Science.gov

Sample records for alkali basalt basanite

  1. Alkali basalts and enclosed ultramafic xenoliths near Ushuaia, Tierra Del Fuego, Argentina.

    PubMed

    Acevedo, Rogelio Daniel

    2016-01-01

    At the southernmost part of Tierra del Fuego a few outcrops and erratic boulders of alkali basaltic rocks with ultramafic enclaves have been studied. Alkali basalt plugs or pipes hitherto identified are scarce, and host rocks are constituted by slates that belong to Mesozoic deposition. The petrography, texture and composition of the basalt and xenoliths were investigated by petrographic microscope and electron microprobe analysis. Xenocrysts of amphibole and alkali feldspar, phenocrysts of nepheline, olivine, spinel, phlogopite and Fe-Ti minerals (10 %) and a diversity of xenoliths, mainly lherzolitic, pyroxenite and wehrlitic nodules (15 %), but also from metamorphic rocks provenance, are contained in the basalt groundmass (75 %). This finer-grained material is made up of laths or needles of plagioclase, pyroxene, opaque minerals, apatite and glass, with intersertal, hyalopilitic and pilotaxitic. Locally, rock has an even granoblastic texture. Former amygdules are filled by analcite, zeolites, sodalite and calcite. The normative classification, based on nepheline content, conclude that this rock is an alkali basalt. The chemical classification, considering immobile elements as Zr/TiO2 versus Nb/Y indicate an alkali basalt too and plots over the TAS diagram fall in the foidite (Na-rich or nephelinite) and basanite fields. The REE patterns are fractionated (La/Yb primitive mantle normalized is approximately 30). The K-Ar isotopic technique on individual macrocrysts gave ages of 146 ± 5 Ma (amphibole) and 127 ± 4 Ma (alkali feldspar); and K-Ar whole rock datum reported 8.3 ± 0.3 Ma. Nevertheless, fertile samples show geochemical features typical of deep derived material thus, based on the position in the actual tectonic setting, indicate that the basalt is older than its isotopic age. PMID:27610313

  2. Assesment of Alkali Resistance of Basalt Used as Concrete Aggregates

    NASA Astrophysics Data System (ADS)

    al-Swaidani, Aref M.; Baddoura, Mohammad K.; Aliyan, Samira D.; Choeb, Walid

    2015-11-01

    The objective of this paper is to report a part of an ongoing research on the influence of using crushed basalt as aggregates on one of durability-related properties of concrete (i.e. alkali-silica reaction which is the most common form of Alkali-Aggregate Reaction). Alkali resistance has been assessed through several methods specified in the American Standards. Results of petrographic examination, chemical test (ASTM C289) and accelerated mortar bar test (ASTM C1260) have particularly been reported. In addition, the weight change and compressive strength of 28 days cured concrete containing basaltic aggregates were also reported after 90 days of exposure to 10% NaOH solution. Dolomite aggregate were used in the latter test for comparison. The experimental results revealed that basaltic rocks quarried from As-Swaida'a region were suitable for production of aggregates for concrete. According to the test results, the studied basalt aggregates can be classified as innocuous with regard to alkali-silica reaction. Further, the 10% sodium hydroxide attack did not affect the compressive strength of concrete.

  3. Volatile degassing of basaltic achondrite parent bodies Evidence from alkali elements and phosphorus

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    1987-01-01

    The Na, K, Rb, Cs, and P abundances in eucrites, diogenites, basaltic clasts from polymict eucrite, howardites, and mesosiderites are examined, and compared with an average of highly incompatible refractory (AHIR) elements normalized to cosmic abundances. It is observed that basaltic eucrites and basaltic clasts show a positive correlation between K, Rb, and Cs, and alkali element/AHIR ratios; the volatile loss of the alkali elements from the basalt affects the parent body inventory of volatile elements. The data reveal that for diogenites, the alkali /AHIR ratios are 1.4-2 times greater than in basaltic eucrites and are more variable; and the negative relation between K, Rb, Cs, and the alkali/AHIR ratio correlate with progressive alkali loss through volatile outgassing during crystallization of one or more magmas resulting in a greater than 90 percent loss of the volatile element inventory from the parent body. It is also detected that P displays volatile loss from the basaltic eucrites and elevated P/AHIR ratios in diogenites.

  4. Geochemistry of the Quaternary alkali basalts of Garrotxa (NE Volcanic Province, Spain): a case of double enrichment of the mantle lithosphere

    NASA Astrophysics Data System (ADS)

    Cebriá, J. M.; López-Ruiz, J.; Doblas, M.; Oyarzun, R.; Hertogen, J.; Benito, R.

    2000-11-01

    The area of Garrotxa (also known as the Olot area) represents the most recent (700,000-11,500 y) and better preserved area of magmatic activity in the NE Volcanic Province of Spain (NEVP). This region comprises a suite of intracontinental leucite basanites, nepheline basanites and alkali olivine basalts, which in most cases represent primary or nearly primary liquids. The geochemical characteristics of these lavas are very similar to the analogous petrologic types of other Cenozoic volcanics of Europe, which are intermediate between HIMU, DM and EM1. Quantitative trace element modeling, suggests derivation from an enriched mantle source by degrees of melting that progressively increased from the leucite basanites (˜4%) to the olivine basalts (˜16%). However, the relatively more variable Sr-Nd-Pb isotope signature of the magmas suggests the participation of at least two distinct components in the mantle source: (1) a sublithospheric one with a geochemical signature similar to the magmas of Calatrava (Central Spain) and other basalts of Europe; and (2) an enriched lithospheric component with a K-bearing phase present. The geochemical model proposed here involves the generation of a hybrid mantle lithosphere source produced by the infiltration of the sublithospheric liquids into enriched domains of the mantle lithosphere, shortly before the melting event that generated the Garrotxa lavas. The available geological data suggest that the first enrichment event of the mantle lithosphere under the NEVP could be the result of Late Variscan mantle upwelling triggered by the extensional collapse of the Variscan orogen during the Permo-Carboniferous. By Jurassic/Cretaceous time, large-scale NNE-directed sublithospheric mantle channeling of thermally and chemically anomalous plume material was placed under the Iberian Peninsula and Central Europe. However, the geodynamic conditions in the NEVP did not favor magmatism, which could not take place until the Cenozoic after

  5. Mineralogy, geochemistry and expansion testing of an alkali-reactive basalt from western Anatolia, Turkey

    SciTech Connect

    Copuroglu, Oguzhan; Andic-Cakir, Ozge; Broekmans, Maarten A.T.M.; Kuehnel, Radko

    2009-07-15

    In this paper, the alkali-silica reaction performance of a basalt rock from western Anatolia, Turkey is reported. It is observed that the rock causes severe gel formation in the concrete microbar test. It appears that the main source of expansion is the reactive glassy phase of the basalt matrix having approximately 70% of SiO{sub 2}. The study presents the microstructural characteristics of unreacted and reacted basalt aggregate by optical and electron microscopy and discusses the possible reaction mechanism. Microstructural analysis revealed that the dissolution of silica is overwhelming in the matrix of the basalt and it eventually generates four consequences: (1) Formation of alkali-silica reaction gel at the aggregate perimeter, (2) increased porosity and permeability of the basalt matrix, (3) reduction of mechanical properties of the aggregate and (4) additional gel formation within the aggregate. It is concluded that the basalt rock is highly prone to alkali-silica reaction. As an aggregate, this rock is not suitable for concrete production.

  6. Thermobarometry for spinel lherzolite xenoliths in alkali basalts

    NASA Astrophysics Data System (ADS)

    Ozawa, Kazuhito; Youbi, Nasrrddine; Boumehdi, Moulay Ahmed; Nagahara, Hiroko

    2016-04-01

    geothermobarometry based on reactions with large and distinct volume changes, is necessary. Specification of mineral domains and their components representing the thermal state of the mantle just before xenolith extraction is one of the major tasks for the establishment of reliable geothermobarometry for spinel lherzolite xenoliths. Systematic variations of such mineralogical information among xenoliths transported by a single volcanic eruption guarantees proper estimation of a mantle geotherm. For the development of such geobarometry, it is important to choose appropriate xenolith locality, where previous studies provide enough information and where many xenolith samples are available for extending a range of derivation depth. Spinel lherzolite xenoliths in alkali basalts from Bou Ibalhatene maars in the Middle Atlas in Morocco are suitable study target. Geochemical, geochronological, petrological, and rheological aspects of the spinel lherzolite xenoliths have been studied (Raffone et al. 2009; El Messbahi et al., 2015; Witting et al., 2010; El Azzouzi et al., 2010), which show that they represent fragments of the lithospheric mantle formed and modified since 1.7Ga before their extraction from Miocene to recent. We have pinpointed portions of minerals in the xenolith samples and their components representing condition just before their entrapment in magmas, on which appropriate geothermobarometers are applied and detected ~0.5GPa pressure difference (1.5-2.0GPa) for ~100°C variation in temperatures (950-1050°C).

  7. The origin of pyroxene megacrysts in alkali basalts from Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Ntaflos, Theo; Bjerg, Ernesto; Gregoire, Michel

    2015-04-01

    Clinopyroxene and othopyroxene megacrysts have been brought to the surface together with mantle xenoliths by Neogene and Quaternary alkali basalts from the back-arc environment in Patagonia. The collected megacrysts are from Pali Aike Volcanic Field (El Ruido, maar) and the Gobernador Gregores cinder cone in southern Patagonia, and from the Laguna Fria outcrop in northern Patagonia. The most frequent pyroxene megacrysts are augites (twelve samples), one diopside and two enstatites. Enstatites were found in El Ruido and Laguna Fria. The augites are magnesian rich with MG# that vary from 73.1 to 75.3 in Gobernador Gregores, fairly constant at 76.6 in El Ruido and from 74.0 to 78.6 in Laguna Fria. The MG# of diopside is 91.1 and the two enstatites, one from Gobernador Gregores and the other from Laguna Fria, have MG#s 78.3 and 82.5 respectively. The Na2O and TiO2 contents in augites vary from 0.99 to 2.06 wt% and from 0.69 to 1.86 wt% repectively. Systematically, the Gobernador Gregores augites have the highest TiO2 and Na2O contents. The primitive mantle normalized REE abundances have concave upwards patterns. While the Gobernador Gregores augites have (La/Y)N ratios that vary from 2.4 to 3.8, the El Ruido and Laguna Fria augites have ratios that vary from 0.91 to 1.74. The enstatites from both localities have similar MREE but they differ markedly in their LREE (in GG LaN=0.04xPM and in El Ruido LAN=0.14) and in their HREE (in Gobernador Gregores YbN=0.25 and in El Ruido YBN=0.6). The AL IV/AL VI in all augites is high and vary from 0.75 to1.07 suggesting that they have been formed at - more than 30 km depth. The calculated minimum equilibrium temperatures vary between 1260 to 1320°C. Pressure estimates for augites, with exception of the El Ruido augites with a pressure of 1.65 GP, vary between 1.27 and 1.47 GPa. Especially the pressure estimates from Gobernador Gregores megacrysts vary within a small interval from 1.29 to 1.36 GPa indicating an isobaric

  8. Petrological processes in mantle plume heads: Evidence from study of mantle xenoliths in the late Cenozoic alkali Fe-Ti basalts in Western Syria

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii

    2015-04-01

    It is consensus now that within-plate magmatism is considered with ascending of mantle plumes and adiabatic melting of their head. At the same time composition of the plumes' matter and conditions of its adiabatic melting are unclear yet. The major source of objective information about it can be mantle xenoliths in alkali basalts and basanites which represent fragments of material of the plume heads above magma-generation zone. They are not represent material in melting zone, however, carry important information about material of modern mantle plumes, its phase composition and components, involved in melting. Populations of mantle xenoliths in basalts are characterized by surprising sameness in the world and represented by two major types: (1) dominated rocks of ``green'' series, and (2) more rare rocks of ``black'' series, which formed veins in the ``green'' series matrix. It can evidence about common composition of plume material in global scale. In other words, the both series of xenoliths represent two types of material of thermochemical mantle plumes, ascended from core-mantle boundary (Maruyama, 1994; Dobretsov et al., 2001). The same types of xenoliths are found in basalts and basanites of Western Syria (Sharkov et al., 1996). Rocks of ``green'' series are represented by Sp peridotites with cataclastic and protogranular structures and vary in composition from dominated spinel lherzolites to spinel harzburgites and rare spinel pyroxenites (websterites). It is probably evidence about incomplete homogenizing of the plume head matter, where material, underwent by partial melting, adjoins with more fertile material. Such heterogeneity was survived due to quick cooling of upper rim of the plume head in contact with relatively cold lithosphere. Essential role among xenoliths of the ``black'' series play Al-Ti-augite and water-bearing phases like hornblende (kaersutute) and Ti-phlogopite. Rocks of this series are represented by wehrlite, clinopyroxenite, amphibole

  9. Lithium tracer-diffusion in an alkali-basaltic melt — An ion-microprobe determination

    NASA Astrophysics Data System (ADS)

    Lowry, R. K.; Reed, S. J. B.; Nolan, J.; Henderson, P.; Long, J. V. P.

    1981-03-01

    An ion-microprobe-based technique has been used to measure lithium tracer-diffusion coefficients ( D Li) in an alkali-basaltic melt at 1300, 1350 and 1400°C. The results can be expressed in the form: D Li=7.5 ×10 -2exp(-27,600/RT)cm 2S -1 The results show significantly faster diffusion rates than those previously recorded for other monovalent, divalent and trivalent cations in a tholeiitic melt. Consequently, diffusive transport of ions acting over a given time in a basaltic melt can produce a wider range of transport distance values than hitherto supposed. Hence, it is concluded that great care should be exercised when applying diffusion data to petrological problems.

  10. An Experimental Study of Harzburgite Reactive Dissolution in an Alkali Basalt

    NASA Astrophysics Data System (ADS)

    Morgan, Z. T.; Liang, Y.

    2001-12-01

    Dissolution of a melt-bearing harzburgite (Ol:Opx ~ 1:1 in mass, and 10+/-2% melt) in an alkali basalt was examined at 1260 - 1290° C and 0.6-0.75 GPa using a piston cylinder apparatus. One of the purposes of this study is to examine the systematic variations in mineralogy, mineral chemistry and melt porosity that are associated with harzburgite reactive dissolution. Such information, along with dissolution rate, is essential in quantitative understanding of melt transport in the mantle. Using natural starting materials, dissolution couples were formed by juxtaposing pre-synthesized rods of alkali basalt and harzburgite (1290° C and 0.6 GPa or 1260° C and O.75 GPa, 4 - 37 hrs) in Pt and graphite lined Mo capsules, and were run at the respective P and T for 0.4 to 8 hrs. Harzburgite (olivine Mg# = 88.5) dissolves incongruently into the alkali basalt (Mg# 54) forming an olivine + melt reactive boundary layer. The thickness of the reaction zone (Xb, in \\mum) is proportional to the square root of experimental run time (t, in seconds), with X_{b} = 1.40 (+/-0.09) * sqrt\\{t\\}, r = 0.91. The olivine crystals in the reaction zone (5-60 μ m) are euhedral, and some contain melt inclusions. The average porosity of the reactive boundary layer varies from 20% to 24% among the 15 experiments analyzed to date, whereas grain scale porosity of the reaction zone is quite heterogeneous (15% to 38%) in a given sample. The Mg#, as well as the NiO and CaO contents of the olivine crystals in the reaction zone vary systematically as a function of distance and time. The Mg# and NiO content in the olivine decrease from 89 and 0.39 wt%, respectively, at the interface with the harzburgite to 83 and 0.15% at the interface with the alkali basalt. The CaO content of the olivine is inversely correlated with the Mg#, ranging from 0.1% to 0.3%. The larger olivine crystals ( > 16 μ m) in the reactive boundary layer are strongly zoned with core compositions similar to the original olivine

  11. The alkali basaltic and picritic Magmatism in Minusa and Kusnetsk basin, geochemical study

    NASA Astrophysics Data System (ADS)

    Firsov, Andrei; Ashchepkov, Igor; Rikhvanov, Leonid; Wald, Alexandr

    2015-04-01

    The alkali basalts and picrites are widely distributed within the Minusa depressions. They manifest quite different episodes of the magmatic activity and plumes. Some of them relate to late Devonian which are parallel to magmatism in Vilyui rift and Tungus basin as well as to Agul basaltic plateau in Sayan Foothills and in Kuznetsk Alatau (385 -360 Ma) and are mainly represented by the alkali basalts (Rikhvanov et al., 1991). The others are close in time to the Late Devonian kimberlitic basaltic magmatism and camptonite dykes in West Sayan. The Early stage of the Permian -Triassic super plume in Minusa and Kusnetsk basin 250 -254 Ma (Rikhvanov et al., 1991). The major pulse of magmatic activity at 248 -245 MA was not appeared in southern margin. But the latest which is represented in Meimecha province Northern Siberia But the late or new Early Triassic stage at 230 -240 Ma was again manifested by the appearance of the alkali picrite ankaratrite dykes. The later alkaline magmatism in Late Jurassic - Cretaceaus stages which was appeared in the Northern Siberian provinces appeared in Southern Siberia were much less pronounced. The Latest episode of the Mezo- Cenozoic activity (Kutolin, Frolova, 1970; Ashchepkov et al., 1995) in the Kopiev uplift with the abundant mantle xenoliths in magma manifest another stages which possibly is related to the hydrous plumes. The trace elements of the magmas in the Minusa depression show rather high concentration if the incompatible elements in all stages which suggest primary enrichment in the metasomatic components probably due to the ancient subducted related magmatism starting from the Devonian stage (Vorontsov et al., 2013) which had the model ages of about 0.9 Ga (Vrublevskii et al., 2014 ). The high melting stages which should be followed by the depletion and homogenization of the source mantle at the Superplume stage and the erupted volcanic still demonstrated rather high La/Yb rations. An thus the alkali picrite volcanic of

  12. Eruptive history of an alkali basaltic diatreme from Elie Ness, Fife, Scotland

    NASA Astrophysics Data System (ADS)

    Gernon, T. M.; Upton, B. G. J.; Hincks, T. K.

    2013-05-01

    The Elie Ness diatreme (Fife, Scotland) is an ideal place to study the internal architecture and emplacement processes of diatremes. Elie Ness is one of approximately 100 alkali basaltic diatremes and intrusions in the East Fife area, emplaced during Upper Carboniferous to Early Permian times into an extensive rift system in the northern Variscan foreland. Within the diatreme, seven lithofacies and three lithofacies associations (LFAs 1-3) are recognised. Field, petrographic and geochemical studies demonstrate that the diatreme experienced a protracted history of eruption and infill, initially driven by volatile expansion and later by magma-water interaction. Massive lapilli tuffs of LFA 1 contain abundant highly vesicular juvenile scoria and magma-coated clasts, which are best explained by a magmatic origin for the early explosive eruptions. On a large-scale, the tuffs are well mixed and locally exhibit small-scale degassing structures attributed to fluidisation processes occurring within the diatreme fill. The occurrence of abundant volcaniclastic autoliths and megablocks within LFA 1 can be explained by subsidence of volcaniclastic strata from the maar crater and upper diatreme during emplacement. Pyroclastic density current deposits of LFA 2 form a series of continuous sheets across the diatreme, some of which may have originated from phreatomagmatic explosions in a neighbouring vent. We attribute the overall bedding pattern to a combination of primary volcanic processes and post-depositional folding related to movement along an adjacent fault. Minor steeply inclined breccias and tuffs of LFA 3 cross-cut the LFA 2 succession and are interpreted as late-stage volcaniclastic dykes and conduits, signalling the final phase of eruptive activity at Elie Ness. The study offers new insights into the volcanic evolution of diatremes fed by low viscosity, alkali-rich magmas.

  13. Moon and earth - Compositional differences inferred from siderophiles, volatiles, and alkalis in basalts

    NASA Technical Reports Server (NTRS)

    Wolf, R.; Anders, E.

    1980-01-01

    A comparison of RNAA analyses of 18 trace elements in 25 low-Ti lunar and 10 terrestrial oceanic basalts indicated that the volatiles such as Ag, Bi, and Br are depleted in lunar basalts by nearly constant factors of 0.026 relative to terrestrial basalts. This constancy is not consistent with models that derive the moon's volatiles from partial recondensation of the earth's mantle or from partial degassing of a captured body; it is consistent with models which derive planetary volatiles from a thin veneer of C-chondrite material. Chalcogens (Se and Te) have almost constant and identical abundances in lunar and terrestrial basalts; siderophiles show abundant Ni in lunar basalts, while Ir, Re, Ge, and Au are depleted.

  14. Partial melting and fractionation in the Mesa Chivato alkali basalt-trachyte series, Mount Taylor Volcanic Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Schrader, C. M.; Schmidt, M. E.; Crumpler, L. S.; Wolff, J. A.

    2012-12-01

    Mesa Chivato comprises a series of alkaline cones, flows, and domes within the Mount Taylor Volcanic Field (MTVF) in northwest New Mexico. Compositions range from alkali basalt to trachyte. Intermediate magmas are less well represented than mafic and felsic rocks, but benmoreites and transitional benmoreite-trachytes provide a window into the differentiation processes. Major element, trace element, and isotopic data suggest that petrogenesis of benmoreite proceeded by fractional crystallization of mafic liquids and magma mixing with partially melted mafic rocks. Major element mass balance models permit the derivation of transitional benmoreite/trachyte from the benmoreite by 20-25% crystallization of microphenocryst phases (olivine, plagioclase, Ti-magnetite, and apatite) and further fractionation to trachyte by 10-15% crystallization of olivine, plagioclase and alkali feldspar, Fe-Ti oxide, and apatite. These models are supported by SiO2-Sr and -Ba systematics. However, the hawaiite to benmoreite gap cannot be crossed by fractional crystallization alone. While major element models permit the mafic lavas to yield the benmoreite, they require extensive fractionation of clinopyroxene and plagioclase - this is unsupported by petrography (clinopyroxene phenocrysts are rare in the mafic rocks and lacking in the intermediate rocks) and cannot explain the benmoreite's very high Sr contents (>1800 ppm), which would have been depleted by plagioclase fractionation. From LA-ICPMS analysis of plagioclase: 87Sr/86Sr of early alkali basalt (0.70285-0.70300) and late hawaiite (0.70406-0.70421) bracket the 87Sr/86Sr of the benmoreite (0.70361-0.70406). Thus, either could represent the fractionated liquid parental to the benmoreite and the other the partially melted source.

  15. Igneous Rocks of the East Pacific Rise: The alkali volcanic suite appear to be differentiated from a tholeiitic basalt extruded from the mantle.

    PubMed

    Engel, A E; Engel, C G

    1964-10-23

    The apical parts of large volcanoes along the East Pacific Rise (islands and seamounts) are encrusted with rocks of the alkali volcanic suite (alkali basalt, andesine- and oligoclase-andesite, and trachyte). In contrast, the more submerged parts of the Rise are largely composed of a tholeiitic basalt which has low concentrations of K, P, U, Th, Pb, and Ti. This tholeiitic basalt is either the predominant or the only magma generated in the earth's mantle under oceanic ridges and rises. It is at least 1000-fold more abundant than the alkali suite, which is probably derived from tholeiitic basalt by magmatic differentiation in and immediately below the larger volcanoes. Distinction of oceanic tholeiites from almost all continental tholeiites is possible on the simple basis of total potassium content, with the discontinuity at 0.3 to 0.5 percent K(2)O by weight. Oceanic tholeiites also are readily distinguished from some 19 out of 20 basalts of oceanic islands and seamount cappings by having less than 0.3 percent K(2)O by weight and more than 48 percent SiO(2). Deep drilling into oceanic volcanoes should, however, core basalts transitional between the oceanic tholeiites and the presumed derivative alkali basalts. The composition of the oceanic tholeiites suggests that the mantle under the East Pacific Rise contains less than 0.10 percent potassium oxide by weight; 0.1 part per million of uranium and 0.4 part of thorium; a potassium:rubidium ratio of about 1200 and a potassium: uranium ratio of about 10(4). PMID:17806796

  16. The mantle and basalt-crust interaction below the Mount Taylor Volcanic Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Schrader, C. M.; Crumpler, L. S.; Schmidt, M. E.

    2010-12-01

    The Mount Taylor Volcanic Field (MTVF) lies on the Jemez Lineament on the southeastern margin of the Colorado Plateau. The field is centered on the Mt. Taylor composite volcano and includes Mesa Chivato to the NE and Grants Ridge to the WSW. MTVF magmatism spans ~3.8-1.5 Ma (K-Ar, Perry et al., 1990). Magmas are dominantly alkaline with mafic compositions ranging from basanite to hy-basalt and felsic compositions ranging from ne-trachyte to rhyolite. We are investigating the state of the mantle and the spatial and temporal variation in basalt-crustal interaction below the MTVF by examining mantle xenoliths and basalts in the context of new mapping and future Ar-Ar dating. The earliest dated magmatism in the field is a basanite flow south of Mt. Taylor (Perry et al., 1990). Mantle xenolith-bearing alkali basalts and basanites occur on Mesa Chivato (Crumpler, 1980) and in the region of Mt. Taylor, though most basalts are peripheral to the main cone. Xenolith-bearing magmatism persists at least into the early stages of cone-building. Preliminary examination of the mantle xenolith suite suggests it is dominantly lherzolitic but contains likely examples of both melt-depleted (harzburgitic) and melt-enriched (clinopyroxenitic) mantle. There are aphyric and crystal-poor hawaiites, some of which are hy-normative (Perry et al., 1990), on and near Mt. Taylor, but many of the more evolved MTVF basalts show evidence of complex histories. Mt. Taylor basalts higher in the cone-building sequence contain >40% zoned plagioclase pheno- and megacrysts. Other basalts peripheral to Mt. Taylor and at Grants Ridge contain clinopyroxene and plagioclase megacrysts and cumulate-textured xenoliths, suggesting they interacted with lower crustal cumulates. Among the questions we are addressing: What was the chemical and thermal state of the mantle recorded by the basaltic suites and xenoliths and how did it change with time? Are multiple parental basalts (Si-saturated vs. undersaturated

  17. The Mantle and Basalt-Crust Interaction Below the Mount Taylor Volcanic Field, New Mexico

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.; Crumpler, Larry S.; Schmidt, Marick E.

    2010-01-01

    The Mount Taylor Volcanic Field (MTVF) lies on the Jemez Lineament on the southeastern margin of the Colorado Plateau. The field is centered on the Mt. Taylor composite volcano and includes Mesa Chivato to the NE and Grants Ridge to the WSW. MTVF magmatism spans approximately 3.8-1.5 Ma (K-Ar). Magmas are dominantly alkaline with mafic compositions ranging from basanite to hy-basalt and felsic compositions ranging from ne-trachyte to rhyolite. We are investigating the state of the mantle and the spatial and temporal variation in basalt-crustal interaction below the MTVF by examining mantle xenoliths and basalts in the context of new mapping and future Ar-Ar dating. The earliest dated magmatism in the field is a basanite flow south of Mt. Taylor. Mantle xenolith-bearing alkali basalts and basanites occur on Mesa Chivato and in the region of Mt. Taylor, though most basalts are peripheral to the main cone. Xenolith-bearing magmatism persists at least into the early stages of conebuilding. Preliminary examination of the mantle xenolith suite suggests it is dominantly lherzolitic but contains likely examples of both melt-depleted (harzburgitic) and melt-enriched (clinopyroxenitic) mantle. There are aphyric and crystal-poor hawaiites, some of which are hy-normative, on and near Mt. Taylor, but many of the more evolved MTVF basalts show evidence of complex histories. Mt. Taylor basalts higher in the cone-building sequence contain >40% zoned plagioclase pheno- and megacrysts. Other basalts peripheral to Mt. Taylor and at Grants Ridge contain clinopyroxene and plagioclase megacrysts and cumulate-textured xenoliths, suggesting they interacted with lower crustal cumulates. Among the questions we are addressing: What was the chemical and thermal state of the mantle recorded by the basaltic suites and xenoliths and how did it change with time? Are multiple parental basalts (Si-saturated vs. undersaturated) represented and, if so, what changes in the mantle or in the tectonic

  18. Jun Jaegyu Volcano: A Recently Discovered Alkali Basalt Volcano in Antarctic Sound, Antarctica

    NASA Astrophysics Data System (ADS)

    Hatfield, A.; Bailey, D.; Domack, E.; Brachfeld, S.; Gilbert, R.; Ishman, S.; Krahmann, G.; Leventer, A.

    2004-12-01

    Jun Jaegyu is a young volcanic construct discovered in May 2004 by researchers aboard the National Science Foundation (NSF) vessel Laurence M. Gould (LMG04-04). The volcano is located on the Antarctic continental shelf in Antarctic Sound, approximately 9 km due north of the easternmost point of Andersson Island. Swath bathymetry (NBP01-07) indicates that the volcano stands 700 meters above the seafloor, yet remains 275 meters short of the ocean surface. The seamount lies along a northwest-southeast oriented fault scarp and contains at least 1.5 km3 of volcanic rock. Video recording of the volcano's surface revealed regions nearly devoid of submarine life. These areas are associated with a thermal anomaly of up to 0.052° C higher than the surrounding ocean water. A rock dredge collected ~13 kg of material, over 80% of which was fresh volcanic rock; the remainder was glacial IRD. These observations, along with reports by mariners of discolored water in this region of Antarctic Sound, suggest that the volcano has been recently active. The basalt samples are generally angular, glassy and vesicular. Preliminary petrographic observations indicate that plagioclase, olivine, and clinopyroxene are all present as phenocryst phases, and that small (<1cm) rounded xenoliths are common. A comprehensive study of the volcano's petrography and whole-rock chemistry is currently underway. Jun Jaegyu is the northernmost volcanic center of the James Ross Island Volcanic Group (JRIVG), and the only center in this region of the Antarctic Peninsula with evidence of recent activity. It lies along the boundary between the Late Cenozoic JRIVG and the Upper Paleozoic rocks of the Trinity Peninsula Formation. While the tectonic setting of the region is complex, volcanism appears to be associated with active faults related to within-plate extension.

  19. The isotope systematics of a juvenile intraplate volcano: Pb, Nd, and Sr isotope ratios of basalts from Loihi Seamount, Hawaii

    USGS Publications Warehouse

    Staudigel, H.; Zindler, A.; Hart, S.R.; Leslie, T.; Chen, C.-Y.; Clague, D.

    1984-01-01

    Sr, Nd, and Pb isotope ratios for a representative suite of 15 basanites, alkali basalts, transitional basalts and tholeiites from Loihi Seamount, Hawaii, display unusually large variations for a single volcano, but lie within known ranges for Hawaiian basalts. Nd isotope ratios in alkali basalts show the largest relative variation (0.51291-0.51305), and include the nearly constant tholeiite value ( ??? 0.51297). Pb isotope ratios show similarly large ranges for tholeiites and alkali basalts and continue Tatsumoto's [31] "Loa" trend towards higher 206Pb 204Pb ratios, resulting in a substantial overlap with the "Kea" trend. 206Pb 204Pb ratios for Loihi and other volcanoes along the Loa and Kea trends [31] are observed to correlate with the age of the underlying lithosphere suggesting lithosphere involvement in the formation of Hawaiian tholeiites. Loihi lavas display no correlation of Nd, Sr, or Pb isotope ratios with major element compositions or eruptive age, in contrast with observations of some other Hawaiian volcanoes [38]. Isotope data for Loihi, as well as average values for Hawaiian volcanoes, are not adequately explained by previously proposed two-end-member models; new models for the origin and the development of Hawaiian volcanoes must include mixing of at least three geochemically distinct source regions and allow for the involvement of heterogeneous oceanic lithosphere. ?? 1984.

  20. Enriched asthenosphere melting beneath the nascent North African margin: trace element and Nd isotope evidence in middle-late Triassic alkali basalts from central Sicily (Italy)

    NASA Astrophysics Data System (ADS)

    Cirrincione, Rosolino; Fiannacca, Patrizia; Lustrino, Michele; Romano, Vanessa; Tranchina, Annunziata; Villa, Igor M.

    2016-03-01

    During the dismembering of the Pangea supercontinent, middle-late Triassic sub-volcanic alkaline rocks were emplaced in central Sicily. These rocks have an alkali basaltic composition and show OIB-like incompatible element patterns in primitive mantle-normalized diagrams (e.g., enrichments in HFSE and LREE coupled with high HFSE/LILE ratios), as well as slightly positive \\varepsilon_{Nd} values. Only subtle effects of crustal contamination at shallow depths emerge from geochemical data. These characteristics are very different compared with the Permian calcalkaline magmas from elsewhere in SW Europe still carrying the geochemical signature of modifications related to the Variscan orogeny. The mineralogical, geochemical and isotopic compositions of the investigated samples from central Sicily are also different from the coeval shoshonitic volcano-plutonic formations of Southern Alps (Dolomites). The incompatible element composition and Nd isotopic ratios are consistent with low-degree partial melting of a moderately depleted asthenospheric mantle source, with a negligible involvement of the thinned continental crust. The studied alkaline basalts represent the only known evidence of a segment of the Triassic rift system associated with early Pangea breakup in central Sicily. The close similarity of the central Sicily Triassic alkali basalts with coeval basalts emplaced along former orogenic sutures across the peri-Mediterranean area suggests a common origin related, at least partly, to asthenospheric passive upwelling following the tectonic collapse of the Variscan Belt. These rocks provide new constraints on the spatial-temporal distribution, magma source evolution and geodynamic meaning of the widespread Permo-Triassic basic magmatism developed after the end of the Variscan Orogeny in southwestern Europe.

  1. Crystal preferred orientations of minerals from mantle xenoliths in alkali basaltic rocks form the Catalan Volcanic Zone (NE Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-Roig, Mercè; Galán, Gumer; Mariani, Elisabetta

    2015-04-01

    Mantle xenoliths in alkali basaltic rocks from the Catalan Volcanic Zone, associated with the Neogene-Quaternary rift system in NE Spain, are formed of anhydrous spinel lherzolites and harzburgites with minor olivine websterites. Both peridotites are considered residues of variable degrees of partial melting, later affected by metasomatism, especially the harzburgites. These and the websterites display protogranular microstructures, whereas lherzolites show continuous variation between protogranular, porphyroclastic and equigranular forms. Thermometric data of new xenoliths indicate that protogranular harzburgites, lherzolites and websterites were equilibrated at higher temperatures than porphyroclastic and equigranular lherzolites. Mineral chemistry also indicates lower equilibrium pressure for porphyroclastic and equigranular lherzolites than for the protogranular ones. Crystal preferred orientations (CPOs) of olivine and pyroxenes from these new xenoliths were determined with the EBSD-SEM technique to identify the deformation stages affecting the lithospheric mantle in this zone and to assess the relationships between the deformation fabrics, processes and microstructures. Olivine CPOs in protogranular harzburgites, lherzolites and a pyroxenite display [010]-fiber patterns characterized by a strong point concentration of the [010] axis normal to the foliation and girdle distribution of [100] and [001] axes within the foliation plane. Olivine CPO symmetry in porphyroclastic and equigranular lherzolites varies continuously from [010]-fiber to orthorhombic and [100]-fiber types. The orthorhombic patterns are characterized by scattered maxima of the three axes, which are normal between them. The rare [100]-fiber patterns display strong point concentration of [100] axis, with normal girdle distribution of the other two axes, which are aligned with each other. The patterns of pyroxene CPOs are more dispersed than those of olivine, especially for clinopyroxene, but

  2. Geochemical and oxygen isotope signatures of mantle corundum megacrysts from the Mbuji-Mayi kimberlite, Democratic Republic of Congo, and the Changle alkali basalt, China

    NASA Astrophysics Data System (ADS)

    Giuliani, Gaston; Pivin, Marjorie; Fallick, Anthony E.; Ohnenstetter, Daniel; Song, Yucai; Demaiffe, Daniel

    2015-01-01

    Oxygen isotope signatures of ruby and sapphire megacrysts, combined with trace-element analysis, from the Mbuji-Mayi kimberlite, Democratic Republic of Congo, and the Changle alkali basalt, China, provide clues to specify their origin in the deep Earth. At Mbuji-Mayi, pink sapphires have δ18O values in the range 4.3 to 5.4‰ (N = 10) with a mean of 4.9 ± 0.4‰, and rubies from 5.5 to 5.6‰ (N = 3). The Ga/Mg ratio of pink sapphires is between 1.9 and 3.9, and in rubies, between 0.6 and 2.6. The blue or yellow sapphires from Changle have δ18O values from 4.6 to 5.2 ‰, with a mean of 4.9 ± 0.2‰ (N = 9). The Ga/Mg ratio is between 5.7 and 11.3. The homogenous isotopic composition of ruby suggests a derivation from upper mantle xenoliths (garnet lherzolite, pyroxenite) or metagabbros and/or lower crustal garnet clinopyroxenite eclogite-type xenoliths included in kimberlites. Data from the pink sapphires from Mbuji-Mayi suggest a mantle origin, but different probable protoliths: either subducted oceanic protolith transformed into eclogite with δ18O values buffered to the mantle value, or clinopyroxenite protoliths in peridotite. The Changle sapphires have a mantle O-isotope signature. They probably formed in syenitic magmas produced by low degree partial melting of a spinel lherzolite source. The kimberlite and the alkali basalt acted as gem conveyors from the upper mantle up to the surface.

  3. Recycled oceanic crust and marine sediment in the source of alkali basalts in Shandong, eastern China: Evidence from magma water content and oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Xia, Qun-Ke; Deloule, Etienne; Chen, Huan; Feng, Min

    2015-12-01

    The magma water contents and cpx δ18O values in alkali basalts from the Fuyanyshan (FYS) volcano in Shandong, eastern China, were investigated by an inverse calculation based on the water content of clinopyroxene (cpx) phenocrysts, the ivAlcpx-dependent water partitioning coefficient Dwatercpx>/melt, and secondary ion mass spectrometer, respectively. The calculated water content (H2O wt.) of magma ranges from 0.58% to 3.89%. It positively correlates with heavy rare earth element concentrations and bulk rock 87Sr/86Sr ratios, and it negatively correlates with Nb/U ratios. However, it is not correlated with bulk Mg# (Mg# = 100 × Mg / (Mg + Fe)) and (La/Yb)n (n represents primitive mantle normalization). Combined with the rather homogenous distribution of water content within cpx grains, these correlations indicate that the water variations among different samples represent the original magma signature, rather than results of a shallow process, such as degassing and diffusion. The δ18O of cpx phenocrysts varies from 3.6‰ to 6.3‰ (±0.5‰, 2SD), which may be best explained by the involvement of components from the lower and upper oceanic crust with marine sediments within the mantle source. The H2O/Ce ratios of the calculated melts range from 113 to 696 and form a positive trend with bulk rock 87Sr/86Sr, which cannot be explained by the recycled Sulu eclogite or by the metasomatized lithospheric mantle. Our modeling calculation shows that the decoupling of ɛHf and ɛNd could be caused by the involvement of marine sediments. Combing the high Ba/Th ratios, positive Sr spikes, and low Ce/Pb ratios for the Fuyanshan basalts, we suggest that the hydrous nature of the FYS basalts was derived from the hydrous mantle transition zone with ancient sediments.

  4. Early and Late Alkali Igneous Pulses and a High-3He Plume Origin for the Deccan Flood Basalts.

    PubMed

    Basu, A R; Renne, P R; Dasgupta, D K; Teichmann, F; Poreda, R J

    1993-08-13

    Several alkalic igneous complexes of nephelinite-carbonatite affinities occur in extensional zones around a region of high heat flow and positive gravity anomaly within the continental flood basalt (CFB) province of Deccan, India. Biotites from two of the complexes yield (40)Ar/(39)Ar dates of 68.53 +/- 0.16 and 68.57 +/- 0.08 million years. Biotite from a third complex, which intrudes the flood basalts, yields an (40)Ar/(39)Ar date of 64.96 +/- 0.1 1 million years. The complexes thus represent early and late magmatism with respect to the main pulse of CFB volcanism 65 million years ago. Rocks from the older complexes show a (3)He/(4)He ratio of 14.0 times the air ratio, an initial (87)Sr/(86)Sr ratio of 0.70483, and other geochemical characteristics similar to ocean island basalts; the later alkalic pulse shows isotopic evidence of crustal contamination. The data document 3.5 million years of incubation of a primitive, high-(3)He mantle plume before the rapid eruption of the Deccan CFB. PMID:17783739

  5. Silica- and LREE-enriched spinel peridotite xenoliths from the Quaternary intraplate alkali basalt, Jeju Island, South Korea: Old subarc fragments?

    NASA Astrophysics Data System (ADS)

    Woo, Yonghoon; Yang, Kyounghee; Kil, Youngwoo; Yun, Sung-Hyo; Arai, Shoji

    2014-11-01

    Spinel harzburgite to lherzolite xenoliths are entrapped in Quaternary intraplate alkali basalts on Jeju Island, South Korea. These xenoliths are unusual in containing late-stage secondary orthopyroxene, free of deformation and exsolution that is replacing olivine as the main pervasive metasomatic mineral. These xenoliths are characterized by high Mg# in olivine, orthopyroxene, and clinopyroxene (89-93) and variable Cr# of spinel (9-53), representing residues left after variable degrees of melt extraction (~ 25%). In contrast to their depleted major-element compositions, clinopyroxenes in the xenoliths are enriched in most incompatible trace elements. Clinopyroxenes display enrichment in light rare earth elements (LREE) or spoon-shaped REE with a general enrichment in La over Ce, and depletion in high field strength elements (HFSE; e.g., Nb-Ta, Zr-Hf, Ti). Orthopyroxenes (either primary or secondary) are characterized by low TiO2, high Al2O3, and moderate CaO contents, and resemble those of sub-continental arc peridotites from the eastern Pacific. The geochemical evidence, in addition to the formation of secondary orthopyroxene, indicates that Jeju peridotite xenoliths have been subjected to different degrees of metasomatism by subduction-related silica- and LREE-enriched fluids (or melts). However, chemical equilibrium is evident between the primary and secondary orthopyroxene, implying that the duration of post-metasomatic high temperatures enabled complete resetting/reequilibration of the mineral compositions. The metasomatic enrichment pre-dates the host Jeju Quaternary magmatism, and a genetic relationship with the host magmas is considered unlikely. We therefore propose that the Jeju peridotite xenoliths went through a two-stage evolution, with their composition primarily controlled by early fractional melt extraction, which was subsequently modified by residual slab-derived fluids (or melts). Following enrichment in the peridotite protolith in the mantle

  6. Kinetics of iron redox reaction in silicate melts: A high temperature Xanes study on an alkali basalt

    NASA Astrophysics Data System (ADS)

    Cochain, B.; Neuville, D. R.; de Ligny, D.; Roux, J.; Baudelet, F.; Strukelj, E.; Richet, P.

    2009-11-01

    In Earth and Materials sciences, iron is the most important transition element. Glass and melt properties are strongly affected by iron content and redox state with the consequence that some properties (i.e. viscosity, heat capacity, crystallization...) depend not only on the amounts of Fe2+ and Fe3+, but also on the coordination state of these ions. In this work we investigate iron redox reactions through XANES experiments at the K-edge of iron. Using a high-temperature heating device, pre-edge of XANES spectra exhibits definite advantages to make in-situ measurements and to determine the evolution of redox state with time, temperature and composition of synthetic silicate melts. In this study, new kinetics measurements are presented for a basalt melt from the 31,000-BC eruption of the Puy de Lemptegy Volcano in France. These measurements have been made between 773 K and at superliquidus temperatures up to 1923 K.

  7. Olivine and melt inclusion chemical constraints on the source of intracontinental basalts from the eastern North China Craton: Discrimination of contributions from the subducted Pacific slab

    NASA Astrophysics Data System (ADS)

    Li, Hong-Yan; Xu, Yi-Gang; Ryan, Jeffrey G.; Huang, Xiao-Long; Ren, Zhong-Yuan; Guo, Hua; Ning, Zhen-Guo

    2016-04-01

    Contributions from fluid and melt inputs from the subducting Pacific slab to the chemical makeup of intraplate basalts erupted on the eastern Eurasian continent have long been suggested but have not thus far been geochemically constrained. To attempt to address this question, we have investigated Cenozoic basaltic rocks from the western Shandong and Bohai Bay Basin, eastern North China Craton (NCC), which preserve coherent relationships among the chemistries of their melt inclusions, their hosting olivines and their bulk rock compositions. Three groups of samples are distinguished: (1) high-Si and (2) moderate-Si basalts (tholeiites, alkali basalts and basanites) which were erupted at ∼23-20 Ma, and (3) low-Si basalts (nephelinites) which were erupted at <9 Ma. The high-Si basalts have lower alkalies, CaO and FeOT contents, lower trace element concentrations, lower La/Yb, Sm/Yb and Ce/Pb but higher Ba/Th ratios, and lower εNd and εHf values than the low-Si basalts. The olivines in the high-Si basalts have higher Ni and lower Mn and Ca at a given Fo value than those crystallizing from peridotite melts, and their corresponding melt inclusions have lower CaO contents than peridotite melts, suggesting a garnet pyroxenitic source. The magmatic olivines from low-Si basalts have lower Ni but higher Mn at a given Fo value than that of the high-Si basalts, suggesting more olivine in its source. The olivine-hosted melt inclusions of the low-Si basalts have major elemental signatures different from melts of normal peridotitic or garnet pyroxenitic mantle sources, pointing to their derivation from a carbonated mantle source consisting of peridotite and garnet pyroxenite. We propose a model involving the differential melting of a subduction-modified mantle source to account for the generation of these three suites of basalts. Asthenospheric mantle beneath the eastern NCC, which entrains garnet pyroxenite with an EM1 isotopic signature, was metasomatized by carbonatitic

  8. Distribution coefficients of major and trace elements; fractional crystallization in the alkali basalt series of Chaîne des Puys (Massif Central, France)

    NASA Astrophysics Data System (ADS)

    Villemant, Benoît; Jaffrezic, Henri; Joron, Jean-Louis; Treuil, Michel

    1981-11-01

    Major and seventeen trace element distribution coefficients between main phenocrysts (olivine, clinopyroxene, amphibole, mica, feldspars and Fe-Ti oxides) and groundmass have been measured in the alkali basalt suite of Chaîne des Puys (Massif Central, France). The suite appears to be a well behaved crystal fractionation series. We pinpoint key elements whose behavior is closely related to the appearance or disappearance of specific crystal phases in the fractionation process. Ta, for instance, clearly indicates the role of hydrous silicates (amphiboles and micas). Distribution coefficients are shown to vary systematically along the differentiation trend. Significantly the hygromagmaphile tendency ( TREUILet al., 1979) of U, Th, Ta and La is variable along the series. The mass balance equations, D i= limit∑;x jD jii where Di and Dji are the bulk and mineral/liquid distribution coefficients respectively, and xj the weight fractions of the fractionating phases, are solved by least square resolution of the overdetermined system, taking into account the analytical errors on data. The solution applied to the Chaîne des Puys suite leads to a coherent and quantitative model of the fractional crystallization process. The suite has apparently evolved in three stages. Each stage is characterized by constant bulk distribution coefficients and a specific mineral assemblage. Amphibole fractionation plays an important role in the early stages. Some intensive parameters ( T, ƒ ƒ O 2, PH2O) as well as f (weight fraction of residual liquid) are also estimated.

  9. Zygomycetes in Vesicular Basanites from Vesteris Seamount, Greenland Basin – A New Type of Cryptoendolithic Fungi

    PubMed Central

    Ivarsson, Magnus; Peckmann, Jörn; Tehler, Anders; Broman, Curt; Bach, Wolfgang; Behrens, Katharina; Reitner, Joachim; Böttcher, Michael E.; Norbäck Ivarsson, Lena

    2015-01-01

    Fungi have been recognized as a frequent colonizer of subseafloor basalt but a substantial understanding of their abundance, diversity and ecological role in this environment is still lacking. Here we report fossilized cryptoendolithic fungal communities represented by mainly Zygomycetes and minor Ascomycetes in vesicles of dredged volcanic rocks (basanites) from the Vesteris Seamount in the Greenland Basin. Zygomycetes had not been reported from subseafloor basalt previously. Different stages in zygospore formation are documented in the studied samples, representing a reproduction cycle. Spore structures of both Zygomycetes and Ascomycetes are mineralized by romanechite-like Mn oxide phases, indicating an involvement in Mn(II) oxidation to form Mn(III,VI) oxides. Zygospores still exhibit a core of carbonaceous matter due to their resistance to degradation. The fungi are closely associated with fossiliferous marine sediments that have been introduced into the vesicles. At the contact to sediment infillings, fungi produced haustoria that penetrated and scavenged on the remains of fragmented marine organisms. It is most likely that such marine debris is the main carbon source for fungi in shallow volcanic rocks, which favored the establishment of vital colonies. PMID:26181773

  10. Zygomycetes in Vesicular Basanites from Vesteris Seamount, Greenland Basin--A New Type of Cryptoendolithic Fungi.

    PubMed

    Ivarsson, Magnus; Peckmann, Jörn; Tehler, Anders; Broman, Curt; Bach, Wolfgang; Behrens, Katharina; Reitner, Joachim; Böttcher, Michael E; Norbäck Ivarsson, Lena

    2015-01-01

    Fungi have been recognized as a frequent colonizer of subseafloor basalt but a substantial understanding of their abundance, diversity and ecological role in this environment is still lacking. Here we report fossilized cryptoendolithic fungal communities represented by mainly Zygomycetes and minor Ascomycetes in vesicles of dredged volcanic rocks (basanites) from the Vesteris Seamount in the Greenland Basin. Zygomycetes had not been reported from subseafloor basalt previously. Different stages in zygospore formation are documented in the studied samples, representing a reproduction cycle. Spore structures of both Zygomycetes and Ascomycetes are mineralized by romanechite-like Mn oxide phases, indicating an involvement in Mn(II) oxidation to form Mn(III,VI) oxides. Zygospores still exhibit a core of carbonaceous matter due to their resistance to degradation. The fungi are closely associated with fossiliferous marine sediments that have been introduced into the vesicles. At the contact to sediment infillings, fungi produced haustoria that penetrated and scavenged on the remains of fragmented marine organisms. It is most likely that such marine debris is the main carbon source for fungi in shallow volcanic rocks, which favored the establishment of vital colonies. PMID:26181773

  11. Stable isotope (O, H, S) relationships in Tertiary basalts and their mantle xenoliths from the Northern Hessian Depression, W.-Germany

    NASA Astrophysics Data System (ADS)

    Harmon, R. S.; Hoefs, J.; Wedepohl, K. H.

    1987-03-01

    18O/16O, 34S/32S, and D/H ratios as well as vacuum-fusion H2O+ contents were measured for late Tertiary volcanic basaltic rocks ranging in composition from quartz tholeiites and alkali olivine basalts to melilite-bearing olivine nephelinites and for peridotite xenoliths from the Northern Hessian Depression of W.-Germany. Measured Oisotope ratios in both basalts and peridotites were corrected for variable degree of post-eruption, secondary alteration. The ranges and means of corrected δ 18O values (‰ SMOW) for the North Hessian lavas and peridotites are: (i) 8 tholeiites: ca. +6.1 to +7.3 ( ¯x=+6.6), (ii) 21 alkali olivine basalts: ca. +5.4 to +7.6 ( ¯x=+6.5), (iii) 19 nepheline basanites, limburgites, and olivine nephelinites: ca. +5.3 to +8.0 ( ¯x=+6.6), and (iv) 23 peridotites: +5.1 to 7.0 ( ¯x+6.0). The δ 34S values (‰ CDT) for the tholeiites range from -0.6 to +1.4 ( ¯x=-0.03) and for the alkali basalts range from +0.9 to +8.6 ( ¯x=+2.5). The approximate δD value (‰ SMOW) of the pristine basalts and peridotites is estimated to have been ca. -90‰ The quartz tholeiites appear to have had a different genetic history than the alkali basalts. Supported by chemical evidence, the 18O and 87Sr enrichment observed in the tholeiites suggests low crustal contamination of parental olivine tholeiite melts, derived from a depleted mantle source. The contamination by crustal partial melts may have occurred in granulitic lower crust during differentiation. By contrast the high δ 18O and δ 34S values observed for the alkali basalts and peridotites are best explained in terms of metasomatic alteration of the mantle source region by fluids enriched in 18O, K, and incompatible trace elements prior to partial melting. The δ 18O-K relationships for the peridotites indicate that the mantle beneath the Northern Hessian Depression has had a complex stable isotope history involving at least two distinct metasomatic events. The earlier event involved a CO2-rich fluid

  12. Geochemical composition of subcontinental lithospheric mantle in the westernmost Mediterranean: constrains from peridotite xenoliths in Plio-Pleistocene alkali basalts (eastern Betic Cordillera, SE Spain)

    NASA Astrophysics Data System (ADS)

    Marchesi, Claudio; Konc, Zoltán; Bosch, Delphine; Garrido, Carlos J.; Hidas, Károly; Varas-Reus, María Isabel

    2016-04-01

    Peridotite xenoliths in Plio-Pleistocene alkali basalts from the eastern Betic Cordillera (Murcia, SE Spain) provide key information on Alpine tectono-magmatic processes that affected the subcontinental lithospheric mantle beneath the westernmost Mediterranean. Here we present a detailed geochemical study comprising whole-rock and mineral major- and trace-element, as well as Sr-Nd-Pb isotopic compositional data of spinel ± plagioclase lherzolite, spinel ± plagioclase harzburgite and spinel wehrlite xenoliths from Tallante and Los Perez volcanic centers. The whole-rock major element compositions and mineral chemistry of the studied xenoliths reflect increasing fertility from clinopyroxene-poor peridotites (Group I; Mg# up to 91.5), to common lherzolites (Group II; Mg# up to 90.6), fertile lherzolites (Group III; Mg# = 86.8-88.9) and wehrlites (Mg# = 86.7-87.4). The mineral major element chemistry records the geochemical imprint of maximum 10-12 % partial melting in the most depleted Group I peridotites. However, trace element and isotopic data attest for various degrees of metasomatic enrichment that overprinted the previously depleted lithospheric mantle. Interaction with melts produced enrichment of LREE in Group II and Group III peridotites, as well as in wehrlites. In contrast to major and trace elements, Sr-Nd-Pb radiogenic isotope systematic is unrelated to compositional groups and shows isotopic variations between DMM and EM2 end-members and contribution of an Atlantic sediment-like component. Different whole-rock trace element compositions coupled to similar isotopic signatures indicate that metasomatism was caused by external melt(s) issued from a common source not before the Tertiary. These geochemical evidences attest for the percolation of slab-derived, SiO2-undersaturated melts (and hydrous fluids) with carbonate sediment affinity in the pre-Miocene supra-subduction continental lithospheric mantle beneath the Alboran Basin.

  13. Kaersutite - a product of reaction between pargasite and basanite at Dish Hill, California

    USGS Publications Warehouse

    Wilshire, H.G.; Calk, L.C.; Schwarzman, E.C.

    1971-01-01

    Paragasitic amphibole, occurring interstitially and as veins in peridotite inclusions in basanite, has reacted with the host basanite to form kaersutitic amphibole. The amphibole compositions vary with respect to distance from the edge of the xenolith; iron, titanium, and potassium contents are higher and magnesium, silicon, sodium, and chromium contents are lower closer to the basanite. Pargasite was exposed to the basanite when peridotite blocks broke open along amphibole veins during transport to the surface. Small amphibole fragments isolated in the basanite show the most reaction; compositional gradients in interstitial and vein amphibole are steep into peridotite inclusions where the amphibole was shielded from reaction. The compositions of amphiboles so modified have no direct bearing on high pressure fractionation trends if the amphibole is cognate, or on the bulk composition of the upper mantle if it is accidental. ?? 1971.

  14. Flow in the shallow mantle in the westernmost Mediterranean: insights from xenoliths in Plio-Pleistocene alkali basalts from the eastern Betic Cordillera (SE Spain)

    NASA Astrophysics Data System (ADS)

    Konc, Zoltán; Hidas, Károly; Garrido, Carlos J.; Tommasi, Andréa; Vauchez, Alain; Padrón Navarta, José Alberto; Marchesi, Claudio; Acosta-Vigil, Antonio; Szabó, Csaba; Varas-Reus, Maria Isabel

    2016-04-01

    Peridotite mantle xenoliths in Plio-Pleistocene alkali basalts of the eastern Betic Cordillera (Cartagena area, Murcia, SE Spain) provide a snapshot of the structure and composition of the lithospheric mantle at the northern limb of the Alpine Betic-Rif arched belt in the westernmost Mediterranean. The xenoliths are spinel and plagioclase lherzolite with minor harzburgite and wehrlite, displaying porphyroclastic to equigranular textures. Regardless of composition and texture, the Crystal Preferred Orientation (CPO) of olivine shows an axial-[100] pattern characterized by a strong alignment of [100]-axes near or parallel to the peridotite lineation and a girdle distribution of [010]-axes with a maximum normal to the peridotite foliation. This CPO pattern is consistent with ductile deformation accommodated by dislocation creep with dominant activation of the high temperature {0kl}[100] olivine slip system, indicative of deformation by simple shear or combinations of simple shear and pure shear with a transtensional component. Calculated seismic properties are characterized by fast propagation of P-waves and polarization of fast S-waves parallel to olivine [100]-axis, indicating the flow direction. SKS and Pn anisotropy in the eastern Betics can be explained by a lithospheric mantle peridotite with similar fabric to the one displayed by the studied mantle xenoliths. Considering the limited thickness of the mantle lithosphere in the Betics (40-80 km), the measured azimuths and delays of SKS waves in the eastern Betics are consistent with a steeply dipping mantle foliation and a subhorizontal lineation with ENE strike. This geometry of the lithospheric fabrics implies active or frozen mantle flow with a dominantly strike-slip component subparallel to the paleo-Iberian margin. Synkinematic overprinting of mineral assemblages from the garnet-spinel to the plagioclase facies demonstrates 36-40 km uplift continuously accommodated by ductile shear thinning of the

  15. Orthopyroxene-enrichment in the lherzolite-websterite xenolith suite from Paleogene alkali basalts of the Poiana Ruscă Mountains (Romania)

    NASA Astrophysics Data System (ADS)

    Nédli, Zsuzsanna; Szabó, Csaba; Dégi, Júlia

    2015-12-01

    In this paper we present the petrography and geochemistry of a recently collected lherzolite-websterite xenolith series and of clinopyroxene xenocrysts, hosted in Upper Cretaceous-Paleogene basanites of Poiana Ruscă (Romania), whose xenoliths show notable orthopyroxene-enrichment. In the series a slightly deformed porphyroclastic-equigranular textured series could represent the early mantle characteristics, and in many cases notable orthopyroxene growth and poikilitic texture formation was observed. The most abundant mantle lithology, Type A xenoliths have high Al and Na-contents but low mg# of the pyroxenes and low cr# of spinel suggesting a low degree (< 10 %) of mafic melt removal. They are also generally poor in overall REE-s (rare earth elements) and have flat REY (rare earth elements+ Y) patterns with slight LREE-depletion. The geochemistry of the Type A xenoliths and calculated melt composition in equilibrium with the xenolith clinopyroxenes suggests that the percolating melt causing the poikilitization can be linked to a mafic, Al-Na-rich, volatile-poor melt and show similarity with the Late Cretaceous-Paleogene (66-72 Ma) subduction-related andesitic magmatism of Poiana Ruscă. Type B xenoliths, with their slightly different chemistry, suggest that, after the ancient depletion, the mantle went through a slight metasomatic event. A subsequent passage of mafic melts in the mantle, with similar compositions to the older andesitic magmatism of Poiana Ruscă, is recorded in the pyroxenites (Fe-rich xenoliths), whereas the megacrysts seem to be cogenetic with the host basanite. The Poiana Ruscă xenoliths differ from the orthopyroxene-enriched mantle xenoliths described previously from the Carpathian-Pannonian Region and from the Dacia block.

  16. Sr, Nd, Pb and Hf Isotopic Compositions of Late Cenozoic Alkali Basalts in South Korea: Evidence for Mixing Between the Two Dominant Asthenospheric Mantle Domains beneath East Asia

    NASA Astrophysics Data System (ADS)

    Choi, S.; Mukasa, S. B.; Kwon, S.; Andronikov, A. V.

    2004-12-01

    We determined the Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic basaltic rocks from six lava-field provinces in South Korea, including Baengnyeong Island, Jogokni, Ganseong area, Jeju Island, Ulleung Island and Dog Island, in order to understand the nature of the mantle source. The basalts have OIB-like trace element abundance patterns, and also contain mantle-derived xenoliths. Available isotope data of late Cenozoic basalts from East Asia, along with ours, show that the mantle source has a DMM-EM1 array for northeast China and a DMM-EM2 array for Southeast Asia. We note that the basalts falling on an array between DMM and an intermediate end member between EM1 and EM2, are located between the two large-scale isotopic provinces, i.e., around the eastern part of South Korea. The most intriguing observation on the isotopic correlation diagrams is spatial variation from predominantly EM2 signatures in the basaltic lavas toward increasingly important addition of EM1, starting from Jeju Island to Ulleung and Dog Islands to Ganseong area, and to Baengnyeong Island. This is without any corresponding changes in the basement and the lithospheric mantle beneath the region. These observations suggest that the asthenospheric mantle source is dominant for the Cenozoic intraplate volcanism in East Asia, which is characterized by two distinct, large-scale domains. Previous studies on East Asian Cenozoic volcanic rocks have invoked origins by either plume activity or decompressional melting in a rift environment. On the basis of our new trace element and isotopic compositions which have OIB-like characteristics, we prefer a plume origin for these lavas. However, because tomographic images do not show distinct thermal anomaly that would be interpreted as a plume, we suggest that the magmatism might be the product of small, difficult to image multiple plumes that tapped the shallow part of the asthenosphere (probably the transition zone in the upper mantle).

  17. Petrology of ultramafic, mafic, and felsic xenoliths from Ruddon's Point basanite, Fife, Scotland, UK - preliminary results.

    NASA Astrophysics Data System (ADS)

    Sobczak, Paweł; Matusiak-Malek, Magdalena; Puziewicz, Jacek; Upton, Brian

    2016-04-01

    Numerous dykes of Carboniferous alkaline volcanic rocks occur in the county of Fife, Scotland, United Kingdom. Basanitic dyke from Ruddon's Point encloses mafic, ultramafic, and felsic xenoliths as well as megacryts of alkali feldspar and xenoliths of felsic rocks. The studied set of rocks comprises wehrlite, clinopyroxenites, gabbro, anorthosite, and anorthoclasite. Wehrlite contains pseudomorphs after biotite, the Mg# of clinopyroxene varies from 0.78 to 0.81, the Fo content in olivine is 0.68-0.71. Clinopyroxenites have cumulative textures and are typically olivine± sulfides bearing. Most of them contained biotite which is now replaced by brownish aggregates formed of chlorite with scarce biotite intergrowths. The Mg# of clinopyroxene (Al, Ti - augite) varies from 0.77 to 0.84. The Fo content in olivine is 0.81-0.85 in plagioclase-free clinopyroxenites, but in xenolith where minor amounts of plagioclase (Ab48-51An47-48) occur, the Fo content is 0.70 - 0.72. Biotite's Mg# is ~70%. Gabbro is titanite-bearing and contains trace amounts of amphibole. Diopside forming the gabbro is characterized by Mg#=0.56-0.64, plagioclase is potassium-free (Ab14-22An77-86). Anorthosite also encloses brownish post-biotitic aggregates. Plagioclase has composition of Ab35-43An54-64. Anorthoclasite (Or65-72 Ab65-72) is characterized by unusual mineral composition - it contains corundum, zircon, apatite, and niobates. Previous study on the felsic xenoliths from Scotland showed their lower crustal origin, but with possible ultramafic affinity (e.g. Upton et al., 2009, Min.Mag., 73, 943-956). Crystallization from met- and peraluminous melts was also suggested. Mantle-derived xenoliths from Scotland are from almost primitive to strongly depleted (Upton et al.; 2010, J. Geol. Soc. London, 168, 873-886), but more data from individual localities are necessary for precise description and interpretation of mantle and lower crustal processes beneath Scotland. This study was possible thanks to

  18. Formation of U-depleted rhyolite from a basanite at El Hierro, Canary Islands

    NASA Astrophysics Data System (ADS)

    Sigmarsson, Olgeir; Laporte, Didier; Carpentier, Marion; Devouard, Bertrand; Devidal, Jean-Luc; Marti, Joan

    2013-03-01

    Phonolite and trachyte are the felsic magmas of the alkaline magma suites, which characterize the Canary Islands. The October 2011 submarine eruption off El Hierro, the westernmost island, nevertheless, produced a small volume of rhyolitic magma. The rhyolite occurred as highly vesicular, white coloured pumices enveloped in and mingled with darker coloured basanitic pumice. The basanitic pumice is relatively crystal poor with a few euhedral olivines (mostly Fo77-79), clinopyroxenes and Fe-rich spinels, whereas very rare olivine of same composition is found together with equally rare Fe-sulphide and FeTi-rich oxides in the rhyolite. The Fe-Mg exchange equilibrium in the oxides permits to calculate an equilibrium temperature of 970-890 °C for the rhyolite, in agreement with quartz-melt equilibrium at ca. 930 °C. A striking mineralogical feature of the rhyolite is the presence of rounded to contorted grains of milky quartz, which are xenocrysts incorporated and partly dissolved into the magma. Analyses of residual volatile concentrations in the glasses show that the rhyolite melt was highly degassed, whereas the basanitic glass still has important halogen concentrations. Trace element patterns of the mafic glasses and their elevated incompatible element concentrations are typical of the western Canary Island basanites. In contrast, the trace element composition of the rhyolite shows surprisingly low concentrations for all elements except the most incompatible ones (e.g. Rb, Ba, K and Th). All other measured LILE, HFSE and REE have significantly lower concentration than the basanitic counterpart that can be explained by fractionation of accessory phases (1 % apatite, 1 % sphene and 0.1 % zircon). Surprisingly, low U concentration is presumably related to elevated oxygen fugacity in the rhyolite, causing U to be in a hexavalent state, and fluxing of F-rich gas leading to volatilization of UF6, known to emanate at low temperature. The results suggest that a gas

  19. Very high potassium (VHK) basalt - Complications in mare basalt petrogenesis

    NASA Technical Reports Server (NTRS)

    Shervais, J. W.; Taylor, L. A.; Laul, J. C.; Shih, C.-Y.; Nyquist, L. E.

    1985-01-01

    The first comprehensive report on the petrology and geochemistry of Apollo 14 VHK (Very High Potassium) basalts and their implications for lunar evolution is presented. The reported data are most consistent with the hypothesis that VHK basalts formed through the partial assimilation of granite by a normal low-Ti, high-Al mare basalt magma. Assimilation was preceded by the diffusion-controlled exchange of alkalis and Ba between basalt magma and the low-temperature melt fraction of the granite. Hypotheses involving volatile/nonvolatile fractionations or long-term enrichment of the source regions in K are inconsistent with the suprachondritic Ba/La ratios and low initial Sr-87/Sr-86 ratios of VHK basalt. An important implication of this conclusion is that granite should be a significant component of the lunar crust at the Apollo 14 site.

  20. Petrogenesis of basaltic volcanic rocks from the Pribilof Islands, Alaska, by melting of metasomatically enriched depleted lithosphere, crystallization differentiation, and magma mixing

    USGS Publications Warehouse

    Chang, J.M.; Feeley, T.C.; Deraps, M.R.

    2009-01-01

    The Pribilof Islands, Alaska, are located in the Bering Sea in a continental intraplate setting. In this study we examine the petrology and geochemistry of volcanic rocks from St. Paul (0??54-0??003 Ma) and St. George (2??8-1??4 Ma) Islands, the two largest Pribilof Islands. Rocks from St. George can be divided into three groups: group 1 is a high-MgO, low-SiO. 2 suite composed primarily of basanites; group 2 is a high-MgO, high-SiO 2 suite consisting predominantly of alkali basalts; group 3 is an intermediate- to low-MgO suite that includes plagioclase-phyric subalkali basalts and hawaiites. Major and trace element geochemistry suggests that groups 1 and 2 formed by small-degree partial melting of amphibole-bearing to amphibole-free garnet peridotite. Group 1 rocks were the earliest melts produced from the most hydrous parts of the mantle, as they show the strongest geochemical signature of amphibole in their source. The suite of rocks from St. Paul ranges from 14??4 to 4??2 wt % MgO at relatively constant SiO 2 contents (43??1-47??3 wt %). The most primitive St. Paul rocks are modeled as mixtures between magmas with compositions similar to groups 1 and 2 from St. George Island, which subsequently fractionated olivine, clinopyroxene, and spinel to form more evolved rocks. Plagioclase-phyric group 3 rocks from St. George are modeled as mixtures between an evolved melt similar to the evolved magmas on St. Paul and a fractionated group 2 end-member from St. George. Mantle potential temperatures estimated for primitive basanites and alkali basalts are ???1400??C and are similar to those of mid-ocean ridge basalts (MORB). Similarly, 87Sr/. 86Sr and 143Nd/. 144Nd values for all rocks are MORB-like, in the range of 0??702704-0??703035 and 0??513026-0??513109, respectively. 208Pb/. 204Pb vs 206Pb/. 204Pb values lie near the MORB end-member but show a linear trend towards HIMU (high time-integrated 238U/. 204Pb). Despite isotopic similarities to MORB, many of the major and

  1. Megacrystic Clinopyroxene Basalts Sample A Deep Crustal Underplate To The Mount Taylor Volcanic Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Schmidt, M. E.; Schrader, C. M.; Crumpler, L. S.; Wolff, J. A.

    2012-12-01

    The alkaline and compositionally diverse (basanite to high-Si rhyolite) Mount Taylor Volcanic Field (MTVF), New Mexico comprises 4 regions that cover ~75 x 40 km2: (1) Mount Taylor, a large composite volcano and a surrounding field of basaltic vents; (2) Grants Ridge, constructed of topaz rhyolitic ignimbrite and coulees; (3) Mesa Chivato, a plateau of alkali basalts and mugearitic to trachytic domes; and (4) the Rio Puero basaltic necks. Distributed throughout its history (~3.6 to 1.26 Ma; Crumpler and Goff, 2012) and area (excepting Rio Puerco Necks) is a texturally distinct family of differentiated basalts (Mg# 43.2-53.4). These basalts contain resorbed and moth-eaten megacrysts (up to 2 cm) of plagioclase, clinopyroxene, and olivine ±Ti-magnetite ±ilmenite ±rare orthopyroxene. Some megacrystic lava flows have gabbroic cumulate inclusions with mineral compositions similar to the megacrysts, suggesting a common origin. For instance, gabbroic and megacrystic clinopyroxenes form linear positive arrays in TiO2 (0.2-2.3 wt%) with respect to Al2O3 (0.7-9.3 wt%). The lowest Al clinopyroxenes are found in a gabbroic inclusion and are associated with partially melted intercumulus orthopyroxene. Megacrystic and gabbroic plagioclase (An 41-80) in 4 representative thin sections were analyzed for 87Sr/86Sr by Laser Ablation ICP-MS. 87Sr/86Sr values for the suite range from 0.7036 to 0.7047. The low 87Sr/86Sr plagioclases (0.7036 to 0.7037) are associated with high Ti-Al clinopyroxenes. Likewise, the higher 87Sr/86Sr plagioclases (0.7043 to 0.7047) are associated with the low-Al clinopyroxenes. Taken together, these megacrysts track the differentiation of an intrusive body (or related bodies) from alkaline to Si-saturated conditions by fractional crystallization and crustal assimilation. The intrusive body likely underplates portions of the MTVF that have generated silicic magmas (Mount Taylor, Grants Ridge, Mesa Chivato). Although disequilibrium is implied by resorbed

  2. Apatite intergrowths in clinopyroxene megacrysts from the Ostrzyca Proboszczowicka (SW Poland) basanite

    NASA Astrophysics Data System (ADS)

    Lipa, Danuta; Puziewicz, Jacek; Ntaflos, Theodoros; Matusiak-Małek, Magdalena

    2015-04-01

    The Cenozoic basanite from the Ostrzyca Proboszczowicka in Lower Silesia (SW Poland) belongs to numerous lavas occurring in the NE part of the Central European Volcanic Province. Basanite contains clinopyroxene megacrysts up to 3 cm in size. The clinopyroxene has the composition of aluminian-sodian diopside (mg# 0.61-0.70, 0.08-0.12 atoms Na pfu and 0.88-0.93 atoms Ca pfu). Cr is absent. The REE contents are above the primitive mantle reaching up to 18 x PM at Nd. Primitive-mantle normalized REE patterns show enrichment in LREE relative to HREE (LaN/LuN=3.81-5.01). The REE patterns of all the megacrysts show deflection in La-Nd. The trace element patterns are characterized by positive Zr, Hf and in some cases also Ta anomalies, and negative U, La, Sr, Ti and Pb ones. In some samples strong depletion (down to 0.01 x PM) in Rb and Ba is observed.The Ostrzyca megacrysts formed cumulate, which crystallized from magma similar to the host basanite, but more fractionated and enriched in REE, particularly in LREE (Lipa et al., 2014). This happened at mid-crustal depths (10-15 km) and the new pulse of basanitic magma entrained the crystals forming the non-solidified cumulate and brought them to the surface (Lipa et al., 2014). Clinopyroxene megacrysts contain large, transparent, euhedral apatite crystals up to 7 mm. The major element composition indicates the fluor-apatite with F content ranging from 0.87 to 1.93 wt.%. Chlorine content is strongly variable between grains (0.05-1.75 wt.%). Apatite is strongly enriched in LREE relative to HREE (LaN/LuN=60.39-62.23, about 1000 x PM for LREE and about 10 x PM for HREE). The REE patterns are nearly linear, with slight positive Nd and Gd anomalies. The trace element patterns are characterized by very strong negative anomalies of HFSE (Nb, Ta, Zr, Hf, Ti) and Pb, and weaker negative Sr anomaly. Concentration of Yb and Lu is on the level 10 x PM, whereas Rb, Hf and Ti are depleted relative to PM. Apatite preceded clinopyroxene

  3. Melt inclusion study of the most recent basanites from El Hierro and Lanzarote, Canary Islands

    NASA Astrophysics Data System (ADS)

    Gomez-Ulla, Alejandra; Sigmarsson, Olgeir; Huertas, Maria Jose; Ancochea, Eumenio

    2015-04-01

    The latest eruptions of both Lanzarote (one of the oldest and easternmost of the Canary Island archipelago) and El Hierro (the youngest and westernmost) produced basanite lavas. Major, volatile and trace element concentrations of melt inclusion (MI) hosted in olivine for both eruptions have been analysed. The basanites display primitive mantle normalized trace element spectra suggesting a magma source largely composed of recycled oceanic crust. In addition, beneath Lanzarote an interaction with a carbonatitic fluid phase or metasome would explain eccentric Ba/U and other trace element ratios. Contribution of carbonatitic component would readily account for extremely volatile-rich (Cl, F, S) MI from Lanzarote (Cl=1577-2500 ppm) whereas the maximum for El Hierro is 1080 ppm. The submarine character of the 2011-12 eruption off El Hierro appears to have affected the degassing behavior, whereas estimated sulfur emission to the atmosphere during the historical Lanzarote eruptions are amongst the highest observed so far. An estimated magma volume (VDRE) of 0.02 km3 yields atmospheric mass loading of 0.2 Mt SO2 from the 1824 Lanzarote eruption. Scaling the volume of the 1824 Lanzarote eruption to that of the previous Timanfaya eruption (1730-6; 5 km3) results in estimated 12 Mt SO2, an atmospheric mass loading only outnumbered by the historical Laki and Eldgjá eruptions in Iceland. The significantly greater volatile budget of basanites from Lanzarote compared to El Hierro is thus controlled by more fertile source composition closer to the African continent.

  4. Composition of basalts from the Mid-Atlantic Ridge

    USGS Publications Warehouse

    Engel, A.E.J.; Engel, C.G.

    1964-01-01

    Studies of volcanic rocks in dredge hauls from the submerged parts of the Mid-Atlantic Ridge suggest that it consists largely of tholeiitic basalt with low values of K, Ti, and P. In contrast, the volcanic islands which form the elevated caps on the Ridge are built of alkali basalt with high values of Ti, Fe3+, P, Na, and K. This distinct correlation between the form of the volcanic structures, elevation above the sea floor, and composition suggests that the islands of alkali basalt are derived from a parent tholeiitic magma by differentiation in shallow reservoirs. The volume of low-potassium tholeiites along the Mid-Atlantic Ridge and elsewhere in the oceans appears to be many times that of the alkali basalts exposed on oceanic islands. Tholeiitic basalts with about 0.2 K2O appear to be the primary and predominant magma erupted on the oceanic floor.

  5. 87Sr 86Sr ratios for basalt from Loihi Seamount, Hawaii

    USGS Publications Warehouse

    Lanphere, M.

    1983-01-01

    87Sr 86Sr ratios of 15 samples of basalt dredged from Loihi Seamount range from 0.70334 to 0.70368. The basalt types range from tholeiite to basanite in composition and can be divided into six groups on the basis of abundances of K2O, Na2O, Rb and Sr and 87Sr 86Sr ratio. The isotopic data require that the various basalt types be derived from source regions differing in Sr isotopic composition. The Loihi basalts may be produced by mixing of isotopically distinct sources, but the tholeiites and alkalic basalts from Loihi do not show a well-developed inverse trend between Rb/Sr and 87Sr 86Sr that is characteristic of the later stages of Hawaiian volcanoes such as Haleakala and Koolau. ?? 1983.

  6. Miocene to Late Quaternary Patagonian basalts (46 47°S): Geochronometric and geochemical evidence for slab tearing due to active spreading ridge subduction

    NASA Astrophysics Data System (ADS)

    Guivel, Christèle; Morata, Diego; Pelleter, Ewan; Espinoza, Felipe; Maury, René C.; Lagabrielle, Yves; Polvé, Mireille; Bellon, Hervé; Cotten, Joseph; Benoit, Mathieu; Suárez, Manuel; de la Cruz, Rita

    2006-01-01

    Miocene to Quaternary large basaltic plateaus occur in the back-arc domain of the Andean chain in Patagonia. They are thought to result from the ascent of subslab asthenospheric magmas through slab windows generated from subducted segments of the South Chile Ridge (SCR). We have investigated three volcanic centres from the Lago General Carrera-Buenos Aires area (46-47°S) located above the inferred position of the slab window corresponding to a segment subducted 6 Ma ago. (1) The Quaternary Río Murta transitional basalts display major, trace elements, and Sr and Nd isotopic features similar to those of oceanic basalts from the SCR and from the Chile Triple Junction near Taitao Peninsula (e.g., ( 87Sr/ 86Sr) o = 0.70396-0.70346 and ɛNd = + 5.5 - + 3.0). We consider them as derived from the melting of a Chile Ridge asthenospheric mantle source containing a weak subduction component. (2) The Plio-Quaternary (< 3.3 Ma) post-plateau basanites from Meseta del Lago Buenos Aires (MLBA), Argentina, likely derive from small degrees of melting of OIB-type mantle sources involving the subslab asthenosphere and the enriched subcontinental lithospheric mantle. (3) The main plateau basaltic volcanism in this region is represented by the 12.4-3.3-Ma-old MLBA basalts and the 8.2-4.4-Ma-old basalts from Meseta Chile Chico (MCC), Chile. Two groups can be distinguished among these main plateau basalts. The first group includes alkali basalts and trachybasalts displaying typical OIB signatures and thought to derive from predominantly asthenospheric mantle sources similar to those of the post-plateau MLBA basalts, but through slightly larger degrees of melting. The second one, although still dominantly alkalic, displays incompatible element signatures intermediate between those of OIB and arc magmas (e.g., La/Nb > 1 and TiO 2 < 2 wt.%). These intermediate basalts differ from their strictly alkalic equivalents by having lower High Field Strength Element (HFSE) and higher ɛNd (up to

  7. Neogene to Quaternary basalts of the Jabal Eghei (Nuqay) area (south Libya): Two distinct volcanic events or continuous volcanism with gradual shift in magma composition?

    NASA Astrophysics Data System (ADS)

    Radivojević, Maša; Toljić, Marinko; Turki, Salah M.; Bojić, Zoran; Šarić, Kristina; Cvetković, Vladica

    2015-02-01

    This study reports and discusses a set of new K/Ar age and new petrochemical data on basalts of the Jabal Eghei (Nuqay) area (south Libya). This area is part of a > 1000 km long NNW-SSE Libyan volcanic field that stretches from the Mediterranean coastal near Tripoli to the Tibesti massif in Chad. Whole rock K/Ar ages, stratigraphy, volcanology and rock petrochemistry indicate that the Jabal Eghei developed during two volcanic events. The first occurred from the Middle Miocene to the Pliocene (K/Ar ages from ~ 16 to ~ 5 Ma) when large volumes of low aspect ratio lava flows of transitional basalts formed. The second event happened in Pliocene-mid-Pleistocene time (4-≤ 1 Ma) and it gave rise to basanite spatter to scoria pyroclastic cones and subordinate lava flow facies. The transitional basalts are less primitive and less enriched in incompatible trace elements than the basanites. Petrochemical characteristics reveal that the transitional basalts underwent weak to moderate olivine-dominated fractionation and that crustal assimilation had negligible effects. REE geochemical modeling shows that primary magmas of both transitional basalts and basanites formed by melting of a similar garnet-bearing, primitive mantle-like source with degree of melting of 3-5% and ≤ 1%, respectively. It is also demonstrated that the transitional basalts show systematic compositional changes in time because progressively younger rocks are petrochemically more similar to basanites. We argue that our data definitely prove that the age pattern along the entire Libyan volcanic field is much more complex than it was thought before.

  8. Age and petrology of the Kalaupapa Basalt, Molokai, Hawaii ( geochemistry, Sr isotopes).

    USGS Publications Warehouse

    Clague, D.A.

    1982-01-01

    The post-erosional Kalaupapa Basalt on East Molokai, Hawaii, erupted between 0.34 and 0.57 million years ago to form the Kalaupapa Peninsula. The Kalaupapa Basalt ranges in composition from basanite to lava transitional between alkalic and tholeiitic basalt. Rare-earth and other trace-element abundances suggest that the Kalaupapa Basalt could be generated by 11-17% partial melting of a light-REE-enriched source like that from which the post-erosional lavas of the Honolulu Group on Oahu were generated by 2-11% melting. The 87Sr/86Sr ratios of the lavas range from 0.70320 to 0.70332, suggesting that the variation in composition mainly reflects variation in the melting process rather than heterogeneity of sources. The length of the period of volcanic quiescence that preceded eruption of post-erosional lavas in the Hawaiian Islands decreased as volcanism progressed from Kauai toward Kilauea. - Authors

  9. Various origins of clinopyroxene megacrysts from basanites from the eastern part of Central European Volcanic Province

    NASA Astrophysics Data System (ADS)

    Lipa, Danuta; Puziewicz, Jacek; Ntaflos, Theodoros; Matusiak-Małek, Magdalena; Kukuła, Anna

    2014-05-01

    Clinopyroxene megacrysts up to few centimetres in size occur in Cenozoic alkaline lavas forming the north-eastern part of Central European Volcanic Province in Lower Silesia (SW Poland). The megacrysts occur, among other, in the Miocene basanite from Ostrzyca Proboszczowicka (bulk rock mg# 0.65-0.66) and in that from Lutynia (Pliocene, K-Ar age: 4.56 +/- 0.2 Ma; Birkenmajer et al. 2002; bulk rock mg# 0.64). The megacrysts typically consist of homogeneous core surrounded by patchy and spongy mantle, which is covered by a thin outermost rim of composition similar to that of the groundmass clinopyroxene occurring in the host basanite. The mantles of the megacrysts have been affected by melting, whereas the cores preserve their primary composition. We compare the core parts of megacrysts in the following. The Ostrzyca clinopyroxene megacrysts contain euhedral apatite intergrowths. The clinopyroxene has the composition of Fe-rich diopside (mg# = 0.61 - 0.70), contain significant sodium (to 0.12 a pfu) and are calcium rich (0.89-0.92 a pfu). The Lutynia megacrysts have the composition of augite and diopside (mg# 0.80-0.83). The sodium content is also high (to 0.12 a pfu), but calcium varies from 0.68 to 0.77 a pfu. The REE concentrations for Lutynia (1-10 x PM) are lower relative to Ostrzyca, enriched 10-100 times relative to PM. In both sites the megacrysts are strongly enriched in LREE relative to HREE and TE are characterized by positive Th, La and Ce anomalies, slight negative Sr and Y anomalies and strong Pb anomaly in the PM normalised patterns. The megacrysts from Ostrzyca reveal slight negative Ti and strong positive Zr and Hf anomalies, whereas those Lutynia have negative Zr anomaly and Ti anomaly is absent. Major and trace element composition shows that the megacrysts from Ostrzyca formed as coarse-grained cumulate at significant depth (lower crust?) from the LREE enriched alkaline melt. That melt was very rich in phosphorous which enabled its saturation in

  10. Alkali Bee

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The alkali bee, Nomia melanderi, is native to deserts and semi-arid desert basins of the western United States. It is a very effective and manageable pollinator for the production of seed in alfalfa (=lucerne) and some other crops, such as onion. It is the world’s only intensively managed ground-n...

  11. Vapor deposition in basaltic stalactites, Kilauea, Hawaii

    NASA Astrophysics Data System (ADS)

    Baird, A. K.; Mohrig, D. C.; Welday, E. E.

    Basaltic stalacties suspended from the ceiling of a large lava tube at Kilauea, Hawaii, have totally enclosed vesicles whose walls are covered with euhedral FeTi oxide and silicate crystals. The walls of the vesicles and the exterior surfaces of stalactites are Fe and Ti enriched and Si depleted compared to common basalt. Minerals in vesicles have surface ornamentations on crystal faces which include alkali-enriched, aluminosilicate glass(?) hemispheres. No sulfide-, chloride-, fluoride-, phosphate- or carbonate-bearing minerals are present. Minerals in the stalactites must have formed by deposition from an iron oxide-rich vapor phase produced by the partial melting and vaporization of wall rocks in the tube.

  12. Ibitira: A basaltic achondrite from a distinct parent asteroid

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    2004-01-01

    I have done detailed petrologic study of Ibitira, nominally classified as a basaltic eucrite. The Fe/Mn ratio of Ibitira pyroxenes with <10 mole % wollastonite component is 36.4 0.4, and is well-resolved from those of five basaltic eucrites studied for comparison; 31.2-32.2. Data for the latter completely overlap. Ibitira pyroxenes have lower Fe/Mg than the basaltic eucrite pyroxenes. Thus, the higher Fe/Mn ratio does not reflect a simple difference in oxidation state. Ibitira also has an oxygen isotopic composition, alkali element contents and a Ti/Hf ratio that distinguish it from basaltic eucrites. These differences support derivation from a distinct parent asteroid. Ibitira is the first recognized representative of the fifth known asteroidal basaltic crust.

  13. Hydrogen isotope systematics of submarine basalts

    USGS Publications Warehouse

    Kyser, T.K.; O'Neil, J.R.

    1984-01-01

    The D/H ratios and water contents in fresh submarine basalts from the Mid-Atlantic Ridge, the East Pacific Rise, and Hawaii indicate that the primary D/H ratios of many submarine lavas have been altered by processes including (1) outgassing, (2) addition of seawater at magmatic temperature, and (3) low-temperature hydration of glass. Decreases in ??D and H2O+ from exteriors to interiors of pillows are explained by outgassing of water whereas inverse relations between ??D and H2O+ in basalts from the Galapagos Rise and the FAMOUS Area are attributed to outgassing of CH4 and H2. A good correlation between ??D values and H2O is observed in a suite of submarine tholeiites dredged from the Kilauea East Rift Zone where seawater (added directly to the magma), affected only the isotopic compositions of hydrogen and argon. Analyses of some glassy rims indicate that the outer millimeter of the glass can undergo lowtemperature hydration by hydroxyl groups having ??D values as low as -100. ??D values vary with H2O contents of subaerial transitional basalts from Molokai, Hawaii, and subaerial alkali basalts from the Society Islands, indicating that the primary ??D values were similar to those of submarine lavas. Extrapolations to possible unaltered ??D values and H2O contents indicate that the primary ??D values of most thoteiite and alkali basalts are near -80 ?? 5: the weight percentages of water are variable, 0.15-0.35 for MOR tholeiites, about 0.25 for Hawaiian tholeiites, and up to 1.1 for alkali basalts. The primary ??D values of -80 for most basalts are comparable to those measured for deep-seated phlogopites. These results indicate that hydrogen, in marked contrast to other elements such as Sr, Nd, Pb, and O, has a uniform isotopic composition in the mantle. This uniformity is best explained by the presence of a homogeneous reservoir of hydrogen that has existed in the mantle since the very early history of the Earth. ?? 1984.

  14. An estimate of the juvenile sulfur content of basalt

    USGS Publications Warehouse

    Moore, J.G.; Fabbi, Brent P.

    1971-01-01

    Sulfur analyses by X-ray fluorescence give an average content of 107 ppm for 9 samples of fresh subaerially-erupted oceanic basalt and 680 ppm for 38 samples of submarine erupted basalt. This difference is the result of retention of sulfur in basalt quenched on the sea floor and loss of sulfur in basalt by degassing at the surface. The outer glassy part of submarine erupted basalt contains 800??150 ppm sulfur, and this amount is regarded as an estimate of the juvenile sulfur content of the basalt melt from the mantle. The slower cooled interiors of basalt pillows are depleted relative to the rims owing to degassing and escape through surface fractures. Available samples of deep-sea basalts do not indicate a difference in original sulfur content between low-K tholeiite, Hawaiian tholeiite, and alkali basalt. The H2O/S ratio of analyzed volcanic gases is generally lower than the H2O/S ratio of gases presumed lost from surface lavas as determined by chemical differences between pillow rims and surface lavas. This enrichment of volcanic gases in sulfur relative to water may result from a greater degassing of sulfur relative to water from shallow intrusive bodies beneath the volcano. ?? 1971 Springer-Verlag.

  15. Water Content of Basalt Erupted on the ocean floor

    USGS Publications Warehouse

    Moore, J.G.

    1970-01-01

    Deep sea pillow basalts dredged from the ocean floor show that vesicularity changes with composition as well as with depth. Alkalic basalts are more vesicular than tholeiitic basalts erupted at the same depth. The vesicularity data, when related to experimentally determined solubility of water in basalt, indicate that K-poor oceanic tholeiites originally contained about 0.25 percent water, Hawaiian tholeiites of intermediate K-content, about 0.5 percent water, and alkali-rich basalts, about 0.9 percent water. Analyses of fresh basalt pillows show a systematic increase of H2O+ as the rocks become more alkalic. K-poor oceanic tholeiites contain 0.06-0.42 percent H2O+, Hawaiian tholeiites, 0.31-0.60 percent H2O+, and alkali rich basalts 0.49-0.98 percent H2O+. The contents of K2O, P2O5, F, and Cl increase directly with an increase in H2O+ content such that at 1.0 weight percent H2O+, K2O is 1.58 percent, P2O5 is 0.55 percent, F is 0.07 percent, and Cl is 0.1 percent. The measured weight percent of deuterium on the rim of one Hawaiian pillow is -6.0 (relative to SMOW); this value, which is similar to other indications of magmatic water, suggests that no appreciable sea water was absorbed by the pillow during or subsequent to eruption on the ocean floor. Concentrations of volatile constituents in the alkali basalt melts relative to tholeiitic melts can be explained by varying degrees of partial melting of mantle material or by fractional crystallization of a magma batch. ?? 1970 Springer-Verlag.

  16. Continental Flood Basalts

    NASA Astrophysics Data System (ADS)

    Continental flood basalts have been receiving considerable scientific attention lately. Recent publications have focused on several particular flood-basalt provinces (Brito-Arctic, Karoo, Parana', Deccan, and Columbia Plateau), and much attention has been given to the proposed connection between flood-basalt volcanism, bolide impacts, and mass extinctions. The editor of Continental Flood Basalts, J. D. Macdougall, conceived the book to assemble in a single volume, from a vast and scattered literature, an overview of each major post-Cambrian flood-basalt province.Continental Flood Basalts has 10 chapters; nine treat individual flood-basalt provinces, and a summary chapter compares and contrasts continental flood-basalts and mid-oceanic ridge basalts. Specifically, the chapters address the Columbia River basalt, the northwest United States including the Columbia River basalt, the Ethiopian Province, the North Atlantic Tertiary Province, the Deccan Traps, the Parana' Basin, the Karoo Province, the Siberian Platform, and Cenozoic basaltic rocks in eastern China. Each chapter is written by one or more individuals with an extensive background in the province.

  17. Petrological, magnetic and chemical properties of basalt dredged from an abyssal hill in the North-east pacific

    USGS Publications Warehouse

    Luyendyk, B.P.; Engel, C.G.

    1969-01-01

    OVER the years, samples of basalt from the oceanic crust have been taken mainly from seamounts, fracture zones and ridge and rise crests1-6, and rarely from the vast fields of abyssal hills which cover a large part of the deep-sea floor. The basalt sampled from the deeper regions of the oceanic crust (for example, on fault scarps) is a distinct variety of tholeiitic basalt, while alkali basalt is restricted to the volcanic edifices4. Oceanic tholeiitic basalt differs from alkali basalt and continental tholeiite chiefly in having a relatively low percentage of K2O (0.2 weight per cent)4. Some authors have speculated that this type of tholeiitic basalt is the major extrusion from the upper mantle and constitutes the predominant rock type in the upper oceanic crust. ?? 1969 Nature Publishing Group.

  18. Liquid line of descent of a basanitic liquid at 1.5 Gpa: constraints on the formation of metasomatic veins

    NASA Astrophysics Data System (ADS)

    Pilet, Sébastien; Ulmer, Peter; Villiger, Samuel

    2010-05-01

    The metasomatism observed in the oceanic and continental lithosphere is generally interpreted to represent a continuous differentiation process forming anhydrous and hydrous veins plus a cryptic enrichment in the surrounding peridotite. In order to constrain the mechanisms of vein formation and potentially clarify the nature and origin of the initial metasomatic agent, we performed a series of high-pressure experiments simulating the liquid line of descent of a basanitic magma differentiating within continental or mature oceanic lithosphere. This series of experiments has been conducted in an end-loaded piston cylinder apparatus starting from an initial hydrous ne-normative basanite at 1.5 GPa and temperature varying between 1,250 and 980°C. Near-pure fractional crystallization process was achieved in a stepwise manner in 30°C temperature steps and starting compositions corresponding to the liquid composition of the previous, higher-temperature glass composition. Liquids evolve progressively from basanite to peralkaline, aluminum-rich compositions without significant SiO2 variation. The resulting cumulates are characterized by an anhydrous clinopyroxene + olivine assemblage at high temperature (1,250-1,160°C), while at lower temperature (1,130-980°C), hydrous cumulates with dominantly amphibole + minor clinopyroxene, spinel, ilmenite, titanomagnetite and apatite (1,130-980°C) are formed. This new data set supports the interpretation that anhydrous and hydrous metasomatic veins could be produced during continuous differentiation processes of primary, hydrous alkaline magmas at high pressure. However, the comparison between the cumulates generated by the fractional crystallization from an initial ne-normative liquid or from hy-normative initial compositions (hawaiite or picrobasalt) indicates that for all hydrous liquids, the different phases formed upon differentiation are mostly similar even though the proportions of hydrous versus anhydrous minerals could

  19. Basanite-nephelinite suite from early Kilauea: carbonated melts of phlogopite-garnet peridotite at Hawaii's leading magmatic edge

    NASA Astrophysics Data System (ADS)

    Sisson, T. W.; Kimura, J.-I.; Coombs, M. L.

    2009-12-01

    A basanite-nephelinite glass suite from early submarine Kilauea defines a continuous compositional array marked by increasing concentrations of incompatible components with decreasing SiO2, MgO, and Al2O3. Like peripheral and post-shield strongly alkalic Hawaiian localities (Clague et al. in J Volcanol Geotherm Res 151:279-307, 2006; Dixon et al. in J Pet 38:911-939, 1997), the early Kilauea basanite-nephelinite glasses are interpreted as olivine fractionation products from primary magnesian alkalic liquids. For early Kilauea, these were saturated with a garnet-phlogopite-sulfide peridotite assemblage, with elevated dissolved CO2 contents responsible for the liquids’ distinctly low-SiO2 concentrations. Reconstructed primitive liquids for early Kilauea and other Hawaiian strongly alkalic localities are similar to experimental 3 GPa low-degree melts of moderately carbonated garnet lherzolite, and estimated parent magma temperatures of 1,350-1,400°C (olivine-liquid geothermometry) match the ambient upper mantle geotherm shortly beneath the base of the lithosphere. The ~3 GPa source regions were too hot for stable crystalline carbonate and may have consisted of ambient upper mantle peridotite containing interstitial carbonate-silicate or carbonatitic liquid, possibly (Dixon et al. in Geochem Geophys Geosyst 9(9):Q09005, 2008), although not necessarily, from the Hawaiian mantle plume. Carbonate-enriched domains were particularly susceptible to further melting upon modest decompression during upward lithospheric flexure beneath the advancing Hawaiian Arch, or by conductive heating or upward drag by the Hawaiian mantle plume. The early Kilauea basanite-nephelinite suite has a HIMU-influenced isotopic character unlike other Hawaiian magmas (Shimizu et al. in EOS Tran Amer Geophys Union 82(47): abstr V12B-0962, 2001; Shimizu et al. in Geochim Cosmochim Acta 66(15A):710, 2002) but consistent with oceanic carbonatite involvement (Hoernle et al. in Contrib Mineral Petrol

  20. Basanite-nephelinite suite from early Kilauea: Carbonated melts of phlogopite-garnet peridotite at Hawaii's leading magmatic edge

    USGS Publications Warehouse

    Sisson, T.W.; Kimura, Jun-Ichi; Coombs, M.L.

    2009-01-01

    A basanite-nephelinite glass suite from early submarine Kilauea defines a continuous compositional array marked by increasing concentrations of incompatible components with decreasing SiO2, MgO, and Al2O3. Like peripheral and post-shield strongly alkalic Hawaiian localities (Clague et al. in J Volcanol Geotherm Res 151:279-307, 2006; Dixon et al. in J Pet 38:911-939, 1997), the early Kilauea basanite-nephelinite glasses are interpreted as olivine fractionation products from primary magnesian alkalic liquids. For early Kilauea, these were saturated with a garnet-phlogopite-sulfide peridotite assemblage, with elevated dissolved CO2 contents responsible for the liquids' distinctly low-SiO2 concentrations. Reconstructed primitive liquids for early Kilauea and other Hawaiian strongly alkalic localities are similar to experimental 3 GPa low-degree melts of moderately carbonated garnet lherzolite, and estimated parent magma temperatures of 1,350-1,400??C (olivine-liquid geothermometry) match the ambient upper mantle geotherm shortly beneath the base of the lithosphere. The ???3 GPa source regions were too hot for stable crystalline carbonate and may have consisted of ambient upper mantle peridotite containing interstitial carbonate-silicate or carbonatitic liquid, possibly (Dixon et al. in Geochem Geophys Geosyst 9(9):Q09005, 2008), although not necessarily, from the Hawaiian mantle plume. Carbonate-enriched domains were particularly susceptible to further melting upon modest decompression during upward lithospheric flexure beneath the advancing Hawaiian Arch, or by conductive heating or upward drag by the Hawaiian mantle plume. The early Kilauea basanite-nephelinite suite has a HIMU-influenced isotopic character unlike other Hawaiian magmas (Shimizu et al. in EOS Tran Amer Geophys Union 82(47): abstr V12B-0962, 2001; Shimizu et al. in Geochim Cosmochim Acta 66(15A):710, 2002) but consistent with oceanic carbonatite involvement (Hoernle et al. in Contrib Mineral Petrol

  1. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  2. H 2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes

    NASA Astrophysics Data System (ADS)

    Sisson, T. W.; Layne, G. D.

    1993-06-01

    Total dissolved H 2O and major element abundances were measured in basalt and basaltic andesite glass inclusions in olivine phenocrysts from Quaternary eruptions of four subduction-related volcanoes to test the hypothesis that low-MgO high-alumina basalts contain high H 2O at depth [1] and to reveal any petrogenetically significant correlations between arc basalt compositions and H 2O contents. Total dissolved H 2O (combined molecular H 2O and OH groups) measured by ion microprobe in mafic glass inclusions from the 1974 eruption of Fuego, Guatemala, reaches 6.2 wt.%. Dissolved H 2O contents decrease in more evolved Fuego glasses. Correlations of H 2O with MgO, Na 2O, K 2O, S and Cl indicate that aqueous fluid exsolution during magma ascent forced crystallization and differentiation of residual liquids. Low-K 2O magnesian high-alumina basalt glass inclusions from the 3 ka eruption of Black Crater (Medicine Lake volcano, California) have low H 2O contents, near 0.2 wt.%, which are consistent with the MORB-like character of these and other primitive lavas of the Medicine Lake region. Basalt and basaltic andesite glass inclusions from Copco Cone and Goosenest volcano on the Cascade volcanic front north of Mt. Shasta have H 2O contents of up to 3.3 wt.%. The range of H 2O contents in Cascade mafic magmas is too large to have resulted solely from enrichment by crystallization and indicates the participation of an H 2O-rich component in magma generation or crustal-level modification. Whereas fluid-absent melting of amphibole-bearing peridotite can account for the H 2O in most mafic arc liquids, the very high H 2O/alkali ratios of the 1974 Fuego eruptives suggest that an aqueous fluid was involved in the generation of Fuego basalts.

  3. Very low Ti /VLT/ basalts - A new mare rock type from the Apollo 17 drill core

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Papike, J. J.

    1977-01-01

    Phaneritic fragments, vitrophyres, and glass beads of a new very low Ti (VLT) mare basalt are found in the Apollo 17 drill core. VLT lithic fragments are characterized by TiO2 content of approximately 0.5%, Mg/(Mg + Fe) of approximately 0.52, CaO/Al2O3 of approximately 0.9, and low alkali content. Although mineral systematics and modal composition of VLT basalt are similar to Apollo 12 and 15 low Ti basalts, VLT basalts cannot be related to these mare basalts by crystal fractionation. Since VLT basalt is isochemical with some of the less mafic green glasses, fractionation of VLT magma from a liquid of green-glass composition is a possibility. Spectral reflectance studies suggest that VLT-type basalts may be relatively common in mare basins.

  4. Milk-alkali syndrome

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000332.htm Milk-alkali syndrome To use the sharing features on this page, please enable JavaScript. Milk-alkali syndrome is a condition in which there ...

  5. The solubility of olivine in basaltic liquids - An ionic model

    NASA Technical Reports Server (NTRS)

    Herzberg, C. T.

    1979-01-01

    A model is presented which enables the temperature at which olivine is in equilibrium with any alkali-depleted basaltic compound to be calculated to within + or - 30 C. It is noted that the error increases substantially when applied to terrestrial basalts which contain several weight percent alkalis. In addition the model predicts and quantifies the reduced activity of SiO4(4-) monomers due to increasing SiO2 concentrations in the melt. It is shown that the coordination of alumina in melts which precipitate olivine only appears to be dominantly octahedral, while titanium acts as a polmerizing agent by interconnecting previously isolated SiO4(4-) monomers. It is concluded that the model is sufficiently sensitive to show that there are small repulsive forces between Mg(2+) and calcium ions which are in association with normative diopside in the melt.

  6. Porosity of the melting zone and variations in the solid mantle upwelling rate beneath Hawaii: Inferences from {sup 238}U-{sup 230}Th-{sup 226}Ra and {sup 235}U-{sup 231}Pa disequilibria

    SciTech Connect

    Sims, K.W.W.; DePaolo, D.J.; Murrell, M.T.; Baldridge, W.S.; Goldstein, S.; Clague, D.; Jull, M.

    1999-12-01

    Measurements of {sup 238}U-{sup 230}Th-{sup 226}Ra and {sup 235}U-{sup 231}Pa disequilibria in a suite of tholeiitic-to-basanitic lavas provide estimates of porosity, solid mantle upwelling rate and melt transport times beneath Hawaii. The observation that ({sup 230}Th/{sup 238}U) {gt} 1 indicates that garnet is required as a residual phase in the magma sources for all of the lavas. Both chromatographic porous flow and dynamic melting of a garnet peridotite source can adequately explain the combined U-Th-Ra and U-Pa data for these Hawaiian basalts. For chromatographic porous flow, the calculated maximum porosity in the melting zone ranges from 0.3--3% for tholeiites and 0.1--1% for alkali basalts and basanites, and solid mantle upwelling rates range from 40 to 100 cm/yr for tholeiites and from 1 to 3 cm/yr for basanites. For dynamic melting, the escape or threshold porosity is 0.5--2% for tholeiites and 0.1--0.8% for alkali basalts and basanites, and solid mantle upwelling rates range from 10 to 30 cm/yr for tholeiites and from 0.1 to 1 cm/yr for basanites. Assuming a constant melt productivity, calculated total melt fractions range from 15% for the tholeiitic basalts to 3% for alkali basalts and basanites.

  7. Dredged trachyte and basalt from kodiak seamount and the adjacent aleutian trench, alaska.

    PubMed

    Forbes, R B; Hoskin, C M

    1969-10-24

    Blocky fragments of aegirine-augite trachyte (with accompanying icerafted gravels.) were recovered from the upper slopes of Kodiak Seamount in several dredge hauls. An alkali basalt pillow segment was also dredged from a moatlike depression, at a depth of 5000 meters, near the west base of the seamount. These retrievals confirm the volcanic origin of Kodiak Seamount and further support the view of Engel, Engel, and Havens that the higher elevations of seamounts are composed of alkali basalts or related variants. PMID:17731907

  8. Preliminary data on sulfides from mantle xenoliths from Wilcza Góra and Krzeniów basanites (SW Poland)

    NASA Astrophysics Data System (ADS)

    Bukała, Michał; Puziewicz, Jacek; Ntaflos, Theodoros; Wojtulek, Piotr

    2015-04-01

    The basanites from Krzeniów (19.57 Ma) and Wilcza Góra (20.07 Ma; K-Ar ages by Birkenmajer et al. 2007 Ann. Soc. Geol. Polon.) in SW Poland belong to the Lower Silesian part of the Cenozoic Central European Volcanic Province (CEVP). Both basanites are rich in mantle xenoliths, predominantly of harzburgitic composition. The Krzeniów harzburgites are anhydrous, whereas those from Wilcza Góra contain small amounts of amphibole. Sulfides occur in those harzburgites as: (1) rare, small (<15 μm in diameter) singular grains, enclosed in silicate phases. They have mostly composition of pentlandite (Ni 25.2 - 32.5, Fe 20.3 - 27.0 mole %, atomic metal/sulfur ratio = 1,11). Locally, pentlandite is associated with Ni-pyrrhotite (up to 6,76 mole% of Ni) within the same grain. The grains of pentlandite/Ni-pyrrhotite are anhedral, rounded and elongated. Anhedral millerite grains (Fe ~ 2.39 mole %, metal/sulfur ratio = 0.98) are subordinate. (2) small (< 5 μm in diameter) grains enclosed in silicates, forming sulfide inclusion trails located close to grain margins. These sulfides have the composition of pentlandite (21.5 mole% Fe, 30.8 mole% Ni). Grains are anhedral, oval. Only two analyses were not contaminated due to small size of this kind of sulfides. (3) blebs associated with fine-grained intergranular aggregates of silicate minerals. The aggregates carry majority of sulfides. The sulfide blebs are relatively large (up to 300 μm across) and occur as single grains or in aggregates. Their grains are heterogeneous and consist of various phases. In Krzeniów aggregates consist of clinopyroxene+ olivine± spinel± glass± feldspar± sulfides (pentlandite and Ni-pyrrhotite). Pentlandite contains up to 1.25 mole% of Cu. Sulfides occur in the marginal parts of fine-grained aggregates. One of the pentlandite grains exhibits broad variation of Fe (4.6 to 20.3) and Ni (32.5 to 46.0 mole %). In xenoliths from Wilcza Góra,3 kinds of fine-grained intergranular aggregates occur: (A

  9. Melt rock components in KREEPy breccia 15205: Petrography and mineral chemistry of KREEP basalts and quartz-normative mare basalts

    NASA Technical Reports Server (NTRS)

    Shervais, John W.; Vetter, Scott K.

    1993-01-01

    Many current models for the origin of lunar highland rocks feature as an essential component the assimilation of KREEPy material by primitive magmas parental to the Mg-rich suite and alkali suite plutonic rocks. Similar models have also been proposed for the origin of various mare basalt suites. However, any model which considers assimilation of KREEP an important petrologic process must sooner-or-later deal with the question: what is KREEP? Because pristine KREEP basalts are rare, and most known samples are small (e.g., 15382/15386), the geochemical variability of KREEP basalts is poorly known. Other KREEP compositions which are commonly used in these models include the hypothetical 'high-K KREEP' component of Warren and Wasson, which is derived from Apollo 14 soil data, and the 'superKREEP' quartz-monzodiorite 15405. Lunar breccia 15205 is a polymict regolith breccia that consists of approximately 20% KREEP basalt clasts and 20% quartz-normative basalt clasts in a KREEP-rich matrix. Bulk rock mixing calculations show that this sample comprises about 84% KREEP. The clasts range up to 1 cm in size, but most are considerably smaller. The primary aim is to characterize pristine KREEP basalts petrographically, to establish the range in chemical compositions of KREEP basalts, and to test models that were proposed for their origin. In addition, we may be able to extend the compositional range recognized in the quartz-normative basalt suite and cast some light on its origin as well. Preliminary whole rock geochemical data on the KREEP basalts are presented in a companion paper by M.M. Lindstrom and co-workers. Concentration is on petrography and mineral chemistry of these clasts, and the implications these data have for the origin of the different melt rock suites.

  10. Nanoparticulate mineral matter from basalt dust wastes.

    PubMed

    Dalmora, Adilson C; Ramos, Claudete G; Querol, Xavier; Kautzmann, Rubens M; Oliveira, Marcos L S; Taffarel, Silvio R; Moreno, Teresa; Silva, Luis F O

    2016-02-01

    Ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been the subject of some concern recently around the world for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the mining district of Nova Prata in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3 and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition we have identified a number of trace metals such as Cd, Cu, Cr, Zn that are preferentially concentrated into the finer, inhalable, dust fraction and could so present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in typical BDW samples highlights the need to develop cleaning procedures to minimise exposure to these natural fertilizing basalt dust wastes and is thus of direct relevance to both the industrial sector of basalt mining and to agriculture in the region. PMID:26551199

  11. Basaltic island sand provenance

    SciTech Connect

    Marsaglia, K.M. . Dept. of Geological Sciences)

    1992-01-01

    The Hawaiian Islands are an ideal location to study basaltic sand provenance in that they are a series of progressively older basaltic shield volcanoes with arid to humid microclimates. Sixty-two sand samples were collected from beaches on the islands of Hawaii, Maui, Oahu and Kauai and petrographically analyzed. The major sand components are calcareous bioclasts, volcanic lithic fragments, and monomineralic grains of dense minerals and plagioclase. Proportions of these components vary from island to island, with bioclastic end members being more prevalent on older islands exhibiting well-developed fringing reef systems and volcanic end members more prevalent on younger, volcanically active islands. Climatic variations across the island of Hawaii are reflected in the percentage of weathered detritus, which is greater on the wetter, northern side of the island. The groundmass of glassy, basaltic lithics is predominantly black tachylite, with lesser brown sideromelane; microlitic and lathwork textures are more common than holohyaline vitric textures. Other common basaltic volcanic lithic fragments are holocrystalline aggregates of silt-sized pyroxene or olivine, opaque minerals and plagioclase. Sands derived from alkalic lavas are texturally and compositionally indistinguishable from sands derived from tholeiitic lavas. Although Hawaiian basaltic sands overlap in composition with magmatic arc-derived sands in terms of their relative QFL, QmPK and LmLvLs percentages, they are dissimilar in that they lack felsic components and are more enriched in lathwork volcanic lithic fragments, holocrystalline volcanic lithic fragments, and dense minerals.

  12. Cenozoic magmatism of north Victoria Land, Antarctica: an experimental study on the mantle source of a primary basanite from the McMurdo Volcanic Group

    NASA Astrophysics Data System (ADS)

    Armienti, P.; Freda, C.; Misiti, V.; Perinelli, C.

    2009-04-01

    Volcanoes of the McMurdo Vocanic Group (MMVG) (Antarctica) dot the eastern shoulder of Ross Sea Rift System giving rise to alkaline transitional volcanic suites which in north Victoria Land are emplaced since Early Cenozoic. Geochemical geological, geophysical and geochronological data on Cenozoic volcanic activity in NVL suggest that the region is a site of passive astenospheric rise, rather than affected by a thermally active mantle plume. Furthermore the comparison of geochemical and isotopical data of basic lavas with those provided by mantle xenoliths they carry to the surface, document the compositional heterogeneity of sublithospheric mantle caused by the coupled action of partial melting and metasomatism. In particular the metasomatic episode is probably linked to the amagmatic extensional event that affected the West Antarctic Rift System in the Late Cretaceous. The astenospheric melts generated during this event, moving through the upper mantle, can have crystallized as veins or may have led to the formation of metasomatic minerals such as amphibole or phlogopite. In this scenario the mineralogical and chemical composition of sources responsible for Cenozoic magmatism, amphibole-bearing spinel-peridotite versus pyroxenite in the garnet stability field, it is still a matter of debate. To shed light on this argument a previous experimental study on a basanite of MMVG, representative of primary magma (Orlando et al., 2000) has been integrated with new experimental investigation on the same basanitic composition. The preliminary experiments were conducted to pressures of 1.0 - 2.0GPa in the presence of 0-1% of added water and indicate olivine on the liquidus at 1.0 GPa that is substitute by clinopyroxene at 2.0GPa. The addition of 1% of water induces a decrease of liquidus temperature of about 40°C shifting its value in the T range (1280-1310°C) the same that was inferred by melt inclusions hosted in the olivine phenocrysts of the studied basanite.

  13. Isotopic composition of lead in oceanic basalt and its implication to mantle evolution

    USGS Publications Warehouse

    Tatsumoto, M.

    1978-01-01

    New data are given in this report for (1) Pb isotopic compositions and U, Th, and Pb concentrations of basalts from the island of Hawaii; (2) redetermined Pb isotopic compositions of some abyssal tholeiites; and (3) U, Th, and Pb concentrations of altered and fresh abyssal basalts, and basalt genesis and mantle evolution are discussed. The Th U ratios of abyssal and Japanese tholeiites are distinctly lower than those of tholeiites and alkali basalts from other areas. It is thought that these low values reflect a part of the mantle depleted in large ionic lithophile elements. Thus a mantle evolution model is presented, in which Th U ratios of the depleted zone in the mantle have decreased to ???2, and U Pb ratios have increased, showing an apparent ???1.5-b.y. isochron trend in the 207Pb/204Pb vs. 206Pb/204Pb plot. The Pb isotopic compositions of basalts from the island of Hawaii are distinct for each of the five volcanoes, and within each volcano, Pb's of tholeiites and alkali basalts are similar. An interaction between partially melted material (hot plume?) of the asthenosphere and the lithosphere is suggested to explain the trend in the Pb isotopic compositions of Hawaiian basalts. ?? 1978.

  14. Dissolution behaviour of model basalt fibres studied by surface analysis methods

    NASA Astrophysics Data System (ADS)

    Förster, T.; Scheffler, C.; Mäder, E.; Heinrich, G.; Jesson, D. A.; Watts, J. F.

    2014-12-01

    New concepts of surface modifications aimed at the enhancement of alkali resistance of basalt fibres require research work on chemical composition of interacting surface layers as well as knowledge about fundamental processes of basaltic glass dissolution. Therefore, two model basalt fibres manufactured out of subalkaline and alkaline rock material were leached in NaOH solution at a temperature of 80 °C for up to 11 days. The formation of a corrosion shell was observed in both cases and was analyzed by SEM/EDX. The model fibres out of subalkaline rocks show dissolution kinetic, which is two-staged, whereas the more alkaline fibre reflects a linear one. The complex composition of basalt fibre is detected by EDX and XPS. The surface of basalt fibres is rich in Si and Al. XPS high resolution spectra provide information on oxidation state of iron.

  15. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  16. Alkali content of alpine ultramafic rocks

    USGS Publications Warehouse

    Hamilton, W.; Mountjoy, W.

    1965-01-01

    The lower limit of abundance of sodium and potassium in ultramafic rocks is less than the threshold amount detectable by conventional analytical methods. By a dilutionaddition modification of the flame-spectrophotometric method, sodium and potassium have been determined in 40 specimens of alpine ultramafic rocks. Samples represent six regions in the United States and one in Australia, and include dunite, peridotite, pyroxenite, and their variably serpentinized and metamorphosed derivatives. The median value found for Na2O is 0.004 per cent, and the range of Na2O is 0.001-0.19. The median value for K2O is 0.0034 per cent and the range is 0.001-0.031 per cent. Alkali concentrations are below 0.01 per cent Na2O in 28 samples and below 0.01 per cent K2O in 35. Derivation of basalt magma from upper-mantle material similar to such ultramafic rocks, as has been postulated, is precluded by the relative amounts of sodium and potassium, which are from 200 to 600 times more abundant in basalt than in the ultramafic rocks. Similar factors apply to a number of other elements. No reasonable process could produce such concentrations in, for example, tens of thousands of cubic miles of uniform tholeiitic basalt. The ultramafic rocks might have originated either as magmatic crystal precipitates or as mantle residues left after fusion and removal of basaltic magma. Injection of ultramafic rocks to exposed positions is tectonic rather than magmatic. ?? 1965.

  17. Earliest Silicic Volcanism Associated with Mid-Miocene Flood Basalts: Tuffs Interbedded with Steens Basalt, Nevada and Oregon

    NASA Astrophysics Data System (ADS)

    Luckett, M.; Mahood, G. A.; Benson, T. R.

    2013-12-01

    During the main phase of Steens and Columbia River flood basalt eruptions between ~16.7 and 15.0 Ma, spatially associated silicic volcanism was widespread, ~4,000 km3 of silicic magma erupting at calderas and smaller centers dispersed across ~25,000 km2 in eastern Oregon and northern Nevada (Coble and Mahood, 2012). The oldest flood basalts erupted from a focus at Steens Mountain in eastern Oregon, where the section of lavas is ~1 km thick. The Steens Basalt thins southward to only a few flows thick in northern Nevada, either because fewer flows were emplaced this far from the focus or because fewer dikes propagated to the surface on encountering thicker continental crust and/or were intercepted by growing bodies of silicic magma that ultimately erupted in McDermitt Caldera Field (Rytuba and McKee, 1984), High Rock Caldera Complex, and the Lone Mountain/Hawks Valley center (Wypych et al., 2011). Rhyolitic tuffs have not been recognized interbedded with the basalt lavas in the type section, but we have identified several silicic tuffs interbedded with Steens Basalt in the southern Pueblo Mountains and in the Trout Creek Mountains. Although noted by previous workers (e.g., Avent, 1965; Minor, 1986; Hart et al., 1989), they have not been studied. We identified six tuffaceous intervals 20 cm to 15 m thick in the escarpment of the southern Pueblo Mountains near the Oregon-Nevada border where the Steens basalt section is ~250 m thick, with the base unexposed. Two intervals are lithic-rich, reworked volcaniclastic sediments, but four are primary or only slightly reworked sequences of fall deposits that range from fine ash to lapilli in grain size. The heat and weight of the overlying basaltic lava flows has fused the tuffs so that the upper parts of thicker tuffaceous intervals and entire thinner ones are converted to vitrophyres, with crystals of alkali feldspar × quartz × biotite typically 1-2 mm in diameter set in a dense, black, variably hydrated, glassy matrix. We

  18. Symplectites in garnet megacrysts captured by alkali mafic magma

    NASA Astrophysics Data System (ADS)

    Aseeva, Anna; Vysotskiy, Sergey; Karabtsov, Alexander; Alexandrov, Igor; Chashchin, Alexander

    2014-05-01

    Megacrysts are widespread in Cenozoic alkali-basalts of many volcanic provinces of the world. Garnet megacrysts containing symplectites are the most interesting, as can be used for reconstruction of physical and chemical conditions in liquid basalt at the moment of garnet crystal capture. The collection of garnet megacrysts and garnet-pyroxene aggregates from Shavaryn-Tsaram (Hangaj plateau, Mongolia) and Bartoj (Dzhida basaltic field, Russia) paleovolcanoes has studied. Cenozoic alkali basaltic volcanism of these two spatially separated areas is considered to be related to a uniform process of lithosphere spreading in Baikal and related Central Asian rift systems. The studying of garnet-pyroxene aggregate and fragments of garnet megacrysts from these two paleovolcanoes revealed two mineral associations: primary and secondary. The former includes garnet and clinopyroxene, the letter (symplectite) is presented by products of garnet disintegration (clinopyroxene remain unaltered). At least two paragenesis can be allocated: 1) shpinel - plagioclase-olivine sometimes with gedrite and orthopyroxene; 2) olivine (with glass). Experimental modeling of decomposition process in garnet megacryst has been carried out with the help of 'Selector' softwear at various P-T parameters. Physical and chemical conditions of this paragenesis occurrence have also been estimated by up-to-date geothermometers and geobarometers (T 950-1000 C, P 4-4.5 kbar. Conclusions: 1. Garnet megacrysts are apparently in non-equilibrium with alkali-basalts. They were formed in conditions corresponding to zones of mantle plums at the bottom of crust, in magmatic chambers at constant infiltration of fluid. Subsequently megacrysts were captured by alkali-basalt magma and taken out to the surface. 2. Kelyphitic rims on garnet megacrysts is a result of partial melting of megacrysts on interaction with the hosting alkali basaltic rock. During melting garnet transforms with the formation of Na-K glass and Mg

  19. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  20. Evolution of Late Cenozoic basaltic volcanism in the Mojave Desert, California

    SciTech Connect

    Glazner, A.F. . Dept. of Geology); Farmer, G.L. . Dept. of Geological Sciences)

    1993-04-01

    Cenozoic volcanism in the Mojave Desert region of southern California comprises two main groups: early Miocene ([approx]24--18 Ma) synextensional magmatism ranging from basalt to rhyolite, and postkinematic middle Miocene to Quaternary volcanism that is almost exclusively basaltic. Flat-lying basalts of the latter group, herein termed the Mojave Neovolcanic Belt (MNB), are distributed across the central and eastern Mojave Desert, and were erupted in three main pulses: (1) during the middle Miocene ([approx]17--15 Ma), in a belt from near Tiefort Mtn. to the El Paso Mts.; (2) during the late Miocene ([approx]9--4 Ma); and (3) in a Plio-Quaternary pulse ([approx]3--0 Ma) that includes the southern Cima field and all the cones scattered along the axis of the Barstow-Bristol trough. Several temporal and geographic trends are evident in the MNB. In general, younger basalts are higher in [var epsilon][sub Nd], lower in [sup 87]Sr/[sup 86]Sr, more alkalic, less crustally contaminated, and more likely to contain mantle xenoliths than older basalts. Mantle xenoliths are restricted to the eastern and southern Mojave block. Basalts of all three groups become dramatically richer in K[sub 2]O to the east, ranging from subalkaline basalts in the west to alkali basalts and trachybasalts in the east. Isotopic provinciality is apparent, but mantle differences are difficult to distinguish from the effects of crustal contamination. Lavas with mantle xenoliths consistently have [var epsilon][sub Nd] > 5 and [sup 87]Sr/[sup 86]Sr < 0.7042. Eruptive centers of the MNB show no consistent relationship to regional tectonic features. Although alkali basalts are generally associated with rifting, several MNB volcanoes were erupted through active fold and thrust belts.

  1. Alkalis and Skin.

    PubMed

    Greenwood, John E; Tan, Jin Lin; Ming, Justin Choong Tzen; Abell, Andrew D

    2016-01-01

    The aim of this editorial is to provide an overview of the chemical interactions occurring in the skin of our patients on contact with alkaline agents. Strongly basic alkali is highly aggressive and will readily hydrolyze (or cleave) key biological molecules such as lipids and proteins. This phenomenon is known as saponification in the case of lipids and liquefactive denaturation for peptides and proteins. A short section on current first-aid concepts is included. A better understanding of the basic science behind alkali burns will make us better teachers and provide an insight into the urgency needed in treating these common and dangerous chemical injuries. PMID:26182072

  2. Alkali metal ion battery with bimetallic electrode

    SciTech Connect

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  3. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  4. Chlor-Alkali Technology.

    ERIC Educational Resources Information Center

    Venkatesh, S.; Tilak, B. V.

    1983-01-01

    Chlor-alkali technology is one of the largest electrochemical industries in the world, the main products being chlorine and caustic soda (sodium hydroxide) generated simultaneously by the electrolysis of sodium chloride. This technology is reviewed in terms of electrochemical principles and manufacturing processes involved. (Author/JN)

  5. Major element chemistry of Apollo 14 mare basalt clasts and highland plutonic clasts from lunar breccia 14321: Comparison with neutron activation results

    NASA Technical Reports Server (NTRS)

    Shervais, John W.; Vetter, Scott K.

    1993-01-01

    Studies of lithic components in lunar breccias have documented a wide variety of rock types and magma suites which are not found among large, discrete lunar samples. Rock types found exclusively or dominantly as clasts in breccias include KREEP basalts, VHK mare basalts, high-alumina mare basalts, olivine vitrophyres, alkali anorthosites, and magnesian anorthosites and troctolites. These miniature samples are crucial in petrogenetic studies of ancient mare basalts and the highlands crust of the western nearside, both of which have been battered by basin-forming impacts and no longer exist as distinct rock units.

  6. The timing of alkali metasomatism in paleosols

    NASA Technical Reports Server (NTRS)

    MacFarlane, A. W.; Holland, H. D.

    1991-01-01

    We have measured the concentrations of rubidium and strontium and 87Sr/86Sr values of whole-rock samples from three paleosols of different ages. The oldest of the three weathering horizons, the 2,760 Ma Mt. Roe #1 paleosol in the Fortescue Group of Western Australia, experienced addition of Rb, and probably Sr, at 2,168 +/- 10 Ma. The intermediate paleosol, developed on the Hekpoort Basalt in South Africa, is estimated to have formed at 2,200 Ma, and yields a Rb-Sr isochron age of 1,925 +/- 32 Ma. The youngest of the three paleosols, developed on the Ongeluk basalt in Griqualand West, South Africa ca. 1,900 Ma, yielded a Rb-Sr age of 1,257 +/- 11 Ma. The Rb-Sr systematics of all three paleosols were reset during post-weathering metasomatism related to local or regional thermal disturbances. The Rb-Sr systematics of the paleosols were not subsequently disturbed. The near-complete removal of the alkali and alkaline earth elements from these paleosols during weathering made them particularly susceptible to resetting of their Rb-Sr systematics. Paleosols of this type are therefore sensitive indicators of the timing of thermal disturbances.

  7. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  8. Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area, southern China

    NASA Astrophysics Data System (ADS)

    Ho, Kung-suan; Chen, Ju-chin; Juang, Wen-shing

    2000-06-01

    The Leiqiong area, which includes the Leizhou Peninsula and the northern part of the Hainan Island, is the largest province of exposed basalts in southern China. Ar-Ar and K-Ar dating indicates that incipient volcanism in the Leiqiong area may have taken place in late Oligocene time and gradually increased in tempo toward the Miocene and Pliocene Epoch. Volcanic activities were most extensive during Pleistocene, and declined and ended in Holocene. Based on radiometric age dating and geographic distribution, Pliocene and Quaternary volcanism in Hainan Island can be grouped into two stages and six eruptive regions. The early volcanism is dominated by flood type fissure eruption of quartz tholeiites and olivine tholeiites whereas the later phase is dominated by central type eruption of alkali olivine basalts and olivine tholeiites. The systematic decrease of MgO, ΣFeO and TiO 2 with increasing SiO 2 content for basalts from Hainan Island indicates that fractional crystallization of olivine, clinopyroxene and Ti-bearing opaques may have occurred during magmatic evolution. From coexisting Fe-Ti oxide minerals, it is estimated that the equilibrium temperatures range from 895-986°C and oxygen fugacities range from 10 -13.4 to 10 -10.7 atmospheres in the basaltic magmas. The incompatible element ratios and the chondrite-normalized REE patterns of basalts from the Leiqiong area are generally similar to OIB. The Nb/U ratios (less than 37) in most of the tholeiitic rocks and the negative Nb anomaly observed in the spidergram of some basalts indicated that the influence of a paleo-subduction zone derived component can not be excluded in considering the genesis of the basalts from the Leiqiong area. The tholeiites in the Leiqiong area may have mixed with a more enriched lithospheric mantle component as well as undergone relatively larger percentages of partial melting than the alkali basalts.

  9. Simple model potential and model wave functions for (H-alkali)+ and (alkali-alkali)+ ions

    NASA Astrophysics Data System (ADS)

    Patil, S. H.; Tang, K. T.

    2000-07-01

    A simple model potential is proposed to describe the interaction of a valence electron with the alkali core, which incorporates the correct asymptotic behavior in terms of dipolar polarizabilities, and the short-range exchange effects in terms of a hard core adjusted to give the correct energy for the valence electron. Based on this potential, simple wave functions are developed to describe the (H-alkali)+ and (alkali-alkali)+ ions. These wave functions exhibit some important structures of the ions, and provide a universal description of the properties of all (H-alkali)+ and (alkali-alkali)+ ions, in particular, the equilibrium separations of the nuclei and the corresponding dissociation energies. They also allow us to calculate the dipolar polarizabilities of Li2+, Na2+, K2+, Rb2+, and Cs2+.

  10. Alkali-vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.; Krupke, W. F.

    2010-02-01

    We report on the results from several of our alkali laser systems. We show highly efficient performance from an alexandrite-pumped rubidium laser. Using a laser diode stack as a pump source, we demonstrate up to 145 W of average power from a CW system. We present a design for a transversely pumped demonstration system that will show all of the required laser physics for a high power system.

  11. Quality assessment of the melanocratic basalt outcrops for the mineral fiber producing, Southern Urals, Russia

    NASA Astrophysics Data System (ADS)

    Pisciotta, Antonino; Perevozchikov, Boris V.; Osovetsky, Boris M.; Menshikova, Elena A.; Kazymov, Konstantin P.

    2014-05-01

    In recent years, basalt fibers catch the attention of their superior physical and chemical properties in which they rank below only expensive carbon and silicon carbide fibers. The high tensile strength, elastic modulus, durability against environmental factors, acids, and alkalis, long service life, extended operating temperature range, and low hygroscopicity allow basalt fibers to find increasing application in new materials. The suitability of raw for basalt fibers production is determined by the effect of rheological and crystallization properties of basalt melts, higher the ratio of viscosity to surface tension η/σ more stable the formation of fibers, it constrains the mineral and chemical composition of the raw material. An integrated petrographic and mineralogical investigation of melanocratic basalts from the Southern Urals, was carried out to assess the suitability for the production of high quality basalt fibers. The results presented herein confirm as the intense metamorphism and the refractory impurities altered the quality of the row material ant its possibility of producing fine staple and continuous basalt fibers.

  12. Sulfide Stability of Planetary Basalts

    NASA Technical Reports Server (NTRS)

    Caiazza, C. M.; Righter, K.; Gibson, E. K., Jr.; Chesley, J. T.; Ruiz, J.

    2004-01-01

    The isotopic system, 187Re 187Os, can be used to determine the role of crust and mantle in magma genesis. In order to apply the system to natural samples, we must understand variations in Re/Os concentrations. It is thought that low [Os] and [Re] in basalts can be attributed to sulfide (FeS) saturation, as Re behaves incompatibly to high degrees of evolution until sulfide saturation occurs [1]. Previous work has shown that lunar basalts are sulfide under-saturated, and mid-ocean ridge, ocean-island and Martian (shergottites) basalts are saturated [2,3]. However, little is known about arc basalts. In this study, basaltic rocks were analyzed across the Trans-Mexican Volcanic Belt.

  13. Petrogenesis of Late Cenozoic basalts from North Hainan Island: Constraints from melt inclusions and their host olivines

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Qiang; Ren, Zhong-Yuan; Nichols, Alexander R. L.; Song, Mao-Shuang; Qian, Sheng-Ping; Zhang, Yan; Zhao, Pei-Pei

    2015-03-01

    Melt inclusions and their host olivines in basaltic lavas provide important information about the nature of their mantle source. We present the first analyzed chemical data of olivine-hosted melt inclusions in Cenozoic basalts from the North Hainan Island and report the discovery of both tholeiitic and alkalic melt inclusions in a single rock sample. Cenozoic basalts from the Hainan Island are predominantly tholeiites with only small amounts of alkali basalts. There is a much broader compositional variation in melt inclusions than whole rocks. Compared to partial melts of mantle peridotite, the Hainan basalts have lower CaO, Na2O/TiO2, CaO/Al2O3 and Co/Fe, and higher TiO2, FeO∗, Fe/Mn, Zn/Fe and Zn/Mn. The olivine phenocrysts from the Hainan basalts contain lower Ca and Mn, and higher Ni and Fe/Mn than those of olivines crystallized from partial melts of peridotite. Projections from or towards olivine into the plane CS-MS-A for melt inclusions and whole rocks with MgO >7.5 wt% imply that the residual minerals in the source of the tholeiites are mainly clinopyroxene and garnet, possibly with some orthopyroxene, while in the source of the alkali basalts they are dominated by clinopyroxene and garnet. This indicates that a pyroxenite component could serve as the source lithology of the Hainan basalts. The OIB-like trace element compositions, with Ba, Sr, Nb and Ta positive anomalies, and Th and U negative anomalies, of the Hainan basalts suggest that a recycled oceanic crust component was involved in the source of the Hainan basalts. Based on a CMAS projection of primary magma compositions of the whole rocks and melt inclusions, we infer that a stage-2 silica-deficient pyroxenite derived from melt-peridotite reaction or mechanical mixing between recycled oceanic crust and peridotite can serve as the source lithology. Partial melts derived from such a source can match the overall compositions of the Hainan basalts better than those of MORB-eclogite and fertile

  14. Why Hexagonal Basalt Columns?

    PubMed

    Hofmann, Martin; Anderssohn, Robert; Bahr, Hans-Achim; Weiß, Hans-Jürgen; Nellesen, Jens

    2015-10-01

    Basalt columns with their preferably hexagonal cross sections are a fascinating example of pattern formation by crack propagation. Junctions of three propagating crack faces rearrange such that the initial right angles between them tend to approach 120°, which enables the cracks to form a pattern of regular hexagons. To promote understanding of the path on which the ideal configuration can be reached, two periodically repeatable models are presented here involving linear elastic fracture mechanics and applying the principle of maximum energy release rate. They describe the evolution of the crack pattern as a transition from rectangular start configuration to the hexagonal pattern. This is done analytically and by means of three-dimensional finite element simulation. The latter technique reproduces the curved crack path involved in this transition. PMID:26550724

  15. Basalt Weathering Rates Across Scales

    NASA Astrophysics Data System (ADS)

    Navarresitchler, A.; Brantley, S.

    2006-12-01

    Weathering of silicate minerals is a known sink for atmospheric CO2. An estimated 30%-35% of the consumption of CO2 from continental silicate weathering can be attributed to basalt weathering (Dessert et al., 2003). To assess basalt weathering rates we examine weathering advance rates of basalt (w, mm/yr) reported at four scales: denudation rates from basalt watersheds (tens of kilometers), rates of soil formation from soil profiles developed on basaltic parent material of known age (meters), rates of weathering rind formation on basalt clasts (centimeters), and laboratory dissolution rates (millimeters). Basalt weathering advance rates calculated for watersheds range between 0.36 and 9.8x10-3 mm/yr. The weathering advance rate for a basalt soil profile in Hawaii is 8.0x10-3 mm/yr while advance rates for clasts range from 5.6x10-6 to 2.4x10-4 mm/yr. Batch and mixed flow laboratory experiments performed at circum- neutral pH yield advance rates of 2.5x10^{-5} to 3.4x10-7 mm/yr when normalized to BET surface area. These results show increasing advance rates with both increasing scale (from laboratory to watersheds) and increasing temperature. If we assume that basalt weathers at an intrinsic rate that applies to all scales then we conclude that variations in weathering advance rates arise from variations in surface area measurement at different scales (D); therefore, basalt weathering is a fractal system. We measure a fractal dimension (dr) of basalt weathering of 2.2. For Euclidean geometries, measured surface area does not vary with the scale at which it is measured and dr equals 2. For natural surfaces, surface area is related to the scale at which it is measured. As scale increases, the minimum size of the surface irregularities that are measurable also increases. The ratio between BET and geometric normalized laboratory dissolution rates has been defined as a roughness parameter, λ, which ranges from ~10-100. We extend the definition of this roughness parameter

  16. Composition and origin of basaltic magma of the Hawaiian Islands

    USGS Publications Warehouse

    Powers, H.A.

    1955-01-01

    Silica-saturated basaltic magma is the source of the voluminous lava flows, erupted frequently and rapidly in the primitive shield-building stage of activity, that form the bulk of each Hawaiian volcano. This magma may be available in batches that differ slightly in free silica content from batch to batch both at the same and at different volcanoes; differentiation by fractionation of olivine does not occur within this primitive magma. Silica-deficient basaltic magma, enriched in alkali, is the source of commonly porphyritic lava flows erupted less frequently and in relatively negligible volume during a declining and decadent stage of activity at some Hawaiian volcanoes. Differentiation by fractionation of olivine, plagioclase and augite is evident among these lavas, but does not account for the silica deficiency or the alkali enrichment. Most of the data of Hawaiian volcanism and petrology can be explained by a hypothesis that batches of magma are melted from crystalline paridotite by a recurrent process (distortion of the equatorial bulge by forced and free nutational stresses) that accomplishes the melting only of the plagioclase and pyroxene component but not the excess olivine and more refractory components within a zone of fixed and limited depth. Eruption exhausts the supply of meltable magma under a given locality and, in the absence of more violent melting processes, leaves a stratum of crystalline refractory components. ?? 1955.

  17. Xenoliths from Late Cretaceous seamounts in the Central Pacific: Cumulates of fractionating alkalic basalt magma chambers

    SciTech Connect

    Davis, A.S.; Friesen, W.B.; Pickthorn, L.; Pringle, M.S.; Clague, D.A. )

    1990-06-01

    Abundant xenoliths in alkalic basalt were recovered from two Late Cretaceous seamounts in the Central Pacific. One seamount, located in the Phoenix archipelago (lat 0{degree}22'5, long 176{degree}05'W), is dated by {sup 40}Ar/{sup 39}Ar techniques as 65 Ma. The other seamount, located in the northern Line Islands (lat 15{degree}39'N, long 170{degree}23'W), is dated as 70 Ma. Host lavas are basanite and differentiated alkalic basalt. Mafic xenolith assemblages consist of clinopyroxene with variable amounts of amphibole and mica. Intermediate assemblages have abundant feldspar in addition to the mafic minerals. Rare felsic xenoliths consist of two or more feldspars. Variable amounts of apatite, titanite, and magnetite are poikilitically enclosed in mafic phases, and minor feldspathoids are present in some xenoliths. Most xenoliths are holocrystalline with fine- to medium-grained, equigranular cumulus texture, but two xenoliths have a seriate, interlocking crystal framework in a small amount of glassy to microcrystalline matrix. Clinopyroxene in the holocrystalline samples is partially replaced by amphibole. In a few samples, extensive replacement of clinopyroxene by rounded amphibole grains results in a nearly granoblastic texture. Clinopyroxene compositions range from diopside to ferrosalite and are essentially Cr-free but generally have high Ti and Al contents. Cr-rich diopside and Al-augite, characteristic of mantle clinopyroxene, are absent. Feldspars include plagioclase, anorthoclase, and sanidine. Mineral compositions of xenoliths are similar to those of phenocrysts in the host lavas, indicating that these xenoliths are not metasomatized mantle material, but rather are cumulates from fractionating alkalic basalt magma chambers.

  18. Cathodoluminescence Characterization of Maskelynite and Alkali Feldspar in Shergottite (Dhofar 019)

    SciTech Connect

    Kayama, M.; Nakazato, T.; Nishido, H.; Ninagawa, K.; Gucsik, A.

    2009-08-17

    Dhofar 019 is classified as an olivine-bearing basaltic shergottite and consists of subhedral grains of pyroxene, olivine, feldspar mostly converted to maskelynite and minor alkali feldspar. The CL spectrum of its maskelynite exhibits an emission band at around 380 nm. Similar UV-blue emission has been observed in the plagioclase experimentally shocked at 30 and 40 GPa, but not in terrestrial plagioclase. This UV-blue emission is a notable characteristic of maskelynite. CL spectrum of alkali feldspar in Dhofar 019 has an emission bands at around 420 nm with no red emission. Terrestrial alkali feldspar actually consists of blue and red emission at 420 and 710 nm assigned to Al-O{sup -}-Al and Fe{sup 3+} centers, respectively. Maskelynite shows weak and broad Raman spectral peaks at around 500 and 580 cm{sup -1}. The Raman spectrum of alkali feldspar has a weak peak at 520 cm{sup -1}, whereas terrestrial counterpart shows the emission bands at 280, 400, 470, 520 and 1120 cm{sup -1}. Shock pressure on this meteorite transformed plagioclase and alkali feldspar into maskelynite and almost glass phase, respectively. It eliminates their luminescence centers, responsible for disappearance of yellow and/or red emission in CL of maskelynite and alkali feldspar. The absence of the red emission band in alkali feldspar can also be due to the lack of Fe{sup 3+} in the feldspar as it was reported for some lunar feldspars.

  19. Adsorption on Alkali Halides.

    NASA Astrophysics Data System (ADS)

    Urzua Duran, Gilberto Antonio

    1995-01-01

    Using a variety of interionic potentials, I have computed the configurations of adsorbed alkali halides monomers on the (001) surface of selected alkali halides crystals. In the majority of cases studied it is found that the monomer adsorbs perpendicular to the surface with the cation sitting nearly on top of the surface anion. In about ten percent of the cases though the monomer adsorbs tilted from the vertical. In these cases the ion that is closer to the surface can be the cation or the anion. The effect of polarization forces is found to be important. In order to discuss the effects of surface retaxation with adsorbates, I have evaluated the surface relaxation of the alkali halide crystals, using a shell model for the interionic forces. It is found that surface relaxation and rumpling are generally small, especially when the van der Waals forces are included. A theory of the effect of substrate vibrations on the binding of an adsorbed atom is developed. At T = 0 the binding energy is D_0-E, where D_0 is the surface well depth (classical binding energy) and E is the quantum correction. For several simple models, it is found that E is surprisingly model-independent. We compare D _0-E with the binding energies to a rigid substrate, D_0-E_{rs}, and to a vibrationally averaged substrate, D _0-E_{va}. We prove that E_{va}>=q E>=q E_ {rs} and that similar relations hold at finite temperature for the free energy of binding. In most cases E_{rs} is better than E_{va} as an approximation to E.

  20. Hanford basalt flow mineralogy

    SciTech Connect

    Ames, L.L.

    1980-09-01

    Mineralogy of the core samples from five core wells was examined in some detail. The primary mineralogy study included an optical examination of polished mounts, photomicrographs, chemical analyses of feldspars, pyroxenes, metallic oxides and microcrystalline groundmasses and determination from the chemical analyses of the varieties of feldspars, pyroxenes and metallic oxides. From the primary mineralogy data, a firm understanding of the average Hanford basalt flow primary mineralogy emerged. The average primary feldspar was a laboradorite, the average pyroxene was an augite and the average metallic oxide was a solid solution of ilmenite and magnetite. Secondary mineralization consisted of vug filling and joint coating, chiefly with a nontronite-beidellite clay, several zeolites, quartz, calcite, and opal. Specific flow units also were examined to determine the possibility of using the mineralogy to trace flows between core wells. These included units of the Pomona, the Umatilla and a high chromium flow just below the Huntzinger. In the Umatilla, or high barium flow, the compositional variation of the feldspars was unique in range. The pyroxenes in the Pomona were relatively highly zoned and accumulated chromium. The high chromium flow contained chromium spinels that graded in chromium content into simple magnetites very low in chromium content. A study of the statistical relationships of flow unit chemical constituents showed that flow unit constituents could be roughly correlated between wells. The probable cause of the correlation was on-going physical-chemical changes in the source magma.

  1. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  2. Preparation of alkali metal dispersions

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Landel, R. F. (Inventor)

    1968-01-01

    A method is described for producing alkali metal dispersions of high purity. The dispersions are prepared by varying the equilibrium solubility of the alkali metal in a suitable organic solvent in the presence of aromatic hydrocarbons. The equilibrium variation is produced by temperature change. The size of the particles is controlled by controlling the rate of temperature change.

  3. Flood basalts and mass extinctions

    NASA Technical Reports Server (NTRS)

    Morgan, W. Jason

    1988-01-01

    There appears to be a correlation between the times of flood basalts and mass-extinction events. There is a correlation of flood basalts and hotspot tracks--flood basalts appear to mark the beginning of a new hotspot. Perhaps there is an initial instability in the mantle that bursts forth as a flood basalt but then becomes a steady trickle that persists for many tens of millions of years. Suppose that flood basalts and not impacts cause the environmental changes that lead to mass-extinctions. This is a very testable hypothesis: it predicts that the ages of the flows should agree exactly with the times of extinctions. The Deccan and K-T ages agree with this hypothesis; An iridium anomaly at extinction boundaries apparently can be explained by a scaled-up eruption of the Hawaiian type; the occurrence of shocked-quartz is more of a problem. However if the flood basalts are all well dated and their ages indeed agree with extinction times, then surely some mechanism to appropriately produce shocked-quartz will be found.

  4. Thickness of western mare basalts

    NASA Technical Reports Server (NTRS)

    Dehon, R. A.

    1979-01-01

    An isopach map of the basalt thickness in the western mare basins is constructed from measurements of the exposed external rim height of partially buried craters. The data, although numerically sparse, is sufficiently distributed to yield gross thickness variations. The average basalt thickness in Oceanus Procellarum and adjacent regions is 400 m with local lenses in excess of 1500 m in the circular maria. The total volume of basalt in the western maria is estimated to be in the range of 1.5 x 10 to the 6th power cu km. The chief distinction between the eastern and western maria appears to be one of basalt volumes erupted to the surface. Maximum volumes of basalt are deposited west of the central highlands and flood subjacent terrain to a greater extent than on the east. The surface structures of the western maria reflect the probability of a greater degree of isostatic response to a larger surface loading by the greater accumulation of mare basalt.

  5. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  6. Nickel in high-alumina basalts

    USGS Publications Warehouse

    Hedge, C.E.

    1971-01-01

    New analyses of high-alumina basalts reveal an average nickel content higher than previously indicated. Ni in high-alumina basalts correlates with magnesium in the same way as it does in other basalt types. There is therefore no reason, based on Ni contents, to hypothesize a special origin for high-alumina basalts and it is permissible (based on Ni contents) to form andesites by fractional crystallization from high-alumina basalts. ?? 1971.

  7. Basaltic Lava Channels

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Griffiths, R. W.; Kerr, R. C.

    2004-12-01

    or channel bends that exposes more core lava to cooling than simply that of the shear zones. Thus the channel geometry plays a major role in the thermal history of a flow. As lava flows rarely flow through pre-existing channels of prescribed geometry, we have performed an additional set of analog laboratory experiments to determine the relationship between flow rate, slope, and channel formation in solidifying flows. All flows develop stable uniform channels within solidified levees except when the flow rate is sufficiently low to permit flow front solidification, inflation, and tube formation. On constant slopes, increasing flow rates result in increases in both the rate of flow advance rate and the channel width, and a decrease in levee width. At constant flow rates, both channel width and levee width decrease with increasing slope while flow advance rate increases. Limited data on the geometry of basaltic lava channels indicate that experimental data are consistent with field observations, however, both additional field data and scaling relationships are required to fully utilize the laboratory experiments to predict channel development in basaltic lava flows.

  8. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  9. Lithospheric control on basaltic magma compositions within a long-lived monogenetic magmatic province: the Cainozoic basalts of eastern Victoria, south-eastern Australia

    NASA Astrophysics Data System (ADS)

    Price, R. C.; Nicholls, I. A.; Maas, R.

    2012-12-01

    Basaltic volcanism, ranging in age from Late Jurassic to Holocene and extending across southern Victoria in south-eastern Australia was initiated ~ 95 Ma ago during the earliest stages of rifting associated with opening of the Tasman Sea and Southern Ocean. Volcanic activity has continued sporadically since that time with the only major hiatus being between 18 and 7 Ma (Price et al, 2003). Basaltic rocks with ages in the range 18-90 Ma occur in small lava fields scattered across eastern and south-eastern Victoria and have also been recovered from bore holes in the west of the state. These have in the past been referred to as the "Older Volcanics" to differentiate them from more volumetrically extensive and younger (< 5 Ma) lava fields to the west. Older Volcanics vary in composition from SiO2-undersaturated basanites, basalts and hawaiites through transitional basalts to hypersthene normative tholeiites. Strontium, Nd and Pb isotopic compositions lie between DM and EM 2 in Sr-Nd-Pb isotopic space. They are isotopically similar to Samoan OIB but different from intra-plate rocks of the New Zealand-Antarctic diffuse alkaline magmatic province (DAMP). Trace element compositions are generally characterised by enrichment of Cs, Ba, Rb, Th, U, Nb, K and light REE over heavy REE, Ti, Zr and Y but there is subtle diversity within and between particular lava fields. (La/Yb)n and K/Nb ratios show significant variation and some basalts are relatively enriched in Sr, P and Pb. Potassium and Rb show distinctive relative depletions in some samples and this could be indicating low degree melting with residual phlogopite. When Sr isotope data for Older Volcanics are projected onto an east-west profile they outline distinctive discontinuities that can be related to surface and subsurface structural features within the basement. This has previously been identified in the "Newer Volcanics" (< 5 Ma) province of western Victoria (Price et al., 1997, 2003). Both Proterozoic and

  10. Snowball Earth and basaltic traps

    NASA Astrophysics Data System (ADS)

    Dupre, B.; Godderis, Y.; Nedelec, A.; Donnadieu, Y.; Dessert, C.; Francois, L. M.; Grard, A.

    2003-04-01

    The causes of the Neo-Proterozoic glaciations is still a matter of debate. One potential trigger for those glaciations is a major perturbation of the global carbon cycle, leading to the consumption of atmospheric CO_2, and finally to the cooling of the global climate. The first glacial episode is characterized by intense rift formations. The Proto-Pacific ocean starts to open within the Sturtian stage (800-750 Ma). The onset of rifts cutting through continental surfaces might have been coeval with the spreading of continental flood basalts. As demonstrated by Dessert et al (2001) for the K-T boundary, such events might severely impacts the long term evolution of the global climate, through intense consumption of atmospheric CO_2 by fresh basaltic surfaces, leading to non negligible global cooling at the million year timescale. Based on weathering laws for basaltic and granitic surfaces, we estimate that the onset of continental flood basalts over 6 million km^2 along the equator (crossed by the Proto-Pacific rift) will drive the Earth into global glaciation 1.5 My after the event, assuming a pre-perturbation level of 280 ppmv of CO_2 and a solar luminosity reduced by 6%. The δ13C of carbonates accumulating between the start of the continental plume and the onset of the global glaciation is expected to fall by about 3 ppm in response to the degassing of large amount of mantle carbon into the atmosphere, in agreement with data. This hypothesis raises the question of the cyclicity of the glaciations. Once the glaciation ends, the basaltic surface starts again to weather, and plunge the Earth into a new deep glaciation. Within 30 My, the basaltic trap, originally located at the equator, might have migrated 3500 km southward, within the dryer tropical area. Such migration reduces the consumption of CO_2 by the basaltic surface, preventing the Earth from a new global glaciation.

  11. Bubble Growth in Lunar Basalts

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2009-05-01

    Although Moon is usually said to be volatile-"free", lunar basalts are often vesicular with mm-size bubbles. The vesicular nature of the lunar basalts suggests that they contained some initial gas concentration. A recent publication estimated volatile concentrations in lunar basalts (Saal et al. 2008). This report investigates bubble growth on Moon and compares with that on Earth. Under conditions relevant to lunar basalts, bubble growth in a finite melt shell (i.e., growth of multiple regularly-spaced bubbles) is calculated following Proussevitch and Sahagian (1998) and Liu and Zhang (2000). Initial H2O content of 700 ppm (Saal et al. 2008) or lower is used and the effect of other volatiles (such as carbon dioxide, halogens, and sulfur) is ignored. H2O solubility at low pressures (Liu et al. 2005), concentration-dependent diffusivity in basalt (Zhang and Stolper 1991), and lunar basalt viscosity (Murase and McBirney 1970) are used. Because lunar atmospheric pressure is essentially zero, the confining pressure on bubbles is completely supplied by the overlying magma. Due to low H2O content in lunar basaltic melt (700 ppm H2O corresponds to a saturation pressure of 75 kPa), H2O bubbles only grow in the upper 16 m of a basalt flow or lake. A depth of 20 mm corresponds to a confining pressure of 100 Pa. Hence, vesicular lunar rocks come from very shallow depth. Some findings from the modeling are as follows. (a) Due to low confining pressure as well as low viscosity, even though volatile concentration is very low, bubble growth rate is extremely high, much higher than typical bubble growth rates in terrestrial melts. Hence, mm-size bubbles in lunar basalts are not strange. (b) Because the pertinent pressures are so low, bubble pressure due to surface tension plays a main role in lunar bubble growth, contrary to terrestrial cases. (c) Time scale to reach equilibrium bubble size increases as the confining pressure increases. References: (1) Liu Y, Zhang YX (2000) Earth

  12. The Karoo igneous province — A problem area for inferring tectonic setting from basalt geochemistry

    NASA Astrophysics Data System (ADS)

    Duncan, Andrew R.

    1987-06-01

    Tholeiitic basalts and associated intrusives are the major component of the Karoo igneous province. They are of Mesozoic age and constitute one of the world's classic continental flood basalt (CFB) provinces. It has been argued that most Karoo basalts have not undergone significant contamination with continental crust and that their lithospheric mantle source areas were enriched in incompatible minor and trace elements during the Proterozoic. The only exceptions to this are late-stage MORB-like dolerites near the present-day continental margins which are considered to be of asthenospheric origin. When data for the "southern" Karoo basalts are plotted on many of the geochemical discriminant diagrams which have been used to infer tectonic setting, essentially all of them would be classified as calc-alkali basalts (CAB's) or low-K tholeiites. Virtually none of them plot in the compositional fields designated as characteristic of "within-plate" basalts. There is little likelihood that the compositions of the Karoo basalts can be controlled by active subduction at the time of their eruption and no convincing evidence that a "subduction component" has been added to the subcontinental lithospheric mantle under the entire area in which the basalts crop out. It must be concluded that the mantle source areas for CAB's and the southern Karoo basalts have marked similarities. In contrast, the data for "northern" Karoo basalts largely plot in the "within-plate" field on geochemical discriminant diagrams. Available data suggest that the source composition and/or the restite mineralogy and degree of partial melting are different for southern and northern Karoo basalts. There is no evidence for any difference in tectonic setting between the southern and northern Karoo basalts at the time they were erupted. This appears to be clear evidence that specific mantle source characteristics and/or magmatic processes can vary within a single CFB province to an extent that renders at least

  13. Viscous flow behavior of tholeiitic and alkaline Fe-rich martian basalts

    NASA Astrophysics Data System (ADS)

    Chevrel, Magdalena Oryaëlle; Baratoux, David; Hess, Kai-Uwe; Dingwell, Donald B.

    2014-01-01

    The chemical compositions of martian basalts are enriched in iron with respect to terrestrial basalts. Their rheology is poorly known and liquids of this chemical composition have not been experimentally investigated. Here, we determine the viscosity of five synthetic silicate liquids having compositions representative of the diversity of martian volcanic rocks including primary martian mantle melts and alkali basalts. The concentric cylinder method has been employed between 1500 °C and the respective liquidus temperatures of these liquids. The viscosity near the glass transition has been derived from calorimetric measurements of the glass transition. Although some glass heterogeneity limits the accuracy of the data near the glass transition, it was nevertheless possible to determine the parameters of the non-Arrhenian temperature-dependence of viscosity over a wide temperature range (1500 °C to the glass transition temperature). At superliquidus conditions, the martian basalt viscosities are as low as those of the Fe-Ti-rich lunar basalts, similar to the lowest viscosities recorded for terrestrial ferrobasalts, and 0.5 to 1 order of magnitude lower than terrestrial tholeiitic basalts. Comparison with empirical models reveals that Giordano et al. (2008) offers the best approximation, whereas the model proposed by Hui and Zhang (2007) is inappropriate for the compositions considered. The slightly lower viscosities exhibited by the melts produced by low degree of mantle partial melting versus melts produced at high degree of mantle partial melting (likely corresponding to the early history of Mars), is not deemed sufficient to lead to viscosity variations large enough to produce an overall shift of martian lava flow morphologies over time. Rather, the details of the crystallization sequence (and in particular the ability of some of these magmas to form spinifex texture) is proposed to be a dominant effect on the viscosity during martian lava flow emplacement and

  14. The basalts of Mare Frigoris

    NASA Astrophysics Data System (ADS)

    Kramer, G. Y.; Jaiswal, B.; Hawke, B. R.; Öhman, T.; Giguere, T. A.; Johnson, K.

    2015-10-01

    This paper discusses the methodology and results of a detailed investigation of Mare Frigoris using remote sensing data from Clementine, Lunar Prospector, and Lunar Reconnaissance Orbiter, with the objective of mapping and characterizing the compositions and eruptive history of its volcanic units. With the exception of two units in the west, Mare Frigoris and Lacus Mortis are filled with basalts having low-TiO2 to very low TiO2, low-FeO, and high-Al2O3 abundances. These compositions indicate that most of the basalts in Frigoris are high-Al basalts—a potentially undersampled, yet important group in the lunar sample collection for its clues about the heterogeneity of the lunar mantle. Thorium abundances of most of the mare basalts in Frigoris are also low, although much of the mare surface appears elevated due to contamination from impact gardening with the surrounding high-Th Imbrium ejecta. There are, however, a few regional thorium anomalies that are coincident with cryptomare units in the east, the two youngest mare basalt units, and some of the scattered pyroclastic deposits and volcanic constructs. In addition, Mare Frigoris lies directly over the northern extent of the major conduit for a magma plumbing system that fed many of the basalts that filled Oceanus Procellarum, as interpreted by Andrews-Hanna et al. (2014) using data from the Gravity Recovery and Interior Laboratory mission. The relationship between this deep-reaching magma conduit and the largest extent of high-Al basalts on the Moon makes Mare Frigoris an intriguing location for further investigation of the lunar mantle.

  15. Source, evolution and emplacement of Permian Tarim Basalts: Evidence from U-Pb dating, Sr-Nd-Pb-Hf isotope systematics and whole rock geochemistry of basalts from the Keping area, Xinjiang Uygur Autonomous region, northwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Dayu; Zhou, Taofa; Yuan, Feng; Jowitt, Simon M.; Fan, Yu; Liu, Shuai

    2012-04-01

    Permian basalts distribute at least 250,000 km2, and underlie the southwest Tarim Basin in Xinjiang Uygur Autonomous region, northwest China. This vast accumulation of basalt is the main part of the Tarim Large Igneous Province (LIP). The basaltic units in the Lower Permian Kupukuziman and Kaipaizileike Formations in the Keping area, Tarim Basin; were the best exposure of the Permian basalt sequence in the basin. LA-ICP-MS U-Pb dating of zircon from the basal basaltic unit in the section gives an age of 291.9 ± 2.2 Ma (MSWD = 0.30, n = 17); this age, combined with previously published geochronological data, indicates that the basalts in the Tarim Basin were emplaced between 292 Ma and 272 Ma, with about 90% of the basalts being emplaced between 292 and 287 Ma. Basalts from the Keping area have high FeOT (10.8-18.6 wt.%), low Mg#s (0.26-0.60), and exhibit primitive mantle normalized patterns with positive Pb, P and Ti but negative Zr, Y and Ta anomalies. The basalts from both formations have similar 206Pb/204Pb (18.192-18.934), 207Pb/204Pb (15.555-15.598) and 208Pb/204Pb (38.643-38.793) ratios. The basalts also have high ɛSr(t) (45.7-62.1), low ɛNd(t) (-3.6 to -2.2) and low zircon ɛHf(t) (-4.84 to -0.65) values. These characteristics are typical of alkali basalts and suggest that the basalts within the Tarim Basin were derived from an OIB-type mantle source and interacted with enriched mantle (EMI-type) before emplacement. Rare earth element systematics indicate that the parental melts for the basalts were high-degree partial melts derived from garnet lherzolite mantle at the base of the lithosphere. Prior to emplacement, the Tarim Permian Basalts (TPB) underwent fractional crystallization and assimilated crustal material; the basalts were finally emplaced during crustal extension in an intra-plate setting. The wide distribution, deep source and high degree partial melting of the TPB was consistent with a mantle plume origin. The TPB and other coeval igneous

  16. Upgrading platform using alkali metals

    SciTech Connect

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  17. Geochemistry of peridotite xenoliths in basalt from Hannuoba, eastern China: Implications for subcontinental mantle heterogeneity

    SciTech Connect

    Yan Song; Frey, F.A. )

    1989-01-01

    Based on geochemical studies of six anhydrous spinel peridotite xenoliths in basanite, the upper mantle beneath Hannuoba, eastern China is compositionally heterogeneous. These samples range in Sr and Nd isotopic ratios from MORB-like to near bulk-earth estimates. The low {sup 87}Sr/{sup 86}Sr and high {sup 143}Nd/{sup 144}Nd samples contain the largest amount of a basaltic component, but they are relatively depleted in light rare earth elements compared to chondrites. Other samples have U-shaped chondrite-normalized REE patterns. Trace element and radiogenic isotopic data require enrichment processes acting on depleted mantle. Constraints on these processes are: (a) inverse correlations between basaltic constituents, such as CaO and Al{sub 2}O{sub 3}, and La/Sm; and, (b) samples most depleted in CaO and Al{sub 2}O{sub 3} have the highest {sup 87}Sr/{sup 86}Sr and lowest {sup 143}Nd/{sup 144}Nd. These trends can be explained by a model whereby garnet peridotite zoned in isotopic composition undergoes partial melting. Because of a gradient in degree of melting, e.g., from the wall-rock contact to hotter interior, or as a function of depth in a diapir, melts initially segregate from regions where the degree of melting is high. Subsequently, the recently created residues are infiltrated by slower segregating incipient melts. Preferential mixing of these incipient melts with residues from high degrees of melting can explain the observed complex geochemical trends seen in Hannuoba and many other peridotite xenolith suites. Clinopyroxene-rich veins in some of the peridotites may reflect pathways of ascending melt.

  18. Temperature dependence of basalt weathering

    NASA Astrophysics Data System (ADS)

    Li, Gaojun; Hartmann, Jens; Derry, Louis A.; West, A. Joshua; You, Chen-Feng; Long, Xiaoyong; Zhan, Tao; Li, Laifeng; Li, Gen; Qiu, Wenhong; Li, Tao; Liu, Lianwen; Chen, Yang; Ji, Junfeng; Zhao, Liang; Chen, Jun

    2016-06-01

    The homeostatic balance of Earth's long-term carbon cycle and the equable state of Earth's climate are maintained by negative feedbacks between the levels of atmospheric CO2 and the chemical weathering rate of silicate rocks. Though clearly demonstrated by well-controlled laboratory dissolution experiments, the temperature dependence of silicate weathering rates, hypothesized to play a central role in these weathering feedbacks, has been difficult to quantify clearly in natural settings at landscape scale. By compiling data from basaltic catchments worldwide and considering only inactive volcanic fields (IVFs), here we show that the rate of CO2 consumption associated with the weathering of basaltic rocks is strongly correlated with mean annual temperature (MAT) as predicted by chemical kinetics. Relations between temperature and CO2 consumption rate for active volcanic fields (AVFs) are complicated by other factors such as eruption age, hydrothermal activity, and hydrological complexities. On the basis of this updated data compilation we are not able to distinguish whether or not there is a significant runoff control on basalt weathering rates. Nonetheless, the simple temperature control as observed in this global dataset implies that basalt weathering could be an effective mechanism for Earth to modulate long-term carbon cycle perturbations.

  19. Th-230 - U-238 series disequilibrium of the Olkaria basalts Gregory Rift Valley, Kenya: Petrogenesis

    NASA Technical Reports Server (NTRS)

    Black, S.; Macdonald, R.; Kelly, M.

    1993-01-01

    Strong mixing trends on a (Th-230/Th-232) versus Th diagram show that the basalts are mixed magmas which have undergone interaction with the crust. Instantaneous Th/U ratios are less than time integrated ones but these exceed the Th/U ratios in the MORB and OIB sources. This indicates that the mantle may have undergone some metasomatic fluxing, crustal contamination of the basalts will also enhance these ratios. Early activity on the Akira plain is represented by early basalts and hawaiites. The early basalt samples are known to predate the earliest comendites. The most recent phase of activity is represented by another cinder cone 40-50 m high being feldspar and clinopyroxene phyric. Inclusions which occur in the comendites vary in size and distribution. The largest and most porphyritic are the trachytes (up to 40 cm) with alkali feldspar phases up to 6 mm and small pyroxenes in the ground mass. The second set of inclusions are smaller (up to 10 cm) and are largely aphyric. The distribution of the inclusions are not uniform, the Broad Acres (C5) lavas contain 2-5 percent. The size of the inclusions decrease from south to north, as does the abundance of the trachytic inclusions. The major element variations in the Naivasha basalts, hawaiites and magmatic inclusions are discussed.

  20. Diverse, Alkali-Rich Igneous and Volcaniclastic Rocks Reflect a Metasomatised Mantle Beneath Gale Crater

    NASA Astrophysics Data System (ADS)

    Schmidt, M. E.; Baker, M. B.; Berger, J. A.; Fisk, M. R.; Gellert, R.; McLennan, S. M.; Newcombe, M. E.; Stolper, E. M.; Thompson, L. M.

    2014-12-01

    Although Curiosity landed in a sedimentary setting, geochemical compositions determined by Alpha Particle X-ray Spectrometer (APXS) and ChemCam suggest that major element concentrations of some rocks were little modified by chemical weathering, and in these cases, the bulk (>70%) of the crystalline components determined by ChemMin are igneous. Gale rocks can therefore largely preserve the composition of their igneous protoliths and provide insight into the crystalline basement exposed in the north crater rim. Four end-member compositions are recognized on the basis of APXS analyses. (1) The diverse, evolved Jake M class (n=12) of inferred igneous origin includes float blocks and cobbles. Jake M rocks are phonotephritic/mugearitic to trachyandesitic and characterized by low MgO contents (3.0-5.7 wt%) and high Al and alkalis, particularly Na2O (up to 7.35 wt%). (2) The Bathurst class of siltstones to coarse sandstones (n=13) occurs as dark-toned float and bedded outcrop and is basaltic to trachybasaltic, ranging to high K2O (up to 3.8 wt%). Alteration of the protolith(s) or during diagenesis may have affected this class. (3) The Darwin class of conglomerates to coarse sandstones (n=10) has high Na and Al, likely reflecting a sodic plagioclase-rich mineralogy, but with higher Fe than Jake M class (13.0-17.1 vs. 6.0-12.5 wt%). (4) The low alkali "normal" Mars basaltic composition is typified by the Portage soils (n=6) and the John Klein class (n=13; includes the Sheepbed mudstone). Some degree of mixing and/or contamination with this low alkali basaltic compositon has affected all APXS analyses. Overall, Gale rocks are strongly enriched in total alkalis (at the same MgO) relative to basaltic shergottites and many have higher K2O than igneous rocks analyzed by Spirit and Opportunity, suggesting that the mantle beneath Gale is alkali-rich (likely as a result of a metasomatic event) and that alkalis are heterogeneously distributed in the planet's interior.

  1. Occurrence and mineral chemistry of high pressure phases, Portrillo basalt, southcentral New Mexico. M.S. Thesis. Final Technical Report, 1 Jun. 1978 - 31 May 1980

    NASA Technical Reports Server (NTRS)

    Hoffer, J. M.; Ortiz, T. S.

    1980-01-01

    Inclusions of clinopyroxenite, kaersutiteclinopyroxenite, kaersutite-rich inclusions, wehrlite and olivine-clinopyroxenite together with megacrysts of feldspar, kaersutite and spinel are found loose on the flanks of cinder cones, as inclusions within lava flows and within the cores of volcanic bombs in the Quaternary alkali-olivine basalt of the West Potrillo Mountains, southcentral New Mexico. Based on petrological and geochemical evidence the megacysts are interpreted to be phenocrysts which formed at great depth rather that xenocrysts of larger crystal aggregates. These large crystals are believed to have formed as stable phases at high temperature and pressure and have partially reacted with the basalt to produce subhedral to anhedral crystal boundaries. It can be demonstrated that the mafic and ultramafic crystal aggregates were derived from an alkali-basalt source rock generated in the mantle. The inclusions are believed to represent a cumulus body or bodies injected within the lower crust or upper mantle.

  2. Hydrothermal alkali metal catalyst recovery process

    DOEpatents

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  3. Resistivity logging of fractured basalt

    SciTech Connect

    Stefansson, V.; Axelsson, G.; Sigurdsson, O.

    1982-01-01

    A lumped double porosity model was studied in order to estimate the effect of fractures on resistivity - porosity relations. It is found that the relationship between resistivity and porosity for fractured rock is in general not simple and depends both on the amounts of matrix porosity as well as the fracture orientation. However, when fractures dominate over matrix porosity the exponent is close to 1.0. Resistivity-porosity relations have been determined for large amounts of basaltic formations in Iceland. An exponent close to 1.0 is found in all cases investigated. This is interpreted as fractures constitute a considerable part of the porosity of the basalts. In the IRDP-hole in Eastern Iceland it is found that the ratio of fracture porosity to total porosity decreases with depth.

  4. Permeability within basaltic oceanic crust

    NASA Astrophysics Data System (ADS)

    Fisher, Andrew T.

    1998-05-01

    Water-rock interactions within the seafloor are responsible for significant energy and solute fluxes between basaltic oceanic crust and the overlying ocean. Permeability is the primary hydrologic property controlling the form, intensity, and duration of seafloor fluid circulation, but after several decades of characterizing shallow oceanic basement, we are still learning how permeability is created and distributed and how it changes as the crust ages. Core-scale measurements of basaltic oceanic crust yield permeabilities that are quite low (generally 10-22 to 10-17 m²), while in situ measurements in boreholes suggest an overlapping range of values extending several orders of magnitude higher (10-18 to 10-13 m²). Additional indirect estimates include calculations made from borehole temperature and flow meter logs (10-16 to 10-11 m²), numerical models of coupled heat and fluid flow at the ridge crest and within ridge flanks (10-16 to 10-9 m²), and several other methods. Qualitative indications of permeability within the basaltic oceanic crust come from an improved understanding of crustal stratigraphy and patterns of alteration and tectonic modification seen in ophiolites, seafloor samples and boreholes. Difficulties in reconciling the wide range of estimated permeabilities arise from differences in experimental scale and critical assumptions regarding the nature and distribution of fluid flow. Many observations and experimental and modeling results are consistent with permeability varying with depth into basement and with primary basement lithology. Permeability also seems to be highly heterogeneous and anisotropic throughout much of the basaltic crust, as within crystalline rocks in general. A series of focused experiments is required to resolve permeability in shallow oceanic basement and to directly couple upper crustal hydrogeology to magmatic, tectonic, and geochemical crustal evolution.

  5. Thermoluminescence dating of Hawaiian basalt

    USGS Publications Warehouse

    May, Rodd James

    1979-01-01

    The thermoluminescence (TL) properties of plagioclase separates from 11 independently dated alkalic basalts 4,500 years to 3.3 million years old and 17 tholeiitic basalts 16 years to 450,000 years old from the Hawaiian Islands were investigated for the purpose of developing a TL dating method for young volcanic rocks. Ratios of natural to artificial TL intensity, when normalized for natural radiation dose rates, were used to quantify the thermoluminescence response of individual samples for age-determination purposes. The TL ratios for the alkalic basalt plagioclase were found to increase with age at a predictable exponential rate that permits the use of the equation for the best-fit line through a plot of the TL ratios relative to known age as a TL age equation. The equation is applicable to rocks ranging in composition from basaltic andesite to trachyte over the age range from about 2,000 to at least 250,000 years before present (B.P.). The TL ages for samples older than 50,000 years have a calculated precision of less than :t 10 percent and a potential estimated accuracy relative to potassium-argon ages of approximately :t 10 percent. An attempt to develop a similar dating curve for the tholeiitic basalts was not as successful, primarily because the dose rates are on the average lower than those for the alkalic basalts by a factor of 6, resulting in lower TL intensities in the tholeiitic basalts for samples of equivalent age, and also because the age distribution of dated material is inadequate. The basic TL properties of the plagioclase from the two rock types are similar, however, and TL dating of tholeiitic basalts should eventually be feasible over the age range 10,000 to at least 200,000 years B.P. The average composition of the plagioclase separates from the alkalic basalts ranges from oligoclase to andesine; compositional variations within this range have no apparent effect on the TL ratios. The average composition of the plagioclase from the tholeiitic

  6. Mars Crust: Made of Basalt

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2009-05-01

    By combining data from several sources, Harry Y. (Hap) McSween (University of Tennessee), G. Jeffrey Taylor (University of Hawaii) and Michael B. Wyatt (Brown University) show that the surface of Mars is composed mostly of basalt not unlike those that make up the Earth's oceanic crust. McSween and his colleagues used data from Martian meteorites, analyses of soils and rocks at robotic landing sites, and chemical and mineralogical information from orbiting spacecraft. The data show that Mars is composed mostly of rocks similar to terrestrial basalts called tholeiites, which make up most oceanic islands, mid-ocean ridges, and the seafloor beneath sediments. The Martian samples differ in some respects that reflect differences in the compositions of the Martian and terrestrial interiors, but in general are a lot like Earth basalts. Cosmochemistst have used the compositions of Martian meteorites to discriminate bulk properties of Mars and Earth, but McSween and coworkers' synthesis shows that the meteorites differ from most of the Martian crust (the meteorites have lower aluminum, for example), calling into question how diagnostic the meteorites are for understanding the Martian interior.

  7. Flood basalts and extinction events

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1993-01-01

    The largest known effusive eruptions during the Cenozoic and Mesozoic Eras, the voluminous flood basalts, have long been suspected as being associated with major extinctions of biotic species. Despite the possible errors attached to the dates in both time series of events, the significance level of the suspected correlation is found here to be 1 percent to 4 percent. Statistically, extinctions lag eruptions by a mean time interval that is indistinguishable from zero, being much less than the average residual derived from the correlation analysis. Oceanic flood basalts, however, must have had a different biological impact, which is still uncertain owing to the small number of known examples and differing physical factors. Although not all continental flood basalts can have produced major extinction events, the noncorrelating eruptions may have led to smaller marine extinction events that terminated at least some of the less catastrophically ending geologic stages. Consequently, the 26 Myr quasi-periodicity seen in major marine extinctions may be only a sampling effect, rather than a manifestation of underlying periodicity.

  8. Flood Basalts and Neoproterozoic Glaciation

    NASA Astrophysics Data System (ADS)

    Halverson, G. P.; Cox, G. M.; Kunzmann, M.; Strauss, J. V.; Macdonald, F. A.

    2014-12-01

    Large igneous provinces (LIPs), which are commonly associated with supercontinental break-up, are the product of the emplacement of >106 km3 of mafic rocks in less than a few million years. LIP magmatism, in particular continental flood basalt (CFB) volcanism, perturbs global climate on shorter time scales through the radiative effects of degassed SO2 and CO2. On longer time scales, CFBs alter climate through the effect of the high weatherabilty of mafic rocks (5-10 times greater than average continental crust) on global silicate weathering. A link between flood basalt weathering, Rodinia break-up, and Neoproterozoic snowball glaciation has been postulated. Here we present a new compilation of Nd isotope data on Neoproterozoic mudstones from Laurentia, Australia, and South China along with a new seawater strontium isotope record from well preserved carbonates that support this hypothesis. These datasets are consistent with an outsized role of basalt weathering on the global silicate weathering budget during the second half of the Tonian period (~850 to 725 Ma). Along with Os isotope data, they also suggest that an additional pulse of basalt weathering at the end of the Tonian may have initiated the Sturtian snowball glaciation. CFBs have relatively high concentrations of phosphorous. Hence, the drawdown in atmospheric CO2 required to trigger the Sturtian snowball Earth was likely accomplished through a combination of increased silicate weathering rates and enhanced biological productivity driven by greater nutrient supply to the oceans. CFBs were also the likely source of the iron in Neoproterozoic iron formation (IF), all significant occurrences of which are restricted to Sturtian-aged glacial successions. Dramatic declines in ɛNd following the Cryogenian snowball glaciations are mirrored by stepwise increases in 87Sr/86Sr, reflecting the scouring of the continents by global ice sheets. This continental resurfacing removed the extensive basalt carapace as well as

  9. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    DOEpatents

    Joshi, Ashok V.; Balagopal, Shekar; Pendelton, Justin

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  10. The calcium-alkali syndrome.

    PubMed

    Arroyo, Mariangeli; Fenves, Andrew Z; Emmett, Michael

    2013-04-01

    The milk-alkali syndrome was a common cause of hypercalcemia, metabolic alkalosis, and renal failure in the early 20th century. It was caused by the ingestion of large quantities of milk and absorbable alkali to treat peptic ulcer disease. The syndrome virtually vanished after introduction of histamine-2 blockers and proton pump inhibitors. More recently, a similar condition called the calcium-alkali syndrome has emerged as a common cause of hypercalcemia and alkalosis. It is usually caused by the ingestion of large amounts of calcium carbonate salts to prevent or treat osteoporosis and dyspepsia. We describe a 78-year-old woman who presented with weakness, malaise, and confusion. She was found to have hypercalcemia, acute renal failure, and metabolic alkalosis. Upon further questioning, she reported use of large amounts of calcium carbonate tablets to treat recent heartburn symptoms. Calcium supplements were discontinued, and she was treated with intravenous normal saline. After 5 days, the calcium and bicarbonate levels normalized and renal function returned to baseline. In this article, we review the pathogenesis of the calcium-alkali syndrome as well as the differences between the traditional and modern syndromes. PMID:23543983

  11. Primitive and contaminated basalts from the Southern Rocky Mountains, U.S.A

    USGS Publications Warehouse

    Doe, B.R.; Lipman, P.W.; Hedge, C.E.; Kurasawa, H.

    1969-01-01

    Basalts in the Southern Rocky Mountains province have been analyzed to determine if any of them are primitive. Alkali plagioclase xenocrysts armored with calcic plagioclase seem to be the best petrographic indicator of contamination. The next best indicator of contamination is quartz xenocrysts armored with clinopyroxene. On the rocks and the region studied, K2O apparently is the only major element with promise of separating primitive basalt from contaminated basalt inasmuch as it constitutes more than 1 % in all the obviously contaminated basalts. K2O: lead (> 4 ppm) and thorium (> 2 ppm) contents and Rb/Sr (> 0.035) are the most indicative of the trace elements studied. Using these criteria, three basalt samples are primitive (although one contains 1.7% K2O) and are similar in traceelement contents to Hawaiian and Eastern Honshu, Japan, primitive basalts. Contamination causes lead isotope ratios, 206Pb/204Pb and 208Pb/204Pb, to become less radiogenic, but it has little or no effect on 87Sr/86Sr. We interpret the effect on lead isotopes to be due to assimilation either of lower crustal granitic rocks, which contain 5-10 times as much lead as basalt and which have been low in U/Pb and Th/Pb since Precambrian times, or of upper crustal Precambrian or Paleozoic rocks, which have lost much of their radiogenic lead because of heating prior to assimilation. The lack of definite effects on strontium isotopes may be due to the lesser strontium contents of granitic crustal rocks relative to basaltic rocks coupled with lack of a large radiogenic enrichment in the crustal rocks. Lead isotope ratios were found to be less radiogenic in plagioclase separates from an obviously contaminated basalt than in the primitive basalts. The feldspar separate that is rich in sodic plagioclase xenocrysts was found to be similar to the whole-rock composition for 206Pb/204Pb and 208Pb/204Pb whereas a more dense fraction probably enriched in more calcic plagioclase phenocrysts is more similar

  12. Electron- and Photon-stimulated Desorption of Alkali Atoms from Lunar Sample and a Model Mineral Surface

    NASA Technical Reports Server (NTRS)

    Yakshinskiy, B. V.; Madey, T. E.

    2003-01-01

    We report recent results on an investigation of source mechanisms for the origin of alkali atoms in the tenuous planetary atmospheres, with focus on non-thermal processes (photon stimulated desorption (PSD), electron stimulated desorption (ESD), and ion sputtering). Whereas alkaline earth oxides (MgO, CaO) are far more abundant in lunar samples than alkali oxides (Na2O, K2O), the atmosphere of the Moon contains easily measurable concentrations of Na and K, while Ca and Mg are undetected there; traces of Ca have recently been seen in the Moon's atmosphere (10-3 of Na). The experiments have included ESD, PSD and ion sputtering of alkali atoms from model mineral surface (amorphous SiO2) and from a lunar basalt sample obtained from NASA. The comparison is made between ESD and PSD efficiency of monovalent alkalis (Na, K) and divalent alkaline earths (Ba, Ca).The ultrahigh vacuum measurement scheme for ESD and PSD of Na atoms includes a highly sensitive alkali metal detector based on surface ionization, and a time-of-flight technique. For PSD measurements, a mercury arc light source (filtered and chopped) is used. We find that bombardment of the alkali covered surfaces by ultraviolet photons or by low energy electrons (E>4 eV) causes desorption of hot alkali atoms. This results are consistent with the model developed to explain our previous measurements of sodium desorption from a silica surface and from water ice: electron- or photon-induced charge transfer from the substrate to the ionic adsorbate causes formation of a neutral alkali atom in a repulsive configuration, from which desorption occurs. The two-electron charge transfer to cause desorption of divalent alkaline eath ions is a less likely process.The data support the suggestion that PSD by UV solar photons is a dominant source process for alkalis in the tenuous lunar atmosphere.

  13. What lies below the Columbia River Basalt?

    NASA Astrophysics Data System (ADS)

    Reidel, S.; Kauffman, J.; Garwood, D.; Bush, J.

    2006-12-01

    More than 200,000 sq km of the Pacific Northwest are covered by the Miocene Columbia River Basalt Group (CRB). The lavas were erupted onto a complex structural setting dominated by cratonic rocks, and accreted terranes at a convergent plate margin. Few boreholes penetrate the basalt so the sub-basalt structure must be deduced from geophysical data, the surrounding area and structures within the basalt. In Oregon (OR) and Idaho (ID) the eastern edge of the basalt follows the boundary between the craton and accreted terranes but the suture zone becomes lost beneath the basalt in eastern WA. In northern OR and Washington (WA), a thick basalt sequence in the western part of the province overlies an early Tertiary basin with kms of sediment fill which, in turn, overlies accreted terranes. In eastern WA and western ID, a much thinner basalt sequence overlies cratonic and accreted terrane rocks without thick intervening Tertiary sediments. This basin began in the Eocene and continued into the present; the sediment now controls the location of the Yakima fold belt (YFB). Prior to basalt eruptions, a rugged mountainous terrane existed in eastern WA and ID that probably extended to the west. NW faults and folds (e.g. the Orofino fault zone ID, and Chiwaukum graben and White River-Naches River fault zone, Cascade Range) dominate the prebasalt rocks and must extend under the basalt. Remanents of this NW trend are present in YFB (e.g. Rattlesnake-Wallula fault zone) but these are less prominent than the large basalt anticlinal folds that are decoupled from the basement. CRB dikes have a NW to N trend and are thought to reflect a basement structural weakness. In the basalt province many folds and faults follow this dike trend. Major NE trending faults in the basalts do not have major counterparts beyond the basalt. One fault, the Hite Fault, must form a significant sub-basalt boundary. Dikes to the east of the Hite fault trend N-N20W whereas dikes to the west trend N40-50W

  14. The Use of Basalt, Basalt Fibers and Modified Graphite for Nuclear Waste Repository - 12150

    SciTech Connect

    Gulik, V.I.; Biland, A.B.

    2012-07-01

    New materials enhancing the isolation of radioactive waste and spent nuclear fuel are continuously being developed.. Our research suggests that basalt-based materials, including basalt roving chopped basalt fiber strands, basalt composite rebar and materials based on modified graphite, could be used for enhancing radioactive waste isolation during the storage and disposal phases and maintaining it during a significant portion of the post-closure phase. The basalt vitrification process of nuclear waste is a viable alternative to glass vitrification. Basalt roving, chopped basalt fiber strands and basalt composite rebars can significantly increase the strength and safety characteristics of nuclear waste and spent nuclear fuel storages. Materials based on MG are optimal waterproofing materials for nuclear waste containers. (authors)

  15. Petrochemistry and tectonic significance of Lower Cretaceous Barros Arana Formation basalts, southernmost Chilean Andes

    NASA Astrophysics Data System (ADS)

    Stern, C. R.; Mohseni, P. P.; Fuenzalida, P. R.

    The Lower Cretaceous Barros Arana Formation (Albian, hornblende KAr age of 104 Ma), in the Magallanes region of Chile, consists of a sequence of spilitized clinopyroxene- and amphibole-bearing mafic dikes and lavas, and volcaniclastic breccias, occurring within the sedimentary infill of the Rocas Verdes marginal basin and its eastward extension onto the Cretaceous continental platform. Although the original alkali and alkaline earth element concentrations of the basaltic lavas and dikes have been altered by spilitization, the presence of relict pargasitic amphibole phenocrysts, the absence of orthopyroxene, and high LREE contents and LREE/HREE ratios imply mildly alkaline affinities for these basalts. Their low TiO 2 and HFSE (Zr, Nb, Ta, and Hf) contents and high LREE/HFSE ratios suggest affinities with convergent plate boundary arc magmas. The Barros Arana basalts are interpreted as mafic members of the mildly alkaline shoshonitic rock suite of subduction-related arcs. They may have formed as subduction geometry began to undergo the changes (flattening) that ultimately led to the initiation of the closure, deformation, and uplift of the Rocas Verdes basin by the late or post-Albian. The low initial 87Sr/ 86Sr (0.7031) and high initial 143Nd/ 144Nd (0.51277) of the basalts indicate that a generally extensional tectonic regime east of the main calc-alkaline arc allowed eruption of these mafic shoshonites without interaction with continental crust (in contrast to the contemporaneous plutons of the Patagonian batholith).

  16. Origin of low δ26Mg Cenozoic basalts from South China Block and their geodynamic implications

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Li, Shu-Guang; Xiao, Yilin; Ke, Shan; Li, Wang-Ye; Tian, Ye

    2015-09-01

    Origin of low δ26Mg basalts is a controversial subject and has been attributed to interaction of isotopically light carbonatitic melts derived from a subducted oceanic slab with the mantle (Yang et al., 2012), or alternatively, to accumulation of isotopically light ilmenite (FeTiO3) in their mantle source (Sedaghatpour et al., 2013). To study the origin of low δ26Mg basalts and evaluate whether Mg isotope ratios of basalts can be used to trace deeply recycled carbon, high-precision major and trace element and Mg isotopic analyses on the Cenozoic alkaline and tholeiitic basalts from the South China Block (SCB), eastern China have been carried out in this study. The basalts show light Mg isotopic compositions, with δ26Mg ranging from -0.60 to -0.35. The relatively low TiO2 contents (<2.7 wt.%) of our basalts, roughly positive correlations between δ26Mg and Ti/Ti∗ and their constant Nb/Ta ratios (16.4-20) irrespective of variable TiO2 contents indicate no significant amounts of isotopically light ilmenite accumulation in their mantle source. Notably, the basalts display negative correlations between δ26Mg and the amounts of total alkalis (i.e., Na2O + K2O) and incompatible trace elements (e.g., Ti, La, Nd, Nb, Th) and trace element abundance ratios (e.g., Sm/Yb, Nb/Y). Generally, with decrease of δ26Mg values, their Hf/Hf∗ and Ti/Ti∗ ratios decrease, whereas Ca/Al and Zr/Hf ratios increase. These features are consistent with incongruent partial melting of an isotopically light carbonated mantle, suggesting that large variations in Mg isotope ratios occurred during partial melting of such carbonated mantle under high temperatures. The isotopically light carbonated mantle were probably formed by interaction of the mantle with low δ26Mg carbonatitic melts derived from the deeply subducted low δ26Mg carbonated eclogite transformed from carbonate-bearing oceanic crust during plate subduction. As only the Pacific slab has an influence on both the North China

  17. Mare basalt magma source region and mare basalt magma genesis

    SciTech Connect

    Binder, A.B.

    1982-11-15

    Given the available data, we find that the wide range of mare basaltic material characteristics can be explained by a model in which: (1) The mare basalt magma source region lies between the crust-mantle boundary and a maximum depth of 200 km and consists of a relatively uniform peridotite containing 73--80% olivine, 11--14% pyroxene, 4--8% plagioclase, 0.2--9% ilmenite and 1--1.5% chromite. (2) The source region consists of two or more density-graded rhythmic bands, whose compositions grade from that of the very low TiO/sub 2/ magma source regions (0.2% ilmenite) to that of the very high TiO/sub 2/ magma source regions (9% ilmenite). These density-graded bands are proposed to have formed as co-crystallizing olivine, pyroxene, plagioclase, ilmenite, and chromite settled out of a convecting magma (which was also parental to the crust) in which these crystals were suspended. Since the settling rates of the different minerals were governed by Stoke's law, the heavier minerals settled out more rapidly and therefore earlier than the lighter minerals. Thus the crystal assemblages deposited nearest the descending side of each convection cell were enriched in heavy ilmenite and chromite with respect to lighter olivine and pyroxene and very much lighter plagioclase. The reverse being the case for those units deposited near the ascending sides of the convection cells.

  18. Subseafloor basalts as fungal habitats

    NASA Astrophysics Data System (ADS)

    Ivarsson, M.; Bengtson, S.

    2013-12-01

    The oceanic crust makes up the largest potential habitat for life on Earth, yet next to nothing is known about the abundance, diversity and ecology of its biosphere. Our understanding of the deep biosphere of subseafloor crust is, with a few exceptions, based on a fossil record. Surprisingly, a majority of the fossilized microorganisms have been interpreted or recently re-interpreted as remnants of fungi rather than prokaryotes. Even though this might be due to a bias in fossilization the presence of fungi in these settings can not be neglected. We have examined fossilized microorganisms in drilled basalt samples collected at the Emperor Seamounts in the Pacific Ocean. Synchrotron-radiation X-ray tomography microscopy (SRXTM) studies has revealed a complex morphology and internal structure that corresponds to characteristic fungal morphology. Chitin was detected in the fossilized hyphae, which is another strong argument in favour of a fungal interpretation. Chitin is absent in prokaryotes but a substantial constituent in fungal cell walls. The fungal colonies consist of both hyphae and yeast-like growth states as well as resting structures and possible fruit bodies, thus, the fungi exist in vital colonies in subseafloor basalts. The fungi have also been involved in extensive weathering of secondary mineralisations. In terrestrial environments fungi are known as an important geobiological agent that promotes mineral weathering and decomposition of organic matter, and they occur in vital symbiosis with other microorganisms. It is probable to assume that fungi would play a similar role in subseafloor basalts and have great impact on the ecology and on biogeochemical cycles in such environments.

  19. Progress in Understanding Alkali-Alkali Spin Relaxation

    NASA Astrophysics Data System (ADS)

    Erickson, Christopher J.; Happer, William; Chann, Bien; Kadlecek, Stephen; Anderson, L. W.; Walker, Thad G.

    2000-06-01

    In extensive experiments we have shown that a spin interaction with a relatively long correlation time causes much of the spin relaxation in very dense alkali-metal vapors. The spin relaxation is affected by the pressure of the helium or nitrogen buffer gas, although there is little dependence at pressures above one atmosphere. There are substantial differences in the relaxation rates for different isotopes of the same element, for example ^87Rb and ^85Rb. We have completed extensive modeling of how singlet and triplet dimers and doublet trimers of the alkali-metal atoms could cause spin relaxation in dense alkali-metal vapors. In the case of doublet trimers or triplet dimers, we assume the main coupling to the nuclear spins is through the Fermi Contact interaction with the unpaired electrons. Spin loss to the rotation of the molecule is assumed to occur through the electronic spin-rotation and spin-axis (dipole-dipole) interactions for the triplet dimers. For the singlet dimers, we assume that the nuclear spins couple directly to the rotational angular momentum of the molecule through the electric quadrupole interaction. We account for all of the total nuclear spin states that occur for the dimers and trimers. We have also considered the possibility that the collisional breakup and formation rates of the dimers or trimers could saturate with increasing buffer gas pressure. Such saturation occurs in many other unimolecular reactions and is often ascribed to breakup through activated states.

  20. Understanding highly explosive basaltic eruptions: Evidence from olivine-hosted melt inclusions from Sunset Crater, AZ

    NASA Astrophysics Data System (ADS)

    Allison, C. M.; Roggensack, K.; Clarke, A. B.; Alfano, F.

    2013-12-01

    Basaltic scoria cone volcanoes are the most abundant volcanic landform on Earth and occur in all tectonic settings. Basaltic magmas have lower viscosities, higher temperatures, and lower volatile contents than silicic magmas, and therefore generally have a lower potential for explosive activity. However, basaltic eruptions display great variability, from mild lava flows to more energetic explosions with large plumes. The mechanism controlling highly explosive basaltic eruptions, such as the ca. 1085 AD eruption of Sunset Crater, is poorly understood. Processes or conditions such as high volatile content in the source magma, injection of a compositionally distinct magma at depth, interaction with shallow magma reservoirs, or rapid crystallization and/or bubble nucleation in the shallow subsurface could increase explosivity of basaltic magmas. One method to test these hypotheses is melt inclusion analysis in order to constrain initial melt composition, volatile content and minimum storage depth. The San Francisco Volcanic Field (SFVF) in northern Arizona, active from 6 Ma-present, consists of over 600 volcanoes - mainly alkali basalt scoria cones along with five silicic centers. The eruption of Sunset Crater in the SFVF during the Holocene was an anomalously large basaltic explosive eruption, consisting of >8 explosive phases and 3 lava flows. Typical scoria cone-forming eruptions produce <0.1 km3 DRE of material, while the Sunset Crater tephra deposit is on the order of ~0.3 km3 DRE, with each phase characterized by volumes of 0.02-0.08 km3 DRE. The phases vary in size and style; the beginning stages of explosive activity (phases 1-2) were considerably smaller than phases 3-5, classified as subplinian. Because of the young age and desert setting of the volcano, the eruptive material is fresh and the deposit is well preserved. The bulk composition is an alkali basalt with Mg# 74. We studied 40 primary melt inclusions (MIs) hosted in 36 olivine crystals 0.5-2 mm in

  1. Les basaltes éocènes à affinité transitionnelle du plateau Bamoun, témoins d'un réservoir mantellique enrichi sous la ligne volcanique du Cameroun

    NASA Astrophysics Data System (ADS)

    Moundi, Amidou; Wandji, Pierre; Bardintzeff, Jacques-Marie; Ménard, Jean-Jacques; Okomo Atouba, Lise Carole; Mouncherou, Oumar Farouk; Reusser, Éric; Bellon, Hervé; Tchoua, Félix M.

    2007-05-01

    Transitional basalts of Eocene age crop out on the western part of the Bamoun Plateau. Basalts of this type are rather scarce in the Cameroon Volcanic Line (LVC). These olivine-free basalts (BSO) lack olivine and have the oldest ages (51.8 ± 1.2 Ma) of the entire LVC. They differ from the olivine-bearing basalts (BAO, 46.7 ± 1.1 Ma) on the same plateau, as well as from the typical alkali basalts found elsewhere on the LVC. They closely resemble the rocks of the East-African rifts and Kerguelen Island. They are characterized by the scarcity of modal olivine, a relatively high Y/Nb ratio (1), but low La N/Yb N (10) and Ce N/Yb N (7) ratios. Moreover, 87Sr/ 86Sr (0.7044) and 143Nd/ 144Nd (0.5126) isotopic ratios of BSO are respectively higher and lower than those of BAO (0.7034 and 0.5128) are. These data indicate a source in an enriched lithospheric mantle (EM) that produced the transitional basalts, in contrast to a source closer to HIMU, which could have produced alkali basalts.

  2. Positron-alkali atom scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.; Ward, S. J.

    1990-01-01

    Positron-alkali atom scattering was recently investigated both theoretically and experimentally in the energy range from a few eV up to 100 eV. On the theoretical side calculations of the integrated elastic and excitation cross sections as well as total cross sections for Li, Na and K were based upon either the close-coupling method or the modified Glauber approximation. These theoretical results are in good agreement with experimental measurements of the total cross section for both Na and K. Resonance structures were also found in the L = 0, 1 and 2 partial waves for positron scattering from the alkalis. The structure of these resonances appears to be quite complex and, as expected, they occur in conjunction with the atomic excitation thresholds. Currently both theoretical and experimental work is in progress on positron-Rb scattering in the same energy range.

  3. Modeling Central American basalts using the Arc Basalt Simulator

    NASA Astrophysics Data System (ADS)

    Feigenson, M.; Carr, M. J.

    2011-12-01

    We have used the Arc Basalt Simulator (ABS), developed by JI Kimura, to explore the conditions and components of melting beneath the Central American volcanic front. ABS is a comprehensive forward model that incorporates slab dehydration and melting and mantle wedge fluxing and melting using realistic P-T conditions and experimentally determined phase relations. We have applied ABS versions 3 and 4 to model representative magma types in Nicaragua, which span a broad geochemical range including proximal high- and low-Ti lavas in Nicaragua. Sr-Nd-Pb data require appropriate selection of previously identified sources, including: separate carbonate and hemipelagic sediments, DMM, an enriched mantle isotopically similar to the alkaline basalts of Yojoa, a Himu-influenced mantle derived from Galapagos material and altered oceanic crust (AOC) derived from both MORB and Galapagos seamounts. Following the dry solidus, the dominant arc basalts, exemplified by Cerro Negro lavas, can be generated at about 80-90 km where lawsonite and zoisite break down, releasing LILEs into a hydrous fluid that travels into the wedge. The fluid-triggered melting occurs just above the garnet stability field in the wedge to fit the HREEs. Below 90 Km, slab melting begins and the AOC component dominates, generating a fluid with little or no HFSE depletions, consistent with the unusual high-Ti lavas found in Nicaragua. However, the isotopic data require a much lower sediment input for the high-Ti lavas (consistent with 10Be results on the high-Ti lavas) and an enriched component for the AOC and/or mantle wedge. Following the wet solidus, fits to the Cerro Negro magma only occur in the absence of phengite in the AOC and with the presence of HFSE attracting minerals, rutile, zircon and allanite. The depth of the best fit is 135 km, consistent with current best estimates of the depth to the seismic zone beneath Cerro Negro. Below 150 km, the high-Ti lavas can be generated if the HFSE retaining

  4. Alkali metal/sulfur battery

    DOEpatents

    Anand, Joginder N.

    1978-01-01

    Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

  5. Superconductivity in alkali metal fullerides

    NASA Astrophysics Data System (ADS)

    Murphy, D. W.; Rosseinsky, M. J.; Haddon, R. C.; Ramirez, A. P.; Hebard, A. F.; Tycko, R.; Fleming, R. M.; Dabbagh, G.

    1991-12-01

    The recent synthesis of macroscopic quantities of spherical molecular carbon compounds, commonly called fullerenes, has stimulated a wide variety of studies of the chemical and physical properties of this novel class of compounds. We discovered that the smallest of the known fullerenes, C 60, could be made conducting and superconducting by reaction with alkali metals. In this paper, an overview of the motivation for these discoveries and some recent results are presented.

  6. Carbonate Mineralization of Volcanic Province Basalts

    SciTech Connect

    Schaef, Herbert T.; McGrail, B. Peter; Owen, Antionette T.

    2010-03-31

    Flood basalts are receiving increasing attention as possible host formations for geologic sequestration of anthropogenic CO2, with studies underway in the United States, India, Iceland, and Canada. As an extension of our previous experiments with Columbia River basalt, basalts from the eastern United States, India, and South Africa were reacted with aqueous dissolved CO2 and aqueous dissolved CO2-H2S mixtures under supercritical CO2 (scCO2) conditions to study the geochemical reactions resulting from injection of CO2 in such formations. The results of these studies are consistent with cation release behavior measured in our previous experiments (in press) for basalt samples tested in single pass flow through dissolution experiments under dilute solution and mildly acidic conditions. Despite the basalt samples having similar bulk chemistry, mineralogy and apparent dissolution kinetics, long-term static experiments show significant differences in rates of mineralization as well as compositions and morphologies of precipitates that form when the basalts are reacted with CO2-saturated water. For example, basalt from the Newark Basin in the United States was by far the most reactive of any basalt tested to date. Carbonate reaction products for the Newark Basin basalt were globular in form and contained significantly more Fe than the secondary carbonates that precipitated on the other basalt samples. In comparison, the post-reacted samples associated with the Columbia River basalts from the United States contained calcite grains with classic dogtooth spar morphology and trace cation substitution (Mg and Mn). Carbonation of the other basalts produced precipitates with compositions that varied chemically throughout the entire testing period. Examination of polished cross sections of the reacted grains by scanning electron microscopy and energy dispersive x-ray spectroscopy show precipitate overgrowths with varying chemical compositions. Compositional differences in the

  7. Alkali metal sources for OLED devices

    NASA Astrophysics Data System (ADS)

    Cattaneo, Lorena; Longoni, Giorgio; Bonucci, Antonio; Tominetti, Stefano

    2005-07-01

    In OLED organic layers electron injection is improved by using alkali metals as cathodes, to lower work function or, as dopants of organic layer at cathode interface. The creation of an alkali metal layer can be accomplished through conventional physical vapor deposition from a heated dispenser. However alkali metals are very reactive and must be handled in inert atmosphere all through the entire process. If a contamination takes place, it reduces the lithium deposition rate and also the lithium total yield in a not controlled way. An innovative alkali metal dispensing technology has been developed to overcome these problems and ensure OLED alkali metal cathode reliability. The alkali Metal dispenser, called Alkamax, will be able to release up to a few grams of alkali metals (in particular Li and Cs) throughout the adoption of a very stable form of the alkali metal. Lithium, for example, can be evaporated "on demand": the evaporation could be stopped and re-activated without losing alkali metal yield because the metal not yet consumed remains in its stable form. A full characterization of dispensing material, dispenser configuration and dispensing process has been carried out in order to optimize the evaporation and deposition dynamics of alkali metals layers. The study has been performed applying also inside developed simulations tools.

  8. Shock metamorphism of lunar and terrestrial basalts

    NASA Technical Reports Server (NTRS)

    Schaal, R. B.; Hoerz, F.

    1977-01-01

    Lonar Crater (India) basalt and lunar basalt 75035 were shock loaded under controlled laboratory conditions up to 1000 kbar, generally in a CO/CO2 (1:1) environment evacuated to 10 to the minus seventh power torr. The Kieffer et al. (1976) classification scheme of progressive shock metamorphism is found to apply to lunar basalts. The major shock features of the five classes that span the range 0 to 1000 kbar are described. Only three out of 152 basalt specimens show shock effects in their natural state as severe as Class 2 features. The scarcity of shocked basalt hand samples in contrast to the abundance of shock-produced agglutinates and homogeneous glass spheres in the lunar regolith indicates the dominant role of micrometeorite impact in the evolution of the lunar regolith. The overall glass content in asteroidal and Mercurian regoliths is considered.

  9. The chemistry of zircon: Variations within and between large crystals from syenite and alkali basalt xenoliths

    SciTech Connect

    Hinton, R.W.; Upton, B.G.J. )

    1991-11-01

    Single grains of zircon can contain zones indicating several generations of crystal growth, each of which should reflect the chemical and physical conditions occurring at the time of its formation. Trace element analyses have been made of large zircon crystals from rocks of alkaline affinities by ion microprobe. The chondrite-normalized rare earth element (REE) concentrations increase rapidly from La to Lu, as would be expected from the decrease in ionic radius and consequent easier substitution into the Zr site within the zircon lattice. Lanthanum, praseodymium, and neodymium are considerably lower than values observed in bulk analyses of zircon. The partition coefficients for the light rare earth elements (LREEs), between zircon and melt or whole rock, must therefore be significantly lower than those calculated using bulk analyses. Cerium is enriched relative to neighboring REEs due to the presence of Ce{sup 4+}. Estimates of partition coefficients of Ce{sup 3+} and Ce{sup 4+} between zircon and melt demonstrate that although the Ce anomalies are large the Ce{sup 4+}/Ce{sup 3+} ratio is very small (less than 3 {times} 10{sup {minus}3}). The size of the Ce anomaly is variable and should be capable of providing information on oxygen fugacity changes.

  10. A high 87Sr 86Sr mantle source for low alkali tholeiite, northern Great Basin

    USGS Publications Warehouse

    Mark, R.K.; Lee, Hu C.; Bowman, H.R.; Asaro, F.; McKee, E.H.; Coats, R.R.

    1975-01-01

    Olivine tholeiites, the youngest Tertiary units (about 8-11 m.y. old) at five widely spaced localities in northeastern Nevada, are geologically related to the basalts of the Snake River Plain, Idaho, to the north and are similar in major element and alkali chemistry to mid-ocean ridge basalts (MORB) and island arc tholeiites. The measured K (1250-3350 ppm), Rb (1??9-6??2 ppm) and Sr (140-240 ppm) concentrations overlap the range reported for MORB. Three of the five samples have low, unfractionated rare earth element (REE) patterns, the other two show moderate light-REE enrichment. Barium concentration is high and variable (100-780 ppm) and does not correlate with the other LIL elements. The rocks have 87Sr/86Sr = 0??7052-0??7076, considerably higher than MORB (~0??702-0??703). These samples are chemically distinct (i.e. less alkalic) from the olivine tholeiites from the adjacent Snake River Plain, but their Sr isotopic compositions are similar. They contain Sr that is distinctly more radiogenic than the basalts from the adjacent Great Basin. About 10 b.y. would be required for the mean measured Rb/Sr (~ 0??02) of these samples to generate, in a closed system, the radiogenic Sr they contain. The low alkali content of these basalts makes crustal contamination an unlikely mechanism. If the magma is uncontaminated, the time-averaged Rb/Sr of the source material must have been ~0??04. A significant decrease in Rb/Sr of the source material (a factor 2??) thus most probably occurred in the relatively recent (1??09 yr) past. Such a decrease of Rb/Sr in the mantle could accompany alkali depletion produced by an episode of partial melting and magma extraction. In contrast, low 87Sr 86Sr ratios indicate that the source material of the mid-ocean ridge basalts may have been depleted early in the Earth's history. ?? 1975.

  11. Mesozoic rift magmatism in the North Sea region: 40Ar/39Ar geochronology of Scanian basalts and geochemical constraints

    NASA Astrophysics Data System (ADS)

    Bergelin, Ingemar; Obst, Karsten; Söderlund, Ulf; Larsson, Kent; Johansson, Leif

    2011-06-01

    More than 100 volcanic necks composed of basanites and melanephelinites occur in Scania, southern Sweden, at the junction of two major tectonic lineaments, the Phanerozoic Sorgenfrei-Tornquist Zone (STZ) and the Proterozoic Protogine Zone. New 40Ar/39Ar isotope analyses of whole rock fragments of nine selected basalt necks suggest that the Mesozoic alkaline volcanism in the Scanian province commenced earlier than previously reported and comprised three separate volcanic episodes that span a total period of ca. 80 Myr: a first Jurassic (191-178 Ma), a second at the Jurassic/Cretaceous boundary (ca. 145 Ma), and a final middle Cretaceous episode (ca. 110 Ma). The new results allow for precise time correlations between eruption events in the Scanian and those in the North Sea volcanic provinces. The older, early Jurassic event in Scania is largely synchronous with that in the Egersund Basin and the Forties field whereas the event at ca. 145 Ma is correlated with activity in the Central Graben. These volcanic episodes also correlate in age with Kimmerian tectonic activity. Volcanic activity in the middle Cretaceous period has also been dated in the triple junction in the North Sea and offshore in the Netherland Sector. The correlation of basalt volcanism in Scania with the Egersund nephelinites strongly suggest that volcanism was triggered by repeated tectonic activity along the STZ. Geochemical data of alkaline mafic rocks in the Scanian and the North Sea volcanic provinces imply that different provinces have largely unique geochemical signatures in favour of a heterogeneous mantle in the North Sea volcanic region. However, basalts of different generations in one and the same province cannot be readily separated on the basis of geochemistry, suggesting that the same lithospheric mantle was the source of repeated volcanism over time in each province. The data suggest a low degree of melting of a volatile-bearing mantle lherzolite enriched in incompatible elements with

  12. Heterogeneity in titaniferous lunar basalts

    NASA Technical Reports Server (NTRS)

    Walker, D.; Longhi, J.; Hays, J. F.

    1976-01-01

    Small but real chemical differences exist between subsamples of fine-grained quench-textured titaniferous lunar basalts. The existence of different textural domains with different chemistries is thought to account for most of this variation. In addition to the textural domains, lunar sample 74275 has a population of olivine 'megacrysts' as well as dunite fragments. These materials are thought to be extraneous and to compromise the primary nature of 74275. Recognition of the small chemical variations present may aid in understanding some discrepancies in the experimental-petrology literature. However, these small variations have a distressing petrogenetic significance since they severely limit resolution in recognizing the number and depth of origin of primary magmas.

  13. Subseafloor basalts as fungal habitats

    NASA Astrophysics Data System (ADS)

    Ivarsson, M.

    2012-02-01

    The oceanic crust is believed to host the largest potential habitat for microbial life on Earth, yet, next to nothing is known about this deep, concealed biosphere. Here fossilised fungal colonies in subseafloor basalts are reported from three different seamounts in the Pacific Ocean. The fungal colonies consist of various characteristic structures interpreted as fungal hyphae, fruit bodies and spores. The fungal hyphae are well preserved with morphological characteristics such as hyphal walls, septa, thallic conidiogenesis, and hyphal tips with hyphal vesicles within. The fruit bodies consist of large (~50-200 μm in diameter) body-like structures with a defined outer membrane and an interior filled with calcite. The fruit bodies have at some stage been emptied of their contents of spores and filled by carbonate forming fluids. A few fruit bodies not filled by calcite and with spores still within support this interpretation. Spore-like structures (ranging from a few μm:s to ∼20 μm in diameter) are also observed outside of the fruit bodies and in some cases concentrated to openings in the membrane of the fruit bodies. The hyphae, fruit bodies and spores are all closely associated with a crust lining the vein walls that probably represent a mineralized biofilm. The results support a fungal presence in deep subseafloor basalts and indicate that such habitats were vital between ∼81 and 48 Ma, and probably still is. It is suggested that near future ocean drilling programs prioritize sampling of live species to better understand this concealed biosphere.

  14. Subseafloor basalts as fungal habitats

    NASA Astrophysics Data System (ADS)

    Ivarsson, M.

    2012-09-01

    The oceanic crust is believed to host the largest potential habitat for microbial life on Earth, yet, still we lack substantial information about the abundance, diversity, and consequence of its biosphere. The last two decades have involved major research accomplishments within this field and a change in view of the ocean crust and its potential to harbour life. Here fossilised fungal colonies in subseafloor basalts are reported from three different seamounts in the Pacific Ocean. The fungal colonies consist of various characteristic structures interpreted as fungal hyphae, fruit bodies and spores. The fungal hyphae are well preserved with morphological characteristics such as hyphal walls, septa, thallic conidiogenesis, and hyphal tips with hyphal vesicles within. The fruit bodies consist of large (∼50-200 µm in diameter) body-like structures with a defined outer membrane and an interior filled with calcite. The fruit bodies have at some stage been emptied of their contents of spores and filled by carbonate-forming fluids. A few fruit bodies not filled by calcite and with spores still within support this interpretation. Spore-like structures (ranging from a few µm to ∼20 µm in diameter) are also observed outside of the fruit bodies and in some cases concentrated to openings in the membrane of the fruit bodies. The hyphae, fruit bodies and spores are all closely associated with a crust lining the vein walls that probably represent a mineralized biofilm. The results support a fungal presence in deep subseafloor basalts and indicate that such habitats were vital between ∼81 and 48 Ma.

  15. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  16. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  17. Water Content of Lunar Alkali Fedlspar

    NASA Technical Reports Server (NTRS)

    Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

    2016-01-01

    Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of < 1 ppm in urKREEP. Using these data, predict that the bulk water content of the magma ocean would have <10 ppm. In contrast, estimate water contents of 320 ppm for the bulk Moon and 1.4 wt % for urKREEP from plagioclase in ferroan anorthosites. Results and interpretation: NanoSIMS data from granitic clasts from Apollo sample 15405,78 show that alkali feldspar, a common mineral in K-enriched rocks, can have approx. 20 ppm of water, which implies magmatic water contents of approx. 1 wt % in the high-silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was

  18. Petrogenesis of the Eocene and Mio Pliocene alkaline basaltic magmatism in Meseta Chile Chico, southern Patagonia, Chile: Evidence for the participation of two slab windows

    NASA Astrophysics Data System (ADS)

    Espinoza, Felipe; Morata, Diego; Pelleter, Ewan; Maury, René C.; Suárez, Manuel; Lagabrielle, Yves; Polvé, Mireille; Bellon, Hervé; Cotten, Joseph; De la Cruz, Rita; Guivel, Christelle

    2005-06-01

    The Meseta Chile Chico (MCC, 46.4°S) is the westernmost exposure of Eocene (lower basaltic sequence, LBS; 55-40 Ma, K-Ar ages) and Mio-Pliocene (upper basaltic sequence, UBS; 16-4 Ma, K-Ar ages) flood basalt volcanism in Patagonia. The MCC is located south of the Lago General Carrera-Buenos Aires (LGCBA), southeast from the present day Chile Triple Junction (CTJ), east of the actual volcanic gap between Southern South Volcanic Zone and Austral Volcanic Zone (SSVZ and AVZ, respectively) and just above the inferred location of the South Chile Ridge segment subducted at ˜6 Ma (SCR-1). Erupted products consist of mainly ne-normative olivine basalt with minor hy-normative tholeiites basalt, trachybasalt and basanite. MCC lavas are alkaline (42.7-53.1 wt.% SiO 2, 3-8 wt.% Na 2O+K 2O) and relatively primitive (Ni: 133-360 ppm, Cr: 161-193 ppm, Co: 35-72 ppm, 4-16.5 MgO wt.%). They have a marked OIB-like signature, as shown by their isotopic compositions ( 87Sr/ 86Sr o=0.70311-0.70414 and ɛNd=+4.7-+5.1) and their incompatible trace elements ratios (Ba/La=10-20, La/Nb=0.46-1.09, Ce/Pb=15.52-27.5, Sr/La<25), reflecting deep mantle origin. UBS-primitive lavas have characteristics similar to those of the Eocene LBS basalts, while UBS-intermediate lavas show geochemical imprints (La/Nb>1, Sr/La>25, low Ce/Pb, Nb/U) compatible with contamination by arc/slab-derived and/or crustal components. We propose that the genesis and extrusion of magmas is related to the opening of two slab windows due to the subduction of two active ridge segments beneath Patagonia during Eocene and Mio-Pliocene.

  19. Alkali-Metal Spin Maser.

    PubMed

    Chalupczak, W; Josephs-Franks, P

    2015-07-17

    Quantum measurement is a combination of a read-out and a perturbation of the quantum system. We explore the nonlinear spin dynamics generated by a linearly polarized probe beam in a continuous measurement of the collective spin state in a thermal alkali-metal atomic sample. We demonstrate that the probe-beam-driven perturbation leads, in the presence of indirect pumping, to complete polarization of the sample and macroscopic coherent spin oscillations. As a consequence of the former we report observation of spectral profiles free from collisional broadening. Nonlinear dynamics is studied through exploring its effect on radio frequency as well as spin noise spectra. PMID:26230788

  20. The Mineralogy of the Youngest Lunar Basalts

    NASA Astrophysics Data System (ADS)

    Staid, M. I.; Pieters, C. M.

    1999-01-01

    The last stage of lunar volcanism produced spectrally distinct basalts on the western nearside of the Moon, which remain unsampled by landing missions. The spectral properties of these late-stage basalts are examined using high-spatial-resolution Clementine images to constrain their mineralogic composition. The young high-Ti basalts in the western Procellarum and Imbrium Basins display a significantly stronger ferrous absorption than earlier mare basalts, suggesting that they may be the most Fe-rich deposits on the Moon. The distinct long-wavelength shape of this ferrous absorption is found to be similar for surface soils and materials excavated from depth. The pervasive character of this absorption feature supports the interpretation of abundant olivine within these late-stage lunar deposits. Important distinctions exist between the early-stage eastern maria and the late-stage western basalts, even though both appear to be Ti-rich. For example, the western maria are more radiogenic than eastern deposits. Telescopic spectra of the high-Ti western maria also exhibit a unique combination of a strong 1 micron feature and a relatively weak or attenuated 2-micron absorption. Pieters et al. concluded that the unusual strength and shape of the 1-micron absorption in western basalts results from an additional absorption from abundant olivine and/or Fe-bearing glass. Either mineralogy could produce the strong long wavelength 1-micron band, but a glassy Fe-rich surface could only form by rapid cooling along the exterior surfaces of flows. Clementine UV-VIS data of late-stage basalts are examined for regions in Oceanus Procellarum and Mare Imbrium. The spectral properties of western regions are compared to the sampled Apollo 11 basalts in Mare Tranquillitatis, which contain similar albedos and UV-VIS spectral properties. For reference, the western basalts are also compared to the low-Ti and Fe-rich basalts in Mare Serenitatis (mISP). Serenitatis basalts have the strongest

  1. Mare basalts - Crystal chemistry, mineralogy, and petrology

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Hodges, F. N.; Bence, A. E.; Cameron, M.; Rhodes, J. M.

    1976-01-01

    The paper attempts a synthesis of the major-element chemistry, petrography, mineral chemistry, and crystal chemistry of the mare basalts returned by Apollo and Luna missions. A classification of the mare basalts based on major-element chemistry is given, and textural sequences within each major-element group are identified. The mineral chemistry and crystal chemistry of each mineral group are considered within the framework of the major-element groups and the textural sequences. The various classes of models for the origin of the mare basalts and the nature of their source regions are discussed in the context of the major- and trace-element chemistries and experimental investigations.

  2. Mare Basaltic Magmatism: A View from the Sample Suite With and Without a Remote-Sensing Prospective

    NASA Astrophysics Data System (ADS)

    Shearer, C. K.; Papike, J. J.; Gaddis, L. R.

    1999-01-01

    and will continue to bear fruit are the duration and early history of lunar volcanism and the relationship between mare basalt composition and eruptive history. Although the petrologic record has been obscured by the early catastrophic impact history of the Moon, there is abundant evidence of pre-3.9 Ga nonmare basaltic volcanism [e.g., 7-8]. Most of this record is retained in small clasts from highland soils and breccias or has been identified through remote sensing. The relationship between the samples and units identified through remote sensing is speculative. Further identification and delineation of older episodes of volcanism and their relationship to episodes of crustal plutonism (Mg and alkali suites) is critical to our interpretation of mantle evolution following magma ocean crystallization and prior to the onset of mare volcanism. Combined sample and remote sensing data sets will allow us to better distinguish among the wide range of models that have been proposed for these early periods of lunar magmatism (Mg suite, alkali suite, KREEP basalts). These models include (1) impact origin; (2) magma ocean crystallization; (3) melting and remobilization of late magma ocean cumulates and/or KREEP infiltrated lower crust; (4) melting of the lower portions of the cumulate pile followed by assimilation of KREEP or anorthositic crust; and (5) melting of deep, hybrid mixed cumulate sources. Additional information is contained in the original.

  3. Anaglyph: Basalt Cliffs, Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Basalt cliffs along the northwest edge of the Meseta de Somuncura plateau near Sierra Colorada, Argentina show an unusual and striking pattern of erosion. Stereoscopic observation helps to clarify the landform changing processes active here. Many of the cliffs appear to be rock staircases that have the same color as the plateau's basaltic cap rock. Are these the edges of lower layers in the basalt or are they a train of slivers that are breaking off from, then sliding downslope and away from, the cap rock. They appear to be the latter. Close inspection shows that each stair step is too laterally irregular to be a continuous sheet of bedrock like the cap rock. Also, the steps are not flat but instead are little ridges, as one might expect from broken, tilted, and sliding slices of the cap rock. Stream erosion has cut some gullies into the cliffs and vegetation (appears bright in this infrared image) shows that water springs from and flows down some channels, but land sliding is clearly a major agent of erosion here.

    This anaglyph was generated by first draping a Landsat Thematic Mapper image over a topographic map from the Shuttle Radar Topography Mission, then producing the two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and the right eye with a blue filter.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center,Sioux Falls, South Dakota.

    Elevation data used in this

  4. Basaltic Crater in Color IR

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released August 6, 2004 This image shows two representations of the same infra-red image near Nili Fosse in the the Isidis region of Mars. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations. In many cases craters trap sand in their topographic depressions, interrupting the sand's migration across the Martian surface. This image is particularly interesting because there appears to be more than 1 type of sand in the bottom of this crater and in the hummocky terrain near the bottom of the image. The pink/magenta areas are characteristic of a basaltic composition, but there are also orange areas that are likely caused by the presence of andesite. These two compositions, basalt and andesite, are some of the most common found on Mars.

    Image information: IR instrument. Latitude 24, Longitude 80.7 East (297.3 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip

  5. Apollo 17 KREEPy basalt - A rock type intermediate between mare and KREEP basalts

    NASA Technical Reports Server (NTRS)

    Ryder, G.; Stoeser, D. B.; Wood, J. A.

    1977-01-01

    The Apollo 17 KREEPy basalt is a unique lunar volcanic rock, observed only as clasts in the light friable breccia matrix (72275) of Boulder 1, Station 2 at Taurus-Littrow. Its status as a volcanic rock is confirmed by the absence of any meteoritic contamination, a lack of cognate inclusions or xenocrystal material, and low Ni contents in metal grains. The basalt was extruded 4.01 + or - 0.04 b.y. ago, approximately contemporaneously with the high-alumina mare basalts at Fra Mauro; shortly afterwards it was disrupted, probably by the Serenitatis impact, and its fragments emplaced in the South Massif. The basalt, which is quartz-normative and aluminous, is chemically and mineralogically intermediate between the Apollo 15 KREEP basalts and the high-alumina mare basalts in most respects. It consists mainly of plagioclase and pigeonitic pyroxene in approximately equal amounts, and 10-30% of mesostatis.

  6. Experimental research on continuous basalt fiber and basalt-fibers-reinforced polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Xueyi; Zou, Guangping; Shen, Zhiqiang

    2008-11-01

    The interest for continuous basalt fibers and reinforced polymers has recently grown because of its low price and rich natural resource. Basalt fiber was one type of high performance inorganic fibers which were made from natural basalt by the method of melt extraction. This paper discusses basic mechanical properties of basalt fiber. The other work in this paper was to conduct tensile testing of continuous basalt fiber-reinforced polymer rod. Tensile strength and stress-strain curve were obtained in this testing. The strength of rod was fairly equal to rod of E-glass fibers and weaker than rod of carbon fibers. Surface of crack of rod was studied. An investigation of fracture mechanism between matrix and fiber was analyzed by SEM (Scanning electron microscopy) method. A poor adhesion between the matrix and fibers was also shown for composites analyzing SEM photos. The promising tensile properties of the presented basalt fibers composites have shown their great potential as alternative classical composites.

  7. Process for the disposal of alkali metals

    DOEpatents

    Lewis, Leroy C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.

  8. The alkali metals: 200 years of surprises.

    PubMed

    Dye, James L

    2015-03-13

    Alkali metal compounds have been known since antiquity. In 1807, Sir Humphry Davy surprised everyone by electrolytically preparing (and naming) potassium and sodium metals. In 1808, he noted their interaction with ammonia, which, 100 years later, was attributed to solvated electrons. After 1960, pulse radiolysis of nearly any solvent produced solvated electrons, which became one of the most studied species in chemistry. In 1968, alkali metal solutions in amines and ethers were shown to contain alkali metal anions in addition to solvated electrons. The advent of crown ethers and cryptands as complexants for alkali cations greatly enhanced alkali metal solubilities. This permitted us to prepare a crystalline salt of Na(-) in 1974, followed by 30 other alkalides with Na(-), K(-), Rb(-) and Cs(-) anions. This firmly established the -1 oxidation state of alkali metals. The synthesis of alkalides led to the crystallization of electrides, with trapped electrons as the anions. Electrides have a variety of electronic and magnetic properties, depending on the geometries and connectivities of the trapping sites. In 2009, the final surprise was the experimental demonstration that alkali metals under high pressure lose their metallic character as the electrons are localized in voids between the alkali cations to become high-pressure electrides! PMID:25666067

  9. The Origin of Noble Gas Isotopic Heterogeneity in Icelandic Basalts

    NASA Technical Reports Server (NTRS)

    Dixon, E. T.; Honda, M.; McDougall, I.

    2001-01-01

    Two models for generation of heterogeneous He, Ne and Ar isotopic ratios in Icelandic basalts are evaluated using a mixing model and the observed noble gas elemental ratios in Icelandic basalts,Ocean island Basalt (OIBs) and Mid-Ocean Ridge Basalt (MORBs). Additional information is contained in the original extended abstract.

  10. Shock metamorphism of granulated lunar basalt

    NASA Technical Reports Server (NTRS)

    Schaal, R. B.; Thompson, T. D.; Hoerz, F.; Bauer, J. F.

    1979-01-01

    The paper deals with an extensive series of shock-recovery experiments performed on both nonporous crystalline basalt and its granulated and sieved counterpart to study the role of porosity and grain size in shock motomorphic effects under otherwise identical conditions. Shocked samples are compared with unshocked starting material in terms of textural and mineralogical modifications attributable to shock. A comparative petrographic and chemical characterization is presented of pulverized and sieved lunar basalt 75035 shocked between 6 and 75 GPa in comparison with holocrystalline disks of the same basalts shocked in 10 earlier experiments. Specifically, a petrographic classification of shock features is given, along with an estimation of relative amounts of shock glasses and a chemical characterization of shock glasses in each shocked granular basalt.

  11. Reduction of mare basalts by sulfur loss

    USGS Publications Warehouse

    Brett, R.

    1976-01-01

    Metallic Fe content and S abundance are inversely correlated in mare basalts. Either S volatilization from the melt results in reduction of Fe2+ to Fe0 or else high S content decreases Fe0 activity in the melt, thus explaining the correlation. All considerations favor the model that metallic iron in mare basalts is due to sulfur loss. The Apollo 11 and 17 mare basalt melts were probably saturated with S at the time of eruption; the Apollo 12 and 15 basalts were probably not saturated. Non-mare rocks show a positive correlation of S abundance with metallic Fe content; it is proposed that this is due to the addition of meteoritic material having a fairly constant Fe0/S ratio. If true, metallic Fe content or S abundance in non-mare rocks provides a measure of degree of meteoritic contamination. ?? 1976.

  12. Basalts Dredged from the Northeastern Pacific Ocean.

    PubMed

    Engel, C G; Engel, A E

    1963-06-21

    Volcanic rocks dredged from seamounts, fault ridges, and other major geological features of the northeast Pacific Ocean include a wide variety of basalts. Most of these are vesicular, porphyritic types with near analogues in the Hawaiian and other oceanic islands. In addition, aluminous basalts and diabasic theoleiites impoverished in potassium also occur. There is no simple correlation of composition, degree of oxidation, vesiculation, or hydration of these basalts with texture, or depth of dredge site. Most samples appear to have been extruded at much shallower depths than those now pertaining at the dredge site. The distribution of these basalts suggests that the andesite line coincides with or lies on the continent side of the foot of the continental slope. PMID:17802173

  13. Basalts dredged from the northeastern Pacific Ocean

    USGS Publications Warehouse

    Engel, C.G.; Engel, A.E.J.

    1963-01-01

    Volcanic rocks dredged from seamounts, fault ridges, and other major geological features of the northeast Pacific Ocean include a wide variety of basalts. Most of these are vesicular, porphyritic types with near analogues in the Hawaiian and other oceanic islands. in addition, aluminous basalts and diabasic tholeiites impoverished in potassium also occur. There is no simple correlation of composition, degree of oxidation, vesiculation, or hydration of these basalts with texture, or depth of dredge site. Most samples appear to have been extruded at much shallower depths than those now pertaining at the dredge site. the distribution of these basalts suggests that the andesite line coincides with or lies on the continent side of the foot of the continental slope.

  14. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  15. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  16. Basaltic cannibalism at Thrihnukagigur volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Hudak, M. R.; Feineman, M. D.; La Femina, P. C.; Geirsson, H.

    2014-12-01

    Magmatic assimilation of felsic continental crust is a well-documented, relatively common phenomenon. The extent to which basaltic crust is assimilated by magmas, on the other hand, is not well known. Basaltic cannibalism, or the wholesale incorporation of basaltic crustal material into a basaltic magma, is thought to be uncommon because basalt requires more energy than higher silica rocks to melt. Basaltic materials that are unconsolidated, poorly crystalline, or palagonitized may be more easily ingested than fully crystallized massive basalt, thus allowing basaltic cannibalism to occur. Thrihnukagigur volcano, SW Iceland, offers a unique exposure of a buried cinder cone within its evacuated conduit, 100 m below the main vent. The unconsolidated tephra is cross-cut by a NNE-trending dike, which runs across the ceiling of this cave to a vent that produced lava and tephra during the ~4 Ka fissure eruption. Preliminary petrographic and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) analyses indicate that there are two populations of plagioclase present in the system - Population One is stubby (aspect ratio < 1.7) with disequilibrium textures and low Ba/Sr ratios while Population Two is elongate (aspect ratio > 2.1), subhedral to euhedral, and has much higher Ba/Sr ratios. Population One crystals are observed in the cinder cone, dike, and surface lavas, whereas Population Two crystals are observed only in the dike and surface lavas. This suggests that a magma crystallizing a single elongate population of plagioclase intruded the cinder cone and rapidly assimilated the tephra, incorporating the stubbier population of phenocrysts. This conceptual model for basaltic cannibalism is supported by field observations of large-scale erosion upward into the tephra, which is coated by magma flow-back indicating that magma was involved in the thermal etching. While the unique exposure at Thrihnukagigur makes it an exceptional place to investigate basaltic

  17. Basaltic Soil of Gale Crater: Crystalline Component Compared to Martian Basalts and Meteorites

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Schmidt, M.; Downs, R. T.; Stolper, E. M.; Blake, D. F.; Vaniman, D. T.; Achilles, C. N.; Chipera, S. J.; Bristow, T. F.; Crisp, J. A.; Farmer, J. A.; Morookian, J. M.; Morrison, S. M.; Rampe, E. B.; Sarrazin, P.; Yen, A. S.; Anderosn, R. C.; DesMarais, D. J.; Spanovich, N.

    2013-01-01

    A significant portion of the soil of the Rocknest dune is crystalline and is consistent with derivation from unweathered basalt. Minerals and their compositions are identified by X-ray diffraction (XRD) data from the CheMin instrument on MSL Curiosity. Basalt minerals in the soil include plagioclase, olivine, low- and high-calcium pyroxenes, magnetite, ilmenite, and quartz. The only minerals unlikely to have formed in an unaltered basalt are hematite and anhydrite. The mineral proportions and compositions of the Rocknest soil are nearly identical to those of the Adirondack-class basalts of Gusev Crater, Mars, inferred from their bulk composition as analyzed by the MER Spirit rover.

  18. Petrogenesis and evolution of Quaternary basaltic rocks from the Wulanhada area, North China

    NASA Astrophysics Data System (ADS)

    Fan, Qi-Cheng; Chen, Sheng-Sheng; Zhao, Yong-Wei; Zou, Hai-Bo; Li, Ni; Sui, Jian-Li

    2014-10-01

    The origin of alkali basalts in eastern China has been the subject of considerable debate. Here we focus on the Wulanhada basalts located in the western block of North China Craton to provide new insights into recent deep mantle dynamics. The Wulanhada volcanic group has 30 volcanic cones with variable volumes, consisting of scoria cone (cinder cone + spatter cone) and lava. The Wulanhada volcanoes exhibit Strombolian eruption activities during late Pleistocene epoch and Holocene. The Wulanhada basalts are strongly alkaline rocks (tephrite). According to the characteristics of trace elements and Sr-Nd-Pb-Hf isotopic compositions, the Wulanhada magmas were mainly derived from garnet-bearing peridotite within the asthenosphere and underwent fractional crystallization of olivine and clinopyroxene without significant crustal contamination. Their elevated values of Na, Al, Sr/Sm, Sm/Hf, Zr/Hf, and Nb/Ta, positive Ba, K, Pb, and Sr anomalies and negative Zr, Hf anomalies, combined with a negative correlation between 176Hf/177Hf and 143Nd/144Nd and relatively low 87Sr/86Sr, suggest that the magma source may be a mixture of garnet peridotites and carbonated melts. The presence of carbonated melts is likely associated with the sediments or fluids carried by the subducted or stagnant Pacific Plate.

  19. Alkali burns from wet cement.

    PubMed Central

    Peters, W. J.

    1984-01-01

    When water is added to the dry materials of Portland cement calcium hydroxide is formed; the wet cement is caustic (with a pH as high as 12.9) and can produce third-degree alkali burns after 2 hours of contact. Unlike professional cement workers, amateurs are usually not aware of any danger and may stand or kneel in the cement for long periods. As illustrated in a case report, general physicians may recognize neither the seriousness of the injury in its early stages nor the significance of a history of prolonged contact with wet cement. All people working with cement should be warned about its dangers and advised to immediately wash and dry the skin if contact does occur. Images Fig. 1 PMID:6561052

  20. Nickel and Cobalt Partitioning Between Spinel and Basaltic Melt: Applications to Planetary Basalt Suites

    NASA Technical Reports Server (NTRS)

    Righter, K.

    2002-01-01

    New experimental spinel/melt partition coefficients for Ni and Co have been measured in basalt samples with natural levels of Ni and Co, are lower than previous high doping experiments, and are applied to several planetary basalt suites. Additional information is contained in the original extended abstract.

  1. Integrating Sphere Alkali-Metal Vapor Cells

    NASA Astrophysics Data System (ADS)

    McGuyer, Bart; Ben-Kish, Amit; Jau, Yuan-Yu; Happer, William

    2010-03-01

    An integrating sphere is an optical multi-pass cavity that uses diffuse reflection to increase the optical path length. Typically applied in photometry and radiometry, integrating spheres have previously been used to detect trace gases and to cool and trap alkali-metal atoms. Here, we investigate the potential for integrating spheres to enhance optical absorption in optically thin alkali-metal vapor cells. In particular, we consider the importance of dielectric effects due to a glass container for the alkali-metal vapor. Potential applications include miniature atomic clocks and magnetometers, where multi-passing could reduce the operating temperature and power consumption.

  2. Alkali Silicate Vehicle Forms Durable, Fireproof Paint

    NASA Technical Reports Server (NTRS)

    Schutt, John B.; Seindenberg, Benjamin

    1964-01-01

    The problem: To develop a paint for use on satellites or space vehicles that exhibits high resistance to cracking, peeling, or flaking when subjected to a wide range of temperatures. Organic coatings will partially meet the required specifications but have the inherent disadvantage of combustibility. Alkali-silicate binders, used in some industrial coatings and adhesives, show evidence of forming a fireproof paint, but the problem of high surface-tension, a characteristic of alkali silicates, has not been resolved. The solution: Use of a suitable non-ionic wetting agent combined with a paint incorporating alkali silicate as the binder.

  3. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  4. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  5. Advancements in flowing diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Pitz, Greg A.; Stalnaker, Donald M.; Guild, Eric M.; Oliker, Benjamin Q.; Moran, Paul J.; Townsend, Steven W.; Hostutler, David A.

    2016-03-01

    Multiple variants of the Diode Pumped Alkali Laser (DPAL) have recently been demonstrated at the Air Force Research Laboratory (AFRL). Highlights of this ongoing research effort include: a) a 571W rubidium (Rb) based Master Oscillator Power Amplifier (MOPA) with a gain (2α) of 0.48 cm-1, b) a rubidium-cesium (Cs) Multi-Alkali Multi-Line (MAML) laser that simultaneously lases at both 795 nm and 895 nm, and c) a 1.5 kW resonantly pumped potassium (K) DPAL with a slope efficiency of 50%. The common factor among these experiments is the use of a flowing alkali test bed.

  6. Temporal helium isotopic variations within Hawaiian volcanoes: Basalts from Mauna Loa and Haleakala

    SciTech Connect

    Kurz, M.D.; O'Brien, P.A. ); Garcia, M.O. ); Frey, F.A. )

    1987-11-01

    Helium isotope ratios in basalts spanning the subaerial eruptive history of Mauna Loa and Haleakala vary systematically with eruption age. In both volcanoes, olivine mineral separates from the oldest samples have the highest {sup 3}He/{sup 4}he ratios. The Haleakala samples studied range in age from roughly one million years to historic time, while the Mauna Loa samples are radiocarbon dated flows younger than 30,000 years old. The Honomanu tholeiites are the oldest samples from Haleakala and have {sup 3}He/{sup 4}he ratios that range from 13 to 16.8X atmospheric, while the younger Kula and Hana series alkali basalts all have {sup 3}He/{sup 4}He close to 8X atmospheric. A similar range is observed on Manua Loa; the oldest samples have {sup 3}He/{sup 4}He ratios of 15 to 20X atmospheric, with a relatively smooth decrease to 8X atmospheric with decreasing age. The consistent trend of decreasing {sup 3}He/{sup 4}he ratio with time in both volcanoes, coherence between the helium and Sr and Nd isotopes (for Haleakala), and the similarity of {sup 3}He/{sup 4}He in the late stage basalts to depleted mid-ocean ridge basalt (MORB) helium, argue against the decrease being the result of radiogenic ingrowth of {sup 4}He. The data strongly suggest an undegassed mantle source for the early shield building stages of Hawaiian volcanism, and are consistent with the hotspot/mantle plume model. The data are difficult to reconcile with models for Hawaiian volcanism that require recycled oceanic crust or derivation from a MORB-related upper mantle source. The authors interpret the decrease in {sup 3}He/{sup 4}He with volcano evolution to result from an increasing involvement of depleted mantle and/or lithosphere during the late stages of Hawaiian volcanism.

  7. Naming Lunar Mare Basalts: Quo Vadimus Redux

    NASA Astrophysics Data System (ADS)

    Ryder, G.

    1999-01-01

    Nearly a decade ago, I noted that the nomenclature of lunar mare basalts was inconsistent, complicated, and arcane. I suggested that this reflected both the limitations of our understanding of the basalts, and the piecemeal progression made in lunar science by the nature of the Apollo missions. Although the word "classification" is commonly attached to various schemes of mare basalt nomenclature, there is still no classification of mare basalts that has any fundamental grounding. We remain basically at a classification of the first kind in the terms of Shand; that is, things have names. Quoting John Stuart Mill, Shand discussed classification of the second kind: "The ends of scientific classification are best answered when the objects are formed into groups respecting which a greater number of propositions can be made, and those propositions more important than could be made respecting any other groups into which the same things could be distributed." Here I repeat some of the main contents of my discussion from a decade ago, and add a further discussion based on events of the last decade. A necessary first step of sample studies that aims to understand lunar mare basalt processes is to associate samples with one another as members of the same igneous event, such as a single eruption lava flow, or differentiation event. This has been fairly successful, and discrete suites have been identified at all mare sites, members that are eruptively related to each other but not to members of other suites. These eruptive members have been given site-specific labels, e.g., Luna24 VLT, Apollo 11 hi-K, A12 olivine basalts, and Apollo 15 Green Glass C. This is classification of the first kind, but is not a useful classification of any other kind. At a minimum, a classification is inclusive (all objects have a place) and exclusive (all objects have only one place). The answer to "How should rocks be classified?" is far from trivial, for it demands a fundamental choice about nature

  8. Oxygen consumption in subseafloor basaltic crust

    NASA Astrophysics Data System (ADS)

    Orcutt, B. N.; Wheat, C. G.; Hulme, S.; Edwards, K. J.; Bach, W.

    2012-12-01

    Oceanic crust is the largest potential habitat for life on Earth and may contain a significant fraction of Earth's total microbial biomass, yet little is known about the form and function of life in this vast subseafloor realm that covers nearly two-thirds of the Earth's surface. A deep biosphere hosted in subseafloor basalts has been suggested from several lines of evidence; yet, empirical analysis of metabolic reaction rates in basaltic crust is lacking. Here we report the first measure of oxygen consumption in young (~ 8 Ma) and cool (<25 degrees C) basaltic crust, calculated from modeling oxygen and strontium profiles in basal sediments collected during Integrated Ocean Drilling Program (IODP) Expedition 336 to 'North Pond', a sediment 'pond' on the western flank of the Mid-Atlantic Ridge (MAR), where vigorous fluid circulation within basaltic crust occurs. Dissolved oxygen concentrations increased towards the sediment-basement interface, indicating an upward diffusional supply from oxic fluids circulating within the crust. A parametric reaction-transport model suggests oxygen consumption rates on the order of 0.5-500 nmol per cubic centimeter fluid per day in young and cool basaltic crust, providing sufficient energy to support a subsurface crustal biosphere.

  9. Can we identify source lithology of basalt?

    PubMed

    Yang, Zong-Feng; Zhou, Jun-Hong

    2013-01-01

    The nature of source rocks of basaltic magmas plays a fundamental role in understanding the composition, structure and evolution of the solid earth. However, identification of source lithology of basalts remains uncertainty. Using a parameterization of multi-decadal melting experiments on a variety of peridotite and pyroxenite, we show here that a parameter called FC3MS value (FeO/CaO-3*MgO/SiO2, all in wt%) can identify most pyroxenite-derived basalts. The continental oceanic island basalt-like volcanic rocks (MgO>7.5%) (C-OIB) in eastern China and Mongolia are too high in the FC3MS value to be derived from peridotite source. The majority of the C-OIB in phase diagrams are equilibrium with garnet and clinopyroxene, indicating that garnet pyroxenite is the dominant source lithology. Our results demonstrate that many reputed evolved low magnesian C-OIBs in fact represent primary pyroxenite melts, suggesting that many previous geological and petrological interpretations of basalts based on the single peridotite model need to be reconsidered. PMID:23676779

  10. Alkali metal for ultraviolet band-pass filter

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  11. The Plumbing System of a Highly Explosive Basaltic Volcano: Sunset Crater, AZ

    NASA Astrophysics Data System (ADS)

    Allison, C. M.; Roggensack, K.; Clarke, A. B.

    2015-12-01

    We seek to better understand highly explosive basaltic eruptions with specific focus on magmatic volatile solubility in alkali basalts and the magma plumbing system. Sunset Crater, an alkali basalt (~3.7 wt.% alkalis) scoria cone volcano, erupted explosively in 1085 AD. We analyzed 125 primary melt inclusions (MIs) from Sunset Crater tephra deposited by 2 subplinian phases and 1 Strombolian explosion to compare magma volatiles and storage conditions. We picked rapidly quenched free olivine crystals and selected large volume MIs (50-180 μm) located toward crystal cores. MIs are faceted and exhibit little major element composition variability with minor post entrapment crystallization (2-10%). MIs are relatively dry but CO2-rich. Water content varies from 0.4 wt.% to 1.5 wt.% while carbon dioxide abundance ranges between 1,150 ppm and 3,250 ppm. Most MIs contain >1 wt.% H2O and >2,150 ppm CO2. All observed MIs contain a vapor bubble, so we are evaluating MI vapor bubbles with Raman spectroscopy and re-homogenization experiments to determine the full volatile budget. Because knowledge of volatile solubility is critical to accurately interpret results from MI analyses, we measured H2O-CO2 solubility in the Sunset Crater bulk composition. Fluid-saturated experiments at 4 and 6 kbar indicate shallower entrapment pressures for these MIs than values calculated for this composition using existing models. Assuming fluid saturation, MIs record depths from 6 km to 14 km, including groupings suggesting two pauses for longer-term storage at ~6 km and ~10.5 km. We do not observe any significant differences in MIs from phases exhibiting different eruptive styles, suggesting that while a high CO2 content may drive rapid magma ascent and be partly responsible for highly explosive eruptions, shallower processes may govern the final eruptive character. To track shallow processes during magma ascent from depth of MI-entrapment up to the surface, we are examining MI re-entrants.

  12. Alkali Metal Handling Practices at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Salvail, Patrick G.; Carter, Robert R.

    2002-01-01

    NASA Marshall Space Flight Center (MSFC) is NASA s principle propulsion development center. Research and development is coordinated and carried out on not only the existing transportation systems, but also those that may be flown in the near future. Heat pipe cooled fast fission cores are among several concepts being considered for the Nuclear Systems Initiative. Marshall Space Flight Center has developed a capability to handle high-purity alkali metals for use in heat pipes or liquid metal heat transfer loops. This capability is a low budget prototype of an alkali metal handling system that would allow the production of flight qualified heat pipe modules or alkali metal loops. The processing approach used to introduce pure alkali metal into heat pipe modules and other test articles are described in this paper.

  13. Alkali-metal intercalation in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Béguin, F.; Duclaux, L.; Méténier, K.; Frackowiak, E.; Salvetat, J. P.; Conard, J.; Bonnamy, S.; Lauginie, P.

    1999-09-01

    We report on successful intercalation of multiwall (MWNT) and single wall (SWNT) carbon nanotubes with alkali metals by electrochemical and vapor phase reactions. A LiC10 compound was produced by full electrochemical reduction of MWNT. KC8 and CsC8-MWNT first stage derivatives were synthesized in conditions of alkali vapor saturation. Their identity periods and the 2×2 R 0° alkali superlattice are comparable to their parent graphite compounds. The dysonian shape of KC8 EPR line and the temperature-independent Pauli susceptibility are both characteristic of a metallic behavior, which was confirmed by 13C NMR anisotropic shifts. Exposure of SWNT bundles to alkali vapor led to an increase of the pristine triangular lattice from 1.67 nm to 1.85 nm and 1.87 nm for potassium and rubidium, respectively.

  14. A Xenolith-rich, Basaltic Peperite on Earth: Analogue for Other Planets?

    NASA Astrophysics Data System (ADS)

    Obenholzner, J. H.

    2002-12-01

    Peperites are typically the product of wet sediment-magma/lava/hot volcaniclastic deposits interaction and are therefore indicative for the existence of frozen/liquefied or fluid water in the history of a planet. Most of the peperites on Earth are found in a paleo-near-surface environment and are exposed to alteration if burial did not protect them (Skilling et al. 2002). Sediments can be incorporated into ascending magma (Obenholzner et al. 2003). These macro- or micro-xenoliths show various degrees of metamorphism. Carbonate and evaporite xenoliths brought to the surface could include fossils or even bacteria, otherwise hidden deeply in the sedimentary record. A xenolith-rich basaltic peperite of Pliocene age is exposed in a quarry at Neuhaus/Kl./Burgenland/Austria. These alkali basalts are related to the time-equivalent volcanism of the W Pannonian Basin/Hungary. Although the peperite sequence is highly altered the primary structures are well preserved. The xenolith spectrum comprises marls, argillitic and other basement rocks showing various degrees of metamorphism. The xenoliths are white to yellow colored, egg-shaped or blocky and typically manteled by the grey basalt in peperite fragments. This encapsulation of xenoliths by the basalt protects the xenoliths against various atmospheric interaction, execpt for Earth where water easily enters the peperite fragments. This sequence could be used as a structural model for similar sequences on planets known for the occurrences of basaltic volcanism and potential water-bearing sediments. The Neuhaus peperite represents a training site for scientists working with remotely operated analyzers to differentiate between xenoliths, the peperite (basalt and sandy sediment) and alteration-related structures. Similar peperites could be encountered on Mars and would be a proof for the existence of water or other fluids in its history, even if the alteration history of peperite sequences would be different from what is known on

  15. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes.

    PubMed

    Dalmora, Adilson C; Ramos, Claudete G; Oliveira, Marcos L S; Teixeira, Elba C; Kautzmann, Rubens M; Taffarel, Silvio R; de Brum, Irineu A S; Silva, Luis F O

    2016-01-01

    Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3, and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in

  16. Alkali metal intercalates of molybdenum disulfide.

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.

    1973-01-01

    Study of some of the physicochemical properties of compounds obtained by subjecting natural molybdenite and single crystals of molybdenum disulfide grown by chemical vapor transport to intercalation with the alkali group of metals (Li, Na, K, Rb, and Cs) by means of the liquid ammonia technique. Reported data and results include: (1) the intercalation of the entire alkali metal group, (2) stoichiometries and X-ray data on all of the compounds, and (3) superconductivity data for all the intercalation compounds.

  17. Superconductivity in alkali-doped C60

    NASA Astrophysics Data System (ADS)

    Ramirez, Arthur P.

    2015-07-01

    Superconductivity in alkali-doped C60 (A3C60, A = an alkali atom) is well described by an s-wave state produced by phonon mediated pairing. Moderate coupling of electrons to high-frequency shape-changing intra-molecular vibrational modes produces transition temperatures (Tc) up to 33 K in single-phase material. The good understanding of pairing in A3C60 offers a paradigm for the development of new superconducting materials.

  18. Desulfurizing Coal With an Alkali Treatment

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kalvinskas, J. J.

    1987-01-01

    Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.

  19. Lithoautotrophic microbial ecosystems in deep basalt aquifers

    SciTech Connect

    Stevens, T.O.; McKinley, J.P.

    1995-10-20

    Bacterial communities were detected in deep crystalline rock aquifers within the Columbia River Basalt Group (CRB). CRB ground waters contained up to 60 {mu}M dissolved H{sub 2} and autotrophic microorganisms outnumbered heterotrophs. Stable carbon isotope measurements implied that autotrophic methanogenesis dominated this ecosystem and was coupled to the depletion of dissolved inorganic carbon. In laboratory experiments, H{sub 2} a potential energy source for bacteria, was produced by reactions between crushed basalt and anaerobic water. Microcosms containing only crushed basalt and ground water supported microbial growth. These results suggest that the CRB contains a lithoautotrophic microbial ecosystem that is independent of photosynthetic primary production. 38 refs., 4 figs., 3 tabs.

  20. Sintering of lunar glass and basalt

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Hines, Joy A.; Mckay, David S.; Morris, Richard V.

    1992-01-01

    Experiments were conducted to study the sintering behavior of glass and basalt lunar soil simulants. The degree of sintering was assessed by compressive strength testing and microanalysis. Both crushed glass and basalt sinter significantly at 1000 C, with the basalt attaining its maximum strength at 1100 C. Initial sintering occurs in less than 15 min, and the degree of sintering does not increase significantly with time after about 30 min. Glass sinters more readily than crystalline material. Sintering and devitrification both occur on a time scale of minutes in the heated glass, but sintering is apparently more rapid. The processes of sintering and oxygen release by hydrogen reduction of lunar soil are synergistic, and could be combined to produce two extremely useful products at a lunar base.

  1. CO2 sequestration in basalts: laboratory measurements

    NASA Astrophysics Data System (ADS)

    Otheim, L. T.; Adam, L.; van Wijk, K.; McLing, T. L.; Podgorney, R. K.

    2010-12-01

    Geologic sequestration of CO2 is proposed as the only promising large-scale method to help reduce CO2 gas emission by its capture at large point sources and subsequent long-term storage in deep geologic formations. Reliable and cost-effective monitoring will be important aspect of ensuring geological sequestration is a safe, effective, and acceptable method for CO2 emissions mitigation. Once CO2 injection starts, seismic methods can be used to monitor the migration of the carbon dioxide plume. To calibrate changes in rock properties from field observations, we propose to first analyze changes in elastic properties on basalt cores. Carbon dioxide sequestration in basalt rocks results in fluid substitution and mixing of CO2 with water and rock mineralizations. Carbon dioxide sequestration in mafic rocks creates reactions such as Mg2SiO 4 + CaMgSi2O 6 + 4CO2 = Mg 3Ca(CO 3) 4 + 3SiO2 whereby primary silicate minerals within the basalt react with carbonic acid laden water to creating secondary carbonate minerals and silicates. Using time-lapse laboratory scale experiments, such as laser generated ultrasonic wave propagation; it is possible to observe small changes in the physical properties of a rock. We will show velocity and modulus measurements on three basalt core samples for different saturation. The ultimate goal of the project is to track seismic changes due to fluid substitution and mineralization. The porosity of our basalts ranges from 8% to 12%, and the P-wave velocity increases by 20% to 40% from dry to water saturated conditions. Petrographic analysis (CT-scans, thin sections, XRF, XRf) will aid in the characterization of the mineral structure in these basalts and its correlation to seismic properties changes resulting from fluid substitution and mineralization.

  2. Long-term alteration of basaltic glass: Mechanisms and rates

    NASA Astrophysics Data System (ADS)

    Parruzot, Benjamin; Jollivet, Patrick; Rébiscoul, Diane; Gin, Stéphane

    2015-04-01

    The long-term behavior study of archaeological artifacts and natural minerals and glasses revealed discrepancies between laboratory and field data. For a better understanding of the cause of these discrepancies and to reinforce the use of basaltic glass as an analog for nuclear waste glasses, this study focuses on the determination of alteration rates and processes of synthetic basaltic glass in residual rate regime. Laboratory batch experiments were performed at high surface-to-volume ratios at 90 and 30 °C for more than 1000 days. In all the experiments, the residual rate regime was reached after about 6 months. The residual alteration rates at 30 and 90 °C were 4.0 ± 1.0 × 10-6 and 9.5 ± 3.2 × 10-6 g·m-2·d-1, respectively. At 90 °C, this residual alteration rate is five orders of magnitude lower than the forward alteration rate (0.8 g·m-2·d-1). Altered powders and monoliths were characterized by Transmission Electron Microscopy and Time-of-Flight Secondary Ion Mass Spectrometry. From glass core to solution, the altered materials are structured as follows: pristine glass, gel (corresponding to the palagonitic layer of natural glasses) and intergranular clays. To assess the passivating properties of this alteration film, we used solid characterization, an isotopically-tagged post-leaching experiment and the measurement of mobile species diffusion coefficients through the alteration film at different stages of reaction using various techniques (solution analysis and X-ray Reflectometry). These characterizations showed that the alteration film formed during residual rate alteration is passivating even without clogged porosity within the gel. Diffusion coefficients of water and alkali metals - respectively diffusing to and from the pristine glass - through the alteration film dropped from 10-20 to 10-19 m2·s-1 during the first alteration stages to 10-25 m2·s-1 in residual rate regime.

  3. Lithium isotopes in hydrothermally altered basalts from Hengill (SW Iceland)

    NASA Astrophysics Data System (ADS)

    Verney-Carron, A.; Vigier, N.; Millot, R.; Hardarson, B. S.

    2015-02-01

    The Li isotope signatures of hydrothermal fluids are remarkably constant (δ7Li = 8.0 ± 1.9 ‰) irrespective of the water/rock ratio (W / R), permeability, temperature or fluid involved (seawater or meteoric). High temperature hydrothermal fluids represent the second most significant source of Li to the ocean, yet the homogeneity of the Li isotopic signatures of this source remains to be explained and in this context, the lack of data for the corresponding altered phases is problematic. We measured Li contents and Li isotope signatures (as well as mineralogy, composition and local fluid temperature) in hyaloclastites collected from a borehole in the Hellisheidi geothermal system (Iceland) which have been altered by high temperature aqueous fluids (from 170 to 300 °C). Li is more enriched in the solid phases than the other alkali metals, highlighting its greater ability to be incorporated into secondary phases, especially at high temperatures (>250 °C). Mass balance calculations show that the low Li concentrations in hydrothermal fluids are best explained by a high water/rock ratio and a high permeability of this system. The Li isotopic signature of the altered hyaloclastites (δ7Li between +1.9 and + 4.0 ‰) remains close to the fresh basalt at deep levels and high temperatures (290-300 °C) (as measured δ7Li range between +3.7 and + 4.0 ‰), and decreases at shallower depths and lower temperatures (150-270 °C) (δ7Li between +1.9 and + 3.1 ‰). A mass balance model involving basalt dissolution, secondary phase formation, and successive isotope equilibrium during the migration and the cooling of the percolating fluid was developed. The corresponding apparent mineral-fluid Li isotope fractionation factors resulting from precipitation of secondary phases (ΔLi7minerals-fluid) range between 0‰ at 300 °C and - 8.5 ‰ at 170 °C and highlight a key role of chlorite. Applying the same approach to mid-ridge oceanic hydrothermal systems allows the relatively

  4. Alkali metal crystalline polymer electrolytes.

    PubMed

    Zhang, Chuhong; Gamble, Stephen; Ainsworth, David; Slawin, Alexandra M Z; Andreev, Yuri G; Bruce, Peter G

    2009-07-01

    Polymer electrolytes have been studied extensively because uniquely they combine ionic conductivity with solid yet flexible mechanical properties, rendering them important for all-solid-state devices including batteries, electrochromic displays and smart windows. For some 30 years, ionic conductivity in polymers was considered to occur only in the amorphous state above Tg. Crystalline polymers were believed to be insulators. This changed with the discovery of Li(+) conductivity in crystalline poly(ethylene oxide)(6):LiAsF(6). However, new crystalline polymer electrolytes have proved elusive, questioning whether the 6:1 complex has particular structural features making it a unique exception to the rule that only amorphous polymers conduct. Here, we demonstrate that ionic conductivity in crystalline polymers is not unique to the 6:1 complex by reporting several new crystalline polymer electrolytes containing different alkali metal salts (Na(+), K(+) and Rb(+)), including the best conductor poly(ethylene oxide)(8):NaAsF(6) discovered so far, with a conductivity 1.5 orders of magnitude higher than poly(ethylene oxide)(6):LiAsF(6). These are the first crystalline polymer electrolytes with a different composition and structures to that of the 6:1 Li(+) complex. PMID:19543313

  5. Basaltic Volcanism and Ancient Planetary Crusts

    NASA Technical Reports Server (NTRS)

    Shervais, John W.

    1993-01-01

    The purpose of this project is to decipher the origin of rocks which form the ancient lunar crust. Our goal is to better understand how the moon evolved chemically and, more generally, the processes involved in the chemical fractionation of terrestrial planetoids. This research has implications for other planetary bodies besides the Moon, especially smaller planetoids which evolved early in the history of the solar system and are now thermally stable. The three main areas focused on in our work (lunar mare basalts, KREEP basalts, and plutonic rocks of the lunar highlands) provide complementary information on the lunar interior and the processes that formed it.

  6. Evidence for Sulfur Degassing in Oceanic Basalts

    NASA Astrophysics Data System (ADS)

    Wetzel, D. T.; Saal, A. E.; Rutherford, M. J.; Hauri, E. H.

    2010-12-01

    Sulfur concentration in basaltic magmas is highly dependent on pressure, temperature, fO2, fS2, and bulk composition and therefore undergoes a complex history during melting, melt transport, degassing, and eruption. It was first recognized as a volatile in submarine basalts by Moore and Fabbi (1971) when the S content in glassy pillow rims was higher than the amount of S measured in degassed lavas at the surface. Subsequent studies concluded that degassing of S is not expected to occur in basaltic magmas erupting deeper than 500m below sea level (~50 bars). Therefore, once sulfide saturation (Liu et al, 2007) and fractionation of sulfide melts have been considered, pre-eruptive sulfur concentrations in basaltic magmas have been used to estimate the primitive S content in the melts and their mantle sources. Based on a large compilation of submarine glasses, we will show that basaltic magmas have lost not only CO2 and H2O but also S during degassing at pressures greater than 50 bars. Melt inclusion and glass compositions from submarine oceanic basalts were compiled to examine sulfur variations. Data was filtered for sulfide undersaturated samples using Liu et al.’s (2007) calculation since H2O content was available. A positive correlation between S and Dy was expected as seen by previous studies, which considered S for sulfide undersaturated basalts to behave similar to HREE (Dy) during melting and crystal fractionation (Morgan, 1986; Saal et al, 2002). A S/Dy ratio of 240±20 ppm was determined for the data compilation of the basaltic glasses. A subgroup of samples, dominantly glasses enriched in incompatible trace elements, showed lower S/Dy than the ratio determined above. This lower S/Dy would be controlled either by a change in S or Dy. A simple melting model was used to confirm that the change in S/Dy was not controlled by Dy variation due to the effect of garnet during mantle melting, but by the decrease in S content. The most likely explanation for this

  7. U-series dating of Lake Nyos maar basalts, Cameroon (West Africa): Implications for potential hazards on the Lake Nyos dam

    NASA Astrophysics Data System (ADS)

    Aka, Festus T.; Yokoyama, Tetsuya; Kusakabe, Minoru; Nakamura, Eizo; Tanyileke, Gregory; Ateba, Bekoa; Ngako, Vincent; Nnange, Joseph; Hell, Joseph

    2008-09-01

    From previously published 14C and K-Ar data, the age of formation of Lake Nyos maar in Cameroon is still in dispute. Lake Nyos exploded in 1986, releasing CO 2 that killed 1750 people and over 3000 cattle. Here we report results of the first measurements of major elements, trace elements and U-series disequilibria in ten basanites/trachy-basalts and two olivine tholeiites from Lake Nyos. It is the first time tholeiites are described in Lake Nyos. But for the tholeiites which are in 238U- 230Th equilibrium, all the other samples possess 238U- 230Th disequilibrium with 15 to 28% enrichment of 230Th over 238U. The ( 226Ra/ 230Th) activity ratios of these samples indicate small (2 to 4%) but significant 226Ra excesses. U-Th systematics and evidence from oxygen isotopes of the basalts and Lake Nyos granitic quartz separates show that the U-series disequilibria in these samples are source-based and not due to crustal contamination or post-eruptive alteration. Enrichment of 230Th is strong prima facie evidence that Lake Nyos is younger than 350 ka. The 230Th- 226Ra age of Nyos samples calculated with the ( 226Ra/ 230Th) ratio for zero-age Mt. Cameroon samples is 3.7 ± 0.5 ka, although this is a lower limit as the actual age is estimated to be older than 5 ka, based on the measured mean 230Th/ 238U activity ratio. The general stability of the Lake Nyos pyroclastic dam is a cause for concern, but judging from its 230Th- 226Ra formation age, we do not think that in the absence of a big rock fall or landslide into the lake, a big earthquake or volcanic eruption close to the lake, collapse of the dam from erosion alone is as imminent and alarming as has been suggested.

  8. Equilibration of Leachants with Basalt Rock for Repository Simulation Tests

    SciTech Connect

    Jantzen, C.M.

    2001-07-02

    In a nuclear waste repository in basalt, the groundwater will have a low redox potential (Eh) which may affect the leach rate of SRP waste glass. Accurate laboratory simulations of conditions in a basalt reposition must maintain low Eh values throughout the course of the experiment. In this report, important parameters affecting the ability of basalt to maintain appropriate Eh-pH conditions are examined, in particular basalt type and groundwater simulation.

  9. Thermal models for basaltic volcanism on Io

    USGS Publications Warehouse

    Keszthelyil, L.; McEwen, A.

    1997-01-01

    We present a new model for the thermal emissions from active basaltic eruptions on Io. While our methodology shares many similarities with previous work, it is significantly different in that (1) it uses a field tested cooling model and (2) the model is more applicable to pahoehoe flows and lava lakes than fountain-fed, channelized, 'a'a flows. This model demonstrates the large effect lava porosity has on the surface cooling rate (with denser flows cooling more slowly) and provides a preliminary tool for examining some of the hot spots on Io. The model infrared signature of a basaltic eruption is largely controlled by a single parameter, ??, the average survival time for a lava surface. During an active eruption surfaces are quickly covered or otherwise destroyed and typical values of ?? for a basaltic eruption are expected to be on the order of 10 seconds to 10 minutes. Our model suggests that the Galileo SSI eclipse data are consistent with moderately active to quiescent basaltic lava lakes but are not diagnostic of such activity. Copyright 1997 by the American Geophysical Union.

  10. Utilization of lunar ilmenite: Basalt or regolith?

    NASA Technical Reports Server (NTRS)

    Kawatra, S. K.; Delao, K. L.

    1991-01-01

    A critical discussion of whether lunar basalt or regolith should be used as a resource for mineral processing schemes on the lunar surface, with pros and cons for each argument is presented. A literature review has shown that the majority of authors feel that mining the lunar basalt, crushing it, and then processing to remove the desired minerals, would be the route to take. The argument that this method would not be a sound mineral processing practice is presented. Mining and crushing are difficult propositions even on Earth; to attempt such processes in the hostile lunar environment would be a phenomenal task. It would be better to start with a simpler scheme, such as processing the regolith, which can be adapted to the multitude of unknowns facing the first lunar production plant. If, however, the lunar mining trend is followed, it must be kept in mind that mining and processing technology which is radically different from what is currently available and used on Earth will have to be developed. Podnieks and Roepke (1987) and Lindroth and Podnieks (1987) have summarized the new technology that may be applicable, but this technology is very similar to the current, 99 percent inefficient technology used on Earth. One such possible technique is sodium vapor fragmentation of basalt. Initial testwork was conducted at Michigan Technological University on terrestrial basalt with extremely promising results, though much time and effort will be needed to fully develop this process.

  11. The biological consequences of flood basalt volcanism

    NASA Astrophysics Data System (ADS)

    Clapham, M.

    2012-12-01

    Flood basalt eruptions are among the largest environmental perturbations of the Phanerozoic. The rapid release of CO2 from a large igneous province would have triggered a chain of events that can include climate warming, ocean acidification, reduced seawater carbonate saturation, and expanded oceanic anoxia. Those stressors have widely negative impacts on marine organisms, especially on calcified taxa, by affecting their respiratory physiology and reducing energy available for growth and reproduction. Many Phanerozoic extinctions, most notably the end-Permian and end-Triassic mass extinctions, coincided with flood basalt eruptions and shared distinctive patterns of taxonomic and ecological selectivity. In these extinctions, highly active organisms were more likely to survive because they possess physiological adaptations for maintaining internal pH during activity, which also proves useful when buffering pH against ocean acidification. In contrast, species that did not move and had low metabolic rates, such as brachiopods and sponges, suffered considerable losses during these extinctions. Heavily-calcified organisms, especially corals, were particularly vulnerable; as a result, ocean acidification and saturation state changes from flood basalt eruptions often triggered crises in reef ecosystems. This characteristic pattern of selectivity during "physiological" extinctions that closely coincided with flood basalts provides a template for assessing the causes of other extinction events. Because these crises also provide deep time analogues for the ongoing anthropogenic crisis of warming, ocean acidification, and expanded anoxia, the selectivity patterns can also help constrain "winners" and "losers" over upcoming decades.

  12. Basalt-Block Heat-Storage Plant

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.

    1992-01-01

    Concept for storage of solar heat for later use based on use of basalt, cast into blocks and stacked in inflatable gas-tight enclosure serving as heat-storage chamber. Heat flows to blocks from solar collector during day and from blocks to heat engine at night.

  13. Pressure grouting of fractured basalt flows

    SciTech Connect

    Shaw, P.; Weidner, J.; Phillips, S.; Alexander, J.

    1996-04-01

    This report describes a field trial of pressure grouting in basalt and the results of subsequent coring and permeability measurement activities. The objective was to show that the hydraulic conductivity of fractured basalt bedrock can be significantly reduced by pressure injection of cementitious materials. The effectiveness of the pressure grout procedure was evaluated by measuring the change in the hydraulic conductivity of the bedrock. The extent of grout penetration was established by analyzing postgrout injection drilling chips for the presence of a tracer in the grout and also by examining cores of the treated basalt. Downhole radar mapping was used to establish major lava flow patterns and follow water movement during a surface infiltration test. A site called Box Canyon, which is located northwest of the INEL, was chosen for this study due to the similarity of this surface outcrop geology to that of the underlying bedrock fracture system found at the Radioactive Waste Management Complex. This study showed that hydraulic conductivity of basalt can be reduced through pressure grouting of cementitious material.

  14. Basaltic injections into floored silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Wiebe, R. A.

    Recent studies have provided compelling evidence that many large accumulations of silicic volcanic rocks erupted from long-lasting, floored chambers of silicic magma that were repeatedly injected by basaltic magma. These basaltic infusions are commonly thought to play an important role in the evolution of the silicic systems: they have been proposed as a cause for explosive silicic eruptions [Sparks and Sigurdsson, 1977], compositional variation in ash-flow sheets [Smith, 1979], mafic magmatic inclusions in silicic volcanic rocks [Bacon, 1986], and mixing of mafic and silicic magmas [Anderson, 1976; Eichelberger, 1978]. If, as seems likely, floored silicic magma chambers have frequently been invaded by basalt, then plutonic bodies should provide records of these events. Although plutonic evidence for mixing and commingling of mafic and silicic magmas has been recognized for many years, it has been established only recently that some intrusive complex originated through multiple basaltic injections into floored chambers of silicic magma [e.g., Wiebe, 1974; Michael, 1991; Chapman and Rhodes, 1992].

  15. Coatings on Atacama Desert Basalt: A Possible Analog for Coatings on Gusev Plains Basalt

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Golden, D. C.; Amundson, R.; Chong-Diaz, G.; Ming, D. W.

    2007-01-01

    Surface coatings on Gusev Plains basalt have been observed and may contain hematite and nanophase Fe-oxides along with enrichments in P, S, Cl, and K relative to the underlying rock. The Gusev coatings may be derived from the dissolution of adhering soil and/or parent rock along with the addition of S and Cl from outside sources. Transient water for dissolution could be sourced from melting snow during periods of high obliquity, acid fog, and/or ground water (Haskin et al., 2005). Coatings on basalt in the hyper-arid (less than 2mm y(sup -1)) Atacama Desert may assist in understanding the chemistry, mineralogy and formation mechanisms of the Gusev basalt coatings. The Atacama Desert climate is proposed to be analogous to a paleo-Mars climate that was characterized by limited aqueous activity when the Gusev coatings could have formed. The objectives of this work are to (i) determine the chemical nature and extent of surface coatings on Atacama Desert basalt, and (ii) assess coating formation mechanisms in the Atacama Desert. Preliminary backscattered electron imaging of Atacama basalt thin-sections indicated that the coatings are as thick as 20 m. The boundary between the coating and the basalt labradorite, ilmenite, and augite grains was abrupt indicating that the basalt minerals underwent no chemical dissolution. The Atacama coatings have been added to the basalt instead of being derived from basalt chemical weathering. Semi-quantitative energy dispersive spectroscopy shows the coatings to be chemically homogeneous. The coating is depleted in Ca (0.9 wt% CaO) and enriched in K (1.3 wt.% K2O) and Si (69.1 wt.% SiO2) relative to the augite and labradorite grains. A dust source enriched in Si (e.g., poorly crystalline silica) and K and depleted in Ca appears to have been added to the basalt surface. Unlike the Gusev coatings, no P, S, and Cl enrichment was observed. However, Fe (3.2 wt.% FeO) was present in the Atacama coatings suggesting the present of Fe

  16. Searching for Non-Vestoid Basaltic Asteroids

    NASA Astrophysics Data System (ADS)

    Moskovitz, Nicholas; Jedicke, R.; Willman, M.; Gaidos, E.

    2006-12-01

    We present an observational campaign designed to target Main Belt asteroids that: (1) have a photometric signature similar to that of 4 Vesta and the Vestoid family, i.e. a basaltic surface indicative of past mineral differentiation, and (2) are dynamically distinct from this family so that they lie outside of the domain of orbital element phase space occupied by the V-type asteroids. The only known non-vestoid asteroid with a basaltic surface is 1459 Magnya (Lazzaro et al. 2000). This is a paradox; collected meteorites include representatives from tens or even hundreds of past or present differentiated parent bodies in the Main Belt, a number that is at least an order of magnitude larger than the two known occurrences of Main Belt differentiation (Scott 2002). Asteroids with potentially basaltic surfaces are chosen based on their Sloan Digital Sky Survey (SDSS) ugriz photometric magnitudes. Ten different ugriz color combinations, including two principal component colors (Nesvorny et al. 2005), are used to select asteroids that show similarity to Vestoid colors. Objects with colors that meet these criteria are then prioritized based on their dynamical dissimilarity to Vesta. Low-resolution spectroscopy of the highest priority objects is performed using the Echellette Spectrograph and Imager (ESI) on Keck II in order to unambiguously determine whether or not our candidates have basaltic surfaces. The 0.4-1.0 micron wavelength coverage of this instrument is well suited to resolving both the 0.9 micron olivine/pyroxene absorption feature and the 0.5-0.7 micron slope that are indicative of a basaltic surface and thus that a given asteroid derives from a parent body that has experienced either partial melting or differentiation. Preliminary results from two observing runs in August and September of this year are presented here. This research is supported in part by NSF Planetary Astronomy grant AST04-07134, P.I. R. Jedicke.

  17. Sulfur isotope homogeneity of lunar mare basalts

    NASA Astrophysics Data System (ADS)

    Wing, Boswell A.; Farquhar, James

    2015-12-01

    We present a new set of high precision measurements of relative 33S/32S, 34S/32S, and 36S/32S values in lunar mare basalts. The measurements are referenced to the Vienna-Canyon Diablo Troilite (V-CDT) scale, on which the international reference material, IAEA-S-1, is characterized by δ33S = -0.061‰, δ34S ≡ -0.3‰ and δ36S = -1.27‰. The present dataset confirms that lunar mare basalts are characterized by a remarkable degree of sulfur isotopic homogeneity, with most new and published SF6-based sulfur isotope measurements consistent with a single mass-dependent mean isotopic composition of δ34S = 0.58 ± 0.05‰, Δ33S = 0.008 ± 0.006‰, and Δ36S = 0.2 ± 0.2‰, relative to V-CDT, where the uncertainties are quoted as 99% confidence intervals on the mean. This homogeneity allows identification of a single sample (12022, 281) with an apparent 33S enrichment, possibly reflecting cosmic-ray-induced spallation reactions. It also reveals that some mare basalts have slightly lower δ34S values than the population mean, which is consistent with sulfur loss from a reduced basaltic melt prior to eruption at the lunar surface. Both the sulfur isotope homogeneity of the lunar mare basalts and the predicted sensitivity of sulfur isotopes to vaporization-driven fractionation suggest that less than ≈1-10% of lunar sulfur was lost after a potential moon-forming impact event.

  18. Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily)

    SciTech Connect

    Aiuppa, A.; Allard, P.; D'Alessandro, W.; Michel, A.; Parello, F.; Treuil, M.; Valenza, M.

    2000-06-01

    The concentrations and fluxes of major, minor and trace metals were determined in 53 samples of groundwaters from around Mt. Etna, in order to evaluate the conditions and extent of alkali basalt weathering by waters enriched in magma-derived CO{sub 2} and the contribution of aqueous transport to the overall metal discharge of the volcano. The authors show that gaseous input of magmatic volatile metals into the Etnean aquifer is small or negligible, being limited by cooling of the rising fluids. Basalt leaching by weakly acidic, CO{sub 2}-charged water is the overwhelming source of metals and appears to be more extensive in two sectors of the S-SW (Paterno) and E (Zafferana) volcano flanks, where out flowing groundwaters are the richest in metals and bicarbonate of magmatic origin. Thermodynamic modeling of the results allows evaluation of the relative mobility and chemical speciation of various elements during their partitioning between solid and liquid phases through the weathering process. At Mt. Etna, poorly mobile elements (Al, Th, Fe) are preferentially retained in the solid residue of weathering, while alkalis, alkaline earth and oxo-anion-forming elements (As, Se, Sb, Mo) are more mobile and released to the aqueous system. Transition metals display an intermediate behavior and are strongly dependent on either the redox conditions (Mn, Cr, V) or solid surface-related processes (V, Zn, Cu).

  19. Alkali metal adsorption on Al(111)

    NASA Astrophysics Data System (ADS)

    Andersen, J. N.; Lundgren, E.; Nyholm, R.; Qvarford, M.

    1993-06-01

    The submonolayer adsorption of Na, K, Rb, and Cs on the Al(111) surface at 100 K and at room temperature is investigated by high resolution core level spectroscopy and low energy electron diffraction. It is found that the first alkali atoms on the surface adsorb at surface defects. At higher coverages, up to approximately one third of the maximum submonolayer coverage, alkali atoms adsorbed at defects coexist with a dispersed phase. At higher coverages island formation is found to occur for the majority of the systems. It is argued that all of the ordered structures formed at room temperature involve a disruption of the Al(111) surface in contrast to the situation at 100 K where the alkali atoms adsorb as adatoms.

  20. SAFE Alkali Metal Heat Pipe Reliability

    NASA Astrophysics Data System (ADS)

    Reid, Robert S.

    2003-01-01

    Alkali metal heat pipes are among the best understood and tested of components for first generation space fission reactors. A flight reactor will require production of a hundred or more heat pipes with assured reliability over a number of years. To date, alkali metal heat pipes have been built mostly in low budget development environments with little formal quality assurance. Despite this, heat pipe test samples suggest that high reliability can be achieved with the care justified for space flight qualification. Fabrication procedures have been established that, if consistently applied, ensure long-term trouble-free heat pipe operation. Alkali metal heat pipes have been successfully flight tested in micro gravity and also have been shown capable of multi-year operation with no evidence of sensitivity to fast neutron fluence up to 1023 n/cm2. This represents 50 times the fluence of the proposed Safe Affordable Fission Engine (SAFE-100) heat pipe reactor core.

  1. Additive Construction using Basalt Regolith Fines

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Lippitt, Thomas C.; Mantovani, James G.; Nugent, Matthew W.; Townsend, Ivan I.

    2014-01-01

    Planetary surfaces are often covered in regolith (crushed rock), whose geologic origin is largely basalt. The lunar surface is made of small-particulate regolith and areas of boulders located in the vicinity of craters. Regolith composition also varies with location, reflecting the local bedrock geology and the nature and efficiency of the micrometeorite-impact processes. In the lowland mare areas (suitable for habitation), the regolith is composed of small granules (20 - 100 microns average size) of mare basalt and volcanic glass. Impacting micrometeorites may cause local melting, and the formation of larger glassy particles, and this regolith may contain 10-80% glass. Studies of lunar regolith are traditionally conducted with lunar regolith simulant (reconstructed soil with compositions patterned after the lunar samples returned by Apollo). The NASA Kennedy Space Center (KSC) Granular Mechanics & Regolith Operations (GMRO) lab has identified a low fidelity but economical geo-technical simulant designated as Black Point-1 (BP-1). It was found at the site of the Arizona Desert Research and Technology Studies (RATS) analog field test site at the Black Point lava flow in adjacent basalt quarry spoil mounds. This paper summarizes activities at KSC regarding the utilization of BP-1 basalt regolith and comparative work with lunar basalt simulant JSC-1A as a building material for robotic additive construction of large structures. In an effort to reduce the import or in-situ fabrication of binder additives, we focused this work on in-situ processing of regolith for construction in a single-step process after its excavation. High-temperature melting of regolith involves techniques used in glassmaking and casting (with melts of lower density and higher viscosity than those of metals), producing basaltic glass with high durability and low abrasive wear. Most Lunar simulants melt at temperatures above 1100 C, although melt processing of terrestrial regolith at 1500 C is not

  2. Geochemistry of apollo 15 basalt 15555 and soil 15531.

    PubMed

    Schnetzler, C C; Philpotts, J A; Nava, D F; Schuhmann, S; Thomas, H H

    1972-01-28

    Major and trace element concentrations have been determined by atomic absorption spectrophotometry, colorimetry, and isotope dilution in Apollo 15 mare basalt 15555 from the Hadley Rille area; trace element concentrations have also been determined in plagioclase and pyroxene separates from basalt 15555 and in soil 15531 from the same area. Basalt 15555 most closely resembles in composition the Apollo 12 olivine-rich basalts. The concentrations of lithium, potassium, rubidium, barium, rare-earth elements, and zirconium in basalt 15555 are the lowest, and the negative europium anomaly is the smallest, reported for lunar basalts; this basalt might be the least differentiated material yet returned from the moon. Crystallization and removal of about 6 percent of plagioclase similar to that contained in the basalt would account for the observed europium anomaly; if plagioclase is not on the liquidus of this basalt, a multistage origin is indicated. Mineral data indicate that plagioclase and pyroxene approached quasi-equilibrium. Most of the chemical differences between basalt 15555 and soil 15531 would be accounted for if the soil were a mixture of 88 percent basalt, 6 percent KREEP (a component, identified in other Apollo soils, rich in potassium, rare-earth elements, and phosphorus) and 6 percent plagioclase (anorthosite?). PMID:17731364

  3. Diode pumped alkali lasers (DPALs): an overview

    NASA Astrophysics Data System (ADS)

    Krupke, William F.

    2008-05-01

    The concept of power-scalable, high beam-quality diode pumped alkali lasers was introduced in 2003 [Krupke, US Patent No. 6,643,311; Opt. Letters, 28, 2336 (2003)]. Since then several laboratory DPAL devices have been reported on, confirming many of the spectroscopic, kinetic, and laser characteristics projected from literature data. This talk will present an overview of the DPAL concept, summarize key relevant properties of the cesium, rubidium, and potassium alkali vapor gain media so-far examined, outline power scaling considerations, and highlight results of published DPAL laboratory experiments.

  4. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  5. Carbonaceous matter in peridotites and basalts studied by XPS, SALI, and LEED

    SciTech Connect

    Tingle, T.N. SRI International, Menlo Park, CA ); Mathez, E.A. ); Hochella, M.F. Jr. )

    1991-05-01

    Carbonaceous matter in peridotite xenoliths and basalt from the Hualalai Volcano, in a basalt glass collected directly from an active lava lake on the east rift of Kilauea, in garnet and diopside megacrysts from the Jagersfontein kimberlite, and in gabbros from the Stillwater and Bushveld Complexes has been studied by X-ray photoelectron spectroscopy (XPS), thermal-desorption surface analysis by laser ionization (SALI), and low-energy electron diffraction (LEED). The basalt and two of the four xenoliths from Hualalai and both Jagersfontein megacrysts yielded trace quantities ({le}10 nanomoles) of organic compounds on heating to 700C. Organics were not detected in the rocks from the layered intrusions, and neither carbonaceous matter nor organics were detected in the glass from the lava lake. Where detected, organics appear to be associated with carbonaceous films on microcrack surfaces. Carbonaceous matter exists as films less than a few nm thick and particles up to 20 {mu}m across, both of which contain elements expected to be present in significant quantities in magmatic vapors, namely Si, alkalis, halogens, N, and transition metals. LEED studies suggest that the carbonaceous films are amorphous. The data suggest two possible mechanisms for the formation of the organics. One is that they are a product of abiotic heterogeneous catalysis of volcanic gas on new, chemically active mineral surfaces formed by fracturing during cooling. Alternatively, organics may have been assimilated into the volcanic gases prior to eruption and then deposited on cracks formed during eruption and cooling. In any case, there is no evidence to suggest that the organics represent laboratory or field biogenic contamination.

  6. Alkali-aggregate reaction in concrete containing high-alkali cement and granite aggregate

    SciTech Connect

    Owsiak, Z

    2004-01-01

    The paper discusses results of the research into the influence of high-alkali Portland cement on granite aggregate. The deformation of the concrete structure occurred after 18 months. The research was carried out by means of a scanning electron microscope equipped with a high-energy dispersive X-ray analyzer that allowed observation of unpolished sections of concrete bars exhibiting the cracking pattern typical of the alkali-silica reaction. Both the microscopic observation and the X-ray elemental analysis confirm the presence of alkali-silica gel and secondary ettringite in the cracks.

  7. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  8. New Insights to the Mid Miocene Calc-alkaline Lavas of the Strawberry Volcanics, NE Oregon Surrounded by the Coeval Tholeiitic Columbia River Basalt Province

    NASA Astrophysics Data System (ADS)

    Steiner, A. R.; Streck, M. J.

    2013-12-01

    The Strawberry Volcanics (SV) of NE Oregon were distributed over 3,400 km2 during the mid-Miocene and comprise a diverse volcanic suite, which span the range of compositions from basalt to rhyolite. The predominant composition of this volcanic suite is calc-alkaline (CA) basaltic andesite and andesite, although tholeiitic (TH) lavas of basalt to andesite occur as well. The coeval flood basalts of the Columbia River province surround the SV. Here we will discuss new ages and geochemical data, and present a new geologic map and stratigraphy of the SV. The SV are emplaced on top of pre-Tertiary accreted terranes of the Blue Mountain Province, Mesozoic plutonic rocks, and older Tertiary volcanic rocks thought to be mostly Oligocene of age. Massive rhyolites (~300 m thick) are exposed mainly along the western flank and underlie the intermediate composition lavas. In the southern portion of this study area, alkali basaltic lavas, thought to be late Miocene to early Pliocene in age, erupted and overlie the SV. In addition, several regional ignimbrites reach into the area. The 9.7 Ma Devine Canyon Tuff and the 7.1 Ma Rattlesnake Tuff also overlie the SV. The 15.9-15.4 Ma Dinner Creek Tuff is mid-Miocene, and clear stratigraphic relationships are found in areas where the tuff is intercalated between thick SV lava flows. All of the basalts of the SV are TH and are dominated by phenocryst-poor (≤2%) lithologies. These basalts have an ophitic texture dominated by plagioclase, clinopyroxene and olivine (often weathered to iddingsite). Basalts and basaltic andesites have olivine Fo #'s ranging from 44 at the rims (where weathered to iddingsite) and as high as 88 at cores. Pyroxene Mg #'s range from 65 to 85. Andesites of the SV are sub-alkaline, and like the basalts, are exceedingly phenocryst-poor (≤3%) with microphenocrysts of plagioclase and lesser pyroxene and olivine, which occasionally occur as crystal clots of ~1-3 mm instead of single crystals. In addition, minimal

  9. Biogenic Mn-Oxides in Subseafloor Basalts

    PubMed Central

    Ivarsson, Magnus; Broman, Curt; Gustafsson, Håkan; Holm, Nils G.

    2015-01-01

    The deep biosphere of the subseafloor basalts is recognized as a major scientific frontier in disciplines like biology, geology, and oceanography. Recently, the presence of fungi in these environments has involved a change of view regarding diversity and ecology. Here, we describe fossilized fungal communities in vugs in subseafloor basalts from a depth of 936.65 metres below seafloor at the Detroit Seamount, Pacific Ocean. These fungal communities are closely associated with botryoidal Mn oxides composed of todorokite. Analyses of the Mn oxides by Electron Paramagnetic Resonance spectroscopy (EPR) indicate a biogenic signature. We suggest, based on mineralogical, morphological and EPR data, a biological origin of the botryoidal Mn oxides. Our results show that fungi are involved in Mn cycling at great depths in the seafloor and we introduce EPR as a means to easily identify biogenic Mn oxides in these environments. PMID:26107948

  10. Northwest Africa 5298: A Basaltic Shergottite

    NASA Technical Reports Server (NTRS)

    Hui, Hejiu; Peslier, Anne; Lapen, Thomas J.; Brandon, Alan; Shafer, John

    2009-01-01

    NWA 5298 is a single 445 g meteorite found near Bir Gandouz, Morocco in March 2008 [1]. This rock has a brown exterior weathered surface instead of a fusion crust and the interior is composed of green mineral grains with interstitial dark patches containing small vesicles and shock melts [1]. This meteorite is classified as a basaltic shergottite [2]. A petrologic study of this Martian meteorite is being carried out with electron microprobe analysis and soon trace element analyses by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Oxygen fugacity is calculated from Fe-Ti oxides pairs in the sample. The data from this study constrains the petrogenesis of basaltic shergottites.

  11. Lead isotope studies of mare basalt 70017

    NASA Technical Reports Server (NTRS)

    Mattinson, J. M.; Tilton, G. R.; Todt, W.; Chen, J. H.

    1977-01-01

    Uranium, thorium, and isotopic lead data for components of basalt 70017 are reported, and it is found that the whole rock, pyroxene, and ilmenite points in a concordia diagram plot along a chord intersecting the curve at 3.7 and 4.33 eons. The plagioclase data do not seem to lie on this line. The data for 70017 appear to plot along a distinctly different chord in a concordia diagram than do the data for 75055 and 75035, two other Apollo 17 mare basalts. The lead data are in accord with Sm-Nd results. A 3.7 eon crystallization age for 70017 would be consistent with the same kind of parentless lead that is indicated by previous studies of soils and soil breccias from stations at Taurus-Littrow. The Th/U ratio in ilmenite is 2.2, and the concentrations of these two elements are approximately twice those in pyroxene.

  12. Biogenic Mn-Oxides in Subseafloor Basalts.

    PubMed

    Ivarsson, Magnus; Broman, Curt; Gustafsson, Håkan; Holm, Nils G

    2015-01-01

    The deep biosphere of the subseafloor basalts is recognized as a major scientific frontier in disciplines like biology, geology, and oceanography. Recently, the presence of fungi in these environments has involved a change of view regarding diversity and ecology. Here, we describe fossilized fungal communities in vugs in subseafloor basalts from a depth of 936.65 metres below seafloor at the Detroit Seamount, Pacific Ocean. These fungal communities are closely associated with botryoidal Mn oxides composed of todorokite. Analyses of the Mn oxides by Electron Paramagnetic Resonance spectroscopy (EPR) indicate a biogenic signature. We suggest, based on mineralogical, morphological and EPR data, a biological origin of the botryoidal Mn oxides. Our results show that fungi are involved in Mn cycling at great depths in the seafloor and we introduce EPR as a means to easily identify biogenic Mn oxides in these environments. PMID:26107948

  13. Salts of alkali metal anions and process of preparing same

    DOEpatents

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  14. Pb isotopic heterogeneity in basaltic phenocrysts

    SciTech Connect

    Bryce, Julia G.; DePaolo, Donald J.

    2002-06-01

    The Pb isotopic compositions of phenocrystic phases in young basaltic lavas have been investigated using the Getty-DePaolo method (Getty S. J. and DePaolo D. J. [1995] Quaternary geochronology by the U-Th-Pb method. Geochim. Cosmochim. Acta 59, 3267 3272), which allows for the resolution of small isotopic differences. Phenocryst, matrix, and whole rock analyses were made on samples from the 17 Myr-old Imnaha basalts of the Columbia River Group, a zero-age MORB from the Mid-Atlantic Ridge, and a ca. 260 kyr-old tholeiite from Mount Etna. Plagioclase feldspar phenocrysts have low-(U, Th)/Pb, and in each sample the plagioclase has significantly lower 206Pb/207Pb and 208Pb/207Pb values than whole rock, matrix, and magnetite-rich separates. The Pb isotopic contrast between plagioclase and matrix/whole rock is found in three samples with varying grain sizes (0.5 2 cm for the Imnaha basalt and MORB and <1 mm for the Etna sample) from different tectonic settings, suggesting that these results are not unique. The isotopic contrasts are only slightly smaller in magnitude than the variations exhibited by whole rock samples from the region. The Imnaha basalts also have Sr isotopic heterogeneity evident only in plagioclase phenocrysts, but the MORB and Etna lavas do not. The isotopic heterogeneities reflect magma mixing, and indicate that isotopically diverse magmas were mixed together just prior to eruption. The results reinforce indications from melt inclusion studies that magma source region isotopic heterogeneities have large amplitudes at short length scales, and that the isotopic variations imparted to the magmas are not entirely homogenized during segregation and transport processes.

  15. Continental basaltic volcanoes — Processes and problems

    NASA Astrophysics Data System (ADS)

    Valentine, G. A.; Gregg, T. K. P.

    2008-11-01

    Monogenetic basaltic volcanoes are the most common volcanic landforms on the continents. They encompass a range of morphologies from small pyroclastic constructs to larger shields and reflect a wide range of eruptive processes. This paper reviews physical volcanological aspects of continental basaltic eruptions that are driven primarily by magmatic volatiles. Explosive eruption styles include Hawaiian and Strombolian ( sensu stricto) and violent Strombolian end members, and a full spectrum of styles that are transitional between these end members. The end-member explosive styles generate characteristic facies within the resulting pyroclastic constructs (proximal) and beyond in tephra fall deposits (medial to distal). Explosive and effusive behavior can be simultaneous from the same conduit system and is a complex function of composition, ascent rate, degassing, and multiphase processes. Lavas are produced by direct effusion from central vents and fissures or from breakouts (boccas, located along cone slopes or at the base of a cone or rampart) that are controlled by varying combinations of cone structure, feeder dike processes, local effusion rate and topography. Clastogenic lavas are also produced by rapid accumulation of hot material from a pyroclastic column, or by more gradual welding and collapse of a pyroclastic edifice shortly after eruptions. Lava flows interact with — and counteract — cone building through the process of rafting. Eruption processes are closely coupled to shallow magma ascent dynamics, which in turn are variably controlled by pre-existing structures and interaction of the rising magmatic mixture with wall rocks. Locations and length scales of shallow intrusive features can be related to deeper length scales within the magma source zone in the mantle. Coupling between tectonic forces, magma mass flux, and heat flow range from weak (low magma flux basaltic fields) to sufficiently strong that some basaltic fields produce polygenetic

  16. Characterization of mesostasis regions in lunar basalts: Understanding late-stage melt evolution and its influence on apatite formation

    NASA Astrophysics Data System (ADS)

    Potts, Nicola J.; TartèSe, Romain; Anand, Mahesh; Westrenen, Wim; Griffiths, Alexandra A.; Barrett, Thomas J.; Franchi, Ian A.

    2016-07-01

    Recent studies geared toward understanding the volatile abundances of the lunar interior have focused on the volatile-bearing accessory mineral apatite. Translating measurements of volatile abundances in lunar apatite into the volatile inventory of the silicate melts from which they crystallized, and ultimately of the mantle source regions of lunar magmas, however, has proved more difficult than initially thought. In this contribution, we report a detailed characterization of mesostasis regions in four Apollo mare basalts (10044, 12064, 15058, and 70035) in order to ascertain the compositions of the melts from which apatite crystallized. The texture, modal mineralogy, and reconstructed bulk composition of these mesostasis regions vary greatly within and between samples. There is no clear relationship between bulk-rock basaltic composition and that of bulk-mesostasis regions, indicating that bulk-rock composition may have little influence on mesostasis compositions. The development of individual melt pockets, combined with the occurrence of silicate liquid immiscibility, exerts greater control on the composition and texture of mesostasis regions. In general, the reconstructed late-stage lunar melts have roughly andesitic to dacitic compositions with low alkali contents, displaying much higher SiO2 abundances than the bulk compositions of their host magmatic rocks. Relevant partition coefficients for apatite-melt volatile partitioning under lunar conditions should, therefore, be derived from experiments conducted using intermediate compositions instead of compositions representing mare basalts.

  17. Characterization of mesostasis regions in lunar basalts: Understanding late-stage melt evolution and its influence on apatite formation

    NASA Astrophysics Data System (ADS)

    Potts, Nicola J.; TartèSe, Romain; Anand, Mahesh; Westrenen, Wim; Griffiths, Alexandra A.; Barrett, Thomas J.; Franchi, Ian A.

    2016-09-01

    Recent studies geared toward understanding the volatile abundances of the lunar interior have focused on the volatile-bearing accessory mineral apatite. Translating measurements of volatile abundances in lunar apatite into the volatile inventory of the silicate melts from which they crystallized, and ultimately of the mantle source regions of lunar magmas, however, has proved more difficult than initially thought. In this contribution, we report a detailed characterization of mesostasis regions in four Apollo mare basalts (10044, 12064, 15058, and 70035) in order to ascertain the compositions of the melts from which apatite crystallized. The texture, modal mineralogy, and reconstructed bulk composition of these mesostasis regions vary greatly within and between samples. There is no clear relationship between bulk-rock basaltic composition and that of bulk-mesostasis regions, indicating that bulk-rock composition may have little influence on mesostasis compositions. The development of individual melt pockets, combined with the occurrence of silicate liquid immiscibility, exerts greater control on the composition and texture of mesostasis regions. In general, the reconstructed late-stage lunar melts have roughly andesitic to dacitic compositions with low alkali contents, displaying much higher SiO2 abundances than the bulk compositions of their host magmatic rocks. Relevant partition coefficients for apatite-melt volatile partitioning under lunar conditions should, therefore, be derived from experiments conducted using intermediate compositions instead of compositions representing mare basalts.

  18. Iron isotopic systematics of oceanic basalts

    NASA Astrophysics Data System (ADS)

    Teng, Fang-Zhen; Dauphas, Nicolas; Huang, Shichun; Marty, Bernard

    2013-04-01

    The iron isotopic compositions of 93 well-characterized basalts from geochemically and geologically diverse mid-ocean ridge segments, oceanic islands and back arc basins were measured. Forty-three MORBs have homogeneous Fe isotopic composition, with δ56Fe ranging from +0.07‰ to +0.14‰ and an average of +0.105 ± 0.006‰ (2SD/√n, n = 43, MSWD = 1.9). Three back arc basin basalts have similar δ56Fe to MORBs. By contrast, OIBs are slightly heterogeneous with δ56Fe ranging from +0.05‰ to +0.14‰ in samples from Koolau and Loihi, Hawaii, and from +0.09‰ to +0.18‰ in samples from the Society Islands and Cook-Austral chain, French Polynesia. Overall, oceanic basalts are isotopically heavier than mantle peridotite and pyroxenite xenoliths, reflecting Fe isotope fractionation during partial melting of the mantle. Iron isotopic variations in OIBs mainly reflect Fe isotope fractionation during fractional crystallization of olivine and pyroxene, enhanced by source heterogeneity in Koolau samples.

  19. How thick are lunar mare basalts

    NASA Technical Reports Server (NTRS)

    Hoerz, F.

    1978-01-01

    It is argued that De Hon's estimates of the thickness of lunar mare basalts, made by analyzing 'ghost' craters on mare surfaces, were inflated as the result of the crater morphometric data of Pike (1977) to reconstruct rim heights of degraded craters. Crater rim heights of 82 randomly selected highland craters of various states of degradation were determined, and median rim height was compared to that of corresponding fresh impact structures. Results indicate that the thickness estimates of De Hon may be reduced by a factor of 2, and that the total volume of mare basalt produced throughout lunar history could be as little as 1-2 million cubic kilometers. A survey of geochemical and petrographic evidence indicates that lateral transport of regolith components over distances of much greater than 10 km is relatively inefficient; it is suggested that vertical mixing of a highland substrate underlying the basaltic fill may have had a primordial role in generating the observed mare width distributions and high concentrations of exotic components in intrabasin regoliths.

  20. Lunar sample studies. [breccias basalts, and anorthosites

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Lunar samples discussed and the nature of their analyses are: (1) an Apollo 15 breccia which is thoroughly analyzed as to the nature of the mature regolith from which it derived and the time and nature of the lithification process, (2) two Apollo 11 and one Apollo 12 basalts analyzed in terms of chemistry, Cross-Iddings-Pirsson-Washington norms, mineralogy, and petrography, (3) eight Apollo 17 mare basalts, also analyzed in terms of chemistry, Cross-Iddings-Pirsson-Washington norms, mineralogy, and petrography. The first seven are shown to be chemically similar although of two main textural groups; the eighth is seen to be distinct in both chemistry and mineralogy, (4) a troctolitic clast from a Fra Mauro breccia, analyzed and contrasted with other high-temperature lunar mineral assemblages. Two basaltic clasts from the same breccia are shown to have affinities with rock 14053, and (5) the uranium-thorium-lead systematics of three Apollo 16 samples are determined; serious terrestrial-lead contamination of the first two samples is attributed to bandsaw cutting in the lunar curatorial facility.

  1. Degassing of carbon dioxide from basaltic magma at spreading centers: I. Afar transitional basalts

    NASA Astrophysics Data System (ADS)

    Gerlach, Terrence M.

    1989-11-01

    This study investigates the hypothesis that a significant fraction of the CO 2 in basalt supplied to axial volcanic ranges of spreading centers in the Afar depression, escapes by degassing during residence in crustal magma reservoirs. The investigation employs volcanic gas data to test the degassing hypothesis. Volcanic gases emitted from source vents at Erta'Ale lava lake are used to represent volatiles present in the basalt supplied to magma reservoirs underlying Afar spreading centers. For comparison, volcanic gases from a large fissure eruption at Ardoukoba are used to represent volatiles in basalt after a period of storage in the Afar magma reservoirs. The results confirm the hypothesis. Gases from the lava lake and fissure eruption are the same except for CO 2. They lie along a common CO 2 control line. The fissure eruption gases are six-fold depleted in CO 2 compared to gases from the continuously supplied lava lake. This difference corresponds to a loss of approximately 85% of the initial CO 2. Moreover, gases from the fissure eruption are nearly identical to those emitted by Kilauea basalts that have lost CO 2 by magma reservoir degassing. Mass balance modeling indicates an initial CO 2 content for Afar basalt of 0.12 wt.% compared to CO 2 concentrations as low as 0.02 wt.% after degassing at depth.

  2. Faraday rotation density measurements of optically thick alkali metal vapors

    NASA Astrophysics Data System (ADS)

    Vliegen, E.; Kadlecek, S.; Anderson, L. W.; Walker, T. G.; Erickson, C. J.; Happer, William

    2001-03-01

    We investigate the measurement of alkali number densities using the Faraday rotation of linearly polarized light. We find that the alkali number density may be reliably extracted even in regimes of very high buffer gas pressure, and very high alkali number density. We have directly verified our results in potassium using absorption spectroscopy on the second resonance (4 2S→5 2P).

  3. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  4. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  5. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  6. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  7. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  8. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  9. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  10. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  11. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  12. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  13. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  14. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  15. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  16. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  17. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  18. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  19. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries

    DOE PAGESBeta

    Deng, Zhi; Mo, Yifei; Ong, Shyue Ping

    2016-03-25

    The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that aremore » currently of the most commercial interest.« less

  20. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    DOEpatents

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  1. Terahertz radiation in alkali vapor plasmas

    SciTech Connect

    Sun, Xuan; Zhang, X.-C.

    2014-05-12

    By taking advantage of low ionization potentials of alkali atoms, we demonstrate terahertz wave generation from cesium and rubidium vapor plasmas with an amplitude nearly one order of magnitude larger than that from nitrogen gas at low pressure (0.02–0.5 Torr). The observed phenomena are explained by the numerical modeling based upon electron tunneling ionization.

  2. The Additive Coloration of Alkali Halides

    ERIC Educational Resources Information Center

    Jirgal, G. H.; and others

    1969-01-01

    Describes the construction and use of an inexpensive, vacuum furnace designed to produce F-centers in alkali halide crystals by additive coloration. The method described avoids corrosion or contamination during the coloration process. Examination of the resultant crystals is discussed and several experiments using additively colored crystals are…

  3. Hyaline membrane disease, alkali, and intraventricular haemorrhage.

    PubMed Central

    Wigglesworth, J S; Keith, I H; Girling, D J; Slade, S A

    1976-01-01

    The relation between intraventricular haemorrhage (IVH) and hyaline membrane disease (HMD) was studied in singletons that came to necropsy at Hammersmith Hospital over the years 1966-73. The incidence of IVH in singleton live births was 3-22/1000 and of HMD 4-44/1000. Although the high figures were partily due to the large number of low birthweight infants born at this hospital, the incidence of IVH in babies weighing 1001-1500 g was three times as great as that reported in the 1658 British Perinatal Mortality Survey. Most IVH deaths were in babies with HMD, but the higher frequency of IVH was not associated with any prolongation of survival time of babies who died with HMD as compared with the 1958 survey. IVH was seen frequently at gestations of up to 36 weeks in babies with HMD but was rare above 30 weeks' gestation in babies without HMD. This indicated that factors associated with HMD must cause most cases of IVH seen at gestations above 30 weeks. Comparison of clinical details in infants with HMD who died with or without IVH (at gestations of 30-37 weeks) showed no significant differences between the groups other than a high incidence of fits and greater use of alkali therapy in the babies with IVH. During the 12 hours when most alkali therapy was given, babies dying with IVD received a mean total alkali dosage of 10-21 mmol/kg and those dying without IVH 6-34 mmol/kg (P less than 0-001).There was no difference in severity of hypoxia or of metabolic acidosis between the 2 groups. Babies who died with HMD and germinal layer haemorrhage (GLH) without IVH had received significantly more alkali than those who died with HMD alone, whereas survivors of severe respiratory distress syndrome had received lower alkali doses than other groups. It is suggested that the greatly increased death rate from IVH in babies with HMD indicates some alteration of management of HMD (since 1958) as a causative factor. Liberal use of hypertonic alkali solutions is the common factor

  4. Making rhyolite in a basalt crucible

    NASA Astrophysics Data System (ADS)

    Eichelberger, John

    2016-04-01

    Iceland has long attracted the attention of those concerned with the origin of rhyolitic magmas and indeed of granitic continental crust, because it presents no alternative for such magmas other than deriving them from a basaltic source. Hydrothermally altered basalt has been identified as the progenitor. The fact that rhyolite erupts as pure liquid requires a process of melt-crustal separation that is highly efficient despite the high viscosity of rhyolite melt. Volcanoes in Iceland are foci of basaltic magma injection along the divergent plate boundary. Repeated injection produces remelting, digestion, and sometimes expulsion or lateral withdrawal of material resulting in a caldera, a "crucible" holding down-dropped and interlayered lava flows, tephras, and injected sills. Once melting of this charge begins, a great deal of heat is absorbed in the phase change. Just 1% change in crystallinity per degree gives a melt-present body an effective heat capacity >5 times the subsolidus case. Temperature is thus buffered at the solidus and melt composition at rhyolite. Basalt inputs are episodic ("fires") so likely the resulting generation of rhyolite by melting is too. If frequent enough to offset cooling between events, rhyolite melt extractions will accumulate as a rhyolite magma reservoir rather than as discrete crystallized sills. Evidently, such magma bodies can survive multiple firings without themselves erupting, as the 1875 eruption of Askja Caldera of 0.3 km3 of rhyolite equilibrated at 2-km depth without previous leakage over a ten-millennium period and the surprise discovery of rhyolite magma at 2-km depth in Krafla suggest. Water is required for melting; otherwise melting cannot begin at a temperature lower than that of the heat source. Because the solubility of water in melt is pressure-dependent and almost zero at surface pressure, there must be a minimum depth at which basalt-induced melting can occur and a rhyolite reservoir sustained. In practice, the

  5. The volcanic-subvolcanic rocks of the fernando de noronha archipelago, southern atlantic ocean: Mineral chemistry

    NASA Astrophysics Data System (ADS)

    Lopes, Rosana Peporine; Ulbrich, Mabel N. Costas; Ulbrich, Horstpeter

    2014-12-01

    Fernando de Noronha archipelago presents an older Remédios Formation with subvolcanic intrusions, belonging to two different alkaline series, the sodic (undersaturated: basanites, tephrites, essexites, tephriphonolites, phonolites), and potassic ones (mildly undersaturated to silicic, with alkali basalts, basaltic trachyandesites, trachyandesites, trachytes), and lamprophyres. The upper Quixaba Formation presents nephelinite flows and basanites. A third minor unit, São José, is constituted by basanites carrying mantle xenoliths. Magnesian olivines occur in the Remédios basanites and alkali basalts, and in nephelinites. Melilites are present as groundmass grains in melilite melanephelinites (MEM). Clinopyroxenes (cpx) are mostly salites to titaniferous salites (Remédios sodic series), grading into aegirines in the differentiated aphyric phonolites. Cpx in the lamprophyres show disequilibrium textures. In the Quixaba flows, cpx are salites, enriched in Mg (especially in MEM). Amphiboles, remarkably, are common in tephriphonolites and phonolites and in basaltic trachyandesites, sometimes with disequilibrum zoning textures, and a conspicuous phase in lamprophyres. Dark micas are present as groundmass plates in MEM, OLM and PYM (olivine and pyroxene melanephelinites), with compositional variety (enriched in Ti, Ba, Sr) depending on the composition of the parent rock; BaO can be as high as 16-19%. Feldspars crystallize as calcic plagioclases, sanidines and anorthoclases, depending on the rock types, as phenocrysts and in groundmass, both in Quixaba and Remédios rocks; they are absent in nephelinites. Nephelines are found in Remédios sodic series types and Quixaba rocks. Haüyne and noseane are rarely observed in Remédios rocks.

  6. Geochemical variations in Andean basaltic and silicic lavas from the Villarrica-Lanin volcanic chain (39.5° S): an evaluation of source heterogeneity, fractional crystallization and crustal assimilation

    NASA Astrophysics Data System (ADS)

    Hickey-Vargas, Rosemary; Roa, Hugo Moreno; Escobar, Leopolde Lopez; Frey, Frederick A.

    1989-11-01

    At 39.5° S in the southern volcanic zone of the Andes three Pleistocene-recent stratovolcanoes, Villarrica, Quetrupillan and Lanin, form a trend perpendicular to the strike of the Andes, 275 to 325 km from the Peru-Chile trench. Basalts from Villarrica and Lanin are geochemically distinct; the latter have higher incompatible element abundances and La/Sm but lower Ba/La and alkali metal/La ratios. These differences are consistent with our previously proposed models involving: a) a west to east decrease in an alkali metal-rich, high Ba/La slab-derived component which causes an across strike decrease in degree of melting; or b) a west to east increase in the contamination of subduction-related magma by enriched subcontinental lithospheric mantle. Silicic and mafic lavas from the stratovolcanoes have overlapping Sr, Nd and O isotopic ratios. Silicic lavas also have geochemical differences that parallel those of their associated basalts, e.g., rhyolite from Villarrica has lower La/Sm and incompatible element contents than high-SiO2 andesite from Lanin. At each volcano the most silicic lavas can be modelled by closed system fractional crystallization while andesites are best explained by magma mixing. Apparently crustal contamination was not an important process in deriving the evolved lavas. Basaltic flows from small scoria cones, 20 35 km from Villarrica volcano have high incompatible element contents and low Ba/La, like Lanin basalts, but trend to higher K/Rb (356 855) and lower 87Sr/ 86Sr (0.70361 0.70400) than basalts from either stratovolcano. However all basalts have similar Nd, Pb and O isotope ratios. The best explanation for the unique features of the cones is that the sources of SVZ magmas, e.g., slab-derived fluids or melts of the subcontinental lithospheric mantle, have varying alkali metal and radiogenic Sr contents. These heterogeneities are not manifested in stratovolcano basalts because of extensive subcrustal pooling and mixing. This model is

  7. Physics and chemistry of alkali-silica reactions

    SciTech Connect

    Diamond, S.; Barneyback, R.S. Jr.; Struble, L.J.

    1981-01-01

    The philosophy underlying recent research on alkali-silica reactions is reviewed and illustrations of recent results are provided. It has been possible to follow the kinetics of the chemical reaction between dissolved alkalis and opal in mortars by monitoring the rate at which alkalis are removed from the pore solutions of reacting mortars. Studies of the expansion behavior of synthetic alkali silica gels under controlled conditions were carried out and show no obvious correlation to chemical composition. The alkali reaction in mortars was found to produce changes in the appearance of opal grains documentable by the use of a scanning electron microscope.

  8. Calcium-Alkali Syndrome in the Modern Era

    PubMed Central

    Patel, Ami M.; Adeseun, Gbemisola A.; Goldfarb, Stanley

    2013-01-01

    The ingestion of calcium, along with alkali, results in a well-described triad of hypercalcemia, metabolic alkalosis, and renal insufficiency. Over time, the epidemiology and root cause of the syndrome have shifted, such that the disorder, originally called the milk-alkali syndrome, is now better described as the calcium-alkali syndrome. The calcium-alkali syndrome is an important cause of morbidity that may be on the rise, an unintended consequence of shifts in calcium and vitamin D intake in segments of the population. We review the pathophysiology of the calcium-alkali syndrome. PMID:24288027

  9. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Audétat, Andreas

    2012-11-01

    The partitioning of 15 major to trace metals between monosulfide solid solution (MSS), sulfide liquid (SL) and mafic silicate melt (SM) was determined in piston-cylinder experiments performed at 1175-1300 °C, 1.5-3.0 GPa and oxygen fugacities ranging from 3.1 log units below to 1.0 log units above the quartz-fayalite-magnetite fO2 buffer, which conditions are representative of partial melting in the upper mantle in different tectonic settings. The silicate melt was produced by partial melting of a natural, amphibole-rich mantle source rock, resulting in hydrous (˜5 wt% H2O) basanitic melts similar to low-degree partial melts of metasomatized mantle, whereas the major element composition of the starting sulfide (˜52 wt% Fe; 39 wt% S; 7 wt% Ni; 2 wt% Cu) was similar to the average composition of sulfides in this environment. SL/SM partition coefficients are high (≥100) for Au, Ni, Cu, Ag, Bi, intermediate (1-100) for Co, Pb, Sn, Sb (±As, Mo), and low (≤1) for the remaining elements. MSS/SM partition coefficients are generally lower than SL/SM partition coefficients and are high (≥100) for Ni, Cu, Au, intermediate (1-100) for Co, Ag (±Bi, Mo), and low (≤1) for the remaining elements. Most sulfide-silicate melt partition coefficients vary as a function of fO2, with Mo, Bi, As (±W) varying by a factor >10 over the investigated fO2 range, Sb, Ag, Sn (±V) varying by a factor of 3-10, and Pb, Cu, Ni, Co, Au, Zn, Mn varying by a factor of 3-10. The partitioning data were used to model the behavior of Cu, Au, Ag, and Bi during partial melting of upper mantle and during fractional crystallization of primitive MORB and arc magmas. Sulfide phase relationships and comparison of the modeling results with reported Cu, Au, Ag, and Bi concentrations from MORB and arc magmas suggest that: (i) MSS is the dominant sulfide in the source region of arc magmas, and thus that Au/Cu ratios in the silicate melt and residual sulfides may decrease with increasing degree of

  10. Lithospheric mantle heterogeneity across the continental-oceanic transition, northwest Ross Sea, Antarctica: new evidence from oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Krans, S. R.; Panter, K. S.; Castillo, P.; Deering, C. D.; Kitajima, K.; Valley, J. W.; Hart, S. R.; Kyle, P. R.

    2013-12-01

    Oxygen isotopes and whole rock chemistry from alkali basalt and basanite in the northwest Ross Sea, Antarctica offer new insight on source heterogeneity across the transition from continental to oceanic lithosphere in a magma-poor rifted margin. In situ SIMS analysis of olivine (Fo 79-90) from the most primitive lavas (MgO ≥ 8 wt%, Mg# 53-70, Ni= 115-338 ppm, Cr= 244-540 ppm) yield an average δ18O = 5.18 × 0.60 ‰ (2σ, n=30) for alkali basalt and 5.25 × 0.44 ‰ (2σ, n=52) for basanite (× 0.28 ‰, 2σ precision on a homogeneous olivine standard). These are similar to the range for olivine from mantle peridotite and HIMU type oceanic basalts (δ18O= 5.0 to 5.4 ‰ and 4.9 to 5.2 ‰, respectively [1]), but with greater variability. Lavas in this region experienced little differentiation, have minimal evidence of crustal contamination (87Sr/86Sr < 0.7030, 143Nd/144Nd > 0.5129), and olivine show no correlation between δ18O and Fo content, further suggesting that the δ18O values are source related. Whole-rock chemistry of alkali basalt and basanite are spatially distributed. In general, alkali basalt is found in thicker continental lithosphere with lower Sr (477-672ppm) and Nb/Y (1.2-2.4) than basanite. Basanite is found in oceanic and thinned continental lithosphere with higher Sr (642-1131 ppm) and Nb/Y (2.4-3.6). Variation in degree of silica-undersaturation and Nb/Y can be explained by varying degree of partial melting. While alkali basalt and basanite can result from varying degrees of partial melting of similar source compositions, the presence of amphibole in mantle xenoliths have lead workers in this region to propose contributions from a metasomatic source [2, 3, 4] with variable 206Pb/204Pb ratios [5]. A negative correlation between Nb/Y and δ18O in both rock types suggests that varying degrees of partial melting are tapping sources with different δ18O values; lower degree melts have δ18O ≤ 5.0 ‰ and higher degree melts have δ18O > 5.3

  11. Preliminary data on mantle xenoliths from the Feldstein basalt (Thuringia, Germany)

    NASA Astrophysics Data System (ADS)

    Kukuła, Anna; Puziewicz, Jacek; Ntaflos, Theodoros; Matusiak-Małek, Magdalena; Milke, Ralf

    2014-05-01

    Feldstein is an isolated outcrop of columnar basaltic rock nearby Themar, located 60 km south-west of Erfurt (Thuringia, Germany). The Feldstein alkali basalt (ca. 16.3 Ma) belongs to the Heldburger Gangschar subset of the Central European Volcanic Province (Abratis et al. 2007). The Feldstein alkali basalt contains peridotitic xenoliths, which were the subject of our study. Two groups of spinel peridotite xenoliths occur in the Feldstein basalt. Group A spinel peridotite (2 xenoliths) is characterized by protogranular texture with typical grain size of 2 - 3 mm (max 8 mm). It consists of olivine (90.28 - 91.36 % Fo, 0.35 - 0.45 wt. % NiO), orthopyroxene (mg# 0.91 - 0.92, Al 0.09 - 0.18 a pfu), clinopyroxene (mg# 0.93 - 0.95, Al 0.06 - 0.21 a pfu) and spinel (cr# 0.20 - 0.41, mg# 0.66 - 0.78). The mg# and Al content in clinopyroxene are negatively correlated following the depletion trend after variable degrees of partial melting of the same source. One of the studied samples contains clinopyroxene that does not plot on the general depletion trend but has significantly higher Al (0.15 - 0.21 a pfu) for similar mg # 0.93 - 0.94 with clinopyroxenes from this trend. However the primitive mantle normalized clinopyroxene REE patterns (concave upwards with LaN/YbN=0.11) indicate that they are the residues after elevated degrees of partial melting. The most magnesian clinopyroxene that is Ca-rich and Al-poor has REE abundances, typical for strongly depleted spinel peridotites. It has concave upwards primitive mantle normalized pattern and LaN/YbN=0.61. A slight increase of LaN and CeN with inflection point at PrN has been observed as well. The group B spinel peridotites have protogranular texture (3-4 mm, max 7 mm grains) and some of them contain several melt pockets of basaltic composition. It consists of olivine (88.95 - 91.32 % Fo, 0.34 - 0.47 wt.% NiO), orthopyroxene (mg# 0.90 - 0.93, Al 0.04 - 0.16 apfu) and clinopyroxene (mg# 0.90 - 0.93, Al 0.10 - 0.20 a pfu). The

  12. Alkali metal recovery from carbonaceous material conversion process

    DOEpatents

    Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  13. Hotspots, basalts, and the evolution of the mantle.

    PubMed

    Anderson, D L

    1981-07-01

    The trace element concentration patterns of continental and ocean island basalts and of mid-ocean ridge basalts are complementary. The relative sizes of the source regions for these fundamentally different basalt types can be estimated from the trace element enrichment-depletion patterns. Their combined volume occupies most of the mantle above the 670 kilometer discontinuity. The source regions separated as a result of early mantle differentiation and crystal fractionation from the resulting melt. The mid-ocean ridge basalts source evolved from an eclogite cumulate that lost its late-stage enriched fluids at various times to the shallower mantle and continental crust. The mid-ocean ridge basalts source is rich in garnet and clinopyroxene, whereas the continental and ocean island basalt source is a garnet peridotite that has experienced secondary enrichment. These relationships are consistent with the evolution of a terrestrial magma ocean. PMID:17741173

  14. Alkali element background reduction in laser ICP-MS

    NASA Astrophysics Data System (ADS)

    Magee, C. W., Jr.; Norris, C. A.

    2014-11-01

    Alkali backgrounds in laser ablation ICP-MS analyses can be enhanced by electron-induced ionization of alkali contamination on the skimmer cone, reducing effective detection limits for these elements. Traditionally, this problem is addressed by isolating analyses of high alkali materials onto a designated cone set, or by operating the ICP-MS in a "soft extraction" mode, which reduces the energy of electrons repelled into the potentially contaminated sampling cone by the extraction field. Here we present a novel approach, where we replace the traditional alkali glass tuning standards with synthetic low-alkali glass reference materials. Using this vitreous tuning solution, we find that this approach reduces the amount of alkali contamination produced, halving backgrounds for the heavy alkali elements without any change to analytical procedures. Using segregated cones is still the most effective method for reducing lithium backgrounds, but since the procedures are complimentary both can easily be applied to the routine operations of an analytical lab.

  15. Alkali element background reduction in laser ICP-MS

    NASA Astrophysics Data System (ADS)

    Magee, C. W., Jr.; Norris, C. A.

    2015-03-01

    Alkali backgrounds in laser ablation ICP-MS analyses can be enhanced by electron-induced ionisation of alkali contamination on the skimmer cone, reducing effective detection limits for these elements. Traditionally, this problem is addressed by isolating analyses of high-alkali materials onto a designated cone set, or by operating the ICP-MS in a "soft extraction" mode, which reduces the energy of electrons repelled into the potentially contaminated sampling cone by the extraction field. Here we present a novel approach, where we replace the traditional alkali glass tuning standards with synthetic low-alkali glass reference materials. Using this vitreous tuning solution, we find that this approach reduces the amount of alkali contamination produced, halving backgrounds for the heavy alkali elements without any change to analytical procedures. Using segregated cones is still the most effective method for reducing lithium backgrounds, but since the procedures are complimentary, both can easily be applied to the routine operations of an analytical lab.

  16. Developments in alkali-metal atomic magnetometry

    NASA Astrophysics Data System (ADS)

    Seltzer, Scott Jeffrey

    Alkali-metal magnetometers use the coherent precession of polarized atomic spins to detect and measure magnetic fields. Recent advances have enabled magnetometers to become competitive with SQUIDs as the most sensitive magnetic field detectors, and they now find use in a variety of areas ranging from medicine and NMR to explosives detection and fundamental physics research. In this thesis we discuss several developments in alkali-metal atomic magnetometry for both practical and fundamental applications. We present a new method of polarizing the alkali atoms by modulating the optical pumping rate at both the linear and quadratic Zeeman resonance frequencies. We demonstrate experimentally that this method enhances the sensitivity of a potassium magnetometer operating in the Earth's field by a factor of 4, and we calculate that it can reduce the orientation-dependent heading error to less than 0.1 nT. We discuss a radio-frequency magnetometer for detection of oscillating magnetic fields with sensitivity better than 0.2 fT/ Hz , which we apply to the observation of nuclear magnetic resonance (NMR) signals from polarized water, as well as nuclear quadrupole resonance (NQR) signals from ammonium nitrate. We demonstrate that a spin-exchange relaxation-free (SERF) magnetometer can measure all three vector components of the magnetic field in an unshielded environment with comparable sensitivity to other devices. We find that octadecyltrichlorosilane (OTS) acts as an anti-relaxation coating for alkali atoms at temperatures below 170°C, allowing them to collide with a glass surface up to 2,000 times before depolarizing, and we present the first demonstration of high-temperature magnetometry with a coated cell. We also describe a reusable alkali vapor cell intended for the study of interactions between alkali atoms and surface coatings. Finally, we explore the use of a cesium-xenon SERF comagnetometer for a proposed measurement of the permanent electric dipole moments (EDMs

  17. The mean composition of ocean ridge basalts

    NASA Astrophysics Data System (ADS)

    Gale, Allison; Dalton, Colleen A.; Langmuir, Charles H.; Su, Yongjun; Schilling, Jean-Guy

    2013-03-01

    mean composition of mid-ocean ridge basalts (MORB) is determined using a global data set of major elements, trace elements, and isotopes compiled from new and previously published data. A global catalog of 771 ridge segments, including their mean depth, length, and spreading rate enables calculation of average compositions for each segment. Segment averages allow weighting by segment length and spreading rate and reduce the bias introduced by uneven sampling. A bootstrapping statistical technique provides rigorous error estimates. Based on the characteristics of the data, we suggest a revised nomenclature for MORB. "ALL MORB" is the total composition of the crust apart from back-arc basins, N-MORB the most likely basalt composition encountered along the ridge >500 km from hot spots, and D-MORB the depleted end-member. ALL MORB and N-MORB are substantially more enriched than early estimates of normal ridge basalts. The mean composition of back-arc spreading centers requires higher extents of melting and greater concentrations of fluid-mobile elements, reflecting the influence of water on back-arc petrogenesis. The average data permit a re-evaluation of several problems of global geochemistry. The K/U ratio reported here (12,340 ± 840) is in accord with previous estimates, much lower than the estimate of Arevalo et al. (2009). The low Sm/Nd and 143Nd/144Nd ratio of ALL MORB and N-MORB provide constraints on the hypothesis that Earth has a non-chondritic primitive mantle. Either Earth is chondritic in Sm/Nd and the hypothesis is incorrect or MORB preferentially sample an enriched reservoir, requiring a large depleted reservoir in the deep mantle.

  18. Trace Element Diffusion in Basaltic Melt

    NASA Astrophysics Data System (ADS)

    Holycross, M.; Watson, E. B.

    2015-12-01

    We conducted high pressure, high temperature experiments to determine simultaneously the diffusivities of 24 trace elements (Sc, V, Rb, Y, Zr, Nb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Hf, Ta, Th, U) in liquids of basaltic composition. Pre-synthesis runs were conducted in graphite capsules in a piston-cylinder apparatus to create two glasses having relatively high and low trace element contents. These glasses were then powdered and paired in diffusion couples by repacking in graphite capsules. All diffusion experiments were executed in a piston cylinder apparatus at 1 GPa pressure and temperatures ranging from 1250-1500º C. Concentration gradients that developed in the glasses were characterized using a laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS). Diffusion coefficients were determined from concentration profiles and show Arrhenian behavior within experimental error. Errors were assigned based on the linear fit of five time series experiments conducted over 500-9000 s to accurately represent the total experimental reproducibility of our results. Data show the highest activation energies are obtained for high field strength elements. Values for the pre-exponential factor, D0, also peak for the high field strength elements. We suggest that trace element diffusion in basaltic melts follows the compensation law (Winchell, 1969), with log D0 exhibiting linear dependence on activation energy. Calculated diffusivities indicate that transport through basaltic melt could be an effective mechanism for fractionating high field strength elements over geologically relevant time scales. Winchell (1969) High Temp. Sci. 1: 200-215

  19. Mare basalt genesis - Modeling trace elements and isotopic ratios

    NASA Astrophysics Data System (ADS)

    Binder, A. B.

    1985-11-01

    Various types of mare basalt data have been synthesized, leading to the production of an internally consistent model of the mare basalt source region and mare basalt genesis. The model accounts for the mineralogical, major oxide, compatible siderophile trace element, incompatible trace element, and isotopic characteristics of most of the mare basalt units and of all the pyroclastic glass units for which reliable data are available. Initial tests of the model show that it also reproduces the mineralogy and incompatible trace element characteristics of the complementary highland anorthosite suite of rocks and, in a general way, those of the lunar granite suite of rocks.

  20. Variations in chemical composition of Apollo 15 mare basalts

    NASA Technical Reports Server (NTRS)

    Butler, J. C.

    1976-01-01

    Chemical analyses of 30 different Apollo 15 mare basalts were examined to evaluate the effects of closure on the pearson moment correlation coefficient. It is shown possible to describe the Apollo 15 mare basalts in terms of an opaque, an olivine/pyroxene, an anorthite, and a KREEP component, if significant correlations are identified using the expected correlations as null values. Using Q-mode cluster analysis and nonlinear mapping, it is possible to recognize three groups of the mare basalts, groups 1 and 2 belonging to the olivine normative basalt cluster and group 3 to the quartz normative cluster.

  1. Quantifying glassy and crystalline basalt partitioning in the oceanic crust

    NASA Astrophysics Data System (ADS)

    Moore, Rachael; Ménez, Bénédicte

    2016-04-01

    The upper layers of the oceanic crust are predominately basaltic rock, some of which hosts microbial life. Current studies of microbial life within the ocean crust mainly focus on the sedimentary rock fraction, or those organisms found within glassy basalts while the potential habitability of crystalline basalts are poorly explored. Recently, there has been recognition that microbial life develops within fractures and grain boundaries of crystalline basalts, therefore estimations of total biomass within the oceanic crust may be largely under evaluated. A deeper understanding of the bulk composition and fractionation of rocks within the oceanic crust is required before more accurate estimations of biomass can be made. To augment our understanding of glassy and crystalline basalts within the oceanic crust we created two end-member models describing basalt fractionation: a pillow basalt with massive, or sheet, flows crust and a pillow basalt with sheeted dike crust. Using known measurements of massive flow thickness, dike thickness, chilled margin thickness, pillow lava size, and pillow lava glass thickness, we have calculated the percentage of glassy versus crystalline basalts within the oceanic crust for each model. These models aid our understanding of textural fractionation within the oceanic crust, and can be applied with bioenergetics models to better constrain deep biomass estimates.

  2. Study on basalt fiber parameters affecting fiber-reinforced mortar

    NASA Astrophysics Data System (ADS)

    Orlov, A. A.; Chernykh, T. N.; Sashina, A. V.; Bogusevich, D. V.

    2015-01-01

    This article considers the effect of different dosages and diameters of basalt fibers on tensile strength increase during bending of fiberboard-reinforced mortar samples. The optimal dosages of fiber, providing maximum strength in bending are revealed. The durability of basalt fiber in an environment of cement, by means of microscopic analysis of samples of fibers and fiberboard-reinforced mortar long-term tests is examined. The article also compares the behavior of basalt fiber in the cement stone environment to a glass one and reveals that the basalt fiber is not subject to destruction.

  3. Microbial colonization and alteration of basaltic glass

    NASA Astrophysics Data System (ADS)

    Einen, J.; Kruber, C.; Øvreås, L.; Thorseth, I. H.; Torsvik, T.

    2006-03-01

    Microorganisms have been reported to be associated with the alteration of the glassy margin of seafloor pillow basalts (Thorseth et al., 2001, 2003; Lysnes et al., 2004). The amount of iron and other biological important elements present in basalts and the vast abundance of basaltic glass in the earth's crust, make glass alteration an important process in global element cycling. To gain further insight into microbial communities associated with glass alteration, five microcosm experiments mimicking seafloor conditions were inoculated with seafloor basalt and incubated for one year. Mineral precipitations, microbial attachment to the glass and glass alteration were visualized by scanning electron microscopy (SEM), and the bacterial community composition was fingerprinted by PCR and denaturing gradient gel electrophoresis (DGGE) in combination with sequencing. SEM analysis revealed a microbial community with low morphological diversity of mainly biofilm associated and prosthecate microorganisms. Approximately 30 nm thick alteration rims developed on the glass in all microcosms after one year of incubation; this however was also seen in non inoculated controls. Calcium carbonate precipitates showed parallel, columnar and filamentous crystallization habits in the microcosms as well as in the sterile controls. DGGE analysis showed an alteration in bacterial community profiles in the five different microcosms, as a response to the different energy and redox regimes and time. In all microcosms a reduction in number of DGGE bands, in combination with an increase in cell abundance were recorded during the experiment. Sequence analysis showed that the microcosms were dominated by four groups of organisms with phylogenetic affiliation to four taxa: The Rhodospirillaceae, a family containing phototrophic marine organisms, in which some members are capable of heterotrophic growth in darkness and N2 fixation; the family Hyphomicrobiaceae, a group of prosthecate oligotrophic

  4. Plagioclase mineralogy of olivine alkaline basalt

    NASA Technical Reports Server (NTRS)

    Hoffer, J. M.

    1973-01-01

    A geological and mineralogical study of the Potrillo volcanics is reported. The investigation consisted first of field mapping to establish and identify the different rock types and volcanic features in order to determine the geological history. Next, samples were collected and analyzed petrographically to determine suitable rocks from the various stratigraphic units for study of plagioclase. Samples selected for further study were crushed and the plagioclase extracted for the determination of composition and structural state. These results were then related to the petrology and crystallization of the basalt.

  5. Modeling the Time-dependent Changes in Electrical Conductivity of Basaltic Melts With Redox State

    NASA Astrophysics Data System (ADS)

    Pommier, A.; Gaillard, F.; Pichavant, M.

    2008-12-01

    confirmed the increase in σ when reducing the melt. At 1200°C, for both reduction-oxidation cycles, a stable value of σ following a change in fO2 is reached in 15hours, while 2hours are needed at 1400°C. The real-time changes in σ of basaltic melts following fO2 step changes were monitored. The time-dependent changes in σ are interpreted in terms of kinetics processes due to redox reequilibration between melt and gas. The evolution of σ with time can be fitted using a diffusion-limited process for reduction in CO-CO2 gas mixtures and oxidation in air. However, a reaction at the gas-melt interface probably rate limits oxidation in CO2. Reduction and oxidation rates are similar and increase with T. Oxidation-reduction rates calculated from the analysis of the conductivity evolution with time range from 10-9 to 10-8m2/s for the T range 1200-1400°C. These reaction rates are in agreement with typical alkali diffusion coefficients in basaltic melts. However, the high value of Ea (230kJ/mol) calculated from the T dependence of the oxidation-reduction rates agrees with the Ea for alkali-Earth elements. Furthermore, microprobe analyses document the existence of alkali-Earth cation fluxes during oxidations and reductions. Such cation migration probably occurs to charge-balance electron fluxes in the melt, in agreement with the study of Cooper et al. (1996). Our results suggest that the migration of alkali and alkali-Earth elements rate-limits the redox state changes in basaltic melts, and that redox mechanisms are not restricted to oxygen chemical diffusion. A discussion of chemical vs tracer oxygen diffusion studies is proposed.

  6. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    PubMed

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. PMID:26496216

  7. East Mariana Basin tholeiites: Cretaceous intraplate basalts or rift basalts related to the Ontong Java plume?

    USGS Publications Warehouse

    Castillo, P.R.; Pringle, M.S.; Carlson, R.W.

    1994-01-01

    Studies of seafloor magnetic anomaly patterns suggest the presence of Jurassic oceanic crust in a large area in the western Pacific that includes the East Mariana, Nauru and Pigafetta Basins. Sampling of the igneous crust in this area by the Deep Sea Drilling Program (DSDP) and the Ocean Drilling Program (ODP) allows direct evaluation of the age and petrogenesis of this crust. ODP Leg 129 drilled a 51 m sequence of basalt pillows and massive flows in the central East Mariana Basin. 40Ar 39Ar ages determined in this study for two Leg 129 basalts average 114.6 ?? 3.2 Ma. This age is in agreement with the Albian-late Aptian paleontologic age of the overlying sediments, but is distinctively younger than the Jurassic age predicted by magnetic anomaly patterns in the basin. Compositionally, the East Mariana Basin basalts are uniformly low-K tholeiites that are depleted in highly incompatible elements compared to moderately incompatible ones, which is typical of mid-ocean ridge basalts (MORB) erupted near hotspots. The Sr, Nd and Pb isotopic compositions of the tholeiites ( 87Sr 86Srinit = 0.70360-0.70374; 143Nd 144Ndinit = 0.512769-0.512790; 206Pb 204Pbmeas = 18.355-18.386) also overlap with some Indian Ocean Ridge MORB, although they are distinct from the isotopic compositions of Jurassic basalts drilled in the Pigafetta Basin, the oldest Pacific MORB. The isotopic compositions of the East Mariana Basin tholeiites are also similar to those of intraplate basalts, and in particular, to the isotopic signature of basalts from the nearby Ontong Java and Manihiki Plateaus. The East Mariana Basin tholeiites also share many petrologic and isotopic characteristics with the oceanic basement drilled in the Nauru Basin at DSDP Site 462. In addition, the new 110.8 ?? 1.0 Ma 40Ar 39Ar age for two flows from the bottom of Site 462 in the Nauru Basin is indistinguishable from the age of the East Mariana Basin flows. Thus, while magnetic anomaly patterns predict that the igneous

  8. Removal of Retired Alkali Metal Test Systems

    SciTech Connect

    BREHM, W.F.

    2003-01-01

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  9. Removal of Retired Alkali Metal Test Systems

    SciTech Connect

    Brehm, W. F.; Church, W. R.; Biglin, J. W.

    2003-02-26

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  10. Geopolymers and Related Alkali-Activated Materials

    NASA Astrophysics Data System (ADS)

    Provis, John L.; Bernal, Susan A.

    2014-07-01

    The development of new, sustainable, low-CO2 construction materials is essential if the global construction industry is to reduce the environmental footprint of its activities, which is incurred particularly through the production of Portland cement. One type of non-Portland cement that is attracting particular attention is based on alkali-aluminosilicate chemistry, including the class of binders that have become known as geopolymers. These materials offer technical properties comparable to those of Portland cement, but with a much lower CO2 footprint and with the potential for performance advantages over traditional cements in certain niche applications. This review discusses the synthesis of alkali-activated binders from blast furnace slag, calcined clay (metakaolin), and fly ash, including analysis of the chemical reaction mechanisms and binder phase assemblages that control the early-age and hardened properties of these materials, in particular initial setting and long-term durability. Perspectives for future research developments are also explored.

  11. Crystal Stratigraphy of Two Basalts from Apollo 16: Unique Crystallization of Picritic Basalt 606063,10-16 and Very-Low-Titanium Basalt 65703,9-13

    NASA Technical Reports Server (NTRS)

    Donohue, P. H.; Neal, C. R.; Stevens, R. E.; Zeigler, R. A.

    2014-01-01

    A geochemical survey of Apollo 16 regolith fragments found five basaltic samples from among hundreds of 2-4 mm regolith fragments of the Apollo 16 site. These included a high-Ti vitrophyric basalt (60603,10-16) and one very-low-titanium (VLT) crystalline basalt (65703,9-13). Apollo 16 was the only highlands sample return mission distant from the maria (approx. 200 km). Identification of basaltic samples at the site not from the ancient regolith breccia indicates input of material via lateral transport by post-basin impacts. The presence of basaltic rocklets and glass at the site is not unprecedented and is required to satisfy mass-balance constraints of regolith compositions. However, preliminary characterization of olivine and plagioclase crystal size distributions indicated the sample textures were distinct from other known mare basalts, and instead had affinities to impact melt textures. Impact melt textures can appear qualitatively similar to pristine basalts, and quantitative analysis is required to distinguish between the two in thin section. The crystal stratigraphy method is a powerful tool in studying of igneous systems, utilizing geochemical analyses across minerals and textural analyses of phases. In particular, trace element signatures can aid in determining the ultimate origin of these samples and variations document subtle changes occurring during their petrogenesis.

  12. Quantum magnetism of alkali Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Malinovskaya, Svetlana; Liu, Gengyuan

    2016-05-01

    We discuss a method to control dynamics in many-body spin states of 87Rb Rydberg atoms. The method permits excitation of cold gases and form ordered structures of alkali atoms. It makes use of a two-photon excitation scheme with circularly polarized and linearly chirped pulses. The method aims for controlled quantum state preparation in large ensembles. It is actual for experiments studding the spin hopping dynamics and realization of quantum random walks.

  13. Alkali Metal Heat Pipe Life Issues

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.

    2004-01-01

    One approach to space fission power system design is predicated on the use of alkali metal heat pipes, either as radiator elements, thermal management components, or as part of the core primary heat-transfer system. This synopsis characterizes long-life core heat pipes. References are included where more detailed information can be found. Specifics shown here are for demonstrational purposes and do not necessarily reflect current Project Prometheus point designs.

  14. Alkali metal protective garment and composite material

    SciTech Connect

    Ballif, J.L.; Yuan, W.W.

    1980-09-16

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium are described. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  15. Alkali metal protective garment and composite material

    SciTech Connect

    Ballif, III, John L.; Yuan, Wei W.

    1980-01-01

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  16. Study of superconducting state parameters of alkali alkali binary alloys by a pseudopotential

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2006-12-01

    A detailed study of the superconducting state parameters (SSP) viz. electron-phonon coupling strength λ, Coulomb pseudopotential μ∗, transition temperature TC, isotope effect exponent α and effective interaction strength N OV of ten alkali-alkali binary alloys i.e. Li 1- xNa x, Li 1- xK x, Li 1- xRb x, Li 1- xCs x, Na 1- xK x, Na 1- xRb x, Na 1- xCs x, K 1- xRb x, K 1- xCs x and Rb 1- xCs x are made within the framework of the model potential formalism and employing the pseudo-alloy-atom (PAA) model for the first time. We use the Ashcroft’s empty core (EMC) model potential for evaluating the superconducting properties of alkali alloys. Five different forms of local field correction functions viz. Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used to incorporate the exchange and correlation effects. A considerable influence of various exchange and correlation functions on λ and μ∗ is found from the present study. Reasonable agreement with the theoretical values of the SSP of pure components is found (corresponding to the concentration x = 0 or 1). It is also concluded that nature of the SSP strongly depends on the value of the atomic volume Ω0 of alkali-alkali binary alloys.

  17. Petrogenesis of Apollo 12 mare basalts. Part 2: An open system model to explain the pigeonite basalt compositions

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Taylor, Lawrence A.

    1993-01-01

    Original petrogenetic models suggested that the pigeonite basalts were the evolved equivalents of the olivine basalts. Rhodes et al. concluded that the olivine and pigeonite basalts were co-magmatic, but Neal et al. have demonstrated that these two basaltic groups are distinct and unrelated. The pigeonite suite is comprised of porphyritic basalts with a fine-grained ground mass and range continuously to coarse-grained microgabbros with ophitic to graphic textures. Although it was generally recognized that the pigeonite basalts were derived from the olivine basalts by olivine + minor Cr-spinel fractionation, the compositional gap between these groups is difficult to reconcile with such a model. Indeed, Baldridge et al. concluded that these two basaltic groups could not have been co-magmatic. In this paper, we suggest an open system AFC model for pigeonite basalt petrogenesis. The assimilant is lunar anorthositic crust and the r value used is 0.6. While the choice of assimilant composition is difficult to constrain, the modeling demonstrates the feasibility of this model.

  18. Petrogenesis of Apollo 12 mare basalts. Part 1: Multiple melts and fractional crystallization to explain olivine and ilmenite basalt compositions

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Taylor, Lawrence A.

    1993-01-01

    Mare basalts returned by the Apollo 12 mission have been divided into 4 groups on the basis of mineralogy and whole-rock chemistry: olivine basalts; pigeonite basalts; ilmenite basalts; and feldspathic basalts. James and Wright and Rhodes et al. concluded that the olivine and pigeonite groups were co-magmatic and that the within group variations are due to fractional crystallization of olivine and minor Cr-spinel, with pigeonite replacing olivine in the pigeonite basalts. Rhodes et al. concluded that the parental compositions for these suites were probably represented by the vitrophyres, and the olivine basalts are comprised essentially of cumulates and the pigeonites of evolved end-members. However, Neal et al. have demonstrated, using trace-element considerations, that the Apollo 12 olivine and pigeonite suites are not related. The ilmenite basalts were studied extensively by Dungan and Brown who noted that both cumulates and evolved fractionates were present within this group. In their modeling, Dungan and Brown used the vitrophyre compositions as parents. Neal et al. demonstrated that the feldspathic suite was probably comprised of only one member - 12038. Herein, the ilmenite and olivine basalts are demonstrated to be the products of several non-modal partial melting events of a single source followed by closed-system fractional crystallization.

  19. Transport properties of alkali metal doped fullerides

    SciTech Connect

    Yadav, Daluram Yadav, Nishchhal

    2015-07-31

    We have studied the intercage interactions between the adjacent C{sub 60} cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C{sub 60} phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, T{sub c}, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C{sub 60} phonons as 5 K, which is much lower as compared to reported T{sub c} (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  20. Transport properties of alkali metal doped fullerides

    NASA Astrophysics Data System (ADS)

    Yadav, Daluram; Yadav, Nishchhal

    2015-07-01

    We have studied the intercage interactions between the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C60 phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, Tc, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C60 phonons as 5 K, which is much lower as compared to reported Tc (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  1. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    PubMed

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 < NaNO3 < KNO3. Such results explain the salt activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities. PMID:26901167

  2. Degassing of reduced carbon from planetary basalts

    PubMed Central

    Wetzel, Diane T.; Rutherford, Malcolm J.; Jacobsen, Steven D.; Hauri, Erik H.; Saal, Alberto E.

    2013-01-01

    Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential. PMID:23569260

  3. Is Ishtar Terra a thickened basaltic crust?

    NASA Technical Reports Server (NTRS)

    Arkani-Hamed, Jafar

    1992-01-01

    The mountain belts of Ishtar Terra and the surrounding tesserae are interpreted as compressional regions. The gravity and surface topography of western Ishtar Terra suggest a thick crust of 60-110 km that results from crustal thickening through tectonic processes. Underthrusting was proposed for the regions along Danu Montes and Itzpapalotl Tessera. Crustal thickening was suggested for the entire Ishtar Terra. In this study, three lithospheric models with total thicknesses of 40.75 and 120 km and initial crustal thicknesses of 3.9 and 18 km are examined. These models could be produced by partial melting and chemical differentiation in the upper mantle of a colder, an Earth-like, and a hotter Venus having temperatures of respectively 1300 C, 1400 C, and 1500 C at the base of their thermal boundary layers associated with mantle convection. The effects of basalt-granulite-eclogite transformation (BGET) on the surface topography of a thickening basaltic crust is investigated adopting the experimental phase diagram and density variations through the phase transformation.

  4. Degassing of reduced carbon from planetary basalts.

    PubMed

    Wetzel, Diane T; Rutherford, Malcolm J; Jacobsen, Steven D; Hauri, Erik H; Saal, Alberto E

    2013-05-14

    Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential. PMID:23569260

  5. Kinetics of anorthite dissolution in basaltic melt

    NASA Astrophysics Data System (ADS)

    Yu, Yi; Zhang, Youxue; Chen, Yang; Xu, Zhengjiu

    2016-04-01

    We report convection-free anorthite dissolution experiments in a basaltic melt at 1280-1500 °C and 0.5 GPa on two different crystallographic surfaces, (1 2 1 bar) and (3 bar 0 2) to investigate dissolution kinetics. The anisotropy of the anorthite dissolution rate along these two surfaces is negligible. Time series experiments at ∼1280 °C show that anorthite dissolution is mainly controlled by diffusion in the melt within experimental uncertainty. Analytical solutions were used to model the dissolution and diffusion processes, and to obtain the diffusivities and the saturation concentrations of the equilibrium-determining component (Al2O3) for anorthite dissolution into the basaltic melt. For the first time, we are able to show the physical and chemical characteristics of quench growth effect on the near-interface melt using high spatial resolution (0.3 μm) EDS analyses. For anorthite (An# ⩾ 90) saturation in a melt with 39-53 wt% SiO2 and ⩽0.4 wt% H2O, the concentration of Al2O3 in wt% depends on temperature as follows:

  6. Emplacement of Columbia River flood basalt

    SciTech Connect

    Reidel, Stephen P.)

    1997-11-01

    Evidence is examined for the emplacement of the Umatilla, Wilbur Creek, and the Asotin Members of Columbia River Basalt Group. These flows erupted in the eastern part of the Columbia Plateau during the waning phases of volcanism. The Umatilla Member consists of two flows in the Lewiston basin area and southwestern Columbia Plateau. These flows mixed to form one flow in the central Columbia Plateau. The composition of the younger flow is preserved in the center and the composition of the older flow is at the top and bottom. There is a complete gradation between the two. Flows of the Wilbur Creek and Asotin Members erupted individually in the eastern Columbia Plateau and also mixed together in the central Columbia Plateau. Comparison of the emplacement patterns to intraflow structures and textures of the flows suggests that very little time elapsed between eruptions. In addition, the amount of crust that formed on the earlier flows prior to mixing also suggests rapid emplacement. Calculations of volumetric flow rates through constrictions in channels suggest emplacement times of weeks to months under fast laminar flow for all three members. A new model for the emplacement of Columbia River Basalt Group flows is proposed that suggests rapid eruption and emplacement for the main part of the flow and slower emplacement along the margins as the of the flow margin expands.

  7. Emplacement of Columbia River flood basalt

    SciTech Connect

    Reidel, S.P.

    1998-11-01

    Evidence is examined for the emplacement of the Umatilla, Wilbur Creek, and the Asotin Members of Columbia River Basalt Group. These flows erupted in the eastern part of the Columbia Plateau during the waning phases of volcanism. The Umatilla Member consists of two flows in the Lewiston basin area and southwestern Columbia Plateau. These flows mixed to form one flow in the central Columbia Plateau. The composition of the younger flow is preserved in the center and the composition of the older flow is at the top and bottom. There is a complete gradation between the two. Flows of the Wilbur Creek and Asotin Members erupted individually in the eastern Columbia Plateau and also mixed together in the central Columbia Plateau. Comparison of the emplacement patterns to intraflow structures and textures of the flows suggests that very little time elapsed between eruptions. In addition, the amount of crust that formed on the earlier flows prior to mixing also suggests rapid emplacement. Calculations of volumetric flow rates through constrictions in channels suggest emplacement times of weeks to months under fast laminar flow for all three members. A new model for the emplacement of Columbia River Basalt Group flows is proposed that suggests rapid eruption and emplacement for the main part of the flow and slower emplacement along the margins as the of the flow margin expands.

  8. Oxygen Isotope Variations in Lunar Mare Basalts through Fractional Crystallization

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Spicuzza, M.; Day, J. M.; Valley, J. W.; Taylor, L. A.

    2009-12-01

    Mare basalts, derived from partial melts from the lunar mantle, provide information on the early differentiation and evolution of the Moon. Highly precise and accurate oxygen isotope ratios were obtained on mg-size samples of low-Ti and high-Ti mare basalts from the Apollo 11, 12, 15 and 17 missions. Low-Ti basalts studied include Apollo 12 pigeonite and ilmenite basalts, Apollo 15 olivine- and quartz-norm basalts. High-Ti mare basalts studied include seven chemical groups (Apollo 11 Types A, B1, B3, and Apollo 17 Types A, B1, B2 and C) largely defined on the basis of trace elements, indicative of different mantle sources. High-Ti basalts display significant variation in δ18O, correlating with major elements. Values of δ18O in these high-Ti basalts increase by ~0.3‰ from Mg# = 53 to Mg# = 34, suggesting a fractional crystallization control. The variation within a given chemical group can be successfully modeled by mass-balance involving ~32% fractionation of olivine+ armalcolite + pyroxene + ilmenite+ plagioclase. This model demonstrates that high-Ti basalts with >12 wt% TiO2 and high Mg# are more primitive than those with 7-12 wt% TiO2. A weaker correlation of oxygen isotopes with major elements in low-Ti basalts is also observed. From Mg# of 48 to 38, values of δ18O increase by up to 0.1‰, consistent with removal of a minor quantity of olivine. Low-Ti mare basalts with the highest Mg# (55) have slightly lower 18O values than those with Mg# of 48, consistent with possible olivine accumulation. More primitive samples in low-Ti and high-Ti groups still display distinct δ18O values.18O versus major-element plots. This implies that low- and high-Ti basalts are derived from separate sources, each with homogeneous oxygen isotopic compositions. The hypothesis that high-Ti basalts were generated from the assimilation of ilmenite-bearing rocks by low-Ti basalts is not supported by oxygen isotope compositions. The major-element and δ18O variations of low- and high

  9. Lithium Isotope Systematics in Azores Basalts

    NASA Astrophysics Data System (ADS)

    Yu, H.; Widom, E.; Qiu, L.; Rudnick, R.; Gelinas, A.; Franca, Z.

    2009-05-01

    Basalts from the Azores archipelago and MORB from the nearby Azores Platform exhibit extreme chemical and isotopic variations attributed to the influence of a heterogeneous mantle plume, with compositions ranging from depleted mantle (DMM) to strong HIMU, EMI and EMII signatures. In order to assess the utility of Li isotopes as a mantle source tracer and to better constrain the origin of heterogeneous mantle beneath the Azores, we have analyzed Li isotopes in a suite of young, fresh, MgO-rich basalts from São Miguel and three Central Group islands including Pico, Faial and Terceira. Despite large variations in radiogenic isotope signatures (e.g. 206Pb/204Pb = 19.3 to 20.1), δ7Li varies only slightly (3.1-4.7‰), and is within the range for global and North Atlantic MORB [1, 2]. More extreme δ7Li values such as those reported previously for some EMII, EMI and HIMU ocean island basalts (-17‰ to +10‰; [3-5]) were not observed. Nevertheless, basalts from the Central Group islands with EMI-type signatures are, on average, slightly heavier in δ7Li than the São Miguel samples, and they exhibit positive correlations with 87Sr/86Sr and negative correlations with 206Pb/204Pb, Nd, and Hf isotopes. Li isotopes do not correlate with indices of fractionation such as MgO, suggesting that the δ7Li correlations with radiogenic isotopes may represent subtle variations in mantle source signatures. Positive and negative correlations of δ7Li with 87Sr/86Sr and 206Pb/204Pb, respectively, and relatively unradiogenic Os (187Os/188Os = 0.1244-0.1269), may reflect old, slab-fluid metasomatized mantle beneath the Central Group islands. In contrast, δ7Li signatures in the São Miguel basalts do not correlate with radiogenic isotopes. Rather, δ7Li is essentially constant despite extremely high 87Sr/86Sr and 206Pb/204Pb and low ΔɛHf signatures that have been attributed to 3.5 Ga recycled E-MORB or evolved oceanic crust [6; 7]. This suggests either that the São Miguel source

  10. On the connection between mare basalts and picritic volcanic glasses

    NASA Technical Reports Server (NTRS)

    Longhi, John

    1987-01-01

    The liquid lines of descent were calculated for low-pressure equilibrium and fractional crystallization of mare basaltic liquids in order to examine the postulated link between picritic volcanic glasses and mare basalts. The models of Longhi (1977, 1982) were modified by including expressions for the armalcolite/ilmenite surface boundary and the Cr-spinel liquidus surface, average molar partition coefficients for armalcolite/liquid pairs, and new experimental data of Longhi and Pan (1987). The results indicate that, with two exceptions, mare basalts and picritic volcanic glasses are not related by simple, linear-surface crystallization processes. However, the compositions of Luna 24 ferrobasalt and Apollo 11 high-K basalts could be closely matched with the lines of liquid descent of certain green and orange picritic glasses, respectively. The calculations also show that the picritic magmas would have fractionated to produce basalts with bulk and mineral compositions similar to those of mare basalts, supporting the hypothesis that mare basalts have fractionated compositions and that the small number of observed linkages between basalts and picritic parents is a consequence of limited sampling.

  11. Constructibility issues associated with a nuclear waste repository in basalt

    SciTech Connect

    Turner, D.A.

    1981-12-04

    This report contains the text and slide reproductions of a speech on nuclear waste disposal in basalt. The presentation addresses the layout of repository access shafts and subsurface facilities resulting from the conceptual design of a nuclear repository in basalt. The constructibility issues that must be resolved prior to construction are described. (DMC)

  12. Influence of basalt/groundwater interactions on radionuclide migration

    SciTech Connect

    Vandegrift, G.F.

    1984-01-01

    The work presented here is a partial summary of the experimental results obtained in the Laboratory Analog Program. Two aspects of this effort are (1) the interaction between simulated basaltic groundwater and basalt fissures that were either freshly cleaved or laboratory altered by hydrothermal treatment with the simulated groundwater and (2) the effect of this interaction on radionuclide migration through these basalt fissures. The following conclusions of this study bear heavily on the predicted safety of a basalt repository: Sorption properties of freshly fissured basalt and naturally aged basalt are quite different for different chemical species. Analog experiments predict that aged basalt would be an effective retarder of cesium, but would be much less so for actinide elements. Distribution ratios measured from batch experiments with finely ground rock samples (presenting unaltered rock surfaces) are not a reliable means of predicting radionuclide migration in geological repositories. As the near-repository area is resaturated by groundwater, its ability to retard actinide migration will be degraded with time. Disturbing the natural flow of groundwater through the repository area by constructing and backfilling the repository will modify the composition of groundwater. This modified groundwater is likely to interact with and to modify naturally aged basalt surfaces downstream from the repository.

  13. Germanium abundances in lunar basalts: Evidence of mantle metasomatism

    SciTech Connect

    Dickinson, T.; Taylor, G.J.; Keil, T.K.; Bild, R.W.

    1988-01-01

    To fill in gaps in the present Ge data base, mare basalts were analyzed for Ge and other elements by RNAA and INAA. Mare basalts from Apollo 11, 12, 15, 17 landing sites are rather uniform in Ge abundance, but Apollo 14 aluminous mare basalts and KREEP are enriched in Ge by factors of up to 300 compared to typical mare basalts. These Ge enrichments are not associated with other siderophile element enrichments and, thus, are not due to differences in the amount of metal segregated during core formation. Based on crystal-chemical and inter-element variations, it does not appear that the observed Ge enrichments are due to silicate liquid immiscibility. Elemental ratios in Apollo 14 aluminous mare basalts, green and orange glass, average basalts and KREEP suggest that incorporation of late accreting material into the source regions or interaction of the magmas with primitive undifferentiated material is not a likely cause for the observed Ge enrichments. We speculate that the most plausible explanation for these Ge enrichments is complexing and concentration of Ge by F, Cl or S in volatile phases. In this manner, the KREEP basalt source regions may have been metasomatized and Apollo 14 aluminous mare basalt magmas may have become enriched in Ge by interacting with these metasomatized areas. The presence of volatile- and Ge-rich regions in the Moon suggests that the Moon was never totally molten. 71 refs., 1 fig., 6 tabs.

  14. Vesicularity of basalt erupted at Reykjanes Ridge crest

    USGS Publications Warehouse

    Duffield, W.A.

    1978-01-01

    Average vesicularity of basalt drilled at three sites on the west flank of the Reykjanes Ridge increases with decreasing age. This change apparently records concomitant decrease in water depth at the ridge crest where the basalt was erupted and suggests substantial upward growth of the crest during the past 35 Myr. ?? 1978 Nature Publishing Group.

  15. Contributions to the mixed-alkali effect in molecular dynamics simulations of alkali silicate glasses

    NASA Astrophysics Data System (ADS)

    Lammert, Heiko; Heuer, Andreas

    2005-12-01

    The mixed-alkali effect in the cation dynamics in silicate glasses is analyzed via molecular dynamics simulations. Observations suggest a description of the dynamics in terms of stable sites mostly specific to one ionic species. As main contributions to the mixed-alkali slow down longer residence times and an increased probability of correlated backjumps are identified. The slow down is related to the limited accessibility of foreign sites. The mismatch experienced in a foreign site is stronger and more retarding for the larger ions, the smaller ions can be temporarily accommodated. Also correlations between unlike as well as like cations are demonstrated that support cooperative behavior.

  16. Method for the safe disposal of alkali metal

    DOEpatents

    Johnson, Terry R.

    1977-01-01

    Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam-CO.sub.2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps.

  17. Lithospheric influences on magma compositions of late Mesozoic and Cenozoic intraplate basalts (the Older Volcanics) of Victoria, south-eastern Australia

    NASA Astrophysics Data System (ADS)

    Price, Richard C.; Nicholls, Ian A.; Day, Arthur

    2014-10-01

    Basaltic volcanism, ranging in age from Late Cretaceous to Holocene and extending across the southern part of the state of Victoria in south-eastern Australia was initiated during the earliest stages of rifting associated with opening of the Tasman Sea and Southern Ocean. Volcanism has continued sporadically since that time with major breaks in activity occurring between 77 and 62 Ma and 18 and 7 Ma. Basaltic rocks with ages in the range 95 to 18 Ma occur in small lava fields scattered across eastern and south-eastern Victoria and they have also been recovered from bore holes in the west of the state. They have been referred to as the “Older Volcanics” to differentiate them from more volumetrically extensive and younger (mainly < 4.6 Ma) lava fields comprising the “Newer Volcanics” of the Western District Province to the west. Older Volcanics vary in composition from SiO2-undersaturated nephelinites, basanites, basalts and hawaiites through transitional basalts to hypersthene and quartz normative tholeiites. Strontium, Nd and Pb isotopic compositions lie between depleted (DM) and enriched (EM1 and EM2) end member mantle components in Sr-Nd-Pb isotopic space. Trace element compositions are generally characterised by enrichment of Cs, Ba, Rb, Th, U, Nb, K and light REE over heavy REE, Ti, Zr and Y and the overall patterns of major and trace element behaviour can be explained in general terms by petrogenetic models involving partial melting of a complex spectrum of mantle compositions with subsequent but limited additional modification by fractional crystallisation with or without assimilation of crust. Among basalts with relatively high Mg# [100 ∗ Mol. MgO/(MgO + FeO) > 65], two distinct end member compositions can be differentiated using primitive mantle normalised extended element patterns. Group 1 basalts have convex upward patterns with enrichment of light over heavy REE and depletion of Rb, Ba, Th and U relative to Nb. Group 2 basalts also have

  18. Lu-Hf constraints on the evolution of lunar basalts

    NASA Technical Reports Server (NTRS)

    Fujimaki, H.; Tatsumoto, M.

    1984-01-01

    It is shown that a cumulate-remelting model best explains the recently acquired data on the Lu-Hf systematics of lunar mare basalts. The model is constructed using Lu and Hf concentration data and is strengthened by Hf isotopic evidence of Unruh et al. (1984). It is shown that the similarity in MgO/FeO ratios and Cr2O3 content in high-Ti and low-Ti basalts are not important constraints on lunar basalt petrogenesis. The model demonstrates that even the very low Ti or green glass samples are remelting products of a cumulate formed after at least 80-90 percent of the lunar magma ocean had solidified. In the model, all the mare basalts and green glasses were derived from 100-150 km depth in the lunar mantle. The Lu-Hf systematics of KREEP basalts clearly indicate that they would be the final residual liquid of the lunar magma ocean.

  19. Origin of high-alumina basalt, andesite, and dacite magmas

    USGS Publications Warehouse

    Hamilton, W.

    1964-01-01

    The typical volcanic rocks of most island arcs and eugeosynclines, and of some continental environments, are basalt, andesite, and dacite, of high alumina content. The high-alumina basalt differs from tholeiitic basalt primarily in having a greater content of the components of calcic plagioclase. Laboratory data indicate that in the upper mantle, below the level at which the basaltic component of mantle rock is transformed by pressure to eclogite or pyroxenite, the entire basaltic portion probably is melted within a narrow temperature range, but that above the level of that transformation plagioclase is melted selectively before pyroxene over a wide temperature range. The broad spectrum of high-alumina magmas may represent widely varying degrees of partial melting above the transformation level, whereas narrow-spectrum tholeiite magma may represent more complete melting beneath it.

  20. Origin of High-Alumina Basalt, Andesite, and Dacite Magmas.

    PubMed

    Hamilton, W

    1964-10-30

    The typical volcanic rocks of most island arcs and eugeosynclines, and of some continental environments, are basalt, andesite, and dacite, of high alumina content. The high-alumina basalt differs from tholeiitic basalt primarily in having a greater content of the components of calcic plagioclase. Laboratory data indicate that in the upper mantle, below the level at which the basaltic component of mantle rock is transformed by pressure to eclogite or pyroxenite, the entire basaltic portion probably is melted within a narrow temperature range, but that above the level of that transformation plagioclase is melted selectively before pyroxene over a wide temperature range. The broad spectrum of high-alumina magmas may represent widely varying degrees of partial melting above the transformation level, whereas narrow-spectrum tholeiite magma may represent more complete melting beneath it. PMID:17794034

  1. Use and Features of Basalt Formations for Geologic Sequestration

    SciTech Connect

    McGrail, B. Peter; Ho, Anita M.; Reidel, Steve P.; Schaef, Herbert T.

    2003-01-01

    Extrusive lava flows of basalt are a potential host medium for geologic sequestration of anthropogenic CO2. Flood basalts and other large igneous provinces occur worldwide near population and power-producing centers and could securely sequester a significant fraction of global CO2 emissions. We describe the location, extent, and general physical and chemical characteristics of large igneous provinces that satisfy requirements as a good host medium for CO2 sequestration. Most lava flows have vesicular flow tops and bottoms as well as interflow zones that are porous and permeable and serve as regional aquifers. Additionally, basalt is iron-rich, and, under the proper conditions of groundwater pH, temperature, and pressure, injected CO2 will react with iron released from dissolution of primary minerals in the basalt to form stable ferrous carbonate minerals. Conversion of CO2 gas into a solid form was confirmed in laboratory experiments with supercritical CO2 in contact with basalt samples from Washington state.

  2. [Determination of Total Iron and Fe2+ in Basalt].

    PubMed

    Liu, Jian-xun; Chen, Mei-rong; Jian, Zheng-guo; Wu, Gang; Wu, Zhi-shen

    2015-08-01

    Basalt is the raw material of basalt fiber. The content of FeO and Fe2O3 has a great impact on the properties of basalt fibers. ICP-OES and dichromate method were used to test total Fe and Fe(2+) in basalt. Suitable instrument parameters and analysis lines of Fe were chosen for ICP-OES. The relative standard deviation (RSD) of ICP-OES is 2.2%, and the recovery is in the range of 98%~101%. The method shows simple, rapid and highly accurate for determination of total Fe and Fe(2+) in basalt. The RSD of ICP-OES and dichromate method is 0.42% and 1.4%, respectively. PMID:26672315

  3. Determination of the common and rare alkalies in mineral analysis

    USGS Publications Warehouse

    Wells, R.C.; Stevens, R.E.

    1934-01-01

    Methods are described which afford a determination of each member of the alkali group and are successful in dealing with the quantities of the rare alkalies found in rocks and minerals. The procedures are relatively rapid and based chiefly on the use of chloroplatinic acid, absolute alcohol and ether, and ammonium sulfate. The percentages of all the alkalies found in a number of minerals are given.

  4. Environmental mercury contamination around a chlor-alkali plant

    SciTech Connect

    Lodenius, M.; Tulisalo, E.

    1984-04-01

    The chlor-alkali industry is one of the most important emitters of mercury. This metal is effectively spread from chlor-alkali plants into the atmosphere and it has been reported that only a few percent of the mercury emissions are deposited locally the major part spreading over very large areas. The purpose of this investigation was to study the spreading of mercury up to 100 km from a chlor-alkali plant using three different biological indicators.

  5. Geochemistry of middle Tertiary volcanic rocks in the northern Aquarius Mountains, west-central Arizona

    SciTech Connect

    Simmons, A.M.; Haxel, G.B.

    1993-04-01

    The northern Aquarius Mountains volcanic field ([approximately]50km east of Kingman) covers an area of 400 km[sup 2], bounded by upper Trout Creek (S), the Truxton Valley (N), the Big Sandy Valley (W), and Cross Mountain (E). The volcanic sequence rests upon a pre-middle Eocene erosional surface. The lowest units is a 250 m-thick unit of rhyolitic pyroclastic breccias and airfall tuffs. Successively younger units are: basanite flows and cinder cones; hornblende latite flows and domes; porphyritic dacite flows, domes, and breccias; alkali basalt intrusions; and low-silica rhyolite domes and small high=silica rhyolite flows. Dacite is volumetrically dominant, and erupted primarily from vents in and around Cedar Basin (Penitentiary Mtn 7.5[prime] quad.). Other geologists have obtained K-Ar dates [approximately]24--20 Ma for the basanites and latites. The alkali basalts, latites, dacites, and rhyolites evidently constitute a genetically-related high-K to shoshonitic calcalkaline suite with chemistry typical of subduction-related magmatism: enrichment in LILE and LREE, and depletion of Nb and Ta relative to K and La and of Ti relative to Hf and Yb. Each rock type is unique and distinguishable in K/Rb and Rb/Sr. The basanites are primitive (mg=0.75--0.78), have intraplate affinities (La/Nb[<=]1), and show consistent and distinctive depletion of K relative to the other LILE. The presence of these basanites in an early Miocene volcanic sequence is unusual or unexpected, as they predate (by [approximately]10 m.y.) the regional eruption of asthenosphere-derived basalts associated with Basin-and-Range extension.

  6. Flood basalt eruptions, comet showers, and mass extinction events

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Stothers, Richard B.

    1988-01-01

    A chronology of initiation dates of the major continental flood basalt episodes has been established from compilation of published K-Ar and Ar-Ar ages of basaltic flows and related basic intrusions. The dating is therefore independent of the biostratigraphic and paleomagnetic time scales, and the estimated errors of the inititation dates are approximately + or - 4 pct. There are 11 distinct episodes of continental flood basalts known during the past 250 Myr. The data show that flood basalt episodes are generally relatively brief geologic events, with intermittent eruptions during peak output periods lasting ony 2 to 3 Myr or less. Statistical analyses suggest that these episodes may have occurred quasi-periodically with a mean cycle time of 32 + or - 1 Myr. The initiation dates of the flood basalts are close to the estimated dates of marine mass extinctions and impact-crater clusters. Although a purely internal forcing might be argued for the flood basalt volcanism, quasi-periodic comet impacts may be the trigger for both the flood basalts and the extinctions. Impact cratering models suggest that large-body impactors lead to deep initial cratering, and therefore may cause mantle disturbances and initiate mantle plume activity. The flood basalt episodes commonly mark the initiation or jump of a mantle hotspot, and are often followed by continental rifting and separation. Evidence from dynamical studies of impacts, occurrences of craters and hotspots, and the geochemistry of boundary layers is synthesized to provide a possible model of impact-generated volcanism. Flood basalt eruptions may themselves have severe effects on climate, and possibly on life. Impacts might, as a result, have led to mass extinctions through direct atmospheric disturbances, and/or indirectly through prolonged flood basalt volcanism.

  7. Geo-engineering evaluation of Termaber basalt rock mass for crushed stone aggregate and building stone from Central Ethiopia

    NASA Astrophysics Data System (ADS)

    Engidasew, Tesfaye Asresahagne; Barbieri, Giulio

    2014-11-01

    The geology of the central part of Ethiopia exhibits a variety of rock types that can potentially be developed for construction stone production, of which the most wide spread and important one is the Termaber basalt. Even though some preliminary work is done on these rocks towards construction material application, it remains largely that this resource is untouched and needs further scientific characterization for the use in large scale industrial application. Basaltic rocks have been widely used in many parts of the world as concrete aggregate and dimension stone for various civil structures. The present research study was carried out for Geo-engineering evaluation of Termaber basalt rock mass for crushed stone aggregate and building stone from Central Ethiopia (around Debre Birhan). The main objective of the present research study was to assess the general suitability of the Termaber basalt to be used as coarse aggregate for concrete mix and/or to utilize it as cut stone at industrial level. Only choice made with full knowledge of the basic characteristics of the material, of its performance and durability against the foreseen solicitations will ensure the necessary quality of the stone work and thereby a possibility to reach its intended service life. In order to meet out the objective of the present study, data from both field and laboratory were collected and analyzed. The field data included geological investigations based on different methods and sample collection while the laboratory work included, uniaxial compressive strength, ultrasonic pulse velocity, dynamic elasticity modulus, bulk density, water absorption, specific gravity, open porosity, aggregate impact value, petrographic examination and XRF, aggregate crushing value, Los Angeles abrasion value, sodium sulfate soundness, X-ray diffraction and alkali silica reactivity tests. The field and laboratory data were compiled and compared together to reveal the engineering performance of the rock mass in

  8. Geochemistry, Petrology, and Provenance of Magnetite-Rich Ortaklar Cu Deposit Hosting Basalts from Koçali Complex, Gaziantep, Turkey

    NASA Astrophysics Data System (ADS)

    Yun, E.; Lee, I.; Kang, J.; Dönmez, C.; Yildirim, N.

    2015-12-01

    Magnetite-rich Cyprus type VMS deposit has been recently discovered from the Ortaklar-Gaziantep region within Koçali complex, SE Turkey. Magnetite rich sulfide ore bodies are in close contact with underlying footwall spilitic basalts. These basalts are part of Koçali mélange, which represents an accreted oceanic complex during closing of southern Neotethys. These extrusives are low-K, low alkali tholeiites with Ca rich, partially sericitized plagioclase subophitically enclosed by augite with disseminated Fe-Ti oxides and pyrite. Mineral crystallization sequence of plagioclase followed by augite and opaque is typical of MORB. Major and trace element analyses for least altered basalts based on LOI (1.5~3.6 wt%), Ce/Ce* (0.9~1.1) exhibit limited range of element abundances. Low Mg# (59~60) suggests that basalts were derived from moderately evolved magma with fractional crystallization. HFSE (Th, Nb, Hf, Zr) were used for tectonic discrimination and basalts were plotted within MORB end spectrum, near MORB-IAT boundary. N-MORB normalized La to Lu ranges from 0.4 to 0.9 times N-MORB with LREE depletion [(La/Sm)N = 0.58~0.67] and flat HREE [(Tb/Lu)N = 0.95~1.05]. Chondrite normalized REE patterns resemble those of N-MORB but characterized by severe LREE depletion [(La/Sm)CN = 0.35~0.45]. LREE depletion coupled with high Sm/Nd (0.36~0.43), high CaO/Na2O (5.0~6.2) and low Nb/Yb (0.23~0.39) suggest depleted N-MORB composition derived from the refractory mantle source. Analyzed basalts are similar to those found from other rift (Costa Rica Rift Hole 504b) and intra-transform fault (Siqueiros transform). Magnetite emplacement occurring close to the ore-host boundary and lack of pyrrhotite from hosting basalts imply an involvement of oxidized hydrothermal fluids. Basalts probably have formed by late stage, partial melting of the refractory mantle at low pressure, shallow depth, and H2O rich environment. Possible source of mantle heterogeneity can be identified by isotope

  9. Depositional processes of the basaltic Elie Ness diatreme, East Fife, Scotland

    NASA Astrophysics Data System (ADS)

    Gernon, Thomas; Hincks, Thea

    2010-05-01

    cross-cuts an anticlinal fold to the NE, and that the vent-fill is folded with a similar NE-SW fold axis orientation. This suggests that the Elie Ness diatreme was probably emplaced during the Variscan deformation, analogous with the Black Ball Head diatreme, SW Ireland. The Elie Ness diatreme offers new insights into the volcanism of low viscosity, alkali-rich silica under-saturated magmas, and provides empirical constraints on the architecture and internal workings of other types of volcanic conduit and maar-crater systems. The processes elucidated for alkali basaltic tuff diatremes are general and can also be applied to other deep volcanic conduits.

  10. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.

    1985-07-10

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  11. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, David C.; Mailhe, Catherine C.; De Jonghe, Lutgard C.

    1986-01-01

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  12. Cold press sintering of simulated lunar basalt

    NASA Technical Reports Server (NTRS)

    Altemir, D. A.

    1993-01-01

    In order to predict the conditions for which the lunar regolith may be adequately sintered, experiments were conducted in which samples of simulated lunar basalt (MLS-1) were pressed at high pressures and then heated in an electric furnace. This sintering process may be referred to as cold press sintering since the material is pressed at room temperature. Although test articles were produced which possessed compressive strengths comparable to that of terrestrial concrete, the cold press sintering process requires very high press pressures and sintering temperatures in order to achieve that strength. Additionally, the prospect of poor internal heat transfer adversely affecting the quality of sintered lunar material is a major concern. Therefore, it is concluded that cold press sintering will most likely be undesirable for the production of lunar construction materials.

  13. Molybdenum Valence in Basaltic Silicate Melts

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Pando, K.

    2010-01-01

    The moderately siderophile element molybdenum has been used as an indicator in planetary differentiation processes, and is particularly relevant to core formation [for example, 1-6]. However, models that apply experimental data to an equilibrium differentiation scenario infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Partitioning behavior of molybdenum, a multivalent element with a transition near the J02 of interest for core formation (IW-2) will be sensitive to changes in JO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo6+ can be either octahedrally or tetrahedrally coordinated. Here we present first XANES measurements of Mo valence in basaltic run products at a range of P, T, and JO2 and further quantify the valence transition of Mo.

  14. Chemical Weathering Kinetics of Basalt on Venus

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.

    1997-01-01

    The purpose of this project was to experimentally measure the kinetics for chemical weathering reactions involving basalt on Venus. The thermochemical reactions being studied are important for the CO2 atmosphere-lithosphere cycle on Venus and for the atmosphere-surface reactions controlling the oxidation state of the surface of Venus. These reactions include the formation of carbonate and scapolite minerals, and the oxidation of Fe-bearing minerals. These experiments and calculations are important for interpreting results from the Pioneer Venus, Magellan, Galileo flyby, Venera, and Vega missions to Venus, for interpreting results from Earth-based telescopic observations, and for the design of new Discovery class (e.g., VESAT) and New Millennium missions to Venus such as geochemical landers making in situ elemental and mineralogical analyses, and orbiters, probes and balloons making spectroscopic observations of the sub-cloud atmosphere of Venus.

  15. Aubrite basalt vitrophyres: High sulfur silicate melts and a snapshot of aubrite formation. [Abstract only

    NASA Technical Reports Server (NTRS)

    Fogel, R. A.

    1994-01-01

    Two aubrite basalt vitrophyre clasts have been found within AMNH thin sections from the Parsa EH3 chondrite and the Khor Temiki aubrite. Polished sections of the Parsa Aubrite Inclusion (PAI) and the Khor Temiki Inclusion (KTI) were studied by optical, electron probe microanalysis (EPMA), and scanning electron microscopy (SEM) techniques with broad-beam and low absorbed EPMA currents used to minimize glass volatile loss. Some data have previously been reported for PAI and KTI may possibly correlate to a previously reported inclusion in Khor Tiimiki. In polished sections, PAI and KTI are approximately equal 4 mm in diameter and contain a large volume of glass. The clasts have similar textural characteristics and are akin to lunar vitrophyre textures. The glasses have high alkali rhyodacitic compositions Al-though PAI is peraluminous, KTI is significantly peralkaline. Additionally, the glasses have elevated sulfur concentrations that are extremely high by geochemical standards. SEM examination for beam overlap of microscopic CaS, FeS, and (Mg, Mn, Fe) S inclusions showed no such contamination. Furthermore, homogeneity of glass S content and low FeO contents help rule out contamination. Materials research data show that under reducing conditions alumino-silicate melts can dissolve up to several weight percent sulfur in the absence of Fe. The high S and alkali contents, the lack of associated high shock features, and the rationalized phase equilibria suggest that PAI and KTI are igneous melting products of an E-chondrite-like source material. Although large-scale impact melting cannot totally be ruled out, the above observations eliminate the possibility of in-situ shock melting.

  16. Basaltic maar-diatreme volcanism in the Lower Carboniferous of the Limerick Basin (SW Ireland)

    NASA Astrophysics Data System (ADS)

    Elliott, H. A. L.; Gernon, T. M.; Roberts, S.; Hewson, C.

    2015-05-01

    Lead-zinc exploration drilling within the Limerick Basin (SW Ireland) has revealed the deep internal architecture and extra-crater deposits of five alkali-basaltic maar-diatremes. These were emplaced as part of a regional north-east south-west tectonomagmatic trend during the Lower Carboniferous Period. Field relationships and textural observations suggest that the diatremes erupted into a shallow submarine environment. Limerick trace element data indicates a genetic relationship between the diatremes and extra-crater successions of the Knockroe Formation, which records multiple diatreme filling and emptying cycles. Deposition was controlled largely by bathymetry defined by the surrounding Waulsortian carbonate mounds. An initial non-diatreme forming eruption stage occurred at the water-sediment interface, with magma-water interaction prevented by high magma ascent rates. This was followed by seawater incursion and the onset of phreatomagmatic activity. Magma-water interaction generated poorly vesicular blocky clasts, although the co-occurrence of plastically deformed and highly vesicular clasts indicate that phreatomagmatic and magmatic processes were not mutually exclusive. At a later stage, the diatreme filled with a slurry of juvenile lapilli and country rock lithic clasts, homogenised by the action of debris jets. The resulting extra-crater deposits eventually emerged above sea level, so that water ingress significantly declined, and late-stage magmatic processes became dominant. These deposits, largely confined to the deep vents, incorporate high concentrations of partially sintered globular and large `raggy' lapilli showing evidence for heat retention. Our study provides new insights into the dynamics and evolution of basaltic diatremes erupting into a shallow water (20-120 m) submarine environment.

  17. Isotope geochemistry of caliche developed on basalt

    NASA Astrophysics Data System (ADS)

    Knauth, L. Paul; Brilli, Mauro; Klonowski, Stan

    2003-01-01

    Enormous variations in oxygen and carbon isotopes occur in caliche developed on < 3 Ma basalts in 3 volcanic fields in Arizona, significantly extending the range of δ 18O and δ 13C observed in terrestrial caliche. Within each volcanic field, δ 18O is broadly co-variant with δ 13C and increases as δ 13C increases. The most 18O and 13C enriched samples are for subaerial calcite developed on pinnacles, knobs, and flow lobes that protrude above tephra and soil. The most 18O and 13C depleted samples are for pedogenic carbonate developed in soil atmospheres. The pedogenic caliche has δ 18O fixed by normal precipitation in local meteoric waters at ambient temperatures and has low δ 13C characteristic of microbial soil CO 2. Subaerial caliche has formed from 18O-rich evapoconcentrated meteoric waters that dried out on surfaces after local rains. The associated 13C enrichment is due either to removal of 12C by photosynthesizers in the evaporating drops or to kinetic isotope effects associated with evaporation. Caliche on basalt lava flows thus initially forms with the isotopic signature of evaporation and is subsequently over-layered during burial by calcite carrying the isotopic signature of the soil environment. The large change in carbon isotope composition in subsequent soil calcite defines an isotopic biosignature that should have developed in martian examples if Mars had a "warm, wet" early period and photosynthesizing microbes were present in the early soils. The approach can be similarly applied to terrestrial Precambrian paleocaliche in the search for the earliest record of life on land. Large variations reported for δ 18O of carbonate in Martian meteorite ALH84001 do not necessarily require high temperatures, playa lakes, or flood runoff if the carbonate is an example of altered martian caliche.

  18. Geologic Mapping of Basalt Flows: Implications for Petrology

    NASA Astrophysics Data System (ADS)

    Donnelly-Nolan, J. M.; Grove, T. L.; Champion, D. E.

    2011-12-01

    Basaltic lava flows can display a variety of compositional signatures that hold clues to P, T, and composition of the mantle from which they originated. Compositional variation within basalt flows records individual histories of mantle and crustal processes. At the Cascades rear-arc Newberry and Medicine Lake volcanoes, detailed geologic mapping of compositionally-zoned basalts indicates clearly that "drive-through" sampling of such lava flows would fail to capture the full geochemical story. For these flows, the internal stratigraphy captures the eruptive sequence that took place as the magma reservoir was tapped. Given a range of composition, or exposures of basalt that have different compositions, how does one know whether different eruptions have occurred, or whether a single compositionally-zoned eruption took place? Geologic mapping today goes well beyond traditional approaches using petrography and morphology. In addition to those basic tools, iterative use of multiple chemical analyses and, most critically, paleomagnetic sampling are essential to identifying individual basalt eruptive events. At Medicine Lake volcano in N. CA, 4 compositionally-zoned basalt flows have been documented (see Donnelly-Nolan, 2011, USGS map SIM 2927): (1) basalt of Black Crater and Ross Chimneys; this very small eruptive event produced 0.001 km3 of lava that covers 0.4 km2. SiO2 content increased from 48.3 to 50.6% as the eruption progressed; composition also correlates with latitude; (2) basalt of Giant Crater, 200-sq-km postglacial basaltic andesite to basalt that is characterized by strong variation in a variety of elements (e.g. 47.7-53.2% SiO2, 0.07-1.1% K2O) [Baker et al. 1991 JGR; Donnelly-Nolan et al. 1991 JGR]; (3) basalt of Mammoth Crater, 250-sq-km basaltic andesite to basalt also having strong SiO2 variation (48.2-56.0%), but in addition a lobe enriched in FeO and TiO2; (4) 300-sq-km basalt of Yellowjacket Butte displays limited SiO2 variation, but linear variation

  19. Origin and evolution of high-titanium mare basalts

    NASA Astrophysics Data System (ADS)

    Donohue, Patrick H.

    The Moon is the sole known locality of exposed high-titanium (high-Ti) basalts in the solar system, but their occurrence has implications for the early evolution of the terrestrial planets. High-Ti basalts derive from partial melts of cumulates in the lunar upper mantle. The ilmenite, clinopyroxene, and olivine cumulates from which these basalts form are late-stage products of crystallization of the lunar magma ocean, a planetary-scale melting event that also likely occurred early on in the evolution of Venus, Mercury, the Earth and Mars. Fortunately, despite the ancient nature of mare volcanism, pristine high-Ti basalts are preserved on the relatively inert lunar surface, and the lunar sample collection contains abundant high-Ti basaltic material. Crystals are quantifiable components of the basaltic system, and are a record of the compositional and temporal history of magmatic evolution. Complementary techniques of textural and in-situ trace element geochemical analyses comprise the crystal stratigraphy method used to investigate this history. I use crystal size distributions and spatial distribution profiles to identify crystal populations and quantitatively evaluate rock textures. I use EPMA and LA-ICP-MS analysis of major crystallizing phases to identify processes affecting evolving magmas. I first show that LA-ICP-MS can determine accurate and precise trace elements for ilmenite, which is a major crystallizing phase in high-Ti basalts. The Taurus-Littrow Valley on the Moon contains high-Ti basalts from multiple distinct magmatic source regions. I propose multiple flow events of some regions were sampled during the Apollo missions, and magma partially crystallized for short residence times at shallow depths. Textural characterization of a high-Ti olivine cumulate shows no other samples experienced crystal accumulation. Finally, I investigate two rocklets found in the lunar highlands that were recently classified as basalts. I confirm their basaltic nature

  20. Electrodes For Alkali-Metal Thermoelectric Converters

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Wheeler, Bob L.; Jeffries-Nakamura, Barbara; Lamb, James L.; Bankston, C. Perry; Cole, Terry

    1989-01-01

    Combination of thin, porous electrode and overlying collector grid reduces internal resistance of alkali-metal thermoelectric converter cell. Low resistance of new electrode and grid boosts power density nearly to 1 W/cm2 of electrode area at typical operating temperatures of 1,000 to 1,300 K. Conductive grid encircles electrode film on alumina tube. Bus wire runs along tube to collect electrical current from grid. Such converters used to transform solar, nuclear, and waste heat into electric power.

  1. High power diode pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.

    2008-05-01

    Diode pumped alkali lasers have developed rapidly since their first demonstration. These lasers offer a path to convert highly efficient, but relatively low brightness, laser diodes into a single high power, high brightness beam. General Atomics has been engaged in the development of DPALs with scalable architectures. We have examined different species and pump characteristics. We show that high absorption can be achieved even when the pump source bandwidth is several times the absorption bandwidth. In addition, we present experimental results for both potassium and rubidium systems pumped with a 0.2 nm bandwidth alexandrite laser. These data show slope efficiencies of 67% and 72% respectively.

  2. Cathode architectures for alkali metal / oxygen batteries

    SciTech Connect

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  3. Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal-organic ionic molten salts.

    PubMed

    Chen, Fangfang; Forsyth, Maria

    2016-07-28

    Mixed salts of Ionic Liquids (ILs) and alkali metal salts, developed as electrolytes for lithium and sodium batteries, have shown a remarkable ability to facilitate high rate capability for lithium and sodium electrochemical cycling. It has been suggested that this may be due to a high alkali metal ion transference number at concentrations approaching 50 mol% Li(+) or Na(+), relative to lower concentrations. Computational investigations for two IL systems illustrate the formation of extended alkali-anion aggregates as the alkali metal ion concentration increases. This tends to favor the diffusion of alkali metal ions compared with other ionic species in electrolyte solutions; behavior that has recently been reported for Li(+) in a phosphonium ionic liquid, thus an increasing alkali transference number. The mechanism of alkali metal ion diffusion via this extended coordination environment present at high concentrations is explained and compared to the dynamics at lower concentrations. Heterogeneous alkali metal ion dynamics are also evident and, somewhat counter-intuitively, it appears that the faster ions are those that are generally found clustered with the anions. Furthermore these fast alkali metal ions appear to correlate with fastest ionic liquid solvent ions. PMID:27375042

  4. (abstract) Fundamental Mechanisms of Electrode Kinetics and Alkali Metal Atom Transport at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kisor, A.; Kikkert, S. K.

    1993-01-01

    The mechanisms of electrode kinetics and mass transport of alkali metal oxidation and alkali metal cation reduction at the solid electrolyte/porous electrode boundary as well as alkali metal transport through porous metal electrodes has important applications in optimizing device performance in alkali metal thermal to electric converter (AMTEC) cells which are high temperature, high current density electrochemical cells. Basic studies of these processes also affords the opportunity to investigate a very basic electrochemical reaction over a wide range of conditions; and a variety of mass transport modes at high temperatures via electrochemical techniques. The temperature range of these investigations covers 700K to 1240K; the alkali metal vapor pressures range from about 10(sup -2) to 10(sup 2) Pa; and electrodes studied have included Mo, W, Mo/Na(sub 2)MoO(sub 4), W/Na(sub 2)WO(sub 4), WPt(sub x), and WRh(sub x) (1.0 < x < 6.0 ) with Na at Na-beta'-alumina, and Mo with K at K-beta'-alumina. Both liquid metal/solid electrolyte/alkali metal vapor and alkali metal vapor/solid electrolyte/vapor cells have been used to characterize the reaction and transport processes. We have previously reported evidence of ionic, free molecular flow, and surface transport of sodium in several types of AMTEC electrodes.

  5. Petrologic models of 15388, a unique Apollo 15 mare basalt

    NASA Technical Reports Server (NTRS)

    Hughes, S. S.; Dasch, E. J.; Nyquist, L. E.

    1993-01-01

    Mare basalt 15388, a feldspathic microgabbro from the Apennine Front, is chemically and petrographically distinct from Apollo 15 picritic, olivine-normative (ON), and quartz-normative basalts. The evolved chemistry, coarse texture, lack of olivine, and occurrence of cristobalite in 15388 argue for derivation by a late-stage magmatic process that is significantly removed from parental magma. It either crystallized from a magma evolved from the more mafic Apollo 15 basalts, or it crystallized from a currently unrepresented magma. Rb-Sr and Sm-Nd isotopic systematics yield isochron ages of 3.391 plus or minus 0.036 and 3.42 plus or minus 0.07 Ga, respectively, and epsilon(sub Nd) = 8.6 plus or minus 2.4, which is relatively high for Apollo 15 mare basalts. In contrast to chemical patterns of average Apollo 15 ON basalts and Apollo 15 picritic basalt, 15388 has a strongly positive LREE slope, high Ti, shallower HREE slope and a slightly positive Eu anomaly. These features argue against 15388 evolution by simple olivine fractionation of a parental ON or picritic basalt magma, although olivine is a dominant liquidus phase in both potential parents.

  6. The phylogeny of endolithic microbes associated with marine basalts.

    PubMed

    Mason, Olivia U; Stingl, Ulrich; Wilhelm, Larry J; Moeseneder, Markus M; Di Meo-Savoie, Carol A; Fisk, Martin R; Giovannoni, Stephen J

    2007-10-01

    We examined the phylogenetic diversity of microbial communities associated with marine basalts, using over 300 publicly available 16S rDNA sequences and new sequence data from basalt enrichment cultures. Phylogenetic analysis provided support for 11 monophyletic clades originating from ocean crust (sediment, basalt and gabbro). Seven of the ocean crust clades (OCC) are bacterial, while the remaining four OCC are in the Marine Group I (MGI) Crenarchaeota. Most of the OCC were found at diverse geographic sites, suggesting that these microorganisms have cosmopolitan distributions. One OCC in the Crenarchaeota consisted of sequences derived entirely from basalts. The remaining OCC were found in both basalts and sediments. The MGI Crenarchaeota were observed in all studies where archaeal diversity was evaluated. These results demonstrate that basalts are occupied by cosmopolitan clades of microorganisms that are also found in marine sediments but are distinct from microorganisms found in other marine habitats, and that one OCC in the ubiquitous MGI Crenarchaeota clade may be an ecotype specifically adapted to basalt. PMID:17803778

  7. Deep degassing and the eruptibility of flood basalt magmas

    NASA Astrophysics Data System (ADS)

    Black, B. A.; Manga, M.

    2015-12-01

    Individual flood basalt lavas often exceed 103 km3 in volume, and many such lavas erupt during emplacement of flood basalt provinces. The large volume of individual flood basalt lavas demands correspondingly large magma reservoirs within or at the base of the crust. To erupt, some fraction of this magma must become buoyant and overpressure must be sufficient to encourage failure and dike propagation. Because the overpressure associated with a new injection of magma is inversely proportional to the total reservoir volume, buoyancy overpressure has been proposed as a trigger for flood basalt eruptions. To test this hypothesis, we develop a new one-dimensional model for buoyancy overpressure-driven eruptions that combines volatile exsolution, bubble growth and rise, assimilation, and permeable fluid escape through the surrounding country rocks. Degassing during emplacement of flood basalt provinces may have major environmental repercussions. We investigate the temporal evolution of permeable degassing through the crust and degassing during eruptive episodes. We find that assimilation of volatile-rich country rocks strongly enhances flood basalt eruptibility, implying that the eruptive dynamics of flood basalts may be intertwined with their climatic consequences.

  8. Thicknesses of Mare Basalts from Gravity and Topograhy

    NASA Astrophysics Data System (ADS)

    GONG, S.; Wieczorek, M.; Nimmo, F.; Kiefer, W.; Head, J.; Smith, D.; Zuber, M.

    2015-10-01

    Mare basalts are derived from partial melting of the lunar interior and are mostly located on the near side of the Moon [1, 2]. Their iron-rich composition gives rise to their dark color, but also causes their density to be substantially higher than normal crustal rocks. The total volume of mare basalts can provide crucial information about the Moon's thermal evolution and volcanic activity. Unfortunately, the thicknesses of the mare are only poorly constrained. Here we use gravity data from NASA's GRAIL mission to investigate the thickness of mare basalts.

  9. Pliocene Basaltic Volcanism in The East Anatolia Region (EAR), Turkey

    NASA Astrophysics Data System (ADS)

    Oyan, Vural; Özdemir, Yavuz; Keskin, Mehmet

    2016-04-01

    East Anatolia Region (EAR) is one of the high Plateau which is occurred with north-south compressional regime formed depending on continent-continent collision between Eurasia and Arabia plates (Şengör and Kidd, 1979). Recent studies have revealed that last oceanic lithosphere in the EAR have completely depleted to 20 million years ago based on fission track ages (Okay et al. 2010). Our initial studies suggest that extensively volcanic activity in the EAR peaked in the Pliocene and continued in the same productivity throughout Quaternary. Voluminous basaltic lava plateaus and basaltic lavas from local eruption centers occurred as a result of high production level of volcanism during the Pliocene time interval. In order to better understand the spatial and temporal variations in Pliocene basaltic volcanism and to reveal isotopic composition, age and petrologic evolution of the basaltic volcanism, we have started to study basaltic volcanism in the East Anatolia within the framework of a TUBITAK project (project number:113Y406). Petrologic and geochemical studies carried out on the Pliocene basaltic lavas indicate the presence of subduction component in the mantle source, changing the character of basaltic volcanism from alkaline to subalkaline and increasing the amount of spinel peridotitic melts (contributions of lithospheric mantle?) in the mantle source between 5.5-3.5 Ma. FC, AFC and EC-AFC modelings reveal that the while basaltic lavas were no or slightly influenced by crustal contamination and fractional crystallization, to more evolved lavas such as bazaltictrachyandesite, basalticandesite, trachybasalt might have been important processes. Results of our melting models and isotopic analysis data (Sr, Nd, Pb, Hf, 18O) indicate that the Pliocene basaltic rocks were derived from both shallow and deep mantle sources with different melting degrees ranging between 0.1 - 4 %. The percentage of spinel seems to have increased in the mantle source of the basaltic

  10. Modeling Cooling Rates of Martian Flood Basalt Columns

    NASA Astrophysics Data System (ADS)

    Weiss, D. K.; Jackson, B.; Milazzo, M. P.; Barnes, J. W.

    2011-12-01

    Columnar jointing in large basalt flows have been extensively studied and can provide important clues about the emplacement conditions and cooling history of a basalt flow. The recent discovery of basalt columns on Mars in crater walls near Marte Vallis provides an opportunity to infer conditions on early Mars when the Martian basalt flows were laid down. Comparison of the Martian columns to Earth analogs allows us to gain further insight into the early Martian climate, and among the best terrestrial analogs are the basalt columns in the Columbia River Basalt Group (CRBG) in eastern Washington. The CRBG is one of the youngest (< 17 Myrs old) and most extensively studied basalt provinces in the world, extending over 163,700 square km with total thickness exceeding 1 km in some places. The morphologies and textures of CRBG basalt columns suggest that in many places flows ~100 m thick cooled at uniform rates, even deep in the flow interior. Such cooling seems to require the presence of water in the column joints since the flow interiors should have cooled much more slowly than the flow margins if conductive cooling dominated. Secondary features, such pillow basalts, likewise suggest the basalt flows were in direct contact with standing water in many places. At the resolution provided by the orbiting HiRISE camera (0.9 m), the Martian basalt columns resemble the CRBG columns in many respects, and so, subject to important caveats, inferences linking the morphologies of the CRBG columns to their thermal histories can be extended in some respects to the Martian columns. In this presentation, we will describe our analysis of the HiRISE images of the Martian columns and what can be reasonably inferred about their thermal histories and the conditions under which they were emplaced. We will also report on a field expedition to the CRBG in eastern Washington State. During that expedition, we surveyed basalt column outcrops on the ground and from the air using Unmanned Aerial

  11. Basaltic volcanic episodes of the Yucca Mountain region

    SciTech Connect

    Crowe, B.M.

    1990-03-01

    The purpose of this paper is to summarize briefly the distribution and geologic characteristics of basaltic volcanism in the Yucca Mountain region during the last 10--12 Ma. This interval largely postdates the major period of silicic volcanism and coincides with and postdates the timing of major extensional faulting in the region. Field and geochronologic data for the basaltic rocks define two distinct episodes. The patterns in the volume and spatial distribution of these basaltic volcanic episodes in the central and southern part of the SNVF are used as a basis for forecasting potential future volcanic activity in vicinity of Yucca Mountain. 33 refs., 2 figs.

  12. Mineral chemistry of Pangidi basalt flows from Andhra Pradesh

    NASA Astrophysics Data System (ADS)

    Nageswara Rao, P. V.; Swaroop, P. C.; Karimulla, Syed

    2012-04-01

    This paper elucidates the compositional studies on clinopyroxene, plagioclase, titaniferous magnetite and ilmenite of basalts of Pangidi area to understand the geothermometry and oxybarometry conditions. Petrographic evidence and anorthite content (up to 85%) of plagioclase and temperature estimates of clinopyroxene indicate that the clinopyroxene is crystallized later than or together with plagioclase. The higher An content indicates that the parent magma is tholeiitic composition. The equilibration temperatures of clinopyroxene (1110-1190°C) and titaniferous magnetite and ilmenite coexisting mineral phases (1063-1103°C) are almost similar in lower basalt flow and it is higher for clinopyroxene (900-1110°C) when compared to titaniferous magnetite and ilmenite coexisting mineral phases (748-898°C) in middle and upper basalt flows. From this it can be inferred that the clinopyroxene is crystallized earlier than Fe-Ti oxide phases reequilibration, which indicates that the clinopyroxene temperature is the approximate eruption temperature of the present lava flows. The wide range of temperatures (900-1190°C) attained by clinopyroxene may point out that the equilibration of clinopyroxene crystals initiated from depth till closer to the surface before the melt erupted. Pangidi basalts follow the QFM buffer curve which indicates the more evolved tholeiitic composition. This suggests the parent tholeiitic magma suffered limited fractionation at high temperature under increasing oxygen fugacity in lower basalt flow and more fractionation at medium to lower temperatures under decreasing oxygen fugacity conditions during cooling of middle and upper basalt flows. The variation of oxygen fugacity indicates the oxidizing conditions for lower basalt flow (9.48-10.3) and extremely reducing conditions for middle (12.1-15.5) and upper basalt (12.4-15.54) flows prevailed at the time of cooling. Temperature vs. (FeO+Fe2O3)/(FeO+Fe2O3 +MgO) data plots for present basalts suggested

  13. An Apollo 15 Mare Basalt Fragment and Lunar Mare Provinces

    NASA Technical Reports Server (NTRS)

    Ryder, Graham; Burling, Trina Cox

    1996-01-01

    Lunar sample 15474,4 is a tiny fragment of olivine-augite vitrophyre that is a mare basalt. Although petroraphically distinct from all other Apollo 15 samples, it has been ignored since its first brief description. Our new petrographic and mineral chemical data show that the olivines and pyroxenes are distinct from those in other basalts. The basalt cooled and solidified extremely rapidly; some of the olivine might be cumulate or crystallized prior to extrusion. Bulk-chemical data show that the sample is probably similar to an evolved Apollo 15 olivine-normative basalt in major elements but is distinct in its rare earth element pattern. Its chemical composition and petrography both show that 15474,4 cannot be derived from other Apollo 15 mare basalts by shallow-level crystal fractionation. It represents a distinct extrusion of magma. Nonetheless, the chemical features that 15474,4 has in common with other Apollo 15 mare basalts, including the high FeO/Sc, the general similarity of the rare earth element pattern, and the common (and chondritic) TiO2/Sm ratio, emphasize the concept of a geochemical province at the Apollo 15 site that is distinct from basalts and provinces elsewhere. In making a consistent picture for the derivation of all of the Apollo 15 basalts, both the commonalities and the differences among the basalts must be explained. The Apollo 15 commonalities and differences suggest that the sources must have consisted of major silicate phases with the same composition but with varied amounts of a magma trapped from a contemporary magma ocean. They probably had a high olivine/pyroxene ratio and underwent small and reasonably consistent degrees of partial melting to produce the basalts. These inferences may be inconsistent with models that suggest greatly different depths of melting among basalts, primitive sources for the green glasses, or extensive olivine fractionation during ascent. An integrated approach to lunar mare provinces, of which the Apollo 15

  14. Superconductivity in alkali metal intercalated iron selenides.

    PubMed

    Krzton-Maziopa, A; Svitlyk, V; Pomjakushina, E; Puzniak, R; Conder, K

    2016-07-27

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations. PMID:27248118

  15. Durability of Alkali Activated Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  16. Superconductivity in alkali metal intercalated iron selenides

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2‑y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  17. Unconventional Superconductivity of Alkali-doped Fullerenes

    NASA Astrophysics Data System (ADS)

    Potocnik, Anton; Krajnc, Andraz; Jeglic, Peter; Prassides, Kosmas; Rosseinsky, Matthew J.; Arcon, Denis

    2014-03-01

    The superconductivity of the alkali-doped fullerenes (A3C60, A = alkali metal) has been so far discussed within the standard theory of superconductivity developed by Bardeen, Cooper and Shrieffer (BCS), even thought, they exhibit relatively high critical temperatures (up to Tc = 32 K). However, after our recent high-pressure measurements on Cs3C60 such description became questionable. We have shown that the superconducting phase of A3C60, in fact, borders the antiferromagnetic insulating phase (AFI), commonly observed for high-temperature superconductors like cuprates or pnictides. In addition, we also increased the maximal Tc to 38 K. To investigate this peculiar superconductivity close to the border with AFI state we employed nuclear magnetic resonance technique on Cs3-xRbxC60 and on Cs3C60 at various high pressures. Our results could not be correctly explained either by the standard BCS or the extended BCS that includes electron-electron repulsion interaction - the Migdal-Eliashberg theory. Far better agreement is obtained by the Dynamical Mean Field Theory. Due to similarity with other unconventional superconductors these results could also be relevant to other unconventional high-temperature superconductors.

  18. Decalcification resistance of alkali-activated slag.

    PubMed

    Komljenović, Miroslav M; Baščarević, Zvezdana; Marjanović, Nataša; Nikolić, Violeta

    2012-09-30

    This paper analyses the effects of decalcification in concentrated 6M NH(4)NO(3) solution on mechanical and microstructural properties of alkali-activated slag (AAS). Portland-slag cement (CEM II/A-S 42.5 N) was used as a benchmark material. Decalcification process led to a decrease in strength, both in AAS and in CEM II, and this effect was more pronounced in CEM II. The decrease in strength was explicitly related to the decrease in Ca/Si atomic ratio of C-S-H gel. A very low ratio of Ca/Si ~0.3 in AAS was the consequence of coexistence of C-S-H(I) gel and silica gel. During decalcification of AAS almost complete leaching of sodium and tetrahedral aluminum from C-S-H(I) gel also took place. AAS showed significantly higher resistance to decalcification in relation to the benchmark CEM II due to the absence of portlandite, high level of polymerization of silicate chains, low level of aluminum for silicon substitution in the structure of C-S-H(I), and the formation of protective layer of polymerized silica gel during decalcification process. In stabilization/solidification processes alkali-activated slag represents a more promising solution than Portland-slag cement due to significantly higher resistance to decalcification. PMID:22818592

  19. Dynamics of reactive ultracold alkali polar molecules

    NASA Astrophysics Data System (ADS)

    Quéméner, Goulven; Bohn, John; Petrov, Alexander; Kotochigova, Svetlana

    2011-05-01

    Recently, ultracold polar molecules of KRb have been created. These molecules are chemically reactive and their lifetime in a trap is limited. However, their lifetime increases when they are loaded into a 1D optical lattice in the presence of an electric field. These results naturally raise the question of manipulating ultracold collisions of other species of alkali dimer molecules, with an eye toward both novel stereochemistry, as well as suppressing unwanted reactions, to enable condensed matter applications. In this talk, we report on a comparative study between the bi-alkali polar molecules of LiNa, LiK, LiRb, LiCs which have been predicted to be reactive. We compute the isotropic C6 coefficients of these systems and we predict the elastic and reactive rate coefficients when an electric field is applied in a 1D optical lattice. We will discuss the efficacy of evaporative cooling for each species. This work was supported by a MURI-AFOSR grant.

  20. Patterns and origin of igneous activity around the Tanzanian craton

    NASA Astrophysics Data System (ADS)

    Foley, S. F.; Link, K.; Tiberindwa, J. V.; Barifaijo, E.

    2012-01-01

    Tertiary and later igneous activity is common on and around the Tanzanian craton, with primitive magma compositions ranging from kimberlites and varieties of picrites through nephelinites, basanites and alkali basalts. This review focuses on elucidating the conditions of origin of the melts, addressing the question of the state and involvement of the Tanzanian cratonic lithosphere in magma genesis. The Tanzanian craton is anomalous with a surface elevation of >1100 m reflecting buoyancy supported by a subcratonic plume whose effects are seen in the volcanics of both western and eastern rift branches. Magmatism on the craton and at its edge has high K/Na and primitive melts show fractionation dominated by olivine. Slightly further from the craton pyroxene fractionation dominates and K/Na ratios in the magmas are lower. Off-craton melts are nephelinites, basanites and alkali basalts with low K/Na. Potassium enrichment in the melts correlates with the occurrence of phlogopite in mantle-derived xenoliths, and also with carbonate in the magmas. This is attributed to melting at >140 km depths of mixed source regions containing phlogopite pyroxenite and peridotite, whereby the carbonate is derived from oxidation of diamonds concentrated near the base of the cratonic lithosphere. Mixed source regions are required by arrays of radiogenic isotopes such as Os and Sr in the volcanic rocks. The temporal progression of lamproites to phlogopite + carbonate-rich rocks to melilitites, nephelinites and alkali basalts seen during the erosion of the North Atlantic craton are seen around the Tanzanian craton as the coeval occurrence kimberlites, kamafugites and related rocks, nephelinites and alkali basalts showing spatial instead of temporal variation. This is due to the different stages of development of rifting around the craton: in northwestern Uganda and northern Tanzania, K-rich volcanism occurs at the craton edge, whereas nephelinites, basanites and alkali basalts occur where

  1. The Lithium Isotopic Signature of Hawaiian Basalts

    NASA Astrophysics Data System (ADS)

    Harrison, L.; Weis, D.; Hanano, D. W.

    2013-12-01

    Recycling of oceanic crust and sediment is a common mechanism to account for the presence of chemical heterogeneities observed in oceanic island basalts (OIBs). On Hawai';i, a mantle plume-sourced OIB with a high mass flux, sampling of deep mantle heterogeneities accounts for the presence of two unique geochemical and geographical trends called the Loa and Kea trends. The Loa trend overlaps the Pacific large low shear velocity province and is distinctly more enriched [1] than the Kea trend with average Pacific mantle compositions [2]. Because of the sizeable fractionation of lithium isotopes in low temperature environments, lithium serves as a tracer for the presence of recycled material in OIB sources, including Hawai'i. In this study, we analyzed 87 samples of Hawaiian basalt from the pre-shield, shield, post-shield, and rejuvenated volcanic stages and 10 samples of altered oceanic crust from ODP Site 843 for lithium isotopes using a multi-collector inductively coupled plasma mass spectrometer. Correlations of lithium isotopes with the radiogenic isotopes Pb, Hf, Nd, and Sr indicate lithium isotopes may be used to trace components in mantle plumes such as Hawai';i. The measured range of lithium isotopes for shield stage lavas is δ7Li = 1.8 - 5.7‰ and for post-shield lavas is δ7Li = 0.8 - 4.7‰. Pre-shield stage lavas (Lo'ihi volcano only) and rejuvenated lavas are the least and most homogeneous volcanic stages, respectively, in lithium isotopes. The Loa and Kea geochemical trends have different lithium isotopic signatures, with Loa trend shield volcanoes exhibiting lighter lithium isotopic signatures (δ7Li = 3.5‰ [N=43]) than Kea trend shield volcanoes (δ7Li = 4.0‰ [N=31]) [3]. Similarly, post-shield lavas have systematically lighter δ7Li than shield lavas. The presence of systematic differences in lithium isotopic signatures may indicate: 1) the sampling of distinct components in the deep source, to account for variations between Kea and Loa trend

  2. The case for old basaltic shergottites

    NASA Astrophysics Data System (ADS)

    Bouvier, Audrey; Blichert-Toft, Janne; Vervoort, Jeffrey D.; Gillet, Philippe; Albarède, Francis

    2008-02-01

    The crystallization age of shergottites is currently not agreed upon. Although mineral 87Rb- 87Sr, 147Sm- 143Nd, 176Lu- 176Hf, and U-Pb isochrons all give very young ages, typically in the range of 160-180 Ma, 207Pb- 206Pb data support a much older crystallization age at 4.1 Ga, which is consistent with published whole-rock 87Rb- 87Sr data on basaltic shergottites. Different isotopic systems present different complexities, but crater-counting chronology, which shows that a substantial fraction of the Martian surface was resurfaced during the late heavy bombardment, is in favor of an old Martian lithosphere with ages in accordance with Pb-Pb and Rb-Sr isotopic data. A ˜ 4.1 Ga Pb-Pb age of shergottites also agrees with the 142Nd and 182W anomalies found in these rocks and concur with the presence of an actively convecting mantle during the first 500 Myr of the planet's history. We here present new Sm-Nd, Lu-Hf, and Pb-Pb mineral isochrons for the basaltic shergottites Shergotty and Los Angeles complementing our previous results on Zagami [Bouvier A., Blichert-Toft J., Vervoort J.D. and Albarède F. (2005). The age of SNC meteorites and the antiquity of the Martian surface, Earth Planet. Sci. Lett. 240, 221-233]. The internal 147Sm- 143Nd and 176Lu- 176Hf isochrons give young ages of, respectively, 172 ± 40 (MSWD = 2.0) and 188 ± 91 (MSWD = 3.1) for Shergotty, and 181 ± 13 (MSWD = 0.14) and 159 ± 42 (MSWD = 0.01) for Los Angeles. In contrast, the Pb isotope compositions of the leached whole-rock fragments and maskelynite separates of Shergotty and Los Angeles fall on the whole-rock isochron previously established for Zagami and other shergottite samples and collectively yield a Pb-Pb age of 4050 ± 70 Ma for the crystallization of the basaltic shergottite suite. The contrast between the ˜ 170 Ma ages of internal isochrons and the 4.1 Ga age supported by Pb-Pb and 87Rb- 87Sr on whole-rocks simply reflects that the younger age dates the perturbation of a suite of

  3. Stereo Pair: Basalt Cliffs, Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Basalt cliffs along the northwest edge of the Meseta de Somuncura plateau near Sierra Colorada, Argentina show an unusual and striking pattern of erosion. Stereoscopic observation helps to clarify the landform changing processes active here. Many of the cliffs appear to be rock staircases that have the same color as the plateau's basaltic cap rock. Are these the edges of lower layers in the basalt or are they a train of slivers that are breaking off from, then sliding downslope and away from, the cap rock. They appear to be the latter. Close inspection shows that each stair step is too laterally irregular to be a continuous sheet of bedrock like the cap rock. Also, the steps are not flat but instead are little ridges, as one might expect from broken, tilted, and sliding slices of the cap rock. Stream erosion has cut some gullies into the cliffs and green vegetation shows that water springs from and flows down some channels, but landsliding is clearly a major agent of erosion here.

    This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center,Sioux Falls, South

  4. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical..., chemical destruction and carbon adsorption. (iv) Release to water. Requirements as specified in § 721.90...

  5. Formation of lysinoalanine in egg white under alkali treatment.

    PubMed

    Zhao, Yan; Luo, Xuying; Li, Jianke; Xu, Mingsheng; Tu, Yonggang

    2016-03-01

    To investigate the formation mechanism of lysinoalanine (LAL) in eggs during the alkali treatment process, NaOH was used for the direct alkali treatment of egg white, ovalbumin, and amino acids; in addition, the amount of LAL formed during the alkali treatment process was measured. The results showed that the alkali treatment resulted in the formation of LAL in the egg white. The LAL content increased with increasing pH and temperature, with the LAL content first increasing and then leveling off with increasing time. The amount of LAL formed in the ovalbumin under the alkali treatment condition accounted for approximately 50.51% to 58.68% of the amount of LAL formed in the egg white. Thus, the LAL formed in the ovalbumin was the main source for the LAL in the egg white during the alkali treatment process. Under the alkali treatment condition, free L-serine, L-cysteine, and L-cystine reacted with L-lysine to form LAL; therefore, they are the precursor amino acids of LAL formed in eggs during the alkali treatment process. PMID:26772660

  6. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, Wen Y.

    1984-01-01

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them (46, 53, 61, 69) with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide (63) to precipitate silicon constituents, the pH of the resultant solution is increased (81), preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated (84) to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process (86, 18, 17) where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  7. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  8. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  9. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  10. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  11. Self-discharge in bimetallic cells containing alkali metal

    NASA Technical Reports Server (NTRS)

    Foster, M. S.; Hesson, J. C.; Shimotake, H.

    1969-01-01

    Theoretical analysis of thermally regenerative bimetallic cells with alkali metal anodes shows a relation between the current drawn and the rate of discharge under open-circuit conditions. The self-discharge rate of the cell is due to the dissolution and ionization of alkali metal atoms in the fused-salt electrolyte

  12. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    DOEpatents

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  13. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in...

  14. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl...

  15. Calcium Sulfate in Atacama Desert Basalt: A Possible Analog for Bright Material in Adirondack Basalt, Gusev Crater

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Golden, D. C.; Amundson, R.; Chong-Diaz, G.; Ming, D. W.

    2007-01-01

    The Atacama Desert in northern Chile is one of the driest deserts on Earth (< 2mm/y). The hyper-arid conditions allow extraordinary accumulations of sulfates, chlorides, and nitrates in Atacama soils. Examining salt accumulations in the Atacama may assist understanding salt accumulations on Mars. Recent work examining sulfate soils on basalt parent material observed white material in the interior vesicles of surface basalt. This is strikingly similar to the bright-white material present in veins and vesicles of the Adirondack basalt rocks at Gusev Crater which are presumed to consist of S, Cl, and/or Br. The abundance of soil gypsum/anhydrite in the area of the Atacama basalt suggested that the white material consisted of calcium sulfate (Ca-SO4) which was later confirmed by SEM/EDS analysis. This work examines the Ca-SO4 of Atacama basalt in an effort to provide insight into the possible nature of the bright material in the Adirondack basalt of Gusev Crater. The objectives of this work are to (i) discuss variations in Ca-SO4 crystal morphology in the vesicles and (ii) examine the Ca-SO4 interaction(s) with the basalt interior.

  16. Spreading and collapse of big basaltic volcanoes

    NASA Astrophysics Data System (ADS)

    Puglisi, Giuseppe; Bonforte, Alessandro; Guglielmino, Francesco; Peltier, Aline; Poland, Michael

    2016-04-01

    Among the different types of volcanoes, basaltic ones usually form the most voluminous edifices. Because volcanoes are growing on a pre-existing landscape, the geologic and structural framework of the basement (and earlier volcanic landforms) influences the stress regime, seismicity, and volcanic activity. Conversely, the masses of these volcanoes introduce a morphological anomaly that affects neighboring areas. Growth of a volcano disturbs the tectonic framework of the region, clamps and unclamps existing faults (some of which may be reactivated by the new stress field), and deforms the substratum. A volcano's weight on its basement can trigger edifice spreading and collapse that can affect populated areas even at significant distance. Volcano instability can also be driven by slow tectonic deformation and magmatic intrusion. The manifestations of instability span a range of temporal and spatial scales, ranging from slow creep on individual faults to large earthquakes affecting a broad area. In the frame of MED-SVU project, our work aims to investigate the relation between basement setting and volcanic activity and stability at three Supersite volcanoes: Etna (Sicily, Italy), Kilauea (Island of Hawaii, USA) and Piton de la Fournaise (La Reunion Island, France). These volcanoes host frequent eruptive activity (effusive and explosive) and share common features indicating lateral spreading and collapse, yet they are characterized by different morphologies, dimensions, and tectonic frameworks. For instance, the basaltic ocean island volcanoes of Kilauea and Piton de la Fournaise are near the active ends of long hotspot chains while Mt. Etna has developed at junction along a convergent margin between the African and Eurasian plates and a passive margin separating the oceanic Ionian crust from the African continental crust. Magma supply and plate velocity also differ in the three settings, as to the sizes of the edifices and the extents of their rift zones. These

  17. Effects of alkali treatments on Ag nanowire transparent conductive films

    NASA Astrophysics Data System (ADS)

    Kim, Sunho; Kang, Jun-gu; Eom, Tae-yil; Moon, Bongjin; Lee, Hoo-Jeong

    2016-06-01

    In this study, we employ various alkali materials (alkali metals with different base strengths, and ammonia gas and solution) to improve the conductivity of silver nanowire (Ag NW)-networked films. The alkali treatment appears to remove the surface oxide and improve the conductivity. When applied with TiO2 nanoparticles, the treatment appears more effective as the alkalis gather around wire junctions and help them weld to each other via heat emitted from the reduction reaction. The ammonia solution treatment is found to be quick and aggressive, damaging the wires severely in the case of excessive treatment. On the other hand, the ammonia gas treatment seems much less aggressive and does not damage the wires even after a long exposure. The results of this study highlight the effectiveness of the alkali treatment in improving of the conductivity of Ag NW-networked transparent conductive films.

  18. Performance of Straight Steel Fibres Reinforced Alkali Activated Concrete

    NASA Astrophysics Data System (ADS)

    Faris, Meor Ahmad; Bakri Abdullah, Mohd Mustafa Al; Nizar Ismail, Khairul; Muniandy, Ratnasamy; Putra Jaya, Ramadhansyah

    2016-06-01

    This paper focus on the performance of alkali activated concrete produced by using fly ash activated by sodium silicate and sodium hydroxide solutions. These alkali activated concrete were reinforced with straight steel fibres with different weight percentage starting from 0 % up to 5 %. Chemical composition of raw material in the production alkali activated concrete which is fly ash was first identified by using X-ray fluorescence. Results reveal there have an effect of straight steel fibres inclusion to the alkali activated concrete. Highest compressive strength of alkali activated concrete which is 67.72 MPa was obtained when 3 % of straight fibres were added. As well as flexural strength, highest flexural strength which is 6.78 MPa was obtained at 3 % of straight steel fibres inclusions.

  19. Diversity and Mechanisms of Alkali Tolerance in Lactobacilli▿

    PubMed Central

    Sawatari, Yuki; Yokota, Atsushi

    2007-01-01

    We determined the maximum pH that allows growth (pHmax) for 34 strains of lactobacilli. High alkali tolerance was exhibited by strains of Lactobacillus casei, L. paracasei subsp. tolerans, L. paracasei subsp. paracasei, L. curvatus, L. pentosus, and L. plantarum that originated from plant material, with pHmax values between 8.5 and 8.9. Among these, L. casei NRIC 1917 and L. paracasei subsp. tolerans NRIC 1940 showed the highest pHmax, at 8.9. Digestive tract isolates of L. gasseri, L. johnsonii, L. reuteri, L. salivarius subsp. salicinius, and L. salivarius subsp. salivarius exhibited moderate alkali tolerance, with pHmax values between 8.1 and 8.5. Dairy isolates of L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, and L. helveticus exhibited no alkali tolerance, with pHmax values between 6.7 and 7.1. Measurement of the internal pH of representative strains revealed the formation of transmembrane proton gradients (ΔpH) in a reversed direction (i.e., acidic interior) at alkaline external-pH ranges, regardless of their degrees of alkali tolerance. Thus, the reversed ΔpH did not determine alkali tolerance diversity. However, the ΔpH contributed to alkali tolerance, as the pHmax values of several strains decreased with the addition of nigericin, which dissipates ΔpH. Although neutral external-pH values resulted in the highest glycolysis activity in the presence of nigericin regardless of alkali tolerance, substantial glucose utilization was still detected in the alkali-tolerant strains, even in a pH range of between 8.0 and 8.5, at which the remaining strains lost most activity. Therefore, the alkali tolerance of glycolysis reactions contributes greatly to the determination of alkali tolerance diversity. PMID:17449704

  20. The Cobb-Eickelberg seamount chain: Hotspot volcanism with mid-ocean ridge basalt affinity

    SciTech Connect

    Desonie, D.L.; Duncan, R.A. )

    1990-08-10

    Cobb hotspot, currently located beneath Axial seamount on the Juan de Fuca ridge, has the temporal but not the isotopic characteristics usually attributed to a mantle plume. The earlier volcanic products of the hotspot, form eight volcanoes in the Cobb-Eickelberg seamount (CES) chain, show a westward age progression away from the hotspot and a westward increase in the age difference between the seamounts and the crust on which they formed. These results are consistent with movement of the Pacific plate over a fixed Cobb hotspot and eventual encroachment by the westwardly migrating Juan de Fuca ridge. CES lavas are slightly enriched in alkalies and incompatible elements relative to those of the Juan de Fuca ridge but they have Sr, Nd, and Pb isotopic compositions virtually identical to those found along the ridge. Therefore, Cobb hotspot is a stationary, upper mantle melting anomaly whose volcanic products show strong mid-ocean ridge basalt (MORB) affinity. These observations can be explained by low degrees of partial melting of entrained heterogeneous upper mantle MORB source material within a thermally driven lower mantle diapir or by an intrinsic MORB-like composition of the deeper mantle source region from which northeast Pacific plumes rise.

  1. Basaltic Cone Suggests Constructional Origin of Some Guyots.

    PubMed

    Christensen, M N; Gilbert, C M

    1964-01-17

    A basaltic cinder cone was built beneath the waters of Mono Lake in Pleistocene time. This cone is now exposed. Its internal structure, external form, and petrography suggest that it was constructed with a flat top. PMID:17753148

  2. Lu-Hf CONSTRAINTS ON THE EVOLUTION OF LUNAR BASALTS.

    USGS Publications Warehouse

    Fujimaki, Hirokazu; Tatsumoto, Mistunobu

    1984-01-01

    The authors show that a cumulate-remelting model best explains the recently acquired data on the Lu-Hf systematics of lunar mare basalts. The authors model is first constructed using the Lu and Hf concentration data and it is then further strengthened by the Hf isotopic evidence. The authors also show that the similarity of MgO/FeO ratios and the Cr//2O//3 contents between high-Ti and low-Ti basalts, which have been given significance by A. E. Ringwood and D. H. Green are not important constraints for lunar basalt petrogenesis. The authors principal aim is to revive the remelting model for further consideration with the powerful constraints of Lu-Hf systematics of lunar basalts.

  3. [Comparative carcinogenic properties of basalt fiber and chrysotile-asbestos].

    PubMed

    Nikitina, O V; Kogan, F M; Vanchugova, N N; Frash, V N

    1989-01-01

    In order to eliminate asbestos adverse effect on workers' health it was necessary to use mineral rayon, primarily basalt fibre, instead of asbestos. During a chronic experiment on animals the oncogenicity of 2 kinds of basalt fibre was studied compared to chrysotile asbestos. The dust dose of 25 mg was twice administered by intraperitonial route. All types of dust induced the onset of intraperitonial mesotheliomas but neoplasm rates were significantly lower in the groups exposed to basalt fibre. There was no credible data on the differences between the groups exposed to various types of basalt fibre. Since the latter produced some oncogenic effect, it was necessary to develop a complex of antidust measures, fully corresponding to the measures adopted for carcinogenic dusts. PMID:2545547

  4. Computation of EABF and EBF for basalt rock samples

    NASA Astrophysics Data System (ADS)

    Karabul, Yaşar; Amon Susam, Lidya; İçelli, Orhan; Eyecioğlu, Önder

    2015-10-01

    In this study, certain photon absorption parameters including the energy absorption buildup factor (EABF) and exposure buildup factor (EBF) have been investigated for three different basalt samples collected from different parts of Van city. Radiation shielding properties of the basalt samples indicated a strong correlation between photon energy absorption parameters and values of EABF and EBF of basalt samples. It was found that EABF and EBF parameters are related to radiation shielding properties of basalt samples. A new method and algorithm based on ZXCOM was used. Instead of calculating G-P fitting parameters for every effective atomic number (Zeff), EABF and EBF were calculated for Zeff by interpolation, using ANSI/ANS 6.4.3 standard data available for Zeff.

  5. Systematics of Vanadium in Olivine from Planetary Basalts

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Papike, J. J.; Shearer, C. K.

    2002-01-01

    The systematics of vanadium in olivines from the Earth, Moon and Mars allows for the comparison of planetary basalt origin and igneous setting and process. Additional information is contained in the original extended abstract.

  6. A Modified CIPW Norm Calculation for Lunar Mare Basalts

    NASA Technical Reports Server (NTRS)

    Milliken, R. E.; Basu, A.

    2000-01-01

    CIPW norms of lunar mare basalts are anomalously low in pyroxene. A modified norm calculation allowing higher Ca, Ti, Al, Cr, and Mn in di' and hy' obtains closer matches between normative and modal mineralogy.

  7. Potential for Carbon Dioxide Sequestration in Flood Basalts

    SciTech Connect

    McGrail, B. PETER; Schaef, Herbert T.; Ho, Anita M.; Chien, Yi-Ju; Dooley, James J.; Davidson, Casie L.

    2006-12-01

    Flood basalts are a potentially important host medium for geologic sequestration of anthropogenic CO2. Most lava flows have flow tops that are porous, permeable, and have enormous capacity for storage of CO2. Interbedded sediment layers and dense low-permeability basalt rock overlying sequential flows may act as effective seals allowing time for mineralization reactions to occur. Laboratory experiments confirm relatively rapid chemical reaction of CO2-saturated pore water with basalts to form stable carbonate minerals. Calculations suggest a sufficiently short time frame for onset of carbonate precipitation after CO2 injection that verification of in situ mineralization rates appears feasible in field pilot studies. If proven viable, major flood basalts in the U.S. and India would provide significant additional CO2 storage capacity and additional geologic sequestration options in certain regions where more conventional storage options are limited.

  8. Low temperature aqueous alteration of basalt: Mineral assemblages of Deccan basalts and implications for Mars

    NASA Astrophysics Data System (ADS)

    Greenberger, R. N.; Mustard, J. F.; Kumar, P. S.; Dyar, M. D.; Breves, E. A.; Sklute, E. C.

    2012-09-01

    Al-rich phyllosilicates (kaolinite, montmorillonite) have been found in layers overlying Fe/Mg-smectites on Mars, and it has been suggested that this stratigraphy formed through in situ leaching at the surface, similar to terrestrial weathering profiles. We are investigating the remotely sensed signatures of this type of weathering using ten samples from a vertical section of altered Deccan basalts and four samples collected nearby as an analog for leaching resulting in Al-rich phyllosilicate over Fe/Mg-smectite stratigraphies. Samples were analyzed with reflectance spectroscopy from 0.28 to 25.0 μm, inductively coupled plasma atomic emission spectrometry for 10 major element concentrations (Al, Ca, Fe, K, Mg, Mn, Na, P, Si, Ti), loss on ignition for volatiles, x-ray diffraction (XRD) for mineralogies, and Mössbauer spectroscopy for Fe redox state. Spectra of basalt samples were dominated by Fe2+ crystal field transitions with weak alteration bands near 1.4 and/or 1.9 μm. Reststrahlen bands in mid-infrared showed the convolution of plagioclase and pyroxene features typical of basalts. Saprolite samples were incompletely leached, and their spectra were dominated by complex Al- and Fe/Mg-bearing smectite clays and retained no original mafic signatures. XRD and Mössbauer detected pyroxene and plagioclase not visible by reflectance spectroscopy in some saprolite samples. Zeolites were present throughout the saprolite. The laterite was the most leached horizon, and all analyses showed kaolinite and iron oxide assemblages. This kaolinite and hematite association would be expected if kaolinite on Mars formed through leaching under conditions similar to those on Earth and has implications for abundant freshwater on the Martian surface.

  9. Degassing of carbon dioxide from basaltic magma at spreading centers: II. mid-oceanic ridge basalts

    NASA Astrophysics Data System (ADS)

    Gerlach, Terrence M.

    1989-11-01

    This study examines the hypothesis that a significant fraction of the CO 2 in basalt supplied to mid-oceanic spreading centers escapes by degassing from magma chambers of the oceanic crust. The approach employs mass balance calculations, stepped-heating data for carbon in sea-floor mid-oceanic ridge basalts (MORBs), and the CO 2 content determined in part I for transitional basalt supplied to the Erta'Ale spreading center in the Afar depression. It is also shown as part of the analysis that carbon data acquired for sea-floor MORBs by single-heating techniques give systematically high values that are difficult to reconcile with solubility data for CO 2 in MORB liquid and the depths of subridge magma chambers. The results confirm the hypothesis. A conservative estimate of the average loss of CO 2 during degassing from subridge magma chambers is between 30 and 65% of the CO 2 initially present in the magma. The conservative estimate for CO 2 degassing at depth is between two and seven times greater than the maximum amount of volcanic CO 2 degassing from MORB. CO 2 degassing from subridge magma chambers is sufficient to supply much (perhaps most) of the mantle carbon discharged from the global mid-oceanic spreading system to the oceans. CO 2 degassing from subridge magma chambers has several important implications. It may be more important than hydrothermal stripping in supplying mantle carbon to mid-oceanic hydrothermal vents. It is an effective mechanism for removing most of the heavier rare gases (Ar, Kr, Xe, and Rn) and much of the He and Ne in magma supplied to mid-oceanic spreading centers and for transporting them and possibly other volatiles from subridge magma chambers to the ocean-atmosphere system. It should also be an effective mechanism for fractionating carbon isotopes in MORB.

  10. Hafnium isotope variations in oceanic basalts

    NASA Technical Reports Server (NTRS)

    Patchett, P. J.; Tatsumoto, M.

    1980-01-01

    Hafnium isotope ratios generated by the beta(-) decay of Lu-176 are investigated in volcanic rocks derived from the suboceanic mantle. Hf-176/Hf-177 and Lu/Hf ratios were determined to precisions of 0.01-0.04% and 0.5%, respectively, by routine, low-blank chemistry. The Hf-176/Hf-177 ratio is found to be positively correlated with the Nd-143/Nd-144 ratio and negatively correlated with the Sr-87/Sr-86 and Pb-206/Pb-204 ratios, and to increase southwards along the Iceland-Reykjanes ridge traverse. An approximate bulk earth Hf-176/Hf-177 ratio of 0.28295 is inferred from the bulk earth Nd-143/Nd-144 ratio, which requires a bulk earth Lu/Hf ratio of 0.25, similar to the Juvinas eucrite. Midocean ridge basalts are shown to account for 60% of the range of Hf isotope ratios, and it is suggested that Lu-Hf fractionation is decoupled from Sm-Nd and Rb-Sr fractionation in very trace-element-depleted source regions as a result of partial melting.

  11. Basalt Waste Isolation Project Reclamation Support Project:

    SciTech Connect

    Brandt, C.A.; Rickard, W.H. Jr.; Cadoret, N.A.

    1992-06-01

    The Basalt Waste Isolation Project (BWIP) Reclamation Support Project began in the spring of 1988 by categorizing sites distributed during operations of the BWIP into those requiring revegetation and those to be abandoned or transferred to other programs. The Pacific Northwest Laboratory's role in this project was to develop plans for reestablishing native vegetation on the first category of sites, to monitor the implementation of these plans, to evaluate the effectiveness of these efforts, and to identify remediation methods where necessary. The Reclamation Support Project focused on three major areas: geologic hydrologic boreholes, the Exploratory Shaft Facility (ESF), and the Near-Surface Test Facility (NSTF). A number of BWIP reclamation sites seeded between 1989 and 1990 were found to be far below reclamation objectives. These sites were remediated in 1991 using various seedbed treatments designed to rectify problems with water-holding capacity, herbicide activity, surficial crust formation, and nutrient imbalances. Remediation was conducted during November and early December 1991. Sites were examined on a monthly basis thereafter to evaluate plant growth responses to these treatments. At all remediation sites early plant growth responses to these treatments. At all remediation sites, early plant growth far exceeded any previously obtained using other methods and seedbed treatments. Seeded plants did best where amendments consisted of soil-plus-compost or fertilizer-only. Vegetation growth on Gable Mountain was less than that found on other areas nearby, but this difference is attributed primarily to the site's altitude and north-facing orientation.

  12. Magnesium-rich Basalts on Mercury

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2013-05-01

    X-ray and gamma-ray spectrometers on NASA's MESSENGER spacecraft are making key measurements regarding the composition and properties of the surface of Mercury, allowing researchers to more clearly decipher the planet's formation and geologic history. The origin of the igneous rocks in the crust of Mercury is the focus of recent research by Karen Stockstill-Cahill and Tim McCoy (National Museum of Natural History, Smithsonian Institution), along with Larry Nittler and Shoshana Weider (Carnegie Institution of Washington) and Steven Hauck II (Case Western Reserve University). Using the well-known MELTS computer code Stockstill-Cahill and coauthors worked with MESSENGER-derived and rock-analog compositions to constrain petrologic models of the lavas that erupted on the surface of Mercury. Rock analogs included a partial melt of the Indarch meteorite and a range of Mg-rich terrestrial rocks. Their work shows the lavas on Mercury are most similar to terrestrial magnesian basalt (with lowered FeO content). The implications of the modeling are that Mg-rich lavas came from high-temperature sources in Mercury's mantle and erupted at high temperature with exceptionally low viscosity into thinly bedded and laterally extensive flows, concepts open to further evaluation by laboratory experiments and by geologic mapping of Mercury's surface using MESSENGER's imaging system and laser altimeter to document flow features and dimensions.

  13. Diversity of life in ocean floor basalt

    NASA Astrophysics Data System (ADS)

    Thorseth, I. H.; Torsvik, T.; Torsvik, V.; Daae, F. L.; Pedersen, R. B.

    2001-12-01

    Electron microscopy and biomolecular methods have been used to describe and identify microbial communities inhabiting the glassy margins of ocean floor basalts. The investigated samples were collected from a neovolcanic ridge and from older, sediment-covered lava flows in the rift valley of the Knipovich Ridge at a water depth around 3500 m and an ambient seawater temperature of -0.7°C. Successive stages from incipient microbial colonisation, to well-developed biofilms occur on fracture surfaces in the glassy margins. Observed microbial morphologies are various filamentous, coccoidal, oval, rod-shaped and stalked forms. Etch marks in the fresh glass, with form and size resembling the attached microbes, are common. Precipitation of alteration products around microbes has developed hollow subspherical and filamentous structures. These precipitates are often enriched in Fe and Mn. The presence of branching and twisted stalks that resemble those of the iron-oxidising Gallionella, indicate that reduced iron may be utilised in an energy metabolic process. Analysis of 16S-rRNA gene sequences from microbes present in the rock samples, show that the bacterial population inhabiting these samples cluster within the γ- and ɛ-Proteobacteria and the Cytophaga/Flexibacter/Bacteroides subdivision of the Bacteria, while the Archaea all belong to the Crenarchaeota kingdom. This microbial population appears to be characteristic for the rock and their closest relatives have previously been reported from cold marine waters in the Arctic and Antarctic, deep-sea sediments and hydrothermal environments.

  14. Lead isotope systematics of mare basalt 75075

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Tilton, G. R.; Mattinson, J. M.; Vidal, P.

    1978-01-01

    Uranium, thorium and isotopic lead data are reported for two bulk samples and separated pyroxene, ilmenite and plagioclase from basalt 75075. In a concordia diagram the whole rock, ilmenite and four pyroxene samples define a chord intersecting the concordia curve at approximately 4.25 and 2.8 AE. Three plagioclase samples plot distinctly off the chord. The crystallization age of 75075 is accurately determined at 3.74 AE by Rb-Sr, Sm-Nd and K-Ar measurements from other laboratories. It is not possible to adjust the isotopic composition of initial lead so as to reconcile the U-Pb data with a crystallization age of 3.74 AE. The data therefore indicate some type of post-crystallization disturbance of the U-Pb system that is not detected by the other systems. The 75075 data are one of the few examples of this type of age pattern found on the moon. If the disturbance was a single event, it probably occurred around 2.8 AE ago, the time indicated by the pyroxene, whole rock and ilmenite data.

  15. Austin chalk yields oil near basaltic cone

    SciTech Connect

    Not Available

    1990-09-03

    This paper reports on the completion of a Cretaceous Austin chalk horizontal oil well near a basaltic cone in the Uvalde volcanic field area of Dimmit County, Tex. The well is the HDP Inc. 1 autumn Unit, about 9 miles northeast to Carrizo Springs HDP, which stands for horizontal development and production, of Palo Alto, Calif., drilled the well on a farmout from American Exploration Co., Houston. It initially pumped and flowed 1,600 b/d of oil without stimulation from openhole. HDP drilled about 1,500 ft of horizontal and deviated hole in Austin chalk B-1, the producing horizon. Production in late August was about 500 b/d of oil, pending determination of proration unit size and allowable. The well, in the greater Pearsall field Austin chalk play along the Dimmit-Savala county line, is the first horizontal chalk producer in Elaine field. The field has produced mainly from Escondido sand, Olmos sand and Anacacho limestone, all in the Upper Cretaceous.

  16. Quantifying the Chemical Weathering Efficiency of Basaltic Catchments

    NASA Astrophysics Data System (ADS)

    Ibarra, D. E.; Caves, J. K.; Thomas, D.; Chamberlain, C. P.; Maher, K.

    2014-12-01

    The geographic distribution and areal extent of rock type, along with the hydrologic cycle, influence the efficiency of global silicate weathering. Here we define weathering efficiency as the production of HCO3- for a given land surface area. Modern basaltic catchments located on volcanic arcs and continental flood basalts are particularly efficient, as they account for <5% of sub-aerial bedrock but produce ~30% of the modern global weathering flux. Indeed, changes in this weathering efficiency are thought to play an important role in modulating Earth's past climate via changes in the areal extent and paleo-latitude of basaltic catchments (e.g., Deccan and Ethiopian Traps, southeast Asia basaltic terranes). We analyze paired river discharge and solute concentration data for basaltic catchments from both literature studies and the USGS NWIS database to mechanistically understand geographic and climatic influences on weathering efficiency. To quantify the chemical weathering efficiency of modern basalt catchments we use solute production equations and compare the results to global river datasets. The weathering efficiency, quantified via the Damköhler coefficient (Dw [m/yr]), is calculated from fitting concentration-discharge relationships for catchments with paired solute and discharge measurements. Most basalt catchments do not demonstrate 'chemostatic' behavior. The distribution of basalt catchment Dw values (0.194 ± 0.176 (1σ)), derived using SiO2(aq) concentrations, is significantly higher than global river Dw values (mean Dw of 0.036), indicating a greater chemical weathering efficiency. Despite high Dw values and total weathering fluxes per unit area, many basaltic catchments are producing near their predicted weathering flux limit. Thus, weathering fluxes from basaltic catchments are proportionally less responsive to increases in runoff than other lithologies. The results of other solute species (Mg2+ and Ca2+) are comparable, but are influenced both by

  17. Elastic properties of alkali-feldspars

    NASA Astrophysics Data System (ADS)

    Waeselmann, N.; Brown, J.; Angel, R. J.; Ross, N.; Kaminsky, W.

    2013-12-01

    New measurements of single crystal elastic moduli for a suite of the alkali feldspars are reported. In order to interpret Earth's seismic structure, knowledge of the elastic properties of constituent minerals is essential. The elasticity of feldspar minerals, despite being the most abundant phase in Earth's crust (estimated to be more than 60%), were previously poorly characterized. All prior seismic and petrologic studies have utilized 50-year-old results, of questionable quality, based on 1-bar measurements on pseudo-single crystals. Alkali-feldspars present a large experimental challenge associated with their structural complexity. In the K-end member (KAlSi3O8) the symmetry is governed by Al/Si ordering, in the Na-end member (NaAlSi3O8) the symmetry is governed by whether or not there is a displacive collapse of the framework independent of the Al/Si ordering. K-feldspars exhibit monoclinic (C2/m) symmetry (necessitating determination of 13 elastic moduli) if disordered and triclinic (C-1) symmetry (21 elastic moduli) if ordered. Exsolution of Na-rich and K-rich phases is ubiquitous in natural samples, making it difficult to find suitable single phase and untwinned samples for study. The small single domain samples selected for this study were previously characterized by x-ray diffraction and microprobe analysis to ensure adequate sample quality. Surface wave velocities were measured on oriented surfaces of natural and synthetic single crystals using impulsively stimulated light scattering. A surface corrugation with a spacing of about 2 microns was impulsively created by the overlap of 100 ps infrared light pulses. The time evolution of the stimulated standing elastic waves was detected by measuring the intensity of diffraction from the surface corrugation of a variably delayed probe pulse. This method allows accurate (better than 0.2%) determination of velocities on samples smaller than 100 microns. The combination of measured surface wave velocities and

  18. Radiolytic Hydrogen Production in the Subseafloor Basaltic Aquifer

    PubMed Central

    Dzaugis, Mary E.; Spivack, Arthur J.; Dunlea, Ann G.; Murray, Richard W.; D’Hondt, Steven

    2016-01-01

    Hydrogen (H2) is produced in geological settings by dissociation of water due to radiation from radioactive decay of naturally occurring uranium (238U, 235U), thorium (232Th) and potassium (40K). To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we use radionuclide concentrations of 43 basalt samples from IODP Expedition 329 to calculate radiolytic H2 production rates in basement fractures. The samples are from three sites with very different basement ages and a wide range of alteration types. U, Th, and K concentrations vary by up to an order of magnitude from sample to sample at each site. Comparison of our samples to each other and to the results of previous studies of unaltered East Pacific Rise basalt suggests that significant variations in radionuclide concentrations are due to differences in initial (unaltered basalt) concentrations (which can vary between eruptive events) and post-emplacement alteration. However, there is no clear relationship between alteration type and calculated radiolytic yields. Local maxima in U, Th, and K produce hotspots of H2 production, causing calculated radiolytic rates to differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production, where microfractures are hotspots for radiolytic H2 production. For example, H2 production rates normalized to water volume are 190 times higher in 1 μm wide fractures than in fractures that are 10 cm wide. To assess the importance of water radiolysis for microbial communities in subseafloor basaltic aquifers, we compare electron transfer rates from radiolysis to rates from iron oxidation in subseafloor basalt. Radiolysis appears likely to be a more important electron donor source than iron oxidation in old (>10 Ma) basement basalt. Radiolytic H2 production in the volume of water adjacent to a square cm of the most radioactive SPG basalt may support as many as

  19. Radiolytic Hydrogen Production in the Subseafloor Basaltic Aquifer.

    PubMed

    Dzaugis, Mary E; Spivack, Arthur J; Dunlea, Ann G; Murray, Richard W; D'Hondt, Steven

    2016-01-01

    Hydrogen (H2) is produced in geological settings by dissociation of water due to radiation from radioactive decay of naturally occurring uranium ((238)U, (235)U), thorium ((232)Th) and potassium ((40)K). To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we use radionuclide concentrations of 43 basalt samples from IODP Expedition 329 to calculate radiolytic H2 production rates in basement fractures. The samples are from three sites with very different basement ages and a wide range of alteration types. U, Th, and K concentrations vary by up to an order of magnitude from sample to sample at each site. Comparison of our samples to each other and to the results of previous studies of unaltered East Pacific Rise basalt suggests that significant variations in radionuclide concentrations are due to differences in initial (unaltered basalt) concentrations (which can vary between eruptive events) and post-emplacement alteration. However, there is no clear relationship between alteration type and calculated radiolytic yields. Local maxima in U, Th, and K produce hotspots of H2 production, causing calculated radiolytic rates to differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production, where microfractures are hotspots for radiolytic H2 production. For example, H2 production rates normalized to water volume are 190 times higher in 1 μm wide fractures than in fractures that are 10 cm wide. To assess the importance of water radiolysis for microbial communities in subseafloor basaltic aquifers, we compare electron transfer rates from radiolysis to rates from iron oxidation in subseafloor basalt. Radiolysis appears likely to be a more important electron donor source than iron oxidation in old (>10 Ma) basement basalt. Radiolytic H2 production in the volume of water adjacent to a square cm of the most radioactive SPG basalt may support as

  20. Basalt: Biologic Analog Science Associated with Lava Terrains

    NASA Astrophysics Data System (ADS)

    Lim, D. S. S.; Abercromby, A.; Kobs-Nawotniak, S. E.; Kobayashi, L.; Hughes, S. S.; Chappell, S.; Bramall, N. E.; Deans, M. C.; Heldmann, J. L.; Downs, M.; Cockell, C. S.; Stevens, A. H.; Caldwell, B.; Hoffman, J.; Vadhavk, N.; Marquez, J.; Miller, M.; Squyres, S. W.; Lees, D. S.; Fong, T.; Cohen, T.; Smith, T.; Lee, G.; Frank, J.; Colaprete, A.

    2015-12-01

    This presentation will provide an overview of the BASALT (Biologic Analog Science Associated with Lava Terrains) program. BASALT research addresses Science, Science Operations, and Technology. Specifically, BASALT is focused on the investigation of terrestrial volcanic terrains and their habitability as analog environments for early and present-day Mars. Our scientific fieldwork is conducted under simulated Mars mission constraints to evaluate strategically selected concepts of operations (ConOps) and capabilities with respect to their anticipated value for the joint human and robotic exploration of Mars. a) Science: The BASALT science program is focused on understanding habitability conditions of early and present-day Mars in two relevant Mars-analog locations (the Southwest Rift Zone (SWRZ) and the East Rift Zone (ERZ) flows on the Big Island of Hawai'i and the eastern Snake River Plain (ESRP) in Idaho) to characterize and compare the physical and geochemical conditions of life in these environments and to learn how to seek, identify, and characterize life and life-related chemistry in basaltic environments representing these two epochs of martian history. b) Science Operations: The BASALT team will conduct real (non-simulated) biological and geological science at two high-fidelity Mars analogs, all within simulated Mars mission conditions (including communication latencies and bandwidth constraints) that are based on current architectural assumptions for Mars exploration missions. We will identify which human-robotic ConOps and supporting capabilities enable science return and discovery. c) Technology: BASALT will incorporate and evaluate technologies in to our field operations that are directly relevant to conducting the scientific investigations regarding life and life-related chemistry in Mars-analogous terrestrial environments. BASALT technologies include the use of mobile science platforms, extravehicular informatics, display technologies, communication

  1. Genesis of highland basalt breccias - A view from 66095

    NASA Technical Reports Server (NTRS)

    Garrison, J. R., Jr.; Taylor, L. A.

    1980-01-01

    Electron microprobe and defocused beam analyses of the lunar highland breccia sample 66095 show it consists of a fine-grained subophitic matrix containing a variety of mineral and lithic clasts, such as intergranular and cataclastic ANT, shocked and unshocked plagioclase, and basalts. Consideration of the chemistries of both matrix and clasts provides a basis for a qualitative three-component mixing model consisting of an ANT plutonic complex, a Fra Mauro basalt, and minor meteoric material.

  2. Shocked basalt from Lonar Impact Crater, India, and experimental analogues

    NASA Technical Reports Server (NTRS)

    Kieffer, S. W.; Schaal, R. B.; Gibbons, R.; Horz, F.; Milton, D. J.; Dube, A.

    1976-01-01

    Samples of Lonar basalts were experimentally shocked in vacuum to pressures between 200 and 650 kbar by a 20 mm, high-velocity gun. Plagioclase and palagonite in experimentally shocked samples show deformation similar to that in the naturally shocked rocks, but pyroxene does not show optically resolvable edge melting. It is estimated that pressures in excess of 800-1000 kbar are required for the formation of totally shock-melted rocks from nonporous basalt.

  3. Solvent-averaged potentials for alkali-, earth alkali-, and alkylammonium halide aqueous solutions

    NASA Astrophysics Data System (ADS)

    Hess, Berk; van der Vegt, Nico F. A.

    2007-12-01

    We derive effective, solvent-free ion-ion potentials for alkali-, earth alkali-, and alkylammonium halide aqueous solutions. The implicit solvent potentials are parametrized to reproduce experimental osmotic coefficients. The modeling approach minimizes the amount of input required from atomistic (force field) models, which usually predict large variations in the effective ion-ion potentials at short distances. For the smaller ion species, the reported potentials are composed of a Coulomb and a Weeks-Chandler-Andersen term. For larger ions, we find that an additional, attractive potential is required at the contact minimum, which is related to solvent degrees of freedom that are usually not accounted for in standard electrostatics models. The reported potentials provide a simple and accurate force field for use in molecular dynamics and Monte Carlo simulations of (poly-)electrolyte systems.

  4. Alkali oxide-tantalum oxide and alkali oxide-niobium oxide ionic conductors

    NASA Technical Reports Server (NTRS)

    Roth, R. S.; Parker, H. S.; Brower, W. S.; Minor, D.

    1974-01-01

    A search was made for new cationic conducting phases in alkali-tantalate and niobate systems. The phase equilibrium diagrams were constructed for the six binary systems Nb2O5-LiNbO3, Nb2O5-NaNbO3, Nb2O5-KNbO3, Ta2O5-NaTaO3, Ta2O5-LiTaO3, and Ta2O5-KTaO3. Various other binary and ternary systems were also examined. Pellets of nineteen phases were evaluated (by the sponsoring agency) by dielectric loss measurements. Attempts were made to grow large crystals of eight different phases. The system Ta2O5-KTaO3 contains at least three phases which showed peaks in dielectric loss vs. temperature. All three contain structures related to the tungsten bronzes with alkali ions in non-stoichiometric crystallographic positions.

  5. Insulation from basaltic stamp sand. Final technical report

    SciTech Connect

    Williams, F. D.

    1981-04-01

    A Midwest Appropriate Technology Grant was awarded to determine the technical and economic feasibility of producing mineral-fiber insulation directly from extensive deposits of basaltic sand produced during former mining and milling operations in the Keweenaw Peninsula region of Michigan's Upper Peninsula. The amounts of local basaltic sands available and representative chemical compositions were determined. The variation of viscosity with temperature and chemical composition was estimated. Samples were melted and either pulled or blown into fiber. In all cases fiber could be made with a reasonable tensile strength to ensure usefulness. It was concluded that it was technically feasible to produce fibers from basaltic stamp sands of the Upper Peninsula of Michigan. A technical feasibility study using published data, a cost and design analysis of a basalt fiber production plant, a market survey of fiber needs, and an economic analysis for investing in a basalt fiber venture was undertaken. These studies concluded that the local production of basaltic insulation was both feasible and economically reasonable. It was suggested that the plant be located in a region of greater population density with lower utility costs. A representative one-third of these studies is included as appendices A, B, C, and D.

  6. Sensitivity of geochemical monitoring for CO2 sequestration in basalt

    NASA Astrophysics Data System (ADS)

    Zakharova, N. V.; Goldberg, D.; Herron, M.; Grau, J.

    2010-12-01

    Continental flood basalts is a promising target for carbon dioxide (CO2) storage due to high storage capacity, presence of seals, and potential for geochemical trapping which results in binding CO2 into stable carbonate minerals. The success of long-term CO2 storage in igneous rocks highly depends on our ability to monitor mineralization under in situ conditions. The direct chemistry measurements on cores are costly and typically do not provide continuous coverage. In this study we investigate the potential of borehole geochemical logging for monitoring of CO2 mineralization in basalt. Neutron-induced capture gamma ray spectroscopy tools allow obtaining in-situ concentration logs for up to 10 major elements which can be used to construct a quantitative mineralogical model. While this usually provides good bulk mineralogy estimates, detecting small-volume mineral alteration in volcanic rocks remains challenging, especially if borehole conditions are poor. We analyze Schlumberger Elemental Capture Spectroscopy logs and chemical core analysis from the pilot CO2 sequestration project in the Columbia River flood basalt. We use the geochemical spectroscopy logs and quantitative modeling to quantify their sensitivity to secondary mineralization in basalt. We apply statistical analysis to explain the variance in elemental concentrations (and other logs) and establish detection limits for various mineral alteration products in basalt. We use these results to evaluate monitoring capabilities and limitations of geochemical logging for CO2 mineralization after underground injection in basalt and suggest areas for future research.

  7. A basalt trigger for the 1991 eruptions of Pinatubo volcano?

    USGS Publications Warehouse

    Pallister, J.S.; Hoblitt, R.P.; Reyes, A.G.

    1992-01-01

    THE eruptive products of calc-alkaline volcanos often show evidence for the mixing of basaltic and acid magmas before eruption (see, for example, refs 1, 2). These observations have led to the suggestion3 that the injection of basaltic magma into the base of a magma chamber (or the catastrophic overturn of a stably stratified chamber containing basaltic magma at its base) might trigger an eruption. Here we report evidence for the mixing of basaltic and dacitic magmas shortly before the paroxysmal eruptions of Pinatubo volcano on 15 June 1991. Andesitic scoriae erupted on 12 June contain minerals and glass with disequilibrium compositions, and are considerably more mafic than the dacitic pumices erupted on 15 June. Differences in crystal abundance and glass composition among the pumices may arise from pre-heating of the dacite magma by the underlying basaltic liquid before mixing. Degassing of this basaltic magma may also have contributed to the climatologically important sulphur dioxide emissions that accompanied the Pinatubo eruptions.

  8. Thermal infrared spectroscopy and modeling of experimentally shocked basalts

    USGS Publications Warehouse

    Johnson, J. R.; Staid, M.I.; Kraft, M.D.

    2007-01-01

    New measurements of thermal infrared emission spectra (250-1400 cm-1; ???7-40 ??m) of experimentally shocked basalt and basaltic andesite (17-56 GPa) exhibit changes in spectral features with increasing pressure consistent with changes in the structure of plagioclase feldspars. Major spectral absorptions in unshocked rocks between 350-700 cm-1 (due to Si-O-Si octahedral bending vibrations) and between 1000-1250 cm-1 (due to Si-O antisymmetric stretch motions of the silica tetrahedra) transform at pressures >20-25 GPa to two broad spectral features centered near 950-1050 and 400-450 cm-1. Linear deconvolution models using spectral libraries composed of common mineral and glass spectra replicate the spectra of shocked basalt relatively well up to shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation in plagioclase. Inclusion of shocked feldspar spectra in the libraries improves fits for more highly shocked basalt. However, deconvolution models of the basaltic andesite select shocked feldspar end-members even for unshocked samples, likely caused by the higher primary glass content in the basaltic andesite sample.

  9. Hotspots, basalts, and the evolution of the mantle

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1981-01-01

    It is noted that the trace element concentration patterns of continental and ocean island basalts and of mid-ocean ridge basalts are complementary. Estimates of the relative sizes of the source regions for these fundamentally different basalt types can be arrived at from the trace element enrichment-depletion patterns. Their combined volume occupies the greater part of the mantle above the 670 km discontinuity. It is pointed out that the source regions separated as a result of early mantle differentiation and crystal fractionation from the resulting melt. The mid-ocean ridge basalts source evolved from an eclogite cumulate that gave up its late-stage enriched fluids at various times to the shallower mantle and continental crust. The mid-ocean ridge basalts source is rich in garnet and clinopyroxene, while the continental and ocean island basalt source is a garnet peridotite that has experienced secondary enrichment. These relationships are found to be consistent with the evolution of a terrestrial magma ocean.

  10. Meteoric water - basalt interactions: a field and laboratory study

    SciTech Connect

    Gislason, S.R.

    1985-01-01

    The goal of this study is to define and interpret the composition of the meteoric waters in N.E. Iceland in their cycle through the hydrosphere and the upper part of the crust, and to calibrate the natural process by dissolution experiments done in the laboratory. The composition of rain, snow, spring and geothermal waters from the rift zone of N.E. Iceland can be explained by sea-spray addition (1/10000), dissolution of basalts and buffering by alteration minerals. Rates, stoichiometry and activation energy of dissolution, pH vs. time and activity-activity paths were determined by dissolving basaltic rocks under simulated natural conditions at 25 to 60/sup 0/C. Dissolution follows a linear rate law, with basaltic glass dissolving 10 times faster than the crystalline basalt. Rates are independent of pH from 7 to 10. The average activation energy for dissolution of basaltic glass is 31.8 kJ/mol (+/-3). For individual elements leached from crystalline basalt it ranges from 35 to 15 kJ/mol. This indicates that under the experimental conditions reactions on the surfaces of the solids are the rate determining step in the dissolution mechanism. Considerable differences (2 to 4 log units) exist in the calculated oxygen fugacities obtained from different redox species in the geothermal fluids. This is primarily caused by the nonequilibrium state of the sulfur redox pair.

  11. Testing the Origins of Basalt Fragments fro Apollo 16

    NASA Technical Reports Server (NTRS)

    Donohue, P. H.; Stevens, R. E.; Neal, C. R.; Zeigler, R. A.

    2013-01-01

    Several 2-4 mm regolith fragments of basalt from the Apollo 16 site were recently described by [1]. These included a high-Ti vitrophyric basalts (60603,10-16) and one very-low-titanium (VLT) crystalline basalt (65703,9-13). As Apollo 16 was the only highlands sample return mission distant from the maria, identification of basaltic samples at the site indicates input from remote sites via impact processes [1]. However, distinguishing between impact melt and pristine basalt can be notoriously difficult and requires significant sample material [2-6]. The crystal stratigraphy method utilizes essentially non-destructive methods to make these distinctions [7,8]. Crystal stratigraphy combines quantitative petrography in the form of crystal size distributions (CSDs) coupled with mineral geochemistry to reveal the petrogenetic history of samples. The classic CSD plot of crystal size versus population density can reveal insights on growth/cooling rates, residence times, and magma history which in turn can be used to evaluate basaltic vs impact melt origin [7-9]. Electron microprobe (EMP) and laser ablation (LA)-ICP-MS analyses of mineral phases complement textural investigations. Trace element variations document subtle changes occurring during the formation of the samples, and are key in the interpretation and preservation of this rare lunar sample collection.

  12. Quality of the ground water in basalt of the Columbia River group, Washington, Oregon, and Idaho

    USGS Publications Warehouse

    Newcomb, Reuben Clair

    1972-01-01

    The ground water within the 50,000-square-mile area of the layered basalt of the Columbia River Group is a generally uniform bicarbonate water having calcium and sodium in nearly equal amounts as the principal cations. water contains a relatively large amount of silica. The 525 chemical analyses indicate that the prevalent ground water is of two related kinds--a calcium and a sodium water. The sodium water is more common beneath the floors of the main synclinal valleys; the calcium water, elsewhere. In addition to the prevalent type, five special types form a small part of the ground water; four of these are natural and one is artificial. The four natural special types are: (1) calcium sodium chloride waters that rise from underlying sedimentary rocks west of the Cascade Range, (2) mineralized water at or near warm or hot springs, (3) water having unusual ion concentrations, especially of chloride, near sedimentary rocks intercalated at the edges of the basalt, and (4) more mineralized water near one locality of excess carbon dioxide. The one artificial kind of special ground water has resulted from unintentional artificial recharge incidental to irrigation in parts of central Washington. The solids dissolved in the ground water have been picked up on the surface, within the overburden, and from minerals and glasses within the basalt. Evidence for the removal of ions from solution is confined to calcium and magnesium, only small amounts of which are present in some of the sodium-rich water. Minor constituents, such as the heavy metals, alkali metals, and alkali earths, occur in the ground water in trace, or small, amounts. The natural radioactivity of the ground waters is very low. Except for a few of the saline calcium sodium chloride waters and a few occurrences of excessive nitrate, the ground water generally meets the common standards of water good for most ordinary uses, but some of it can be improved by treatment. The water is clear and colorless and has a

  13. Volcanic Origin of Alkali Halides on Io

    NASA Technical Reports Server (NTRS)

    Schaefer, L.; Fegley, B., Jr.

    2003-01-01

    The recent observation of NaCl (gas) on Io confirms our earlier prediction that NaCl is produced volcanically. Here we extend our calculations by modeling thermochemical equilibrium of O, S, Li, Na, K, Rb, Cs, F, Cl, Br, and I as a function of temperature and pressure in a Pele-like volcanic gas with O/S/Na/Cl/K = 1.518/1/0.05/0.04/0.005 and CI chondritic ratios of the other (as yet unobserved) alkalis and halogens. For reference, the nominal temperature and pressure for Pele is 1760 plus or minus 210 K and 0.01 bars based on Galileo data and modeling.

  14. Alkali differentiation in LL-chondrites

    NASA Astrophysics Data System (ADS)

    Wlotzka, F.; Palme, H.; Spettel, B.; Wanke, H.; Fredriksson, K.; Noonan, A. F.

    1983-04-01

    The Kraehenberg and Bhola LL-group chondrites are heterogeneous agglomerates which contain a variety of lithic fragments and chondrules as well as crystal fragments. Both meteorites contain large, cm-sized fragments with high K enrichments. The K-rich inclusions are fragments of larger rock bodies which crystallized from melts of chondritic parent material that had previously been enriched in K and in heavier alkalies,while also being depleted in Na and metal. It is suggested that the K enrichment occurred as an exchange for Na in feldspars via a vapor phase, whose presence on the chondrite parent body (or bodies) is supported by the recent finding of fluid inclusions in chondritic silicates. Cooling rate considerations indicate that the K-rich rock units could not have been very large, implying that the K-rich materials were locally molten by, for example, impact.

  15. Heat pipes containing alkali metal working fluid

    NASA Technical Reports Server (NTRS)

    Morris, J. F. (Inventor)

    1981-01-01

    A technique for improving high temperature evaporation-condensation heat-transfer devices which have important and unique advantage in terrestrial and space energy processing is described. The device is in the form of a heat pipe comprising a sealed container or envelope which contains a capillary wick. The temperature of one end of the heat pipe is raised by the input of heat from an external heat source which is extremely hot and corrosive. A working fluid of a corrosive alkali metal, such as lithium, sodium, or potassium transfers this heat to a heat receiver remote from the heat source. The container and wick are fabricated from a superalloy containing a small percentage of a corrosion inhibiting or gettering element. Lanthanum, scandium, yttrium, thorium, and hafnium are utilized as the alloying metal.

  16. Comparative alkali washing of simulated radioactive sludge

    SciTech Connect

    Fugate, G.A.; Ensor, D.D.; Egan, B.Z.

    1996-10-01

    The treatment of large volumes of radioactive sludge generated from uranium and plutonium recovery processes is a pressing problem in the environmental restoration currently planned at various U.S. Department of Energy sites. This sludge, commonly stored in underground tanks, is mainly in the form of metal oxides or precipitated metal hydroxides and the bulk of this material is nonradioactive. One method being developed to pretreat this waste takes advantage of the amphoteric character of aluminum and other nonradioactive elements. Previous studies have reported on the dissolution of eleven elements from simulated sludge using NaOH solutions up to 6M. This work provides a comparative study using KOH. The effectiveness of the alkali washing as a treatment method to reduce the bulk of radioactive sludge requiring long term isolation will be discussed.

  17. Solid state cell with alkali metal halo-alkali thiocyanate electrolyte

    SciTech Connect

    Rao, B. M.; Silbernagel, B. G.

    1980-02-26

    A novel electrochemical cell is disclosed utilizing: (A) an anode which contains an alkali metal as an anode-active material; (B) a cathode and (C) an electrolyte comprising an electrolytically effective amount of one or more compounds having the formula: (Ax)ma'scn wherein a is an alkali metal, X is a halogen, a' is an alkali metal and 0.1 < or = N < or = 10. Preferred systems include lithium-containing anodes, lithium-containing electrolytes and cathodes which contain cathode-active material selected from the group consisting of cathode-active sulfurs, halogens, halides, chromates, phosphates, oxides and chalcogenides, especially those chalcogenides of the empirical formula mzm wherein M is one or more metals selected from the group consisting of iron, titanium, zirconium, hafnium, niobium, tantalum and vanadium, Z is one or more chalcogens selected from the group consisting of oxygen, sulfur, selenium and tellurium, and M is a numerical value between about 1.8 and about 3.2.

  18. Ionic alkali halide XUV laser feasibility study

    SciTech Connect

    Yang, T.T.; Gylys, V.T.; Bower, R.D.; Harris, D.G.; Blauer, J.A.; Turner, C.E.; Hindy, R.N.

    1989-11-10

    The objective of this work is to assess the feasibility of a select set of ionic alkali halide XUV laser concepts by obtaining the relevant kinetic and spectroscopic parameters required for a proof-of-principle and conceptual design. The proposed lasers operate in the 80--200 nm spectral region and do not require input from outside radiation sources for their operation. Frequency up-conversion and frequency mixing techniques and therefore not considered in the work to be described. An experimental and theoretical study of a new type of laser operating in the extreme ultraviolet wavelength region has been conducted. The lasing species are singly ionized alkali halide molecules such as Rb{sup 2+}F{sub {minus}}, Rb{sup 2+}Br{sup {minus}} and Cs{sup 2+}F{sup {minus}}. These species are similar in electronic structure to the rare gas halide excimers, such as XeF and Krf, except that the ionic molecules emit at wavelengths of 80--200 nm, much shorter than the conventional rare-gas halide excimer laser. The radiative lifetime of these molecules are typically near 1 ns, which is about an order of magnitude shorter than that for rare-gas halide systems. The values of the cross section for stimulated emission are on the order of 1 {times} 10{sup {minus}16}cm{sup 2}. Because of the fundamental similarity to existing UV lasers, these systems show promise as a high power, efficient XUV lasers. 55 refs., 50 figs., 5 tabs.

  19. 87Sr/86Sr ratios in basalts from islands in the Indian Ocean

    USGS Publications Warehouse

    Hedge, C.E.; Watkins, N.D.; Hildreth, R.A.; Doering, W.P.

    1973-01-01

    87Sr/86Sr ratios of basalts from islands in the Indian Ocean (0.7040) are higher than those of basalts dredged from the Mid-Indian Ocean Ridge (0.7034). The sources of the island basalts have apparently not been in equilibrium with the source of the ridge basalts for roughly 109 years. Both ridge and island basalts in the Indian Ocean are higher in 87Sr/86Sr than are rocks from similar settings in the eastern Pacific. ?? 1973.

  20. Importance of lunar granite and KREEP in very high potassium (VHK) basalt petrogenesis

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Taylor, Lawrence A.; Lindstrom, Marilyn M.

    1988-01-01

    Analysis of five very high potassium (VHK) basalts from Apollo 14 breccia 14303 shows the presence of a KREEP component. An assimilation and fractional crystallization model is presented to describe the basalt evolution. The influence of granite assimilation on the basalt evolution is discussed. The presence of VHK basalts containing only a granite signature and those with both granite and KREEP signatures suggests that there are at least two different VHK basalt flows at the Apollo 14 site.

  1. Basaltic Lava Flow vs. Welded Basaltic Ignimbrite: Determining the Depositional Nature of a Volcanic Flow in the Akaroa Volcanic Complex

    NASA Astrophysics Data System (ADS)

    Sexton, E. A.; Hampton, S.

    2014-12-01

    Welded basaltic ignimbrites are one of the rarest forms of ignimbrites found on Earth and can often have characteristics that are indistinguishable from those of basaltic lava flows. This study evaluates a basaltic volcanic flow in a coastal cliff sequence in Raupo Bay, Akaroa Volcanic Complex, Banks Peninsula, New Zealand. The Raupo Bay coastal cliff sequence is comprised of 4 units, termed L1, L2, L3, and A, capped by loess. L1 and L2 are basaltic lavas, L3 proximal scoria deposits, which thin inland, and Unit A, a flow with unusual characteristics, which is the focus of this study. Field mapping, sampling, geochemical analysis and petrology were utilized to characterize units. Further detailed structural analysis of Unit A was completed, to determine the nature of the basal contact, variations in welding throughout the unit and the relationship of the layer to the underlying topography. From these analyses it was found: Unit A is thickest in a paleo-valley and thins and mantles higher topography, welding in the unit increases downwards forming topographic controlled columnar jointing, the top of the unit is brecciated and grades into the lower welded/jointed portion, the basal contact is sharp overlying a regional airfall deposit, the unit has a notably distinct geochemical composition from the underlying stratigraphic units, Unit A contains flattened and sheared scoria clasts, has aligned bubbles, and lava lithics. Further thin section analysis of Unit A identified flattened clast boundaries and microlite rimming around phenocrysts. In comparing these features to previous studies on basaltic lavas and ignimbrites it is hypothesized that Unit A is a welded basaltic ignimbrite that was channelized by paleo-topography on the outer flanks of the Akaroa Volcanic Complex. This study furthers the characterization of basaltic ignimbrites and is the first to recognize basaltic ignimbrites within the Akaroa Volcanic Complex.

  2. Icelandic basaltic geothermal field: A natural analog for nuclear waste isolation in basalt

    SciTech Connect

    Ulmer, G.C.; Grandstaff, D.E. . Dept. of Geology)

    1984-11-21

    Analog studies of Icelandic geothermal fields have shown that the design of nuclear waste repositories in basalt can benefit by comparison to the data base already available from the development of these geothermal fields. A high degree of similarity exists between these two systems: their petrology, groundwater geochemistry, mineral solubilities, hydrologic parameters, temperature ranges, water-rock redox equilibria, hydrothermal pH values, and secondary mineralogies all show considerable overlap in the range of values. The experimentally-simulated hydrothermal studies of the basaltic nuclear waste repository rocks have, at this time, produced a data base that receives a strong confirmation from the Icelandic analog. Furthermore, the Icelandic analog should eventually be employed to extrapolate into higher and lower temperatures, into longer time-base chemical comparisons, and into more realistic mineral deposition studies, than have been possible in the laboratory evaluations of the nuclear waste repository designs. This eventual use of the Icelandic analog will require cooperative work with the Icelandic Geological Survey. 46 refs., 4 figs., 2 tabs.

  3. Controlled in-situ dissolution of an alkali metal

    DOEpatents

    Jones, Jeffrey Donald; Dooley, Kirk John; Tolman, David Donald

    2012-09-11

    A method for the controllable dissolution of one or more alkali metals from a vessel containing a one or more alkali metals and/or one or more partially passivated alkali metals. The vessel preferably comprising a sodium, NaK or other alkali metal-cooled nuclear reactor that has been used. The alkali metal, preferably sodium, potassium or a combination thereof, in the vessel is exposed to a treatment liquid, preferably an acidic liquid, more preferably citric acid. Preferably, the treatment liquid is maintained in continuous motion relative to any surface of unreacted alkali metal with which the treatment liquid is in contact. The treatment liquid is preferably pumped into the vessel containing the one or more alkali metals and the resulting fluid is extracted and optionally further processed. Preferably, the resulting off-gases are processed by an off-gas treatment system and the resulting liquids are processed by a liquid disposal system. In one preferred embodiment, an inert gas is pumped into the vessel along with the treatment liquid.

  4. Ultrasonic coal washing to leach alkali elements from coals.

    PubMed

    Balakrishnan, S; Reddy, V Midhun; Nagarajan, R

    2015-11-01

    Deposition of fly ash particles onto heat-transfer surfaces is often one of the reasons for unscheduled shut-downs of coal-fired boilers. Fouling deposits encountered in convective sections of a boiler are characterized by arrival of ash particles in solidified (solid) state. Fouling is most frequently caused by condensation and chemical reaction of alkali vapors with the deposited ash particles creating a wet surface conducive to collect impacting ash particles. Hence, the amount of alkali elements present in coals, which, in turn, is available in the flue gas as condensable vapors, determines the formation and growth of fouling deposits. In this context, removal of alkali elements becomes vital when inferior coals having high-ash content are utilized for power generation. With the concept of reducing alkali elements present in a coal entering the combustor, whereby the fouling deposits can either be minimized or be weakened due to absence of alkali gluing effect, the ultrasonic leaching of alkali elements from coals is investigated in this study. Ultrasonic water-washing and chemical-washing, in comparison with agitation, are studied in order to estimate the intensification of the alkali removal process by sonication. PMID:26186840

  5. Alkali elemental and potassium isotopic compositions of Semarkona chondrules

    USGS Publications Warehouse

    Alexander, C.M. O'D.; Grossman, J.N.

    2005-01-01

    We report measurements of K isotope ratios in 28 Semarkona chondrules with a wide range of petrologic types and bulk compositions as well as the compositions of CPX-mesostasis pairs in 17 type I Semarkona chondrules, including two chondrules with radial alkali zonation and 19 type II chondrules. Despite the wide range in K/Al ratios, no systematic variations in K isotopic compositions were found. Semarkona chondrules do not record a simple history of Rayleigh-type loss of K. Experimentally determined evaporation rates suggest that considerable alkali evaporation would have occurred during chondrule formation. Nevertheless, based on Na CPX-mesostasis distribution coefficients, the alkali contents of the cores of most chondrules in Semarkona were probably established at the time of final crystallization. However, Na CPX-mesostasis distribution coefficients also show that alkali zonation in type I Semarkona chondrules was produced by entry of alkalis after solidification, probably during parent body alteration. This alkali metasomatism may have gone to completion in some chondrules. Our preferred explanation for the lack of systematic isotopic enrichments, even in alkali depleted type I chondrule cores, is that they exchanged with the ambient gas as they cooled. ?? The Meteoritical Society, 2005.

  6. CO 2-water-basalt interaction. Numerical simulation of low temperature CO 2 sequestration into basalts

    NASA Astrophysics Data System (ADS)

    Gysi, Alexander P.; Stefánsson, Andri

    2011-09-01

    The interaction between CO 2-rich waters and basaltic glass was studied using reaction path modeling in order to get insight into the water-rock reaction process including secondary mineral composition, water chemistry and mass transfer as a function of CO 2 concentration and reaction progress ( ξ). The calculations were carried out at 25-90 °C and pCO 2 to 30 bars and the results were compared to recent experimental observations and natural systems. A thermodynamic dataset was compiled from 25 to 300 °C in order to simulate mineral saturations relevant to basalt alteration in CO 2-rich environment including revised key aqueous species for mineral dissolution reactions and apparent Gibbs energies for clay and carbonate solid solutions observed to form in nature. The dissolution of basaltic glass in CO 2-rich waters was found to be incongruent with the overall water composition and secondary mineral formation depending on reaction progress and pH. Under mildly acid conditions in CO 2 enriched waters (pH <6.5), SiO 2 and simple Al-Si minerals, Ca-Mg-Fe smectites and Ca-Mg-Fe carbonates predominated. Iron, Al and Si were immobile whereas the Mg and Ca mobility depended on the mass of carbonate formed and water pH. Upon quantitative CO 2 mineralization, the pH increased to >8 resulting in Ca-Mg-Fe smectite, zeolites and calcite formation, reducing the mobility of most dissolved elements. The dominant factor determining the reaction path of basalt alteration and the associated element mobility was the pH of the water. In turn, the pH value was determined by the concentration of CO 2 and extent of reaction. The composition of the carbonates depended on the mobility of Ca, Mg and Fe. At pH <6.5, Fe was in the ferrous oxidation state resulting in the formation of Fe-rich carbonates with the incorporation of Ca and Mg. At pH >8, the mobility of Fe and Mg was limited due to the formation of clays whereas Ca was incorporated into calcite, zeolites and clays. Competing

  7. Vapor segregation and loss in basaltic melts

    USGS Publications Warehouse

    Edmonds, M.; Gerlach, T.M.

    2007-01-01

    Measurements of volcanic gases at Pu'u'O??'o??, Kilauea Volcano, Hawai'i, reveal distinct degassing regimes with respect to vapor segregation and loss during effusive activity in 2004-2005. Three styles of vapor loss are distinguished by the chemical character of the emitted volcanic gases, measured by open path Fourier transform infrared spectroscopy: 1 persistent continuous gas emission, 2 gas piston events, and 3 lava spattering. Persistent continuous gas emission is associated with magma ascent and degassing beneath the crater vents, then eruption of the degassed magma from flank vents. Gas piston events are the result of static gas accumulation at depths of 400-900 m beneath Pu'u'O??'o??. A CO2-rich gas slug travels up the conduit at a few meters per second, displacing magma as it expands. Lava spattering occurs due to dynamic bubble coalescence in a column of relatively stagnant magma. The Large gas bubbles are H2O rich and are generated by open-system degassing at depths of <150 m. Static gas accumulation and dynamic bubble coalescence are both manifestations of vapor segregation in basaltic melts, but their implications differ. Accumulation and segregation of CO2-rich vapor at depth does not deplete the melt of H2O (required to drive lava fountains near to the surface) and therefore gas piston events can occur interspersed with lava fountaining activity. Lava spattering, however, efficiently strips H2O-rich vapor from magma beneath the crater vents; the magma must then erupt effusively from vents on the flank of the cone. ?? 2007 The Geological Society of America.

  8. Geomechanical rock properties of a basaltic volcano

    NASA Astrophysics Data System (ADS)

    Schaefer, Lauren; Kendrick, Jackie; Lavallée, Yan; Oommen, Thomas; Chigna, Gustavo

    2015-06-01

    In volcanic regions, reliable estimates of mechanical properties for specific volcanic events such as cyclic inflation-deflation cycles by magmatic intrusions, thermal stressing, and high temperatures are crucial for building accurate models of volcanic phenomena. This study focuses on the challenge of characterizing volcanic materials for the numerical analyses of such events. To do this, we evaluated the physical (porosity, permeability) and mechanical (strength) properties of basaltic rocks at Pacaya Volcano (Guatemala) through a variety of laboratory experiments, including: room temperature, high temperature (935 °C), and cyclically-loaded uniaxial compressive strength tests on as-collected and thermally-treated rock samples. Knowledge of the material response to such varied stressing conditions is necessary to analyze potential hazards at Pacaya, whose persistent activity has led to 13 evacuations of towns near the volcano since 1987. The rocks show a non-linear relationship between permeability and porosity, which relates to the importance of the crack network connecting the vesicles in these rocks. Here we show that strength not only decreases with porosity and permeability, but also with prolonged stressing (i.e., at lower strain rates) and upon cooling. Complimentary tests in which cyclic episodes of thermal or load stressing showed no systematic weakening of the material on the scale of our experiments. Most importantly, we show the extremely heterogeneous nature of volcanic edifices that arise from differences in porosity and permeability of the local lithologies, the limited lateral extent of lava flows, and the scars of previous collapse events. Input of these process-specific rock behaviors into slope stability and deformation models can change the resultant hazard analysis. We anticipate that an increased parameterization of rock properties will improve mitigation power.

  9. Increasing Class C fly ash reduces alkali silica reactivity

    SciTech Connect

    Hicks, J.K.

    2007-07-01

    Contrary to earlier studies, it has been found that incremental additions of Class C fly ash do reduce alkali silica reactivity (ASR), in highly reactive, high alkali concrete mixes. AST can be further reduced by substituting 5% metakaolin or silica fume for the aggregate in concrete mixes with high (more than 30%) Class C fly ash substitution. The paper reports results of studies using Class C fly ash from the Labadie Station plant in Missouri which typically has between 1.3 and 1.45% available alkalis by ASTM C311. 7 figs.

  10. Electrochemical cell utilizing molten alkali metal electrode-reactant

    DOEpatents

    Virkar, Anil V.; Miller, Gerald R.

    1983-11-04

    An improved electrochemical cell comprising an additive-modified molten alkali metal electrode-reactant and/or electrolyte is disclosed. Various electrochemical cells employing a molten alkali metal, e.g., sodium, electrode in contact with a cationically conductive ceramic membrane experience a lower resistance and a lower temperature coefficient of resistance whenever small amounts of selenium are present at the interface of the electrolyte and the molten alkali metal. Further, cells having small amounts of selenium present at the electrolyte-molten metal interface exhibit less degradation of the electrolyte under long term cycling conditions.

  11. A new lunar high-Ti basalt type defined from clasts in Apollo 16 breccia 60639

    NASA Astrophysics Data System (ADS)

    Fagan, A. L.; Neal, C. R.

    2016-01-01

    This paper reports the detailed examination of three basalt clasts from Apollo 16 breccia 60639 that represent a new variant of high-Ti basalt returned from the Moon by the Apollo 16 mission. Mineral chemistry and whole-rock analyses were conducted on aliquots from three clasts (breccia matrix, basalt, and basalt + breccia matrix). The basalt clasts, which are not overtly porphyritic, contain compositionally zoned pyroxene, olivine, and plagioclase crystals that represent the evolution of the magma during crystallization; ilmenite does not exhibit major-element compositional zoning within individual crystals. Mineral compositions are distinct between the basalt and breccia matrix lithologies. In addition, whole-rock analyses identify clear compositional differences between the basalt and breccia matrix lithologies in both major and trace element concentrations. The composition of the mixed lithology aliquots (i.e., basalt + breccia matrix) do not indicate simple two component mixing (i.e., compositions are not intermediate to the basalt and breccia end-members); this apparent incongruity can be accounted for by adding ∼19-40% plagioclase to an amalgamation of the average basalt and individual breccia clast compositions via impact mixing. Whole-rock analyses are consistent with previous analyses of one 60639 basalt clast, which were interpreted to indicate chemical similarity with Apollo 11 and 17 basalts. However, both major and trace elements suggest that the 60639 basalt clasts examined here have compositions that are distinct from Apollo 11 and 17 high-Ti basalts. Although the 60639 basalt clasts have similar characteristics to a variety of previously identified basalt types, the more extensive whole-rock analyses reported here indicate that they represent a type of Apollo high-Ti basalt heretofore unrecognized in the Apollo and lunar meteorite collections. By placing these new analyses in the context of other mare basalt compositions, a petrogenetic model for

  12. Optimization of DNA Extraction from Deep-sea Basalt

    NASA Astrophysics Data System (ADS)

    Wang, H.; Edwards, K. J.

    2007-12-01

    Studies on the microorganisms that inhabit deep-sea basalt can provide information on this dark ecosystem, which will contribution to our understanding of mass transformation and energy flow in the deep ocean. However, molecular methods for use with metal- and clay-rich rock materials such as basalt have not been suitably developed at present, yet are critically required in order to be able to fully evaluate the basalt biotope. For example, inefficient DNA extraction might lead to loss of information about important components of this community, and misinterpretation about the total community diversity and function. In order to investigate the effects of sample pretreated method, particle size, different DNA extraction methods and cell density on extracted DNA yields, two basalt samples were collected from the East Pacific Rise 9° N during research cruise AT11- 20 in Nov 2004. Basalt samples were crushed to different particle size, washed with ddH2O and 100% ethanol respectively, and autoclaved. Marinobacter aquaeolei cultures with different cell densities were inoculated into differently treated basalt samples. Pure culture and basalt samples without inoculation were used as positive and negative control to evaluate the extracting efficiency. FastDNA spin for soil kit, GeneClean for ancient DNA kit and UltraCleanTM soil DNA Kit are used for DNA extraction. Results showed that DNA yields increased with culture density. FastDNA spin for soil kit gave the highest DNA yields, which is almost 10 times more than that of UltraCleanTM soil DNA Kit. Ethanol washing and ddH2O washing did not make big difference to DNA yields. Mineral composition and surface areas might also affect DNA yields.

  13. Elastic laboratory measurements and modeling of saturated basalts

    NASA Astrophysics Data System (ADS)

    Adam, Ludmila; Otheim, Thomas

    2013-03-01

    Understanding the elastic behavior of basalt is important to seismically monitor volcanoes, subsea basalts, and carbon sequestration in basalt. We estimate the elastic properties of basalt samples from the Snake River Plain, Idaho, at ultrasonic (0.8 MHz) and seismic (2-300 Hz) frequencies. To test the sensitivity of seismic waves to the fluid content in the pore structure, measurements are performed at three saturation conditions: saturated with liquid CO2, water, and dry. When CO2 replaces water, the P-wave velocity drops, on average, by 10%. Vesicles and cracks, observed in the rock microstructure, control the relaxation of pore-fluid pressures in the rock as a wave propagates. The bulk and shear moduli of basalts saturated with liquid CO2 are not frequency dependent, suggesting that fluid pore pressures are in equilibrium between 2 Hz and 0.8 MHz. However, when samples are water saturated, the bulk modulus of the rock is frequency dependent. Modeling with Gassmann's equations predicts the measured saturated rock bulk modulus for all fluids for frequencies below 20 Hz but underpredicts the water-saturated basalt bulk modulus for frequencies greater than 20 Hz. The most likely reason is that the pore-fluid pressures are unrelaxed. Instead, the ultrasonic frequency rock moduli are modeled with high-frequency elastic theories of squirt flow and Kuster-Toksöz (KT). Although KT's model is based on idealized pore shapes, a combination of spheres (vesicles) and penny-shaped cracks (fractures) interpreted and quantified from petrographical data predicts the ultrasonic dry and saturated rock moduli for the measured basalts.

  14. Alkali element enrichments on the BABBs at the IODP Expedition 333 Site C0012 in the northern Shikoku Basin

    NASA Astrophysics Data System (ADS)

    Haraguchi, S.; Nakamura, K.; Fujinaga, K.

    2015-12-01

    The Shikoku Basin is a back arc basin located westside of the Izu-Ogasawara (Bonin) arc, spreading was from 25 to 15 Ma. The drilling of the DSDP, ODP and IODP recovered the backarc basin basalt (BABB) of the Shikoku Basin. Site C0012, south of the Kii Peninsula, was operated during the IODP Exp 333, and BABB was recovered 100m thickness under the 520m of sediment. This BABB is divided into upper aphyric pillow (Unit 1) and lower massive flow (Unit 2) divided at the 560 mbsf, and show variable degree of alteration, clay mineral and zeolite depositions. SiO2 and MgO contents of these basalts are 47-55 and 5-8 wt%. These basalts show wide variation of enrichment of alkali elements, 2.3-7.5 and 0.4-4.2 wt% of Na2O and K2O. Na2O+K2O contents show 3.2-8.0 wt%, and 2 wt% higher trends than other BABBs in the Shikoku Basin at the same SiO2 contents. Na2O and K2O show proportional and anti-proportional trends with increasing LOI. Therefore, both alkali element enrichments in these rocks are caused by secondary mineralization, and host phase of Na2O is hydrous and that of K2O is anhydrous minerals. Secondary mineral phases was mainly identified by XRD. The identified host phases of Na are analcime and thomsonite. Analcime is observed in rocks of more than 4 wt% of Na2O. Chlorite and smectite are identified to clay minerals. This mineral assemblage indicates the high-temperature zeolite facies alteration. The host phases of K are mainly identified into K-feldspar. We assume that secondary mineralization of K-fd is associated with low-temperature albitization. Compared to the lithostratigraphy, the Na enrichment is prominent in the Unit 1 and upper 20 m of the Unit 2, and the K enrichment is prominent in lower part of the Unit 2. We consider that the Na enrichment associated with zeolite depositions occurred under high water/rock ratio with active hydrothermal circulation because of high water permeability of pillow lava, and K enrichment associated with albitization occurred

  15. Paleosecular variation, geochemistry, correlation, and timing of Grande Ronde Basalt lava flows, Columbia River Basalt Group

    NASA Astrophysics Data System (ADS)

    Hagstrum, J. T.; Sawlan, M. G.

    2013-12-01

    Co-located paleomagnetic and geochemical sampling of lava flows at eight sections within the Grande Ronde Basalt (GRB) was undertaken across the Columbia Plateau in WA and OR. The GRB represents roughly 87% (151,000 km3) of the Miocene Columbia River flood basalt province (174,000 km3) by volume (exclusive of the Steens Mountain Basalt), and recently published 40Ar/39Ar age estimates indicate that it was most likely emplaced within a time interval of less than 400 ka [Barry et al., Lithos 118(3), 213-222, 2010]. GRB flows include four stratigraphic magnetozones within the formation (R1, N1, R2, N2), and the sections currently sampled are mostly within the upper two magnetozones. Because Plateau GRB flows have undergone pervasive low-temperature alteration to varying degrees [see M. Sawlan's abstract, this meeting], particular care has been taken to collect the freshest available rock. Several new flow units have been identified, and similar, but unusual, paleomagnetic directions in stratigraphically adjacent flows of different chemical composition indicate, with high probability, that these flows were emplaced contemporaneously relative to the rate of geomagnetic paleosecular variation (PSV). Thus, several magma sources and their vent systems apparently operated nearly simultaneously and produced a stratigraphic framework in which compositionally distinct flows are intercalated. In addition, transitional directions have been found in flows near the N1/R2 and R2/N2 geomagnetic reversal boundaries, and an excursion to low inclinations occurred during emplacement of the Winter Water member (N2) flows. The detail and sequential nature of the PSV curve recovered from the upper GRB lava flows (R2 & N2) so far indicate extraordinarily rapid eruption of these flows. Comparison of the rate of change shown by our nascent PSV curve for the upper GRB with a recently published one for the Holocene of western North America [Hagstrum and Blinman, G3 11(6), 2010], which covers in

  16. Extensive mixing features at 27-41 Ka postcaldera trachytes at Long Valley caldera, CA: Mixing/mingling of basalt with trachyte and mobilization of young granitic material to form kspar megacrysts

    NASA Astrophysics Data System (ADS)

    Hagmann, I. J.; Mahood, G.

    2014-12-01

    Five small lava domes erupted at the NW margin of Long Valley caldera from 41 to 27 Ka. They range from trachyte (66% SiO2) to trachyandesite (60%), with the youngest lava being the most mafic. Mixing features are pervasive, with enclaves, kspar megacrysts, crystal clots of various grain sizes, compositions, and degrees of resorption indicating multiple episodes of mafic injection, mobilization of young granitic material, and mixing/mingling of alkali basalt with trachyte to alkali rhyolite magmas similar to those at Mammoth Mountain. Enclaves range from 49 to 57% SiO2 and form a mixing line with a felsic end member at 67% SiO2. In order to quantify the distribution of enclaves and large (1-4 cm), resorbed, kspar megacrysts, outcrop-scale point counting was performed at >200 locations on the lavas. Contour maps show that kspar content is highest at the vent, but mafic-intermediate enclaves are irregularly distributed. Fe-Ti oxide temperatures for the host trachytic magmas are 915-1080°C, with the coolest temperatures at flow termini. Enclave temperatures are similar, 950-1120°C, with cooler temperatures in more felsic enclaves that are typically located near flow termini, indicating prolonged thermal and chemical interaction with the host magma. Calculated pressures are 2-4 kbar for host magmas, but some mafic crystal clots yield pressures up to 12 kbar, near the Moho at Long Valley. The kspar megacrysts match the composition of phenocrysts in late-erupted Bishop Tuff, suggesting that the megacrysts originated from solidified equivalents of magma remaining after eruption of the Bishop Tuff at 760 Ka. These data suggest a model in which alkali basalts are generated in the uppermost mantle and, through AFC, evolve into trachytes. Repeated basaltic injections keep the trachyte hot and partially melt young granites, resulting in entrainment of kspar megacrysts. The most mafic enclaves in the NW domes match the alkali basalt compositions of the most mafic enclaves in

  17. Rb-Sr and Sm-Nd whole rock analyses of basalts of the Grao Para Group, Serra dos Carajas, Brazil

    SciTech Connect

    Olszewski, W.J. Jr.; Gibbs, A.K.; Wirth, K.R.

    1985-01-01

    The Grao Para Group at Serra dos Carajas in the Guapore Shield of Brazil is a 6 km thick sequence of bimodal metavolcanic rock with interbedded iron formations. Rhyolites are a minor part of the low grade meta-volcanic section, with the bulk consisting of subalkaline basalt, basaltic andesite, and shoshonite. Rb-Sr whole rock analyses of 7 basalts yield an age of 2687 +/- 54 Ma. This agrees well with an age of 2758 +/- 39 Ma from zircon U-Pb analyses of the interbedded rhyolites. Except for the allocthonous Imataca Complex of Venezuela, these dates for the Grao Para Group are the first well-constrained Archean ages from the Amazonian Craton. An even older age for the basement to the Grao Para Group is also implied. Sm-Nd whole-rock analyses of four of these basalts did not yield an isochron because of the limited range of /sup 147/Sm//sup 144/Nd values, but element of/sub Nd/ values relative to CHUR were calculated using the Rb-Sr age. The typical LREE-enrichment, lack of Ce depletion or spilitic alteration of alkalies, and the high Sr initial ratios, may indicate that these isotopic patterns were derived by incorporation of some older continental crust in the mafic melts. These data together with an element of/sub Sr/ of +63.6 might indicate significant seawater exchange with volcanic rocks derived from mantle with chondritic REE patterns. This demonstrates the presence of significant continental crust in the Archean and seawater-volcanic rock interaction in a rifting environment similar to modern analogs.

  18. Twilight of a Volcanic Field: 11 Million Years of Basaltic Volcanism in the Southwestern Nevada Volcanic Field, USA

    NASA Astrophysics Data System (ADS)

    Perry, F. V.; Valintine, G. A.

    2007-12-01

    the presence of mantle heterogeneities enriched in hydrous minerals that are partially melted. During regional extension, these zones are relatively weak and preferentially deform, forming melt bands of increased porosity that concentrate melt and lead to dike generation. Decreasing regional extension results in less melt accumulation and decreasing eruption volumes. Without a new source of heat and limited lithospheric extension, it is likely that the next million years of volcanic activity in the field will likely be characterized by eruptions of the type that have occurred during the past million years of activity: infrequent eruptions of small-volume (<0.1 km3), volatile-rich alkali basalt magmas within the most tectonically active southern and western margins of the volcanic field.

  19. Petrogenesis of pillow basalts from Baolai in southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, Chih-Chun; Yang, Huai-Jen

    2016-04-01

    The pillow basalts from Baolai in southwestern Taiwan have been inferred to bear Dupal signautres based on their Th/Ce ratio, linking the Baolai basalts to the South China Sea (SCS) seamounts that are characterized by Dupal Pb isotope signatures (Smith and Lewis, 2007). In this study, thirty-two Baolai basalt samples were analyzed for abundances of major and trace elements as well as Pb and Nd isotope ratios to verify their Dupal characters and to constrain their petrogenesis significance. The Baolai basalts contain 4-10 % L.O.I.. Three stages of alteration are inferred from plots of L.O.I. abundance versus concentrations major oxides as well as mineral textures and compositions. The first alteration stage was characterized by albitization that converted Ca-rich plagioclase to albite. The second alteration stage was dominated by chloritization of olivine and augite, resulting in increases in L.O.I. abundance. The last alteration stage is represented by formation of secondary calcite in vesicles and cracks. These alteration processes reflect interaction with seawater and apparently did not affect the magmatic Pb isotope composition for the low Pb concentration in seawater. Relative to the North Hemisphere Reference Line (NHRL), the Baolai pillow basalts have higher 208Pb/204Pb ratios at a given 206Pb/204Pb value, showing Dupal anomaly. For their relatively higher 208Pb/204Pb, 207Pb/204Pb, and 206Pb/204Pb ratios, the Baolai basalts are distinct from majority of the Cenozoic basalts in the Hainan-Leizhou peninsula, the Indochina peninsula, and the SCS seamounts, for which derivation from the Hainan mantle plume has been recently proposed (Wang et al., 2013). In contrast, the Baolai basalts and the Cenozoic basalts from eastern Guangdong at southeastern China have similar Pb and Nd isotope compositions, indicating derivation from similar mantle sources. However, the Baolai basalts have lower abundance ratios of Zr/Hf (40.3-45.6 versus 46.5-50.5), La/Yb (12

  20. Breakthroughs in Seismic and Borehole Characterization of Basalt Sequestration Targets

    SciTech Connect

    Sullivan, E. C.; Hardage, Bob A.; McGrail, B. Peter; Davis, Klarissa N.

    2011-04-01

    Mafic continental flood basalts form a globally important, but under-characterized CO2 sequestration target. The Columbia River Basalt Group (CRBG) in the northwestern U.S. is up to 5 km thick and covers over 168,000 km2. In India, flood basalts are 3 km thick and cover greater than 500,000 km2. Laboratory experiments demonstrate that the CRBG and other basalts react with formation water and super critical (sc) CO2 to precipitate carbonates, thus adding a potential mineral trapping mechanism to the standard trapping mechanisms of most other types of CO2 sequestration reservoirs. Brecciated tops of individual basalt flows in the CRBG form regional aquifers that locally have greater than 30% porosity and three Darcies of permeability. Porous flow tops are potential sites for sequestration of gigatons of scCO2 in areas where the basalts contain unpotable water and are at depths greater than 800 m. In this paper we report on the U.S. DOE Big Sky Regional Carbon Sequestration Partnership surface seismic and borehole geophysical characterization that supports a field test of capacity, integrity, and geochemical reactivity of CRBG reservoirs in eastern Washington, U.S.A. Traditional surface seismic methods have had little success in imaging basalt features in on-shore areas where the basalt is thinly covered by sediment. Processing of the experimental 6.5 km, 5 line 3C seismic swath included constructing an elastic wavefield model, identifying and separating seismic wave modes, and processing the swath as a single 2D line. Important findings include: (1) a wide variety of shear wave energy modes swamp the P-wave seismic records; (2) except at very short geophone offsets, ground roll overprints P-wave signal; and (3) because of extreme velocity contrasts, P-wave events are refracted at incidence angles greater than 7-15 degrees. Subsequent removal of S-wave and other noise during processing resulted in tremendous improvement in image quality. The application of wireline

  1. Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study

    SciTech Connect

    B.P. McGrail; E. C. Sullivan; F. A. Spane; D. H. Bacon; G. Hund; P. D. Thorne; C. J. Thompson; S. P. Reidel; F. S. Colwell

    2009-12-01

    The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling of Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow reservoir

  2. Electric field-induced softening of alkali silicate glasses

    NASA Astrophysics Data System (ADS)

    McLaren, C.; Heffner, W.; Tessarollo, R.; Raj, R.; Jain, H.

    2015-11-01

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  3. The 4843 Alkali Metal Storage Facility Closure Plan

    SciTech Connect

    Not Available

    1991-06-01

    The 4843 AMSF has been used primarily to provide a centralized building to receive and store dangerous and mixed alkali metal waste, including sodium and lithium, which has been generated at the Fast Flux Test Facility and at various other Hanford Site operations that used alkali metals. Most of the dangerous and mixed alkali metal waste received consists of retired equipment from liquid sodium processes. The unit continues to store material. In general, only solid alkali metal waste that is water reactive is stored at the 4843 AMSF. The 4843 AMSF will be closed in a manner consistent with Ecology guidelines and regulations (WAC 173-303-610). The general closure procedure is detailed as follows.

  4. Hall Determination of Atomic Radii of Alkali Metals

    ERIC Educational Resources Information Center

    Houari, Ahmed

    2008-01-01

    I will propose here an alternative method for determining atomic radii of alkali metals based on the Hall measurements of their free electron densities and the knowledge of their crystal structure. (Contains 2 figures.)

  5. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, M.M.; Ma, Y.; Visco, S.J.; DeJonghe, L.

    1995-08-22

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  6. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1995-01-01

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  7. Electric field-induced softening of alkali silicate glasses

    SciTech Connect

    McLaren, C.; Heffner, W.; Jain, H.; Tessarollo, R.; Raj, R.

    2015-11-02

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  8. Effect of cavitation on removal of alkali elements from coal

    NASA Astrophysics Data System (ADS)

    Srivalli, H.; Nirmal, L.; Nagarajan, R.

    2015-12-01

    The main impurities in coal are sulphur, ash and alkali. On combustion, the volatile forms of these impurities are either condensed on the boilers, or emitted in the form of potentially hazardous gases. The alkali elements present in coal help the fly ash particles adhere to boiler surfaces by providing a wet surface on which collection of these particles can take place. Use of ultrasonic techniques in cleaning of coal has stirred interest among researchers in recent times. Extraction of alkali elements by cavitation effect using low-frequency ultrasound, in the presence of reagents (HNO3 and H2O2) is reported in this paper. Powdered coal was dissolved with the reagent and exposed to ultrasonic fields of various frequencies at different time intervals. The treated solution is filtered and tested for alkali levels.

  9. Clinker formation in basaltic lava flows

    NASA Astrophysics Data System (ADS)

    van Wyk de Vrie, B.; Loock, S.; Henot, J.

    2007-12-01

    Basaltic lava flows are classified according their surface morphology. They can be either aa, displaying a rough clinkery surface or pahoehoe, displaying a smooth clinkerless surface. These two surface types differ also in their emplacement and rheology, and can be differentiated in a shear-strain rate vs. apparent viscosity diagram (Hon & al., 2003). To understand clinker formation, one way is to see how a pahoehoe lava converts to an aa through shear-viscosity changes. Two possibilities occur: 1) the viscosity can increase (e.g. by levee formation) and clinkers will be formed by torque on the flow edges, or 2) the shear-strain will increase (lava influx increasing, topographic obstacles, slope change) and clinker will be formed by crust-breakage. These two clinker formatting processes are called magmatic fragmentation. Clinker will be formed on the summit and to the edges of the flow and they will appear at the base of its according the caterpillar motion usually associated with flows. However, in the Chaîne des Puys (French), basal clinker appears without top clinker (i.e. a pahoehoe lava flow with basal clinker) and thus another explanation is needed to explain them. Clinker samples were collected in different emplacement contexts and different part of flows. The SEM analysis of these samples and comparisons with ash samples from the literature show classical magmatic fragmentation textures (stepped fractures, non- synchronic fractures) in three aa lava flows. However, in one pahoehoe flow there are typical phreatomagmatic textures (blocky shapes, adhering fine particles). There are also shearing structures, such as microfaults in an intermediate flow. Thus, there are at least three different ways to form clinker: 1) classically by fragmentation at the flow base and the edges; 2) by phreatomagmatism at the base flow; 3) by shearing at the flow base and the edges. Basal shearing structures include fault gauges and welded clasts, indicating possible shear

  10. Convective Regimes in Crystallizing Basaltic Magma Chambers

    NASA Astrophysics Data System (ADS)

    Gilbert, A. J.; Neufeld, J. A.; Holness, M. B.

    2015-12-01

    Cooling through the chamber walls drives crystallisation in crustal magma chambers, resulting in a cumulate pile on the floor and mushy regions at the walls and roof. The liquid in many magma chambers, either the bulk magma or the interstitial liquid in the mushy regions, may convect, driven either thermally, due to cooling, or compositionally, due to fractional crystallization. We have constructed a regime diagram of the possible convective modes in a system containing a basal mushy layer. These modes depend on the large-scale buoyancy forcing characterised by a global Rayleigh number and the proportion of the chamber height constituting the basal mushy region. We have tested this regime diagram using an analogue experimental system composed of a fluid layer overlying a pile of almost neutrally buoyant inert particles. Convection in this system is driven thermally, simulating magma convection above and within a porous cumulate pile. We observe a range of possible convective regimes, enabling us to produce a regime diagram. In addition to modes characterised by convection of the bulk and interstitial fluid, we also observe a series of regimes where the crystal pile is mobilised by fluid motions. These regimes feature saltation and scouring of the crystal pile by convection in the bulk fluid at moderate Rayleigh numbers, and large crystal-rich fountains at high Rayleigh numbers. For even larger Rayleigh numbers the entire crystal pile is mobilised in what we call the snowglobe regime. The observed mobilisation regimes may be applicable to basaltic magma chambers. Plagioclase in basal cumulates crystallised from a dense magma may be a result of crystal mobilisation from a plagioclase-rich roof mush. Compositional convection within such a mush could result in disaggregation, enabling the buoyant plagioclase to be entrained in relatively dense descending liquid plumes and brought to the floor. The phenocryst load in porphyritic lavas is often interpreted as a

  11. Stratigraphy of Oceanus Procellarum basalts - Sources and styles of emplacement

    NASA Technical Reports Server (NTRS)

    Whitford-Stark, J. L.; Head, J. W., III

    1980-01-01

    The basaltic fill of Oceanus Procellarum has been formally subdivided into four lithostratigraphic formations: The Repsold Formation, the Telemann Formation, the Hermann Formation, and the Sharp Formation. The Repsold Formation is composed of high-Ti basalts and pyroclastic deposits with an estimated age of 3.75 + or - 0.05 b.y. and an estimated volume of about 2.1 x 10 to the 5th cu km. This is overlain by the Telemann Formation composed of very low-Ti basalts and pyroclastic deposits with an estimated age of 3.6 + or - 0.2 b.y. and a volume of 4.2 x 10 to the 5th cu km. The Hermann Formation, composed of intermediate basalts with an estimated age of 3.3 + or - 0.3 b.y., represents the next youngest unit with an estimated volume of 2.2 x 10 to the 5th cu km. The youngest materials in Procellarum are the medium-to-high-Ti basalts comprising the Sharp Formation with an estimated age of 2.7 + or - 0.7 b.y. and a volume of 1.8 x 10 to the 4th cu km.

  12. Similar Microbial Communities Found on Two Distant Seafloor Basalts

    PubMed Central

    Singer, Esther; Chong, Lauren S.; Heidelberg, John F.; Edwards, Katrina J.

    2015-01-01

    The oceanic crust forms two thirds of the Earth’s surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present the first comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lō’ihi Seamount, Hawai’i, and the East Pacific Rise (EPR; 9°N). Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from Lō’ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy. PMID:26733957

  13. Hydrogeologic framework of the Maku area basalts, northwestern Iran

    NASA Astrophysics Data System (ADS)

    Asghari Moghaddam, Asghar; Fijani, Elham

    2009-06-01

    The Maku area in northwestern Iran is characterized by young lava flows which erupted from Mount Ararat in Turkey. These fractured volcanic rocks overlie alluvium associated with pre-existing rivers and form a good basalt-alluvium aquifer over an area of 650 km2. Groundwater discharge occurs from 12 large springs, ranging from 20 to 4,000 L s-1, and from some extraction wells. Permian and Oligo-Miocene age limestones along the northern boundary of the Bazargan and Poldasht Plains basalts are intensively karstified and groundwater from these high lands easily enters the basalt-alluvium aquifers. The transmissivity of the basalt-alluvium aquifer ranges from 24 to 870 m2 d-1, indicating heterogeneity. Groundwater of the aquifer is a sodium-bicarbonate and mixed cation-bicarbonate type and the concentration of fluoride is higher than the universal maximum admissible concentrations for drinking. In order to determine the chemical composition and identify the source of the high fluoride concentrations in the groundwater of the basaltic area, water samples from the springs, wells and rivers were analyzed. The results indicate that the high fluoride water enters the study area from the Sari Su River.

  14. Similar Microbial Communities Found on Two Distant Seafloor Basalts.

    PubMed

    Singer, Esther; Chong, Lauren S; Heidelberg, John F; Edwards, Katrina J

    2015-01-01

    The oceanic crust forms two thirds of the Earth's surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present the first comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lō'ihi Seamount, Hawai'i, and the East Pacific Rise (EPR; 9°N). Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from Lō'ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy. PMID:26733957

  15. Alkali absorption and citrate excretion in calcium nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p < 0.001). In 11 patients with distal renal tubular acidosis (RTA), urinary citrate excretion was subnormal relative to net GI alkali absorption, with data from most patients residing outside the 95% confidence ellipse described for normal subjects. However, the normal relationship between urinary citrate and net absorbed alkali was maintained in 11 patients with chronic diarrheal syndrome (CDS) and in 124 stone-forming patients devoid of RTA or CDS, half of whom had "idiopathic" hypocitraturia. The 18 stone-forming patients without RTA or CDS received potassium citrate (30-60 mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p < 0.0001), with the slope indistinguishable from that of normal subjects. Thus, urinary citrate was normally dependent on the net GI absorption of alkali. This dependence was less marked in RTA, confirming the renal origin of hypocitraturia. However, the normal dependence was maintained in CDS and in idiopathic hypocitraturia, suggesting that reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  16. Rock Degradation by Alkali Metals: A Possible Lunar Erosion Mechanism.

    PubMed

    Naughton, J J; Barnes, I L; Hammond, D A

    1965-08-01

    When rocks melt under ultrahigh-vacuum conditions, their alkali components volatilize as metals. These metal vapors act to comminute polycrystalline rocks to their component minerals. The resultant powder is porous and loosely packed and its characteristics may be compatible with the lunar surface as revealed by the Ranger photographs. If meteorite impact or lunar volcanism has produced vaporization or areas of molten lava, alkali erosion may have given dust of this character in adjacent solid areas. PMID:17747570

  17. Electrochemical cell having an alkali-metal-nitrate electrode

    DOEpatents

    Roche, M.F.; Preto, S.K.

    1982-06-04

    A power-producing secondary electrochemical cell includes a molten alkali metal as the negative-electrode material and a molten-nitrate salt as the positive-electrode material. The molten material in the respective electrodes are separated by a solid barrier of alkali-metal-ion conducting material. A typical cell includes active materials of molten sodium separated from molten sodium nitrate and other nitrates in mixture by a layer of sodium ..beta..'' alumina.

  18. Alkali metal yttrium neo-pentoxide double alkoxide precursors to alkali metal yttrium oxide nanomaterials

    DOE PAGESBeta

    Boyle, Timothy J.; Neville, Michael L.; Sears, Jeremiah Matthew; Cramer, Roger

    2016-03-15

    In this study, a series of alkali metal yttrium neo-pentoxide ([AY(ONep)4]) compounds were developed as precursors to alkali yttrium oxide (AYO2) nanomaterials. The reaction of yttrium amide ([Y(NR2)3] where R=Si(CH3)3) with four equivalents of H-ONep followed by addition of [A(NR2)] (A=Li, Na, K) or Ao (Ao=Rb, Cs) led to the formation of a complex series of AnY(ONep)3+n species, crystallographically identified as [Y2Li3(μ3-ONep)(μ3-HONep)(μ-ONep)5(ONep)3(HONep)2] (1), [YNa2(μ3-ONep)4(ONep)]2 (2), {[Y2K3(μ3-ONep)3(μ-ONep)4(ONep)2(ηξ-tol)2][Y4K2(μ4-O)(μ3-ONep)8(ONep)4]•ηx-tol]} (3), [Y4K2(μ4-O)(μ3-ONep)8(ONep)4] (3a), [Y2Rb3(μ4-ONep)3(μ-ONep)6] (4), and [Y2Cs4(μ6-O)(μ3-ONep)6(μ3-HONep)2(ONep)2(ηx-tol)4]•tol (5). Compounds 1–5 were investigated as single source precursors to AYOx nanomaterials following solvothermal routes (pyridine, 185 °C for 24h). The final products after thermal processing weremore » found by powder X-ray diffraction experiments to be Y2O3 with variable sized particles based on transmission electron diffraction. Energy dispersive X-ray spectroscopy studies indicated that the heavier alkali metal species were present in the isolated nanomaterials.« less

  19. Alkali-slag cements for the immobilization of radioactive wastes

    SciTech Connect

    Shi, C.; Day, R.L.

    1996-12-31

    Alkali-slag cements consist of glassy slag and an alkaline activator and can show both higher early and later strengths than Type III Portland cement, if a proper alkaline activator is used. An examination of microstructure of hardened alkali-slag cement pastes with the help of XRD and SEM with EDAX shows that the main hydration product is C-S-H (B) with low C/S ratio and no crystalline substances exist such as Ca(OH){sub 2}, Al (OH){sub 3} and sulphoaluminates. Mercury intrusion tests indicate that hardened alkali-slag cement pastes have a lower porosity than ordinary Portland cement, and contain mainly gel pores. The fine pore structure of hardened alkali-slag cement pastes will restrict the ingress of deleterious substances and the leaching of harmful species such as radionuclides. The leachability of Cs{sup + } from hardened alkali-slag cement pastes is only half of that from hardened Portland cement. From all these aspects, it is concluded that alkali-slag cements are a better solidification matrix than Portland cement for radioactive wastes.

  20. Temperature dependence of elastic properties in alkali borate binary glasses

    NASA Astrophysics Data System (ADS)

    Kawashima, Mitsuru; Matsuda, Yu; Kojima, Seiji

    2011-05-01

    The elastic properties of alkali borate glasses, xM 2O·(100 - x)B 2O 3 (M = Li, Na, K, Rb, Cs, x = 14, 28), have been investigated by Brillouin scattering spectroscopy from room temperature up to 1100 °C. Above the glass transition temperature, Tg, the longitudinal sound velocity, VL, decreases markedly on heating. Such significant changes of the elastic properties result from the breakdown of the glass network above Tg. Alkali borate family with the same x shows the similar behavior in the temperature variations of VL up to around Tg. The absorption coefficient, αL, increases gradually above Tg. With the increase of the size of an alkali ion, the slope of VL just above Tg decreases. Since the fragility is related to the slope, the present results suggest that the fragility of alkali borate glasses increases as the size of alkali ion decreases. Such an alkali dependence of the fragility is discussed on the basis of the fluctuation of the boron coordination number.

  1. Two-phase alkali-metal experiments in reduced gravity

    SciTech Connect

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity.

  2. Reduction of phosphorus and alkali levels in coking coals

    SciTech Connect

    Hoare, I.C.; Waugh, A.B.

    1995-12-31

    A number of coals, though exhibiting desirable coking properties, can have undesirable levels of alkalis and phosphorus. All the phosphorus in the coal will report to the coke, eventually to the iron and thence to the steel, with adverse effects on its metallurgical properties. Alkalis have damaging effects on the blast furnace operation and can be responsible for loss of heat, loss of production, efficiency loss and reduced furnace life. Buyers of coking coal commonly specify such parameters as phosphorus in coal and alkalis in ash, with penalties and rejection over certain limits. With the introduction of new direct reduction technologies such as COREX and HISMELT, and others such as PCI, it is anticipated that coal producers will have even tighter phosphorus and alkali specifications imposed on their products. Phosphorus is predominantly inorganic in origin occurring in a wide variety of minerals in coal, but its main source is apatite. It can be found mainly in the lower density fractions of the coal and intimately bound, so that conventional physical beneficiation techniques are relatively ineffective. CSIRO has developed a cost effective, selective chemical demineralization treatment, which can be applied to the problem of high alkali, high phosphorus coals. This particular technique makes use of unrefined organic acid, which also has the advantage of being low in cost and environmentally benign. In this paper, the effectiveness of acid demineralization of a number of coals is discussed, within the context of their phosphorus and alkali distributions throughout various size/density fractions.

  3. Alkali-metal azides interacting with metal-organic frameworks.

    PubMed

    Armata, Nerina; Cortese, Remedios; Duca, Dario; Triolo, Roberto

    2013-01-14

    Interactions between alkali-metal azides and metal-organic framework (MOF) derivatives, namely, the first and third members of the isoreticular MOF (IRMOF) family, IRMOF-1 and IRMOF-3, are studied within the density functional theory (DFT) paradigm. The investigations take into account different models of the selected IRMOFs. The mutual influence between the alkali-metal azides and the π rings or Zn centers of the involved MOF derivatives are studied by considering the interactions both of the alkali-metal cations with model aromatic centers and of the alkali-metal azides with distinct sites of differently sized models of IRMOF-1 and IRMOF-3. Several exchange and correlation functionals are employed to calculate the corresponding interaction energies. Remarkably, it is found that, with increasing alkali-metal atom size, the latter decrease for cations interacting with the π-ring systems and increase for the azides interacting with the MOF fragments. The opposite behavior is explained by stabilization effects on the azide moieties and determined by the Zn atoms, which constitute the inorganic vertices of the IRMOF species. Larger cations can, in fact, coordinate more efficiently to both the aromatic center and the azide anion, and thus stabilizing bridging arrangements of the azide between one alkali-metal and two Zn atoms in an η(2) coordination mode are more favored. PMID:23161861

  4. Constraints on the Global-scale Chemical Weathering State of Mars From TES Results Based on Spectral Analysis of Chemically Weathered Basalts

    NASA Astrophysics Data System (ADS)

    Michalski, J. R.; Kraft, M. D.; Sharp, T. G.; Christensen, P. R.

    2005-12-01

    mineralogy from thermal infrared data; weathering serves to bias igneous interpretations toward rocks of higher silica and alkali contents. Trends observed in the spectral analysis of chemically weathered CRBG rock surfaces could explain some of the spectral trends observed at Mars, suggesting that martian dark region basalts have been chemically weathered under consistently low-water, or only episodically wet surface conditions.

  5. Small diatomic alkali molecules at ultracold temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Tout Taotao

    This thesis describes experimental work done with two of the smallest diatomic alkali molecules, 6Li2 and 23Na 6Li, each formed out of its constituent atoms at ultracold temperatures. The 23Na6Li molecule was formed for the first time at ultracold temperatures, after previous attempts failed due to an incorrect assignment of Feshbach resonances in the 6Li+23Na system. The experiment represents successful molecule formation around the most difficult Feshbach resonance ever used, and opens up the possibility of transferring NaLi to its spin-triplet ground state, which has both magnetic and electric dipole moments and is expected to be long-lived. For 6Li2, the experimental efforts in this thesis have solved a long-standing puzzle of apparently long lifetimes of closed-channel fermion pairs around a narrow Feshbach resonance, finding that the lifetime is in fact short, as expected in the absence of Pauli suppression of collisions. Moreover, measurements of collisions of Li2 with free Li atoms demonstrates a striking first example of collisions involving molecules at ultracold temperatures described by physics beyond universal long-range van der Waals interactions.

  6. Superconductivity in alkali-doped fullerene nanowhiskers.

    PubMed

    Takeya, Hiroyuki; Konno, Toshio; Hirata, Chika; Wakahara, Takatsugu; Miyazawa, Kun'ichi; Yamaguchi, Takahide; Tanaka, Masashi; Takano, Yoshihiko

    2016-09-01

    Superconductivity in alkali metal-doped fullerene nanowhiskers (C60NWs) was observed in K3.3C60NWs, Rb3.0C60NWs and Cs2.0Rb1.0C60NWs with transition temperatures at 17, 25 and 26 K, respectively. Almost full shielding volume fraction (~80%) was observed in K3.3C60NWs when subjected to thermal treatment at 200 °C for a duration of 24 h. In contrast, the shielding fraction of Rb3.0C60NWs and Cs2.0Rb1.0C60NWs were calculated to be 8% and 6%, respectively. Here we report on an extensive investigation of the superconducting properties of these AC60NWs (A  =  K3.3, Rb3.0 and Cs2.0Rb1.0). These properties are compared to the ones reported on the corresponding conventional (single-crystal or powder) K-doped fullerene. We also evaluated the critical current densities of these C60NWs using the Bean model under an applied magnetic field up to 50 kOe. PMID:27385220

  7. Bioinorganic Chemistry of the Alkali Metal Ions.

    PubMed

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced. PMID:26860297

  8. Superconductivity in alkali-doped fullerene nanowhiskers

    NASA Astrophysics Data System (ADS)

    Takeya, Hiroyuki; Konno, Toshio; Hirata, Chika; Wakahara, Takatsugu; Miyazawa, Kun’ichi; Yamaguchi, Takahide; Tanaka, Masashi; Takano, Yoshihiko

    2016-09-01

    Superconductivity in alkali metal-doped fullerene nanowhiskers (C60NWs) was observed in K3.3C60NWs, Rb3.0C60NWs and Cs2.0Rb1.0C60NWs with transition temperatures at 17, 25 and 26 K, respectively. Almost full shielding volume fraction (~80%) was observed in K3.3C60NWs when subjected to thermal treatment at 200 °C for a duration of 24 h. In contrast, the shielding fraction of Rb3.0C60NWs and Cs2.0Rb1.0C60NWs were calculated to be 8% and 6%, respectively. Here we report on an extensive investigation of the superconducting properties of these AC60NWs (A  =  K3.3, Rb3.0 and Cs2.0Rb1.0). These properties are compared to the ones reported on the corresponding conventional (single-crystal or powder) K-doped fullerene. We also evaluated the critical current densities of these C60NWs using the Bean model under an applied magnetic field up to 50 kOe.

  9. A common parentage for Deccan Continental Flood Basalt and Central Indian Ocean Ridge Basalt? A geochemical and isotopic approach

    NASA Astrophysics Data System (ADS)

    Ray, D.; Misra, S.; Widdowson, M.; Langmuir, C. H.

    2014-04-01

    A comparison of geochemical and Sr-Nd-Pb isotopic compositions for Deccan Continental Flood Basalts (CFBs) and Central Indian Ridge (CIR) Basalts is presented: these data permit assessment of possible parental linkages between the two regions, and comparison of their respective magmatic evolutionary trends in relation to rift-related tectonic events during Gondwana break-up. The present study reveals that Mid-Ocean Ridge Basalt (MORB) from the northern CIR and basalts of Deccan CFB are geochemically dissimilar because of: (1) the Deccan CFB basalts typically show a greater iron-enrichment as compared to the northern CIR MORB, (2) a multi-element spiderdiagram reveals that the Deccan CFBs reveal a more fractionated slope (Ba/YbN > 1), as compared to relatively flat northern CIR MORB (Ba/YbN < 1), (3) there is greater REE fractionation for Deccan CFB than for the northern CIR MORB (i.e., La/YbN ˜ 2.3 and 1 respectively) and (4) substantial variation of compatible-incompatible trace elements and their ratios among the two basalt groups suggests that partial melting is a dominant process for northern CIR MORB, while fractional crystallization was a more important control to the geochemical variation for Deccan CFB. Further, incompatible trace element ratios (Nb/U and Nb/Pb) and radiogenic isotopic data (Sr-Pb-Nd) indicate that the northern CIR MORBs are similar to depleted mantle [and/or normal (N)-MORB], and often lie on a mixing line between depleted mantle and upper continental crust. By contrast, Deccan CFB compositions lie between the lower continental crust and Ocean island basalt. Accordingly, we conclude that the basaltic suites of the northern CIR MORB and Deccan CFB do not share common parentage, and are therefore genetically unrelated to each other. Instead, we infer that the northern CIR MORB were derived from a depleted mantle source contaminated by upper continental crust, probably during the break up of Gondwanaland; the Deccan CFB are more similar to

  10. Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

    SciTech Connect

    Bory, Benjamin F.; Wang, Jingxin; Janssen, René A. J.; Meskers, Stefan C. J.; Gomes, Henrique L.; De Leeuw, Dago M.

    2014-12-08

    Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 10{sup 25}/m{sup 3}. The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics.

  11. Examination of subaerially altered basaltic glass with TEM and EELS

    SciTech Connect

    Luo, J.-S.

    1998-06-17

    We have examined the weathered surfaces of 720 year old Hawaiian basalt glasses that were recovered from a subaerial environment with high-resolution transmission electron microscopy (TEM) and energy filtered imaging and electron energy loss spectroscopy (EELS) techniques. Whereas the alteration products (palagonite) were physically detached from the underlying glass in most samples, a gel-like amorphous layer was observed adjacent to the glass in a few samples. To our knowledge, this is the first time a gel layer has been observed on weathered basalt. This is significant because analogous gel layers have been observed on nuclear waste glasses reacted in laboratory tests, and this demonstrates an important similarity in the mechanisms of the weathering of basalt and the corrosion of waste glasses.

  12. Lunar basalt meteorite EET 87521: Petrology of the clast population

    NASA Technical Reports Server (NTRS)

    Semenova, A. S.; Nazarov, M. A.; Kononkova, N. N.

    1993-01-01

    The Elephant Moraine meteorite EET 87521 was classified as a lunar mare basalt breccia which is composed mainly of VLT basalt clasts. Here we report on our petrological study of lithic clasts and monomineralic fragments in the thin sections EET 87521,54 and EET 87521,47,1, which were prepared from the meteorite. The results of the study show that EET 87521 consists mainly of Al-rich ferrobasalt clasts and olivine pyroxenite clasts. The bulk composition of the meteorite can be well modelled by the mixing of these lithic components which appear to be differentiates of the Luna 25 basalt melt. KREEP and Mg-rich gabbro components are minor constituents of EET 87521.

  13. Evidence against hydrogen-based microbial ecosystems in basalt aquifers

    USGS Publications Warehouse

    Anderson, R.T.; Chapelle, F.H.; Lovley, D.R.

    1998-01-01

    It has been proposed that hydrogen produced from basalt-ground-water interactions may serve as an energy source that supports the existence of microorganisms in the deep subsurface on Earth and possibly on other planets. However, experiments demonstrated that hydrogen is not produced from basalt at an environmentally relevant, alkaline pH. Small amounts of hydrogen were produced at a lower pH in laboratory incubations, but even this hydrogen production was transitory. Furthermore, geochemical considerations suggest that previously reported rates of hydrogen production cannot be sustained over geologically significant time frames. These findings indicate that hydrogen production from basalt-ground-water interactions may not support microbial metabolism in the subsurface.

  14. Mineralogy of the last lunar basalts: Results from Clementine

    USGS Publications Warehouse

    Staid, M.I.; Pieters, C.M.

    2001-01-01

    The last major phase of lunar volcanism produced extensive high-titanium mare deposits on the western nearside which remain unsampled by landing missions. The visible and near-infrared reflectance properties of these basalts are examined using Clementine multispectral images to better constrain their mineralogy. A much stronger 1 ??m ferrous absorption was observed for the western high-titanium basalts than within earlier maria, suggesting that these last major mare eruptions also may have been the most iron-rich. These western basalts also have a distinctly long-wavelength, 1 ??m ferrous absorption which was found to be similar for both surface soils and materials excavated from depth, supporting the interpretation of abundant olivine within these deposits. Spectral variation along flows within the Imbrium basin also suggests variations in ilmenite content along previously mapped lava flows as well as increasing olivine content within subsequent eruptions. Copyright 2001 by the American Geophysical Union.

  15. Corrosion and tribological properties of basalt fiber reinforced composite materials

    NASA Astrophysics Data System (ADS)

    Ha, Jin Cheol; Kim, Yun-Hae; Lee, Myeong-Hoon; Moon, Kyung-Man; Park, Se-Ho

    2015-03-01

    This experiment has examined the corrosion and tribological properties of basalt fiber reinforced composite materials. There were slight changes of weight after the occurring of corrosion based on time and H2SO4 concentration, but in general, the weight increased. It is assumed that this happens due to the basalt fiber precipitate. Prior to the corrosion, friction-wear behavior showed irregular patterns compared to metallic materials, and when it was compared with the behavior after the corrosion, the coefficient of friction was 2 to 3 times greater. The coefficient of friction of all test specimen ranged from 0.1 to 0.2. Such a result has proven that the basalt fiber, similar to the resin rubber, shows regular patterns regardless of time and H2SO4 concentration because of the space made between resins and reinforced materials.

  16. Efficient destruction of CF4 through in situ generation of alkali metals from heated alkali halide reducing mixtures.

    PubMed

    Lee, Myung Churl; Choi, Wonyong

    2002-03-15

    Perfluorocarbons (PFCs) are the most potent green house gases that are very recalcitrant at destruction. An effective way of converting PFCs using hot solid reagents into safe products has been recently introduced. By investigating the thermal reductive destruction of tetrafluoromethane (CF4) we provided new insight and more physicochemical consideration on this novel process. The complete destruction of CF4was successfully achieved by flowing the gas through a heated reagent bed (400-950 degrees C) that contained powder mixtures of alkali halides, CaO, and Si. The silicon acted as a reducing agent of alkali halides for the in-situ production of alkali metals, and the calcium oxide played the role of a halide ion acceptor. The absence of any single component in this ternary mixture drastically reduced the destruction efficiency of CF4. The CF4 destruction efficiencies with the solid reagent containing the alkali halide, MX, increased in the order of Li approximately Na < K < Cs for alkali cations and I < Br < Cl < F for halide anions. This trend agreed with the endothermicity of the alkali metal generation reaction: the higher the endothermicity, the lower the destruction efficiency. Alkali metal generation was indirectly detected by monitoring H2 production from its reaction with water. The production of alkali metals increased with NaF, KF, and CsF in this order. The CsF/CaO/Si system exhibited the complete destruction of CF4 at as low as 600 degrees C. The solid product analysis by X-ray diffraction (XRD) showed the formation of CaF2 and the depletion of Si with black carbon particles formed in the solid reagent residue. No CO/CO2 and toxic HF and SiF4 formation were detected in the exhaust gas. PMID:11944694

  17. The role of basalt weathering on climate: the Siberian traps

    NASA Astrophysics Data System (ADS)

    Grard, A.; François, L.; Dessert, C.; Dupré, B.; Goddéris, Y.

    2003-04-01

    The Siberian traps represent one of the most important flood basalt provinces on Earth. Their onset coincides with a profound faunal mass extinction at the Permo-Trias boundary (250 my ago). The volcanic eruption has also environmental and climatic effects through aerosols and gases injection into the atmosphere. Chemical weathering processes play a major role in biogeochemical cycles and climate evolution. In particular, the weathering of silicate rocks represents an important sink of atmospheric CO_2. At the million-year timescale, the volcanic release of CO_2 into the atmosphere-ocean system is balanced by its consumption during silicate weathering followed by carbonate deposition on the seafloor. Recent data have shown that chemical weathering of basalt is five to ten times more efficient than weathering of acidic silicate rocks such as granite or gneiss (Dessert et al., EPSL, 188 : 459-474, 2001). Thus the weathering of basaltic rocks consumes more atmospheric CO_2 than other silicate rocks. In the case of subaerial basaltic volcanism, an eruption not only releases CO_2 to the atmosphere, but also produces basaltic rocks which weather rapidly, enhancing CO_2 consumption rates. Currently, the Siberian basaltic traps are located in a cold and dry region. The weathering rates of this province are low, and the climatic impact is thus currently low. But in the past, the latitudinal temperature gradient was smaller. During the Permian, the climate was significantly warmer than today. Thus the chemical weathering of the Siberian traps was enhanced at that time, and this process led to a long-term impact on the Triassic climate and on the carbon cycle. The used model calculates the traps impact on the long-term carbon cycle and climate evolution. This model has been refined and adapted to high latitudes environments. We quantify the cooling caused by traps weathering.

  18. Basalt fiber reinforced polymer composites: Processing and properties

    NASA Astrophysics Data System (ADS)

    Liu, Qiang

    A high efficiency rig was designed and built for in-plane permeability measurement of fabric materials. A new data derivation procedure to acquire the flow fluid pattern in the experiment was developed. The measurement results of the in-plane permeability for basalt twill 31 fabric material showed that a high correlation exists between the two principal permeability values for this fabric at 35% fiber volume fraction. This may be the most important scientific contribution made in this thesis. The results from radial measurements corresponded quite well with those from Unidirectional (UD) measurements, which is a well-established technique. No significant differences in mechanical properties were found between basalt fabric reinforced polymer composites and glass composites reinforced by a fabric of similar weave pattern. Aging results indicate that the interfacial region in basalt composites may be more vulnerable to environmental damage than that in glass composites. However, the basalt/epoxy interface may have been more durable than the glass/epoxy interface in tension-tension fatigue because the basalt composites have significantly longer fatigue life. In this thesis, chapter I reviews the literature on fiber reinforced polymer composites, with concentration on permeability measurement, mechanical properties and durability. Chapter II discusses the design of the new rig for in-plane permeability measurement, the new derivation procedure for monitoring of the fluid flow pattern, and the permeability measurement results. Chapter III compares the mechanical properties and durability between basalt fiber and glass fiber reinforced polymer composites. Lastly, chapter IV gives some suggestions and recommendations for future work.

  19. The Madinah eruption, Saudi Arabia: Magma mixing and simultaneous extrusion of three basaltic chemical types

    NASA Astrophysics Data System (ADS)

    Camp, Victor E.; Hooper, Peter R.; Roobol, M. John; White, D. L.

    1987-04-01

    During a 52-day eruption in 1256 A.D., 0.5 km3 of alkali-olivine basalt was extruded from a 2.25-km-long fissure at the north end of the Harrat Rahat lava field, Saudi Arabia. The eruption produced 6 scoria cones and a lava flow 23 km long that approached the ancient and holy city of Madinah to within 8 km. Three chemical types of basalt are defined by data point clusters on variation diagrams, i.e. the low-K, high-K, and hybrid types. All three erupted simultaneously. Their distribution is delineated in both scoria cones and lava flow units from detailed mapping and a petrochemical study of 135 samples. Six flow units, defined by distinct flow fronts, represent extrusive pulses. The high-K type erupted during all six pulses, the low-K type during the first three, and the hybrid type during the first two. Three mineral assemblages occur out of equilibrium in all three chemical types. Assemblage 1 contains resorbed olivine and clinopyroxene megacrysts and ultramafic microxenoliths (Fo90 + Cr spinel + Cr endiopside) which fractionated within the spinel zone of the mantle. Assemblage 2 contains resorbed plagioclase megacrysts (An60) with olivine inclusions (Fo78) which fractionated in the crust. Assemblage 3 contains microphenocrysts of plagioclase and olivine in a groundmass of the same minerals with late-crystallizing titansalite and titanomagnetite; assemblage 3 crystallized at the surface and/or in the upper crust. Each assemblage represents a distinct range in PTX environment, suggesting that their coexistence in each chemical type may be a function of magma mixing. Such a process is confirmed by variable ratios of incompatible element pairs in a range of analyses. All three chemical types are products of mixing. Some of the hybrid types may have developed from surface mixing of the low-K and high-K lavas; however, the occurrence of all three types at the vent system suggests that subsurface mixing was the dominant process. We suggest that the Madinah flow was

  20. Alkali-aggregate reactivity of typical siliceious glass and carbonate rocks in alkali-activated fly ash based geopolymers

    NASA Astrophysics Data System (ADS)

    Lu, Duyou; Liu, Yongdao; Zheng, Yanzeng; Xu, Zhongzi; Shen, Xiaodong

    2013-08-01

    For exploring the behaviour of alkali-aggregate reactivity (AAR) in alkali-activated geopolymeric materials and assessing the procedures for testing AAR in geopolymers, the expansion behaviour of fly ash based geopolymer mortars with pure silica glass and typical carbonate rocks were studied respectively by curing at various conditions, i.e. 23°C and 38°C with relative humidity over 95%, immersed in 1M NaOH solution at 80°C. Results show that, at various curing conditions, neither harmful ASR nor harmful ACR was observed in geopolymers with the criteria specified for OPC system. However, with the change of curing conditions, the geopolymer binder and reactive aggregates may experience different reaction processes leading to quite different dimensional changes, especially with additional alkalis and elevated temperatures. It suggests that high temperature with additional alkali for accelerating AAR in traditional OPC system may not appropriate for assessing the alkali-aggregate reactivity behaviour in geopolymers designed for normal conditions. On the other hand, it is hopeful to control the dimensional change of geopolymer mortar or concrete by selecting the type of aggregates and the appropriate curing conditions, thus changing the harmful AAR in OPC into beneficial AAR in geopolymers and other alkali-activated cementitious systems.

  1. On-chip fabrication of alkali-metal vapor cells utilizing an alkali-metal source tablet

    NASA Astrophysics Data System (ADS)

    Tsujimoto, K.; Ban, K.; Hirai, Y.; Sugano, K.; Tsuchiya, T.; Mizutani, N.; Tabata, O.

    2013-11-01

    We describe a novel on-chip microfabrication technique for the alkali-metal vapor cell of an optically pumped atomic magnetometer (OPAM), utilizing an alkali-metal source tablet (AMST). The newly proposed AMST is a millimeter-sized piece of porous alumina whose considerable surface area holds deposited alkali-metal chloride (KCl) and barium azide (BaN6), source materials that effectively produce alkali-metal vapor at less than 400 °C. Our experiments indicated that the most effective pore size of the AMST is between 60 and 170 µm. The thickness of an insulating glass spacer holding the AMST was designed to confine generated alkali metal to the interior of the vapor cell during its production, and an integrated silicon heater was designed to seal the device using a glass frit, melted at an optimum temperature range of 460-490 °C that was determined by finite element method thermal simulation. The proposed design and AMST were used to successfully fabricate a K cell that was then operated as an OPAM with a measured sensitivity of 50 pT. These results demonstrate that the proposed concept for on-chip microfabrication of alkali-metal vapor cells may lead to effective replacement of conventional glassworking approaches.

  2. Crustal influence in the generation of continental flood basalts

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Lugmair, G. W.; Macdougall, J. D.

    1981-01-01

    The suggestion that primordial undifferentiated material may exist in the earth's mantle has recently been revived on the strength of Nd isotope data for two types of young continental rocks - flood basalts and kimberlites. The limited published data show a clustering of Nd isotopic compositions close to those for meteorites with chondritic relative rare-earth (REE) abundance. In contrast, data are presented for samples from the Columbia flood basalt province of the northwestern United States which show large isotopic variability suggestive of mixing processes acting after the separation of the primary magmas from their mantle source.

  3. Petrogenetic modeling of Hawaiian tholeiitic basalts - A geochemical approach

    NASA Technical Reports Server (NTRS)

    Budahn, J. R.; Schmitt, R. A.

    1985-01-01

    The abundances of 29 elements in 33 samples of tholeiitic basalts from five volcanoes in Hawaii are determined by neutron-activation analysis; the results are presented in tables and graphs with the data of Murali et al. (1977) for a sixth volcano and characterized in detail; and geochemical partial-melting models are constructed to explain the origin of these basalts. The models proposed are based on olivine crystallization from three distinct source compositions (determined from the REE and Sc partitioning) and correspond to the volcano groups Mauna Kea, Kohala, and Kilauea; Mauna Loa and Lanai; and Koolau.

  4. Near-Primary Oxidized Basalts from the Submarine Vanuatu Arc

    NASA Astrophysics Data System (ADS)

    Gentes, Z.; Kelley, K. A.; Cottrell, E.; Arculus, R. J.

    2014-12-01

    Near-primary melt compositions (i.e., in equilibrium with >Fo89 olivine) are rare in arc systems. Yet, such melts provide essential views of mantle-derived melts, without further modification by fractional crystallization or other crustal processes, and reveal the diversity of melt compositions that exist in the arc mantle wedge. Here, we present new measurements of naturally glassy, near-primary olivine-hosted melt inclusions from one dredge of Evita seamount (SS07/2008 NLD-02) in the southern Vanuatu arc system. Two distinct basalt types were identified in hand sample upon collection, based on contrasting phenocryst assemblage (Type 1: 1% phenocrysts; Type 2: 15% phenocrysts). We selected melt inclusions from each type and determined major elements, S, and Cl by EMP, H2O and CO2 by FTIR, trace elements by LA-ICP-MS, and Fe3+/∑Fe ratios by XANES. Melt inclusions from both lava types show equilibrium with ≥Fo90 olivine, consistent with host olivine compositions, and thus are near-primary melt compositions that have escaped major modification since departing the mantle wedge. Both have similar maximum dissolved H2O (~2.3 wt.%), high Mg# (48-75), and are basalt to basaltic andesite (SiO2 49-55 wt.%). However, the two lava types have very different major and trace element compositions. Inclusions from Type 1 show relatively flat REE patterns and classic negative anomalies in Nb and Ta, and positive anomalies in Pb and Sr typical of normal arc basalts, and have Fe3+/∑Fe ratios similar to global arc basalts (~0.24). In contrast, melt inclusions from Type 2 exhibit steeply sloped REE patterns with strong depletions in the HREE that suggest garnet in the source lithology for these magmas, either in the subducting slab or the mantle wedge. Moreover, the Type 2 inclusions have high La/Yb (29.5-43) and Sr/Y (50-58), which are classically attributed to partial melting of the basaltic slab, although these inclusions are basaltic, not andesitic. Type 2 inclusions also

  5. Seismic wave propagation through an extrusive basalt sequence

    NASA Astrophysics Data System (ADS)

    Sanford, Oliver; Hobbs, Richard; Brown, Richard; Schofield, Nick

    2016-04-01

    Layers of basalt flows within sedimentary successions (e.g. in the Faeroe-Shetland Basin) cause complex scattering and attenuation of seismic waves during seismic exploration surveys. Extrusive basaltic sequences are highly heterogeneous and contain strong impedance contrasts between higher velocity crystalline flow cores (˜6 km s‑1) and the lower velocity fragmented and weathered flow crusts (3-4 km s‑1). Typically, the refracted wave from the basaltic layer is used to build a velocity model by tomography. This velocity model is then used to aid processing of the reflection data where direct determination of velocity is ambiguous, or as a starting point for full waveform inversion, for example. The model may also be used as part of assessing drilling risk of potential wells, as it is believed to constrain the total thickness of the sequence. In heterogeneous media, where the scatter size is of the order of the seismic wavelength or larger, scattering preferentially traps the seismic energy in the low velocity regions. This causes a build-up of energy that is guided along the low velocity layers. This has implications for the interpretation of the observed first arrival of the seismic wave, which may be a biased towards the low velocity regions. This will then lead to an underestimate of the velocity structure and hence the thickness of the basalt, with implications for the drilling of wells hoping to penetrate through the base of the basalts in search of hydrocarbons. Using 2-D acoustic finite difference modelling of the guided wave through a simple layered basalt sequence, we consider the relative importance of different parameters of the basalt on the seismic energy propagating through the layers. These include the proportion of high to low velocity material, the number of layers, their thickness and the roughness of the interfaces between the layers. We observe a non-linear relationship between the ratio of high to low velocity layers and the apparent

  6. Distribution and stratigraphy of basaltic units in Maria Tranquillitatis and Fecunditatis: A Clementine perspective

    NASA Technical Reports Server (NTRS)

    Rajmon, D.; Spudis, P.

    2004-01-01

    Maria Tranquillitatis and Fecunditatis have been mapped based on Clementine image mosaics and derived iron and titanium maps. Impact craters served as stratigraphic probes enabling better delineation of compositionally different basaltic units, determining the distribution of subsurface basalts, and providing estimates of total basalt thickness and the thickness of the surface units. Collected data indicate that volcanism in these maria started with the eruption of low-Ti basalts and evolved toward medium- and high-Ti basalts. Some of the high-Ti basalts in Mare Tranquillitatis began erupting early and were contemporaneous with the low- and medium-Ti basalts; these units form the oldest units exposed on the mare surface. Mare Tranquillitatis is mostly covered with high- Ti basalts. In Mare Fecunditatis, the volume of erupting basalts clearly decreased as the Ti content increased, and the high-Ti basalts occur as a few patches on the mare surface. The basalt in both maria is on the order of several hundred meters thick and locally may be as thick as 1600 m. The new basalt thickness estimates generally fall within the range set by earlier studies, although locally differ. The medium- to high-Ti basalts exposed at the surfaces of both maria are meters to tens of meters thick.

  7. Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Ramesh, B.; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    The mixed alkali and alkaline earth oxide borate glass with the composition xK2O - (25-x) Li2O-12.5BaO-12.5MgO-50B2O3 (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α02-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α02-), and (Λ) increases with increasing of K2O content and electronic polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K2O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).

  8. The reaction dynamics of alkali dimer molecules and electronically excited alkali atoms with simple molecules

    SciTech Connect

    Hou, H.

    1995-12-01

    This dissertation presents the results from the crossed molecular beam studies on the dynamics of bimolecular collisions in the gas phase. The primary subjects include the interactions of alkali dimer molecules with simple molecules, and the inelastic scattering of electronically excited alkali atoms with O2. The reaction of the sodium dimers with oxygen molecules is described in Chapter 2. Two reaction pathways were observed for this four-center molecule-molecule reaction, i.e. the formations of NaO2 + Na and NaO + NaO. NaO2 products exhibit a very anisotropic angular distribution, indicating a direct spectator stripping mechanism for this reaction channel. The NaO formation follows the bond breaking of O2, which is likely a result of a charge transfer from Na2 to the excited state orbital of O2-. The scattering of sodium dimers from ammonium and methanol produced novel molecules, NaNH3 and Na(CH3OH), respectively. These experimental observations, as well as the discussions on the reaction dynamics and the chemical bonding within these molecules, will be presented in Chapter 3. The lower limits for the bond dissociation energies of these molecules are also obtained. Finally, Chapter 4 describes the energy transfer between oxygen molecules and electronically excited sodium atoms.

  9. Basaltic Volcanism of the Snake River Volcanic Province

    NASA Astrophysics Data System (ADS)

    Shervais, J. W.; Hanan, B. B.; Vetter, S.

    2012-12-01

    The Yellowstone-Snake River Plain (YSRP) volcanic province is the world's best modern example of a time-transgressive hotspot track beneath continental crust. Tomographic images document a thermal anomaly which pierces the Farallon plate at depth and appears to extend to depths of over 1000 km. Many investigators attribute this anomaly to a deep mantle plume, while others recognize the sheet-like aspect of the velocity anomaly and attribute it to lower mantle flow around a fragmented remnant of the Farallon plate. Tholeiitic basalts of the SRP have major element compositions similar to ocean island basalts (OIB), with higher FeO, TiO2, P2O5 and K2O than mid-ocean ridge basalts over a similar range in MgO. Their trace element concentrations also mimic OIB tholeiites, with moderately enriched LREE/HREE ratios, OIB-like HFSE ratios and Nb-Y-Zr systematics. Most SRP basalts show little evidence of crustal assimilation: oxygen isotope compositions are mantle-like, K2O is low and does not increase relative to other incompatible elements during fractionation (e.g., P2O5), and silica contents are consistently low. In contrast, evidence suggests that these basalts evolve primarily through fractional crystallization in relatively shallow magma chambers with episodic magma recharge. Trace element concentration patterns are nearly identical to OIB tholeiites, with somewhat lower slopes on multi-element variations diagrams, consistent with 7-12% partial melting of spinel-facies peridotite (9-18 kb, 40-65 km) with a composition similar to the source of OIB or EMORB. Models show that depleted MORB asthenosphere or primitive mantle peridotite composition sources cannot yield SRP tholeiites, even with residual garnet in the source region to raise LREE/HREE ratios in the melt. There is no indication of residual garnet in the source - which requires that either the lithosphere was relatively thin during formation of the SRP, or that the melts originated within the lithosphere itself

  10. Theory of Magnetotransport Anomalies in Alkali Metals

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaodong

    The galvanomagnetic properties of alkali metals, especially those of potassium, are studied taking into account the existence of an incommensurate change-density wave (CDW) structure. Occurrence of the CDW broken symmetry truncates the Fermi surface with a large number of energy gaps. Furthermore, any macroscopic crystal is likely divided into CDW (')Q-domains. An orientational (')Q-texture leads to a preferred direction in the crystal. For such an exotic system the effective magnetoresistivity tensor is anomalous and is derived for various magnetic fields. The residual (zero-field) resistance is also anisotropic. For fields 0.5 - 3T, Hall coefficients are found to be anisotropic, and a longitudinal-transverse mixing effect is discovered. The diagonal elements of the magnetoresistivity tensor are found to have a linear magnetoresistance. When the field is increased above 4T sharp open-orbit magnetoresistance spectrum develops. From the theoretical magnetoresistivity tensor, the induced-torque amplitude and phase patterns for potassium spheres are calculated. The theory quantitatively explains all of the induced-torque anomalies found experimentally in the last fourteen years. An interacting electron system, which is free of the CDW instabilities, is also studied by considering its spin response to a weak sinusoidal magnetic field. The many-body correction G(,-)((')q,(omega)) caused by exchange and correlation is introduced to describe the correct wave -vector- and frequency-dependent spin susceptibility. The exact behavior of G(,-)((')q,(omega)) in the large-q limit is shown to be related to the pair distribution function g((')r) at r = 0. G(,-)((')q,(omega)) (--->) 4g(0)-1 /3, as q (--->) (INFIN).At metallic densities this value is negative, opposite in sign to the limit at small wave vectors. Thus the spin susceptibility for large wave vectors is suppressed, rather than enhanced, by many-body effects.

  11. Results of partial melting experiments on chondritic precursors of basaltic achondrites. [Abstract only

    NASA Technical Reports Server (NTRS)

    Boesenberg, J. S.; Delaney, J. S.

    1994-01-01

    Recent partial melting experiments on Murchison produced eucrite like glasses at reducing conditions. Although the glasses were remarkably similar to eucrites, the Fe/Mn ratio of the glasses was too high and the O isotopes cannot match eucrites. Mixing 70% H chondrite with 30% CM chondrite makes a potential precursor that satisfies the O isotope constraint on the eucrites. From experiments on both synthetic Murchison and a simplified version of the H70-CM30 mixture, simple partial melting of any individual or combination of known chondritic meteorites is incapable of producing eucritic glasses that have the appropriate Fe/Mn, Fe/(Fe + Mg), and O isotope ratios. In order to satisfy the Fe-Mn-Mg constraints imposed by the eucrites, both reduction of FeO to Fe-metal and olivine fractionation must occur in the precursor before partial melting is allowed to occur and produce the eucritic glass. To test this hypothesis, partial melting experiments on both Murchison and a mixture of 70% Allegan (H6)-30% Murchison (CM2) were conducted. The results of these new experiments show that to satisfy the O isotopes, Fe/Mn ratio, and Fe/(Fe + Mg) ratio, approximately 12% reduction of FeO to Fe-metal (in the silicate portion) and 20% olivine fractionation is required within the H-CM precursor to permit the formation of eucrites by partial melting. The sequence of FeO reduction and mantle fractionation permits very eucritic glasses to be produced. The problem that many remain with the H-CM precursor, however, is an overabundance of alkali elements. Correlations between temperature, O fugacity, and composition have also been found within our experiments. A basaltic achondrite precursor formed by mixing H and CM chondrites and constrained by O isotopes and Fe-Mn-Mg is compatible with a model of natural eucrites having formed by partial melting after metal and olivine fractionation in that precursor.

  12. Waters associated with an active basaltic volcano, Kilauea, Hawaii: Variation in solute sources, 1973-1991

    USGS Publications Warehouse

    Tilling, R.I.; Jones, B.F.

    1996-01-01

    Chemical and isotopic analyses of samples collected from a 1262-m-deep research borehole at the summit of Kilauea Volcano provide unique time-series data for composition of waters in the uppermost part of its hydrothermal system. These waters have a distinctive geochemical signature: a very low proportion of chloride relative to other anions compared with other Hawaiian wa-ters - thermal (???30 ??C) or nonthermal (<30 ??C) - and with most thermal waters of the world. Isotope data demonstrate that the borehole waters are of essentially meteoric origin, with minimal magmatic input. The water chemistry exhibits marked temporal variations, including pronounced short-term (days to weeks) effects of rainfall dilution and longer term (months to years) decline of total solutes. The 1973-1974 samples are Na-sulfate-dominant, but samples collected after July 1975 are (Mg + Ca)-bicarbonate-dominant. This compositional shift, probably abrupt, was associated with an increase in the partial pressure of CO2 (PCO2) related to volcanic degassing of CO2 accompanying a large eruption (December 31, 1974) and associated intense seismicity. Following the initial sharp increase, the PCO2 then decreased, approaching preemption values in April 1976. Beginning in mid-1975, solute concentrations of the borehole waters decreased substantially, from ???45 meq/L to <25 meq/L in only eight months; by 1991, total solute concentrations were <17 meq/L. This decline in solutes cannot be attributed to rainfall dilution and is inferred to reflect the decreasing availability with time of the easily leachable salts of alkali metals and sulfate, which originated in sublimates and fumarolic encrustations in fractures and cavities of rocks along the hydrologic flow paths. The overall chemistry of the summit-borehole waters is largely determined by hydrolysis reactions associated with normal weathering of host tholeiitic basalts on a geologic time scale, despite short-term perturbations in composition

  13. Form and composition of secondary mineralization in fractures in Columbia River basalts

    SciTech Connect

    McKinley, J.P.; Rawson, S.A.; Horton, D.G.

    1986-05-01

    Examination of basalt alteration rinds suggests that pyroxene is altered, along with mesostasis, from the inception of hydrothermal alteration along cooling fractures in Columbia River basalts. The only phyllosilicate secondary mineral in fractures is trioctahedral smectite of Fe-saponite composition, throughout the examined thickness of the basalt column. This smectite is compositionally distinct from the minor amounts of mesostasis smectite found in otherwise unaltered outcrop samples of basalt.

  14. 69. Photocopy of General Arrangement of Engine Room. Basalt Rock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. Photocopy of General Arrangement of Engine Room. Basalt Rock Co. Inc., Shipbuilding Division, Napa, California. Coast Guard Headquarters Drawing No. 540-WAGL-4000-2 (right side), dated July 1943. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA

  15. 68. Photocopy of General Arrangement of Engine Room. Basalt Rock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. Photocopy of General Arrangement of Engine Room. Basalt Rock Co. Inc., Shipbuilding Division, Napa, California. Coast Guard Headquarters Drawing No. 540-WAGL-4000-2 (left side), dated July 1943. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA

  16. Hydrologic testing methodology and results from deep basalt boreholes

    SciTech Connect

    Strait, S R; Spane, F A; Jackson, R L; Pidcoe, W W

    1982-05-01

    The objective of the hydrologic field-testing program is to provide data for characterization of the groundwater systems wihin the Pasco Basin that are significant to understanding waste isolation. The effort is directed toward characterizing the areal and vertical distributions of hydraulic head, hydraulic properties, and hydrochemistry. Data obtained from these studies provide input for numerical modeling of groundwater flow and solute transport. These models are then used for evaluating potential waste migration as a function of space and time. The groundwater system beneath the Hanford Site and surrounding area consists of a thick, accordantly layered sequence of basalt flows and associated sedimentary interbed that primarily occur in the upper part of the Columbia River basalt. Permeable horizons of the sequence are associated with the interbeds and the interflow zones within the basalt. The columnar interiors of a flow act as low-permeability aquitards, separating the more-permeable interflows or interbeds. This paper discusses the hydrologic field-gathering activities, specifically, field-testing methodology and test results from deep basalt boreholes.

  17. Automated identification of basalt spectra in Clementine lunar data

    NASA Astrophysics Data System (ADS)

    Antonenko, I.; Osinski, G. R.

    2011-06-01

    The identification of fresh basalt spectra plays an important role in lunar stratigraphic studies; however, the process can be time consuming and labor intensive. Thus motivated, we developed an empirically derived algorithm for the automated identification of fresh basalt spectra from Clememtine UVVIS data. This algorithm has the following four parameters and limits: BC Ratio=3(R950-R900)/(R900-R750)<1.1, CD Delta=(R1000-R950)/R750-1.09(R950-R900)/R750>0.003 and <0.06, B Slope=(R900-R750)/(3R750)<-0.012, and Band Depth=(R750-R950)/(R750-R415)>0.1, where R750 represents the unnormalized reflectance of the 750 nm Clementine band, and so on. Algorithm results were found to be accurate to within an error of 4.5% with respect to visual classification, though olivine spectra may be under-represented. Overall, fresh basalts identified by the algorithm are consistent with expectations and previous work in the Mare Humorum area, though accuracy in other areas has not yet been tested. Great potential exists in using this algorithm for identifying craters that have excavated basalts, estimating the thickness of mare and cryptomare deposits, and other applications.

  18. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    SciTech Connect

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.

    1983-03-01

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test.

  19. [The dust factor in the manufacture of basalt fibers].

    PubMed

    Gorban', L N; Riazanov, A V; Voloboeva, A A; Rybak, E A

    1996-01-01

    A study was made of the labour conditions of those workers engaged in the production of basalt fibre (BF). Morphological makeup is examined as is dispersity and cytotoxicity of the dust produced in the process of BF making. An issue is addressed of usefulness of setting special hygienic regulations for BF dust. PMID:9035895

  20. Swale built up of drylaid basaltic rock along the Route ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Swale built up of dry-laid basaltic rock along the Route 66 section. Sandia Peak in distance, facing south. - La Bajada Historic Trails and Roads, Approximately 1 mile East/Northeast of intersection of State Highway 16 and Indian Service Road 841, La Bajada, Santa Fe County, NM