-0 hyperfine frequency. As in a maser, the system is not driven by an external source of microwaves, but a very stable microwave signal can be recovered from the modulated light or from the modulated voltage drop across the laser diode. Potential applications for this new phenomenon include atomic clocks, the production of long-lived coherent atomic states, and the generation of coherent optical combs.

  19. Alkali metal recovery from carbonaceous material conversion process

    DOEpatents

    Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  20. The behaviour of alkali metals in biomass conversion systems

    SciTech Connect

    Hald, P.

    1995-12-31

    Alkali metals present in biomass contribute to problems as agglomeration, deposition and corrosion. In order to reduce the problems. It is of interest to describe the behavior of alkali metals in the conversion systems. Useful tools for die description are equilibrium calculations combined with measurements of gaseous alkali metal and analyses of solid materials. A comprehensive equilibrium study has been conducted and the results organized in tables, showing which alkali metal components can be present, dependent on the temperature and the ratios alkali metal to sulphur and alkali metal to chlorine. The tables presented can be used as a catalogue, giving easy access to equilibrium results. A sampling method for die measurement of gaseous alkali metal is described and the sampling efficiency is given. The developed tools are demonstrated for a straw gasifier and a fluidized bed combustor using a coal/straw mixture as a fuel.

  1. Synthetic, structural, and theoretical investigations of alkali metal germanium hydrides--contact molecules and separated ions.

    PubMed

    Teng, Weijie; Allis, Damian G; Ruhlandt-Senge, Karin

    2007-01-01

    The preparation of a series of crown ether ligated alkali metal (M=K, Rb, Cs) germyl derivatives M(crown ether)nGeH3 through the hydrolysis of the respective tris(trimethylsilyl)germanides is reported. Depending on the alkali metal and the crown ether diameter, the hydrides display either contact molecules or separated ions in the solid state, providing a unique structural insight into the geometry of the obscure GeH3- ion. Germyl derivatives displaying M--Ge bonds in the solid state are of the general formula [M([18]crown-6)(thf)GeH3] with M=K (1) and M=Rb (4). The compounds display an unexpected geometry with two of the GeH3 hydrogen atoms closely approaching the metal center, resulting in a partially inverted structure. Interestingly, the lone pair at germanium is not pointed towards the alkali metal, rather two of the three hydrides are approaching the alkali metal center to display M--H interactions. Separated ions display alkali metal cations bound to two crown ethers in a sandwich-type arrangement and non-coordinated GeH3- ions to afford complexes of the type [M(crown ether)2][GeH3] with M=K, crown ether=[15]crown-5 (2); M=K, crown ether=[12]crown-4 (3); and M=Cs, crown ether=[18]crown-6 (5). The highly reactive germyl derivatives were characterized by using X-ray crystallography, 1H and 13C NMR, and IR spectroscopy. Density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2) calculations were performed to analyze the geometry of the GeH3- ion in the contact molecules 1 and 4.

  2. Hyperfine frequency shift and Zeeman relaxation in alkali-metal-vapor cells with antirelaxation alkene coating

    NASA Astrophysics Data System (ADS)

    Corsini, Eric P.; Karaulanov, Todor; Balabas, Mikhail; Budker, Dmitry

    2013-02-01

    An alkene-based antirelaxation coating for alkali-metal vapor cells exhibiting Zeeman relaxation times up to 77 s was recently identified by Balabas The long relaxation times, two orders of magnitude longer than in paraffin- (alkane-) coated cells, motivate revisiting the question of what the mechanism is underlying wall-collision-induced relaxation and renew interest in applications of alkali-metal vapor cells to secondary frequency standards. We measure the width and frequency shift of the ground-state hyperfine mF=0→mF'=0 transition (clock resonance) in vapor cells with 85Rb and 87Rb atoms, with an alkene antirelaxation coating. We find that the frequency shift is slightly larger than for paraffin-coated cells and that the Zeeman linewidth scales linearly with the hyperfine frequency shift.

  3. Calculation of radiative corrections to hyperfine splittings in the neutral alkali metals

    SciTech Connect

    Sapirstein, J.; Cheng, K.T.

    2003-02-01

    The radiative correction to hyperfine splitting in hydrogen is dominated by the Schwinger term, {alpha}/2{pi} E{sub F}, where E{sub F} is the lowest-order hyperfine splitting. Binding corrections to this term, which enter as powers and logarithms of Z{alpha}, can be expected to be increasingly important in atoms with higher nuclear charge Z. Methods that include all orders of Z{alpha}, developed first to study highly charged ions, are adapted to the study of the neutral alkali metals, lithium through francium. It is shown that the use of the Schwinger term alone to account for radiative corrections to hyperfine splittings becomes qualitatively incorrect for the heavier alkali metals.0.

  4. Electronic states of alkali metal-NTCDA complexes: A DFT study

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto; Kawabata, Hiroshi

    2015-10-01

    Structures and electronic states of organic-inorganic compound of 1,4,5,8-naphthalene-tetracarboxylic-dianhydride (NTCDA) with alkali metals, Mn(NTCDA) (Mdbnd Li and Na, n = 0-2), have been investigated by means of hybrid density functional theory (DFT) calculations. From the DFT calculations, it was found that the electronic state of the complex at the ground state is characterized by a charge-transfer state expressed by (M)+(NTCDA)-. The alkali metals were bound equivalently to the carbonyl oxygen and ether oxygen atoms of NTCDA. The Cdbnd O double bond character of NTCDA was changed to a C-O single bond like character by the strong interaction of M to the Cdbnd O and O sites. This change was the origin of the red-shift of the IR spectrum. The UV-vis absorption spectra of Mn(NTCDA) were theoretically predicted on the basis of theoretical results.

  5. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures.

    PubMed

    Hu, Song; Jiang, Long; Wang, Yi; Su, Sheng; Sun, Lushi; Xu, Boyang; He, Limo; Xiang, Jun

    2015-09-01

    This work aimed to investigate effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass pyrolysis at different temperatures. The yield of CO, H2 and C2H4 was increased and that of CO2 was suppressed with increasing temperature. Increasing temperature could also promote depolymerization and aromatization reactions of active tars, forming heavier polycyclic aromatic hydrocarbons, leading to decrease of tar yields and species diversity. Diverse performance of inherent AAEMs at different temperatures significantly affected the distribution of pyrolysis products. The presence of inherent AAEMs promoted water-gas shift reaction, and enhanced the yield of H2 and CO2. Additionally, inherent AAEMs not only promoted breakage and decarboxylation/decarbonylation reaction of thermally labile hetero atoms of the tar but also enhanced thermal decomposing of heavier aromatics. Inherent AAEMs could also significantly enhance the decomposition of levoglucosan, and alkaline earth metals showed greater effect than alkali metals.

  6. Orbital disproportionation of electronic density is a universal feature of alkali-doped fullerides

    PubMed Central

    Iwahara, Naoya; Chibotaru, Liviu F.

    2016-01-01

    Alkali-doped fullerides show a wide range of electronic phases in function of alkali atoms and the degree of doping. Although the presence of strong electron correlations is well established, recent investigations also give evidence for dynamical Jahn–Teller instability in the insulating and the metallic trivalent fullerides. In this work, to reveal the interplay of these interactions in fullerides with even electrons, we address the electronic phase of tetravalent fulleride with accurate many-body calculations within a realistic electronic model including all basic interactions extracted from first principles. We find that the Jahn–Teller instability is always realized in these materials too. In sharp contrast to the correlated metals, tetravalent system displays uncorrelated band-insulating state despite similar interactions present in both fullerides. Our results show that the Jahn–Teller instability and the accompanying orbital disproportionation of electronic density in the degenerate lowest unoccupied molecular orbital band is a universal feature of fullerides. PMID:27713426

  7. Cavitation luminescence of argon-saturated alkali-metal solutions from a conical bubble

    NASA Astrophysics Data System (ADS)

    Jing, Ha; Jie He, Shou; Fang, Wang; Min, Song Jian

    2008-10-01

    In 1,2-propanediol solutions containing sodium chloride, spectra of luminescence from a collapsed conical bubble have been detected. Results show that the spectra consist of a broad continuum background, on which a resonance line arising from de-excitation of sodium atom at 589 nm and two satellite diffuse bands at ~554 nm and 620 nm respectively are superimposed. These are confirmed to be the emission from alkali-metal-argon exciplexes and are suggested to occur when the mixtures of alkali metal vapour and argon are rapidly compressed. The intracavity density of argon deduced from the line shift of Na resonance line data is estimated to be about 2 × 1026 m-3.

  8. Impurity detection in alkali-metal vapor cells via nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Patton, B.; Ishikawa, K.

    2016-11-01

    We use nuclear magnetic resonance spectroscopy of alkali metals sealed in glass vapor cells to perform in situ identification of chemical contaminants. The alkali Knight shift varies with the concentration of the impurity, which in turn varies with temperature as the alloy composition changes along the liquidus curve. Intentional addition of a known impurity validates this approach and reveals that sodium is often an intrinsic contaminant in cells filled with distilled, high-purity rubidium or cesium. Measurements of the Knight shift of the binary Rb-Na alloy confirm prior measurements of the shift's linear dependence on Na concentration, but similar measurements for the Cs-Na system demonstrate an unexpected nonlinear dependence of the Knight shift on the molar ratio. This non-destructive approach allows monitoring and quantification of ongoing chemical processes within the kind of vapor cells which form the basis for precise sensors and atomic frequency standards.

  9. SIMS: addressing the problem of heterogeneity in databases

    NASA Astrophysics Data System (ADS)

    Arens, Yigal

    1997-02-01

    The heterogeneity of remotely accessible databases -- with respect to contents, query language, semantics, organization, etc. -- presents serious obstacles to convenient querying. The SIMS (single interface to multiple sources) system addresses this global integration problem. It does so by defining a single language for describing the domain about which information is stored in the databases and using this language as the query language. Each database to which SIMS is to provide access is modeled using this language. The model describes a database's contents, organization, and other relevant features. SIMS uses these models, together with a planning system drawing on techniques from artificial intelligence, to decompose a given user's high-level query into a series of queries against the databases and other data manipulation steps. The retrieval plan is constructed so as to minimize data movement over the network and maximize parallelism to increase execution speed. SIMS can recover from network failures during plan execution by obtaining data from alternate sources, when possible. SIMS has been demonstrated in the domains of medical informatics and logistics, using real databases.

  10. The interactions of sorbates with gallosilicates and alkali-metal exchanged gallosilicates

    NASA Astrophysics Data System (ADS)

    Limtrakul, J.; Kuno, M.; Treesukol, P.

    1999-11-01

    Structures, energetics and vibrational frequencies of the interaction of adsorbates with H-aluminosilicates (H-AlZ), H-gallosilicates (H-GaZ), alkali-metal exchanged aluminosilicates (X-AlZ) and alkali-metal exchanged gallosilicates (X-GaZ), where X being Li, Na, or K, have been carried out at B3LYP and HF levels of theory with 6-31G(d) as the basis set. The charge compensating alkali-metal ions can affect the catalytically active site (Si-O-T where T=Al or Ga) by weakening the Si-O, Al-O, and Ga-O bonds as compared to their anionic frameworks. Comparing the net stabilization energies, Δ ENSE, of the naked alkali-metal/H 2O adducts with those of the alkali-metal exchanged zeolite/H 2O systems, the latter amounts only to about 50% of the former, which is partly due to the destabilizing role of the negative zeolitic oxygen frameworks surrounding the cations. The interaction of sorbates with the alkali-metal exchanged gallosilicates can be employed to probe the field strength inside the catalytic frameworks as indicated by the plot of the binding energy, Δ E, versus 1/ RX-O w2, with R(X-O w) being the distance between the cationic nucleus and the oxygen atom of the adsorbate. The IR spectra of H 2O adsorbed on Na-AlZ are calculated to be 3584, 3651, and 1686 cm -1. The obtained results are in excellent agreement with the very recent experimental IR spectra of water adsorbed on Na-ZSM-5 of Zecchina et al. (J. Phys. Chem., 100 (1996) 16 484). Other important features, i.e. the correlation between Δ νOH and, Δ E, R(X-O w) , and 1/ RX-O w2, cationic size, demonstrate that the interactions of sorbates with alkali-metal exchanged gallosilicates are well approximated by electrostatic contribution.

  11. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    PubMed

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins.

  12. A theoretical interpretation of the chemical shift of 29Si NMR peaks in alkali borosilicate glasses

    NASA Astrophysics Data System (ADS)

    Nanba, Tokuro; Nishimura, Mitsunori; Miura, Yoshinari

    2004-12-01

    In 29Si-NMR, it has so far been accepted that the chemical shifts of Q n species (SiO 4 units containing n bridging oxygens) were equivalent between alkali borosilicate and boron-free alkali silicate glasses. In the sodium borosilicate glasses with low sodium content, however, a contradiction was confirmed in the estimation of alkali distribution; 11B NMR suggested that Na ions were entirely distributed to borate groups to form BO 4 units, whereas a -90 ppm component was also observed in 29Si-NMR spectra, which has been attributed to Q 3 species associated with a nonbridging oxygen (NBO). Then, cluster molecular orbital calculations were performed to interpret the -90 ppm component in the borosilicate glasses. It was found that a silicon atom which had two tetrahedral borons (B4) as its second nearest neighbors was similar in atomic charge and Si2p energy to the Q 3 species in boron-free alkali silicates. Unequal distribution of electrons in Si-O-B4 bridging bonds was also found, where much electrons were localized on the Si-O bonds. It was finally concluded that the Si-O-B4 bridges with narrow bond angle were responsible for the -90 ppm 29Si component in the borosilicate glasses. There still remained another interpretation; the Q 3 species were actually present in the glasses, and NBOs in the Q 3 species were derived from the tricluster groups, such as (O 3Si)O(BO 3) 2. In the glasses with low sodium content, however, it was concluded that the tricluster groups were not so abundant to contribute to the -90 ppm component.

  13. Structural resolution of 4-substituted proline diastereomers with ion mobility spectrometry via alkali metal ion cationization.

    PubMed

    Flick, Tawnya G; Campuzano, Iain D G; Bartberger, Michael D

    2015-03-17

    The chirality of substituents on an amino acid can significantly change its mode of binding to a metal ion, as shown here experimentally by traveling wave ion mobility spectrometry-mass spectrometry (TWIMS-MS) of different proline isomeric molecules complexed with alkali metal ions. Baseline separation of the cis- and trans- forms of both hydroxyproline and fluoroproline was achieved using TWIMS-MS via metal ion cationization (Li(+), Na(+), K(+), and Cs(+)). Density functional theory calculations indicate that differentiation of these diastereomers is a result of the stabilization of differing metal-complexed forms adopted by the diastereomers when cationized by an alkali metal cation, [M + X](+) where X = Li, Na, K, and Cs, versus the topologically similar structures of the protonated molecules, [M + H](+). Metal-cationized trans-proline variants exist in a linear salt-bridge form where the metal ion interacts with a deprotonated carboxylic acid and the proton is displaced onto the nitrogen atom of the pyrrolidine ring. In contrast, metal-cationized cis-proline variants adopt a compact structure where the carbonyl of the carboxylic acid, nitrogen atom, and if available, the hydroxyl and fluorine substituent solvate the metal ion. Experimentally, it was observed that the resolution between alkali metal-cationized cis- and trans-proline variants decreases as the size of the metal ion increases. Density functional theory demonstrates that this is due to the decreasing stability of the compact charge-solvated cis-proline structure with increased metal ion radius, likely a result of steric hindrance and/or weaker binding to the larger metal ion. Furthermore, the unique structures adopted by the alkali metal-cationized cis- and trans-proline variants results in these molecules having significantly different quantum mechanically calculated dipole moments, a factor that can be further exploited to improve the diastereomeric resolution when utilizing a drift gas with a

  14. Measuring the biomechanical properties of the actin in MCF-7 breast cancer cell with a combined system of AFM and SIM

    NASA Astrophysics Data System (ADS)

    You, Minghai; Chen, Jianling; Wang, Yuhua; Jiang, Ningcheng; Xie, Shusen; Yang, Hongqin

    2016-10-01

    Biomechanics of cell plays an important role in the behavior and development of diseases, which has a profound influence on the health, structural integrity, and function of cells. In this study, we proposed a method to assess the biomechanical properties in single breast cancer cell line MCF-7 by combining structured illumination microscopy (SIM) with atomic force microscopy (AFM). High resolution optical image of actin in MCF-7 cell and its elastography were obtained. The result shows that the quantitative resolution was improved by SIM, with 490 nm of conventional fluorescence image and 285 nm of reconstructed SIM image, which could give a precise location for AFM measurement. The elasticity of actin is about in the range of 10 1000 kPa. The proposed methods will be helpful in the understanding and clinical diagnosis of diseases at single cell level.

  15. Removal of Retired Alkali Metal Test Systems

    SciTech Connect

    Brehm, W. F.; Church, W. R.; Biglin, J. W.

    2003-02-26

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  16. Geopolymers and Related Alkali-Activated Materials

    NASA Astrophysics Data System (ADS)

    Provis, John L.; Bernal, Susan A.

    2014-07-01

    The development of new, sustainable, low-CO2 construction materials is essential if the global construction industry is to reduce the environmental footprint of its activities, which is incurred particularly through the production of Portland cement. One type of non-Portland cement that is attracting particular attention is based on alkali-aluminosilicate chemistry, including the class of binders that have become known as geopolymers. These materials offer technical properties comparable to those of Portland cement, but with a much lower CO2 footprint and with the potential for performance advantages over traditional cements in certain niche applications. This review discusses the synthesis of alkali-activated binders from blast furnace slag, calcined clay (metakaolin), and fly ash, including analysis of the chemical reaction mechanisms and binder phase assemblages that control the early-age and hardened properties of these materials, in particular initial setting and long-term durability. Perspectives for future research developments are also explored.

  17. SIMS analysis of extended impact features on LDEF experiment

    NASA Technical Reports Server (NTRS)

    Amari, S.; Foote, J.; Jessberger, E. K.; Simon, C.; Stadermann, F. J.; Swan, P.; Walker, R.; Zinner, E.

    1991-01-01

    Discussed here are the first Secondary Ion Mass Spectroscopy (SIMS) analysis of projectile material deposited in extended impact features on Ge wafers from the trailing edge. Although most capture cells lost their plastic film covers, they contain extended impact features that apparently were produced by high velocity impacts when the plastic foils were still intact. Detailed optical scanning of all bare capture cells from the trailing edge revealed more than 100 impacts. Fifty-eight were selected by scanning electron microscope (SEM) inspection as prime candidates for SIMS analysis. Preliminary SIMS measurements were made on 15 impacts. More than half showed substantial enhancements of Mg, Al, Si, Ca, and Fe in the impact region, indicating micrometeorites as the projectiles.

  18. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O

    USGS Publications Warehouse

    Chen, S.G.; Yang, R.T.

    1997-01-01

    From molecular orbital calculations, a unified mechanism is proposed for the gasification reactions of graphite by CO2 and H2O, both uncatalyzed and catalyzed by alkali and alkaline earth catalysts. In this mechanism, there are two types of oxygen intermediates that are bonded to the active edge carbon atoms: an in-plane semiquinone type, Cf(O), and an off-plane oxygen bonded to two saturated carbon atoms that are adjacent to the semiquinone species, C(O)Cf(O). The rate-limiting step is the decomposition of these intermediates by breaking the C-C bonds that are connected to Cf(O). A new rate equation is derived for the uncatalyzed reactions, and that for the catalyzed reactions is readily available from the proposed mechanism. The proposed mechanism can account for several unresolved experimental observations: TPD and TK (transient kinetics) desorption results of the catalyzed systems, the similar activation energies for the uncatalyzed and catalyzed reactions, and the relative activities of the alkali and alkaline earth elements. The net charge of the edge carbon active site is substantially changed by gaining electron density from the alkali or alkaline earth element (by forming C-O-M, where M stands for metal). The relative catalytic activities of these elements can be correlated with their abilities of donating electrons and changing the net charge of the edge carbon atom. As shown previously (Chen, S. G.; Yang, R. T. J. Catal. 1993, 141, 102), only clusters of the alkali compounds are active. This derives from the ability of the clusters to dissociate CO2 and H2O to form O atoms and the mobility of the dissociated O atoms facilitated by the clusters.

  19. Transcriptome Analysis of Alkali Shock and Alkali Adaptation in Listeria monocytogenes 10403S

    PubMed Central

    Giotis, Efstathios S.; Muthaiyan, Arunachalam; Natesan, Senthil; Wilkinson, Brian J.; Blair, Ian S.

    2010-01-01

    Abstract Alkali stress is an important means of inactivating undesirable pathogens in a wide range of situations. Unfortunately, Listeria monocytogenes can launch an alkaline tolerance response, significantly increasing persistence of the pathogen in such environments. This study compared transcriptome patterns of alkali and nonalkali-stressed L. monocytogenes 10403S cells, to elucidate the mechanisms by which Listeria adapts and/or grows during short- or long-term alkali stress. Transcription profiles associated with alkali shock (AS) were obtained by DNA microarray analysis of midexponential cells suspended in pH 9 media for 15, 30, or 60 min. Transcription profiles associated with alkali adaptation (AA) were obtained similarly from cells grown to midexponential phase at pH 9. Comparison of AS and AA transcription profiles with control cell profiles identified a high number of differentially regulated open-reading frames in all tested conditions. Rapid (15 min) changes in expression included upregulation of genes encoding for multiple metabolic pathways (including those associated with Na+/H+ antiporters), ATP-binding cassette transporters of functional compatible solutes, motility, and virulence-associated genes as well as the σB controlled stress resistance network. Slower (30 min and more) responses to AS and adaptation during growth in alkaline conditions (AA) involved a different pattern of changes in mRNA concentrations, and genes involved in proton export. PMID:20677981

  20. Alkali metal protective garment and composite material

    DOEpatents

    Ballif, III, John L.; Yuan, Wei W.

    1980-01-01

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  1. Alkali Metal Heat Pipe Life Issues

    SciTech Connect

    Reid, Robert S.

    2004-07-01

    One approach to fission power system design uses alkali metal heat pipes for the core primary heat-transfer system. Heat pipes may also be used as radiator elements or auxiliary thermal control elements. This synopsis characterizes long-life core heat pipes. References are included where information that is more detailed can be found. Specifics shown here are for demonstration purposes and do not necessarily reflect current Nasa Project Prometheus point designs. (author)

  2. Thermal positron interactions with alkali covered tungsten

    NASA Astrophysics Data System (ADS)

    Yamashita, Takashi; Iida, Shimpei; Terabe, Hiroki; Nagashima, Yasuyuki

    2016-11-01

    The branching ratios of positron reemission, positronium emission, positronium negative ion emission and capture to the surface state for thermalized positrons at polycrystalline tungsten surfaces coated with Na, K and Cs have been measured. The data shows that the ratios depend on the coverage of the alkali-metal coating. The fraction of the emitted positronium increases with the coverage of the coating up to 90%.

  3. Alkali Metal Heat Pipe Life Issues

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.

    2004-01-01

    One approach to space fission power system design is predicated on the use of alkali metal heat pipes, either as radiator elements, thermal management components, or as part of the core primary heat-transfer system. This synopsis characterizes long-life core heat pipes. References are included where more detailed information can be found. Specifics shown here are for demonstrational purposes and do not necessarily reflect current Project Prometheus point designs.

  4. The impact of alkali pretreatment and post-pretreatment conditioning on the surface properties of rice straw affecting cellulose accessibility to cellulases.

    PubMed

    Karuna, Nardrapee; Zhang, Lu; Walton, Jeffrey H; Couturier, Marie; Oztop, Mecit H; Master, Emma R; McCarthy, Michael J; Jeoh, Tina

    2014-09-01

    Rice straw was pretreated with sodium hydroxide and subsequently conditioned to reduce the pH to 5-6 by either: (1) extensive water washing or (2) acidification with hydrochloric acid then water washing. Alkali pretreatment improved the enzymatic digestibility of rice straw by increasing the cellulose accessibility to cellulases. However, acidification after pretreatment reversed the gains in cellulose accessibility to cellulases and enzymatic digestibility due to precipitation of solubilized compounds. Surface composition analyses by ToF-SIMS confirmed a reduction in surface lignin by pretreatment and water washing, and suggested that acidification precipitated a chemically modified form of lignin on the surfaces of rice straw. The spin-spin relaxation times (T2) of the samples indicated increased porosity in alkali pretreated rice straw. The acidified pretreated rice straw had reduced amounts of water in the longer T2 proton pools associated with water in the pores of the biomass likely due to back-filling by the precipitated components.

  5. VentSim: a simulation model of cardiopulmonary physiology.

    PubMed

    Rutledge, G W

    1994-01-01

    VentSim is a quantitative model that predicts the effects of alternative ventilator settings on the cardiopulmonary physiology of critically ill patients. VentSim is an expanded version of the physiologic model in VentPlan, an application that provides ventilator-setting recommendations for patients in the intensive care unit. VentSim includes a ventilator component, an airway component, and a circulation component. The ventilator component predicts the pressures and airflows that are generated by a volume-cycled, constant-flow ventilator. The airway component has anatomic and physiologic deadspace compartments, and two alveolar compartments that participate in gas exchange with two pulmonary blood-flow compartments in the circulatory component. The circulatory component also has a shunt compartment that allows a fraction of blood flow to bypass gas exchange in the lungs, and a tissue compartment that consumes oxygen and generates carbon dioxide. The VentSim model is a set of linked first-order difference equations, with control variables that correspond to the ventilator settings, dependent variables that correspond to the physiologic state, and one independent variable, time. Because the model has no steady state solution, VentSim solves the equations by numeric integration, which is computation intensive. Simulation results demonstrate that VentSim predicts the effects of a variety of physiologic abnormalities that cannot be represented in less complex models such as the VentPlan model. For a ventilator-management application, the time-critical nature of ventilator-setting decisions limits the use of complex models. Advanced ventilator-management applications may include a mechanism to select patient-specific models that balance the trade-off of benefit of model detail and cost of computation delay.

  6. Petrology and geochemistry of alkali gabbronorites from Lunar Breccia 67975

    NASA Astrophysics Data System (ADS)

    James, Odette B.; Lindstrom, Marilyn M.; Flohr, Marta K.

    Clasts of an unusual type of lunar highlands igneous rock, alkali gabbronorite, have been found in Apollo 16 breccia 67975. The alkali gabbronorites form two distinct subgroups, magnesian and ferroan. Modes and bulk compositions are highly varied. The magnesian alkali gabbronorites are composed of bytownitic plagioclase (Or2-5An82-89), hypersthene (Wo3-5En49-62), augite (Wo39-42En36-44), a silica mineral, and trace Ba-rich K-feldspar. The ferroan alkali gabbronorites are composed of ternary plagioclase (Or11-22An65-74), pigeonite (Wo6-9En35-47), augite (Wo38-40En29-35), Ba-rich K-feldspar, and a silica mineral. Trace minerals in both subgroups are apatite, REE-rich whitlockite, and zircon. The magnesian and ferroan alkali gabbronorites appear to have formed by progressive differentiation of the same, or closely related, parent magmas; the compositional data indicate that these magmas were REE-rich. The ternary plagioclase is probably a high-temperature metastable phase formed during crystallization. In composition and mineralogy, the 67975 alkali gabbronorites show many similarities to Apollo 12 and 14 alkali norites, alkali gabbronorites, and alkali anorthosites, and all these rocks together constitute a distinctive alkali suite. In addition, the alkali gabbronorites show some similarities to KREEP basalts, Mg-norites, and some felsites. These data suggest genetic links between some or all of these types of pristine rocks. Two types of relationships are possible. The first is that alkali-suite rocks crystallized in plutons of KREEP basalt magma, and KREEP basalts are their extrusive equivalents. The second is that the alkali-suite rocks and some felsites all crystallized in plutons of Mg-norite parent magmas, and KREEP basalt magmas formed by remelting of these plutons. Additional studies are needed to resolve which of these hypotheses is correct.

  7. Petrology and geochemistry of alkali gabbronorites from lunar breccia 67975

    NASA Astrophysics Data System (ADS)

    James, Odette B.; Lindstrom, Marilyn M.; Flohr, Marta K.

    1987-09-01

    Clasts of an unusual type of lunar highlands igneous rock, alkali gabbronorite, have been found in Apollo 16 breccia 67975. The alkali gabbronorites form two distinct subgroups, magnesian and ferroan. Modes and bulk compositions are highly varied. The magnesian alkali gabbronorites are composed of bytownitic plagioclase (Or2-5An82-89), hypersthene (Wo3-5En49-62), augite (Wo39-42En36-44), a silica mineral, and trace Ba-rich K-feldspar. The ferroan alkali gabbronorites are composed of ternary plagioclase (Or11-22An65-74), pigeonite (Wo6-9En35-47), augite (Wo38-40En29-35), Ba-rich K-feldspar, and a silica mineral. Trace minerals in both subgroups are apatite, REE-rich whitlockite, and zircon. The magnesian and ferroan alkali gabbronorites appear to have formed by progressive differentiation of the same, or closely related, parent magmas; the compositional data indicate that these magmas were REE-rich. The ternary plagioclase is probably a high-temperature metastable phase formed during crystallization. In composition and mineralogy, the 67975 alkali gabbronorites show many similarities to Appllo 12 and 14 alkali norites, alkali gabbronorites, and alkali anorthosites, and all these rocks together constitute a distinctive alkali suite. In addition, the alkali gabbronorites, show some similarities to KREEP basalts, Mg-norites, and some felsites. These data suggest genetic links between some or all of these types of pristine rocks. Two types of relationships are possible. The first is that alkali-suite rocks crystallized in plutons of KREEP basalt magma, and KREEP basalts are their extrusive equivalents. The second is that the alkali-suite rocks and some felsites all crystallized in plutons of Mg-norite parent magmas, and KREEP basalt magmas formed by remelting of these plutons. Additional studies are needed to resolve which of these hypotheses is correct.

  8. Chemically induced fracturing in alkali feldspar

    NASA Astrophysics Data System (ADS)

    Scheidl, K. S.; Schaeffer, A.-K.; Petrishcheva, E.; Habler, G.; Fischer, F. D.; Schreuer, J.; Abart, R.

    2014-01-01

    Fracturing in alkali feldspar during Na+-K+ cation exchange with a NaCl-KCl salt melt was studied experimentally. Due to a marked composition dependence of the lattice parameters of alkali feldspar, any composition gradient arising from cation exchange causes coherency stress. If this stress exceeds a critical level fracturing occurs. Experiments were performed on potassium-rich gem-quality alkali feldspars with polished (010) and (001) surfaces. When the feldspar was shifted toward more sodium-rich compositions over more than about 10 mole %, a system of parallel cracks with regular crack spacing formed. The cracks have a general (h0l) orientation and do not correspond to any of the feldspar cleavages. The cracks are rather oriented (sub)-perpendicular to the direction of maximum tensile stress. The critical stress needed to initiate fracturing is about 325 MPa. The critical stress intensity factor for the propagation of mode I cracks, K Ic, is estimated as 2.30-2.72 MPa m1/2 (73-86 MPa mm1/2) from a systematic relation between characteristic crack spacing and coherency stress. An orientation mismatch of 18° between the crack normal and the direction of maximum tensile stress is ascribed to the anisotropy of the longitudinal elastic stiffness which has pronounced maxima in the crack plane and a minimum in the direction of the crack normal.

  9. Collisional atomic mixing

    NASA Astrophysics Data System (ADS)

    Biersack, Jochen P.

    The collisional mixing of thin metal markers in silicon is investigated with the computer program TRIM-DYNAMIC (T-DYN). This code assumes that at high dose irradiation, the substrate Si or Ge, will get fully amorphized, and the recoil atom can stop in any position after slowing down below a certain final energy Ef (taken here as 3 eV). In order to avoid chemical effects, the system Au marker in a silicon matrix was chosen for the TRIM simulation. The results are in good agreement with the experimental findings, as compiled in the review article by Paine and Averback. Similar collisional mixing effects occur in the process of SIMS or Auger electron depth profiling, and cannot be avoided. An example is given here for a thin layer of arsenic vapor deposited on Si and covered by amorphous silicon. The analysing ion beam in this case was 14.5 keV Cs+ incident at 37° towards the surface normal. In comparison with the SIMS measurements by modern depth profiling equipment, again good agreement was found between the T-DYN results and the experiment.

  10. Virus and Bacterial Cell Chemical Analysis by NanoSIMS

    SciTech Connect

    Weber, P; Holt, J

    2008-07-28

    In past work for the Department of Homeland Security, the LLNL NanoSIMS team has succeeded in extracting quantitative elemental composition at sub-micron resolution from bacterial spores using nanometer-scale secondary ion mass spectrometry (NanoSIMS). The purpose of this task is to test our NanoSIMS capabilities on viruses and bacterial cells. This initial work has proven successful. We imaged Tobacco Mosaic Virus (TMV) and Bacillus anthracis Sterne cells using scanning electron microscopy (SEM) and then analyzed those samples by NanoSIMS. We were able resolve individual viral particles ({approx}18 nm by 300 nm) in the SEM and extract correlated elemental composition in the NanoSIMS. The phosphorous/carbon ratio observed in TMV is comparable to that seen in bacterial spores (0.033), as was the chlorine/carbon ratio (0.11). TMV elemental composition is consistent from spot to spot, and TMV is readily distinguished from debris by NanoSIMS analysis. Bacterial cells were readily identified in the SEM and relocated in the NanoSIMS for elemental analysis. The Ba Sterne cells were observed to have a measurably lower phosphorous/carbon ratio (0.005), as compared to the spores produced in the same run (0.02). The chlorine/carbon ratio was approximately 2.5X larger in the cells (0.2) versus the spores (0.08), while the fluorine/carbon ratio was approximately 10X lower in the cells (0.008) than the spores (0.08). Silicon/carbon ratios for both cells and spores encompassed a comparable range. The initial data in this study suggest that high resolution analysis is useful because it allows the target agent to be analyzed separate from particulates and other debris. High resolution analysis would also be useful for trace sample analysis. The next step in this work is to determine the potential utility of elemental signatures in these kinds of samples. We recommend bulk analyses of media and agent samples to determine the range of media compositions in use, and to determine how

  11. On the origin of alkali metals in Europa exosphere

    NASA Astrophysics Data System (ADS)

    Ozgurel, Ozge; Pauzat, Françoise; Ellinger, Yves; Markovits, Alexis; Mousis, Olivier; LCT, LAM

    2016-10-01

    At a time when Europa is considered as a plausible habitat for the development of an early form of life, of particular concern is the origin of neutral sodium and potassium atoms already detected in its exosphere (together with magnesium though in smaller abundance), since these atoms are known to be crucial for building the necessary bricks of prebiotic species. However their origin and history are still poorly understood. The most likely sources could be exogenous and result from the contamination produced by Io's intense volcanism and/or by meteoritic bombardment. These sources could also be endogenous if these volatile elements originate directly from Europa's icy mantle. Here we explore the possibility that neutral sodium and potassium atoms were delivered to the satellite's surface via the upwelling of ices formed in contact with the hidden ocean. These metallic elements would have been transferred as ions to the ocean at early epochs after Europa's formation, by direct contact of water with the rocky core. During Europa's subsequent cooling, the icy layers formed at the top of the ocean would have kept trapped the sodium and potassium, allowing their future progression to the surface and final identification in the exosphere of the satellite. To support this scenario, we have used chemistry numerical models based on first principle periodic density functional theory (DFT). These models are shown to be well adapted to the description of compact ice and are capable to describe the trapping and neutralization of the initial ions in the ice matrix. The process is found relevant for all the elements considered, alkali metals like Na and K, as well as for Mg and probably for Ca, their respective abundances depending essentially of their solubility and chemical capabilities to blend with water ices.

  12. TRIM-DYNAMIC applied to marker broadening and SIMS depth profiling

    NASA Astrophysics Data System (ADS)

    Biersack, Jochen

    1999-06-01

    The collisional mixing of thin metal markers in silicon is investigated with the computer program TRIM-DYNAMIC (T-DYN). This code assumes that, at high dose irradiation, the substrate Si or Ge will get fully amorphized, and the recoil atom can stop in any position after slowing down below a certain final energy Ef (taken here as 3 eV). In order to avoid chemical effects, the system of a Au marker in a silicon matrix was chosen for the TRIM simulation. The results are in good agreement with the experimental findings, as compiled in the review article by Paine and Averback [Nucl. Instr. and Meth. B 7/8 (1985) 666]. Similar collisional mixing effects occur in the process of SIMS or AES depth profiling and cannot be avoided. Examples are given here for a thin film of antimony, which was vapor deposited on silicon and covered by amorphous silicon, and an arsenic implant of 0.5 keV in silicon which was known to exhibit no channeling tails. The analysing beam was 1 keV Ar + incident at 45°. Good agreement was found between the T-DYN simulations and the experimental results obtained with SIMS measurements using modern depth profiling equipment.

  13. Visualization and localization of bromotoluene distribution in Hedera helix using NanoSIMS.

    PubMed

    Tartivel, Ronan; Tatin, Romuald; Delhaye, Thomas; Maupas, Arthur; Gendron, Amaury; Gautier, Samy; Lavastre, Olivier

    2012-10-01

    Some plants are known as indoor air purifiers. A large number of studies report kinetic purification results for an extensive panel of plants, i.e. the pollutant concentration (volatile organic compounds, as known as VOC, most of the time) is continuously monitored by gas chromatography. However, only a few papers describe the mechanisms involved in such processes. This study deals with the use of secondary ion mass spectrometry imaging as an efficient tool to locate atmospheric pollutant as bromotoluene within the Hedera helix plant (leaf, roots) and the substrate on which it was previously grown. Hedera helix plants have been placed in a pollution chamber with control of the exposure parameters. Plant and soil samples excised were transferred into a fixative solution of glutaraldehyde and paraformaldehyde for a few days, were dehydrated using ethanol and were embedded with resin. Cross sections were made from the pale brown solids obtained. Then, a device using a cathodic pulverization device capable of depositing a few nanometers of gold atoms over the sample was used to make the surface electronically conductive for the NanoSIMS. Hence, polluted and unpolluted samples of Hedera helix and substrates were obtained following a careful procedure that allowed for the discrimination between polluted and nonpolluted ones. Nanoscale spatial resolution was an invaluable tool (NanoSIMS) to achieve this, and proved that VOCs, such as bromotoluene, were actually trapped by plants such as Hedera helix.

  14. Alteration of alkali reactive aggregates autoclaved in different alkali solutions and application to alkali-aggregate reaction in concrete (II) expansion and microstructure of concrete microbar

    SciTech Connect

    Lu Duyou . E-mail: duyoulu@njut.edu.cn; Mei Laibao; Xu Zhongzi; Tang Mingshu; Mo Xiangyin; Fournier, Benoit

    2006-06-15

    The effect of the type of alkalis on the expansion behavior of concrete microbars containing typical aggregate with alkali-silica reactivity and alkali-carbonate reactivity was studied. The results verified that: (1) at the same molar concentration, sodium has the strongest contribution to expansion due to both ASR and ACR, followed by potassium and lithium; (2) sufficient LiOH can completely suppress expansion due to ASR whereas it can induce expansion due to ACR. It is possible to use the duplex effect of LiOH on ASR and ACR to clarify the ACR contribution when ASR and ACR may coexist. It has been shown that a small amount of dolomite in the fine-grained siliceous Spratt limestone, which has always been used as a reference aggregate for high alkali-silica reactivity, might dedolomitize in alkaline environment and contribute to the expansion. That is to say, Spratt limestone may exhibit both alkali-silica and alkali-carbonate reactivity, although alkali-silica reactivity is predominant. Microstructural study suggested that the mechanism in which lithium controls ASR expansion is mainly due to the favorable formation of lithium-containing less-expansive product around aggregate particles and the protection of the reactive aggregate from further attack by alkalis by the lithium-containing product layer.

  15. Method for the safe disposal of alkali metal

    DOEpatents

    Johnson, Terry R.

    1977-01-01

    Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam-CO.sub.2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps.

  16. Alkali-metal electron spin density shift induced by a helium nanodroplet

    NASA Astrophysics Data System (ADS)

    Koch, Markus; Callegari, Carlo; Ernst, Wolfgang E.

    2010-04-01

    Helium (He) nanodroplets provide a cold and virtually unperturbing environment for the study of weakly bound molecules and van der Waals aggregates. High resolution microwave spectroscopy and the detection of electron spin transitions in doped He droplets have recently become possible. Measurements of hyperfine-resolved electron spin resonance in potassium (39K) and rubidium (85Rb) atoms on the surface of He droplets show small line shifts relative to the bare atoms. These shifts were recorded for all 2I + 1 components (I is the nuclear spin) of a transition at high accuracy for He droplets ranging in size from 1000 to 15,000 He atoms. Evaluation of the spectra yields the influence of the He environment on the electron spin density at the alkali-metal nucleus. A semi-empirical model is presented that shows good qualitative agreement with the measured droplet size dependent increase of Fermi contact interaction at the nuclei of dopant K and Rb.

  17. Matrix Effects in SIMS Analysis of Hydrogen in Nominally Anhydrous Minerals (NAMs)

    NASA Astrophysics Data System (ADS)

    Mosenfelder, J. L.; Rossman, G. R.

    2014-12-01

    Accurate analysis of trace H in NAMs has become important with recognition that even small amounts of H influence geochemical and geophysical processes. FTIR and SIMS can measure concentrations down to ~1 ppmw H2O. However, a major limitation is that they rely on standards calibrated with other methods. SIMS matrix effects for H in NAMs are poorly constrained, but are likely dominated by differences in mean atomic mass. Here we use volatile-free molar weight (VFMW) normalized to one O/mol as a proxy for this parameter [cf. 1]. Our goal is to constrain SIMS matrix effects by combining our work on olivine [2], pyroxene [3], and feldspar [4] with new data on kyanite, zircon, and 37 garnets (pyropes, grossulars, spessartines, and andradites), while critically evaluating absolute calibrations of IR absorption coefficients (ɛi) for H in NAMs. All of these NAMs taken together span a wider range in VFMW (~32-45) than in previous comparisons [5, 6] concentrating only on olivine, pyroxene, and pyrope-rich garnet (VFMW ~ 34-37). Our results and conclusions include the following: 1) SIMS-FTIR comparisons demonstrate that ɛi is wavenumber dependent for feldspar, zircon, grossular, and clinopyroxene, in accord with theory and empirical calibrations on hydrous materials. On the other hand, a factor of 3 difference in ɛi for H defects in olivine [7] is unsupported by our data [2]. 2) Calibration slopes (for plots of ppmw H2O vs. 16OH/30Si × SiO2) correlate positively with VFMW, an effect not discerned in previous work [6]. This result is also opposite to a study demonstrating a negative correlation for hydrous phases and glasses [1]. This discrepancy may be related to differences in analytical methods (e.g., Cs+ vs. O- primary beam, collection of OH- versus H+). 3) Scatter in the trend of calibration slopes vs. VFMW is likely due to uncertainties in ɛi. Another possible factor is the structure of the matrix, which can affect the kinetic energy of cascade collisions leading to

  18. A Modular Control Platform for a Diode Pumped Alkali Laser

    DTIC Science & Technology

    2008-09-01

    A Modular Control Platform for a Diode Pumped Alkali Laser Joshua Shapiro, Scott W. Teare New Mexico Institute of Mining and Technology, 801 Leroy...gain media, such as is done in diode pumped alkali lasers (DPALs), has been proposed and early experiments have shown promising results. However...REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE A Modular Control Platform for a Diode Pumped Alkali Laser 5a

  19. Determination of the common and rare alkalies in mineral analysis

    USGS Publications Warehouse

    Wells, R.C.; Stevens, R.E.

    1934-01-01

    Methods are described which afford a determination of each member of the alkali group and are successful in dealing with the quantities of the rare alkalies found in rocks and minerals. The procedures are relatively rapid and based chiefly on the use of chloroplatinic acid, absolute alcohol and ether, and ammonium sulfate. The percentages of all the alkalies found in a number of minerals are given.

  20. Effective oscillator strength distributions of spherically symmetric atoms for calculating polarizabilities and long-range atom–atom interactions

    SciTech Connect

    Jiang, Jun; Mitroy, J.; Cheng, Yongjun; Bromley, M.W.J.

    2015-01-15

    Effective oscillator strength distributions are systematically generated and tabulated for the alkali atoms, the alkaline-earth atoms, the alkaline-earth ions, the rare gases and some miscellaneous atoms. These effective distributions are used to compute the dipole, quadrupole and octupole static polarizabilities, and are then applied to the calculation of the dynamic polarizabilities at imaginary frequencies. These polarizabilities can be used to determine the long-range C{sub 6}, C{sub 8} and C{sub 10} atom–atom interactions for the dimers formed from any of these atoms and ions, and we present tables covering all of these combinations.

  1. Useful ion yields for Cameca IMS 3f and 6f SIMS: Limits on quantitative analysis

    USGS Publications Warehouse

    Hervig, R.L.; Mazdab, F.K.; Williams, Pat; Guan, Y.; Huss, G.R.; Leshin, L.A.

    2006-01-01

    The useful yields (ions detected/atom sputtered) of major and trace elements in NIST 610 glass were measured by secondary ion mass spectrometry (SIMS) using Cameca IMS 3f and 6f instruments. Useful yields of positive ions at maximum transmission range from 10-4 to 0.2 and are negatively correlated with ionization potential. We quantified the decrease in useful yields when applying energy filtering or high mass resolution techniques to remove molecular interferences. The useful yields of selected negative ions (O, S, Au) in magnetite and pyrite were also determined. These data allow the analyst to determine if a particular analysis (trace element contents or isotopic ratio) can be achieved, given the amount of sample available and the conditions of the analysis. ?? 2005 Elsevier B.V. All rights reserved.

  2. O-Isotope Features of Chondrules from Recent SIMS Studies

    NASA Astrophysics Data System (ADS)

    Tenner, T. J.; Ushikubo, T.; Nakashima, D.; Schrader, D. L.; Weisberg, M. K.; Kimura, M.; Kita, N. T.

    2017-02-01

    We highlight results of recent chondrule O-isotope studies by SIMS: (1) primary and secondary features based on the level of isotope homogeneity, (2) comparing ranges of host and relict data among chondrites, (3) O-isotope vs. major element links.

  3. ToF-SIMS PCA analysis of Myrtus communis L.

    NASA Astrophysics Data System (ADS)

    Piras, F. M.; Dettori, M. F.; Magnani, A.

    2009-06-01

    Nowadays there is a growing interest of researchers for the application of sophisticated analytical techniques in conjunction with statistical data analysis methods to the characterization of natural products to assure their authenticity and quality, and for the possibility of direct analysis of food to obtain maximum information. In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) in conjunction with principal components analysis (PCA) are applied to study the chemical composition and variability of Sardinian myrtle ( Myrtus communis L.) through the analysis of both berries alcoholic extracts and berries epicarp. ToF-SIMS spectra of berries epicarp show that the epicuticular waxes consist mainly of carboxylic acids with chain length ranging from C20 to C30, or identical species formed from fragmentation of long-chain esters. PCA of ToF-SIMS data from myrtle berries epicarp distinguishes two groups characterized by a different surface concentration of triacontanoic acid. Variability in antocyanins, flavonols, α-tocopherol, and myrtucommulone contents is showed by ToF-SIMS PCA analysis of myrtle berries alcoholic extracts.

  4. Progress in cellular analysis using ToF-SIMS

    NASA Astrophysics Data System (ADS)

    Lockyer, N. P.; Vickerman, J. C.

    2004-06-01

    The analysis of cellular biochemistry represents an exciting frontier for ToF-SIMS. The rewards of opening up the life sciences arena are extremely high and a number of groups are demonstrating significant progress towards this goal. However, there are many challenges to be overcome, including sample preparation, sensitivity of detection and data interpretation. In this paper we review some strategies for meeting these challenges. We report the preparation of microbial and mammalian cells using rapid freezing and freeze-fracture to preserve cellular chemistry in a 'life-like' state. ToF-SIMS images of both frozen-hydrated and freeze-dried samples reveal molecular information from single cells, including components of the cell wall, membrane and cytoplasm. The use of Au + primary ions provides increased yields of molecular ions from cellular samples, compared to Ga + bombardment. Polyatomic primary ions such as Au n+ and C 60+ provide even higher yields, extending the mass range of detected biomolecules. The application of principal component analysis aids interpretation of the complex ToF-SIMS spectra from cellular samples. This ToF-SIMS/PCA approach allows the classification of yeast cells from different species and strains, and non-malignant and malignant cancer cells derived from different metastatic sites.

  5. Kite: Status of the External Metrology Testbed for SIM

    NASA Technical Reports Server (NTRS)

    Dekens, Frank G.; Alvarez-Salazar, Oscar; Azizi, Alireza; Moser, Steven; Nemati, Bijan; Negron, John; Neville, Timothy; Ryan, Daniel

    2004-01-01

    Kite is a system level testbed for the External Metrology system of the Space Interferometry Mission (SIM). The External Metrology System is used to track the fiducial that are located at the centers of the interferometer's siderostats. The relative changes in their positions needs to be tracked to tens of picometers in order to correct for thermal measurements, the Kite testbed was build to test both the metrology gauges and out ability to optically model the system at these levels. The Kite testbed is an over-constraint system where 6 lengths are measured, but only 5 are needed to determine the system. The agreement in the over-constrained length needs to be on the order of 140 pm for the SIM Wide-Angle observing scenario and 8 pm for the Narrow-Angle observing scenario. We demonstrate that we have met the Wide-Angle goal with our current setup. For the Narrow-Angle case, we have only reached the goal for on-axis observations. We describe the testbed improvements that have been made since our initial results, and outline the future Kite changes that will add further effects that SIM faces in order to make the testbed more SIM like.

  6. Astrophysics Goals of the SIM PlanetQuest Mission

    NASA Astrophysics Data System (ADS)

    Unwin, S. C.

    2005-05-01

    The Space Interferometry Mission PlanetQuest (SIM PlanetQuest), will be NASA's first space-based instrument capable of microarcsecond astrometry, and it will attack a wide range of topics in extrasolar planet detection, stellar, and galactic astrophysics. Precision astrometry is one of the cornerstones of modern astrophysics. This paper serves as an introduction to a series of papers highlighting some of the science SIM PlanetQuest will be capable of. The project is currently in project Phase B, with a projected launch in 2010. SIM PlanetQuest astrometry at a level approaching 1 microarcsecond over a narrow field will enable searches for planets with close to terrestrial masses. It will fully characterize the multiple-planet systems already known to exist, and will search for planets around young stars, to help us understand their formation and evolution. At a global astrometric accuracy of around 4 microarcseconds, it will deliver very accurate distances to many interesting stellar types, including exotic systems such as black hole binaries. Precision proper motions will allow SIM PlanetQuest to probe the galactic mass distribution, and through studies of tidal tails, the formation and evolution of the galactic halo. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  7. Sim4cc: a cross-species spliced alignment program.

    PubMed

    Zhou, Leming; Pertea, Mihaela; Delcher, Arthur L; Florea, Liliana

    2009-06-01

    Advances in sequencing technologies have accelerated the sequencing of new genomes, far outpacing the generation of gene and protein resources needed to annotate them. Direct comparison and alignment of existing cDNA sequences from a related species is an effective and readily available means to determine genes in the new genomes. Current spliced alignment programs are inadequate for comparing sequences between different species, owing to their low sensitivity and splice junction accuracy. A new spliced alignment tool, sim4cc, overcomes problems in the earlier tools by incorporating three new features: universal spaced seeds, to increase sensitivity and allow comparisons between species at various evolutionary distances, and powerful splice signal models and evolutionarily-aware alignment techniques, to improve the accuracy of gene models. When tested on vertebrate comparisons at diverse evolutionary distances, sim4cc had significantly higher sensitivity compared to existing alignment programs, more than 10% higher than the closest competitor for some comparisons, while being comparable in speed to its predecessor, sim4. Sim4cc can be used in one-to-one or one-to-many comparisons of genomic and cDNA sequences, and can also be effectively incorporated into a high-throughput annotation engine, as demonstrated by the mapping of 64,000 Fagus grandifolia 454 ESTs and unigenes to the poplar genome.

  8. SIMS prototype system 3 test results: Engineering analysis

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The results obtained during testing of a closed hydronic drain down solar system designed for space and hot water heating is presented. Data analysis is included which documents the system performance and verifies the suitability of SIMS Prototype System 3 for field installation.

  9. SimSum: An Empirically Founded Simulation of Summarizing.

    ERIC Educational Resources Information Center

    Endres-Niggemeyer, Brigitte

    2000-01-01

    Describes SimSum (Simulation of Summarizing), which simulates 20 real-world working steps of expert summarizers. Presents an empirically founded cognitive model of summarizing and demonstrates that human summarization strategies can be simulated. Discusses current research in automatic summarization, summarizing in the World Wide Web, and…

  10. Development practices and lessons learned in developing SimPEG

    NASA Astrophysics Data System (ADS)

    Cockett, R.; Heagy, L. J.; Kang, S.; Rosenkjaer, G. K.

    2015-12-01

    Inverse modelling provides a mathematical framework for constructing a model of physical property distributions in the subsurface that are consistent with the data collected in geophysical surveys. The geosciences are increasingly moving towards the integration of geological, geophysical, and hydrological information to better characterize the subsurface. This integration must span disciplines and is not only challenging scientifically, but additionally the inconsistencies between conventions often makes implementations complicated, non­ reproducible, or inefficient. SimPEG is an open-source, multi-university effort aimed at providing a generalized framework for solving forward and inverse problems. SimPEG includes finite volume discretizations on structured and unstructured meshes, interfaces to standard numerical solver packages, convex optimization algorithms, model parameterizations, and visualization routines. The SimPEG package (http://simpeg.xyz) supports an ecosystem of forward and inverse modelling applications, including electromagnetics, vadose zone flow, seismic, and potential­ fields, that are all written with a common interface and toolbox. The goal of SimPEG is to support a community of researchers with well-tested, extensible tools, and encourage transparency and reproducibility both of the SimPEG software and the geoscientific research it is applied to. In this presentation, we will share some of the lessons we have learned in designing the modular infrastructure, testing and development practices of SimPEG. We will discuss our use of version control, extensive unit-testing, continuous integration, documentation, issue tracking, and resources that facilitate communication between existing team members and allows new researchers to get involved. These practices have enabled the use of SimPEG in research, industry, and education as well as the ability to support a growing number of dependent repositories and applications. We hope that sharing our

  11. Study on alkali removal technology from coal gasification gas

    SciTech Connect

    Inai, Motoko; Kajibata, Yoshihiro; Takao, Shoichi; Suda, Masamitsu

    1999-07-01

    The authors have proposed a new coal based combined cycle power plant concept. However, there are certain technical problems that must be overcome to establish this system. Major technical problem of the system is hot corrosion of gas turbine blades caused by sulfur and alkali vapor, because of high temperature dust removal without sulfur removal from the coal gas. So the authors have conducted several fundamental studies on dry type alkali removal sorbents for the purposed of reducing the corrosion on gas turbine blades. Based on the fundamental studies the authors found preferable alkali removal sorbents, and made clear their alkali removal performance.

  12. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, David C.; Mailhe, Catherine C.; De Jonghe, Lutgard C.

    1986-01-01

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  13. Alkali cation specific adsorption onto fcc(111) transition metal electrodes.

    PubMed

    Mills, J N; McCrum, I T; Janik, M J

    2014-07-21

    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  14. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.

    1985-07-10

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  15. Prominent effect of alkali metals in halogen-bonded complex of MCCBr−NCM′ (M and M′ = H, Li, Na, F, NH2, and CH3).

    PubMed

    Cheng, Jianbo; Li, Ran; Li, Qingzhong; Jing, Bo; Liu, Zhenbo; Li, Wenzuo; Gong, Baoan; Sun, Jiazhong

    2010-09-23

    Quantum chemical calculations have been performed for the MCCBr−NCM′ (M and M′ = H, Li, Na, F, NH2, and CH3) halogen-bonded complexes at the MP2/aug-cc-pVTZ level. The binding energy is in a range of 1.34−23.42 kJ/mol. The results show that the alkali metal has a prominent effect on the strength of halogen bond, and this effect is different for the alkali metal in the halogen and electron donors. The alkali atom in the halogen donor makes it weaken greatly, whereas that in the electron donor causes it to enhance greatly. Natural bond orbital analysis shows that the alkali atom is electron-withdrawing in the halogen donor and electron-donating in the electron donor. In formation of the halogen bond, the former is a negative contribution, whereas the latter is a positive one. A similar charge transfer is also found for the H atom in the halogen and electron donors. These complexes have also been analyzed with the atoms in molecules theory.

  16. Alkali Metal Control over N–N Cleavage in Iron Complexes

    PubMed Central

    2015-01-01

    Though N2 cleavage on K-promoted Fe surfaces is important in the large-scale Haber–Bosch process, there is still ambiguity about the number of Fe atoms involved during the N–N cleaving step and the interactions responsible for the promoting ability of K. This work explores a molecular Fe system for N2 reduction, particularly focusing on the differences in the results obtained using different alkali metals as reductants (Na, K, Rb, Cs). The products of these reactions feature new types of Fe–N2 and Fe-nitride cores. Surprisingly, adding more equivalents of reductant to the system gives a product in which the N–N bond is not cleaved, indicating that the reducing power is not the most important factor that determines the extent of N2 activation. On the other hand, the results suggest that the size of the alkali metal cation can control the number of Fe atoms that can approach N2, which in turn controls the ability to achieve N2 cleavage. The accumulated results indicate that cleaving the triple N–N bond to nitrides is facilitated by simultaneous approach of least three low-valent Fe atoms to a single molecule of N2. PMID:25412468

  17. Results from SIM's Thermo-Opto-Mechanical (TOM3) Testbed

    NASA Technical Reports Server (NTRS)

    Goullioud, Renaud; Lindensmith, C. A.; Hahn, I.

    2006-01-01

    Future space-based optical interferometers, such as the Space Interferometer Mission Planet Quest (SIM), require thermal stability of the optical wavefront to the level of picometers in order to produce astrometric data at the micro-arc-second level. In SIM, the internal path of the interferometer will be measured with a small metrology beam whereas the starlight fringe position is estimated from a large concentric annular beam. To achieve the micro-arc-second observation goal for SIM, it is necessary to maintain the optical path difference between the central and the outer annulus portions of the wavefront of the front-end telescope optics to a few tens of picometers. The Thermo-Opto-Mecha nical testbed (TOM3) was developed at the Jet Propulsion Laboratory to measure thermally induced optical deformations of a full-size flight-like beam compressor and siderostat, the two largest optics on SIM, in flight-like thermal environments. A Common Path Heterodyne Interferometer (COPHI) developed at JPL was used for the fine optical path difference measurement as the metrology sensor. The system was integrated inside a large vacuum chamber in order to mitigate the atmospheric and thermal disturbances. The siderostat was installed in a temperature-controlled thermal shroud inside the vacuum chamber, creating a flight-like thermal environment. Detailed thermal and structural models of the test articles (siderostat and compressor) were also developed for model prediction and correlation of the thermal deformations. Experimental data shows SIM required thermal stability of the test articles and good agreement with the model predictions.

  18. Alkali subhalides: high-pressure stability and interplay between metallic and ionic bonds.

    PubMed

    Saleh, G; Oganov, A R

    2016-01-28

    The application of high pressure (hundreds of gigapascals) to materials, besides modifying their properties, changes dramatically their reactivity. Consequently, new compounds are formed, which violate the chemical paradigms known to date. In fact, it was recently discovered (Zhang et al., Science, 2013) that sodium subchlorides (NaxCl, x > 1) become stable at high pressure. In this work, we carry out a thorough study of these compounds as well as of other alkali subhalides by means of evolutionary crystal structure prediction calculations combined with an in-depth analysis of their crystal and electronic structures. The results of our investigation are threefold. We present an updated phase diagram of NaxCl, including one new compound (Na4Cl3) and two previously undiscovered phases of Na3Cl. We demonstrate the appearance of remarkable features in the electronic structure of sodium subchlorides, such as chlorine atoms acquiring a -2 oxidation state. Most importantly, we derive a model which enables one to rationalize the stability of alkali subhalides at high pressure. The predictive ability of our model was validated by the results of crystal structure prediction calculations we carried out on alkali subhalides A3Y (A = Li, Na, K; Y = F, Cl, Br). Moreover, we show how the stability of recently reported high-pressure compounds can be rationalized on the basis of the insights gained in the present study.

  19. A Theoretical Model Analysis of Absorption of a Three level Diode Pumped Alkali Laser

    DTIC Science & Technology

    2009-03-01

    Properties……..……………………………………………………….5 2. Quantum Defect Parameters of Li, Na, K, R, and Cs……..…………………………....8 3. Hyperfine Multipole Constants for Cs...interaction as well as quantum mechanics and kinetics. First, the properties and structure of alkali atoms will be discussed to the necessary precision...where, n = electronic energy level quantum number l, m = rotational energy level quantum numbers α = , a0 = Bohr Radius

  20. Pump Diode Characterization for an Unstable Diode-Pumped Alkali Laser Resonator

    DTIC Science & Technology

    2013-03-01

    state, 5 2P3/2. Collisional relaxation with buffer gases cause the alkali atoms to transition to the 52P1/2 excited state. Stimulated emission occurs when...beam to exit the cavity. The 795 nm beam then exits the cavity through the output coupler H. line. The beam propagates to the gain cell heater block...the cavity. The lasing beam then exits the cavity through a dichroic output coupler with 25% transmission and a radius of curvature of 60 cm. The

  1. Diffusion with chemical reaction: An attempt to explain number density anomalies in experiments involving alkali vapor

    NASA Technical Reports Server (NTRS)

    Snow, W. L.

    1974-01-01

    The mutual diffusion of two reacting gases is examined which takes place in a bath of inert gas atoms. Solutions are obtained between concentric spheres, each sphere acting as a source for one of the reactants. The calculational model is used to illustrate severe number density gradients observed in absorption experiments with alkali vapor. Severe gradients result when sq root k/D R is approximately 5 where k, D, and R are respectively the second order rate constant, the multicomponent diffusion constant, and the geometrical dimension of the experiment.

  2. Electron affinities of the alkali dimers - Na2, K2, and Rb2

    NASA Technical Reports Server (NTRS)

    Partridge, H.; Dixon, D. A.; Walch, S. P.; Bauschlicher, C. W., Jr.; Gole, J. L.

    1983-01-01

    Ab initio calculations on the ground states of the alkali dimers, Na2, K2, and Rb2, and their anions are reported. The calculations employ large Gaussian basis sets and account for nearly all of the valence correlation energy. The calculated atomic electron affinities are within 0.02 eV of experiment and the calculated adiabatic electron affinities for Na2, K2, and Rb2 are, respectively, 0.470, 0.512, and 0.513 eV.

  3. Ion-Atom Cold Collisions and Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Maleki, Lute; Tjoelker, Robert L.

    1997-01-01

    Collisions between ultracold neutral atoms have for some time been the subject of investigation, initially with hydrogen and more recently with laser cooled alkali atoms. Advances in laser cooling and trapping of neutral atoms in a Magneto-Optic Trap (MOT) have made cold atoms available as the starting point for many laser cooled atomic physics investigations. The most spectacularly successful of these, the observation of Bose-Einstein Condensation (BEC) in a dilute ultra-cold spin polarized atomic vapor, has accelerated the study of cold collisions. Experimental and theoretical studies of BEC and the long range interaction between cold alkali atoms is at the boundary of atomic and low temperature physics. Such studies have been difficult and would not have been possible without the development and advancement of laser cooling and trapping of neutral atoms. By contrast, ion-atom interactions at low temperature, also very difficult to study prior to modern day laser cooling, have remained largely unexplored. But now, many laboratories worldwide have almost routine access to cold neutral atoms. The combined technologies of ion trapping, together with laser cooling of neutrals has made these studies experimentally feasible and several very important, novel applications might come out of such investigations . This paper is an investigation of ion-atom interactions in the cold and ultra-cold temperature regime. Some of the collisional ion-atom interactions present at room temperature are very much reduced in the low temperature regime. Reaction rates for charge transfer between unlike atoms, A + B(+) approaches A(+) + B, are expected to fall rapidly with temperature, approximately as T(sup 5/2). Thus, cold mixtures of atoms and ions are expected to coexist for very long times, unlike room temperature mixtures of the same ion-atom combination. Thus, it seems feasible to cool ions via collisions with laser cooled atoms. Many of the conventional collisional interactions

  4. Diode Pumped Alkali Vapor Lasers - A New Pathway to High Beam Quality at High Average Power

    SciTech Connect

    Page, R H; Boley, C D; Rubenchik, A M; Beach, R J

    2005-05-06

    Resonance-transition alkali-vapor lasers have only recently been demonstrated [1] but are already attracting considerable attention. Alkali-atom-vapor gain media are among the simplest possible systems known, so there is much laboratory data upon which to base performance predictions. Therefore, accurate modeling is possible, as shown by the zero- free-parameter fits [2] to experimental data on alkali-vapor lasers pumped with Ti:sapphire lasers. The practical advantages of two of the alkali systems--Rb and Cs--are enormous, since they are amenable to diode-pumping [3,4]. Even without circulating the gas mixture, these lasers can have adequate cooling built-in owing to the presence of He in their vapor cells. The high predicted (up to 70%) optical-to-optical efficiency of the alkali laser, the superb (potentially 70% or better) wall-plug efficiency of the diode pumps, and the ability to exhaust heat at high temperature (100 C) combine to give a power-scalable architecture that is lightweight. A recent design exercise [5] at LLNL estimated that the system ''weight-to-power ratio'' figure of merit could be on the order of 7 kg/kW, an unprecedented value for a laser of the 100 kW class. Beam quality is expected to be excellent, owing to the small dn/dT value of the gain medium. There is obviously a long way to go, to get from a small laser pumped with a Ti:sapphire or injection-seeded diode system (of near-perfect beam quality, and narrow linewidth) [1, 4] to a large system pumped with broadband, multimode diode- laser arrays. We have a vision for this technology-development program, and have already built diode-array-pumped Rb lasers at the 1 Watt level. A setup for demonstrating Diode-array-Pumped Alkali vapor Lasers (DPALs) is shown in Figure 1. In general, use of a highly-multimode, broadband pump source renders diode-array-based experiments much more difficult than the previous ones done with Ti:sapphire pumping. High-NA optics, short focal distances, and short

  5. A compact atomic beam based system for Doppler-free laser spectroscopy of strontium atoms

    NASA Astrophysics Data System (ADS)

    Verma, Gunjan; Vishwakarma, Chetan; Dharmadhikari, C. V.; Rapol, Umakant D.

    2017-03-01

    We report the construction of a simple, light weight, and compact atomic beam spectroscopy cell for strontium atoms. The cell is built using glass blowing technique and includes a simple titanium sublimation pump for the active pumping of residual and background gases to maintain ultra-high vacuum. A commercially available and electrically heated dispenser source is used to generate the beam of Sr atoms. We perform spectroscopy on the 5 s2S10 →5 s 5 pP11 transition to obtain a well resolved Doppler free spectroscopic signal for frequency stabilization of the laser source. This design can be easily extended to other alkali and alkaline earth metals.

  6. Alkali Halide Nanotubes: Structure and Stability

    PubMed Central

    Fernandez-Lima, Francisco A.; Henkes, Aline Verônica; da Silveira, Enio F.; Nascimento, Marco Antonio Chaer

    2013-01-01

    Accurate density functional theory (DFT) and coupled-cluster (CCSD) calculations on a series of (LiF)n=2,36 neutral clusters suggest that nanotube structures with hexagonal and octagonal transversal cross sections show stability equal to or greater than that of the typical cubic form of large LiF crystals. The nanotube stability was further corroborated by quantum dynamic calculations at room temperature. The fact that stable nanotube structures were also found for other alkali halides (e.g., NaCl and KBr) suggests that this geometry may be widely implemented in material sciences. PMID:24376901

  7. Cathode architectures for alkali metal / oxygen batteries

    DOEpatents

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  8. Electrodes For Alkali-Metal Thermoelectric Converters

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Wheeler, Bob L.; Jeffries-Nakamura, Barbara; Lamb, James L.; Bankston, C. Perry; Cole, Terry

    1989-01-01

    Combination of thin, porous electrode and overlying collector grid reduces internal resistance of alkali-metal thermoelectric converter cell. Low resistance of new electrode and grid boosts power density nearly to 1 W/cm2 of electrode area at typical operating temperatures of 1,000 to 1,300 K. Conductive grid encircles electrode film on alumina tube. Bus wire runs along tube to collect electrical current from grid. Such converters used to transform solar, nuclear, and waste heat into electric power.

  9. Microfabricated alkali vapor cell with anti-relaxation wall coating

    SciTech Connect

    Straessle, R.; Pétremand, Y.; Briand, D.; Rooij, N. F. de; Pellaton, M.; Affolderbach, C.; Mileti, G.

    2014-07-28

    We present a microfabricated alkali vapor cell equipped with an anti-relaxation wall coating. The anti-relaxation coating used is octadecyltrichlorosilane and the cell was sealed by thin-film indium-bonding at a low temperature of 140 °C. The cell body is made of silicon and Pyrex and features a double-chamber design. Depolarizing properties due to liquid Rb droplets are avoided by confining the Rb droplets to one chamber only. Optical and microwave spectroscopy performed on this wall-coated cell are used to evaluate the cell's relaxation properties and a potential gas contamination. Double-resonance signals obtained from the cell show an intrinsic linewidth that is significantly lower than the linewidth that would be expected in case the cell had no wall coating but only contained a buffer-gas contamination on the level measured by optical spectroscopy. Combined with further experimental evidence this proves the presence of a working anti-relaxation wall coating in the cell. Such cells are of interest for applications in miniature atomic clocks, magnetometers, and other quantum sensors.

  10. Cryptic microtextures and geological histories of K-rich alkali feldspars revealed by charge contrast imaging

    NASA Astrophysics Data System (ADS)

    Flude, Stephanie; Lee, Martin R.; Sherlock, Sarah C.; Kelley, Simon P.

    2012-06-01

    Charge contrast imaging in the scanning electron microscope can provide new insights into the scale and composition of alkali feldspar microtextures, and such information helps considerably with the interpretation of their geological histories and results of argon isotope thermochronological analyses. The effectiveness of this technique has been illustrated using potassium-rich alkali feldspars from the Dartmoor granite (UK). These feldspars contain strain-controlled lamellar crypto- and microperthites that are cross-cut by strain-free deuteric microperthites. The constituent albite- and orthoclase-rich phases of both microperthite generations can be readily distinguished by atomic number contrast imaging. The charge contrast results additionally show that sub-micrometre-sized albite `platelets' are commonplace between coarser exsolution lamellae and occur together to make cryptoperthites. Furthermore, charge contrast imaging reveals that the orthoclase-rich feldspar is an intergrowth of two phases, one that is featureless with uniform contrast and another that occurs as cross-cutting veins and grains with the {110} adularia habit. Transmission electron microscopy shows that the featureless feldspar is tweed orthoclase, whereas the veins and euhedral grains are composed of irregular microcline that has formed from orthoclase by `unzipping' during deuteric or hydrothermal alteration. The charge contrast imaging results are especially important in demonstrating that deuteric perthites are far more abundant in alkali feldspars than would be concluded from investigations using conventional microscopy techniques. The unexpected presence of such a high volume of replacement products has significant implications for understanding the origins and geological histories of crustal rocks and the use of alkali feldspars in geo- and thermochronology. Whilst the precise properties of feldspars that generate contrast remain unclear, the similarity between charge contrast images

  11. Alkali Metal Suboxometalates-Structural Chemistry between Salts and Metals.

    PubMed

    Wörsching, Matthias; Hoch, Constantin

    2015-07-20

    The crystal structures of the new cesium-poor alkali metal suboxometalates Cs10MO5 (M = Al, Ga, Fe) show both metallic and ionic bonding following the formal description (Cs(+))10(MO4(5-))(O(2-))·3e(-). Comparable to the cesium-rich suboxometalates Cs9MO4 (M = Al, Ga, In, Fe, Sc) with ionic subdivision (Cs(+))9(MO4(5-))·4e(-), they contain an oxometalate anion [M(III)O4](5-) embedded in a metallic matrix of cesium atoms. Columnlike building units form with prevalent ionic bonding inside and metallic bonding on the outer surface. In the cesium-rich suboxometalates Cs9MO4, additional cesium atoms with no contact to any anion are inserted between columns of the formal composition [Cs8MO4]. In the cesium-poor suboxometalates Cs10MO5, the same columns are extended by face-sharing [Cs6O] units, and no additional cesium atoms are present. The terms "cesium-rich" and "cesium-poor" here refer to the Cs:O ratio. The new suboxometalates Cs10MO5 crystallize in two modifications with new structure types. The orthorhombic modification adopts a structure with four formula units per unit cell in space group Pnnm with a = 11.158(3) Å, b = 23.693(15) Å, and c = 12.229(3) Å for Cs10AlO5. The monoclinic modification crystallizes with eight formula units per unit cell in space group C2/c with a = 21.195(3) Å, b = 12.480(1) Å, c = 24.120(4) Å, and β = 98.06(1)° for Cs10AlO5. Limits to phase formation are given by the restriction that the M atoms must be trivalent and by geometric size restrictions for the insertion of [Cs6O] blocks in Cs10MO5. All of the suboxometalate structures show similar structural details and form mixed crystal series with statistical occupation for the M elements following the patterns Cs9(M(1)xM(2)1-x)O4 and Cs10(M(1)xM(2)1-x)O5. The suboxometalates are a new example of ordered intergrowth of ionic and metallic structure elements, allowing for the combination of properties related to both ionic and metallic materials.

  12. Teaching the Teacher: Tutoring SimStudent Leads to More Effective Cognitive Tutor Authoring

    ERIC Educational Resources Information Center

    Matsuda, Noboru; Cohen, William W.; Koedinger, Kenneth R.

    2015-01-01

    SimStudent is a machine-learning agent initially developed to help novice authors to create cognitive tutors without heavy programming. Integrated into an existing suite of software tools called Cognitive Tutor Authoring Tools (CTAT), SimStudent helps authors to create an expert model for a cognitive tutor by tutoring SimStudent on how to solve…

  13. Alkali sorber (RABSAM), September 1, 1990--August 30, 1991

    SciTech Connect

    Lee, S.H.D.; Swift, M.W.

    1991-01-01

    The objective of this work is to develop a regenerable activated-bauxite sorber alkali monitor that requires no high-temperature/high-pressure sampling line for the reliable in situ measurement of alkali-vapor concentration in the exhaust from the pressurized fluidized-bed combustion of coal. 11 refs., 2 figs., 1 tab.

  14. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    DOEpatents

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  15. Formation of lysinoalanine in egg white under alkali treatment.

    PubMed

    Zhao, Yan; Luo, Xuying; Li, Jianke; Xu, Mingsheng; Tu, Yonggang

    2016-03-01

    To investigate the formation mechanism of lysinoalanine (LAL) in eggs during the alkali treatment process, NaOH was used for the direct alkali treatment of egg white, ovalbumin, and amino acids; in addition, the amount of LAL formed during the alkali treatment process was measured. The results showed that the alkali treatment resulted in the formation of LAL in the egg white. The LAL content increased with increasing pH and temperature, with the LAL content first increasing and then leveling off with increasing time. The amount of LAL formed in the ovalbumin under the alkali treatment condition accounted for approximately 50.51% to 58.68% of the amount of LAL formed in the egg white. Thus, the LAL formed in the ovalbumin was the main source for the LAL in the egg white during the alkali treatment process. Under the alkali treatment condition, free L-serine, L-cysteine, and L-cystine reacted with L-lysine to form LAL; therefore, they are the precursor amino acids of LAL formed in eggs during the alkali treatment process.

  16. [Raman spectra of endospores of Bacillus subtilis by alkali stress].

    PubMed

    Dong, Rong; Lu, Ming-qian; Li, Feng; Shi, Gui-yu; Huang, Shu-shi

    2013-09-01

    To research the lethal mechanism of spores stressed by alkali, laser tweezers Raman spectroscopy (LTRS) combined with principal components analysis (PCA) was used to study the physiological process of single spore with alkali stress. The results showed that both spores and germinated spores had tolerance with alkali in a certain range, but the ability of spores was obviously lower than that of spores due to the release of their Ca2+ -DPA which plays a key role in spores resistance as well as spores resistance to many stresses; A small amount of Ca2+ -DPA of spores was observed to release after alkali stress, however, the behavior of release was different with the normal Ca2+ -DPA release behavior induced by L-alanine; The data before and after alkali stress of the spores and g. spores with PCA reflected that alkali mainly injured the membrane of spores, and alkali could be easily enter into the inner structure of spores to damage the structure of protein backbone and injure the nucleic acid of spores. We show that the alkali could result in the small amount of Ca2+ -DPA released by destroying the member channel of spores.

  17. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, Wen Y.

    1984-01-01

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them (46, 53, 61, 69) with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide (63) to precipitate silicon constituents, the pH of the resultant solution is increased (81), preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated (84) to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process (86, 18, 17) where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  18. Superconductivity in alkali metal intercalated iron selenides

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  19. Durability of Alkali Activated Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  20. NanoSIMS analyses of zircons synthesized from Ti-enriched granitic melts

    NASA Astrophysics Data System (ADS)

    Hofmann, A. E.; Baker, M. B.; Eiler, J. M.

    2009-12-01

    Zircon is often the most abundant host of important trace elements (e.g., U, Th, Y, REEs) in felsic rocks. In addition, its robustness against physical and chemical alteration and diffusive re-equilibration, makes zircon an important repository of primary petrogenetic information. Ti thermometry [1,2] is a relatively new use of zircon geochemistry. However, recent work (e.g., [3]) has questioned the calibration of the thermometer and its applicability. We examine whether the published calibration [2] is independent of parental liquid composition: zircons were grown from synthetic oxide mixes and natural granitic powders; bulk TiO2 contents were varied so starting compositions would be either rutile over- or undersaturated at each run temperature. Attempts to synthesize zircons have previously been constrained by the need to grow crystals large enough for SIMS and electron microprobe analysis (i.e., at least 20 µm, [1]). The growth of large zircons, however, is inhibited by the low diffusivities of viscous felsic melts. Such constraints have necessitated the use of non-geological fluxes [4] and disproportionately high alkali contents [1] in order to produce large zircons. The spatial resolution of the NanoSIMS (~600 nm diameter beam during these sessions) allows for sub-micron resolution ion imaging of smaller zircons (from 4-20 µm). To help address the issue of slow kinetics, zircon seeds of known composition were added to starting powders as sites for nucleation and growth. A subset of our experiments were analyzed by both electron microprobe and NanoSIMS. Ti concentrations ([Ti]) in zircon centers were observed to be greater than initial seed [Ti], suggesting that the zircon seeds may have experienced a combination of dissolution, reprecipitation, and diffusive exchange with their host melt in addition to new growth. Although care was taken to minimize contributions of the glass to the zircon rim composition, rim [Ti] should be taken as an upper limit

  1. Effects of alkali treatments on Ag nanowire transparent conductive films

    NASA Astrophysics Data System (ADS)

    Kim, Sunho; Kang, Jun-gu; Eom, Tae-yil; Moon, Bongjin; Lee, Hoo-Jeong

    2016-06-01

    In this study, we employ various alkali materials (alkali metals with different base strengths, and ammonia gas and solution) to improve the conductivity of silver nanowire (Ag NW)-networked films. The alkali treatment appears to remove the surface oxide and improve the conductivity. When applied with TiO2 nanoparticles, the treatment appears more effective as the alkalis gather around wire junctions and help them weld to each other via heat emitted from the reduction reaction. The ammonia solution treatment is found to be quick and aggressive, damaging the wires severely in the case of excessive treatment. On the other hand, the ammonia gas treatment seems much less aggressive and does not damage the wires even after a long exposure. The results of this study highlight the effectiveness of the alkali treatment in improving of the conductivity of Ag NW-networked transparent conductive films.

  2. Performance of Straight Steel Fibres Reinforced Alkali Activated Concrete

    NASA Astrophysics Data System (ADS)

    Faris, Meor Ahmad; Bakri Abdullah, Mohd Mustafa Al; Nizar Ismail, Khairul; Muniandy, Ratnasamy; Putra Jaya, Ramadhansyah

    2016-06-01

    This paper focus on the performance of alkali activated concrete produced by using fly ash activated by sodium silicate and sodium hydroxide solutions. These alkali activated concrete were reinforced with straight steel fibres with different weight percentage starting from 0 % up to 5 %. Chemical composition of raw material in the production alkali activated concrete which is fly ash was first identified by using X-ray fluorescence. Results reveal there have an effect of straight steel fibres inclusion to the alkali activated concrete. Highest compressive strength of alkali activated concrete which is 67.72 MPa was obtained when 3 % of straight fibres were added. As well as flexural strength, highest flexural strength which is 6.78 MPa was obtained at 3 % of straight steel fibres inclusions.

  3. Interactions of hydrogen with alkali promoted Ru/SiO2 catalysts: A proton NMR study

    SciTech Connect

    Uner, Denis Ozbay

    1994-05-10

    Role of H spillover to the silica support was studied using chemisorption; a strongly bound component of spilled over H was found in the silica support which interfered with accurate measurements of active metal sites via volumetric strong H chemisorption. The volumetric chemisorption technique was modified so that measurement times were reduced from 12--36 h to 1 h. The active Ru surface was characterized means of changes in proton spin counts and NMR Knight shifts vs alkali loading. Na, K blocked the active surface of Ru metal, but Cs was pushed off by H chemisorption. The alkali promoters restricted H mobility on both metal surface and at the metal support interfaces; this is consistent with effects on Fischer-Tropsch synthesis. 1H NMR was used to study the effect of the active metal and promoter on support hydroxyl groups. The OH group density in the silica support decreased with metal and/or promoter loading, but not on a one-to-one basis; the exchange efficiency of the hydroxyls decreased with atomic size of the alkali metal. An additional downfield proton resonance was detected which was assigned to the alkali hydroxide species in the support.

  4. Kinetic and fluid dynamic modeling, numerical approaches of flowing-gas diode-pumped alkali vapor amplifiers.

    PubMed

    Shen, Binglin; Pan, Bailiang; Jiao, Jian; Xia, Chunsheng

    2015-07-27

    Comprehensive analysis of kinetic and fluid dynamic processes in flowing-gas diode-pumped alkali vapor amplifiers is reported. Taking into account effects of the temperature, the amplified spontaneous emission, the saturation power, the excitation of the alkali atoms to high electronic levels and the ionization, a detailed physical model is established to simulate the output performance of flowing-gas diode-pumped alkali vapor amplifiers. Influences of the flow velocity and the pump power on the amplified power are calculated and analyzed. Comparisons between single and double amplifier, longitudinal and transverse flow are made. Results show that end-pumped cascaded amplifier can provide higher output power under the same total pump power and the cell length, while output powers achieved by single- and double-end pumped, double-side pumped amplifiers with longitudinal or transverse flow have a complicated but valuable relation. Thus the model is extremely helpful for designing high-power flowing-gas diode-pumped alkali vapor amplifiers.

  5. Using ToF-SIMS to study industrial surface phenomena

    NASA Astrophysics Data System (ADS)

    Smentkowski, Vincent S.; Keenan, Michael R.; Arlinghaus, Henrik

    2016-10-01

    Time of flight secondary ion mass spectrometry (ToF-SIMS) is frequently used to analyze industrial samples since it offers high (ppb) detection sensitivity, very high surface specificity (analysis of the top 1-3 surface layers during a spectral/image acquisition), high mass resolution (allowing the analyst the ability to separate Cu from C5H3 for instance), the ability to detect hydrogen, high depth resolution for depth profile measurements, and detection of high-mass fragments associated with molecular species/additives. In this manuscript, we demonstrate the advantages of ToF-SIMS including the ability to measure trace quantities of unexpected species on the surfaces of devices, and the ability to extract high-mass resolution information from data sets which were collected at degraded mass resolution. The importance of applying unbiased multivariate statistical analysis (MVSA) to the complete set of measured data is also demonstrated.

  6. Investigations of semiconductor devices using SIMS; diffusion, contamination, process control

    NASA Astrophysics Data System (ADS)

    Lee, Jae Cheol; Won, Jeongyeon; Chung, Youngsu; Lee, Hyungik; Lee, Eunha; Kang, Donghun; Kim, Changjung; Choi, Jinhak; Kim, Jeomsik

    2008-12-01

    We have surveyed 22,155 analyses issues to know the portion of surface analysis at the total analyses activities. According to the survey result, the contribution of SIMS in the total analyses issues was about 7%. The portions of semiconductor process control, composition and contamination in the SIMS analyses issues are 25%, 29% and 16%, respectively. In this article, some examples of the semiconductor device process control, identification of contaminants, and failure analyses have been reviewed. The behavior of H, O, and Ti at the Pt/Ti/GaInZnO interfaces and their influences on the electrical property of thin film transistor are demonstrated. Also discolor issues including organic material contamination problem on Au pad are discussed in detail.

  7. Dynamic modeling of cellular populations within iBioSim.

    PubMed

    Stevens, Jason T; Myers, Chris J

    2013-05-17

    As the complexity of synthetic genetic circuits increases, modeling is becoming a necessary first step to inform subsequent experimental efforts. In recent years, the design automation community has developed a wealth of computational tools for assisting experimentalists in designing and analyzing new genetic circuits at several scales. However, existing software primarily caters to either the DNA- or single-cell level, with little support for the multicellular level. To address this need, the iBioSim software package has been enhanced to provide support for modeling, simulating, and visualizing dynamic cellular populations in a two-dimensional space. This capacity is fully integrated into the software, capitalizing on iBioSim's strengths in modeling, simulating, and analyzing single-celled systems.

  8. SIM Interferometer Testbed (SCDU) Status and Recent Results

    NASA Technical Reports Server (NTRS)

    Nemati, Bijan; An, Xin; Goullioud, Renaud; Shao, Michael; Shen, Tsae-Pyng; Wehmeier, Udo J.; Weilert, Mark A.; Wang, Xu; Werne, Thomas A.; Wu, Janet P.; Zhai, Chengxing

    2010-01-01

    SIM Lite is a space-borne stellar interferometer capable of searching for Earth-size planets in the habitable zones of nearby stars. This search will require measurement of astrometric angles with sub micro-arcsecond accuracy and optical pathlength differences to 1 picometer by the end of the five-year mission. One of the most significant technical risks in achieving this level of accuracy is from systematic errors that arise from spectral differences between candidate stars and nearby reference stars. The Spectral Calibration Development Unit (SCDU), in operation since 2007, has been used to explore this effect and demonstrate performance meeting SIM goals. In this paper we present the status of this testbed and recent results.

  9. Search for Terrestrial Planets with SIM Planet Quest

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Tanner, Angelle M.; Catanzarite, Joseph H.

    2006-01-01

    SIM is an astrometric mission that will be capable of 1 microarcsec relative astrometric accuracy in a single measurement of approx.1000 sec. The search for terrestrial planets in the habitable zone around nearby stars is one of the main science goals of the project. In 2001, NASA through the peer review process selected 10 key projects, two of which had as its goal, the search for terrestrial planets around nearby stars. The two teams, one led by G. Marcy (UC Berkeley) and one lead by M. Shao (JPL), have an extensive preparatory science program underway. This paper describes the status of this activity as well as the technology status of SIM's narrow angle astrometry capability, to reach 1 uas in a single epoch measure and its ability to average multiple epoch measurements to well below 1 uas.

  10. SIM Planetquest Science and Technology: A Status Report

    NASA Technical Reports Server (NTRS)

    Edberg, Stephen J.; Laskin, Robert A.; Marr, James C., IV; Unwin, Stephen C.; Shao, Michael

    2007-01-01

    Optical interferometry will open new vistas for astronomy over the next decade. The Space Interferometry Mission (SIM-PlanetQuest), operating unfettered by the Earth's atmosphere, will offer unprecedented astrometric precision that promises the discovery of Earth-analog extra-solar planets as well as a wealth of important astrophysics. Results from SIM will permit the determination of stellar masses to accuracies of 2% or better for objects ranging from brown dwarfs through main sequence stars to evolved white dwarfs, neutron stars, and black holes. Studies of star clusters will yield age determinations and internal dynamics. Microlensing measurements will present the mass spectrum of the Milky Way internal to the Sun while proper motion surveys will show the Sun's orbital radius and speed. Studies of the Galaxy's halo component and companion dwarf galaxies permit the determination of the Milky Way's mass distribution, including its Dark Matter component and the mass distribution and Dark Matter component of the Local Group. Cosmology benefits from precision (1-2%) determination of distances to Cepheid and RR Lyrae standard candles. The emission mechanism of supermassive black holes will be investigated. Finally, radio and optical celestial reference frames will be tied together by an improvement of two orders of magnitude. Optical interferometers present severe technological challenges. The Jet Propulsion Laboratory, with the support of Lockheed Martin Advanced Technology Center (LM ATC) and Northrop Grumman Space Technology (NGST), has addressed these challenges with a technology development program that is now complete. The requirements for SIM have been satisfied, based on outside peer review, using a series of laboratory tests and appropriate computer simulations: laser metrology systems perform with 10 picometer precision; mechanical vibrations have been controlled to nanometers, demonstrating orders of magnitude disturbance rejection; and knowledge of

  11. SimGen: A General Simulation Method for Large Systems.

    PubMed

    Taylor, William R

    2017-02-03

    SimGen is a stand-alone computer program that reads a script of commands to represent complex macromolecules, including proteins and nucleic acids, in a structural hierarchy that can then be viewed using an integral graphical viewer or animated through a high-level application programming interface in C++. Structural levels in the hierarchy range from α-carbon or phosphate backbones through secondary structure to domains, molecules, and multimers with each level represented in an identical data structure that can be manipulated using the application programming interface. Unlike most coarse-grained simulation approaches, the higher-level objects represented in SimGen can be soft, allowing the lower-level objects that they contain to interact directly. The default motion simulated by SimGen is a Brownian-like diffusion that can be set to occur across all levels of representation in the hierarchy. Links can also be defined between objects, which, when combined with large high-level random movements, result in an effective search strategy for constraint satisfaction, including structure prediction from predicted pairwise distances. The implementation of SimGen makes use of the hierarchic data structure to avoid unnecessary calculation, especially for collision detection, allowing it to be simultaneously run and viewed on a laptop computer while simulating large systems of over 20,000 objects. It has been used previously to model complex molecular interactions including the motion of a myosin-V dimer "walking" on an actin fibre, RNA stem-loop packing, and the simulation of cell motion and aggregation. Several extensions to this original functionality are described.

  12. The bHLH/Per-Arnt-Sim transcription factor SIM2 regulates muscle transcript myomesin2 via a novel, non-canonical E-box sequence

    PubMed Central

    Woods, Susan; Farrall, Alexandra; Procko, Carl; Whitelaw, Murray L.

    2008-01-01

    Despite a growing number of descriptive studies that show Single-minded 2 (Sim2) is not only essential for murine survival, but also upregulated in colon, prostate and pancreatic tumours, there is a lack of direct target genes identified for this basic helix–loop–helix/PAS transcription factor. We have performed a set of microarray experiments aimed at identifying genes that are differentially regulated by SIM2, and successfully verified that the Myomesin2 (Myom2) gene is SIM2-responsive. Although SIM2 has been reported to be a transcription repressor, we find that SIM2 induces transcription of Myom2 and activates the Myom2 promoter sequence when co-expressed with the heterodimeric partner protein, ARNT1, in human embryonic kidney cells. Truncation and mutation of the Myom2 promoter sequence, combined with chromatin immunoprecipitation studies in cells, has lead to the delineation of a non-canonical E-box sequence 5′-AACGTG-3′ that is bound by SIM2/ARNT1 heterodimers. Interestingly, in immortalized human myoblasts knock down of Sim2 results in increased levels of Myom2 RNA, suggesting that SIM2 is acting as a repressor in these cells and so its activity is likely to be highly context dependent. This is the first report of a direct SIM2/ARNT1 target gene with accompanying analysis of a functional response element. PMID:18480125

  13. Atomic physics with vapor-cell clocks

    NASA Astrophysics Data System (ADS)

    McGuyer, Bart Hunter

    The most widely used atomic frequency standards (or clocks) are based on the microwave resonant frequencies of optically pumped vapors of alkali-metal atoms in glass cells filled with buffer gas. These vapor-cell clocks are secondary, not primary frequency standards mainly because of the light and pressure shifts, which alter the resonant frequencies of the alkali-metal atoms. This dissertation presents studies of atomic physics important to vapor-cell clocks and, in particular, their accuracy. First, we report a simple method to suppress the light shift in optical pumping systems. This method uses only frequency modulation of a radio frequency or microwave source, which excites an atomic resonance, to simultaneously lock the source frequency to the atomic resonance and lock the pumping light frequency to suppress the light shift. This technique can be applied to many optical pumping systems that experience light shifts. It is especially useful for atomic clocks because it improves the long-term performance, reduces the influence of a pumping laser, and requires less equipment than previous methods. Next, we present three studies of the pressure shift, starting with an estimation of the hyperfine-shift potential that is responsible for most of the pressure shift. We then show that the microwave resonant frequencies of ground-state Rb and Cs atoms in Xe buffer gas have a relatively large nonlinear dependence on the Xe pressure, presumably because of short-lived RbXe and CsXe van der Waals molecules. The Xe data show striking discrepancies with the previous theory for nonlinear shifts, most of which is eliminated by accounting for the spin-rotation interaction in addition to the hyperfine-shift interaction in the molecules. To the limit of our experimental accuracy, the shifts of Rb and Cs in He, Ne, and N2 were linear with pressure. We then consider the prospects for suppressing the pressure shift with buffer-gas mixtures and feedback. Finally, we report an

  14. Probing Aqueous Surfaces by ToF-SIMS

    SciTech Connect

    Yu, Xiao-Ying; Yang, Li; Zhu, Zihua; Cowin, James P.; Iedema, Martin J.

    2011-10-01

    We report the first observations of aqueous surfaces by a time-of-flight secondary ion mass spectrometer (ToF-SIMS) via a self-contained microfluidic module compatible in vacuum. The interface uses a microfluidic channel with a 3 {micro}m diameter window into the flowing fluid beneath it. This window supports the liquid against the vacuum by the liquid's surface tension and limits the high-density vapor region traversed by the probe beams to only a few micrometers. We demonstrate detections of aqueous surfaces such as deuterium water and sodium iodide (NaI) solution through the small aperture by ToF-SIMS. Even more, molecular signals (M-H-) of glutamic acid (C5H8NO4-) are observed. ToF-SIMS coupled with the novel interface provides a molecular recognition capability, making it a great choice to detect short-lifetime reaction intermediates in aqueous solutions. This novel microfluidic interface makes multimodal vacuum based analysis of liquid surface possible.

  15. Identification of Mineral Phases on Basalt Surfaces by Imaging SIMS.

    PubMed

    Ingram, J C; Groenewold, G S; Olson, J E; Gianotto, A K; McCurry, M O

    1999-05-01

    A method for the identification of mineral phases on basalt surfaces utilizing secondary ion mass spectrometry (SIMS) with imaging capability is described. The goal of this work is to establish the use of imaging SIMS for characterization of the surface of basalt. The basalt surfaces were examined by interrogating the intact basalt (heterogeneous mix of mineral phases) as well as mineral phases that have been separated from the basalt samples. Mineral separates from the basalt were used to establish reference spectra for the specific mineral phases. Electron microprobe and X-ray photoelectron spectroscopy were used as supplemental techniques for providing additional characterization of the basalt. Mineral phases that make up the composition of the basalt were identified from single-ion images which were statistically grouped. The statistical grouping is performed by utilizing a program that employs a generalized learning vector quantization technique. Identification of the mineral phases on the basalt surface is achieved by comparing the mass spectra from the statistically grouped regions of the basalt to the mass spectral results from the mineral separates. The results of this work illustrate the potential for using imaging SIMS to study adsorption chemistry at the top surface of heterogeneous mineral samples.

  16. SIMS analysis: Development and evaluation 1995 summary report

    SciTech Connect

    Groenewold, G.S.; Appelhans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1995-10-01

    Secondary ion mass spectrometry (SIMS) was evaluated for characterizing Hg salts. It was found that sulfate and chloride species could be identified directly without sample preparation. Mercuric oxide could be identified by complexation with formic acid. Hg nitrates could be identified by complexation with cyclohexylamine (CHA). Laser desorption ion trap MS was evaluated for characterizing EDTA on environmental samples. No intact EDTA ions were observed, but a series of EDTA fragment ions were visible, particularly on basalt and soil. An ion trap SIMS was developed: a perrhenate ion gun was interfaced to a Teledyne ion trap spectrometer, and the entire device was mounted on a cart. The technology was demonstrated using a prototype ion trap SIMS instrument for detecting Hg{center_dot}CHA complexes formed from nitrate salts. Intensity of the ion gun was improved, and the surface damage of the particle was small, and ion gun technology transfer to Phi-Evans, Inc. is being considered. Two technology end users are at INEL`s Central Facilities Area 674 pond and acid pit of the Radioactive Waste Management Complex; target problem at both sites is the need for Hg speciation on soil samples.

  17. Exploratory analysis of TOF-SIMS data from biological surfaces

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, Seetharaman; Fletcher, John S.; Henderson, Alex; Lockyer, Nicholas P.; Vickerman, John C.

    2008-12-01

    The application of multivariate analytical tools enables simplification of TOF-SIMS datasets so that useful information can be extracted from complex spectra and images, especially those that do not give readily interpretable results. There is however a challenge in understanding the outputs from such analyses. The problem is complicated when analysing images, given the additional dimensions in the dataset. Here we demonstrate how the application of simple pre-processing routines can enable the interpretation of TOF-SIMS spectra and images. For the spectral data, TOF-SIMS spectra used to discriminate bacterial isolates associated with urinary tract infection were studied. Using different criteria for picking peaks before carrying out PC-DFA enabled identification of the discriminatory information with greater certainty. For the image data, an air-dried salt stressed bacterial sample, discussed in another paper by us in this issue, was studied. Exploration of the image datasets with and without normalisation prior to multivariate analysis by PCA or MAF resulted in different regions of the image being highlighted by the techniques.

  18. Hanford Soil Inventory Model (SIM) Rev. 1 Users Guide

    SciTech Connect

    Simpson, Brett C.; Corbin, Rob A.; Anderson, Michael J.; Kincaid, Charles T.

    2006-09-25

    The focus of the development and application of a soil inventory model as part of the Remediation and Closure Science (RCS) Project managed by PNNL was to develop a probabilistic approach to estimate comprehensive, mass balanced-based contaminant inventories for the Hanford Site post-closure setting. The outcome of this effort was the Hanford Soil Inventory Model (SIM). This document is a user's guide for the Hanford SIM. The principal project requirement for the SIM was to provide comprehensive quantitative estimates of contaminant inventory and its uncertainty for the various liquid waste sites, unplanned releases, and past tank farm leaks as a function of time and location at Hanford. The majority, but not all of these waste sites are in the 200 Areas of Hanford where chemical processing of spent fuel occurred. A computer model capable of performing these calculations and providing satisfactory quantitative output representing a robust description of contaminant inventory and uncertainty for use in other subsequent models was determined to be satisfactory to address the needs of the RCS Project. The ability to use familiar, commercially available software on high-performance personal computers for data input, modeling, and analysis, rather than custom software on a workstation or mainframe computer for modeling, was desired.

  19. TankSIM: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.

  20. Surface Analysis of Stratospheric Particles with TOF-SIMS: Bromine Enrichments Due to Contamination

    NASA Astrophysics Data System (ADS)

    Stephan, T.; Rost, D.; Jessberger, E. K.

    1995-09-01

    Volatile element enrichments compared to CI abundances in stratospheric interplanetary dust particles especially for Br have been interpreted as due to atmospheric contamination processes [1] or, less substantiated, as being indicative for a new type of chondritic material [2, 3]. Although only little is known about the actual Br concentration in the stratosphere, it is well accepted that halogens play an important role in stratospheric chemistry and therefore contamination processes have to be excluded before a Br-rich chondritic parent body can be speculated on. The analysis of the lateral distribution of halogens in IDPs with high-resolution imaging TOF-SIMS (time-of-flight secondary-ion-mass-spectrometry) [4] may help to solve the controversy about the ubiquity of Br in stratospheric IDPs. Besides controversially discussed theoretical models which try to test correlations between Br-content and stratospheric residence time or surface areas [5, 6, 7], first observational hints for halogen contamination of at least two chondritic IDPs were found for W7029E5, where Br- salt nanocrystals of presumably atmospheric origin were observed [5], and for L2006G1, which showed a halogen-rich exterior rim [8]. TOF-SIMS with its extremely high surface sensitivity -- the information depth is in the order of a few atomic monolayers -- seems to be suitable for a systematic search for surface correlated halogens in IDPs. Although, in general, plane surfaces are required for TOF-SIMS measurements, particle analysis is possible with this technique [9], though quantification is highly complicated due to topographic effects on secondary ion production and detection probability. We analyzed five stratospheric particles from small area collector U2071 which were previously investigated with SEM-EDX [10]. Silicone oil on the surfaces of some particles could still be detected with TOF-SIMS, even after extensive hexane rinsing. In three cases (chondritic particles U2071B7a, F3, and H1a

  1. Development of neutral atom traps based on a microfabricated waveguide

    NASA Astrophysics Data System (ADS)

    Jau, Yuan-Yu; Lee, Jongmin; Biedermann, Grant; Siddiqui, Aleem; Eichenfield, Matt; Dougla, Erica

    2016-05-01

    Implementation of trapping neutral atoms in the evanescent fields generated by a nano-structure, such as a nanofiber or a microfabricated nano-waveguide, will naturally enable strong atom-photon interactions, which serve the key mechanisms for different type of quantum controls. At Sandia National Labs, we are aiming to develop a platform based on this concept to eventually trap cesium atoms with a microfabricated waveguide. Although, neutral atom traps using optical nanofiber has been demonstrated, there are several key issues that need to be resolved to realize trapping atoms with microfabricated structure. The subjects include the material for making the waveguide, optical power handling capability, surface adsorption of alkali-metal atoms, surface roughness of the nano-structure, cold-atom source for loading the atoms into the evanescent-field traps, etc. We will discuss our studies on these related subjects and report our latest progress.

  2. Low-temperature oxidation of alkali overlayers: Ionic species and reaction kinetics

    NASA Astrophysics Data System (ADS)

    Krix, David; Nienhaus, Hermann

    2013-04-01

    Clean and oxidized alkali metal films have been studied using X-ray photoelectron spectroscopy (XPS). Thin films, typically 10 nm thick, of lithium, sodium, potassium, rubidium and cesium have been deposited on silicon substrates and oxidized at 120 K. Plasmon losses were found to dress the primary photo emission structures of the metals’ core lines which confirms the metallic, bulk like nature of the films. The emission from the O 1s core levels was used to determine the chemical composition and the reaction kinetics during the exposure to molecular oxygen at low pressures. Molecular oxide ions O2- and O22- as well as atomic oxygen ions O2- were detected in varying amounts depending on the alkali metal used. Diffusive transport of material in the film is shown to greatly determine the composition of the oxides. Especially, the growth of potassium superoxide is explained by the diffusion of potassium atoms to the surface and growth at the surface in a Deal-Grove like model.

  3. Ab initio perspective on the Mollwo-Ivey relation for F centers in alkali halides

    NASA Astrophysics Data System (ADS)

    Tiwald, Paul; Karsai, Ferenc; Laskowski, Robert; Gräfe, Stefanie; Blaha, Peter; Burgdörfer, Joachim; Wirtz, Ludger

    2015-10-01

    We revisit the well-known Mollwo-Ivey relation that describes the "universal" dependence of the absorption energies of F-type color centers on the lattice constant a of alkali-halide crystals, Eabs∝a-n. We perform both state-of-the-art ab initio quantum chemistry and post-DFT calculations of F-center absorption spectra. By "tuning" independently the lattice constant and the atomic species we show that the scaling with the lattice constant alone (keeping the elements fixed) would yield n =2 in agreement with the "particle-in-the-box" model. Keeping the lattice constant fixed and changing the atomic species enables us to quantify the ion-size effects which are shown to be responsible for the exponent n ≈1.8 .

  4. First hyperpolarizability of cyclooctatetraene modulated by alkali and alkaline earth metals.

    PubMed

    Roy, Ria Sinha; Mondal, Avijit; Nandi, Prasanta K

    2017-03-01

    In the present investigation, the first hyperpolarizability of alkali and alkaline earth metal derivatives of cyclooctatetraene (COT) has been calculated using BHHLYP and CAM-B3LYP functional for 6-311++G(d,p), 6-311++G(3df,3pd), and aug-pc 2 basis sets. Introduction of Na/K atoms at the axial position of COT and Li, Na, K/Be, Mg, Ca metal atoms and cyanide groups at the equatorial sites leads to lager enhancement of first hyperpolarizability. The ring charge density can account for the variation of first hyperpolarizability. The two state model has been invoked to explain the variation of first hyperpolarizability.

  5. Alkali oxide-tantalum oxide and alkali oxide-niobium oxide ionic conductors

    NASA Technical Reports Server (NTRS)

    Roth, R. S.; Parker, H. S.; Brower, W. S.; Minor, D.

    1974-01-01

    A search was made for new cationic conducting phases in alkali-tantalate and niobate systems. The phase equilibrium diagrams were constructed for the six binary systems Nb2O5-LiNbO3, Nb2O5-NaNbO3, Nb2O5-KNbO3, Ta2O5-NaTaO3, Ta2O5-LiTaO3, and Ta2O5-KTaO3. Various other binary and ternary systems were also examined. Pellets of nineteen phases were evaluated (by the sponsoring agency) by dielectric loss measurements. Attempts were made to grow large crystals of eight different phases. The system Ta2O5-KTaO3 contains at least three phases which showed peaks in dielectric loss vs. temperature. All three contain structures related to the tungsten bronzes with alkali ions in non-stoichiometric crystallographic positions.

  6. Gold nanoislands for sensitivity enhancement in organic and imaging mass spectrometries (LDIMS, keV- and MeV-SIMS)

    NASA Astrophysics Data System (ADS)

    Delcorte, Arnaud; Restrepo, Oscar; Prabhakaran, Aneesh

    2011-03-01

    Gold nanoparticles condensed on the surface of organic materials induce large ion yield enhancements in secondary ion mass spectrometry, using atomic projectiles. Here, we first show that the interest of surface metallization extends to MeV-SIMS and to UV laser desorption/ionization, in which the energy of the primary beam is deposited through the electronic subsystems (but not to keV-cluster-SIMS). For the three methods, gold nanoislands induce at least a ten-fold increase of the characteristic fragment and molecular ion yields, making surface metallization an interesting approach for imaging MS of organic surfaces. In the second part of this report, we discuss the underlying physics. For instance, using molecular dynamics simulations, we explain why 10 keV atomic projectiles interacting with metallized organic surfaces desorb more molecules, and why it is not the case with cluster projectiles such as C60 and Au 400 . For the other regimes of irradiation, arguments involving photon absorption and electronic effects are proposed.

  7. Alternative Liquid Fuels Simulation Model (AltSim).

    SciTech Connect

    Williams, Ryan; Baker, Arnold Barry; Drennen, Thomas E.

    2009-12-01

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production and end use costs, greenhouse gas emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol from various feedstocks (switchgrass, corn stover, forest residue, and farmed trees), biodiesel, and diesels derived from natural gas (gas to liquid, or GTL), coal (coal to liquid, or CTL), and coal with biomass (CBTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion ratio, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the structure and methodology of AltSim, presents results, and provides a detailed sensitivity analysis. The Energy Independence and Security Act (EISA) of 2007 sets a goal for the increased use of biofuels in the U.S., ultimately reaching 36 billion gallons by 2022. AltSim's base case assumes EPA projected feedstock costs in 2022 (EPA, 2009). For the base case assumptions, AltSim estimates per gallon production costs for the five ethanol feedstocks (corn, switchgrass, corn stover, forest residue, and farmed trees) of $1.86, $2.32, $2.45, $1.52, and $1.91, respectively. The projected production cost of biodiesel is $1.81/gallon. The estimates for CTL without biomass range from $1.36 to $2.22. With biomass, the estimated costs increase, ranging from $2.19 per gallon for the CTL option with 8% biomass to $2.79 per gallon for the CTL option with 30% biomass and carbon capture and sequestration. AltSim compares the greenhouse gas emissions (GHG) associated with both the production and consumption of the various fuels. EISA allows fuels emitting 20% less greenhouse gases (GHG) than conventional gasoline and diesels to qualify as renewable fuels. This allows several of the CBTL

  8. Heat pipes containing alkali metal working fluid

    NASA Technical Reports Server (NTRS)

    Morris, J. F. (Inventor)

    1981-01-01

    A technique for improving high temperature evaporation-condensation heat-transfer devices which have important and unique advantage in terrestrial and space energy processing is described. The device is in the form of a heat pipe comprising a sealed container or envelope which contains a capillary wick. The temperature of one end of the heat pipe is raised by the input of heat from an external heat source which is extremely hot and corrosive. A working fluid of a corrosive alkali metal, such as lithium, sodium, or potassium transfers this heat to a heat receiver remote from the heat source. The container and wick are fabricated from a superalloy containing a small percentage of a corrosion inhibiting or gettering element. Lanthanum, scandium, yttrium, thorium, and hafnium are utilized as the alloying metal.

  9. Volcanic Origin of Alkali Halides on Io

    NASA Technical Reports Server (NTRS)

    Schaefer, L.; Fegley, B., Jr.

    2003-01-01

    The recent observation of NaCl (gas) on Io confirms our earlier prediction that NaCl is produced volcanically. Here we extend our calculations by modeling thermochemical equilibrium of O, S, Li, Na, K, Rb, Cs, F, Cl, Br, and I as a function of temperature and pressure in a Pele-like volcanic gas with O/S/Na/Cl/K = 1.518/1/0.05/0.04/0.005 and CI chondritic ratios of the other (as yet unobserved) alkalis and halogens. For reference, the nominal temperature and pressure for Pele is 1760 plus or minus 210 K and 0.01 bars based on Galileo data and modeling.

  10. Ionic alkali halide XUV laser feasibility study

    SciTech Connect

    Yang, T.T.; Gylys, V.T.; Bower, R.D.; Harris, D.G.; Blauer, J.A.; Turner, C.E.; Hindy, R.N.

    1989-11-10

    The objective of this work is to assess the feasibility of a select set of ionic alkali halide XUV laser concepts by obtaining the relevant kinetic and spectroscopic parameters required for a proof-of-principle and conceptual design. The proposed lasers operate in the 80--200 nm spectral region and do not require input from outside radiation sources for their operation. Frequency up-conversion and frequency mixing techniques and therefore not considered in the work to be described. An experimental and theoretical study of a new type of laser operating in the extreme ultraviolet wavelength region has been conducted. The lasing species are singly ionized alkali halide molecules such as Rb{sup 2+}F{sub {minus}}, Rb{sup 2+}Br{sup {minus}} and Cs{sup 2+}F{sup {minus}}. These species are similar in electronic structure to the rare gas halide excimers, such as XeF and Krf, except that the ionic molecules emit at wavelengths of 80--200 nm, much shorter than the conventional rare-gas halide excimer laser. The radiative lifetime of these molecules are typically near 1 ns, which is about an order of magnitude shorter than that for rare-gas halide systems. The values of the cross section for stimulated emission are on the order of 1 {times} 10{sup {minus}16}cm{sup 2}. Because of the fundamental similarity to existing UV lasers, these systems show promise as a high power, efficient XUV lasers. 55 refs., 50 figs., 5 tabs.

  11. Ultrasonic coal washing to leach alkali elements from coals.

    PubMed

    Balakrishnan, S; Reddy, V Midhun; Nagarajan, R

    2015-11-01

    Deposition of fly ash particles onto heat-transfer surfaces is often one of the reasons for unscheduled shut-downs of coal-fired boilers. Fouling deposits encountered in convective sections of a boiler are characterized by arrival of ash particles in solidified (solid) state. Fouling is most frequently caused by condensation and chemical reaction of alkali vapors with the deposited ash particles creating a wet surface conducive to collect impacting ash particles. Hence, the amount of alkali elements present in coals, which, in turn, is available in the flue gas as condensable vapors, determines the formation and growth of fouling deposits. In this context, removal of alkali elements becomes vital when inferior coals having high-ash content are utilized for power generation. With the concept of reducing alkali elements present in a coal entering the combustor, whereby the fouling deposits can either be minimized or be weakened due to absence of alkali gluing effect, the ultrasonic leaching of alkali elements from coals is investigated in this study. Ultrasonic water-washing and chemical-washing, in comparison with agitation, are studied in order to estimate the intensification of the alkali removal process by sonication.

  12. Alkali elemental and potassium isotopic compositions of Semarkona chondrules

    USGS Publications Warehouse

    Alexander, C.M. O'D.; Grossman, J.N.

    2005-01-01

    We report measurements of K isotope ratios in 28 Semarkona chondrules with a wide range of petrologic types and bulk compositions as well as the compositions of CPX-mesostasis pairs in 17 type I Semarkona chondrules, including two chondrules with radial alkali zonation and 19 type II chondrules. Despite the wide range in K/Al ratios, no systematic variations in K isotopic compositions were found. Semarkona chondrules do not record a simple history of Rayleigh-type loss of K. Experimentally determined evaporation rates suggest that considerable alkali evaporation would have occurred during chondrule formation. Nevertheless, based on Na CPX-mesostasis distribution coefficients, the alkali contents of the cores of most chondrules in Semarkona were probably established at the time of final crystallization. However, Na CPX-mesostasis distribution coefficients also show that alkali zonation in type I Semarkona chondrules was produced by entry of alkalis after solidification, probably during parent body alteration. This alkali metasomatism may have gone to completion in some chondrules. Our preferred explanation for the lack of systematic isotopic enrichments, even in alkali depleted type I chondrule cores, is that they exchanged with the ambient gas as they cooled. ?? The Meteoritical Society, 2005.

  13. Controlled in-situ dissolution of an alkali metal

    DOEpatents

    Jones, Jeffrey Donald; Dooley, Kirk John; Tolman, David Donald

    2012-09-11

    A method for the controllable dissolution of one or more alkali metals from a vessel containing a one or more alkali metals and/or one or more partially passivated alkali metals. The vessel preferably comprising a sodium, NaK or other alkali metal-cooled nuclear reactor that has been used. The alkali metal, preferably sodium, potassium or a combination thereof, in the vessel is exposed to a treatment liquid, preferably an acidic liquid, more preferably citric acid. Preferably, the treatment liquid is maintained in continuous motion relative to any surface of unreacted alkali metal with which the treatment liquid is in contact. The treatment liquid is preferably pumped into the vessel containing the one or more alkali metals and the resulting fluid is extracted and optionally further processed. Preferably, the resulting off-gases are processed by an off-gas treatment system and the resulting liquids are processed by a liquid disposal system. In one preferred embodiment, an inert gas is pumped into the vessel along with the treatment liquid.

  14. Element specificity of ortho-positronium annihilation for alkali-metal loaded SiO2 glasses.

    PubMed

    Sato, K; Hatta, T

    2015-03-07

    Momentum distributions associated with ortho-positronium (o-Ps) pick-off annihilation photon are often influenced by light elements, as, e.g., carbon, oxygen, and fluorine. This phenomenon, so-called element specificity of o-Ps pick-off annihilation, has been utilized for studying the elemental environment around the open spaces. To gain an insight into the element specificity of o-Ps pick-off annihilation, the chemical shift of oxygen 1s binding energy and the momentum distributions associated with o-Ps pick-off annihilation were systematically investigated for alkali-metal loaded SiO2 glasses by means of X-ray photoelectron spectroscopy and positron-age-momentum correlation spectroscopy, respectively. Alkali metals introduced into the open spaces surrounded by oxygen atoms cause charge transfer from alkali metals to oxygen atoms, leading to the lower chemical shift for the oxygen 1s binding energy. The momentum distribution of o-Ps localized into the open spaces is found to be closely correlated with the oxygen 1s chemical shift. This correlation with the deepest 1s energy level evidences that the element specificity of o-Ps originates from pick-off annihilation with orbital electrons, i.e., dominantly with oxygen 2p valence electrons and s electrons with lower probability.

  15. Element specificity of ortho-positronium annihilation for alkali-metal loaded SiO2 glasses

    NASA Astrophysics Data System (ADS)

    Sato, K.; Hatta, T.

    2015-03-01

    Momentum distributions associated with ortho-positronium (o-Ps) pick-off annihilation photon are often influenced by light elements, as, e.g., carbon, oxygen, and fluorine. This phenomenon, so-called element specificity of o-Ps pick-off annihilation, has been utilized for studying the elemental environment around the open spaces. To gain an insight into the element specificity of o-Ps pick-off annihilation, the chemical shift of oxygen 1s binding energy and the momentum distributions associated with o-Ps pick-off annihilation were systematically investigated for alkali-metal loaded SiO2 glasses by means of X-ray photoelectron spectroscopy and positron-age-momentum correlation spectroscopy, respectively. Alkali metals introduced into the open spaces surrounded by oxygen atoms cause charge transfer from alkali metals to oxygen atoms, leading to the lower chemical shift for the oxygen 1s binding energy. The momentum distribution of o-Ps localized into the open spaces is found to be closely correlated with the oxygen 1s chemical shift. This correlation with the deepest 1s energy level evidences that the element specificity of o-Ps originates from pick-off annihilation with orbital electrons, i.e., dominantly with oxygen 2p valence electrons and s electrons with lower probability.

  16. Determination of flue gas alkali concentrations in fluidized-bed coal combustion by excimer-laser-induced fragmentation fluorescence

    SciTech Connect

    Hartinger, K.T.; Monkhouse, P.B.; Wolfrum, J.; Baumann, H.; Bonn, B.

    1994-12-31

    Gas-phase sodium concentrations were measured for the first time in situ in the flue gas of a fluidized-bed reactor by the excimer-laser-induced fragmentation fluorescence (ELIF) technique. This method involves using ArF-excimer laser light at 193 nm to simultaneously photodissociate the alkali compounds of interest and excite electronically the alkali atoms formed. The resulting fluorescence from Na (3{sup 2}P) atoms can he readily detected at 589 nm. Measured signals were converted to absolute concentrations using a calibration system that monitors alkali compounds under known conditions of temperature, pressure, and composition and rising the same optical setup as at the reactor. Several different coals were investigated under a specific set of reactor conditions at total pressures close to 1 bar. Sodium concentrations ranging from the sub-ppb region to 20 ppb were obtained, and a detection limit for sodium of 0.1 ppb under the present conditions was estimated. Over the course of the reactor program, contrasting concentration histories were observed for the two lignites and the hard coal investigated. In particular, significantly higher sodium concentrations were found for the hard coal, consistent with both the higher chlorine and sodium contents determined in the corresponding coal analysis.

  17. Element specificity of ortho-positronium annihilation for alkali-metal loaded SiO{sub 2} glasses

    SciTech Connect

    Sato, K.; Hatta, T.

    2015-03-07

    Momentum distributions associated with ortho-positronium (o-Ps) pick-off annihilation photon are often influenced by light elements, as, e.g., carbon, oxygen, and fluorine. This phenomenon, so-called element specificity of o-Ps pick-off annihilation, has been utilized for studying the elemental environment around the open spaces. To gain an insight into the element specificity of o-Ps pick-off annihilation, the chemical shift of oxygen 1s binding energy and the momentum distributions associated with o-Ps pick-off annihilation were systematically investigated for alkali-metal loaded SiO{sub 2} glasses by means of X-ray photoelectron spectroscopy and positron-age-momentum correlation spectroscopy, respectively. Alkali metals introduced into the open spaces surrounded by oxygen atoms cause charge transfer from alkali metals to oxygen atoms, leading to the lower chemical shift for the oxygen 1s binding energy. The momentum distribution of o-Ps localized into the open spaces is found to be closely correlated with the oxygen 1s chemical shift. This correlation with the deepest 1s energy level evidences that the element specificity of o-Ps originates from pick-off annihilation with orbital electrons, i.e., dominantly with oxygen 2p valence electrons and s electrons with lower probability.

  18. Atomic polarizabilities

    SciTech Connect

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  19. Atomic vapor spectroscopy in integrated photonic structures

    SciTech Connect

    Ritter, Ralf; Kübler, Harald; Pfau, Tilman; Löw, Robert; Gruhler, Nico; Pernice, Wolfram

    2015-07-27

    We investigate an integrated optical chip immersed in atomic vapor providing several waveguide geometries for spectroscopy applications. The narrow-band transmission through a silicon nitride waveguide and interferometer is altered when the guided light is coupled to a vapor of rubidium atoms via the evanescent tail of the waveguide mode. We use grating couplers to couple between the waveguide mode and the radiating wave, which allow for addressing arbitrary coupling positions on the chip surface. The evanescent atom-light interaction can be numerically simulated and shows excellent agreement with our experimental data. This work demonstrates a next step towards miniaturization and integration of alkali atom spectroscopy and provides a platform for further fundamental studies of complex waveguide structures.

  20. Increasing Class C fly ash reduces alkali silica reactivity

    SciTech Connect

    Hicks, J.K.

    2007-07-01

    Contrary to earlier studies, it has been found that incremental additions of Class C fly ash do reduce alkali silica reactivity (ASR), in highly reactive, high alkali concrete mixes. AST can be further reduced by substituting 5% metakaolin or silica fume for the aggregate in concrete mixes with high (more than 30%) Class C fly ash substitution. The paper reports results of studies using Class C fly ash from the Labadie Station plant in Missouri which typically has between 1.3 and 1.45% available alkalis by ASTM C311. 7 figs.

  1. Control of alkali species in gasification systems: Final report

    SciTech Connect

    Turn, S.; Kinoshita, C.; Ishimura, D. Zhou, J.; Hiraki, T.; Masutani, S.

    2000-07-13

    Gas-phase alkali metal compounds contribute to fouling, slagging, corrosion, and agglomeration problems in energy conversion facilities. One mitigation strategy applicable at high temperature is to pass the gas stream through a fixed bed sorbent or getter material, which preferentially absorbs alkali via physical adsorption or chemisorption. This report presents results of an experimental investigation of high-temperature alkali removal from a hot filtered gasifier product gas stream using a packed bed of sorbent material. Two getter materials, activated bauxite and emathlite, were tested at two levels of space time by using two interchangeable reactors of different internal diameters. The effect of getter particle size was also investigated.

  2. Electrochemical cell utilizing molten alkali metal electrode-reactant

    DOEpatents

    Virkar, Anil V.; Miller, Gerald R.

    1983-11-04

    An improved electrochemical cell comprising an additive-modified molten alkali metal electrode-reactant and/or electrolyte is disclosed. Various electrochemical cells employing a molten alkali metal, e.g., sodium, electrode in contact with a cationically conductive ceramic membrane experience a lower resistance and a lower temperature coefficient of resistance whenever small amounts of selenium are present at the interface of the electrolyte and the molten alkali metal. Further, cells having small amounts of selenium present at the electrolyte-molten metal interface exhibit less degradation of the electrolyte under long term cycling conditions.

  3. CalSimHydro Tool - A Web-based interactive tool for the CalSim 3.0 Hydrology Prepropessor

    NASA Astrophysics Data System (ADS)

    Li, P.; Stough, T.; Vu, Q.; Granger, S. L.; Jones, D. J.; Ferreira, I.; Chen, Z.

    2011-12-01

    CalSimHydro, the CalSim 3.0 Hydrology Preprocessor, is an application designed to automate the various steps in the computation of hydrologic inputs for CalSim 3.0, a water resources planning model developed jointly by California State Department of Water Resources and United States Bureau of Reclamation, Mid-Pacific Region. CalSimHydro consists of a five-step FORTRAN based program that runs the individual models in succession passing information from one model to the next and aggregating data as required by each model. The final product of CalSimHydro is an updated CalSim 3.0 state variable (SV) DSS input file. CalSimHydro consists of (1) a Rainfall-Runoff Model to compute monthly infiltration, (2) a Soil moisture and demand calculator (IDC) that estimates surface runoff, deep percolation, and water demands for natural vegetation cover and various crops other than rice, (3) a Rice Water Use Model to compute the water demands, deep percolation, irrigation return flow, and runoff from precipitation for the rice fields, (4) a Refuge Water Use Model that simulates the ponding operations for managed wetlands, and (5) a Data Aggregation and Transfer Module to aggregate the outputs from the above modules and transfer them to the CalSim SV input file. In this presentation, we describe a web-based user interface for CalSimHydro using Google Earth Plug-In. The CalSimHydro tool allows users to - interact with geo-referenced layers of the Water Budget Areas (WBA) and Demand Units (DU) displayed over the Sacramento Valley, - view the input parameters of the hydrology preprocessor for a selected WBA or DU in a time series plot or a tabular form, - edit the values of the input parameters in the table or by downloading a spreadsheet of the selected parameter in a selected time range, - run the CalSimHydro modules in the backend server and notify the user when the job is done, - visualize the model output and compare it with a base run result, - download the output SV file to be

  4. Transportation behavior of alkali ions through a cell membrane ion channel. A quantum chemical description of a simplified isolated model.

    PubMed

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans

    2012-08-01

    Quantum chemical model calculations were carried out for modeling the ion transport through an isolated ion channel of a cell membrane. An isolated part of a natural ion channel was modeled. The model channel was a calixarene derivative, hydrated sodium and potassium ions were the models of the transported ion. The electrostatic potential of the channel and the energy of the channel-ion system were calculated as a function of the alkali ion position. Both attractive and repulsive ion-channel interactions were found. The calculations - namely the dependence of the system energy and the atomic charges of the water molecules with respect to the position of the alkali ion in the channel - revealed the molecular-structural background of the potassium selectivity of this artificial ion channel. It was concluded that the studied ion channel mimics real biological ion channel quite well.

  5. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Electron Dispersion in Liquid Alkali and Their Alloys

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2010-07-01

    Ashcroft's local empty core (EMC) model pseudopotential in the second-order perturbation theory is used to study the electron dispersion relation, the Fermi energy, and deviation in the Fermi energy from free electron value for the liquid alkali metals and their equiatomic binary alloys for the first time. In the present computation, the use of pseudo-alloy-atom model (PAA) is proposed and found successful. The influence of the six different forms of the local field correction functions proposed by Hartree (H), Vashishta-Singwi (VS), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) on the aforesaid electronic properties is examined explicitly, which reflects the varying effects of screening. The depth of the negative hump in the electron dispersion of liquid alkalis decreases in the order Li → K, except for Rb and Cs, it increases. The results of alloys are in predictive nature.

  6. Star Confusion Effect on SIM PlanetQuest Astrometric Performance

    NASA Technical Reports Server (NTRS)

    Zhai, C.; Yu, M.; Milman, M.; Fathpour, N.; Morales, M.; Nemati, B.; Regehr, M.; Heflin, M.; Sievers, L.

    2007-01-01

    SIM PlanetQuest will measure star positions to an accuracy of a few microarcseconds using precise white light fringe measurements. One challenge for SIM observation scenario is "star confusion," where multiple stars are present in the instrument field of view. This is especially relevant for observing dim science targets because the density of number of stars increases rapidly with star magnitude. We study the effect of star confusion on the SIM astrometric performance due to systematic fringe errors caused by the extra photons from the confusion star(s}. Since star confusion from multiple stars may be analyzed as a linear superposition of the effect from single star confusion, we quantify the astrometric errors due to single star confusion surveying over many spectral types, including AOV, FOV, K5III, and MOV, and for various visual magnitude differences. To the leading order, the star confusion effect is characterized by the magnitude difference, spectral difference, and the angular separation between the target and confusion stars.Strategies for dealing with star confusion are presented. For example, since the presence of additional sources in the field of view leads to inconsistent delay estimates from different channels, with sufficient signal to noise ratio, the star confusion can be detected using chi-square statistics of fringe measurements from multiple spectral channels. An interesting result is that the star confusion can be detected even though the interferometer cannot resolve the separation between the target and confusion stars when their spectra are sufficiently different. Other strategies for mitigating the star confusion effect are also discussed.

  7. neXtSIM: a new Lagrangian sea ice model

    NASA Astrophysics Data System (ADS)

    Rampal, Pierre; Bouillon, Sylvain; Ólason, Einar; Morlighem, Mathieu

    2016-05-01

    The Arctic sea ice cover has changed drastically over the last decades. Associated with these changes is a shift in dynamical regime seen by an increase of extreme fracturing events and an acceleration of sea ice drift. The highly non-linear dynamical response of sea ice to external forcing makes modelling these changes and the future evolution of Arctic sea ice a challenge for current models. It is, however, increasingly important that this challenge be better met, both because of the important role of sea ice in the climate system and because of the steady increase of industrial operations in the Arctic. In this paper we present a new dynamical/thermodynamical sea ice model called neXtSIM that is designed to address this challenge. neXtSIM is a continuous and fully Lagrangian model, whose momentum equation is discretised with the finite-element method. In this model, sea ice physics are driven by the combination of two core components: a model for sea ice dynamics built on a mechanical framework using an elasto-brittle rheology, and a model for sea ice thermodynamics providing damage healing for the mechanical framework. The evaluation of the model performance for the Arctic is presented for the period September 2007 to October 2008 and shows that observed multi-scale statistical properties of sea ice drift and deformation are well captured as well as the seasonal cycles of ice volume, area, and extent. These results show that neXtSIM is an appropriate tool for simulating sea ice over a wide range of spatial and temporal scales.

  8. CET exSim: mineral exploration experience via simulation

    NASA Astrophysics Data System (ADS)

    Wong, Jason C. 13Holden, Eun-Jung 1Kovesi, Peter 1McCuaig, T. Campbell 1Hronsky, Jon

    2013-08-01

    Undercover mineral exploration is a challenging task as it requires understanding of subsurface geology by relying heavily on remotely sensed (i.e. geophysical) data. Cost-effective exploration is essential in order to increase the chance of success using finite budgets. This requires effective decision-making in both the process of selecting the optimum data collection methods and in the process of achieving accuracy during subsequent interpretation. Traditionally, developing the skills, behaviour and practices of exploration decision-making requires many years of experience through working on exploration projects under various geological settings, commodities and levels of available resources. This implies long periods of sub-optimal exploration decision-making, before the necessary experience has been successfully obtained. To address this critical industry issue, our ongoing research focuses on the development of the unique and novel e-learning environment, exSim, which simulates exploration scenarios where users can test their strategies and learn the consequences of their choices. This simulator provides an engaging platform for self-learning and experimentation in exploration decision strategies, providing a means to build experience more effectively. The exSim environment also provides a unique platform on which numerous scenarios and situations (e.g. deposit styles) can be simulated, potentially allowing the user to become virtually familiarised with a broader scope of exploration practices. Harnessing the power of computer simulation, visualisation and an intuitive graphical user interface, the simulator provides a way to assess the user's exploration decisions and subsequent interpretations. In this paper, we present the prototype functionalities in exSim including: simulation of geophysical surveys, follow-up drill testing and interpretation assistive tools.

  9. Training for emergency response with RimSim:Response!

    NASA Astrophysics Data System (ADS)

    Campbell, Bruce D.; Schroder, Konrad A.

    2009-05-01

    Since developing and promoting a Pacific Rim community emergency response simulation software platform called RimSim, the PARVAC team at the University of Washington has developed a variety of first responder agents who can participate within a response simulation. Agents implement response heuristics and communications strategies in conjunction with live players trying to develop their own heuristics and communications strategies to participate in a successful community response crisis. The effort is facilitated by shared visualization of the affected geographical extent. We present initial findings from interacting with a wide variety of mixed agent simulation sessions and make the software available for others to perform their own experiments.e

  10. Summer Institute for Mathematics and Science teachers (SIMS). Final report

    SciTech Connect

    1994-07-01

    The Summer Institute for Mathematics and Science Teachers (SIMS) was to provide training for science and mathematics educators in strategies and techniques to use for educating and motivating historically under-represented populations. The Institute featured 40 hours of training over five days, July 13-17, 1993 plus half-day follow-up training November 13, 1993 and April 30, 1994. The objective of the training was to include sensitization to cultural and gender issues, and to instruct participants in the utilization of a variety of techniques and activities for encouraging historically under-represented groups to take more advanced science and mathematics courses.

  11. Inducible neuronal inactivation of Sim1 in adult mice causes hyperphagic obesity.

    PubMed

    Tolson, Kristen P; Gemelli, Terry; Meyer, Donna; Yazdani, Umar; Kozlitina, Julia; Zinn, Andrew R

    2014-07-01

    Germline haploinsufficiency of human or mouse Sim1 is associated with hyperphagic obesity. Sim1 encodes a transcription factor required for proper formation of the paraventricular (PVN), supraoptic, and anterior periventricular hypothalamic nuclei. Sim1 expression persists in these neurons in adult mice, raising the question of whether it plays a physiologic role in regulation of energy balance. We previously showed that Sim1 heterozygous mice had normal numbers of PVN neurons that were hyporesponsive to melanocortin 4 receptor agonism and showed reduced oxytocin expression. Furthermore, conditional postnatal neuronal inactivation of Sim1 also caused hyperphagic obesity and decreased hypothalamic oxytocin expression. PVN projections to the hindbrain, where oxytocin is thought to act to modulate satiety, were anatomically intact in both Sim1 heterozygous and conditional knockout mice. These experiments provided evidence that Sim1 functions in energy balance apart from its role in hypothalamic development but did not rule out effects of Sim1 deficiency on postnatal hypothalamic maturation. To address this possibility, we used a tamoxifen-inducible, neural-specific Cre transgene to conditionally inactivate Sim1 in adult mice with mature hypothalamic circuitry. Induced Sim1 inactivation caused increased food and water intake and decreased expression of PVN neuropeptides, especially oxytocin and vasopressin, with no change in energy expenditure. Sim1 expression was not required for survival of PVN neurons. The results corroborate previous evidence that Sim1 acts physiologically as well as developmentally to regulate body weight. Inducible knockout mice provide a system for studying Sim1's physiologic function in energy balance and identifying its relevant transcriptional targets in the hypothalamus.

  12. The 4843 Alkali Metal Storage Facility Closure Plan

    SciTech Connect

    Not Available

    1991-06-01

    The 4843 AMSF has been used primarily to provide a centralized building to receive and store dangerous and mixed alkali metal waste, including sodium and lithium, which has been generated at the Fast Flux Test Facility and at various other Hanford Site operations that used alkali metals. Most of the dangerous and mixed alkali metal waste received consists of retired equipment from liquid sodium processes. The unit continues to store material. In general, only solid alkali metal waste that is water reactive is stored at the 4843 AMSF. The 4843 AMSF will be closed in a manner consistent with Ecology guidelines and regulations (WAC 173-303-610). The general closure procedure is detailed as follows.

  13. Effect of cavitation on removal of alkali elements from coal

    NASA Astrophysics Data System (ADS)

    Srivalli, H.; Nirmal, L.; Nagarajan, R.

    2015-12-01

    The main impurities in coal are sulphur, ash and alkali. On combustion, the volatile forms of these impurities are either condensed on the boilers, or emitted in the form of potentially hazardous gases. The alkali elements present in coal help the fly ash particles adhere to boiler surfaces by providing a wet surface on which collection of these particles can take place. Use of ultrasonic techniques in cleaning of coal has stirred interest among researchers in recent times. Extraction of alkali elements by cavitation effect using low-frequency ultrasound, in the presence of reagents (HNO3 and H2O2) is reported in this paper. Powdered coal was dissolved with the reagent and exposed to ultrasonic fields of various frequencies at different time intervals. The treated solution is filtered and tested for alkali levels.

  14. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, M.M.; Ma, Y.; Visco, S.J.; DeJonghe, L.

    1995-08-22

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  15. Electric field-induced softening of alkali silicate glasses

    SciTech Connect

    McLaren, C.; Heffner, W.; Jain, H.; Tessarollo, R.; Raj, R.

    2015-11-02

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  16. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1995-01-01

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  17. Improving Sensitivity and Bandwidth of an Atomic Magnetometer using Quantum Non-Demolition Measurement

    NASA Astrophysics Data System (ADS)

    Shah, Vishal; Vasilakis, Georgios; Romalis, Michael

    2009-05-01

    The fundamental sensitivity of an atomic magnetometer is limited by spin projection noise. In the case of uniform spin relaxation, it is well understood that it is not possible to improve the sensitivity using spin squeezing induced by quantum non-demolition (QND) measurement for measurement time scales longer than spin relaxation time [1, 2]. It is however possible to increase the bandwidth of the magnetometer using QND measurement. Here we experimentally demonstrate, in excellent agreement with the theory, an improvement in the bandwidth of our scalar alkali vapor atomic magnetometer using continuous QND measurement. We also investigate the possibility of improving sensitivity of our magnetometer in the special case in which the spin relaxation is time dependent. The case of time dependent spin relaxation naturally arises in high polarization regime in an alkali-alkali spin-exchange relaxation dominated atomic sample. [1] S. F. Huelga, Phys. Rev. Lett. 79, 3865 -- 3868, 1997. [2] M. Auzinsh, Phys. Rev. Lett. 93, 173002, 2004.

  18. Nuclear Spin Gyroscope Based on an Atomic Comagnetometer

    SciTech Connect

    Kornack, T.W.; Ghosh, R.K.; Romalis, M.V.

    2005-12-02

    We describe a nuclear spin gyroscope based on an alkali-metal-noble-gas comagnetometer. Optically pumped alkali-metal vapor is used to polarize the noble-gas atoms and detect their gyroscopic precession. Spin precession due to magnetic fields as well as their gradients and transients can be cancelled in this arrangement. The sensitivity is enhanced by using a high-density alkali-metal vapor in a spin-exchange relaxation free regime. With a K-{sup 3}He comagnetometer we demonstrate rotation sensitivity of 5x10{sup -7} rad s{sup -1} Hz{sup -1/2}, equivalent to a magnetic field sensitivity of 2.5 fT/Hz{sup 1/2}. The rotation signal can be increased by a factor of 10 using {sup 21}Ne with a smaller magnetic moment. The comagnetometer is also a promising tool in searches for anomalous spin couplings beyond the standard model.

  19. Electrochemical cell having an alkali-metal-nitrate electrode

    DOEpatents

    Roche, M.F.; Preto, S.K.

    1982-06-04

    A power-producing secondary electrochemical cell includes a molten alkali metal as the negative-electrode material and a molten-nitrate salt as the positive-electrode material. The molten material in the respective electrodes are separated by a solid barrier of alkali-metal-ion conducting material. A typical cell includes active materials of molten sodium separated from molten sodium nitrate and other nitrates in mixture by a layer of sodium ..beta..'' alumina.

  20. Alkali absorption and citrate excretion in calcium nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p < 0.001). In 11 patients with distal renal tubular acidosis (RTA), urinary citrate excretion was subnormal relative to net GI alkali absorption, with data from most patients residing outside the 95% confidence ellipse described for normal subjects. However, the normal relationship between urinary citrate and net absorbed alkali was maintained in 11 patients with chronic diarrheal syndrome (CDS) and in 124 stone-forming patients devoid of RTA or CDS, half of whom had "idiopathic" hypocitraturia. The 18 stone-forming patients without RTA or CDS received potassium citrate (30-60 mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p < 0.0001), with the slope indistinguishable from that of normal subjects. Thus, urinary citrate was normally dependent on the net GI absorption of alkali. This dependence was less marked in RTA, confirming the renal origin of hypocitraturia. However, the normal dependence was maintained in CDS and in idiopathic hypocitraturia, suggesting that reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  1. Rock Degradation by Alkali Metals: A Possible Lunar Erosion Mechanism.

    PubMed

    Naughton, J J; Barnes, I L; Hammond, D A

    1965-08-06

    When rocks melt under ultrahigh-vacuum conditions, their alkali components volatilize as metals. These metal vapors act to comminute polycrystalline rocks to their component minerals. The resultant powder is porous and loosely packed and its characteristics may be compatible with the lunar surface as revealed by the Ranger photographs. If meteorite impact or lunar volcanism has produced vaporization or areas of molten lava, alkali erosion may have given dust of this character in adjacent solid areas.

  2. SIMS and NanoSIMS analyses of Mesoproterozoic individual microfossils indicating continuous oxygen-producing photosynthesis in Proterozoic Ocean

    NASA Astrophysics Data System (ADS)

    Peng, X.; Guo, Z.; House, C. H.; Chen, S.; Ta, K.

    2015-12-01

    Well-preserved microfossils in the stromatolites from the Gaoyuzhuang Formation (~1500Ma), which is younger than the Gunflint Formation (~1880Ma) and older than the Bitter Springs Formation (~850Ma), may play key roles in systematizing information about the evolution of early life and environmental changes in the Proterozoic Ocean. Here, a combination of light microscopy (LM), scanning electron microscopy (SEM), focused ion beam (FIB), nano-scale secondary ion mass spectrometry (NanoSIMS) and secondary ion mass spectrometry (SIMS) were employed to characterize the morphology, elemental distributions and carbon isotope values of individual microfossils in the stromatolites from the Gaoyuahzuang Formation. Light microscopy analyses show that abundant filamentous and coccoid microfossils are exceptionally well preserved in chert. NanoSIMS analyses show that metabolically important elements such as 12C-, 13C-, 12C14N-, 32S-, and 34S- are concentrated in these microfossils and that the variations in the concentrations of these elements are similar, establishing the elemental distributions in incontestably biogenic microstructures. Carbon isotope (δ13C) values of individual microfossils range from -32.2‰ ± 0.9‰ to -23.3‰ ± 1.0‰ (weighted mean= -28.9‰ ± 0.1‰), consistent with carbon fixation via the Calvin cycle. The elevated δ13C values of the microfossils from Early-, Meso- to Late Proterozoic Era, possibly indicate decreasing CO2 and increasing O2 concentrations in the Proterozoic atmosphere. Our results, for the first time, provided the element distributions and cell specific carbon isotope values on convincing Mesoproterozoic cyanobacterial fossils, supporting continuous oxygen-producing photosynthesis in the Proterozoic Ocean.

  3. Alternative Liquid Fuels Simulation Model (AltSim).

    SciTech Connect

    Baker, Arnold Barry; Williams, Ryan; Drennen, Thomas E.; Klotz, Richard

    2007-10-01

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production costs, carbon dioxide emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol, biodiesel, and diesels derived from natural gas (gas to liquid, or GTL) and coal (coal to liquid, or CTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion efficiency, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the preliminary results from the model. For the base cases, CTL and cellulosic ethanol are the least cost fuel options, at $1.60 and $1.71 per gallon, respectively. Base case assumptions do not include tax or other credits. This compares to a $2.35/gallon production cost of gasoline at September, 2007 crude oil prices ($80.57/barrel). On an energy content basis, the CTL is the low cost alternative, at $12.90/MMBtu, compared to $22.47/MMBtu for cellulosic ethanol. In terms of carbon dioxide emissions, a typical vehicle fueled with cellulosic ethanol will release 0.48 tons CO{sub 2} per year, compared to 13.23 tons per year for coal to liquid.

  4. On the SIMS Ionization Probability of Organic Molecules

    NASA Astrophysics Data System (ADS)

    Popczun, Nicholas J.; Breuer, Lars; Wucher, Andreas; Winograd, Nicholas

    2017-03-01

    The prospect of improved secondary ion yields for secondary ion mass spectrometry (SIMS) experiments drives innovation of new primary ion sources, instrumentation, and post-ionization techniques. The largest factor affecting secondary ion efficiency is believed to be the poor ionization probability (α+) of sputtered material, a value rarely measured directly, but estimated to be in some cases as low as 10-5. Our lab has developed a method for the direct determination of α+ in a SIMS experiment using laser post-ionization (LPI) to detect neutral molecular species in the sputtered plume for an organic compound. Here, we apply this method to coronene (C24H12), a polyaromatic hydrocarbon that exhibits strong molecular signal during gas-phase photoionization. A two-dimensional spatial distribution of sputtered neutral molecules is measured and presented. It is shown that the ionization probability of molecular coronene desorbed from a clean film under bombardment with 40 keV C60 cluster projectiles is of the order of 10-3, with some remaining uncertainty arising from laser-induced fragmentation and possible differences in the emission velocity distributions of neutral and ionized molecules. In general, this work establishes a method to estimate the ionization efficiency of molecular species sputtered during a single bombardment event.

  5. The SIM Lite Astrometric Observatory: engineering risk reduction activity

    NASA Astrophysics Data System (ADS)

    Goullioud, Renaud; Dekens, Frank; Nemati, Bijan; An, Xin; Hovland, Larry

    2010-07-01

    The SIM Lite Astrometric Observatory is a mission concept for a space-borne instrument to perform micro-arcsecond narrow-angle astrometry to search 60 to 100 nearby stars for Earth-like planets, and to perform global astrometry for a broad astrophysics program. The main enabling technology development for the mission was completed during phases A & B. While the project is waiting for the results of the ASTRO2010 Decadal Survey to proceed into flight implementation, the instrument team is currently converting the developed technology onto flight-ready engineering models. These key engineering tasks will significantly reduce the implementation risks during the flight phases C & D of the mission. The main optical interferometer components, including the astrometric beam combiner (ABC), the fine steering mechanism (FSM), the path-length control and modulation optical mechanisms (POM & MOM), focal plane camera electronics (ATC & FTC), camera cooling cryo-heat pipe, and the siderostat mechanism are currently under development. Main assemblies are built to meet flight requirements and have been or will be subjected to flight qualification level environmental testing (random vibration and thermal cycling) and performance testing. The Spectral Calibration Development Unit (SCDU), a white light interferometer testbed has recently demonstrated how to perform the spectral calibration of the instrument. The Guide 2 Telescope testbed (G2T) has demonstrated the 50 micro-arcsecond angle monitoring capability required by SIM Lite to perform astrometry. This paper summarizes recent progress in engineering risk reduction activities.

  6. Precision Linear Actuator for Space Interferometry Mission (SIM) Siderostat Pointing

    NASA Technical Reports Server (NTRS)

    Cook, Brant; Braun, David; Hankins, Steve; Koenig, John; Moore, Don

    2008-01-01

    'SIM PlanetQuest will exploit the classical measuring tool of astrometry (interferometry) with unprecedented precision to make dramatic advances in many areas of astronomy and astrophysics'(1). In order to obtain interferometric data two large steerable mirrors, or Siderostats, are used to direct starlight into the interferometer. A gimbaled mechanism actuated by linear actuators is chosen to meet the unprecedented pointing and angle tracking requirements of SIM. A group of JPL engineers designed, built, and tested a linear ballscrew actuator capable of performing submicron incremental steps for 10 years of continuous operation. Precise, zero backlash, closed loop pointing control requirements, lead the team to implement a ballscrew actuator with a direct drive DC motor and a precision piezo brake. Motor control commutation using feedback from a precision linear encoder on the ballscrew output produced an unexpected incremental step size of 20 nm over a range of 120 mm, yielding a dynamic range of 6,000,000:1. The results prove linear nanometer positioning requires no gears, levers, or hydraulic converters. Along the way many lessons have been learned and will subsequently be shared.

  7. On the SIMS Ionization Probability of Organic Molecules.

    PubMed

    Popczun, Nicholas J; Breuer, Lars; Wucher, Andreas; Winograd, Nicholas

    2017-03-06

    The prospect of improved secondary ion yields for secondary ion mass spectrometry (SIMS) experiments drives innovation of new primary ion sources, instrumentation, and post-ionization techniques. The largest factor affecting secondary ion efficiency is believed to be the poor ionization probability (α(+)) of sputtered material, a value rarely measured directly, but estimated to be in some cases as low as 10(-5). Our lab has developed a method for the direct determination of α(+) in a SIMS experiment using laser post-ionization (LPI) to detect neutral molecular species in the sputtered plume for an organic compound. Here, we apply this method to coronene (C24H12), a polyaromatic hydrocarbon that exhibits strong molecular signal during gas-phase photoionization. A two-dimensional spatial distribution of sputtered neutral molecules is measured and presented. It is shown that the ionization probability of molecular coronene desorbed from a clean film under bombardment with 40 keV C60 cluster projectiles is of the order of 10(-3), with some remaining uncertainty arising from laser-induced fragmentation and possible differences in the emission velocity distributions of neutral and ionized molecules. In general, this work establishes a method to estimate the ionization efficiency of molecular species sputtered during a single bombardment event. Graphical Abstract .

  8. Alkali metal yttrium neo-pentoxide double alkoxide precursors to alkali metal yttrium oxide nanomaterials

    DOE PAGES

    Boyle, Timothy J.; Neville, Michael L.; Sears, Jeremiah Matthew; ...

    2016-03-15

    In this study, a series of alkali metal yttrium neo-pentoxide ([AY(ONep)4]) compounds were developed as precursors to alkali yttrium oxide (AYO2) nanomaterials. The reaction of yttrium amide ([Y(NR2)3] where R=Si(CH3)3) with four equivalents of H-ONep followed by addition of [A(NR2)] (A=Li, Na, K) or Ao (Ao=Rb, Cs) led to the formation of a complex series of AnY(ONep)3+n species, crystallographically identified as [Y2Li3(μ3-ONep)(μ3-HONep)(μ-ONep)5(ONep)3(HONep)2] (1), [YNa2(μ3-ONep)4(ONep)]2 (2), {[Y2K3(μ3-ONep)3(μ-ONep)4(ONep)2(ηξ-tol)2][Y4K2(μ4-O)(μ3-ONep)8(ONep)4]•ηx-tol]} (3), [Y4K2(μ4-O)(μ3-ONep)8(ONep)4] (3a), [Y2Rb3(μ4-ONep)3(μ-ONep)6] (4), and [Y2Cs4(μ6-O)(μ3-ONep)6(μ3-HONep)2(ONep)2(ηx-tol)4]•tol (5). Compounds 1–5 were investigated as single source precursors to AYOx nanomaterials following solvothermal routes (pyridine, 185 °C for 24h). The final products after thermal processing weremore » found by powder X-ray diffraction experiments to be Y2O3 with variable sized particles based on transmission electron diffraction. Energy dispersive X-ray spectroscopy studies indicated that the heavier alkali metal species were present in the isolated nanomaterials.« less

  9. Elemental and isotopic imaging of biological samples using NanoSIMS.

    PubMed

    Kilburn, Matt R; Clode, Peta L

    2014-01-01

    With its low detection limits and the ability to analyze most of the elements in the periodic table, secondary ion mass spectrometry (SIMS) represents one of the most versatile in situ analytical techniques available, and recent developments have resulted in significant advantages for the use of imaging mass spectrometry in biological and biomedical research. Increases in spatial resolution and sensitivity allow detailed interrogation of samples at relevant scales and chemical concentrations. Advances in dynamic SIMS, specifically with the advent of NanoSIMS, now allow the tracking of stable isotopes within biological systems at subcellular length scales, while static SIMS combines subcellular imaging with molecular identification. In this chapter, we present an introduction to the SIMS technique, with particular reference to NanoSIMS, and discuss its application in biological and biomedical research.

  10. Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

    SciTech Connect

    Bory, Benjamin F.; Wang, Jingxin; Janssen, René A. J.; Meskers, Stefan C. J.; Gomes, Henrique L.; De Leeuw, Dago M.

    2014-12-08

    Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 10{sup 25}/m{sup 3}. The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics.

  11. Accurate potential energy, dipole moment curves, and lifetimes of vibrational states of heteronuclear alkali dimers

    SciTech Connect

    Fedorov, Dmitry A.; Varganov, Sergey A.; Derevianko, Andrei

    2014-05-14

    We calculate the potential energy curves, the permanent dipole moment curves, and the lifetimes of the ground and excited vibrational states of the heteronuclear alkali dimers XY (X, Y = Li, Na, K, Rb, Cs) in the X{sup 1}Σ{sup +} electronic state using the coupled cluster with singles doubles and triples method. All-electron quadruple-ζ basis sets with additional core functions are used for Li and Na, and small-core relativistic effective core potentials with quadruple-ζ quality basis sets are used for K, Rb, and Cs. The inclusion of the coupled cluster non-perturbative triple excitations is shown to be crucial for obtaining the accurate potential energy curves. A large one-electron basis set with additional core functions is needed for the accurate prediction of permanent dipole moments. The dissociation energies are overestimated by only 14 cm{sup −1} for LiNa and by no more than 114 cm{sup −1} for the other molecules. The discrepancies between the experimental and calculated harmonic vibrational frequencies are less than 1.7 cm{sup −1}, and the discrepancies for the anharmonic correction are less than 0.1 cm{sup −1}. We show that correlation between atomic electronegativity differences and permanent dipole moment of heteronuclear alkali dimers is not perfect. To obtain the vibrational energies and wave functions the vibrational Schrödinger equation is solved with the B-spline basis set method. The transition dipole moments between all vibrational states, the Einstein coefficients, and the lifetimes of the vibrational states are calculated. We analyze the decay rates of the vibrational states in terms of spontaneous emission, and stimulated emission and absorption induced by black body radiation. In all studied heteronuclear alkali dimers the ground vibrational states have much longer lifetimes than any excited states.

  12. Accurate potential energy, dipole moment curves, and lifetimes of vibrational states of heteronuclear alkali dimers.

    PubMed

    Fedorov, Dmitry A; Derevianko, Andrei; Varganov, Sergey A

    2014-05-14

    We calculate the potential energy curves, the permanent dipole moment curves, and the lifetimes of the ground and excited vibrational states of the heteronuclear alkali dimers XY (X, Y = Li, Na, K, Rb, Cs) in the X(1)Σ(+) electronic state using the coupled cluster with singles doubles and triples method. All-electron quadruple-ζ basis sets with additional core functions are used for Li and Na, and small-core relativistic effective core potentials with quadruple-ζ quality basis sets are used for K, Rb, and Cs. The inclusion of the coupled cluster non-perturbative triple excitations is shown to be crucial for obtaining the accurate potential energy curves. A large one-electron basis set with additional core functions is needed for the accurate prediction of permanent dipole moments. The dissociation energies are overestimated by only 14 cm(-1) for LiNa and by no more than 114 cm(-1) for the other molecules. The discrepancies between the experimental and calculated harmonic vibrational frequencies are less than 1.7 cm(-1), and the discrepancies for the anharmonic correction are less than 0.1 cm(-1). We show that correlation between atomic electronegativity differences and permanent dipole moment of heteronuclear alkali dimers is not perfect. To obtain the vibrational energies and wave functions the vibrational Schrödinger equation is solved with the B-spline basis set method. The transition dipole moments between all vibrational states, the Einstein coefficients, and the lifetimes of the vibrational states are calculated. We analyze the decay rates of the vibrational states in terms of spontaneous emission, and stimulated emission and absorption induced by black body radiation. In all studied heteronuclear alkali dimers the ground vibrational states have much longer lifetimes than any excited states.

  13. Structural and volume changes and their correlation in electron irradiated alkali silicate glasses

    NASA Astrophysics Data System (ADS)

    Gavenda, Tadeáš; Gedeon, Ondrej; Jurek, Karel

    2017-04-01

    Two binary alkali silicate glasses (15K2O·85SiO2 - denoted as K15 and 15Li2O·85SiO2 - denoted as Li15) were irradiated by 50 keV electron beams with doses within the range of 2.1-15.9 kC/m2. Volume changes induced by electron irradiation were monitored by means of Atomic Force Microscopy (AFM). Raman spectra were taken from the irradiated spots to observe structural changes. Volume compaction observed at lower doses was correlated with the increase of the D2 peak. Volume expansion at higher doses was related to migration of alkali ions. Irradiated glasses were annealed at 400 °C and 500 °C for 60 min. After annealing irradiated spots were again examined by AFM and Raman spectroscopy in order to determine volume and structural relaxation of radiation induced changes. Annealing at higher temperatures resulted in the levelling of the pits created by irradiation, but only for doses below incubation dose. The pits created by doses above incubation dose were not levelled. Annealing caused decrease of D2 peak and shift of the Si-O-Si vibrations band in direction to original structure. Low-frequency region of annealed Li15 glass was undistinguishable from that of pristine glass, while annealing of K15 glass did not result in the full reversion to the original shape. The differences between glasses were attributed to higher Tg of K15 glass. Q-motives bands of both glasses were not completely restored after annealing due to the absence of alkali ions.

  14. Superconductivity in alkali-doped fullerene nanowhiskers

    NASA Astrophysics Data System (ADS)

    Takeya, Hiroyuki; Konno, Toshio; Hirata, Chika; Wakahara, Takatsugu; Miyazawa, Kun'ichi; Yamaguchi, Takahide; Tanaka, Masashi; Takano, Yoshihiko

    2016-09-01

    Superconductivity in alkali metal-doped fullerene nanowhiskers (C60NWs) was observed in K3.3C60NWs, Rb3.0C60NWs and Cs2.0Rb1.0C60NWs with transition temperatures at 17, 25 and 26 K, respectively. Almost full shielding volume fraction (~80%) was observed in K3.3C60NWs when subjected to thermal treatment at 200 °C for a duration of 24 h. In contrast, the shielding fraction of Rb3.0C60NWs and Cs2.0Rb1.0C60NWs were calculated to be 8% and 6%, respectively. Here we report on an extensive investigation of the superconducting properties of these AC60NWs (A  =  K3.3, Rb3.0 and Cs2.0Rb1.0). These properties are compared to the ones reported on the corresponding conventional (single-crystal or powder) K-doped fullerene. We also evaluated the critical current densities of these C60NWs using the Bean model under an applied magnetic field up to 50 kOe.

  15. Superconductivity in alkali-metal-doped picene.

    PubMed

    Mitsuhashi, Ryoji; Suzuki, Yuta; Yamanari, Yusuke; Mitamura, Hiroki; Kambe, Takashi; Ikeda, Naoshi; Okamoto, Hideki; Fujiwara, Akihiko; Yamaji, Minoru; Kawasaki, Naoko; Maniwa, Yutaka; Kubozono, Yoshihiro

    2010-03-04

    Efforts to identify and develop new superconducting materials continue apace, motivated by both fundamental science and the prospects for application. For example, several new superconducting material systems have been developed in the recent past, including calcium-intercalated graphite compounds, boron-doped diamond and-most prominently-iron arsenides such as LaO(1-x)F(x)FeAs (ref. 3). In the case of organic superconductors, however, no new material system with a high superconducting transition temperature (T(c)) has been discovered in the past decade. Here we report that intercalating an alkali metal into picene, a wide-bandgap semiconducting solid hydrocarbon, produces metallic behaviour and superconductivity. Solid potassium-intercalated picene (K(x)picene) shows T(c) values of 7 K and 18 K, depending on the metal content. The drop of magnetization in K(x)picene solids at the transition temperature is sharp (<2 K), similar to the behaviour of Ca-intercalated graphite. The T(c) of 18 K is comparable to that of K-intercalated C(60) (ref. 4). This discovery of superconductivity in K(x)picene shows that organic hydrocarbons are promising candidates for improved T(c) values.

  16. The timing of alkali metasomatism in paleosols

    NASA Technical Reports Server (NTRS)

    MacFarlane, A. W.; Holland, H. D.

    1991-01-01

    We have measured the concentrations of rubidium and strontium and 87Sr/86Sr values of whole-rock samples from three paleosols of different ages. The oldest of the three weathering horizons, the 2,760 Ma Mt. Roe #1 paleosol in the Fortescue Group of Western Australia, experienced addition of Rb, and probably Sr, at 2,168 +/- 10 Ma. The intermediate paleosol, developed on the Hekpoort Basalt in South Africa, is estimated to have formed at 2,200 Ma, and yields a Rb-Sr isochron age of 1,925 +/- 32 Ma. The youngest of the three paleosols, developed on the Ongeluk basalt in Griqualand West, South Africa ca. 1,900 Ma, yielded a Rb-Sr age of 1,257 +/- 11 Ma. The Rb-Sr systematics of all three paleosols were reset during post-weathering metasomatism related to local or regional thermal disturbances. The Rb-Sr systematics of the paleosols were not subsequently disturbed. The near-complete removal of the alkali and alkaline earth elements from these paleosols during weathering made them particularly susceptible to resetting of their Rb-Sr systematics. Paleosols of this type are therefore sensitive indicators of the timing of thermal disturbances.

  17. Review and Analysis of Selected Items Management (SIM) Inventory Program Aboard US Surface Ships

    DTIC Science & Technology

    2005-12-01

    project attempts to assess the impact of this correlation in satisfying the TYCOM’s SIM inventory goals. Additionally, this project examines shipboard...criteria are met. Conversely, SIM items may also be declassified becoming non-SIM items whenever they no longer satisfy the criteria for retention as...requisitions or demands, that are filled or satisfied immediately from shipboard on-hand stock. Figures 1 and 2 below show the computation formula for both

  18. Sim(n-2):Very Special Relativity and its Deformations, Holonomy and Quantum Corrections

    SciTech Connect

    Gibbons, G. W.

    2009-05-01

    I review some recent work on the applications of Sim(n-2), the maximal subroup of the Lorentz group SO(n-1,1). Topics covered include Myrheim's formula for the volume of Aleaxandrov open sets, Lorentz Violation and Very Special Relativity, deformations of Sim(n-2) and Bogoslovky's Finsler model, metrics with holonony Sim(n-2) and the possible absence of quantum corrections.

  19. Efficient destruction of CF4 through in situ generation of alkali metals from heated alkali halide reducing mixtures.

    PubMed

    Lee, Myung Churl; Choi, Wonyong

    2002-03-15

    Perfluorocarbons (PFCs) are the most potent green house gases that are very recalcitrant at destruction. An effective way of converting PFCs using hot solid reagents into safe products has been recently introduced. By investigating the thermal reductive destruction of tetrafluoromethane (CF4) we provided new insight and more physicochemical consideration on this novel process. The complete destruction of CF4was successfully achieved by flowing the gas through a heated reagent bed (400-950 degrees C) that contained powder mixtures of alkali halides, CaO, and Si. The silicon acted as a reducing agent of alkali halides for the in-situ production of alkali metals, and the calcium oxide played the role of a halide ion acceptor. The absence of any single component in this ternary mixture drastically reduced the destruction efficiency of CF4. The CF4 destruction efficiencies with the solid reagent containing the alkali halide, MX, increased in the order of Li approximately Na < K < Cs for alkali cations and I < Br < Cl < F for halide anions. This trend agreed with the endothermicity of the alkali metal generation reaction: the higher the endothermicity, the lower the destruction efficiency. Alkali metal generation was indirectly detected by monitoring H2 production from its reaction with water. The production of alkali metals increased with NaF, KF, and CsF in this order. The CsF/CaO/Si system exhibited the complete destruction of CF4 at as low as 600 degrees C. The solid product analysis by X-ray diffraction (XRD) showed the formation of CaF2 and the depletion of Si with black carbon particles formed in the solid reagent residue. No CO/CO2 and toxic HF and SiF4 formation were detected in the exhaust gas.

  20. Modeling of atomic systems for atomic clocks and quantum information

    NASA Astrophysics Data System (ADS)

    Arora, Bindiya

    This dissertation reports the modeling of atomic systems for atomic clocks and quantum information. This work is motivated by the prospects of optical frequency standards with trapped ions and the quantum computation proposals with neutral atoms in optical lattices. Extensive calculations of the electric-dipole matrix elements in monovalent atoms are conducted using the relativistic all-order method. This approach is a linearized version of the coupled-cluster method, which sums infinite sets of many-body perturbation theory terms. All allowed transitions between the lowest ns, np1/2, np 3/2 states and a large number of excited states of alkali-metal atoms are evaluated using the all-order method. For Ca+ ion, additional allowed transitions between nd5/2, np 3/2, nf5/2, nf 7/2 states and a large number of excited states are evaluated. We combine D1 lines measurements by Miller et al. [18] with our all-order calculations to determine the values of the electric-dipole matrix elements for the 4pj - 3d j' transitions in K and for the 5pj - 4dj' transitions in Rb to high precision. The resulting electric-dipole matrix elements are used for the high-precision calculation of frequency-dependent polarizabilities of ground state of alkali atoms. Our values of static polarizabilities are found to be in excellent agreement with available experiments. Calculations were done for the wavelength in the range 300--1600 nm, with particular attention to wavelengths of common infrared lasers. We parameterize our results so that they can be extended accurately to arbitrary wavelengths above 800 nm. Our data can be used to predict the oscillation frequencies of optically-trapped atoms, and particularly the ratios of frequencies of different species held in the same trap. We identify wavelengths at which two different alkali atoms have the same oscillation frequency. We present results of all-order calculations of static and frequency-dependent polarizabilities of excited np1/2 and np3