Science.gov

Sample records for alkali basaltic magmas

  1. Complex subvolcanic magma plumbing system of an alkali basaltic maar-diatreme volcano (Elie Ness, Fife, Scotland)

    NASA Astrophysics Data System (ADS)

    Gernon, T. M.; Upton, B. G. J.; Ugra, R.; Yücel, C.; Taylor, R. N.; Elliott, H.

    2016-11-01

    Alkali basaltic diatremes such as Elie Ness (Fife, Scotland) expose a range of volcanic lithofacies that points to a complex, multi-stage emplacement history. Here, basanites contain phenocrysts including pyrope garnet and sub-calcic augites from depths of ~ 60 km. Volcanic rocks from all units, pyroclastic and hypabyssal, are characterised by rare earth element (REE) patterns that show continuous enrichment from heavy REE (HREE) to light REE (LREE), and high Zr/Y that are consistent with retention of garnet in the mantle source during melting of peridotite in a garnet lherzolite facies. Erupted garnets are euhedral and unresorbed, signifying rapid ascent through the lithosphere. The magmas also transported abundant pyroxenitic clasts, cognate with the basanite host, from shallower depths (~ 35-40 km). These clasts exhibit wide variation in texture, mode and mineralogy, consistent with growth from a range of compositionally diverse melts. Further, clinopyroxene phenocrysts from both the hypabyssal and pyroclastic units exhibit a very wide compositional range, indicative of polybaric fractionation and magma mixing. This is attributed to stalling of earlier magmas in the lower crust - principally from ~ 22 to 28 km - as indicated by pyroxene thermobarometry. Many clinopyroxenes display chemical zoning profiles, occasionally with mantles and rims of higher magnesium number (Mg#) suggesting the magmas were mobilised by juvenile basanite magma. The tuffs also contain alkali feldspar megacrysts together with Fe-clinopyroxene, zircon and related salic xenoliths, of the 'anorthoclasite suite' - inferred to have crystallised at upper mantle to lower crustal depths from salic magma in advance of the mafic host magmas. Despite evidence for entrainment of heterogeneous crystal mushes, the rapidly ascending melts experienced negligible crustal contamination. The complex association of phenocrysts, megacrysts and autoliths at Elie Ness indicates thorough mixing in a dynamic

  2. Mare basalt magma source region and mare basalt magma genesis

    SciTech Connect

    Binder, A.B.

    1982-11-15

    Given the available data, we find that the wide range of mare basaltic material characteristics can be explained by a model in which: (1) The mare basalt magma source region lies between the crust-mantle boundary and a maximum depth of 200 km and consists of a relatively uniform peridotite containing 73--80% olivine, 11--14% pyroxene, 4--8% plagioclase, 0.2--9% ilmenite and 1--1.5% chromite. (2) The source region consists of two or more density-graded rhythmic bands, whose compositions grade from that of the very low TiO/sub 2/ magma source regions (0.2% ilmenite) to that of the very high TiO/sub 2/ magma source regions (9% ilmenite). These density-graded bands are proposed to have formed as co-crystallizing olivine, pyroxene, plagioclase, ilmenite, and chromite settled out of a convecting magma (which was also parental to the crust) in which these crystals were suspended. Since the settling rates of the different minerals were governed by Stoke's law, the heavier minerals settled out more rapidly and therefore earlier than the lighter minerals. Thus the crystal assemblages deposited nearest the descending side of each convection cell were enriched in heavy ilmenite and chromite with respect to lighter olivine and pyroxene and very much lighter plagioclase. The reverse being the case for those units deposited near the ascending sides of the convection cells.

  3. Differentiation mechanism of frontal-arc basalt magmas

    NASA Astrophysics Data System (ADS)

    Kuritani, T.; Yoshida, T.; Kimura, J.; Hirahara, Y.; Takahashi, T.

    2012-04-01

    In a cooling magma chamber, magmatic differentiation can proceed both by fractionation of crystals from the main molten part of the magma body (homogeneous fractionation) and by mixing of the main magma with fractionated melt derived from low-temperature mush zones (boundary layer fractionation) (Jaupart and Tait, 1995, and references therein). The geochemical path caused by boundary layer fractionation can be fairly different from a path resulting from homogeneous fractionation (e.g., Langmuir, 1989). Therefore, it is important to understand the relative contributions of these fractionation mechanisms in magma chambers. Kuritani (2009) examined the relative roles of the two fractionation mechanisms in cooling basaltic magma chambers using a thermodynamics-based mass balance model. However, the basaltic magmas examined in the work were alkali-rich (Na2O+K2O > 4 wt.%). In this study, to explore differentiation mechanisms of frontal-arc basalt magmas that are volumetrically much more important than rear-arc alkali basalt magmas, the relative roles of the two fractionation mechanisms are examined for low-K tholetiitic basalt magma from Iwate Volcano, NE Japan arc, using the same mass balance model. First, the water content and the temperature of the Iwate magma were estimated. The Iwate lavas are moderately porphyritic, consisting of ~8 vol.% olivine and ~20 vol.% plagioclase phenocrysts. The olivine and plagioclase phenocrysts show significant compositional variations, and the Mg# of olivine phenocrysts (Mg#78-81) correlates positively with the An content of coexisting plagioclase phenocrysts (An85-92). The olivine phenocrysts with Mg# > ~82 do not form crystal aggregates with plagioclase. It is inferred from these observations that the phenocrysts with variable compositions were derived from a common magma with variable temperature in a magma chamber, and the plagioclase phenocrysts were all derived from mushy boundary layers along the walls of the magma chamber. By

  4. Composition and origin of basaltic magma of the Hawaiian Islands

    USGS Publications Warehouse

    Powers, H.A.

    1955-01-01

    Silica-saturated basaltic magma is the source of the voluminous lava flows, erupted frequently and rapidly in the primitive shield-building stage of activity, that form the bulk of each Hawaiian volcano. This magma may be available in batches that differ slightly in free silica content from batch to batch both at the same and at different volcanoes; differentiation by fractionation of olivine does not occur within this primitive magma. Silica-deficient basaltic magma, enriched in alkali, is the source of commonly porphyritic lava flows erupted less frequently and in relatively negligible volume during a declining and decadent stage of activity at some Hawaiian volcanoes. Differentiation by fractionation of olivine, plagioclase and augite is evident among these lavas, but does not account for the silica deficiency or the alkali enrichment. Most of the data of Hawaiian volcanism and petrology can be explained by a hypothesis that batches of magma are melted from crystalline paridotite by a recurrent process (distortion of the equatorial bulge by forced and free nutational stresses) that accomplishes the melting only of the plagioclase and pyroxene component but not the excess olivine and more refractory components within a zone of fixed and limited depth. Eruption exhausts the supply of meltable magma under a given locality and, in the absence of more violent melting processes, leaves a stratum of crystalline refractory components. ?? 1955.

  5. Basaltic injections into floored silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Wiebe, R. A.

    Recent studies have provided compelling evidence that many large accumulations of silicic volcanic rocks erupted from long-lasting, floored chambers of silicic magma that were repeatedly injected by basaltic magma. These basaltic infusions are commonly thought to play an important role in the evolution of the silicic systems: they have been proposed as a cause for explosive silicic eruptions [Sparks and Sigurdsson, 1977], compositional variation in ash-flow sheets [Smith, 1979], mafic magmatic inclusions in silicic volcanic rocks [Bacon, 1986], and mixing of mafic and silicic magmas [Anderson, 1976; Eichelberger, 1978]. If, as seems likely, floored silicic magma chambers have frequently been invaded by basalt, then plutonic bodies should provide records of these events. Although plutonic evidence for mixing and commingling of mafic and silicic magmas has been recognized for many years, it has been established only recently that some intrusive complex originated through multiple basaltic injections into floored chambers of silicic magma [e.g., Wiebe, 1974; Michael, 1991; Chapman and Rhodes, 1992].

  6. Vesiculation of basaltic magma during eruption

    USGS Publications Warehouse

    Mangan, M.T.; Cashman, K.V.; Newman, S.

    1993-01-01

    Vesicle size distributions in vent lavas from the Pu'u "O'o-Kupaianaha eruption of Kilauea volcano are used to estimate nucleation and growth rates of H2O-rich gas bubbles in basaltic magma nearing the earth's surface (???120 m depth). By using well-constrained estimates for the depth of volatile exsolution and magma ascent rate, nucleation rates of 35.9 events.cm-3.s-1 and growth rates of 3.2 ?? 10-4cm/s are determined directly from size-distribution data. The results are consistent with diffusion-controlled growth as predicted by a parabolic growth law. -from Authors

  7. Voluminous granitic magmas from common basaltic sources

    USGS Publications Warehouse

    Sisson, T.W.; Ratajeski, K.; Hankins, W.B.; Glazner, A.F.

    2005-01-01

    Granitic-rhyolitic liquids were produced experimentally from moderately hydrous (1.7-2.3 wt% H2O) medium-to-high K basaltic compositions at 700 MPa and f O2 controlled from Ni-NiO -1.3 to +4. Amount and composition of evolved liquids and coexisting mineral assemblages vary with fO2 and temperature, with melt being more evolved at higher fO2s, where coexisting mineral assemblages are more plagioclase- and Fe-Ti oxide-rich and amphibole-poor. At fO2 of Ni-NiO +1, typical for many silicic magmas, the samples produce 12-25 wt% granitic-rhyolitic liquid, amounts varying with bulk composition. Medium-to-high K basalts are common in subduction-related magmatic arcs, and near-solidus true granite or rhyolite liquids can form widely, and in geologically significant quantities, by advanced crystallization-differentiation or by low-degree partial remelting of mantle-derived basaltic sources. Previously differentiated or weathered materials may be involved in generating specific felsic magmas, but are not required for such magmas to be voluminous or to have the K-rich granitic compositions typical of the upper continental crust. ?? Springer-Verlag 2005.

  8. The relative roles of boundary layer fractionation and homogeneous fractionation in cooling basaltic magma chambers

    NASA Astrophysics Data System (ADS)

    Kuritani, Takeshi

    2009-06-01

    In a cooling magma chamber, magmatic differentiation can proceed both by fractionation of crystals from the main molten part of the magma body (homogeneous fractionation) and by mixing of the main magma with fractionated melt derived from low-temperature mush zones (boundary layer fractionation). In this study, the relative roles of boundary layer fractionation and homogeneous fractionation in basaltic magma bodies were examined using a thermodynamics-based mass balance model. Model calculations show that boundary layer fractionation cannot be a dominant fractionation mechanism when magma chambers are located at low pressures (< ~ 50 MPa) or when magmas are less hydrous (< ~ 1 wt.%), such as mid-ocean ridge basalt and intraplate basalt, because of the low efficiency of melt transport from the mush zones to the main magma. Therefore, magmas evolve principally by homogeneous fractionation. If crystal-melt separation does not occur effectively in the main magma, the magma becomes crystal-rich in the early stages of magmatic evolution. On the other hand, boundary layer fractionation can occur effectively when magmas are hydrous (> ~ 2 wt.%), such as arc basalt, and the magma chambers are located at depth (> ~ 100 MPa). Because the melt derived from mush zones is enriched in alkalis and H 2O, crystallization from the main magma is suppressed by mixing with the mush melt as a consequence of depression of the liquidus temperature. Therefore, homogeneous fractionation is more effectively suppressed in magma chambers in which boundary layer fractionation is more active. If magmatic differentiation proceeds primarily by boundary layer fractionation, magmas can remain free of crystals for long periods during magmatic evolution.

  9. Convective Regimes in Crystallizing Basaltic Magma Chambers

    NASA Astrophysics Data System (ADS)

    Gilbert, A. J.; Neufeld, J. A.; Holness, M. B.

    2015-12-01

    Cooling through the chamber walls drives crystallisation in crustal magma chambers, resulting in a cumulate pile on the floor and mushy regions at the walls and roof. The liquid in many magma chambers, either the bulk magma or the interstitial liquid in the mushy regions, may convect, driven either thermally, due to cooling, or compositionally, due to fractional crystallization. We have constructed a regime diagram of the possible convective modes in a system containing a basal mushy layer. These modes depend on the large-scale buoyancy forcing characterised by a global Rayleigh number and the proportion of the chamber height constituting the basal mushy region. We have tested this regime diagram using an analogue experimental system composed of a fluid layer overlying a pile of almost neutrally buoyant inert particles. Convection in this system is driven thermally, simulating magma convection above and within a porous cumulate pile. We observe a range of possible convective regimes, enabling us to produce a regime diagram. In addition to modes characterised by convection of the bulk and interstitial fluid, we also observe a series of regimes where the crystal pile is mobilised by fluid motions. These regimes feature saltation and scouring of the crystal pile by convection in the bulk fluid at moderate Rayleigh numbers, and large crystal-rich fountains at high Rayleigh numbers. For even larger Rayleigh numbers the entire crystal pile is mobilised in what we call the snowglobe regime. The observed mobilisation regimes may be applicable to basaltic magma chambers. Plagioclase in basal cumulates crystallised from a dense magma may be a result of crystal mobilisation from a plagioclase-rich roof mush. Compositional convection within such a mush could result in disaggregation, enabling the buoyant plagioclase to be entrained in relatively dense descending liquid plumes and brought to the floor. The phenocryst load in porphyritic lavas is often interpreted as a

  10. Genesis of basalt magmas and their derivatives under the Izu Islands, Japan, inferred from Sr/Ca-Ba/Ca systematics

    NASA Astrophysics Data System (ADS)

    Onuma, Naoki; Hirano, Masataka; Isshiki, Naoki

    1983-10-01

    The Sr/Ca-Ba/Ca systematics defined for a series of volcanic rocks provided by volcanoes of the Izu Islands, Japan, have cast a new light on the origin and evolution of basalt magmas and their derivatives: (1) The mantle material in the source region of primary basalt magmas beneath the Izu Islands shows a chondritic value of Sr/Ca and Ba/Ca ratios. (2) Both the tholeiite magma and the high-alumina/calc-alkali basalt magma are primary with higher degrees (15-20% for the former) and lower degrees (8-11% for the latter) of partial melting of a common mantle material. (3) The primary basalt magmas evolve independently via crystal fractionation process in respective magma chambers at shallower depths each providing a series of andesite and dacite magmas corresponding to respective primary basalt magmas. (4) The crystal fractionation process in magma chamber is controlled mainly by plagioclase and clinopyroxene crystallization in terms of the alkaline earth elements. The plagioclase/clinopyroxene ratio decreases during crystal fractionation process. The chemical environments of magma chambers are similar to each other in the tholeiite series and in the high-alumina basalt/calc-alkali rock series. (5) The end products provided by the crystal fractionation process lie within Bowen's petrogeny's residua system, making a thin, silicic crust under the volcanic islands near the Izu Peninsula. The calc-alkali rhyolites in these islands are derived from the thin silicic crust via melting process by the heat of intruded primary basalt magmas. (6) The regional distribution of degree of partial melting indicates variations from 15 to 20% along the volcanic front and from 8 to 11% in the region behind it. The fact suggests that an interaction between the mantle wedge under the Philippine Sea Plate and the subducting slab of the Pacific Plate beneath the Izu Islands is different from place to place, with respect to temperature distribution and/or water supply from the subducting

  11. Ultramafic inclusions and host alkali olivine basalts of the southern coastal plain of the Red Sea, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Ghent, Edward D.; Coleman, Robert Griffin; Hadley, Donald G.

    1979-01-01

    A variety of mafic and ultramafic inclusions occur within the pyroclastic components of the Al Birk basalt, erupted on the southern Red Sea coastal plain of Saudi Arabia from Pleistocene time to the present. Depleted harzburgites are the only inclusions contained within the basalts that were erupted through Miocene oceanic crust (15 km thick) in the vicinity of Jizan, whereas to the north in the vicinity of Al Birk, alkali basalts that were erupted through a thicker Precambrian crust (48 km thick) contain mixtures of harzburgites, cumulate gabbro, and websterite inclusions accompanied by large (> 2 cm) megacrysts of glassy alumina-rich clinopyroxene, plagioclase, and spinel. Microprobe analyses of individual minerals from the harzburgites, websterites, and cumulate gabbros reveal variations in composition that can be related to a complex mantle history during the evolution of the alkali basalts. Clinopyroxene and plagioclase megacrysts may represent early phases that crystallized from the alkali olivine basalt magma at depths less than 35 km. Layered websterites and gabbros with cumulate plagioclase and clinopyroxene may represent continuing crystallization of the alkali olivine basalt magma in the lower crust when basaltic magma was not rapidly ascending. It is significant that the megacrysts and cumulate inclusions apparently form only where the magmas have traversed the Precambrian crust, whereas the harzburgite-bearing basalts that penetrated a much thinner Miocene oceanic crust reveal no evidence of mantle fractionation. These alkali olivine basalts and their contained inclusions are related in time to present-day rifting in the Red Sea axial trough. The onshore, deep-seated, undersaturated magmas are separated from the shallow Red Sea rift subalkaline basalts by only 170 km. The contemporaneity of alkaline olivine and subalkaline basalts requires that they must relate directly to the separation of the Arabian plate from the African plate.

  12. Volatile degassing of basaltic achondrite parent bodies Evidence from alkali elements and phosphorus

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    1987-01-01

    The Na, K, Rb, Cs, and P abundances in eucrites, diogenites, basaltic clasts from polymict eucrite, howardites, and mesosiderites are examined, and compared with an average of highly incompatible refractory (AHIR) elements normalized to cosmic abundances. It is observed that basaltic eucrites and basaltic clasts show a positive correlation between K, Rb, and Cs, and alkali element/AHIR ratios; the volatile loss of the alkali elements from the basalt affects the parent body inventory of volatile elements. The data reveal that for diogenites, the alkali /AHIR ratios are 1.4-2 times greater than in basaltic eucrites and are more variable; and the negative relation between K, Rb, Cs, and the alkali/AHIR ratio correlate with progressive alkali loss through volatile outgassing during crystallization of one or more magmas resulting in a greater than 90 percent loss of the volatile element inventory from the parent body. It is also detected that P displays volatile loss from the basaltic eucrites and elevated P/AHIR ratios in diogenites.

  13. Origin of High-Alumina Basalt, Andesite, and Dacite Magmas.

    PubMed

    Hamilton, W

    1964-10-30

    The typical volcanic rocks of most island arcs and eugeosynclines, and of some continental environments, are basalt, andesite, and dacite, of high alumina content. The high-alumina basalt differs from tholeiitic basalt primarily in having a greater content of the components of calcic plagioclase. Laboratory data indicate that in the upper mantle, below the level at which the basaltic component of mantle rock is transformed by pressure to eclogite or pyroxenite, the entire basaltic portion probably is melted within a narrow temperature range, but that above the level of that transformation plagioclase is melted selectively before pyroxene over a wide temperature range. The broad spectrum of high-alumina magmas may represent widely varying degrees of partial melting above the transformation level, whereas narrow-spectrum tholeiite magma may represent more complete melting beneath it.

  14. Origin of High-Alumina Basalt, Andesite, and Dacite Magmas.

    PubMed

    Hamilton, W

    1964-10-30

    The typical volcanic rocks of most island arcs and eugeosynclines, and of some continental environments, are basalt, andesite, and dacite, of high alumina content. The high-alumina basalt differs from tholeiitic basalt primarily in having a greater content of the components of calcic plagioclase. Laboratory data indicate that in the upper mantle, below the level at which the basaltic component of mantle rock is transformed by pressure to eclogite or pyroxenite, the entire basaltic portion probably is melted within a narrow temperature range, but that above the level of that transformation plagioclase is melted selectively before pyroxene over a wide temperature range. The broad spectrum of high-alumina magmas may represent widely varying degrees of partial melting above the transformation level, whereas narrow-spectrum tholeiite magma may represent more complete melting beneath it. PMID:17794034

  15. Origin of high-alumina basalt, andesite, and dacite magmas

    USGS Publications Warehouse

    Hamilton, W.

    1964-01-01

    The typical volcanic rocks of most island arcs and eugeosynclines, and of some continental environments, are basalt, andesite, and dacite, of high alumina content. The high-alumina basalt differs from tholeiitic basalt primarily in having a greater content of the components of calcic plagioclase. Laboratory data indicate that in the upper mantle, below the level at which the basaltic component of mantle rock is transformed by pressure to eclogite or pyroxenite, the entire basaltic portion probably is melted within a narrow temperature range, but that above the level of that transformation plagioclase is melted selectively before pyroxene over a wide temperature range. The broad spectrum of high-alumina magmas may represent widely varying degrees of partial melting above the transformation level, whereas narrow-spectrum tholeiite magma may represent more complete melting beneath it.

  16. Deep degassing and the eruptibility of flood basalt magmas

    NASA Astrophysics Data System (ADS)

    Black, B. A.; Manga, M.

    2015-12-01

    Individual flood basalt lavas often exceed 103 km3 in volume, and many such lavas erupt during emplacement of flood basalt provinces. The large volume of individual flood basalt lavas demands correspondingly large magma reservoirs within or at the base of the crust. To erupt, some fraction of this magma must become buoyant and overpressure must be sufficient to encourage failure and dike propagation. Because the overpressure associated with a new injection of magma is inversely proportional to the total reservoir volume, buoyancy overpressure has been proposed as a trigger for flood basalt eruptions. To test this hypothesis, we develop a new one-dimensional model for buoyancy overpressure-driven eruptions that combines volatile exsolution, bubble growth and rise, assimilation, and permeable fluid escape through the surrounding country rocks. Degassing during emplacement of flood basalt provinces may have major environmental repercussions. We investigate the temporal evolution of permeable degassing through the crust and degassing during eruptive episodes. We find that assimilation of volatile-rich country rocks strongly enhances flood basalt eruptibility, implying that the eruptive dynamics of flood basalts may be intertwined with their climatic consequences.

  17. Assesment of Alkali Resistance of Basalt Used as Concrete Aggregates

    NASA Astrophysics Data System (ADS)

    al-Swaidani, Aref M.; Baddoura, Mohammad K.; Aliyan, Samira D.; Choeb, Walid

    2015-11-01

    The objective of this paper is to report a part of an ongoing research on the influence of using crushed basalt as aggregates on one of durability-related properties of concrete (i.e. alkali-silica reaction which is the most common form of Alkali-Aggregate Reaction). Alkali resistance has been assessed through several methods specified in the American Standards. Results of petrographic examination, chemical test (ASTM C289) and accelerated mortar bar test (ASTM C1260) have particularly been reported. In addition, the weight change and compressive strength of 28 days cured concrete containing basaltic aggregates were also reported after 90 days of exposure to 10% NaOH solution. Dolomite aggregate were used in the latter test for comparison. The experimental results revealed that basaltic rocks quarried from As-Swaida'a region were suitable for production of aggregates for concrete. According to the test results, the studied basalt aggregates can be classified as innocuous with regard to alkali-silica reaction. Further, the 10% sodium hydroxide attack did not affect the compressive strength of concrete.

  18. Quantitative petrogenetic constraints on the Pliocene alkali basaltic volcanism of the SE Spain Volcanic Province

    NASA Astrophysics Data System (ADS)

    Cebriá, J. M.; López-Ruiz, J.; Carmona, J.; Doblas, M.

    2009-09-01

    Alkali basalts of Pliocene age are the last episode of volcanism in the SE Spain Volcanic Province, postdating a complex series of Miocene calc-alkaline to ultrapotassic rocks. This volcanism is represented by small outcrops and vents NW of Cartagena that has been interpreted as a volcanic episode similar to the contemporaneous monogenetic alkaline basaltic volcanism of the Iberian Peninsula and Western/Central Europe. However, their geochemical signature is characterised by relatively higher 87Sr/ 86Sr ratios as well as distinct trace element anomalies which, at different scale, are only found in the spatially related calc-alkaline to ultrapotassic volcanism. Quantitative modelling of these data demonstrate that the geochemical signature of the Pliocene alkali basalts of Cartagena can be explained by the interaction between primitive melts generated from a sublithospheric mantle source similar to that identified for other volcanic regions of Spain, and liquids derived from the overlying lithospheric mantle. This interaction implies that the alkali basalts show some geochemical features only observed in mantle lithosphere-derived melts (e.g. Sr isotope enrichment and Th-U-Pb positive anomalies), while retaining an overall geochemical signature similar to other Iberian basalts (e.g. Rb-K negative anomalies). This model also implies that beneath the SEVP, enriched (metasomatized) portions were still present within the lithospheric mantle after the Miocene magmatic episodes. Comparison of this model with those already developed for other alkaline basaltic volcanic regions of western/central Europe supports the idea that the interaction of primitive magmas derived from a common sublithospheric mantle source with liquids derived from the overlying regionally heterogeneous lithospheric mantle is a relatively frequent scenario in the European realm.

  19. Experimental constraints on the outgassing dynamics of basaltic magmas

    NASA Astrophysics Data System (ADS)

    Pioli, L.; Bonadonna, C.; Azzopardi, B. J.; Phillips, J. C.; Ripepe, M.

    2012-03-01

    The dynamics of separated two-phase flow of basaltic magmas in cylindrical conduits has been explored combining large-scale experiments and theoretical studies. Experiments consisted of the continuous injection of air into water or glucose syrup in a 0.24 m diameter, 6.5 m long bubble column. The model calculates vesicularity and pressure gradient for a range of gas superficial velocities (volume flow rates/pipe area, 10-2-102 m/s), conduit diameters (100-2 m), and magma viscosities (3-300 Pa s). The model is calibrated with the experimental results to extrapolate key flow parameters such as Co (distribution parameter) and Froude number, which control the maximum vesicularity of the magma in the column, and the gas rise speed of gas slugs. It predicts that magma vesicularity increases with increasing gas volume flow rate and decreases with increasing conduit diameter, until a threshold value (45 vol.%), which characterizes churn and annular flow regimes. Transition to annular flow regimes is expected to occur at minimum gas volume flow rates of 103-104 m3/s. The vertical pressure gradient decreases with increasing gas flow rates and is controlled by magma vesicularity (in bubbly flows) or the length and spacing of gas slugs. This study also shows that until conditions for separated flow are met, increases in magma viscosity favor stability of slug flow over bubbly flow but suggests coexistence between gas slugs and small bubbles, which contribute to a small fraction of the total gas outflux. Gas flow promotes effective convection of the liquid, favoring magma homogeneity and stable conditions.

  20. Bubble plumes generated during recharge of basaltic magma reservoirs

    NASA Astrophysics Data System (ADS)

    Phillips, Jeremy C.; Woods, Andrew W.

    2001-03-01

    CO 2 is relatively insoluble in basaltic magma at low crustal pressures. It therefore exists as a gas phase in the form of bubbles in shallow crustal reservoirs. Over time these bubbles may separate gravitationally from the magma in the chamber. As a result, any new magma which recharges the chamber from deeper in the crust may be more bubble-rich and hence of lower density than the magma in the chamber. Using scaling arguments, we show that for typical recharge fluxes, such a source of low-viscosity, bubble-rich basalt may generate a turbulent bubble plume within the chamber. We also show that the bubbles are typically sufficiently small to have a low Reynolds number and to remain in the flow. We then present a series of analogue laboratory experiments which identify that the motion of such a turbulent bubble-driven line plume is well described by the classical theory of buoyant plumes. Using the classical plume theory we then examine the effect of the return flow associated with such bubble plumes on the mixing and redistribution of bubbles within the chamber. Using this model, we show that a relatively deep bubbly layer of magma may form below a thin foam layer at the roof. If, as an eruption proceeds, there is a continuing influx at the base of the chamber, then our model suggests that the bubble content of the bubbly layer may gradually increase. This may lead to a transition from lava flow activity to more explosive fire-fountaining activity. The foam layer at the top of the chamber may provide a flux for the continual outgassing from the flanks of the volcano [Ryan, Am. Geophys. Union Geophys. Monogr. 91 (1990)] and if it deepens sufficiently it may contribute to the eruptive activity [Vergniolle and Jaupart, J. Geophys. Res. 95 (1990) 2793-3001].

  1. Cenozoic alkali basalts from Jingpohu, NE China: The role of lithosphere asthenosphere interaction

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Zhao, Jian-Xin

    2008-06-01

    The geochemistry of Late Cenozoic volcanic rocks from Jingpohu, NE China, provides important constraints on the petrogenesis of continental alkali basalts and lithospheric evolution in the eastern Central Asian Orogenic Belt (CAOB). Miocene-Pleistocene and Holocene basalts from Jingpohu show alkali affinities and are characterized by Ocean Island Basalt (OIB)-like REE and trace element patterns somehow resembling Holocene potassic rocks from Wudalianchi which are considered to be derived from ancient enriched lithospheric mantle. These basalts show depleted Sr-Nd isotopic compositions ( 87Sr/ 86Sr = 0.7039-0.7046, ɛNd = 1.3-6.0) and Dupal-like but unradiogenic Pb isotopic signatures ( 206Pb/ 204Pb = 17.54-17.94, 207Pb/ 204Pb = 15.45-15.54, 208Pb/ 204Pb = 37.71-38.07), comparable to the OIB. The combined geochemical and isotopic signatures are consistent with magma source mixing between a Focal Zone (FOZO)-like asthenospheric mantle component (characterized by enriched Pb and depleted Sr-Nd isotopic compositions) and an isotopically enriched EM1-type subcontinental lithospheric mantle component. Lithospheric thickness inferred from alkali basalts from different regions implies a progressive thinning from west to east in the CAOB, which may be caused by lithosphere-asthenosphere interaction. We propose that upwelling of the asthenosphere and subsequent mechanical and chemical erosion beneath lithospheric mantle induced by subduction of the Pacific plate might have been responsible for the lithospheric thinning in the eastern CAOB. The lithospheric thinning has proceeded in a dischronous way in the western North China Craton, near the Daxinganling-Taihangshan gravity lineament, but this event did not take place in the corresponding area of the CAOB. The lithospheric thinning shows different styles both spatially and temporally in the two tectonic units.

  2. Oxygen fugacity of basaltic magmas and the role of gas-forming elements

    NASA Technical Reports Server (NTRS)

    Sato, M.

    1978-01-01

    It is suggested that major variations in the relative oxygen fugacity of a basaltic magma are caused primarily by gas-forming elements, especially carbon and hydrogen. According to this theory, carbon, present in the source region of a basaltic magma, reduces the host magma during ascent, as isothermally carbon becomes more reducing with decreasing pressure. For an anhydrous magma such as lunar basalts, this reduction continues through the extrusive phase and the relative oxygen fugacity decreases rapidly until buffered by the precipitation of a metallic phase. For hydrous magmas such as terrestrial basalts, reduction by carbon is eventually superceded by oxidation due to loss of H2 generated by the reaction of C with H2O and by thermal dissociation of H2O. The relative oxygen fugacity of a hydrous magma initially decreases as a magma ascends from the source region and then increases until magnetite crystallization curbs the rising trend of the relative oxygen fugacity.

  3. Fractionation products of basaltic komatiite magmas at lower crustal pressures: implications for genesis of silicic magmas in the Archean

    NASA Astrophysics Data System (ADS)

    Mandler, B. E.; Grove, T. L.

    2015-12-01

    Hypotheses for the origin of crustal silicic magmas include both partial melting of basalts and fractional crystallization of mantle-derived melts[1]. Both are recognized as important processes in modern environments. When it comes to Archean rocks, however, partial melting hypotheses dominate the literature. Tonalite-trondhjemite-granodiorite (TTG)-type silicic magmas, ubiquitous in the Archean, are widely thought to be produced by partial melting of subducted, delaminated or otherwise deeply buried hydrated basalts[2]. The potential for a fractional crystallization origin for TTG-type magmas remains largely unexplored. To rectify this asymmetry in approaches to modern vs. ancient rocks, we have performed experiments at high pressures and temperatures to closely simulate fractional crystallization of a basaltic komatiite magma in the lowermost crust. These represent the first experimental determinations of the fractionation products of komatiite-type magmas at elevated pressures. The aim is to test the possibility of a genetic link between basaltic komatiites and TTGs, which are both magmas found predominantly in Archean terranes and less so in modern environments. We will present the 12-kbar fractionation paths of both Al-depleted and Al-undepleted basaltic komatiite magmas, and discuss their implications for the relative importance of magmatic fractionation vs. partial melting in producing more evolved, silicic magmas in the Archean. [1] Annen et al., J. Petrol., 47, 505-539, 2006. [2] Moyen J-F. & Martin H., Lithos, 148, 312-336, 2012.

  4. Magma-water interactions in subaqueous and emergent basaltic

    NASA Astrophysics Data System (ADS)

    Kokelaar, Peter

    1986-10-01

    In the subaqueous growth and emergence of a basaltic volcano clasts are formed by one or a combination of (1) explosive release of magmatic volatiles; (2) explosive expansion and collapse of steam formed at magma-water contact surfaces; (3) explosive expansion of steam following enclosure of water in magma, or entrapment of water close to magma; and (4) cooling-contraction. These processes, named respectively magmatic explosivity, contact-surface steam explosivity, bulk interaction steam explosivity, and cooling-contraction granulation, can be enhanced by mutual interaction and feedback. The first three (explosive) processes are limited at certain water depths (hydrostatic pressures) and become increasingly vigorous at shallower levels. The depth of onset of magmatic explosivity depends largely on juvenile volatile content; it is up to 200 m for tholeiitic magmas and up to 1 km for alkalic magmas. At the depth where formation of clastic deposits becomes predominant over effusion of lavas, magmatic explosivity is subordinate to steam explosivity as a clast-forming process. The upward transition to accumulation of dominantly clastic deposits is not simply related to the onset of substantial exsolution of magmatic volatiles and can occur without it. Contact-surface explosivity commonly requires initiation by a vigorous impact between magma and water and, although no certain depth limit is known, likelihood of such explosivity decreases rapidly with depth. Clast generation by bulk interaction explosivity appears to be restricted to depths much shallower than that of the critical pressure of water, which in sea water is at about 3 km. Cooling-contraction granulation can occur in any depth of water, but at shallow levels may be replaced by contact-surface explosivity. During continuous eruption under water, tephra can be ejected and deposited within a cupola of steam such that rapid quenching does not occur. Emergent volcanoes are characterized by distinctive steam

  5. Thermobarometry for spinel lherzolite xenoliths in alkali basalts

    NASA Astrophysics Data System (ADS)

    Ozawa, Kazuhito; Youbi, Nasrrddine; Boumehdi, Moulay Ahmed; Nagahara, Hiroko

    2016-04-01

    geothermobarometry based on reactions with large and distinct volume changes, is necessary. Specification of mineral domains and their components representing the thermal state of the mantle just before xenolith extraction is one of the major tasks for the establishment of reliable geothermobarometry for spinel lherzolite xenoliths. Systematic variations of such mineralogical information among xenoliths transported by a single volcanic eruption guarantees proper estimation of a mantle geotherm. For the development of such geobarometry, it is important to choose appropriate xenolith locality, where previous studies provide enough information and where many xenolith samples are available for extending a range of derivation depth. Spinel lherzolite xenoliths in alkali basalts from Bou Ibalhatene maars in the Middle Atlas in Morocco are suitable study target. Geochemical, geochronological, petrological, and rheological aspects of the spinel lherzolite xenoliths have been studied (Raffone et al. 2009; El Messbahi et al., 2015; Witting et al., 2010; El Azzouzi et al., 2010), which show that they represent fragments of the lithospheric mantle formed and modified since 1.7Ga before their extraction from Miocene to recent. We have pinpointed portions of minerals in the xenolith samples and their components representing condition just before their entrapment in magmas, on which appropriate geothermobarometers are applied and detected ~0.5GPa pressure difference (1.5-2.0GPa) for ~100°C variation in temperatures (950-1050°C).

  6. Water content of primitive low-K tholeiitic basalt magma from Iwate Volcano, NE Japan arc: implications for differentiation mechanism of frontal-arc basalt magmas

    NASA Astrophysics Data System (ADS)

    Kuritani, Takeshi; Yoshida, Takeyoshi; Kimura, Jun-Ichi; Hirahara, Yuka; Takahashi, Toshiro

    2014-02-01

    The water content of low-K tholeiitic basalt magma from Iwate volcano, which is located on the volcanic front of the NE Japan arc, was estimated using multi-component thermodynamic models. The Iwate lavas are moderately porphyritic, consisting of ~8 vol.% olivine and ~20 vol.% plagioclase phenocrysts. The olivine and plagioclase phenocrysts show significant compositional variations, and the Mg# of olivine phenocrysts (Mg#78-85) correlates positively with the An content of coexisting plagioclase phenocrysts (An85-92). The olivine phenocrysts with Mg# > ~82 do not form crystal aggregates with plagioclase phenocrysts. It is inferred from these observations that the phenocrysts with variable compositions were primarily derived from mushy boundary layers along the walls of a magma chamber. By using thermodynamic calculations with the observed petrological features of the lavas, the water content of the Iwate magma was estimated to be 4-5 wt.%. The high water content of the magma supports the recent consensus that frontal-arc magmas are remarkably hydrous. Using the estimated water content of the Iwate magma, the water content and temperature of the source mantle were estimated. Given that the Iwate magma was derived from a primary magma solely by olivine fractionation, the water content and temperature were estimated to be ~0.7 wt.% and ~1,310 °C, respectively. Differentiation mechanisms of low-K frontal-arc basalt magmas were also examined by application of a thermodynamics-based mass balance model to the Iwate magma. It is suggested that magmatic differentiation proceeds primarily through fractionation of crystals from the main molten part of a magma chamber when it is located at <~200 MPa, whereas magma evolves through a convective melt exchange between the main magma and mushy boundary layers when the magma body is located at >~200 MPa.

  7. Water content of primitive low-K tholeiitic basalt magma from Iwate Volcano, NE Japan arc: implications for differentiation mechanism of frontal-arc basalt magmas

    NASA Astrophysics Data System (ADS)

    Kuritani, Takeshi; Yoshida, Takeyoshi; Kimura, Jun-Ichi; Hirahara, Yuka; Takahashi, Toshiro

    2013-03-01

    The water content of low-K tholeiitic basalt magma from Iwate volcano, which is located on the volcanic front of the NE Japan arc, was estimated using multi-component thermodynamic models. The Iwate lavas are moderately porphyritic, consisting of ~8 vol.% olivine and ~20 vol.% plagioclase phenocrysts. The olivine and plagioclase phenocrysts show significant compositional variations, and the Mg# of olivine phenocrysts (Mg#78-85) correlates positively with the An content of coexisting plagioclase phenocrysts (An85-92). The olivine phenocrysts with Mg# > ~82 do not form crystal aggregates with plagioclase phenocrysts. It is inferred from these observations that the phenocrysts with variable compositions were primarily derived from mushy boundary layers along the walls of a magma chamber. By using thermodynamic calculations with the observed petrological features of the lavas, the water content of the Iwate magma was estimated to be 4-5 wt.%. The high water content of the magma supports the recent consensus that frontal-arc magmas are remarkably hydrous. Using the estimated water content of the Iwate magma, the water content and temperature of the source mantle were estimated. Given that the Iwate magma was derived from a primary magma solely by olivine fractionation, the water content and temperature were estimated to be ~0.7 wt.% and ~1,310 °C, respectively. Differentiation mechanisms of low-K frontal-arc basalt magmas were also examined by application of a thermodynamics-based mass balance model to the Iwate magma. It is suggested that magmatic differentiation proceeds primarily through fractionation of crystals from the main molten part of a magma chamber when it is located at <~200 MPa, whereas magma evolves through a convective melt exchange between the main magma and mushy boundary layers when the magma body is located at >~200 MPa.

  8. Eruptive history of an alkali basaltic diatreme from Elie Ness, Fife, Scotland

    NASA Astrophysics Data System (ADS)

    Gernon, T. M.; Upton, B. G. J.; Hincks, T. K.

    2013-05-01

    The Elie Ness diatreme (Fife, Scotland) is an ideal place to study the internal architecture and emplacement processes of diatremes. Elie Ness is one of approximately 100 alkali basaltic diatremes and intrusions in the East Fife area, emplaced during Upper Carboniferous to Early Permian times into an extensive rift system in the northern Variscan foreland. Within the diatreme, seven lithofacies and three lithofacies associations (LFAs 1-3) are recognised. Field, petrographic and geochemical studies demonstrate that the diatreme experienced a protracted history of eruption and infill, initially driven by volatile expansion and later by magma-water interaction. Massive lapilli tuffs of LFA 1 contain abundant highly vesicular juvenile scoria and magma-coated clasts, which are best explained by a magmatic origin for the early explosive eruptions. On a large-scale, the tuffs are well mixed and locally exhibit small-scale degassing structures attributed to fluidisation processes occurring within the diatreme fill. The occurrence of abundant volcaniclastic autoliths and megablocks within LFA 1 can be explained by subsidence of volcaniclastic strata from the maar crater and upper diatreme during emplacement. Pyroclastic density current deposits of LFA 2 form a series of continuous sheets across the diatreme, some of which may have originated from phreatomagmatic explosions in a neighbouring vent. We attribute the overall bedding pattern to a combination of primary volcanic processes and post-depositional folding related to movement along an adjacent fault. Minor steeply inclined breccias and tuffs of LFA 3 cross-cut the LFA 2 succession and are interpreted as late-stage volcaniclastic dykes and conduits, signalling the final phase of eruptive activity at Elie Ness. The study offers new insights into the volcanic evolution of diatremes fed by low viscosity, alkali-rich magmas.

  9. Growing magma chambers control the distribution of small-scale flood basalts.

    PubMed

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2015-01-01

    Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar-Ar and K-Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 > 47.5 wt.%) from Xinchang-Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4-3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40-0.66; TiO2/MgO = 0.23-0.35) during about 6 Myr (9.4-3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3-3.0 Ma) through a broad range of compositions ((Na2O + K2O)/MgO = 0.60-1.28; TiO2/MgO = 0.30-0.57). The distribution and two-stage compositional evolution of the migrating flood basalts record continuous magma replenishment that buffered against magmatic evolution and induced magma chamber growth. Our results demonstrate that the magma replenishment-magma chamber growth model explains the spatio-temporal distribution of small-scale flood basalts. PMID:26581905

  10. Growing magma chambers control the distribution of small-scale flood basalts

    PubMed Central

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2015-01-01

    Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar–Ar and K–Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 > 47.5 wt.%) from Xinchang–Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4–3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40–0.66; TiO2/MgO = 0.23–0.35) during about 6 Myr (9.4–3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3–3.0 Ma) through a broad range of compositions ((Na2O + K2O)/MgO = 0.60–1.28; TiO2/MgO = 0.30–0.57). The distribution and two-stage compositional evolution of the migrating flood basalts record continuous magma replenishment that buffered against magmatic evolution and induced magma chamber growth. Our results demonstrate that the magma replenishment–magma chamber growth model explains the spatio-temporal distribution of small-scale flood basalts. PMID:26581905

  11. Combined effect of permeability and crystallization on the explosive eruption of basaltic magma

    NASA Astrophysics Data System (ADS)

    Moitra, P.; Gonnermann, H. M.; Houghton, B. F.; Crozier, J.

    2015-12-01

    Plinian eruptions are the most dangerous style of eruptive activity of basaltic magma. In this study, we focus on the two best studied Plinian eruptions of basaltic magma at Mt. Tarawera, New Zealand (1886 CE) and Mt. Etna, Italy (122 BCE). We measured and analyzed the porosity-permeability relationships of the pyroclasts from both eruptions. We then used numerical modeling to assess the relative importance of two competing processes during eruptive magma ascent, which are the syneruptive crystallization that increases viscosity, potentially increasing bubble overpressure, and the open-system degassing of the permeable magma that allows the pressurized gas to escape, potentially reducing bubble overpressure. We find that the onset of crystallization is likely to have occurred prior to the onset of magma percolation. The orders of magnitude increase in magma viscosity due to the nucleation and growth of microlites had the combined effect of rapidly increasing the decompression rate, due to viscous pressure losses associated with magma flow within the volcanic conduit, and decreasing the rates of bubble growth, thus building up large overpressures inside bubbles. Although measured permeabilities of the studied pyroclasts are 1-2 orders of magnitude higher than their silicic counterpart, our model results show that crystallization and subsequent increase in viscosity are likely to surpass the effect of open-system gas loss, thus increasing bubble overpressure, required for explosive magma fragmentation.

  12. Solidification of basaltic magma during flow in a dike.

    USGS Publications Warehouse

    Delaney, P.T.; Pollard, D.D.

    1982-01-01

    A model for time-dependent unsteady heat transfer from magma flowing in a dyke is developed. The ratio of solidification T to magma T is the most important parameter. Observations of volcanic fissure eruptions and study of dykes near Ship Rock, New Mexico, show that the low T at dyke margins and the rapidly advancing solidification front predicted by the model are qualitatively correct.-M.S.

  13. The Perils of Partition: Difficulties in Retrieving Magma Compositions from Chemically Equilibrated Basaltic Meteorites

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1996-01-01

    The chemical compositions of magmas can be derived from the compositions of their equilibrium minerals through mineral/magma partition coefficients. This method cannot be applied safely to basaltic rocks, either solidified lavas or cumulates, which have chemically equilibrated or partially equilibrated at subsolidus temperatures, i.e., in the absence of magma. Applying mineral/ melt partition coefficients to mineral compositions from such rocks will typically yield 'magma compositions' that are strongly fractionated and unreasonably enriched in incompatible elements (e.g., REE's). In the absence of magma, incompatible elements must go somewhere; they are forced into minerals (e.g., pyroxenes, plagioclase) at abundance levels far beyond those established during normal mineral/magma equilibria. Further, using mineral/magma partition coefficients with such rocks may suggest that different minerals equilibrated with different magmas, and the fractionation sequence of those melts (i.e., enrichment in incompatible elements) may not be consistent with independent constraints on the order of crystallization. Subsolidus equilibration is a reasonable cause for incompatible- element-enriched minerals in some eucrites, diogenites, and martian meteorites and offers a simple alternative to petrogenetic schemes involving highly fractionated magmas or magma infiltration metasomatism.

  14. Igneous Rocks of the East Pacific Rise: The alkali volcanic suite appear to be differentiated from a tholeiitic basalt extruded from the mantle.

    PubMed

    Engel, A E; Engel, C G

    1964-10-23

    The apical parts of large volcanoes along the East Pacific Rise (islands and seamounts) are encrusted with rocks of the alkali volcanic suite (alkali basalt, andesine- and oligoclase-andesite, and trachyte). In contrast, the more submerged parts of the Rise are largely composed of a tholeiitic basalt which has low concentrations of K, P, U, Th, Pb, and Ti. This tholeiitic basalt is either the predominant or the only magma generated in the earth's mantle under oceanic ridges and rises. It is at least 1000-fold more abundant than the alkali suite, which is probably derived from tholeiitic basalt by magmatic differentiation in and immediately below the larger volcanoes. Distinction of oceanic tholeiites from almost all continental tholeiites is possible on the simple basis of total potassium content, with the discontinuity at 0.3 to 0.5 percent K(2)O by weight. Oceanic tholeiites also are readily distinguished from some 19 out of 20 basalts of oceanic islands and seamount cappings by having less than 0.3 percent K(2)O by weight and more than 48 percent SiO(2). Deep drilling into oceanic volcanoes should, however, core basalts transitional between the oceanic tholeiites and the presumed derivative alkali basalts. The composition of the oceanic tholeiites suggests that the mantle under the East Pacific Rise contains less than 0.10 percent potassium oxide by weight; 0.1 part per million of uranium and 0.4 part of thorium; a potassium:rubidium ratio of about 1200 and a potassium: uranium ratio of about 10(4).

  15. Igneous Rocks of the East Pacific Rise: The alkali volcanic suite appear to be differentiated from a tholeiitic basalt extruded from the mantle.

    PubMed

    Engel, A E; Engel, C G

    1964-10-23

    The apical parts of large volcanoes along the East Pacific Rise (islands and seamounts) are encrusted with rocks of the alkali volcanic suite (alkali basalt, andesine- and oligoclase-andesite, and trachyte). In contrast, the more submerged parts of the Rise are largely composed of a tholeiitic basalt which has low concentrations of K, P, U, Th, Pb, and Ti. This tholeiitic basalt is either the predominant or the only magma generated in the earth's mantle under oceanic ridges and rises. It is at least 1000-fold more abundant than the alkali suite, which is probably derived from tholeiitic basalt by magmatic differentiation in and immediately below the larger volcanoes. Distinction of oceanic tholeiites from almost all continental tholeiites is possible on the simple basis of total potassium content, with the discontinuity at 0.3 to 0.5 percent K(2)O by weight. Oceanic tholeiites also are readily distinguished from some 19 out of 20 basalts of oceanic islands and seamount cappings by having less than 0.3 percent K(2)O by weight and more than 48 percent SiO(2). Deep drilling into oceanic volcanoes should, however, core basalts transitional between the oceanic tholeiites and the presumed derivative alkali basalts. The composition of the oceanic tholeiites suggests that the mantle under the East Pacific Rise contains less than 0.10 percent potassium oxide by weight; 0.1 part per million of uranium and 0.4 part of thorium; a potassium:rubidium ratio of about 1200 and a potassium: uranium ratio of about 10(4). PMID:17806796

  16. Linking magma composition with volcano size and eruptive style in basaltic monogenetic systems

    NASA Astrophysics Data System (ADS)

    Smith, I. E.; McGee, L. E.; Cronin, S. J.

    2012-12-01

    Magma composition, volcano size and eruptive style (together with vent locations) are the definitive parameters of basaltic monogenetic systems. These variables are not independent, but the relationships between them are complex. Monogenetic volcano fields that episodically erupt small-volume, discrete magma batches such as the Auckland Volcanic Field (AVF, northern New Zealand), typically represent primary mantle melts variably modified by near source processes. In such cases, where the volume of magma is small, eruption styles are strongly controlled by the interaction of magma with the surficial environment and this is determined by both magma volume and its rise rate. The magmatic compositional extremes of primitive magmas in the AVF define a spectrum ranging from strongly silica-undersaturated nephelinite to sub-alkalic basalt. Nephelinites are low SiO2 (~40 wt.%), highly incompatible-element enriched compositions, representing very low degrees of partial melting (<2%) in the asthenospheric mantle. Higher SiO2 (~48 wt.%) sub-alkalic compositions have lower incompatible element contents representing higher degrees of melting (~<5%) at slightly shallower depths. Geochemical modeling indicates that all of these magmas are sourced within the same general mantle region at depths of 80-70 km. The two compositional extremes also define extremes in volume of magma and ultimately magma flux at the surface. The surficial environment of the AVF is characterized by highly water saturated sediments of variable competency and many pressurized aquifer systems. Where there is a combination of small volumes and low flux rates, environmental factors dominate and phreatomagmatic explosive eruptions ensue, forming tuff cones, rings and maars. Larger volumes and flux rates result in dry eruptions forming cinder cones and lava fields. Thus at a fundamental level defining magma source characteristics and temporal or spatial variation in these (such as cyclic or evolutionary trends

  17. Alkali basalts and enclosed ultramafic xenoliths near Ushuaia, Tierra Del Fuego, Argentina.

    PubMed

    Acevedo, Rogelio Daniel

    2016-01-01

    At the southernmost part of Tierra del Fuego a few outcrops and erratic boulders of alkali basaltic rocks with ultramafic enclaves have been studied. Alkali basalt plugs or pipes hitherto identified are scarce, and host rocks are constituted by slates that belong to Mesozoic deposition. The petrography, texture and composition of the basalt and xenoliths were investigated by petrographic microscope and electron microprobe analysis. Xenocrysts of amphibole and alkali feldspar, phenocrysts of nepheline, olivine, spinel, phlogopite and Fe-Ti minerals (10 %) and a diversity of xenoliths, mainly lherzolitic, pyroxenite and wehrlitic nodules (15 %), but also from metamorphic rocks provenance, are contained in the basalt groundmass (75 %). This finer-grained material is made up of laths or needles of plagioclase, pyroxene, opaque minerals, apatite and glass, with intersertal, hyalopilitic and pilotaxitic. Locally, rock has an even granoblastic texture. Former amygdules are filled by analcite, zeolites, sodalite and calcite. The normative classification, based on nepheline content, conclude that this rock is an alkali basalt. The chemical classification, considering immobile elements as Zr/TiO2 versus Nb/Y indicate an alkali basalt too and plots over the TAS diagram fall in the foidite (Na-rich or nephelinite) and basanite fields. The REE patterns are fractionated (La/Yb primitive mantle normalized is approximately 30). The K-Ar isotopic technique on individual macrocrysts gave ages of 146 ± 5 Ma (amphibole) and 127 ± 4 Ma (alkali feldspar); and K-Ar whole rock datum reported 8.3 ± 0.3 Ma. Nevertheless, fertile samples show geochemical features typical of deep derived material thus, based on the position in the actual tectonic setting, indicate that the basalt is older than its isotopic age. PMID:27610313

  18. Alkali basalts and enclosed ultramafic xenoliths near Ushuaia, Tierra Del Fuego, Argentina.

    PubMed

    Acevedo, Rogelio Daniel

    2016-01-01

    At the southernmost part of Tierra del Fuego a few outcrops and erratic boulders of alkali basaltic rocks with ultramafic enclaves have been studied. Alkali basalt plugs or pipes hitherto identified are scarce, and host rocks are constituted by slates that belong to Mesozoic deposition. The petrography, texture and composition of the basalt and xenoliths were investigated by petrographic microscope and electron microprobe analysis. Xenocrysts of amphibole and alkali feldspar, phenocrysts of nepheline, olivine, spinel, phlogopite and Fe-Ti minerals (10 %) and a diversity of xenoliths, mainly lherzolitic, pyroxenite and wehrlitic nodules (15 %), but also from metamorphic rocks provenance, are contained in the basalt groundmass (75 %). This finer-grained material is made up of laths or needles of plagioclase, pyroxene, opaque minerals, apatite and glass, with intersertal, hyalopilitic and pilotaxitic. Locally, rock has an even granoblastic texture. Former amygdules are filled by analcite, zeolites, sodalite and calcite. The normative classification, based on nepheline content, conclude that this rock is an alkali basalt. The chemical classification, considering immobile elements as Zr/TiO2 versus Nb/Y indicate an alkali basalt too and plots over the TAS diagram fall in the foidite (Na-rich or nephelinite) and basanite fields. The REE patterns are fractionated (La/Yb primitive mantle normalized is approximately 30). The K-Ar isotopic technique on individual macrocrysts gave ages of 146 ± 5 Ma (amphibole) and 127 ± 4 Ma (alkali feldspar); and K-Ar whole rock datum reported 8.3 ± 0.3 Ma. Nevertheless, fertile samples show geochemical features typical of deep derived material thus, based on the position in the actual tectonic setting, indicate that the basalt is older than its isotopic age.

  19. Giant plagioclase growth during storage of basaltic magma in Emeishan Large Igneous Province, SW China

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Lu; Yang, Zong-Feng; Zeng, Ling; Wang, Yu; Luo, Zhao-Hua

    2014-02-01

    Giant plagioclase basalts (GPBs) reflect the storage of flood basalt magma in subvolcanic magma chambers at crustal depths. In this study of the Late Permian Emeishan large igneous province in southwest China, we focus on understanding the plumbing system and ascent of large-volume basaltic magma. We report a quantitative textural analysis and bulk-rock geochemical composition of clustered touching crystals (CT-type) and single isolated crystal (SI-type) GPB samples from 5- to 240-m-thick flows in the Daqiao section. Both types of GPBs are evolved (<6 MgO wt%), but have high Ti/Y ratios (>500) and high total FeO content (11.5-15.2 wt%). The mineral chemistry of the two types of plagioclase displays a small range of anorthite content (<5 mol%), which is consistent with their unzoned characteristics. The two types of GPBs have S-type crystal size distributions but have quite different slopes, intercepts, and characteristic lengths. The characteristic lengths of the five flows are 1.54, 2.99, 1.70, 3.22, and 1.86 mm, respectively. For plagioclase growth rates of 10-11 to 10-10 mm/s, steady-state magma chamber models with simple continuous crystal growth suggest that CT-type plagioclase megacrysts have the residence time of about 500-6,000 years, whereas the residence time for SI-type plagioclase is significantly longer, about 1,000-10,000 years. By combining field geology, quantitative textural data with geochemistry, we suggest that CT- and SI-type crystals grew and were coarsened in the outer part and inner part of a magma chamber, respectively. Magma evolution during storage is controlled by crystallization, crystal growth, and magma mixing, and pulsating eruptions occur in response to the continuous supply of hot magma.

  20. Basaltic calderas: Collapse dynamics, edifice deformation, and variations of magma withdrawal

    NASA Astrophysics Data System (ADS)

    Michon, Laurent; Massin, FréDéRick; Famin, Vincent; Ferrazzini, ValéRie; Roult, GenevièVe

    2011-03-01

    The incremental caldera collapses of Fernandina (1968), Miyakejima (2000), and Piton de la Fournaise (2007) are analyzed in order to understand the collapse dynamics in basaltic setting and the associated edifice deformation. For each caldera, the collapse dynamics is assessed through the evolution of the (1) time interval T between two successive collapse increments, (2) amount of vertical displacement during each collapse increment, and (3) magma outflow rate during the whole collapse caldera process. We show from the evolution of T that Piton de la Fournaise and Fernandina were characterized by a similar collapse dynamics, despite large differences in the caldera geometry and the duration of the whole collapse caldera process. This evolution significantly differs from that of Miyakejima where T strongly fluctuated throughout the whole collapse process. Quantification of the piston vertical displacements enables us to determine the magma outflow rates between each collapse increment. Displacement data (tiltmeter and/or GPS) for Piton de la Fournaise and Miyakejima are used to constrain the edifice overall deformation and the edifice deformation rates. These data reveal that both volcanoes experienced edifice inflation once the piston collapsed into the magma chamber. Such a deformation, which lasts during the first collapse increments only, is interpreted as the result of larger volume of piston intruded in the magma chamber than magma withdrawn before each collapse increment. Once the effect of the collapsing rock column vanishes, edifice deflates. We also determine for each caldera the critical amount of magma evacuated before collapse initiation and compare it to analog models. The significant differences between models and nature are explained by the occurrence of preexisting weak zones in nature, i.e., the ring faults, that are not taken into account in analog models. Finally, we show that T at Piton de la Fournaise and Fernandina was equally controlled by

  1. Basaltic Shergottite NWA 856: Differentiation of a Martian Magma

    NASA Technical Reports Server (NTRS)

    Ferdous, J.; Brandon, A. D.; Peslier, A. H.; Pirotte, Z.

    2016-01-01

    NWA 856 or Djel Ibone, is a basaltic shergottite discovered as a single stone of 320 g in South Morocco in April, 2001. This meteorite is fresh, i.e. shows minimal terrestrial weathering for a desert find. No shergottite discovered in North Africa can be paired with NWA 856. The purpose of this study is to constrain its crystallization history using textural observations, crystallization sequence modeling and in-situ trace element analysis in order to understand differentiation in shergottite magmatic systems.

  2. Magma storage of an alkali ultramafic igneous suite from Chamberlindalen, SW Svalbard

    NASA Astrophysics Data System (ADS)

    Gołuchowska, Karolina; Barker, Abigail K.; Czerny, Jerzy; Majka, Jarosław; Manecki, Maciej; Farajewicz, Milena; Dwornik, Maciej

    2016-10-01

    An alkali mafic-ultramafic igneous suite of composite intrusions, lenses and associated greenstones are hosted by Neoproterozoic metasedimentary sequences in Chamberlindalen, Southwest Svalbard. This study focuses on the alkali igneous suite of Chamberlindalen with a view to determining the conditions of magma storage. The rocks from Chamberlindalen display cumulate textures, are highly magnesian and are classified as alkaline by the occurrence of kaersutite. They have textures that indicate cocrystallization of primary magmatic minerals such as diopside, kaersutite-ferrokaersutite and biotite-phlogopite in different proportions. The historic magma plumbing system for the alkaline cumulates has been reconstructed by thermobarometry. Diopside and kaersutite crystallization in the alkaline cumulates show a dominant level of magma storage between 30 and 50 km in the subcontinental lithospheric mantle.

  3. Mineralogy, geochemistry and expansion testing of an alkali-reactive basalt from western Anatolia, Turkey

    SciTech Connect

    Copuroglu, Oguzhan; Andic-Cakir, Ozge; Broekmans, Maarten A.T.M.; Kuehnel, Radko

    2009-07-15

    In this paper, the alkali-silica reaction performance of a basalt rock from western Anatolia, Turkey is reported. It is observed that the rock causes severe gel formation in the concrete microbar test. It appears that the main source of expansion is the reactive glassy phase of the basalt matrix having approximately 70% of SiO{sub 2}. The study presents the microstructural characteristics of unreacted and reacted basalt aggregate by optical and electron microscopy and discusses the possible reaction mechanism. Microstructural analysis revealed that the dissolution of silica is overwhelming in the matrix of the basalt and it eventually generates four consequences: (1) Formation of alkali-silica reaction gel at the aggregate perimeter, (2) increased porosity and permeability of the basalt matrix, (3) reduction of mechanical properties of the aggregate and (4) additional gel formation within the aggregate. It is concluded that the basalt rock is highly prone to alkali-silica reaction. As an aggregate, this rock is not suitable for concrete production.

  4. Volatile Behavior in Lunar and Terrestrial Basalts During Shock: Implications for Martian Magmas

    NASA Technical Reports Server (NTRS)

    Chaklader, Johny; Shearer, C. K.; Hoerz, F.; Newsom, H. E.

    2004-01-01

    The amount of water in martian magmas has significant ramifications for the martian atmosphere-hydrosphere cycle. Large D-enrichments have been observed in kaersutitic amphiboles in Zagami, Chassigny and Shergotty meteorites (delta-D values up to 4400 per mil) suggesting that substantial amounts of H escaped Mars in its past. Furthermore, martian meteorites with inclusions of biotite and apatite imply possible origins in a hydrous mantle. However, whether martian magmas ever possessed considerable proportions of water remains controversial and unclear. The H-content of mica and amphibole melt inclusions has been found to be low, while bulk-rock H2O content is also low ranging from 0.013 to 0.035 wt. % in Shergotty. Hydrous martian magmas were considered responsible for light lithophile element (LLE) zoning patterns observed in Nakhlite and Shergottite pyroxenes. Since LLEs, such as Li and B, partition into aqueous fluids at temperatures greater than 350 C, workers interpreted Li-B depletions in pyroxene rims as evidence that supercritical fluid exsolution occurred during magma degassing. In that many martian basalts experienced substantial shock (15-45 GPa) it is possible that the magmatic volatile record preserved in martian basalts has been disturbed. Previous shock experiments suggest that shock processes may effect water content and H/D. To better understand the possible effects of shock on this volatile record, we are studying the redistribution of volatile elements in naturally and experimentally shocked basalts. Here, we report the initial results from shocked basalts associated with the Lonar Crater, India and an experimentally shocked lunar basalt.

  5. The Origin of Alkali and Ocean Island Basalts: Contradictions and Solutions

    NASA Astrophysics Data System (ADS)

    Donnelly, K.; Langmuir, C. H.; Goldstein, S. L.; Lagatta, A.

    2001-12-01

    element ratios because F is as low as D. Low F melts would transport volatiles and have them be incorporated into the source. Therefore a low F melt source solves the OIB problem in ways that recycled ocean crust cannot. There is then the geological question of where the source is created. It could be created above subduction zones where slabs are hot enough to melt subducted crust at depths greater than the volcanic front. Large contiguous volumes of melt-metasomatized mantle could be created in this way. In this environment, the fertilized mantle wedge overlying the slab could be carried to depth in the mantle where it acquires a high 3He signature and rises to form plumes. Minor amounts of volatile-depleted eclogite could also be involved directly in some cases (e,g, perhaps Hawaiian tholeiites). But what we find striking about ocean island geochemistry is the rarity of the eclogite signature. Koolau is an outlier, not a paradigm. Similar alkali basalt source compositions could be created from any eclogite that reaches shallow levels in the mantle, because the eclogite has so much lower a solidus temperature than does peridotote. Given the mantle thermal structure, this process allows alkali basalt sources to be created throughout the upper mantle as an inevitable consequence of mantle convection. The uniform character of the OIB magma type then comes from the relative partition coefficients of trace elements in garnet and pyroxene, which imparts a commonality to low F melts in diverse environments. This model accounts for the petrological and geochemical features of OIB, and also permits the ubiquity of their geographical occurrence.

  6. Experimental study into the petrogenesis of crystal-rich basaltic to andesitic magmas at Arenal volcano

    NASA Astrophysics Data System (ADS)

    Parat, F.; Streck, M. J.; Holtz, F.; Almeev, R.

    2014-08-01

    Arenal volcano is nearly unique among arc volcanoes with its 42 year long (1968-2010) continuous, small-scale activity erupting compositionally monotonous basaltic andesites that also dominate the entire, ~7000 year long, eruptive history. Only mineral zoning records reveal that basaltic andesites are the result of complex, open-system processes deriving minerals from a variety of crystallization environments and including the episodic injections of basalt. The condition of the mafic input as well as the generation of crystal-rich basaltic andesites of the recent, 1968-2010, and earlier eruptions were addressed by an experimental study at 200 MPa, 900-1,050 °C, oxidizing and fluid-saturated conditions with various fluid compositions [H2O/(H2O + CO2) = 0.3-1]. Phase equilibria were determined using a phenocryst-poor (~3 vol%) Arenal-like basalt (50.5-wt% SiO2) from a nearby scoria cone containing olivine (Fo92), plagioclase (An86), clinopyroxene (Mg# = 82) and magnetite (Xulvö = 0.13). Experimental melts generally reproduce observed compositional trends among Arenal samples. Small differences between experimental melts and natural rocks can be explained by open-system processes. At low pressure (200 MPa), the mineral assemblage as well as the mineral compositions of the natural basalt were reproduced at 1,000 °C and high water activity. The residual melt at these conditions is basaltic andesitic (55 wt% SiO2) with 5 wt% H2O. The evolution to more evolved magmas observed at Arenal occurred under fluid-saturated conditions but variable fluid compositions. At 1,000 °C and 200 MPa, a decrease of water content by approximately 1 wt% induces significant changes of the mineral assemblage from olivine + clinopyroxene + plagioclase (5 wt% H2O in the melt) to clinopyroxene + plagioclase + orthopyroxene (4 wt% H2O in the melt). Both assemblages are observed in crystal-rich basalt (15 vol%) and basaltic andesites. Experimental data indicate that the lack of orthopyroxene

  7. Thermal control of low-pressure fractionation processes. [in basaltic magma solidification

    NASA Technical Reports Server (NTRS)

    Usselman, T. M.; Hodge, D. S.

    1978-01-01

    Thermal models detailing the solidification paths for shallow basaltic magma chambers (both open and closed systems) were calculated using finite-difference techniques. The total solidification time for closed chambers are comparable to previously published calculations; however, the temperature-time paths are not. These paths are dependent on the phase relations and the crystallinity of the system, because both affect the manner in which the latent heat of crystallization is distributed. In open systems, where a chamber would be periodically replenished with additional parental liquid, calculations indicate that the possibility is strong that a steady-state temperature interval is achieved near a major phase boundary. In these cases it is straightforward to analyze fractionation models of the basaltic liquid evolution and their corresponding cumulate sequences. This steady thermal fractionating state can be invoked to explain large amounts of erupted basalts of similar composition over long time periods from the same volcanic center and some rhythmically layered basic cumulate sequences.

  8. Magma Processes in Generating Basalts at the Poison Lake Chain, California

    NASA Astrophysics Data System (ADS)

    Wenner, J. M.; Teasdale, R.; Kroeninger, K. L.; Albanese, C.; Duhamel, N.

    2012-12-01

    We present new data for primitive basalts in the Poison Lake chain east of Lassen Volcanic National Park in northern California. The primitive composition and location of Poison Lake chain cinder cones on the western margin of the Basin and Range suggest that extensional tectonics may facilitate efficient magma ascent with little contamination. The Poison Lake chain is an ideal location to study small-scale variations in the mantle beneath the southern Cascades because of the small volumes erupted and the proximity to the Basin and Range. The volcanic field encompasses 39 units that comprise nine chemically distinct groups of primitive calc-alkaline basalts (defined by major element geochemistry and mineralogy). Olivine core compositions range from Fo72 - Fo89; most are in equilibrium with their whole rock compositions. Plagioclase core compositions range from An62-An88. Trace-element and isotope data for the groups confirm distinct chemistries that show little evidence of direct genetic relationships or a common source among these basalts. The small volume and distinct isotopic characteristics of individual groups suggest that they are the product of small mantle source domains. CaO compositions of olivine crystals further support that these basalts represent small independent magma batches. Isotope ratios, major and trace element compositions (whole rock) and crystal compositions reflect pre-eruption processing for some groups, which provide insights into the degree of pre-eruption processing versus the extent of source heterogeneities. Other groups have smaller compositional ranges (whole rock isotopes, trace, and major elements), more homogeneous olivine and plagioclase compositions, and reflect smaller degrees of processing prior to eruption. Compositional ranges within individual groups constrain the degree to which magmas were processed during transport from the mantle source to the surface in the Poison Lake chain.

  9. Enriched asthenosphere melting beneath the nascent North African margin: trace element and Nd isotope evidence in middle-late Triassic alkali basalts from central Sicily (Italy)

    NASA Astrophysics Data System (ADS)

    Cirrincione, Rosolino; Fiannacca, Patrizia; Lustrino, Michele; Romano, Vanessa; Tranchina, Annunziata; Villa, Igor M.

    2016-03-01

    During the dismembering of the Pangea supercontinent, middle-late Triassic sub-volcanic alkaline rocks were emplaced in central Sicily. These rocks have an alkali basaltic composition and show OIB-like incompatible element patterns in primitive mantle-normalized diagrams (e.g., enrichments in HFSE and LREE coupled with high HFSE/LILE ratios), as well as slightly positive \\varepsilon_{Nd} values. Only subtle effects of crustal contamination at shallow depths emerge from geochemical data. These characteristics are very different compared with the Permian calcalkaline magmas from elsewhere in SW Europe still carrying the geochemical signature of modifications related to the Variscan orogeny. The mineralogical, geochemical and isotopic compositions of the investigated samples from central Sicily are also different from the coeval shoshonitic volcano-plutonic formations of Southern Alps (Dolomites). The incompatible element composition and Nd isotopic ratios are consistent with low-degree partial melting of a moderately depleted asthenospheric mantle source, with a negligible involvement of the thinned continental crust. The studied alkaline basalts represent the only known evidence of a segment of the Triassic rift system associated with early Pangea breakup in central Sicily. The close similarity of the central Sicily Triassic alkali basalts with coeval basalts emplaced along former orogenic sutures across the peri-Mediterranean area suggests a common origin related, at least partly, to asthenospheric passive upwelling following the tectonic collapse of the Variscan Belt. These rocks provide new constraints on the spatial-temporal distribution, magma source evolution and geodynamic meaning of the widespread Permo-Triassic basic magmatism developed after the end of the Variscan Orogeny in southwestern Europe.

  10. Recent volcanism in the Siqueiros transform fault: Picritic basalts and implications for MORB magma genesis

    USGS Publications Warehouse

    Perfit, M.R.; Fornari, D.J.; Ridley, W.I.; Kirk, P.D.; Casey, J.; Kastens, K.A.; Reynolds, J.R.; Edwards, M.; Desonie, D.; Shuster, R.; Paradis, S.

    1996-01-01

    Small constructional volcanic landforms and very fresh-looking lava flows are present along one of the inferred active strike-slip faults that connect two small spreading centers (A and B) in the western portion of the Siqueiros transform domain. The most primitive lavas (picritic and olivine-phyric basalts), exclusively recovered from the young-looking flows within the A-B strike-slip fault, contain millimeter-sized olivine phenocrysts (up to 20 modal%) that have a limited compositional range (Fo91.5-Fo89.5) and complexly zoned Cr-Al spinels. High-MgO (9.5-10.6 wt%) glasses sampled from the young lava flows contain 1-7% olivine phenocrysts (Fo90.5-Fo89) that could have formed by equilibrium crystallization from basaltic melts with Mg# values between 71 and 74. These high MgO (and high Al2O3) glasses may be near-primary melts from incompatible-element depleted oceanic mantle and little modified by crustal mixing and/or fractionation processes. Phase chemistry and major element systematics indicate that the picritic basalts are not primary liquids and formed by the accumulation of olivine and minor spinel from high-MgO melts (10% < MgO < 14%). Compared to typical N-MORB from the East Pacific Rise, the Siqueiros lavas are more primitive and depleted in incompatible elements. Phase equilibria calculations and comparisons with experimental data and trace element modeling support this hypothesis. They indicate such primary mid-ocean ridge basalt magmas formed by 10-18% accumulative decompression melting in the spinel peridotite field (but small amounts of melting in the garnet peridotite field are not precluded). The compositional variations of the primitive magmas may result from the accumulation of different small batch melt fractions from a polybaric melting column.

  11. Magma flow-direction indicators in the diabase feeder dike to the first flood basalt in the Mesozoic Hartford basin, Connecticut

    SciTech Connect

    Philpotts, A.R.; Asher, P.M. . Dept. of Geology and Geophysics)

    1993-03-01

    Recent kinematic analysis has indicated that magma may have been emplaced horizontally rather than vertically in some large regional diabase dikes. Such analysis, however, has commonly relied on a single flow indicator, such as anisotropy of magnetic susceptibility, which may reflect only late stage adjustments in a body of crystallizing magma. This study of kinematic indicators in a Mesozoic diabase dike in southern New England indicates that the direction of flow in large dikes may change during emplacement, and that a single flow indicator cannot give a complete picture of the flow history. The 250-km-long Higganum dike fed the first flood basalt in the Hartford basin of Connecticut. The margins of this dike contain 8 independent magma flow indicators, which involve the imbrication and deformation of phenocrysts, the shearing of felsic wisps, and the segregation of residual liquids. The felsic wisps, which were derived by partial melting of the wallrock, preserve the most complete record of flow in the dike. Early felsic liquids exchanged alkalis with the still largely molten diabase magma and consequently are K-poor; ones that entered after the diabase was largely solid are relatively K-rich. Most K-poor felsic wisps were deformed into recumbent folds by back-flowing magma. Later K-rich felsic streaks parallel the axial planes of these folds. The shear of magma past phenocrysts near the dike margins also caused K-rich felsic liquids to segregate in low-pressure zones on the opposing ends of these crystals. All of these flow indicators record a complex history of dike emplacement, with periods of upward intrusion always being followed by periods of back-flow.

  12. Shallow Miocene basaltic magma reservoirs in the Bahia de Los Angeles basin, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Delgado-Argote, Luis A.; García-Abdeslem, Juan

    1999-01-01

    The basement in the Bahı´a de Los Angeles basin consists of Paleozoic metamorphic rocks and Cretaceous granitoids. The Neogene stratigraphy overlying the basement is formed, from the base to the top, by andesitic lava flows and plugs, sandstone and conglomeratic horizons, and Miocene pyroclastic flow units and basaltic flows. Basaltic dikes also intrude the whole section. To further define its structure, a detailed gravimetric survey was conducted across the basin about 1 km north of the Sierra Las Flores. In spite of the rough and lineal topography along the foothills of the Sierra La Libertad, we found no evidence for large-scale faulting. Gravity data indicates that the basin has a maximum depth of 120 m in the Valle Las Tinajas and averages 75 m along the gravimetric profile. High density bodies below the northern part of the Sierra Las Flores and Valle Las Tinajas are interpreted to be part of basaltic dikes. The intrusive body located north of the Sierra Las Flores is 2.5 km wide and its top is about 500 m deep. The lava flows of the top of the Sierra Las Flores, together with the distribution of basaltic activity north of this sierra, suggests that this intrusive body continues for 20 km along a NNW-trending strike. Between the sierras Las Flores and Las Animas, a 0.5-km-wide, 300-m-thick intrusive body is interpreted at a depth of about 100 m. This dike could be part of the basaltic activity of the Cerro Las Tinajas and the small mounds along the foothills of western Sierra Las Animas. The observed local normal faulting in the basin is inferred to be mostly associated with the emplacement of the shallow magma reservoirs below Las Flores and Las Tinajas.

  13. Evaluation of crustal recycling during the evolution of Archean-age Matachewan basaltic magmas

    NASA Technical Reports Server (NTRS)

    Nelson, Dennis O.

    1989-01-01

    The simplest model for the Matachewan-Hearst Dike (MHD) magmas is assimilation-fractional crystallization (AFC), presumably occurring at the base of the crust during underplating. Subduction zone enriched mantle sources are not required. Trace elements suggest that the mantle sources for the MHD were depleted, but possessed a degree of heterogeneity. Rates of assimilation were approximately 0.5 (= Ma/Mc); the contaminant mass was less than 20 percent. The contaminant was dominated by tonalites-randodiorites, similar to xenoliths and rocks in the Kapuskasing Structural Zone (KSZ). Assimilation of partial melts of light-rare earth and garnet-bearing basaltic precursors may have produced some the MHD magmas. Apparently, previous underplating-AFC processes had already produced a thick crust. The silicic granitoid assimilant for the MHD magmas was probably produced by earlier processing of underplated mafic crust (4, 5, 10, 21 and 30). Calculations suggest that the derived silicic rocks possess negative Ta and Ti anomalies even though they were not the product of subduction.

  14. Expected Behavior of Basaltic Magma with the Proposed High Level Nuclear Repository at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Apted, M.; Morrissey, M.

    2007-12-01

    The expected series of eruptive events for a future igneous event in Yucca Mountain within the next 1 MY is comparable to that at Lathrop Wells basalt center and other Crater Flats Quaternary volcanoes. Lathrop Wells and Crater Flats Quaternary volcanoes are, in general, comprised of a single scoria cone with one or two lava flow fields extending from the base. The lava flow fields associated with scoria cones all appear to extend from the base of a scoria cone and to be comprised of lava terraces. A three-dimensional model of the plumbing system for a possible future igneous event is presented in this paper, based on the characteristic features of eruptive deposits at Lathrop Wells and other Crater Flats Quaternary volcanoes. Also described in the model are consequences related to the interaction between magma and the repository. The repository is expected to be 200-300 m below the surface and comprised of parallel drifts 5 m in diameter, 0.5-1.0 km in length and spaced 85 m. Each drift is to be filled with a series of 1.8 m diameter waste packages made of Alloy 22 stainless steel. The conceptual model of the plumbing system and related consequences are described in six stages. Stage 1 Intersection of dike with drift: One dike will intersect the repository. The width of a future dike in YMR is expected to vary along the length with a maximum value of < 4.0 m at repository depths. The number of drifts that will be intersected by the dike will be 6-24 depending on the lateral extent of the dike through the repository. Stage 2 Initial stage magma-drift interaction: The lateral variation in magma properties will produce, in general, two different styles of expected activity upon entering a drift: a mixture of gas and fragments of magma characteristic of a lava fountain at wide portions of the dike, and crystallizing magma relatively depleted in volatiles at the narrowest part of the dike. A spray of pyroclastics is expected inside a drift from a lava fountain that

  15. Basaltic Magma-Water Interaction on Earth: Recognition Criteria To Aid Planetary Mapping on Mars (Invited)

    NASA Astrophysics Data System (ADS)

    Skilling, I. P.; Graettinger, A. H.; Mercurio, E.; McGarvie, D.; Edwards, B. R.

    2013-12-01

    The interaction of basaltic magma with frozen/liquid water or wet sediment is a very common process on Earth, resulting in a wide array of explosively and non-explosively generated products at the micron to kilometre scale. A variety of products and edifices on Mars have also been interpreted as having formed by such interaction, but with the exception of rootless cones, such interpretations are rarely unequivocal. This talk focuses on terrestrial process recognition criteria at a scale, orientation (vertical) and erosion level that is relevant to Mars geological mapping. In this context, we emphasise intrusions with peperite margins and wide hydrothermal haloes, steep margins of ice-contact lava flows, subaerial-subaqueous lava delta transitions, lava domains with distinctive water-cooled jointing, edifices that are dominated by slumped and rotated beds, and the presence of surrounding fluvial deposits and erosion. The most common products of magma-water interaction on Earth are subaqueously emplaced lava flows, which are dominated by pillow lavas. Though pillows are not easy to distinguish from subaerial pahoehoe toes at the resolution of most remote imagery, they are commonly associated with distinctively jointed lava domains, which are usually on a larger scale, including areas of water-cooled jointing (curvicolumnar, blocky etc), lava-filled tubes, which often display radial jointing, and steep talus deposits of joint-block breccia. Subaqueous basaltic lavas emplaced in an ice-confined environment may also display near-vertical ice-contact margins, draped by curtains of elongate pillows or cavities formed from melting of included ice-blocks. Subaerial lava flows that transition into water also develop large-scale foreset-bedding close to the angle of repose, which should be easily visible, at least in oblique imagery. As the majority of the Martian surface is more deeply eroded than most areas of terrestrial basaltic volcanism, it is important to discuss

  16. Density and structure of basaltic magma under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Sakamaki, T.; Ohtani, E.; Suzuki, A.; Terasaki, H.; Urakawa, S.; Katayama, Y.; Funakoshi, K.

    2008-12-01

    The density of magma is one of the important properties for discussing evolution of magma ocean at the early history of the planets and magmatic activity in the planetary mantle. We have measured the density of basaltic melt at high temperature and high pressure by X-ray absorption method. The experiments were carried out using a DIA-type cubic press at BL22XU of the SPring-8. X-ray absorption method is accurate method for the density measurement under desired pressure and temperature compared to the other methods. This method for density measurements was originally developed by Katayama et al. (1993). It is based on the Lambert-Beer"fs law. The sample was placed in a diamond capsule to calibrate the sample thickness and the X-ray absorption profile of the sample was measured by ion chambers. We succeeded in measuring the density of basaltic melt up to 4.6 GPa and up to 2000 K. We obtained the compression curve of basaltic melt by using the Birch-Murnaghan equation of state with a negative pressure derivative of bulk modulus (dK/dP). A negative dK/dP might be caused by the structural change of the silicate melts, although it is unlikely in crystals. The structure of magma is based on continuous three-dimensional networks of corner-sharing SiO4 and AlO4 tetrahedra, as being derived from a network of tetrahedrally coordinated Si and Al atoms each linked to four others through a shared O atom. The principal mechanisms of compression for silicate melts involve continuous changes in T-O-T bond angles and bond lengths. Silicate melts might undergo continuous and gradual changes in topology and cation coordinations. In order to further understand these changes and how they are affected by the microscopic structure, we have conducted the energy-dispersive X-ray diffraction to determine the structure of the basaltic melt up to 5 GPa. High pressure and high temperature X-ray diffraction experiments on basaltic melts were carried out by the energy dispersive method using

  17. Uptaking of plagioclase xenocryst into H2O-rich rear-arc basaltic magma

    NASA Astrophysics Data System (ADS)

    Hamada, M.

    2015-12-01

    Kuritani et al. (2013, Mineral. Petrol.) and Kuritani et al. (2014, Contrib. Mineral. Petrol.) estimated genetic conditions of primary arc magmas beneath the Iwate volcano (a frontal arc volcano in the northeast Japan arc) and the Sannome-gata volcano (a rear-arc volcano in the northeast Japan arc) based on analyses of volcanic rocks and numerical simulation. They estimated that H2O concentrations of primary melts are 4-5 wt.% beneath the Iwate volcano and 6-7 wt.% beneath the Sannnome-gata volcano, respectively. Their arguments mean that primary melts beneath frontal-arc volcanoes and rear-arc volcanoes are both H2O-rich, yet there has been no direct evidence to support their arguments at the Sannnome-gata volcano because volcanic rocks are either almost aphyric and/or almost no melt inclusions were found. Hydrogen concentration in nominally anhydrous minerals serves as a hygrometer of arc basaltic melts (e.g., Hamada et al. 2013, Earth Planet. Sci. Lett.). In this study, hydrogen concentration of plagioclase as a crustal xenocryst was analyzed to estimate H2O concentration of basaltic melt coexisted with plagioclase before the eruption. Plagioclase xenocrists were separated from crushed scoria which erupted from the Sannome-gata volcano 20,000-24,000 years ago. Composition of the plagioclase core is homogeneous and ranges from An30 through An35. The rim is 150 to 200-μm-thick dusty zone whose composition is around An60, suggesting that the rim crystallized rapidly from degassed basaltic melt. The profiles of infrared absorption area per unit thickness across the plagioclase core were obtained using Fourier Transform InfraRed spectrometer (FTIR). The inner core contains hydrogen of about 60 wt. ppm H2O, and hydrogen concentration elevates at outer core. Hydrogen concentration at the outermost core of plagioclase is >200 wt. ppm H2O, suggesting that plagioclase xenocrists were taken by hydrous melt (H2O>5 wt.%; Hamada et al. 2014, Earth Planet. Sci. Lett.) and

  18. Evidence for Magma-Mixing and Disequilibrium in 'Primitive' Basaltic Andesites From Mount Shasta, Northern California

    NASA Astrophysics Data System (ADS)

    Leeman, W. P.; Streck, M. J.; Chesley, J. T.; Tonarini, S.

    2005-12-01

    High-Mg basaltic andesites near Mt. Shasta volcano have been considered fundamental to establishing the existence of exceptionally water-rich primary magmas in this system, implying significant slab-derived fluid fluxes into the underlying mantle wedge (Grove et al., 2002). This notion was reinvestigated via new mineralogical and geochemical studies of fresh scoria blocks from the Whaleback volcano (loc. S17; Anderson,1979). These high-Mg andesites (58% SiO2, 8.5% MgO, Mg# = 76, 120 ppm Ni, 550 ppm Cr) carry small dunitic xenoliths and xeno/phenocrysts (ol+opx+cpx). Plagioclase is not a liquidus phase. Electron microprobe traverses and back-scattered images show that mafic silicates, particularly pyroxenes, have complex histories. Olivine compositions of larger crystals and interiors are often above Fo90 up to Fo94 whereas microphenocrysts and rims of larger crystals are ~Fo87. Complexities among pyroxenes include: (a) Cores of opx and cpx with low Mg# (~67) containing melt inclusions; this evidence indicates these pyroxenes crystallized from magma of roughly dacitic composition; (b) Virtually all low Mg# grains are resorbed and have overgrowths (~20 microns) of high Mg# (87-92) that may be internally zoned arriving at a Mg# near 80 at the outermost euhedral rim; (c) Another variant is orthopyroxene with 'wormy' texture and either a thin (~15 microns) euhedral overgrowth or anhedral outline; compositions of resorbed interiors and overgrowth are similar ( Mg# range: 80 to 90), but distribution of lower and higher Mg# in resorbed areas is patchy whereas any compositional zoning of overgrowth follows crystal shape and arrives again at a Mg# of ~80 at the outermost rim. These data record mixing of diverse magmas (dacite and one or more basaltic liquids) combined with entrainment of ultramafic crystal debris during wall rock contamination, and eventual cooling and equilibration. Low Al2O3 contents in the pyroxenes imply that these minerals grew at relatively low

  19. Petrogenesis of basaltic volcanic rocks from the Pribilof Islands, Alaska, by melting of metasomatically enriched depleted lithosphere, crystallization differentiation, and magma mixing

    USGS Publications Warehouse

    Chang, J.M.; Feeley, T.C.; Deraps, M.R.

    2009-01-01

    The Pribilof Islands, Alaska, are located in the Bering Sea in a continental intraplate setting. In this study we examine the petrology and geochemistry of volcanic rocks from St. Paul (0??54-0??003 Ma) and St. George (2??8-1??4 Ma) Islands, the two largest Pribilof Islands. Rocks from St. George can be divided into three groups: group 1 is a high-MgO, low-SiO. 2 suite composed primarily of basanites; group 2 is a high-MgO, high-SiO 2 suite consisting predominantly of alkali basalts; group 3 is an intermediate- to low-MgO suite that includes plagioclase-phyric subalkali basalts and hawaiites. Major and trace element geochemistry suggests that groups 1 and 2 formed by small-degree partial melting of amphibole-bearing to amphibole-free garnet peridotite. Group 1 rocks were the earliest melts produced from the most hydrous parts of the mantle, as they show the strongest geochemical signature of amphibole in their source. The suite of rocks from St. Paul ranges from 14??4 to 4??2 wt % MgO at relatively constant SiO 2 contents (43??1-47??3 wt %). The most primitive St. Paul rocks are modeled as mixtures between magmas with compositions similar to groups 1 and 2 from St. George Island, which subsequently fractionated olivine, clinopyroxene, and spinel to form more evolved rocks. Plagioclase-phyric group 3 rocks from St. George are modeled as mixtures between an evolved melt similar to the evolved magmas on St. Paul and a fractionated group 2 end-member from St. George. Mantle potential temperatures estimated for primitive basanites and alkali basalts are ???1400??C and are similar to those of mid-ocean ridge basalts (MORB). Similarly, 87Sr/. 86Sr and 143Nd/. 144Nd values for all rocks are MORB-like, in the range of 0??702704-0??703035 and 0??513026-0??513109, respectively. 208Pb/. 204Pb vs 206Pb/. 204Pb values lie near the MORB end-member but show a linear trend towards HIMU (high time-integrated 238U/. 204Pb). Despite isotopic similarities to MORB, many of the major and

  20. Tectonic focusing of voluminous basaltic eruptions in magma-deficient backarc rifts

    NASA Astrophysics Data System (ADS)

    Anderson, Melissa O.; Hannington, Mark D.; Haase, Karsten; Schwarz-Schampera, Ulrich; Augustin, Nico; McConachy, Timothy F.; Allen, Katie

    2016-04-01

    The Coriolis Troughs of the New Hebrides subduction zone are among the youngest backarc rifts in the world. They reach depths of >3 km, despite their small size (<100 km in length and only 25-45 km wide) and their proximity to the arc front (∼50 km). The narrow, deep graben morphology is characteristic of magma-deficient arc rifts in the early stages of backarc extension, where the rate of extension and subsidence exceeds the magmatic input. Unexpectedly, the youngest graben, the Vate Trough, contains a centrally-located 1000-m tall and 14-km wide shield volcano with a large, 5 × 8 km breached summit caldera. The Nifonea axial volcano has a volume of ∼126 km3, reflecting unusually high extrusion rates, given its young age (<3 Ma), and the summit caldera hosts the remnants of a large lava lake, the first described from a submarine backarc setting. Extensive diffuse hydrothermal venting and several clusters of black smoker chimneys, with the highest recorded fluid temperatures (368 °C) in the SW Pacific, occur on the youngest lava flows. Comparison with similar axial volcanoes on the mid-ocean ridges suggests that the 46 ×106 m3 of sheet flows in the caldera could have been erupted in <30 hours. The focusing of voluminous basaltic eruptions into an otherwise magma-deficient backarc has been linked to strong left-lateral transtension caused by clockwise rotation and segmentation of the southern portion of the arc after collision with d'Entrecasteaux ridge. This study shows that the upper plate stresses can result in dramatic variability in magma supply and hydrothermal activity at the earliest stages of arc rifting and could explain the wide range of melt compositions, volcanic styles and mineral deposit types found in nascent backarc rifts.

  1. Halogen degassing during ascent and eruption of water-poor basaltic magma

    USGS Publications Warehouse

    Edmonds, M.; Gerlach, T.M.; Herd, Richard A.

    2009-01-01

    A study of volcanic gas composition and matrix glass volatile concentrations has allowed a model for halogen degassing to be formulated for K??lauea Volcano, Hawai'i. Volcanic gases emitted during 2004-2005 were characterised by a molar SO2/HCl of 10-64, with a mean of 33; and a molar HF/HCl of 0-5, with a mean of 1.0 (from approximately 2500 measurements). The HF/HCl ratio was more variable than the SO2/HCl ratio, and the two correlate weakly. Variations in ratio took place over rapid timescales (seconds). Matrix glasses of Pele's tears erupted in 2006 have a mean S, Cl and F content of 67, 85 and 173??ppm respectively, but are associated with a large range in S/F. A model is developed that describes the open system degassing of halogens from parental magmas, using the glass data from this study, previously published results and parameterisation of sulphur degassing from previous work. The results illustrate that halogen degassing takes place at pressures of < 1??MPa, equivalent to < ~ 35??m in the conduit. Fluid-melt partition coefficients for Cl and F are low (< 1.5); F only degasses appreciably at < 0.1??MPa above atmospheric pressure, virtually at the top of the magma column. This model reproduces the volcanic gas data and other observations of volcanic activity well and is consistent with other studies of halogen degassing from basaltic magmas. The model suggests that variation in volcanic gas halogen ratios is caused by exsolution and gas-melt separation at low pressures in the conduit. There is no evidence that either diffusive fractionation or near-vent chemical reactions involving halogens is important in the system, although these processes cannot be ruled out. The fluxes of HCl and HF from K??lauea during 2004-5 were ~ 25 and 12??t/d respectively. ?? 2008 Elsevier B.V.

  2. Tectonic focusing of voluminous basaltic eruptions in magma-deficient backarc rifts

    NASA Astrophysics Data System (ADS)

    Anderson, Melissa O.; Hannington, Mark D.; Haase, Karsten; Schwarz-Schampera, Ulrich; Augustin, Nico; McConachy, Timothy F.; Allen, Katie

    2016-04-01

    The Coriolis Troughs of the New Hebrides subduction zone are among the youngest backarc rifts in the world. They reach depths of >3 km, despite their small size (<100 km in length and only 25-45 km wide) and their proximity to the arc front (˜50 km). The narrow, deep graben morphology is characteristic of magma-deficient arc rifts in the early stages of backarc extension, where the rate of extension and subsidence exceeds the magmatic input. Unexpectedly, the youngest graben, the Vate Trough, contains a centrally-located 1000-m tall and 14-km wide shield volcano with a large, 5 × 8 km breached summit caldera. The Nifonea axial volcano has a volume of ˜126 km3, reflecting unusually high extrusion rates, given its young age (<3 Ma), and the summit caldera hosts the remnants of a large lava lake, the first described from a submarine backarc setting. Extensive diffuse hydrothermal venting and several clusters of black smoker chimneys, with the highest recorded fluid temperatures (368 °C) in the SW Pacific, occur on the youngest lava flows. Comparison with similar axial volcanoes on the mid-ocean ridges suggests that the 46 ×106 m3 of sheet flows in the caldera could have been erupted in <30 hours. The focusing of voluminous basaltic eruptions into an otherwise magma-deficient backarc has been linked to strong left-lateral transtension caused by clockwise rotation and segmentation of the southern portion of the arc after collision with d'Entrecasteaux ridge. This study shows that the upper plate stresses can result in dramatic variability in magma supply and hydrothermal activity at the earliest stages of arc rifting and could explain the wide range of melt compositions, volcanic styles and mineral deposit types found in nascent backarc rifts.

  3. Xenoliths from Late Cretaceous seamounts in the Central Pacific: Cumulates of fractionating alkalic basalt magma chambers

    SciTech Connect

    Davis, A.S.; Friesen, W.B.; Pickthorn, L.; Pringle, M.S.; Clague, D.A. )

    1990-06-01

    Abundant xenoliths in alkalic basalt were recovered from two Late Cretaceous seamounts in the Central Pacific. One seamount, located in the Phoenix archipelago (lat 0{degree}22'5, long 176{degree}05'W), is dated by {sup 40}Ar/{sup 39}Ar techniques as 65 Ma. The other seamount, located in the northern Line Islands (lat 15{degree}39'N, long 170{degree}23'W), is dated as 70 Ma. Host lavas are basanite and differentiated alkalic basalt. Mafic xenolith assemblages consist of clinopyroxene with variable amounts of amphibole and mica. Intermediate assemblages have abundant feldspar in addition to the mafic minerals. Rare felsic xenoliths consist of two or more feldspars. Variable amounts of apatite, titanite, and magnetite are poikilitically enclosed in mafic phases, and minor feldspathoids are present in some xenoliths. Most xenoliths are holocrystalline with fine- to medium-grained, equigranular cumulus texture, but two xenoliths have a seriate, interlocking crystal framework in a small amount of glassy to microcrystalline matrix. Clinopyroxene in the holocrystalline samples is partially replaced by amphibole. In a few samples, extensive replacement of clinopyroxene by rounded amphibole grains results in a nearly granoblastic texture. Clinopyroxene compositions range from diopside to ferrosalite and are essentially Cr-free but generally have high Ti and Al contents. Cr-rich diopside and Al-augite, characteristic of mantle clinopyroxene, are absent. Feldspars include plagioclase, anorthoclase, and sanidine. Mineral compositions of xenoliths are similar to those of phenocrysts in the host lavas, indicating that these xenoliths are not metasomatized mantle material, but rather are cumulates from fractionating alkalic basalt magma chambers.

  4. Geochemistry of basalts from small eruptive centers near Villarrica stratovolcano, Chile: Evidence for lithospheric mantle components in continental arc magmas

    NASA Astrophysics Data System (ADS)

    Hickey-Vargas, R.; Sun, M.; Holbik, S.

    2016-07-01

    In the Central Southern Volcanic Zone (CSVZ) of the Andes, the location of stratovolcanoes and monogenetic small eruptive centers (SEC) is controlled by the Liquiñe-Ofqui Fault Zone (LOFZ), a trench-parallel strike-slip feature of over 1000 km length. The geochemistry of basalts from SEC is different from those of stratovolcanoes, and are termed Type 2 and Type 1 basalts, respectively. In the region of Villarrica stratovolcano, contemporaneous SEC are more MgO-rich, and have greater light rare earth element (LREE) enrichment, lower 87Sr/86Sr and 143Nd/144Nd, and lower ratios of large ion lithophile elements (LILE) to LREE and high field strength elements (HFSE). A unique finding in this region is that basalts from one SEC, San Jorge, has Type 1 character, similar to basalts from Villarrica stratovolcano. Type 1 basalts from Villarrica and San Jorge SEC have strong signals from time-sensitive tracers of subduction input, such as high 10Be/9Be and high (238U/230Th), while Type 2 SEC have low 10Be/9Be and (238U/230Th) near secular equilibrium. Based on new trace element, radiogenic isotope and mineral analyses, we propose that Type 1 basaltic magma erupted at San Jorge SEC and Villarrica stratovolcano forms by melting of the ambient actively subduction-modified asthenosphere, while Type 2 SEC incorporate melts of pyroxenite residing in the supra-subduction zone mantle lithosphere. This scenario is consistent with the close proximity of the volcanic features and their inferred depths of magma separation. The pyroxenite forms from arc magma produced during earlier episodes of subduction modification and magmatism, which extend back >300 Ma along this segment of the western South American margin. Type 2 basaltic magmas may reach the surface during LOFZ-related decompression events, and they may also be a normal but episodic part of the magma supply to large stratovolcanoes, resulting in cryptic geochemical variations over time. The presence and mobilization of stored

  5. Interpretation of trace element and isotope features of basalts: relevance of field relations, petrology, major element data, phase equilibria, and magma chamber modeling in basalt petrogenesis

    NASA Astrophysics Data System (ADS)

    O'Hara, M. J.; Herzberg, C.

    2002-06-01

    The concentrations and ratios of the major elements determine the physical properties and the phase equilibria behavior of peridotites and basalts in response to the changing energy contents of the systems. The behavior of the trace elements and isotopic features are influenced in their turn by the phase equilibria, by the physical character of the partial melting and partial crystallization processes, and by the way in which a magma interacts with its wall rocks. Concentrating on the trace element and isotope contents of basalts to the exclusion of the field relations, petrology, major element data, and phase equilibria is as improvident as slaughtering the buffalo for the sake of its tongue. The crust is a cool boundary layer and a density filter, which impedes the upward transfer of hot, dense "primary" picritic and komatiitic liquids. Planetary crusts are sites of large-scale contamination and extensive partial crystallization of primitive melts striving to escape to the surface. Escape of truly unmodified primitive melts to the surface is a rare event, requiring the resolution of daunting problems in chemical and mechanical engineering. Primary status for volumetrically abundant basalts such as mid-ocean ridge basalt, ocean island basalt, and continental flood basalts is denied by their low-pressure cotectic character, first remarked upon on petrological grounds in 1928 and on experimental grounds in 1962. These basalt liquids are products of crystal-liquid separation at low pressure. Primary status for these common basalts is further denied by the phase equilibria of such compositions at elevated pressures, when the required residual mantle mineralogy (magnesian olivine and orthopyroxene) is not stable at the liquidus. It is also denied by the picritic or komatiitic nature of partial melts of candidate upper-mantle compositions at high pressures - a conclusion supported by calculation of the melt composition, which would need to be extracted in order to

  6. The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma

    SciTech Connect

    Kelley, Katherine A.; Cottrell, Elizabeth

    2012-05-09

    Subduction zone basalts are more oxidized than basalts from other tectonic settings (e.g., higher Fe{sup 3+}/{Sigma}Fe), and this contrast may play a central role in the unique geochemical processes that generate arc and continental crust. The processes generating oxidized arc magmas, however, are poorly constrained, although they appear inherently linked to subduction. Near-surface differentiation processes unique to arc settings might drive oxidation of magmas that originate in equilibrium with a relatively reduced mantle source. Alternatively, arc magmas could record the oxidation conditions of a relatively oxidized mantle source. Here, we present new measurements of olivine-hosted melt inclusions from a single eruption of Agrigan volcano, Marianas, in order to test the influence of differentiation processes vs. source conditions on the Fe{sup 3+}/{Sigma}Fe ratio, a proxy for system oxygen fugacity (fO{sub 2}). We determined Fe{sup 3+}/{Sigma}Fe ratios in glass inclusions using {mu}-XANES and couple these data with major elements, dissolved volatiles, and trace elements. After correcting for post-entrapment crystallization, Fe{sup 3+}/{Sigma}Fe ratios in the Agrigan melt inclusions (0.219 to 0.282), and their modeled fO{sub 2}s ({Delta}QFM + 1.0 to + 1.8), are uniformly more oxidized than MORB, and preserve a portion of the evolution of this magma from 5.7 to 3.2 wt.% MgO. Fractionation of olivine {+-} clinopyroxene {+-} plagioclase should increase Fe{sup 3+}/{Sigma}Fe as MgO decreases in the melt, but the data show Fe{sup 3+}/{Sigma}Fe ratios decreasing as MgO decreases below 5 wt.% MgO. The major element trajectories, taken in combination with this strong reduction trend, are inconsistent with crystallization of common ferromagnesian phases found in the bulk Agrigan sample, including magnetite. Rather, decreasing Fe{sup 3+}/{Sigma}Fe ratios correlate with decreasing S concentrations, suggesting that electronic exchanges associated with SO{sub 2} degassing may

  7. Li, B - Behavior in Lunar Basalts During Shock and Thermal Metamorphism: Implications for H2O in Martian Magmas

    NASA Technical Reports Server (NTRS)

    Chaklader, Johny; Shearer, C. K.; Horz, F.

    2005-01-01

    Introduction: The water-content of Martian magmas is a topic of debate among researchers. Some Martian basalts are characterized with melt inclusions of biotite, apatite and amphibole; phases typically associated with hydration reactions on Earth [1-3]. However, the H-content of melt inclusions from these basalts is low, and bulk-rock H2O-contents range from a meager 0.013 to 0.035 wt. % in Shergotty [4]. Nonetheless, researchers note that low present-day water contents do not preclude a once hydrous past [5]. Since light lithophile elements (LLE), such as Li and B, partition into aqueous fluids at T > 350 C, workers proposed that Li-B depletions in pyroxene rims of Nakhlite and Shergottite basalts reflect the loss of several weight percent water from Martian magmas during crystallization [6]. Since similar depletions were observed in pyroxene rims from completely dry lunar basalts, it is likely that alternative mechanisms also contribute to the distribution of elements such as Li and B [7]. Given that many Martian basalts have experienced considerable shock pressures (15-45 GPa), it is possible that shock and subsequent thermal metamorphism may have influenced the volatile element records of these basalts [8]. In order to better understand the distribution of Li and B, we are studying the effects of crystal chemistry, shock pressure, and thermal metamorphism in pyroxenes from lunar basalts. Below, we discuss results from experimentally shocked and thermally metamorphosed Apollo 11, 10017 (A-11) and Apollo 17, 75035 (A-17) basalts.

  8. Pre-eruption Conditions and Magma Dynamics of Recent Amphibole-Bearing Etna Basalt

    NASA Astrophysics Data System (ADS)

    Pompilio, M.; Rutherford, M. J.

    2002-12-01

    ; they have a lower silica and an higher alumina content than those measured in natural samples. Experimental glasses in equilibrium with cpx, mt and ol plot along the liquid line of descent observed for natural historical magmas. However, the appearance of the amphibole on the liquidus, induces a significant shift toward compositions with lower MgO-FeOtot and CaO-Al2O3 ratios. These compositions were not measured neither in the residual natural glasses, nor in glass inclusion in minerals of recent volcanics. The above preliminary data suggest that some fine-tuning of physico-chemical parameters for the magma (e.g { \\it f}O2) must be still be done in order to reproduce the natural assemblage and the abundance and compositions of minerals observed in natural samples. However these refinements will not significantly modify the field of amphibole stability in these magmas. The crystallization of the amphibole only below 1000 ° C is in striking contrast with the supposed eruptive temperature (T>1050° C) of the main Etna basalt, and indicates that the amphiboles are xenocrysts or they come from colder portions (roof, walls) of the magmatic reservoir feeding the eruption.

  9. The roles of fractional crystallization, magma mixing, crystal mush remobilization and volatile-melt interactions in the genesis of a young basalt-peralkaline rhyolite suite, the greater Olkaria volcanic complex, Kenya Rift valley

    USGS Publications Warehouse

    Macdonald, R.; Belkin, H.E.; Fitton, J.G.; Rogers, N.W.; Nejbert, K.; Tindle, A.G.; Marshall, A.S.

    2008-01-01

    The Greater Olkaria Volcanic Complex is a young (???20 ka) multi-centred lava and dome field dominated by the eruption of peralkaline rhyolites. Basaltic and trachytic magmas have been erupted peripherally to the complex and also form, with mugearites and benmoreites, an extensive suite of magmatic inclusions in the rhyolites. The eruptive rocks commonly represent mixed magmas and the magmatic inclusions are themselves two-, three- or four-component mixes. All rock types may carry xenocrysts of alkali feldspar, and less commonly plagioclase, derived from magma mixing and by remobilization of crystal mushes and/or plutonic rocks. Xenoliths in the range gabbro-syenite are common in the lavas and magmatic inclusions, the more salic varieties sometimes containing silicic glass representing partial melts and ranging in composition from anorthite ?? corundum- to acmite-normative. The peralkaline varieties are broadly similar, in major element terms, to the eruptive peralkaline rhyolites. The basalt-trachyte suite formed by a combination of fractional crystallization, magma mixing and resorption of earlier-formed crystals. Matrix glass in metaluminous trachytes has a peralkaline rhyolitic composition, indicating that the eruptive rhyolites may have formed by fractional crystallization of trachyte. Anomalous trace element enrichments (e.g. ??? 2000 ppm Y in a benmoreite) and negative Ce anomalies may have resulted from various Na- and K-enriched fluids evolving from melts of intermediate composition and either being lost from the system or enriched in other parts of the reservoirs. A small group of nepheline-normative, usually peralkaline, magmatic inclusions was formed by fluid transfer between peralkaline rhyolitic and benmoreitic magmas. The plumbing system of the complex consists of several independent reservoirs and conduits, repeatedly recharged by batches of mafic magma, with ubiquitous magma mixing. ?? The Author 2008. Published by Oxford University Press. All

  10. Using chalcophile elements to constrain crustal contamination and xenolith-magma interaction in Cenozoic basalts of eastern China

    NASA Astrophysics Data System (ADS)

    Zeng, Gang; Huang, Xiao-Wen; Zhou, Mei-Fu; Chen, Li-Hui; Xu, Xi-Sheng

    2016-08-01

    Continental basalts have complicated petrogenetic processes, and their chemical compositions can be affected by multi-staged geological evolution. Compared to lithophile elements, chalcophile elements including Ni, platinum-group elements (PGEs) and Cu are sensitive to sulfide segregation and fractional crystallization during the evolution of mantle-derived magmas and can provide constraints on the genesis of continental basalts. Cenozoic intra-continental alkaline basalts in the Nanjing basaltic field, eastern China, include high-Ca and low-Ca varieties. All these basalts have poor PGE contents with Ir ranging from 0.016 ppb to 0.288 ppb and high Cu/Pd ratios from 0.7 × 105 to 4.7 × 105 (5.7 × 103 for DMM), indicating that they were derived from sulfide-saturated mantle sources with variable amounts of residual sulfide during melting or might undergo an early-sulfide segregation in the mantle. Relatively high Cu/Pd ratios along with high Pd concentrations for the high-Ca alkaline basalts indicate an additional removal of sulfide during magma ascent. Because these basalts have high, variable Pd/Ir ratios (2.8-16.8) with low Ce/Pb (9.9-19.7) ratios and εNd values (+ 3.6-+6.4), crustal contamination is proposed to be a potential process to induce the sulfide saturation and removal. Significantly increased Pd/Ir ratios for few high-Ca basalts can be explained by the fractionation of laurite or Ru-Os-Ir alloys with olivine or chromite. For low-Ca alkaline basalts, their PGE contents are well correlated with the MgO, Sc contents, incompatible element ratios (Lu/Hf, Na/Ti and Ca/Al) and Hf isotopes. Good correlations are also observed between Pd/Ir (or Rh/Ir) and Na/Ti (or Ca/Al) ratios. Variations of these elemental ratios and Hf isotopes is previously documented to be induced by the mixing of peridotite xenolith-released melts during ascent. Therefore, we suggest that such xenolith-magma interaction are also responsible for the variable PGE compositions of low

  11. Influence of an ocean on the propagation of magmas within an oceanic basaltic shield volcano

    NASA Astrophysics Data System (ADS)

    Le Corvec, Nicolas; McGovern, Patrick

    2015-04-01

    Basaltic shield volcanoes are a common feature on Earth and mostly occur within oceans, forming volcanic islands (e.g. Hawaii (USA), Galapagos (Ecuador), and recently Niijima (Japan)). As the volcano grows it will reach and emerge from the water surface and continue to grow above it. The deformation affecting the volcanic edifice may be influenced by the presence of the water level. We investigate how the presence of an ocean affects the state of stress within a volcanic edifice and thus magma propagation and fault formation. Using COMSOL Multiphysics, axisymmetric elastic models of a volcanic edifice overlying an elastic lithosphere were created. The volcanic edifice (height of ~6000 m and radius of ~ 60 km) was built either instantaneously or iteratively by adding new layers of equivalent volume on top of each other. In the later process, the resulting stress and geometry from the one step is transferred to the next as initial conditions. Thus each new layer overlies a deformed and stressed model. The water load was modeled with a boundary condition at the surface of the model. In the case of an instantaneous volcano different water level were studied, for an iteratively growing volcano the water level was set up to 4000 m. We compared the deformation of the volcanic edifice and lithosphere and the stress orientation and magnitude in half-space and flexural models with the presence or not of an ocean. The preliminary results show 1- major differences in the resulting state of stress between an instantaneous and an iteratively built volcanic edifice, similar to the results of Galgana et al. (2011) and McGovern and Solomon (1993), respectively; 2- the presence of an ocean decreases the amount of flexural response, which decreases the magnitude of differential stress within the models; and 3- stress orientation within the volcano and lithosphere in also influence of an ocean. Those results provide new insights on the state of stress and deformation of oceanic

  12. Water content in arc basaltic magma in the Northeast Japan and Izu arcs: an estimate from Ca/Na partitioning between plagioclase and melt

    NASA Astrophysics Data System (ADS)

    Ushioda, Masashi; Takahashi, Eiichi; Hamada, Morihisa; Suzuki, Toshihiro

    2014-12-01

    The variation in water content of arc basaltic magmas in the Northeast Japan arc and the Izu arc was estimated using a simple plagioclase phenocryst hygrometer. In order to construct a plagioclase phenocryst hygrometer optimized for arc basalt magmas, we have conducted high-pressure melting experiments of relatively primitive basalt from the Miyakejima volcano, a frontal-arc volcano in the Izu arc. As a result of the experiments, we found that the Ca/Na partition coefficient between plagioclase and hydrous basaltic melt increases linearly with an increase in H2O content in the melts. We then selected from literature geochemical data sets of relatively primitive basaltic rocks with no evidence of magma mixing and the most frequent Ca-rich plagioclase phenocrysts from 15 basaltic arc volcanoes including both frontal-arc and rear-arc volcanoes. In the 15 volcanoes studied, plagioclase phenocrysts of high anorthite content (An > 90) were commonly observed, whereas plagioclase phenocrysts in rear arc volcanoes usually had a lower anorthite content (90 > An > 80). In all volcanoes studied, the estimated H2O content of basaltic magma was at least 3 wt.% H2O or higher. The magmas of volcanoes located on the volcanic front have about 5 wt.% H2O in magma whereas those from the rear-arc side are slightly lower in H2O content.

  13. Evidence for the mixing of granitic and basaltic magmas in the Pleasant Bay layered intrusion, coastal Maine

    SciTech Connect

    Powers, P.M. . Geology Dept.)

    1993-03-01

    The Pleasant Bay layered intrusion has the shape of a shallow basin about 200 km[sup 2] in area and crops out along the coast of Maine between Bar Harbor and Machias. This intrusion evolved as repeated replenishments of basaltic magma were emplaced into a silicic magma chamber (Wiebe, in press). These replenishments surged into the chamber through fractures, spreading laterally on a floor of silicic cumulates and beneath silicic magma. This produced a sequence of layers (up to 100 m thick) that grade from chilled basalt at the base to gabbroic, dioritic, or granitic emulates at the top. This study focuses on two layers, each of which grades from chilled gabbro at the base to quartz syenite at the top. Petrography and geochemistry suggest that mechanical mixing and other interactions between two stably stratified magmas were responsible for much of this variation. Plagioclase grains typically have corroded calcic cores (An[sub 52--56]) that decrease in size upward and sodic rims (An[sub 32--36]) that thicken upward. Larger plagioclase grains at higher levels often have K-spar cores. Scarce large zircon, apatite, and biotite crystals in the lower parts of the layers are often corroded. The apatites have dark pleochroic halos, suggesting they crystallized from a liquid enriched in U and Th. The silicic melt was likely the source of K and H[sub 2]O needed to crystallize hornblende and biotite. The large corroded zircon, apatite, and biotite crystals, as well as much of the hornblende, probably grew at an interface between separately convecting silicic and basaltic magmas.

  14. Chemical stratigraphy of the Paraná basalt succession in western Uruguay: further evidence for the diachronous nature of the Paraná magma types

    NASA Astrophysics Data System (ADS)

    Turner, S. P.; Peate, D. W.; Hawkesworth, C. J.; Mantovani, M. S. M.

    1999-11-01

    An important issue in the study of continental flood basalt provinces concerns whether chemically defined magma types have chronological significance. Relevant to this debate, we present important findings based on new major and trace element geochemical data on lavas from three drill holes in western Uruguay which intersect up to 718 m of the Paraná basalt succession. The lava pile here consists of Paranapanema lavas overlain by widespread Gramado lavas and one rare Esmeralda lava. The occurrence of Paranapanema lavas beneath Gramado lavas is the reverse of the magma type stratigraphy of the Paraná flood basalt pile further north in Brazil. This provides evidence, independent of isotopic dating, that in the Paraná, magma types are not chronostratigraphic. The simultaneous eruption of different magma types suggests that the spatial and temporal distribution of magma types reflects the sub-crustal distribution of distinct source regions inferred to lie within the lithospheric mantle.

  15. La/Sm ratios in mare basalts as a consequence of mafic cumulate fractionation from an initial lunar magma

    NASA Technical Reports Server (NTRS)

    Shaffer, E. E.; Brophy, J. G.; Basu, A.

    1991-01-01

    A model is constructed for the La/Sm ratio and the abundance of chrondrite-normalized La in different proportions of partial melts of a mafic cumulate source that might have settled to the bottom of an initial lunar magma ocean prior to any plagioclase separation. It is proposed that La/Sm ratios and chrondrite-normalized La abundances of common mare basalts are found in partial melts only if: the mafic cumulate consists mostly of clinopyroxene, a very low fraction of the cumulate melts, and the cumulate represents a moderate to high proportion of the crystallization of the initial magma ocean. Only if the partitioning of clinopyroxene is forced to mimic plagioclase (DLa is greater than DSm) do the present modeling results become compatible with the scenario for producing appropriate parent melts of mare basalts from mafic cumulates. It is found unlikely that parent melts of mare basalts were produced from mafic cumulates of an initial lunar magma ocean that had not had any plagioclase crystallization.

  16. The Atlantis Bank gabbro-suite was not a "normal" magma-chamber that produced basalts

    NASA Astrophysics Data System (ADS)

    Kvassnes, A. J.; Dick, H. J. B.; Grove, T. L.

    2003-04-01

    The differentiation of the basalts sampled at Atlantis II Fracture Zone, South-West Indian Ridge, is not the result of simple fractionation of gabbroic mineral-assemblages like those recovered from the adjacent Atlantis Bank and ODP Hole 735B. Large mineral data sets for the gabbros (Dick, et al 2002) are now available for analysis and comparison to spatially associated basalts. We have used Melts and pMelts (Ghiorso and Sack, 1995) to estimate the fractional crystallization trend gabbros from a primitive mantle melt or of the AII F.Z. MORB. Thermodynamic models (Grove et al (1992), Putirka (1999)) were also used to model the glasses hypothetical mafic and felsic mineral equilibrium-compositions. Our results show that while the basalts suggest 30-50% crystallization, the gabbros indicate 35-90% crystallization of a primary melt. It is therefore unlikely that the gabbros sampled from Atlantis Bank are the fossil magma-chambers that expelled melts that formed the spatially associated basalts. The models also show that the most primitive gabbros have elevated clinopyroxene Mg#s (Mg/(Mg+Fe)) relative to the coexisting plagioclase An%. This was unexpected, as the clinopyroxene frequently occurs as oikocrysts surrounding the plagioclase and encloses rounded olivine chadacrysts, indicating that the clinopyroxene precipitated late. Elthon (1992) noted the same problem for Cayman Trough gabbros; suggesting that this was the result of intermediate pressure fractionation. In our models, pressure does have some effect up to 5kbar, but is not enough to explain the discrepancy. We propose a model where melts are modified in a porous network or mush. Plagioclase-olivine networks form by accumulation of buoyant glomerocrysts and then work as filters as new melts pass through. Dissolution of the minerals would make the new melt appear to be more primitive with regards to increased Mg#s, as the dissolution happens fast without complete internal re-equilibration with the gabbro

  17. Very high potassium (VHK) basalt - Complications in mare basalt petrogenesis

    NASA Technical Reports Server (NTRS)

    Shervais, J. W.; Taylor, L. A.; Laul, J. C.; Shih, C.-Y.; Nyquist, L. E.

    1985-01-01

    The first comprehensive report on the petrology and geochemistry of Apollo 14 VHK (Very High Potassium) basalts and their implications for lunar evolution is presented. The reported data are most consistent with the hypothesis that VHK basalts formed through the partial assimilation of granite by a normal low-Ti, high-Al mare basalt magma. Assimilation was preceded by the diffusion-controlled exchange of alkalis and Ba between basalt magma and the low-temperature melt fraction of the granite. Hypotheses involving volatile/nonvolatile fractionations or long-term enrichment of the source regions in K are inconsistent with the suprachondritic Ba/La ratios and low initial Sr-87/Sr-86 ratios of VHK basalt. An important implication of this conclusion is that granite should be a significant component of the lunar crust at the Apollo 14 site.

  18. Petrogenesis of primitive and evolved basalts in a cooling Moon: Experimental constraints from the youngest known lunar magmas

    NASA Astrophysics Data System (ADS)

    Elardo, Stephen M.; Shearer, Charles K.; Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Bell, Aaron S.

    2015-07-01

    We have conducted high-temperature experiments over a range of pressures to constrain the petrogenesis of the youngest sampled lunar magmas, which have contrasting primitive and evolved compositions. Our results indicate that at ∼3 Ga, melting still occurred within the same mantle depth range that produced crystalline mare basalts for the previous ∼1 Ga, although our data cannot support or confirm that the shallowest extents of melting moved deeper into the mantle by ∼3 Ga, as is predicted by most thermal evolution models. Furthermore, melting still occurred in regions with low abundances of heat-producing elements. Basaltic lunar meteorite NEA 003A has some of the lowest abundances of incompatible trace elements among all mare basalts and no negative Eu anomaly. Our experiments show that NEA 003A is multiply saturated with olivine and low-Ca pyroxene on its liquidus at ∼1.1 GPa (∼215 km) and ∼1330 °C. If the primitive NEA 003A liquid composition is a minimally-modified melt, the relatively low Mg# of its source region (73-75), its lack of a Eu anomaly, and its chondritic initial Nd isotopic composition indicate its source region likely escaped mixing during mantle overturn with later-stage magma ocean cumulates that formed after plagioclase saturation. This condition would require the sources of the ultramafic glasses to have experienced cumulate mixing, or for assimilation of later-stage magma ocean cumulates by the ultramafic glass parental magmas before eruption in order to account for their higher Mg#'s and deeper negative Eu anomalies. Alternatively, NEA 003A may have undergone some fractional crystallization, in which case its more primitive source region would be deeper than 215 km and may approach the depth range of the ultramafic glass source regions. Iron- and incompatible trace element-rich basaltic lunar meteorites LAP 02205, NWA 032/479, and NWA 4734 have nearly identical bulk compositions and have a multiple saturation point on their

  19. Rapid high-silica magma generation in basalt-dominated rift settings

    NASA Astrophysics Data System (ADS)

    Berg, Sylvia E.; Troll, Valentin R.; Burchardt, Steffi; Deegan, Frances M.; Riishuus, Morten S.; Whitehouse, Martin J.; Harris, Chris; Freda, Carmela; Ellis, Ben S.; Krumbholz, Michael; Gústafsson, Ludvik E.

    2015-04-01

    The processes that drive large-scale silicic magmatism in basalt-dominated provinces have been widely debated for decades, with Iceland being at the centre of this discussion [1-5]. Iceland hosts large accumulations of silicic rocks in a largely basaltic oceanic setting that is considered by some workers to resemble the situation documented for the Hadean [6-7]. We have investigated the time scales and processes of silicic volcanism in the largest complete pulse of Neogene rift-related silicic magmatism preserved in Iceland (>450 km3), which is a potential analogue of initial continent nucleation in early Earth. Borgarfjörður Eystri in NE-Iceland hosts silicic rocks in excess of 20 vol.%, which exceeds the ≤12 vol% usual for Iceland [3,8]. New SIMS zircon ages document that the dominantly explosive silicic pulse was generated within a ≤2 Myr window (13.5 ± 0.2 to 12.2 ± 03 Ma), and sub-mantle zircon δ18O values (1.2 to 4.5 ± 0.2‰, n=337) indicate ≤33% assimilation of low-δ18O hydrothermally-altered crust (δ18O=0‰), with intense crustal melting at 12.5 Ma, followed by rapid termination of silicic magma production once crustal fertility declined [9]. This silicic outburst was likely caused by extensive rift flank volcanism due to a rift relocation and a flare of the Iceland plume [4,10] that triggered large-scale crustal melting and generated mixed-origin silicic melts. High-silica melt production from a basaltic parent was replicated in a set of new partial melting experiments of regional hydrated basalts, conducted at 800-900°C and 150 MPa, that produced silicic melt pockets up to 77 wt.% SiO2. Moreover, Ti-in-zircon thermometry from Borgarfjörður Eystri give a zircon crystallisation temperature ~713°C (Ti range from 2.4 to 22.1 ppm, average=7.7 ppm, n=142), which is lower than recorded elsewhere in Iceland [11], but closely overlaps with the zircon crystallisation temperatures documented for Hadean zircon populations [11-13], hinting at

  20. Magma Supply at the Arctic Gakkel Ridge: Constraints from Peridotites and Basalts

    NASA Astrophysics Data System (ADS)

    Sun, C.; Dick, H. J.; Hellebrand, E.; Snow, J. E.

    2015-12-01

    Crustal thickness in global ridge systems is widely believed to be nearly uniform (~7 km) at slow- and fast-spreading mid-ocean ridges, but appears significantly thinner (< ~4 km) at ultraslow-spreading ridges. At the slowest-spreading Arctic Gakkel Ridge, the crust becomes extremely thin (1.4 - 2.9 km; [1]). The thin crust at the Gakkel and other ultraslow-spreading ridges, has been attributed to lithosphere thickening, ancient mantle depletion, lower mantle temperature, ridge obliquity, and melt retention/focusing. To better understand the magma supply at ultraslow-spreading ridges, we examined melting dynamics by linking peridotites and basalts dredged along the Gakkel Ridge. We analyzed rare earth elements in clinopyroxene from 84 residual peridotites, and estimated melting parameters for individual samples through nonlinear least squares analyses. The degrees of melting show a large variation but mainly center at around 7% assuming a somewhat arbitrary but widely used depleted MORB mantle starting composition. Thermobarometry on published primitive basaltic glasses from [2] indicates that the mantle potential temperature at the Gakkel Ridge is ~50°C cooler than that at the East Pacific Rise. The ridge-scale low-degree melting and lower mantle potential temperature place the final depth of melting at ~30 km and a melt thickness of 1.0 or 2.9 km for a triangular or trapezoidal melting regime, respectively. The final melting depth is consistent with excess conductive cooling and lithosphere thickening suggested by geodynamic models, while the estimated melt thickness is comparable to the seismic crust (1.4 - 2.9 km; [1]). The general agreement among geochemical analyses, seismic measurements, and geodynamic models supports that lower mantle potential temperature and thick lithosphere determine the ridge-scale low-degree melting and thin crust at the Gakkel Ridge, while melt retention/focusing and excess ancient mantle depletion are perhaps locally important at

  1. Siderophile and chalcophile metal variations in Tertiary picrites and basalts from West Greenland with implications for the sulphide saturation history of continental flood basalt magmas

    NASA Astrophysics Data System (ADS)

    Keays, Reid R.; Lightfoot, Peter C.

    2007-04-01

    Sixty-five million year old continental flood basalts crop out on Qeqertarssuaq Island and the Nuussuaq Peninsula in West Greenland, and they include ˜1,000 m of picritic lavas and discrete 10- to 50-m-thick members of highly contaminated basalts. On Qeqertarssuaq, the lavas are allocated to the Vaîgat and Maligât Formations of which the former includes the Naujánguit member, which consists of picrites with 7-29 wt% MgO, 80-1,400 ppm Ni, 5.7-9.4 ppb Pt and 4.2-12.9 ppb Pd. The Naujánguit member contains two horizons of contaminated basalts, the Asûk and Kûgánguaq, which have elevated SiO2 (52-58 wt%) and low to moderate MgO (7.5-12.8 wt%). These lavas are broadly characterized by low Cu and Ni abundances (average, 40 ppm Ni and 45 ppm Cu) and very low Pt (0.16-0.63 ppb) and Pd (0.13-0.68 ppb) abundances, and in the case of the Asûk, they contain shale xenoliths and droplets of native iron and troilite. The contaminated basalts from Nuussuaq, the B0 to B4 members, are also usually Ni-, Cu-, and platinum-group elements (PGE)-depleted. The geochemical signatures (especially the ratios of incompatible trace elements such as Th/Nb) of all of the contaminated basalts from Qeqertarssuaq and some of those from Nuussuaq record what appears to be a chemical contribution from deltaic shales that lie immediately below the lavas. This suggests that the contamination of the magmas occurred during the migration of the magmas through plumbing systems developed in sedimentary rocks, and hence, at a high crustal level. Nickel, Cu, and PGE depletion together with geochemical signatures produced by crustal contamination are also a feature of Siberian Trap basalts from the Noril’sk region. These basalts belong to the 0- to 500-m thick, ˜5,000- to 10,000-km3 Nadezhdinsky Formation, which is centered in the Noril’sk Region. A major difference between Siberia and West Greenland is that PGE depletion in the Nadezhdinsky Formation samples with the lowest Cu and Ni contents is

  2. Basaltic melt evolution of the Hengill volcanic system, SW Iceland, and evidence for clinopyroxene assimilation in primitive tholeiitic magmas

    SciTech Connect

    Troennes, R.G. )

    1990-09-10

    The thick oceanic crust of Iceland is formed by tholeiitic central volcanoes arranged in en echelon patterns along the 40-50 km wide rift zones. The Hengill central volcano in the southwestern rift zone has produced 25-30 km{sup 3} of hyaloclastites and lava during the last 0.11 m.y., with maximum productivity during the isostatic rebound following the degalciations 0.13 and 0.01 m.y. ago. The petrographic relations of pillow rim and hyaloclastite glass indicate that the basaltic melts were saturated with olivine and plagioclase, except for the most primitive ones that were undersaturated with plagioclase. Saturation with clinopyroxene was reached in some of the intermediate and evolved basaltic melts. Corroded and partly resorbed crystals of clinopyroxene and partly disintegrated gabbro nodules with resorbed clinopyroxene indicate that selective assimilation contributed to the evolution of the most primitive melts. The intermediate and evolved basaltic glass compositions fall along the low-pressure cotectic for mid-ocean ridge basalt (MORB) compositions saturated with olivine, plagioclase, and clinopyroxene, but the primitive glasses fall well inside the low-pressure olivine + plagioclase primary phase volume. The dense picritic magmas were driven to the surface by magmatic overpressure in the mantle at an early deglaciation stage characterized by the absence of large, trapping magma chambers in the lower crust. The assimilation of clinopyroxene in these melts could proceed by direct contact with the solidified cumulate sequences and gabbro intrusions. Clinopyroxene assimilation in combination with olivine fractionation may also contribute to the chemical evolution of some of the most primitive MORB magmas.

  3. Geochemical characteristics of hydrous basaltic magmas due to assimilation and fractional crystallization: the Ikoma gabbroic complex, southwest Japan

    NASA Astrophysics Data System (ADS)

    Koizumi, N.; Okudaira, T.; Ogawa, D.; Yamashita, K.; Suda, Y.

    2016-02-01

    To clarify the processes that occur in hydrous basaltic magma chambers, we have undertaken detailed petrological and geochemical analyses of mafic and intermediate rocks from the Ikoma gabbroic complex, southwest Japan. The complex consists mainly of hornblende gabbros, hornblende gabbronorites, and hornblende leucogabbros. The hornblende leucogabbros are characterized by low TiO2 and high CaO contents, whereas the hornblende gabbronorites have high TiO2 and low CaO contents. The initial 87Sr/86Sr ratios (SrI) of the hornblende gabbronorites and hornblende gabbros are higher than those of the hornblende leucogabbros and plagioclase, and they may have resulted from a higher degree of assimilation of metasediments. The geochemical features of the hornblende leucogabbros and hornblende gabbronorites can be explained by accumulation of plagioclase and ilmenite, respectively, in a hybrid magma that formed by chemical interaction between mafic magma and metasediment, whereas the hornblende gabbros were produced by a high degree of crustal assimilation and fractional crystallization of this hybrid magma. As a result of the density differences between crystals and melt, the Ikoma gabbroic rocks formed by the accumulation of plagioclase in the middle of the magma chamber and by the accumulation of ilmenite in the bottom of the chamber. Taking into account the subsequent assimilation and fractional crystallization, our observations suggest an enriched mantle (SrI = ~0.7071) as the source material for the Ikoma gabbros.

  4. Geochemical characteristics of hydrous basaltic magmas due to assimilation and fractional crystallization: the Ikoma gabbroic complex, southwest Japan

    NASA Astrophysics Data System (ADS)

    Koizumi, N.; Okudaira, T.; Ogawa, D.; Yamashita, K.; Suda, Y.

    2016-10-01

    To clarify the processes that occur in hydrous basaltic magma chambers, we have undertaken detailed petrological and geochemical analyses of mafic and intermediate rocks from the Ikoma gabbroic complex, southwest Japan. The complex consists mainly of hornblende gabbros, hornblende gabbronorites, and hornblende leucogabbros. The hornblende leucogabbros are characterized by low TiO2 and high CaO contents, whereas the hornblende gabbronorites have high TiO2 and low CaO contents. The initial 87Sr/86Sr ratios (SrI) of the hornblende gabbronorites and hornblende gabbros are higher than those of the hornblende leucogabbros and plagioclase, and they may have resulted from a higher degree of assimilation of metasediments. The geochemical features of the hornblende leucogabbros and hornblende gabbronorites can be explained by accumulation of plagioclase and ilmenite, respectively, in a hybrid magma that formed by chemical interaction between mafic magma and metasediment, whereas the hornblende gabbros were produced by a high degree of crustal assimilation and fractional crystallization of this hybrid magma. As a result of the density differences between crystals and melt, the Ikoma gabbroic rocks formed by the accumulation of plagioclase in the middle of the magma chamber and by the accumulation of ilmenite in the bottom of the chamber. Taking into account the subsequent assimilation and fractional crystallization, our observations suggest an enriched mantle (SrI = ~0.7071) as the source material for the Ikoma gabbros.

  5. Composition of basalts from the Mid-Atlantic Ridge

    USGS Publications Warehouse

    Engel, A.E.J.; Engel, C.G.

    1964-01-01

    Studies of volcanic rocks in dredge hauls from the submerged parts of the Mid-Atlantic Ridge suggest that it consists largely of tholeiitic basalt with low values of K, Ti, and P. In contrast, the volcanic islands which form the elevated caps on the Ridge are built of alkali basalt with high values of Ti, Fe3+, P, Na, and K. This distinct correlation between the form of the volcanic structures, elevation above the sea floor, and composition suggests that the islands of alkali basalt are derived from a parent tholeiitic magma by differentiation in shallow reservoirs. The volume of low-potassium tholeiites along the Mid-Atlantic Ridge and elsewhere in the oceans appears to be many times that of the alkali basalts exposed on oceanic islands. Tholeiitic basalts with about 0.2 K2O appear to be the primary and predominant magma erupted on the oceanic floor.

  6. Petrological processes in mantle plume heads: Evidence from study of mantle xenoliths in the late Cenozoic alkali Fe-Ti basalts in Western Syria

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii

    2015-04-01

    It is consensus now that within-plate magmatism is considered with ascending of mantle plumes and adiabatic melting of their head. At the same time composition of the plumes' matter and conditions of its adiabatic melting are unclear yet. The major source of objective information about it can be mantle xenoliths in alkali basalts and basanites which represent fragments of material of the plume heads above magma-generation zone. They are not represent material in melting zone, however, carry important information about material of modern mantle plumes, its phase composition and components, involved in melting. Populations of mantle xenoliths in basalts are characterized by surprising sameness in the world and represented by two major types: (1) dominated rocks of ``green'' series, and (2) more rare rocks of ``black'' series, which formed veins in the ``green'' series matrix. It can evidence about common composition of plume material in global scale. In other words, the both series of xenoliths represent two types of material of thermochemical mantle plumes, ascended from core-mantle boundary (Maruyama, 1994; Dobretsov et al., 2001). The same types of xenoliths are found in basalts and basanites of Western Syria (Sharkov et al., 1996). Rocks of ``green'' series are represented by Sp peridotites with cataclastic and protogranular structures and vary in composition from dominated spinel lherzolites to spinel harzburgites and rare spinel pyroxenites (websterites). It is probably evidence about incomplete homogenizing of the plume head matter, where material, underwent by partial melting, adjoins with more fertile material. Such heterogeneity was survived due to quick cooling of upper rim of the plume head in contact with relatively cold lithosphere. Essential role among xenoliths of the ``black'' series play Al-Ti-augite and water-bearing phases like hornblende (kaersutute) and Ti-phlogopite. Rocks of this series are represented by wehrlite, clinopyroxenite, amphibole

  7. Geochemical and oxygen isotope signatures of mantle corundum megacrysts from the Mbuji-Mayi kimberlite, Democratic Republic of Congo, and the Changle alkali basalt, China

    NASA Astrophysics Data System (ADS)

    Giuliani, Gaston; Pivin, Marjorie; Fallick, Anthony E.; Ohnenstetter, Daniel; Song, Yucai; Demaiffe, Daniel

    2015-01-01

    Oxygen isotope signatures of ruby and sapphire megacrysts, combined with trace-element analysis, from the Mbuji-Mayi kimberlite, Democratic Republic of Congo, and the Changle alkali basalt, China, provide clues to specify their origin in the deep Earth. At Mbuji-Mayi, pink sapphires have δ18O values in the range 4.3 to 5.4‰ (N = 10) with a mean of 4.9 ± 0.4‰, and rubies from 5.5 to 5.6‰ (N = 3). The Ga/Mg ratio of pink sapphires is between 1.9 and 3.9, and in rubies, between 0.6 and 2.6. The blue or yellow sapphires from Changle have δ18O values from 4.6 to 5.2 ‰, with a mean of 4.9 ± 0.2‰ (N = 9). The Ga/Mg ratio is between 5.7 and 11.3. The homogenous isotopic composition of ruby suggests a derivation from upper mantle xenoliths (garnet lherzolite, pyroxenite) or metagabbros and/or lower crustal garnet clinopyroxenite eclogite-type xenoliths included in kimberlites. Data from the pink sapphires from Mbuji-Mayi suggest a mantle origin, but different probable protoliths: either subducted oceanic protolith transformed into eclogite with δ18O values buffered to the mantle value, or clinopyroxenite protoliths in peridotite. The Changle sapphires have a mantle O-isotope signature. They probably formed in syenitic magmas produced by low degree partial melting of a spinel lherzolite source. The kimberlite and the alkali basalt acted as gem conveyors from the upper mantle up to the surface.

  8. Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas

    NASA Astrophysics Data System (ADS)

    Lee, Cin-Ty A.; Luffi, Peter; Plank, Terry; Dalton, Heather; Leeman, William P.

    2009-03-01

    Basaltic magmatism is a common feature of dynamically active terrestrial planets. The compositions of basalts reflect the temperatures and pressures of magma generation, providing windows into a planet's thermal state. Here, we present new thermobarometers based on magma Si and Mg contents to estimate the pressures and temperatures of basaltic magma generation on Earth and other terrestrial planets. Melting on Earth is intimately tied to plate tectonics and occurs mostly at plate boundaries: mid-ocean ridges and subduction zones. Beneath ridges, melting is driven by adiabatic decompression of passively upwelling mantle at 1300-1400 °C. Similar temperatures of melting are found for some arcs, suggesting that decompression melting is also important in arcs and that enhanced melting by hydrous fluxing is superimposed on this background. However, in arcs where melting temperatures are low (1200 °C), hydrous fluxing is required. Temperatures hotter than ridges (> 1400 °C) are primarily found away from plate boundaries: beneath thick continental lithosphere and oceanic "hotspots" like Hawaii. Oceanic "hotspots" are thought to derive from deep thermal upwellings ("plumes"), but some hot anomalies beneath continents are not associated with deep-seated plumes and hence must have different origins, such as thermal insulation or radioactive heating of metasomatized zones. Melting on Venus, as constrained from spectral data of its surface, occurs at higher temperatures (1500 °C) and pressures than on Earth, perhaps because Venus is characterized by a thick and stagnant upper thermal boundary layer that retards convective heat loss. In this regard, Venus' upper thermal boundary layer may be analogous to thick continents on Earth. Mars appears to have cooled off to < 1300 °C within its first billion years, but considerable controversy exists over the interpretation of young (< 500 My) basaltic meteorites that record temperatures of 1550 °C. As for the first billion years

  9. Water content in arc basaltic magma in the Northeast Japan and Izu arcs: an estimate from Ca/Na partitioning between plagioclase and melt

    NASA Astrophysics Data System (ADS)

    Ushioda, M.; Takahashi, E.; Hamada, M.; Suzuki, T.

    2015-12-01

    The variation in water content of arc basaltic magmas in the Northeast Japan arc and the Izu arc was estimatedusing a simple plagioclase phenocryst hygrometer. In order to construct a plagioclase phenocryst hygrometeroptimized for arc basalt magmas, we have conducted hydrous melting experiments of relatively primitive basaltfrom the Miyakejima volcano, a frontal-arc volcano in the Izu arc. As a result of the experiments, we found that theCa/Na partition coefficient between plagioclase and hydrous basaltic melt increases linearly with an increase in H2Ocontent in the melts. We then compiled published geochemical data sets of relatively primitive basaltic rocks with no evidence of magma mixing and the most frequent Ca-rich plagioclase phenocrysts from 15 basaltic arc volcanoesincluding both frontal-arc and rear-arc volcanoes. In the 15 volcanoes studied, plagioclase phenocrysts of high anorthitecontent (An > 90) were commonly observed, whereas plagioclase phenocrysts in rear arc volcanoes usually had a loweranorthite content (90 > An > 80). In all volcanoes studied, the estimated H2O content of basaltic magma was at least3 wt.% H2O or higher. The magmas of volcanoes located on the volcanic front have about 5 wt.% H2O in magmawhereas those from the rear-arc side are slightly lower in H2O content.

  10. The petrogenesis of felsic calc-alkaline magmas from the southernmost Cascades, California: origin by partial melting of basaltic lower crust

    USGS Publications Warehouse

    Borg, L.E.; Clynne, M.A.

    1998-01-01

    The majority offelsic rocks from composite centers in teh southernmost Cascades have geochemical and Sr, Nd and Pb isotopic ratios that suggest derivation by partial melting of lower crust that is compositionally similar to cale-alkaline basalts observed in the region. Only a few felsic rocks have ???18O and Pb isotopic compositions that indicate interaction with the upper crust. Mineralogical and geochemical differences among the felsic magmas results primarily from melting under variable f(H2O) and lower temperature conditions leaves an amphibole-rich residuum, and produced magmas that have amphibole ?? biotite phenocrysts, relatively high silica contents, and pronounced middle rare earch element depletions. These conclusions are consistent with published thermal models that suggest that reasonable volumes of basaltic magma emplaced beneath large composite centers in the southernmost Cascades can serve as the eat source for melting of the lower crust. Melting of the lower crust under varible f(H2O contents of these basaltic magmas.

  11. Understanding Magma Storage Conditions that Produce Highly Explosive Monogenetic Basaltic Eruptions Using Olivine-Hosted Melt Inclusions from Sunset Crater, AZ

    NASA Astrophysics Data System (ADS)

    Allison, C. M.; Roggensack, K.; Clarke, A. B.

    2014-12-01

    To investigate mechanisms of explosive basaltic volcanism, we studied the ca. 1085 AD Sunset Crater eruption in the San Francisco Volcanic Field (SFVF) of northern Arizona. This eruption, the youngest in the SFVF, first featured fissure eruptions (explosive phases 1-2) and a small lava flow, and then activity narrowed to a central vent producing explosive phases 3-8 and two additional lava flows. While the first two phases were Strombolian-style explosions, middle phases (3-5) were subplinian in character and produced an anomalously large tephra deposit. The final phases (6-8) are poorly characterized at this stage. The total erupted volume of lava and tephra is >0.7 km3 DRE of alkali olivine basalt with a large proportion of crystal-free glass and low phenocryst content. We studied 82 primary melt inclusions (MIs) in the largest tephra units (explosive phases 3, 4) to investigate magma volatiles and storage conditions. To prioritize primary volatile contents, we picked rapidly quenched free olivine crystals (Fo 81-85; 0.5-2 mm) and selected large volume MIs (50-180 μm) located near crystal cores for analysis. We observed vapor bubbles in all MIs and also noted rare occurrences of CO2-rich gas inclusions. MIs show little major element variability suggesting little crystal fractionation (K2O 0.8-1.1 wt.%). Post-entrapment crystallization is also minor (2-9%). The MI compositions from the two phases largely overlap, with phase 4 skewed to slightly higher K2O. FTIR spectroscopy shows that the MIs are relatively dry and CO2-rich. Water abundances vary 0.8-1.6 wt.% with a median of 1.25 wt.%, while most MIs have CO2 abundances 1,600-3,400 ppm. Phases 3 and 4 are essentially identical in water content. CO2 contents of phases 3 and 4 show considerable overlap, however the phase 4 MIs are skewed toward high CO2 (>2,500 ppm). These results require a minimum MI entrapment depth of ~11 km from fluid saturation constraints. Overall, the MIs indicate a largely homogeneous

  12. Degassing-induced crystallization of basaltic magma and effects on lava rheology

    USGS Publications Warehouse

    Lipman, P.W.; Banks, N.G.; Rhodes, J.M.

    1985-01-01

    During the north-east rift eruption of Mauna Loa volcano, Hawaii, on 25 March-14 April 1984 (Fig. 1), microphenocryst contents of erupted lava increased from 0.5 to 30% without concurrent change in either bulk magma composition or eruption temperature (1,140 ?? 3 ??C). The crystallization of the microphenocrysts is interpreted here as being due to undercooling of the magma 20-30 ??C below its liquidas; the undercooling probably resulted from separation and release of volatiles as the magma migrated 12 km from the primary summit reservoir to the eruption site on the north-east rift zone. Such crystallization of magma during an eruption has not been documented previously. The undercooling and crystallization increased the effective viscosity of the magma, leading to decreased eruption rates and stagnation of the lava flow. ?? 1985 Nature Publishing Group.

  13. Degassing and microlite crystallization of basaltic andesite magma erupting at Arenal Volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    Szramek, Lindsay; Gardner, James E.; Larsen, Jessica

    2006-09-01

    Volcanoes can erupt explosively in Plinian style or effusively as lava flows. Most models for such ranges in activity are based on silicic magma, which may not be appropriate for less viscous basic magma. Although basic magma erupting at Arenal volcano has not varied significantly in bulk composition, the volcano has exhibited a full range in eruptive style, from Plinian activity in 1968 to Strombolian bursts to lava flows. We examined groundmass textures of samples erupted over that range of activity to investigate the controls on the variability. Microlite textures in lavas collected both hot (rapid quenched) and cold show that most samples have textures that are overprinted by crystallization as a result of cooling. Despite that overprint, microlites in the Plinian sample have unique crystal morphologies and vesicles that are much smaller and more spherical than those in the other samples. We interpret those differences as recording a change in degassing style as a result of changing ascent rate in the conduit. To constrain the potential changes in ascent rate, a limited number of decompression experiments were run at rates from 0.0013 to 0.25 MPa/s. Crystal textures and morphologies vary greatly as decompression rates change, and compared to our observed differences in the natural groundmass, it appears that magma erupted in the Plinian event decompressed between 0.0013 and 0.025 MPa/s, whereas magma erupted in non-Plinian events decompressed slower than 0.0013 MPa/s. The change in eruptive style from explosive Plinian to lava effusion thus resulted from an order of magnitude decrease in magma ascent rate. Plinian magma probably rose too quickly to allow bubbles to coalesce and allow the magma to degas efficiently, whereas at other times magma rose more slowly, which allowed bubbles to coalesce and gas to escape leading to less explosive activity.

  14. Basalt Magma, Whisky and Tequila: finely-crafted mixes of small liquid batches that defy the parent liquid concept but whose complexities teach us much

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Sinton, J. M.; Perfit, M. R.

    2015-12-01

    Basalt is the most ubiquitous magma type we know of in the solar system. It comes in various varieties manifested as compositional sub groups, erupts from a wide variety of volcanic systems and tectonic settings, and its eruptions span many order of magnitude in duration and volume. Igneous petrology, thermodynamics, geochemistry, and geodynamical modelling have been used to develop a sophisticated understanding of source lithologies, compositions and formation conditions (e.g., pressure and temperature) for parent melts and their subsequent transport, storage and evolution. These demonstrate some striking systematics as a function of volcano tectonic setting (on Earth). Yet much like Whisky, what makes it into the bottle, or the eruption, is a mixture of different liquids with unique characteristics, sometimes stirred so well that successive batches are indistinguishable, and sometimes stirred more incompletely, preserving small batch characters that are unique. Recently, geochemical and petrological studies in high spatial density within the products of individual eruptions have shown chemical and mineralogical evidence for incompletely mixed heterogeneous magmas in a majority of systems examined, begging the question of when, if ever, is it realistic to speak of a single parent magma composition, and even in cases where it apparently is, if these are instead just more thoroughly stirred multi-parent magmas. For instance, do monogenetic fields really erupt basalts of more varied parent melt compositions than large hot spot and flood basalt eruptions, or are they just more poorly stirred? This presentation will focus on work by ourselves and others constraining spatial and temporal single-eruption basaltic magma histories at different settings, using them to unravel the time and space scales of magma formation and mixing, how these translate to the assembly of an erupted basalt magma, and the implications for deducing things about and from presumed parents.

  15. Arc Basalt Simulator version 3: Spreadsheet mass balance for exploring on element behavior between subducted slab, mantle wedge, and magma

    NASA Astrophysics Data System (ADS)

    Kimura, J.; Kawabata, H.; Hacker, B. R.; van Keken, P. E.; Gill, J. B.; Stern, R. J.

    2010-12-01

    We have developed the Arc Basalt Simulator version 3 (ABS3), a quantitative calculator to examine the mass balance of (1) slab-dehydration and melting, and (2) slab fluid/melt-fluxed mantle melting, and to quantitatively evaluate magma genesis beneath arcs. Calculation results from the ABS3 model suggest that element re-distribution between the subducted slab and slab-derived liquid controls distinctive trace element signatures found in arc magmas and crust. The slab liquid is derived from various mixtures of fluids and melts from sediment and altered oceanic crust, dependent on the thermal structure of the subducted slab. Slab fluids are mostly generated by slab-dehydration to form the volcanic front (VF) magmas with slab P-T conditions around 3 GPa/ 750°C, whereas slab may melt at 3-6 GPa > 830°C contributing either to the VF or to rear arc (RA) magmas. Compositions of slab fluids and melts are controlled primarily by breakdown of amphibole and lawsonite for VF and phengite for RA slab depths in association with the residual eclogite mineral phases including garnet, clinopyroxenes, and quartz. Temperature dependent partition coefficients and different partition coefficients between melt/fluid and minerals are additional controls. Minor mineral phases such as zircon and titanite also play important roles for certain elements. The slab liquid fluxed melting of depleted mantle wedge peridotite plays additional role to element re-distribution in subduction zone. The degree of partial melting varies between 17-28 % (VF) and 3-22 % (RA), with a slab flux fraction of 2-4.5 % (e.g., VF fluid) to 1-1.5 % (e.g., RA melt), and at melting depths corresponding to 1-2.5 GPa (VF) and 2.4-2.8 GPa (RA). Addition of luid-immobile elements from the mantle contributes 78-98 % of the magma mass and controls certain isotopes such as Nd and Hf in arc magmas. However, element addition from the slab liquid modifies the liquid mobile elements/isotopes in the arc magmas significantly

  16. Formation of low-δ18O magmas of the Kangerlussuaq Intrusion by addition of water derived from dehydration of foundered basaltic roof rocks

    NASA Astrophysics Data System (ADS)

    Riishuus, Morten S.; Harris, Chris; Peate, David W.; Tegner, Christian; Wilson, J. Richard; Brooks, C. Kent

    2015-05-01

    The Kangerlussuaq Intrusion in East Greenland is concentrically zoned from quartz nordmarkite (quartz syenite) at the margin, through pulaskite, to foyaite (nepheline syenite) in the centre, with no apparent intrusive contacts. The δ18O values of coexisting minerals are consistent with oxygen isotope equilibrium at magmatic temperatures. Most of the intrusion formed from low-δ18O magma; magma δ18O values generally increased upwards from about 3.3 ‰ in the quartz nordmarkites to 5.6 ‰ in the foyaites. The lowest magma δ18O value of about -1.0 ‰ is from the upper part of the nordmarkites, where there is a high concentration of foundered basaltic xenoliths (stoped from the roof of the intrusion). The amphiboles in the syenites have δD values that range from those typical of hydrous mantle-derived minerals to much lower values (-86 to -157 ‰), as do whole-rock samples of xenolith and country rock (-125 to -148 ‰). The low magma δ18O and δD values are consistent with continuous incorporation, exchange and upward escape of low-δ18O and δD fluids released from stoped basaltic roof material. Mass balance suggests that the integrated amount of water involved was 7 wt% of the volume of the magma, but locally reached 30 wt% water. The requirement for large amounts of water with low δ18O value is satisfied only if the foundered basalt contained most of its water in cavities as opposed to hydrous minerals. Even with this requirement, the volume of stoped basalt would have been equal to the volume of the magma. Repeated recharge of the residual magma with progressively less contaminated silica undersaturated melt resulted in a gradual shift across the low-pressure thermal divide. Crystallisation was suppressed by the depression of the liquidus due to water saturation of the residual magma (pH2O ~1 kbar).

  17. The Late Precambrian Timna igneous complex, Southern Israel: Evidence for comagmatic-type sanukitoid monzodiorite and alkali granite magma

    NASA Astrophysics Data System (ADS)

    Beyth, Michael; Stern, Robert J.; Altherr, Rainer; Kröner, Alfred

    1994-01-01

    New data from a geochemical, geochronological and isotopic study of the Late Precambrian Timna igneous complex suggest the formation of alkali granites from a LIL-enriched, mantle derived, sanukitoid-type monzodiorite (a silica oversaturated rock with Mg# >60). These data also provide new insights into the petrology, timing and regional tectonic control of the transition from the calc-alkaline to the alkaline magmatic activity in the northern Arabian-Nubian Shield (ANS) during the Late Precambrian. The Timna alkali granite was formed by fractional crystallization from the monzodioritic magma in a quasi-stratified magmatic cell which formed 610 Ma ago in the 625 Ma old calc-alkaline, porphyritic granite crust. These monzodiorites are mantle-derived, as demonstrated by their high Mg# (63), Cr (230 ppm), and Ni (120 ppm). They are characterized by initial {87Sr}/{86Sr} of 0.7034, ɛ-Nd (610 Ma) = +3.4, and are enriched in K 2O (2.9%), Sr (840 ppm), Ba (1290 ppm) and LREE [ ( {La}/{Lu}) n= 10-25 ]. The chemical characteristics and REE patterns of the monzodiorites and andesitic dykes of Timna are very similar to Dokhan andesites from northeastern Egypt and the Archean sanukitoids from Canada. The isotopic, geochemical and geochronologic data all indicate that Timna monzodiorites are comagmatic with the alkali granite. The alkali granite is a typical post-orogenic, borderline A-type granite. It is enriched in potassium (K 2O=4.68-6.64%), has a negative europium anomaly ( {Eu}/{Eu∗}=0.058-0.38 ) and ɛ-Nd (610 Ma) of +3.9. The calc-alkaline granite is a typical I-type granite with a small positive europium anomaly ( {Eu}/{Eu∗}=1.02-1.16 ). Its age and the Sr, Nd and Pb isotopic characteristics with ɛ-Nd (625 Ma) of +5.6 to +5.9 are significantly different from these of the alkali granite and monzodiorites, and indicate little interaction with the monzodiorite during the formation of the alkali granite. The alkali granites are correlative with the post

  18. Origin of the Early Permian zircons in Keping basalts and magma evolution of the Tarim Large Igneous Province (northwestern China)

    NASA Astrophysics Data System (ADS)

    Li, Yin-Qi; Li, Zi-Long; Yu, Xing; Langmuir, Charles H.; Santosh, M.; Yang, Shu-Feng; Chen, Han-Lin; Tang, Zhong-Li; Song, Biao; Zou, Si-Yuan

    2014-09-01

    The Tarim continental flood basalts (CFBs) provide important clues about the genesis and magmatic evolution of the Early Permian Tarim Large Igneous Province (Tarim LIP) in northwestern China. Here we present results of LA-MC-ICPMS Lu-Hf isotope analysis on Early Permian (ca. 290 Ma) zircons extracted from the Tarim CFBs in the Keping area, northwest of the Tarim Basin. Zircons from two sub-groups of Keping basalts (Groups 1a and 1b) have similar Lu-Hf isotopic compositions and exhibit a relatively large range of 176Hf/177Hf ratios between 0.282422 and 0.282568. Their negative εHf(t) values (- 6.8-- 1.4) are generally lower than the whole-rock εHf(t) values of their host basalts (- 2.8-2.1), and are distinct from other known intrusive rocks (- 0.3-7.1) in the Tarim LIP and their hosted zircons (4.9-8.8). Systematic studies of Hf isotopic data from Tarim and its adjacent regions reveal that these zircons are probably xenocrysts, sourced from coeval igneous rocks in the South Tianshan Orogen (e.g., the Lower Permian Xiaotikanlike Formation volcanic and pyroclastic rock suite). This, together with the presence of Precambrian zircons in Keping basalts, clearly indicates crustal contamination during their eruptions and provides hints about the potential contaminant sources. Geochemical modeling further suggests that the earlier erupted Group 1b basalts experienced more contamination, predominantly by some high Th-U-Pb rock components, most likely from the South Tianshan Orogen. The later erupted Group 1a basalts in the Keping area have been less contaminated with mainly the Tarim Precambrian rocks. Another group of the Tarim CFBs in the Northern Tarim Uplift (Group 2) appears to have undergone negligible crustal contamination but possesses evidence for variable source compositions. The modeling also indicates that the uncontaminated parental magmas of various Tarim LIP rocks (from the picrites and basalts to ultramafic-mafic and syenitic intrusive rocks) exhibit a

  19. Source components and intensive parameters of magma genesis in the CentAm and North IBM arcs: analyses using Arc Basalt Simulator model

    NASA Astrophysics Data System (ADS)

    Kimura, J.; Stern, R. J.; Yoshida, T.

    2007-12-01

    We have developed a general mass balance model nfor magma genesis in subduction zones and applied it to IBM and Central American arcs. The Arc Basalt Simulator (ABS) model includes: 1) P-T dependent compositional variations of fluids from subducted altered oceanic crust (AOC) and sediment (SED); 2) zone refining chemical modification of slab-derived fluid by interaction with mantle peridotite; and 3) metasomatism and fluid flux melting of mantle peridotite caused by the modified fluid. Application of the model to the northern Izu arc (N-Izu) and Central America arc (CentAm) highlights differences between the two arc systems. The N-Izu basalts are modeled to have derived from a common SED/AOC = 10/90 slab composite with slab fluid dehydration at 880C/4GPa (VF: volcanic front) and 980C/6GPa (RA: rear arc). Mantle wedge peridotite (PERID) composition is assumed to be a common 8% MORB extracted primitive mantle (DMM) with depleted DM isotopic composition for both VF and RA. Melting conditions of the mantle are estimated to be F=24% with 0.4-0.5% fluid flux rate at 1.0 GPa (VF) and 2-4%F with 0.07% fluid flux rate at 2.3 GPa (RA). The CentAm arc basalts require at least three AOC components:Cocos-Nazca Spreading Center (CNS), Northern Galapagos domain (NGD), and Southern Galapagos domain (SGD), with increasing HIMU component in that order. SED component is a unique mixture between hemipelagic and carlcareous sediments. The PERID component ranges from undepleted PM to 4% MORB-depleted PM (DPM) with isotopic composition represented by Utila OIB in the RA of Honduras, which is unaffected by Cocos Plate components. The Guatemala-El Salvador VF basalt requires CNS-AOC, SED, and DPM with SED/AOC = 1/99 slab, dehydrated at 950C/4GPa, and mantle melting at 2%F/2.4GPa with flux rate at 2%. RA alkali basalt of the same segment (Yojoa volcano) requires same AOC and SED but needs undepleted PM melted with fluid flux from SED/AOC = 3/97 slab dehydrated at 1000C/6GPa, and mantle

  20. First data on magma ascent and residence times retrieved from Fe-Mg and trace element zonation in olivine phenocrysts from Kamchatka basalts

    NASA Astrophysics Data System (ADS)

    Gordeychik, Boris; Churikova, Tatiana; Kronz, Andreas; Simakin, Alexander; Wörner, Gerhard

    2016-04-01

    Compositional zonation in olivine phenocrysts and diffusion modelling have been used in the last ten years to estimate magma residence times and the duration of magma ascent. The fundamental assumption is that mixing with newly injected magma into a reservoir triggers diffusional exchange between mafic olivine crystals and more evolved magma and that this magma mixing eventually triggers eruption. If depth of mixing is known, this translates to ascent rates of magmas to the surface. We applied this approach to a series of different arc basalt lavas from Kamchatka to constrain the rates of magma ascent and magma resident in what is one of the most active subduction zones in the world that is also dominated by an abundance of unusually mafic magmas. Our sample collection cover the principal modes of arc magmatism in Kamchatka: from different volcanic complexes (stratovolcano, dikes, summit eruptions, monogenetic cones), of different age (from Late-Pleistocene to Holocene and recent eruptions), from different magmatic regimes (long-lived volcanoes vs. monogenetic eruptions) and different major element composition (from basalt to basaltic andesite of different geochemical character including LILE enrichments). We analyzed and modelled zonation profiles for a range of elements with different diffusivities (e.g. Mg-Fe, Ca, Ni, Mn, Cr) to assess the role of variable diffusivities as a function of major and trace elements in the olivines from different P-T conditions. First data were obtained on samples from the Klyuchevskoy, Shiveluch and Tolbachik, including recent most eruption in 2012/2013. These data show that for some samples the zonation patterns are much more complex than is usually observed: high-Mg olivines at different volcanoes have very different zonation patterns, including normally, reversely zoned grains or even show highly complex repetitive zonation that indicate large compositional changes in the surrounding magma at very short time scales (years). Thus

  1. NanoSIMS results from olivine-hosted melt embayments: Magma ascent rate during explosive basaltic eruptions

    NASA Astrophysics Data System (ADS)

    Lloyd, Alexander S.; Ruprecht, Philipp; Hauri, Erik H.; Rose, William; Gonnermann, Helge M.; Plank, Terry

    2014-08-01

    pressure (> 145 MPa), with similar decompression rates to the single-stage model for the shallower stage. The magma ascent rates reported here are among the first for explosive basaltic eruptions and demonstrate the potential of the embayment method for quantifying magmatic timescales associated with eruptions of different vigor.

  2. Silica- and LREE-enriched spinel peridotite xenoliths from the Quaternary intraplate alkali basalt, Jeju Island, South Korea: Old subarc fragments?

    NASA Astrophysics Data System (ADS)

    Woo, Yonghoon; Yang, Kyounghee; Kil, Youngwoo; Yun, Sung-Hyo; Arai, Shoji

    2014-11-01

    Spinel harzburgite to lherzolite xenoliths are entrapped in Quaternary intraplate alkali basalts on Jeju Island, South Korea. These xenoliths are unusual in containing late-stage secondary orthopyroxene, free of deformation and exsolution that is replacing olivine as the main pervasive metasomatic mineral. These xenoliths are characterized by high Mg# in olivine, orthopyroxene, and clinopyroxene (89-93) and variable Cr# of spinel (9-53), representing residues left after variable degrees of melt extraction (~ 25%). In contrast to their depleted major-element compositions, clinopyroxenes in the xenoliths are enriched in most incompatible trace elements. Clinopyroxenes display enrichment in light rare earth elements (LREE) or spoon-shaped REE with a general enrichment in La over Ce, and depletion in high field strength elements (HFSE; e.g., Nb-Ta, Zr-Hf, Ti). Orthopyroxenes (either primary or secondary) are characterized by low TiO2, high Al2O3, and moderate CaO contents, and resemble those of sub-continental arc peridotites from the eastern Pacific. The geochemical evidence, in addition to the formation of secondary orthopyroxene, indicates that Jeju peridotite xenoliths have been subjected to different degrees of metasomatism by subduction-related silica- and LREE-enriched fluids (or melts). However, chemical equilibrium is evident between the primary and secondary orthopyroxene, implying that the duration of post-metasomatic high temperatures enabled complete resetting/reequilibration of the mineral compositions. The metasomatic enrichment pre-dates the host Jeju Quaternary magmatism, and a genetic relationship with the host magmas is considered unlikely. We therefore propose that the Jeju peridotite xenoliths went through a two-stage evolution, with their composition primarily controlled by early fractional melt extraction, which was subsequently modified by residual slab-derived fluids (or melts). Following enrichment in the peridotite protolith in the mantle

  3. Geochemical investigation of a semi-continuous extrusive basaltic section from the Deccan Volcanic Province, India: implications for the mantle and magma chamber processes

    NASA Astrophysics Data System (ADS)

    Vijaya Kumar, Kopparapu; Chavan, Chakradhar; Sawant, Sariput; Naga Raju, K.; Kanakdande, Prachiti; Patode, Sangita; Deshpande, Krishna; Krishnamacharyulu, S. K. G.; Vaideswaran, T.; Balaram, V.

    2010-06-01

    Spatial and temporal variations in the geochemistry of an extrusive basaltic section of Deccan traps record progressive changes in mantle melting and crustal filtration and are relevant to understand continental flood basalt (CFB) magmatism. In the present work we have carried out detailed field, petrographic, density and magnetic susceptibility, and geochemical investigations on a small, semi-continuous extrusive section in the eastern Deccan Volcanic Province (DVP) to understand the role of shallow magma chambers in CFB magmatism. Four formations, Ajanta, Chikhli, Buldhana and Karanja crop out in the Gangakhed-Ambajogai area with increasing elevation. Our studies indicate that: (1) the Karanja Formation represents a major magma addition, as indicated by abrupt change in texture, increases in MgO, CaO, Ni, Cr, and Sr, and drastic decreases in Al2O3, Na2O, K2O, Rb, Ba, REE, bulk-rock density and magnetic susceptibility; (2) assimilation fractional crystallization, crystal-laden magmas, and accessory cumulus phases influence the trace element chemistry of Deccan basalts; (3) the predicted cumulate sequence of olivine gabbro-leucogabbro-oxide-apatite gabbro is supported by the observed layered series in a shallow magma chamber within the DVP; (4) the initial magma was saturated with olivine, plagioclase, and augite, and final the pressure of equilibration for the Gangakhed-Ambajogai section basalts is ~2 kbar (~6 km depth); (5) petrophysical parameters act as proxies for magmatic processes; (6) a small layer of oxide-rich basalts may represent the latest erupted pulse in a given magmatic cycle in the DVP; (7) parental basalts to some of the red boles, considered as formation boundaries, might represent small degree partial melts of the mantle; (8) SW Deccan basaltic-types continue into the eastern DVP; and (9) in addition to the magma chamber processes, dynamic melting of the mantle may have controlled DVP geochemistry. The present study underscores the importance of

  4. Residual glasses and melt inclusions in basalts from DSDP Legs 45 and 46 - Evidence for magma mixing. [Deep Sea Drilling Project

    NASA Technical Reports Server (NTRS)

    Dungan, M. A.; Rhodes, J. M.

    1978-01-01

    Microprobe analyses of natural glasses in basalts recovered by Legs 45 and 46 of the Deep Sea Drilling Project are reported and interpreted in the context of other geochemical, petrographic and experimental data on the same rocks (Rhodes et al., 1978). Residual glass compositions in the moderately evolved aphyritic and abundantly phyric basalts within each site indicate that none of the units is related to any other or to a common parent by simple fractional crystallization. The compositional trends, extensive disequilibrium textures in the plagioclase phenocrysts and the presence in evolved lavas of refractory plagioclase and olivine phenocrysts bearing primitive melt inclusions provide evidence that magma mixing had a major role in the genesis of the Leg 45 and 46 basalts. The magma parental to these basalts was most likely characterized by high Mg/(Mg + Fe/+2/), CaO/Al2O3, CaO/Na2O and low lithophile concentrations. A mixing model involving incremental enrichment of magmaphile elements by repeated episodes of mixing of relatively primitive and moderately evolved magmas, followed by a small amount of fractionation is consistent with the characteristics of the basalts studied.

  5. Non-Newtonian behavior of plagioclase-bearing basaltic magma: Subliquidus viscosity measurement of the 1707 basalt of Fuji volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ishibashi, Hidemi

    2009-03-01

    Laboratory measurements of viscosity were done for basalt erupted in 1707 AD from Fuji volcano, Japan, using a concentric cylinder rotational viscometer at temperatures of 1297-1157 °C, 1 atm pressure, and fO 2 near the Ni-NiO buffer. On cooling, elongated plagioclase crystals with a mean length/width ratio of ca. 8.5 appeared at 1237 °C, followed by olivine at 1157 °C. At progressively lower temperatures, the total crystal volume fraction increased monotonously to ca. 0.25; viscosity increased from 38.9 to 765 Pa s at a shear strain rate of 1 s - 1 . This basalt magma behaves as a Newtonian fluid at temperatures greater than 1217 °C, but shear-thinning behavior occurs at temperatures less than 1197 °C because of the suspended plagioclase crystals. This behavior is well approximated as a power law fluid. At the onset of shear thinning, the crystal volume fraction was between 0.06 and 0.13, which is attributed to the pronounced lath-shape of plagioclase crystals. The relative viscosity increases monotonously with increase of crystal volume fraction at a constant shear strain rate, and with decrease of shear strain rate at a constant crystal volume fraction. A modified form of the Krieger-Dougherty equation is introduced herein. It enables us to describe the dependencies of relative viscosity on both the crystal volume fraction and shear strain rate, and consequently the onset of shear-thinning behavior.

  6. A strontium and neodymium isotopic study of Apollo 17 high-Ti mare basalts - Resolution of ages, evolution of magmas, and origins of source heterogeneities

    NASA Technical Reports Server (NTRS)

    Paces, James B.; Neal, Clive R.; Taylor, Lawrence A.; Nakai, Shun'ichi; Halliday, Alex N.

    1991-01-01

    The geochronological and compositional differences between previously identified magma types (A, B1, B2, and C) were investigated using high-precision Rb-Sr and Sm-Nd isotopic data for a set of Apollo 17 high-Ti mare basalt samples chosen to span the range of each of the magma types. These data, combined with previously reported geochemical ages, suggest that Apollo 17 volcanism was initially dominated by an eruption of Type B basalts. Data obtained from new whole-rock Sr and Nd isotopic analyses exhibited distinct differences in initial Sr and Nd isotopic compositions between Types A, B1, B2, and C basalts and were found to be consistent with existing petrogenetic models.

  7. Contrasting magma types and steady-state, volume-predictable, basaltic volcanism along the Great Rift, Idaho.

    USGS Publications Warehouse

    Kuntz, M.A.; Champion, D.E.; Spiker, E. C.; Lefebvre, R.H.

    1986-01-01

    The Great Rift is an 85 km-long, 2-8 km-wide volcanic rift zone in the Snake River Plain, Idaho. Three basaltic lava fields, latest Pleistocene to Holocene, are located along the Great Rift: Craters of the Moon, Kings Bowl and Wapi. Craters of the Moon is the largest, covering 1600 km2 and containing approx 30 km3 of lava flows and pyroclastics. Field, radiocarbon and palaeomagnetic data show that this lava field formed in eight eruptive periods, each lasted several hundred years with a recurrence interval of several hundred to approx 3000 yr. The first eruption began approx 15 000 yr B.P. and the last ended at approx 2100 yr B.P. The other two lava fields formed approx 2250 yr B.P. Three magma types fed flows along the Great Rift. A contaminated and a fractionated type were erupted at the Craters of the Moon lava field. The third, little-fractionated Snake River Plain magma-type was erupted at the other two lava fields. The Craters of the Moon segment of the Great Rift has experienced quasi-steady state, volume-predictable volcanism for the last 15 000 yr. Based on this, about 5-6 km3 of lava will be erupted within the next 1000 yr.-L.C.H.

  8. The impact of degassing on the oxidation state of basaltic magmas: A case study of Kīlauea volcano

    NASA Astrophysics Data System (ADS)

    Moussallam, Yves; Edmonds, Marie; Scaillet, Bruno; Peters, Nial; Gennaro, Emanuela; Sides, Issy; Oppenheimer, Clive

    2016-09-01

    Volcanic emissions link the oxidation state of the Earth's mantle to the composition of the atmosphere. Whether the oxidation state of an ascending magma follows a redox buffer - hence preserving mantle conditions - or deviates as a consequence of degassing remains under debate. Thus, further progress is required before erupted basalts can be used to infer the redox state of the upper mantle or the composition of their co-emitted gases to the atmosphere. Here we present the results of X-ray absorption near-edge structure (XANES) spectroscopy at the iron K-edge carried out for a series of melt inclusions and matrix glasses from ejecta associated with three eruptions of Kīlauea volcano (Hawai'i). We show that the oxidation state of these melts is strongly correlated with their volatile content, particularly in respect of water and sulfur contents. We argue that sulfur degassing has played a major role in the observed reduction of iron in the melt, while the degassing of H2O and CO2 appears to have had a negligible effect on the melt oxidation state under the conditions investigated. Using gas-melt equilibrium degassing models, we relate the oxidation state of the melt to the composition of the gases emitted at Kīlauea. Our measurements and modelling yield a lower constraint on the oxygen fugacity of the mantle source beneath Kīlauea volcano, which we infer to be near the nickel nickel-oxide (NNO) buffer. Our findings should be widely applicable to other basaltic systems and we predict that the oxidation state of the mantle underneath most hotspot volcanoes is more oxidised than that of the associated lavas. We also suggest that whether the oxidation states of a basalt (in particular MORB) reflects that of its source, is primarily determined by the extent of sulfur degassing.

  9. Calculated diffusion coefficients and the growth rate of olivine in a basalt magma

    NASA Technical Reports Server (NTRS)

    Donaldson, C. H.

    1975-01-01

    Concentration gradients in glass adjacent to skeletal olivines in a basalt have been examined by electron probe. The glass is depleted in Mg, Fe, and Cr and enriched in Si, Al, Na, and Ca relative to that far from olivine. Ionic diffusion coefficients for the glass compositions are calculated from temperature, ionic radius and melt viscosity, using the Stokes-Einstein relation. At 1170 C, the diffusion coefficient of Mg(2+) ions in the basalt is 4.5 billionths sq cm per sec. Comparison with measured diffusion coefficients in a mugearite suggests this value may be 16 times too small. The concentration gradient data and the diffusion coefficients are used to calculate instantaneous olivine growth rates. Growth necessarily preceded emplacement such that the composition of the crystals plus the enclosing glass need not be that of a melt. The computed olivine growth rates are compatible with the rate of crystallization deduced for the Skaegaard intrusion.

  10. Multiplicity of Magma Source Characteristics and Melting Processes for Late Cenozoic Basalts of the Bering Sea Volcanic Province (BSVP), Alaska

    NASA Astrophysics Data System (ADS)

    Mukasa, S. B.; Andronikov, A. V.

    2006-12-01

    The Bering Sea Volcanic Province consists of a number of large basaltic late Cenozoic volcanic fields in a broad region inboard from the Aleutian arc front to the Arctic Circle, and from Chukchi Peninsula in Russia to Western Alaska, which we have dated by 40Ar/39Ar at ~6.0-0.1 Ma, but with some flows being too young to date by this method. We estimate that >1000 km3 of magma was erupted through the eastern part of the BSVP, all within the past 6 Ma. Combining age information with volume estimates reveals that the intensity of volcanic activity in the region has increased through time, with only about 15% of lava erupted before 3 Ma, and about 45% of all late Cenozoic magma being erupted within the last 300 k.y. Eruption rates also increase toward more recent times: 6-Ma basalts having erupted at the rate of ~70 m3/km2/yr, while the youngest basalts (? 0.7 Ma), are estimated to have erupted at a rate of ~225 m3/km2/yr. All late Cenozoic volcanic rocks are enriched in highly incompatible trace elements with strongly fractionated REE patterns (LaN/YbN = 4.7-23.7) suggesting Grt-bearing source. Nd-Sr-Hf isotopic compositions of the rocks (143Nd/144Nd = 0.512939-0.513139; 87Sr/86Sr = 0.702653-0.704342; 176Hf/177Hf = 0.283098- 0.283257) are similar to those of MORB and the depleted varieties of OIB. Lead isotopic ratios fall mostly below the Northern Hemisphere Reference Line (NHRL) in the Pacific MORB field, but the youngest rocks display a distinct trend toward the EM-II values (206Pb/204Pb = 18.21-19.10; 207Pb/204Pb = 15.42-15.62; 208Pb/204Pb = 37.72-38.88). Regional differences in both trace element and isotopic compositions are apparent, indicating that BSVP magmatism does not have a single origin. Lavas with the arc signature are prevalent near the southern margin of the province while those with an OIB signature dominate the central and northern sectors. Also, selected regions in the province exhibit a systematic increase in 87Sr/86Sr with time (from 0.7027 to up

  11. The origin of pyroxene megacrysts in alkali basalts from Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Ntaflos, Theo; Bjerg, Ernesto; Gregoire, Michel

    2015-04-01

    Clinopyroxene and othopyroxene megacrysts have been brought to the surface together with mantle xenoliths by Neogene and Quaternary alkali basalts from the back-arc environment in Patagonia. The collected megacrysts are from Pali Aike Volcanic Field (El Ruido, maar) and the Gobernador Gregores cinder cone in southern Patagonia, and from the Laguna Fria outcrop in northern Patagonia. The most frequent pyroxene megacrysts are augites (twelve samples), one diopside and two enstatites. Enstatites were found in El Ruido and Laguna Fria. The augites are magnesian rich with MG# that vary from 73.1 to 75.3 in Gobernador Gregores, fairly constant at 76.6 in El Ruido and from 74.0 to 78.6 in Laguna Fria. The MG# of diopside is 91.1 and the two enstatites, one from Gobernador Gregores and the other from Laguna Fria, have MG#s 78.3 and 82.5 respectively. The Na2O and TiO2 contents in augites vary from 0.99 to 2.06 wt% and from 0.69 to 1.86 wt% repectively. Systematically, the Gobernador Gregores augites have the highest TiO2 and Na2O contents. The primitive mantle normalized REE abundances have concave upwards patterns. While the Gobernador Gregores augites have (La/Y)N ratios that vary from 2.4 to 3.8, the El Ruido and Laguna Fria augites have ratios that vary from 0.91 to 1.74. The enstatites from both localities have similar MREE but they differ markedly in their LREE (in GG LaN=0.04xPM and in El Ruido LAN=0.14) and in their HREE (in Gobernador Gregores YbN=0.25 and in El Ruido YBN=0.6). The AL IV/AL VI in all augites is high and vary from 0.75 to1.07 suggesting that they have been formed at - more than 30 km depth. The calculated minimum equilibrium temperatures vary between 1260 to 1320°C. Pressure estimates for augites, with exception of the El Ruido augites with a pressure of 1.65 GP, vary between 1.27 and 1.47 GPa. Especially the pressure estimates from Gobernador Gregores megacrysts vary within a small interval from 1.29 to 1.36 GPa indicating an isobaric

  12. Meteoritic basalts: the nakhlites, their parental magmas, cooling rates, and equivalents on Earth. Final technical report

    SciTech Connect

    Treiman, A.H.

    1987-07-01

    Proposed one-bar phase equilibrium experiments, designed to determine the compositions of the nakhlites' parental magmas, are in progress. Proposed field studies on Earth, designed to find occurrences of rocks like the nakhlites, were extraordinarily successful. Other work supported in the past year included: attendance at the 1986 national meeting of the Geological Society of America; attendance at the 18th Lunar and Planetary Science Conference; completion and publication of a study of core formation in the SNC parent body; initiation of a study of the flux of SNC meteorites onto the Earth; and initiation of petrologic study of the Angra dos Reis achondrite.

  13. Meteoritic basalts: The nakhlites, their parental magmas, cooling rates, and equivalents on Earth

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1987-01-01

    Proposed one-bar phase equilibrium experiments, designed to determine the compositions of the nakhlites' parental magmas, are in progress. Proposed field studies on Earth, designed to find occurrences of rocks like the nakhlites, were extraordinarily successful. Other work supported in the past year included: attendance at the 1986 national meeting of the Geological Society of America; attendance at the 18th Lunar and Planetary Science Conference; completion and publication of a study of core formation in the SNC parent body; initiation of a study of the flux of SNC meteorites onto the Earth; and initiation of petrologic study of the Angra dos Reis achondrite.

  14. Decompression Induced Crystallization of Basaltic Andesite Magma: Constraints on the Eruption of Arenal Volcano, Costa Rica.

    NASA Astrophysics Data System (ADS)

    Szramek, L. A.; Gardner, J. E.; Larsen, J. F.

    2004-12-01

    Arenal Volcano is a small stratovolcano located 90 km NW of San Jose, Costa Rica. In 1968 current activity began with a Plinian phase, and has continued to erupt lava flows and pyroclastic flows intermittently since. Samples from the Plinian, pyroclastic flow, strombolian, and effusive phases have been studied texturally. Little variation in crystallinity occurs amongst the different phases. Number density of crystals, both 2D and 3D are 50-70 mm-2 and 30,000-50,000 mm-3 in the Plinian sample, compared to the lesser values in other eruptive types. Characteristic crystal size also increases as explosivity decreases. Two samples, both lava flows collected while warm, overlap with the Plinian sample. This suggests that the variations seen may be a result of cooling history. Plagioclase differs between the Plinian sample, in which they are only tabular in shape, and the other eruptive types, which contain both tabular and equant crystals. To link decompression paths of the Arenal magma to possible pre-eruptive conditions, we have carried out hydrothermal experiments. The experiments were preformed in TZM pressure vessels buffered at a fugacity of Ni-NiO and water saturation. Phase equilibria results in conjunction with mineral compositions and temperature estimates by previous workers from active lava flows and two-pyroxene geothermometry, constrain the likely pre-eruptive conditions for the Arenal magma to 950-1040° C with a water pressure of 50-80 MPa. Samples that started from conditions that bracket our estimated pre-eruptive conditions were decompressed in steps of 5-30 MPa and held for various times at each step until 20 MPa was reached, approximating average decompression rates of 0.25, 0.025, 0.0013 MPa/s. Comparison of textures found in the natural samples to the experimentally produced textures suggest that the Plinian eruption likely was fed by magma ascending at 0.05-1 m/s, whereas the less explosive phases were fed by magma ascending at 0.05 m/s or less.

  15. Petrogenesis of Mare Basalts, Mg-Rich Suites and SNC Parent Magmas

    NASA Technical Reports Server (NTRS)

    Hess, Paul C.

    2004-01-01

    The successful models for the internal evolution of the Moon must consider the volume, distribution, timing, composition and, ultimately, the petrogenesis of mare basaltic volcanism. Indeed, given the paucity of geophysical data, the internal state of the Moon in the past can be gleaned only be unraveling the petrogenesis of the various igneous products on the Moon and, particularly, the mare basalts. most useful in constraining the depth and composition of their source region [Delano, 1980] despite having undergone a certain degree of shallow level olivine crystallization.The bulk of the lunar volcanic glass suite can be modeled as the partial melting products of an olivine + orthopyroxene source region deep within the lunar mantle. Ti02 contents vary from 0.2 wt % -1 7.0wt [Shearer and Papike, 1993]. Values that extreme would seem to require a Ti- bearing phase such as ilmenite in the source of the high-Ti (but not in the VLT source) because a source region of primitive LMO olivine and orthopyroxene, even when melted in small degrees cannot account for the observed range of Ti02 compositions. The picritic glasses are undersaturated with respect to ilmenite at all pressures investigated therefore ilmenite must have been consumed during melting, leaving an ilmenite free residue and an undersaturated melt [Delano, 1980, Longhi, 1992, Elkins et al, 2000 among others]. Multi- saturation pressures for the glasses potentially represent the last depths at which the liquids equilibrated with a harzburgite residue before ascending to the surface. These occur at great depths within the lunar mantle. Because the liquids have suffered some amount of crystal fractionation, this is at best a minimum depth. If the melts are mixtures, then it is only an average depth of melting. Multisaturation, nevertheless, is still a strong constraint on source mineralogy, revealing that the generation of the lunar basalts was dominated by melting of olivine and orthopyroxene.

  16. High alumina (HA) and very high potassium (VHK) basalt clasts from Apollo 14 breccias. I - Mineralogy and Petrology - Evidence of crystallization from evolving magmas

    NASA Technical Reports Server (NTRS)

    Neal, C. R.; Taylor, L. A.; Patchen, A. D.

    1989-01-01

    The mineralogy and petrography of very high potassium (VHK) and high alumina (HA) basalts from the Apollo 14 site provide an insight into their magmatic evolution. Generally, their parageneses are similar, with olivine and chromite the early liquidus phases, followed by plagioclase and pyroxene, which crystallized together. Although late-stage ilmenite and FeNi metal occur in both VHK and HA samples, the VHKs also crystallize K-feldspar and Fa-rich olivine. Zoning of constituent minerals is similar for both basalt types, demonstrating that the parental magmas for both HA and VHK basalts became enriched in K, Na, Ca, Fe, and Ti and depleted in Mg and Al as crystallization proceeded. Enrichment of K in the VHK basalts is above that expected from normal fractional crystallization.

  17. Continental Basaltic Rocks

    NASA Astrophysics Data System (ADS)

    Farmer, G. L.

    2003-12-01

    During the past few decades, geochemical studies of continental basaltic rocks and their petrologic kin have become mainstays of studies of the continental lithosphere. These igneous rocks have taken on such an important role largely because the chemical and isotopic composition of continental basaltic rocks and their mantle (see Chapter 2.05) and crustal xenoliths (see Chapter 3.01) provide the best proxy record available to earth scientists for the chemical and physical evolution of the deep continental lithosphere and underlying mantle, areas that are otherwise resistant to direct study. Keeping this in mind, the primary goal of this chapter is to illustrate how geochemical data can be used both to assess the origin of these rocks and to study the evolution of the continental lithosphere.A complete overview of continental basaltic rocks will not be attempted here, because continental "basalts" come in too wide a range of compositions, and because of the sheer volume of geochemical data available for such rocks worldwide. The scope of the chapter is limited to a discussion of a select group of ultramafic to mafic composition "intraplate" continental igneous rocks consisting primarily of kimberlites, potassic and sodic alkali basalts, and continental flood basalts. Igneous rocks forming at active continental margins, such as convergent or transform plate margins, are important examples of continental magmatism but are not directly discussed here (convergent margin magmas are discussed in Chapters 2.11, 3.11, and 3.18). The geochemistry of intraplate igneous rocks of the ocean basins are covered in Chapters 2.04 and 3.16. Although basaltic magmatism has occurred throughout the Earths history, the majority of the examples presented here are from Mesozoic and Cenozoic volcanic fields due to the more complete preservation of younger continental mafic igneous rocks. While considerable effort has been expended in studying the chemical differentiation of mafic magmas

  18. Phenomena associated with magma expansion into a drift

    SciTech Connect

    Gaffney, E. S.

    2002-01-01

    One of the significant threats to the proposed Yucca Mountain nuclear waste repository has been identified as the possibility of intersection of the underground structure by a basaltic intrusion. Based on the geology of the region, it is assumed that such an intrusion would consist of an alkali basalt similar to the nearby Lathrop Wells cone, which has been dated at about 78 ka. The threat of radioactive release may be either from eruption through the surface above the repository of basalt that had been contaminated or from migration through ground water of radionucleides released as a result of damage to waste packages that interact with the magma. As part of our study of these threats, we are analyzing the phenomena associated with magma expansion into drifts in tuff. The early phenomena of the encounter of volatile-rich basaltic magma with a drift are discussed here.

  19. Sr-Pb isotopic studies of primitive and near-primitive basaltic magmas, Garibaldi volcanic belt, northern Cascadia subduction system

    NASA Astrophysics Data System (ADS)

    Green, N. L.; Sinha, A. K.

    2003-12-01

    The northern Cascadia subduction system is intimately associated with aseismic subduction of extremely young and presumably `hot' oceanic lithosphere beneath northwestern Washington and southwestern British Columbia. Sr and Pb isotopic analyses are presented for primitive and near-primitive (>6.0 wt. % MgO) basalts from a southeast-northwest transect along the Garibaldi volcanic belt (GVB), which overlies subducted oceanic lithosphere that decreases in age from ca. 22 m.y. below Glacier Peak at its southern end to about 13 m.y. beneath the northernmost eruptive centers in the Mosaic (Meager Mountain) and Salal Glacier-Bridge River areas. The basaltic rocks have initial 87Sr/86Sr ratios of 0.70317-0.70426, with minimum observed values in individual lava suites decreasing northward. Values of Pb isotopic ratios for GVB basaltic suites range from 18.22 to 18.97 for 206Pb/204Pb, from 15.51 to 15.59 for 207Pb/204Pb, and from 37.73 to 38.49 for 208Pb/204Pb. Sr isotopic compositions, unsupported by lava Rb contents, show positive correlations with Cs/Rb, La/Nb, Ba/La, Ba/Nb, Ba/Ta, B/La, B/Zr, Sr/Nd, and primitive mantle normalized Sr/P; and negative correlations with high field strength elements (HFSE: Nb, and Ta), FeO and other transition metals (Co and Zn), Ce/Pb,Cr/Ni, Sm/Yb, Ta/Yb, Hf/Yb, K/Ba, K/Sr, and La/Yb. Moderate to strong correlations between 87Sr/86Sr and ratios involving fluid-mobile and less-fluid-mobile elements are compatible with decreased slab input northward along the volcanic front as the subducted plate becomes hotter. The Pb isotopic compositions exhibit only limited variations when examined against position along the volcanic arc, but show uniform to extremely weak positive correlations of 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb with 87Sr/86Sr, Ba/La, Sr/Nd, Ba/Nb, Zr/Nb, Mg-Number and SiO2; and similarly weak negative correlation of Ce/Pb with 206Pb/204Pb and 207Pb/204Pb. The isotopic data suggest that GVB basaltic magmas have experienced with

  20. Timescales of magma differentiation from basalt to andesite beneath Hekla Volcano, Iceland: Constraints from U-series disequilibria in lavas from the last quarter-millennium flows

    NASA Astrophysics Data System (ADS)

    Chekol, Takele A.; Kobayashi, Katsura; Yokoyama, Tetsuya; Sakaguchi, Chie; Nakamura, Eizo

    2011-01-01

    Measurements of 238U- 230Th- 226Ra disequilibria, Sr-Nd-Pb-Hf isotopes and major-trace elements have been conducted for lavas erupted in the last quarter-millennium at Hekla volcano, Iceland. The volcanic rocks range from basalt to dacite. Most of the lavas (excluding dacitic samples) display limited compositional variations in radiogenic Sr-Nd-Pb-Hf isotopes ( 87Sr/ 86Sr = 0.70319-0.70322; 143Nd/ 144Nd = 0.51302-0.51305; 206Pb/ 204Pb = 19.04-19.06; 207Pb/ 204Pb = 15.53-15.54; 208Pb/ 204Pb = 38.61-38.65; 176Hf/ 177Hf = 0.28311-0.28312). All the samples possess ( 230Th/ 238U) disequilibrium with 230Th excesses, and they show systematic variations in ( 230Th/ 232Th) and ( 238U/ 232Th) ratios. The highest 226Ra excesses occur in the basalt and most differentiated andesite lavas, while some basaltic-andesite lavas have ( 226Ra/ 230Th) ratio that are close to equilibrium. The 238U- 230Th- 226Ra disequilibria variations cannot be produced by simple closed-system fractional crystallization with radioactive decay of 230Th and 226Ra in a magma chamber. A closed-system fractional crystallization model and assimilation and fractional crystallization (AFC) model indicate that the least differentiated basaltic andesites were derived from basalt by fractional crystallization with a differentiation age of ˜24 ± 11 kyr, whereas the andesites were formed by assimilation of crustal material and fractionation of the basaltic-andesites within 2 kyr. Apatite is inferred to play a key role in fractionating the parent-daughter nuclides in 230Th- 238U and 226Ra- 230Th to make the observed variations. Our proposed model is that several batches of basaltic-andesite magmas that formed by fractional crystallization of a basaltic melt from a deeper reservoir, were periodically injected into the shallow crust to form individual magma pockets, and subsequently modifying the original magma compositions via simultaneous assimilation and fractional crystallization. The assimilant is the dacitic

  1. Io: Generation of Silicate Magma by Shear Melting at the Base of a Basaltic Lithosphere

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1985-01-01

    Tidal theory and observational evidence indicates that about 1 w/sq. m. of energy is released at the surface of Io. In order to place limits on how much tidal energy can be dissipated within a rigid lithosphere, depth-temperature profiles were calculated for different lithosphere thickness assuming that the tidal energy was dissipated uniformly throughout the lithosphere. Thus a thick lithosphere implies that a significant fraction of the tidal energy is dissipated below the depth where solidus temperatures are reached. One possibility is that Io has a crust consisting of a low melting temperature fraction such as basalt, overlying a mantle of a high melting temperature fraction such as peridotite. Thus, if the lithosphere of Io is thicker than 30 km, as appears probable, then high rates of silicate volcanism are implied and a significant fraction of the tidal energy must be dissipated by viscous deformation rather than rigid flexure.

  2. Origin of magmas in subduction zones: a review of experimental studies.

    PubMed

    Kushiro, Ikuo

    2007-02-01

    Studies of the origin of magmas in subduction zones, particularly in the Japanese island arc, have been significantly advanced by petrological, geochemical, geophysical and experimental studies during last 50 years. Kuno's original model(1)) for magma generation in the Japanese island arc, that tholeiite magmas are formed at relatively shallow levels in the mantle on the Pacific Ocean side whereas alkali basalt magmas are formed in deeper levels on the Japan Sea side, stimulated subsequent studies, particularly high-pressure experimental studies in which the author participated. Recent seismic tomographic studies of regions beneath the Japanese island arc demonstrate that seismic low-velocity zones where primary magmas are formed have finger-like shapes and rise obliquely from the Japan Sea side toward the Pacific Ocean side. Based on experimental studies, it is suggested that the compositions of primary magmas depend mainly on the H2O content and degree of melting in the melting zones, and that primary tholeiite magmas are formed by 10-25% melting of the source mantle containing less than 0.2 wt.% H2O. High-alumina basalt and alkali basalt magmas are formed by smaller degrees of melting of similar mantle, whereas primary boninite magmas are formed by more than 20% melting of the source mantle with more than 0.2 wt.% H2O, and finally, high-magnesia andesite magmas are formed by smaller degrees of melting of similar mantle. PMID:24019580

  3. Origin of magmas in subduction zones: a review of experimental studies

    PubMed Central

    Kushiro, Ikuo

    2007-01-01

    Studies of the origin of magmas in subduction zones, particularly in the Japanese island arc, have been significantly advanced by petrological, geochemical, geophysical and experimental studies during last 50 years. Kuno’s original model1) for magma generation in the Japanese island arc, that tholeiite magmas are formed at relatively shallow levels in the mantle on the Pacific Ocean side whereas alkali basalt magmas are formed in deeper levels on the Japan Sea side, stimulated subsequent studies, particularly high-pressure experimental studies in which the author participated. Recent seismic tomographic studies of regions beneath the Japanese island arc demonstrate that seismic low-velocity zones where primary magmas are formed have finger-like shapes and rise obliquely from the Japan Sea side toward the Pacific Ocean side. Based on experimental studies, it is suggested that the compositions of primary magmas depend mainly on the H2O content and degree of melting in the melting zones, and that primary tholeiite magmas are formed by 10–25% melting of the source mantle containing less than 0.2 wt.% H2O. High-alumina basalt and alkali basalt magmas are formed by smaller degrees of melting of similar mantle, whereas primary boninite magmas are formed by more than 20% melting of the source mantle with more than 0.2 wt.% H2O, and finally, high-magnesia andesite magmas are formed by smaller degrees of melting of similar mantle. PMID:24019580

  4. Origin of magmas in subduction zones: a review of experimental studies.

    PubMed

    Kushiro, Ikuo

    2007-02-01

    Studies of the origin of magmas in subduction zones, particularly in the Japanese island arc, have been significantly advanced by petrological, geochemical, geophysical and experimental studies during last 50 years. Kuno's original model(1)) for magma generation in the Japanese island arc, that tholeiite magmas are formed at relatively shallow levels in the mantle on the Pacific Ocean side whereas alkali basalt magmas are formed in deeper levels on the Japan Sea side, stimulated subsequent studies, particularly high-pressure experimental studies in which the author participated. Recent seismic tomographic studies of regions beneath the Japanese island arc demonstrate that seismic low-velocity zones where primary magmas are formed have finger-like shapes and rise obliquely from the Japan Sea side toward the Pacific Ocean side. Based on experimental studies, it is suggested that the compositions of primary magmas depend mainly on the H2O content and degree of melting in the melting zones, and that primary tholeiite magmas are formed by 10-25% melting of the source mantle containing less than 0.2 wt.% H2O. High-alumina basalt and alkali basalt magmas are formed by smaller degrees of melting of similar mantle, whereas primary boninite magmas are formed by more than 20% melting of the source mantle with more than 0.2 wt.% H2O, and finally, high-magnesia andesite magmas are formed by smaller degrees of melting of similar mantle.

  5. Major-element evidence for multiple magma batches in the evolution of Pleistocene and Holocene volcanic rocks of the Markagunt Plateau volcanic field, southwestern Utah

    SciTech Connect

    Nealey, L.D.; Maldonado, F. )

    1993-04-01

    Pearce element ratios (PER) provide an initial understanding of the evolution of Pleistocene and Holocene alkali basalt to trachyandesite magmas of the Markagunt Plateau. The magmas erupted from numerous cinder cones, shield-like centers, and dikes. Vent areas were controlled by structures (e.g., grabens) related to the tectonic evolution of the transition zone between the Basin and Range and Colorado Plateaus provinces. The cinder cone-fed basalt flows and a single dike-fed basalt flow are probably older than shield-fed basalt and trachyandesite flows. Chemically, cinder cone- and dike-fed basalt flows are more mafic than shield-fed basalt flows. Trachyandesite flows are latite and benmoreite (58.7--59.7 wt % SiO[sub 2]). PER analysis of flow chemistry indicates that the shield-fed flows represent at leas three cogenetic magma batches, that cinder cone-fed flows must be related to more than one magma batch, but that all andesite is genetically related to a common parent magma. The dike-fed basalt flow is not genetically related to any other magma type. Although several magma batches erupted, chemical variations in the magmatic series are consistent with the fractionation of the observed phenocryst phases: olivine, plagioclase, clinopyroxene, and spinel. This four-phase fractionation assemblage relates compositional differences within each basalt type better than it does the entire magmatic series. Fractionation of no single mineral phase can adequately explain chemical variations in the basaltic magmas of the Markagunt Plateau.

  6. Lead and strontium isotopic evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field, California

    USGS Publications Warehouse

    Bacon, C.R.; Kurasawa, H.; Delevaux, M.H.; Kistler, R.W.; Doe, B.R.

    1984-01-01

    The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs. ?? 1984 Springer-Verlag.

  7. Eruptive History and Chemical Evolution of the Precaldera and Postcaldera Basalt-Dacite Sequences, Long Valley, California: Implications for Magma Sources, Current Seismic Unrest, and Future Volcanism

    USGS Publications Warehouse

    Bailey, Roy A.

    2004-01-01

    The Long Valley Volcanic Field in east-central California straddles the East Sierran frontal fault zone, overlapping the Sierra Nevada and western Basin and Range Provinces. The volcanic field overlies a mature mid-Tertiary erosional surface that truncates a basement composed mainly of Mesozoic plutons and associated roof pendants of Mesozoic metavolcanic and Paleozoic metasedimentary rocks. Long Valley volcanism began about 4 Ma during Pliocene time and has continued intermittently through the Holocene. The volcanism is separable into two basalt-rhyolite episodes: (1) an earlier, precaldera episode related to Long Valley Caldera that climaxed with eruption of the Bishop Tuff and collapse of the caldera; and (2) a later, postcaldera episode structurally related to the north-south-trending Mono-Inyo Craters fissure system, which extends from the vicinity of Mammoth Mountain northward through the west moat of the caldera to Mono Lake. Eruption of the basalt-dacite sequence of the precaldera basalt-rhyolite episode peaked volumetrically between 3.8 and 2.5 Ma; few basalts were erupted during the following 1.8 m.y. (2.5?0.7 Ma). Volcanism during this interval was dominated by eruption of the voluminous rhyolites of Glass Mountain (2.2?0.8 Ma) and formation of the Bishop Tuff magma chamber. Catastrophic rupture of the roof of this magma chamber caused eruption of the Bishop Tuff and collapse of Long Valley Caldera (760 ka), after which rhyolite eruptions resumed on the subsided caldera floor. The earliest postcaldera rhyolite flows (700?500 ka) contain quenched globular basalt enclaves (mafic magmatic inclusions), indicating that basaltic magma had reentered shallow parts of the magmatic system after a 1.8-m.y. hiatus. Later, at about 400 ka, copious basalts, as well as dacites, began erupting from vents mainly in the west moat of the caldera. These later eruptions initiated the postcaldera basalt-rhyolite episode related to the Mono-Inyo Craters fissure system, which

  8. Water and magmas: insights about the water solution mechanisms in alkali silicate melts from infrared, Raman, and 29Si solid-state NMR spectroscopies

    NASA Astrophysics Data System (ADS)

    Le Losq, Charles; Mysen, Bjorn O.; Cody, George D.

    2015-12-01

    Degassing of water during the ascent of hydrous magma in a volcanic edifice produces dramatic changes in the magma density and viscosity. This can profoundly affect the dynamics of volcanic eruptions. The water exsolution history, in turn, is driven by the water solubility and solution mechanisms in the silicate melt. Previous studies pointed to dissolved water in silicate glasses and melts existing as molecules (H2Omol species) and hydroxyl groups, OH. These latter OH groups commonly are considered bonded to Si4+ but may form other bonds, such as with alkali or alkaline-earth cations, for instance. Those forms of bonding influence the structure of hydrous melts in different ways and, therefore, their properties. As a result, exsolution of water from magmas may have different eruptive consequences depending on the initial bonding mechanisms of the dissolved water. However, despite their importance, the solution mechanisms of water in silicate melts are not clear. In particular, how chemical composition of melts affects water solubility and solution mechanism is not well understood. In the present experimental study, components of such information are reported via determination of how water interacts with the cationic network of alkali (Li, Na, and K) silicate quenched melts. Results from 29Si single-pulse magic-angle spinning nuclear magnetic resonance (29Si SP MAS NMR), infrared, and Raman spectroscopies show that decreasing the ionic radius of alkali metal cation in silicate melts results in decreasing fraction of water dissolved as OH groups. The nature of OH bonding also changes as the alkali ionic radius changes. Therefore, as the speciation and bonding of water controls the degree of polymerization of melts, water will have different effects on the transport properties of silicate melts depending on their chemical composition. This conclusion, in turn, may affect volcanic phenomena related to the viscous relaxation of hydrous magmas, such as for instance the

  9. CO2 contents of basaltic arc magmas from the southern Cascades: Corrections for shrinkage bubble effects and implications for crustal storage

    NASA Astrophysics Data System (ADS)

    Walowski, K. J.; Wallace, P. J.; Aster, E. M.; Clynne, M. A.

    2015-12-01

    Volatiles such as H2O and CO2 play an important role in a variety of magmatic processes from magma generation to eruption, and melt inclusions (MI) - small volumes of melt trapped inside phenocrysts - have been used to measure their pre-eruptive concentrations. In particular, the volatile contents of MI from basaltic arc magmas have been used to track the role of dehydrating subducted oceanic lithosphere in magma formation in subduction zones. However, recent studies have shown that MI are imperfect storage containers and can lose H by diffusion through the mineral host and CO2 due to formation of a vapor bubble in the inclusion. Such results suggest that even the least degassed melt inclusions from a volcano may have volatile concentrations that underestimate the initial volatile contents of the magma. Thus, recognizing pre- and post-entrapment processes that influence MIs is important for interpreting magmatic processes at depth. Recent studies have developed methods that can be used to distinguish and correct for H diffusive loss (Bucholz et al., 2013) and CO2 loss to vapor bubbles (Wallace et al., 2015). Here, we focus on MI from eight cinder cones that erupted primitive basaltic magmas in the Lassen region of the Cascade arc, where H2O and Cl concentrations have been shown to relate to the amount of a subduction component added to the mantle wedge (Walowski et al., 2015). Using methods of Aster (2015), we correct for the loss of CO2 to a vapor bubble formed within a melt inclusion as the result of post-entrapment crystallization and thermal contraction. The results of the CO2 restoration calculations suggest that ~25-75% of the initial dissolved CO2 in the melt inclusions at the time of trapping was lost to a vapor bubble after entrapment. Trapping pressures for the restored CO2 and maximum H2O contents calculated using methods of Iacono-Marziano et al. (2012) range from ~2-5 kbar, equivalent to entrapment depths of ~7-18 km below the surface. The results

  10. Settling and compaction of olivine in basaltic magmas: an experimental study on the time scales of cumulate formation

    NASA Astrophysics Data System (ADS)

    Schmidt, Max W.; Forien, Melanie; Solferino, Giulio; Bagdassarov, Nickolai

    2012-12-01

    mechanism. The above relationship, combined with a linear scaling for grain size as appropriate for reaction-controlled pressure solution creep, allows calculation of formation times of adcumulates. If chemical compaction is dissolution-reprecipitation limited, then single layers of natural olivine adcumulates of ½ m thickness with 70-75 vol % olivine at the base (as observed in the Rhum layered intrusion) would have typical formation times of 0.4-3 years for grain sizes of 2-10 mm. This time scale compares favourably with characteristic cooling times of sills. If a greater than 20-m-thick series of cumulate layers pressurizes a base layer with the porosity still filled by a melt, then compaction proceeds to the compaction limit within a few years. It can thus be expected that in layered mafic intrusions where cumulates are continuously deposited from a large magma chamber and which characteristic cooling times of more than decades, a compaction zone of several tens of metres forms with adcumulates only maintaining porosities in the order of 5 %. In conclusion, gravitational settling and gravitation-driven chemical compaction are feasible cumulate-forming processes for dense mafic minerals in basaltic magmas and in particular in large layered intrusions.

  11. Porosity evolution, contact metamorphism, and fluid flow in the host basalts of the Skaergaard magma-hydrothermal system

    SciTech Connect

    Manning, C.E.

    1989-01-01

    Temporal and spatial variations in porosity during contact metamorphism of the basaltic country rocks to the Skaergaard intrusion in East Greenland resulted in a complex hydrological evolution of the metamorphic aureole. Contrasts in macroscopic porosities in different lithologies led to differences in mineralogical, bulk chemical, and oxygen isotopic alteration, and units with greater macroscopic porosities record larger fluid flux during metamorphism. Calculated Darcy velocities indicate that the horizontal component of fluid flow in the aureole was toward the intrusive contact. In the actinolite + chlorite zone time-integrated fluid flux was higher in aa units ({approximately} 300 kg cm{sup {minus}2}) than in massive units ({approximately} 130 kg cm{sup {minus}2}). Approximately equal time-integrated fluxes of respectively 4 and 5 kg cm{sup {minus}2} in aa and massive units in the pyroxene zone indicate that the volume of fluid flow in the higher grade rocks was independent of primary porosity. These results are consistent with inward fluid migration in the actinolite + chlorite zone through an open network of pores whose abundance varied as a function of primary lava morphology. At higher metamorphic grades fluid fluxes were lower and were independent of primary porosity, probably as a consequence of (1) channelization of fluids due to more extensive pore filling and (2) decreasing horizontal component of flow due to upward migration of fluids near the contact. The results of this study indicate that explicit provision for rock porosity aids interpretation of the nature of fluid flow during contact metamorphism in magma-hydrothermal systems.

  12. Trace-element and Sr, Nd, Pb, and O isotopic composition of Pliocene and Quaternary alkali basalts of the Patagonian Plateau lavas of southernmost South America

    USGS Publications Warehouse

    Stern, C.R.; Frey, F.A.; Futa, K.; Zartman, R.E.; Peng, Z.; Kurtis, Kyser T.

    1990-01-01

    The Pliocene and Quaternary Patagonian alkali basalts of southernmost South America can be divided into two groups. The "cratonic" basalts erupted in areas of Cenozoic plateau volcanism and continental sedimentation and show considerable variation in 87Sr/86Sr (0.70316 to 0.70512), 143Nd/144Nd (e{open}Nd) and 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios (18.26 to 19.38, 15.53 to 15.68, and 38.30 to 39.23, respectively). These isotopic values are within the range of oceanic island basalts, as are the Ba/La, Ba/Nb, La/Nb, K/Rb, and Cs/Rb ratios of the "cratonic" basalts. In contrast, the "transitional" basalts, erupted along the western edge of the outcrop belt of the Pliocene and Quaternary plateau lavas in areas that were the locus of earlier Cenozoic Andean orogenic arc colcanism, have a much more restricted range of isotopic composition which can be approximated by 87Sr/86Sr=0.7039??0.0004, e{open}Nd, 206Pb/204Pb=18.60??0.08, 207Pb/204Pb=15.60??0.01, and 208Pb/204Pb=38.50??0.10. These isotopic values are similar to those of Andean orogenic are basalts and, compared to the "cratonic" basalts, are displaced to higher 87Sr/86Sr at a given 143Nd/144Nd and to higher 207Pb/204Pb at a given 208Pb/204Pb. The "transitional" basalts also have Ba/La, Ba/Nb, La/Nb, and Cs/Rb ratios higher than the "cratonic" and oceanic island basalts, although not as high as Andean orogenic are basalts. In contrast to the radiogenic isotopes, ??18O values for both groups of the Patagonian alkali basalts are indistinguishable and are more restricted than the range reported for Andean orogenic are basalts. Whole rock ??18O values calculated from mineral separates for both groups range from 5.3 to 6.5, while measured whole rock ??18O values range from 5.1 to 7.8. The trace element and isotopic data suggest that decreasing degrees of partial melting in association with lessened significance of subducted slabderived components are fundamental factors in the west to east transition from arc

  13. Distinctive crystal chemistry and site configuration of the clinopyroxene from alkali basaltic rocks

    NASA Astrophysics Data System (ADS)

    Dal Negro, A.; Cundari, A.; Piccirillo, E. M.; Molin, G. M.; Uliana, D.

    1986-01-01

    A crystal chemical investigation of clinopyroxenes from a suite of nepheline-bearing lavas located in the Nyambeni Range of Kenya has delineated the polyhedral site configurations and related intracrystalline relationships. These are distinct from those determined for the clinopyroxene in an analogous suite of leucite-bearing lavas from the Sabatini volcanoes in the Roman Region of Italy (Dal Negro et al. 1985). The Nyambeni clinopyroxene, varying from salite to hedenbergite, preferentially accepts Na in the M2 site to balance increasing Fe2+ and Si, respectively, whereas the Sabatini clinopyroxene is confined within the salite field and preferentially accepts Aliv to balance the effect of increasing (Fe3++Ti4++Alvi+Cr3+)M1. The Fe2+/Fe3+ and K/Na ratios of the host rocks emerge as significant factors in determining the different polyhedral configurations and evolutions of the clinopyroxene from the two lava suites, respectively. The resulting Mg-Fe2+ order-disorder relationships in M1 M2 are also distinct in the two clinopyroxenes. A high degree of MgFe2+ order in M1 M2 corresponds to the largest configurational, hence energetic, difference between M1 and M2 in the Nyambeni clinopyroxene, whereas the converse applies to the Sabatini clinopyroxene. In view of the significant crystal chemical differences and distinct evolution trends, it is proposed that salites from alkali volcanic rocks may be referred to as Nyambeni-type or Sabatini-type, respectively.

  14. Jun Jaegyu Volcano: A Recently Discovered Alkali Basalt Volcano in Antarctic Sound, Antarctica

    NASA Astrophysics Data System (ADS)

    Hatfield, A.; Bailey, D.; Domack, E.; Brachfeld, S.; Gilbert, R.; Ishman, S.; Krahmann, G.; Leventer, A.

    2004-12-01

    Jun Jaegyu is a young volcanic construct discovered in May 2004 by researchers aboard the National Science Foundation (NSF) vessel Laurence M. Gould (LMG04-04). The volcano is located on the Antarctic continental shelf in Antarctic Sound, approximately 9 km due north of the easternmost point of Andersson Island. Swath bathymetry (NBP01-07) indicates that the volcano stands 700 meters above the seafloor, yet remains 275 meters short of the ocean surface. The seamount lies along a northwest-southeast oriented fault scarp and contains at least 1.5 km3 of volcanic rock. Video recording of the volcano's surface revealed regions nearly devoid of submarine life. These areas are associated with a thermal anomaly of up to 0.052° C higher than the surrounding ocean water. A rock dredge collected ~13 kg of material, over 80% of which was fresh volcanic rock; the remainder was glacial IRD. These observations, along with reports by mariners of discolored water in this region of Antarctic Sound, suggest that the volcano has been recently active. The basalt samples are generally angular, glassy and vesicular. Preliminary petrographic observations indicate that plagioclase, olivine, and clinopyroxene are all present as phenocryst phases, and that small (<1cm) rounded xenoliths are common. A comprehensive study of the volcano's petrography and whole-rock chemistry is currently underway. Jun Jaegyu is the northernmost volcanic center of the James Ross Island Volcanic Group (JRIVG), and the only center in this region of the Antarctic Peninsula with evidence of recent activity. It lies along the boundary between the Late Cenozoic JRIVG and the Upper Paleozoic rocks of the Trinity Peninsula Formation. While the tectonic setting of the region is complex, volcanism appears to be associated with active faults related to within-plate extension.

  15. Perspectives on basaltic magma crystallization and differentiation: Lava-lake blocks erupted at Mauna Loa volcano summit, Hawaii

    USGS Publications Warehouse

    McCarter, R.L.; Fodor, R.V.; Trusdell, F.

    2006-01-01

    Explosive eruptions at Mauna Loa summit ejected coarse-grained blocks (free of lava coatings) from Moku'aweoweo caldera. Most are gabbronorites and gabbros that have 0-26??vol.% olivine and 1-29??vol.% oikocrystic orthopyroxene. Some blocks are ferrogabbros and diorites with micrographic matrices, and diorite veins (??? 2??cm) cross-cut some gabbronorites and gabbros. One block is an open-textured dunite. The MgO of the gabbronorites and gabbros ranges ??? 7-21??wt.%. Those with MgO > 10??wt.% have some incompatible-element abundances (Zr, Y, REE; positive Eu anomalies) lower than those in Mauna Loa lavas of comparable MgO; gabbros (MgO < 10??wt.%) generally overlap lava compositions. Olivines range Fo83-58, clinopyroxenes have Mg#s ??? 83-62, and orthopyroxene Mg#s are 84-63 - all evolved beyond the mineral-Mg#s of Mauna Loa lavas. Plagioclase is An75-50. Ferrogabbro and diorite blocks have ??? 3-5??wt.% MgO (TiO2 3.2-5.4%; K2O 0.8-1.3%; La 16-27??ppm), and a diorite vein is the most evolved (SiO2 59%, K2O 1.5%, La 38??ppm). They have clinopyroxene Mg#s 67-46, and plagioclase An57-40. The open-textured dunite has olivine ?????Fo83.5. Seven isotope ratios are 87Sr/86Sr 0.70394-0.70374 and 143Nd/144Nd 0.51293-0.51286, and identify the suite as belonging to the Mauna Loa system. Gabbronorites and gabbros originated in solidification zones of Moku'aweoweo lava lakes where they acquired orthocumulate textures and incompatible-element depletions. These features suggest deeper and slower cooling lakes than the lava lake paradigm, Kilauea Iki, which is basalt and picrite. Clinopyroxene geobarometry suggests crystallization at < 1??kbar P. Highly evolved mineral Mg#s, < 75, are largely explained by cumulus phases exposed to evolving intercumulus liquids causing compositional 'shifts.' Ferrogabbro and diorite represent segregation veins from differentiated intercumulus liquids filter pressed into rigid zones of cooling lakes. Clinopyroxene geobarometry suggests < 300??bar P

  16. Neogene to Quaternary basalts of the Jabal Eghei (Nuqay) area (south Libya): Two distinct volcanic events or continuous volcanism with gradual shift in magma composition?

    NASA Astrophysics Data System (ADS)

    Radivojević, Maša; Toljić, Marinko; Turki, Salah M.; Bojić, Zoran; Šarić, Kristina; Cvetković, Vladica

    2015-02-01

    This study reports and discusses a set of new K/Ar age and new petrochemical data on basalts of the Jabal Eghei (Nuqay) area (south Libya). This area is part of a > 1000 km long NNW-SSE Libyan volcanic field that stretches from the Mediterranean coastal near Tripoli to the Tibesti massif in Chad. Whole rock K/Ar ages, stratigraphy, volcanology and rock petrochemistry indicate that the Jabal Eghei developed during two volcanic events. The first occurred from the Middle Miocene to the Pliocene (K/Ar ages from ~ 16 to ~ 5 Ma) when large volumes of low aspect ratio lava flows of transitional basalts formed. The second event happened in Pliocene-mid-Pleistocene time (4-≤ 1 Ma) and it gave rise to basanite spatter to scoria pyroclastic cones and subordinate lava flow facies. The transitional basalts are less primitive and less enriched in incompatible trace elements than the basanites. Petrochemical characteristics reveal that the transitional basalts underwent weak to moderate olivine-dominated fractionation and that crustal assimilation had negligible effects. REE geochemical modeling shows that primary magmas of both transitional basalts and basanites formed by melting of a similar garnet-bearing, primitive mantle-like source with degree of melting of 3-5% and ≤ 1%, respectively. It is also demonstrated that the transitional basalts show systematic compositional changes in time because progressively younger rocks are petrochemically more similar to basanites. We argue that our data definitely prove that the age pattern along the entire Libyan volcanic field is much more complex than it was thought before.

  17. Pliocene-Quaternary basalts from the Harrat Tufail, western Saudi Arabia: Recycling of ancient oceanic slabs and generation of alkaline intra-plate magma

    NASA Astrophysics Data System (ADS)

    Bakhsh, Rami A.

    2015-12-01

    Harrat Tufail represents a Caenozoic basalt suite at the western margin of the Arabian plate. This rift-related suite includes voluminous Quaternary non-vesicular basalt (with fragments of earlier Pliocene vesicular flow) that forms a cap sheet over Miocene rhyolite and minor vesicular basalt. The contact between rhyolite and the basaltic cap is erosional with remarkable denudations indicating long time gap between the felsic and mafic eruptions. The geochemical data prove alkaline, sodic and low-Ti nature of the olivine basalt cap sheet. The combined whole-rock and mineral spot analyses by the electron microprobe (EMPA) suggest magma generation from low degree of partial melting (∼5%) from spinel- and garnet-lherzolite mantle source. Derivation from a mantle source is supported by low Na content in clinopyroxene (ferroan diopside) whereas high Mg content in ilmenite is an evidence of fractional crystallization trajectory. Accordingly, the Pliocene basaltic cap of Harrat Tufail is a product of mantle melt that originates by recycling in the asthenosphere during subduction of ancient oceanic slab(s). The whole-rock chemistry suggests an ancient ocean island basaltic slab (OIB) whereas the EMPA of Al-rich spinel inclusions in olivine phenocrysts are in favour of a mid-ocean ridge basaltic source (MORB). Calculations of oxygen fugacity based on the composition of co-existing Fe-Ti oxide suggest fluctuation from highly to moderately oxidizing conditions with propagation of crystallization (log10 fO2 from -22.09 to -12.50). Clinopyroxene composition and pressure calculation indicates low-pressure (0.4-2 kbar). Cores of olivine phenocrysts formed at highest temperature (1086-1151 °C) whereas the rims and olivine micro-phenocrysts formed at 712-9-796 °C which is contemporaneous to formation of clinopyroxene at 611-782 °C. Fe-Ti oxides crystallized over a long range (652-992 °C) where it started to form at outer peripheries of olivine phenocrysts and as interstitial

  18. Use of basaltic magmas to characterize processes in planetary interiors: A test case in the southwestern United States

    NASA Astrophysics Data System (ADS)

    Wittke, J.

    1982-08-01

    Whether or not basaltic rocks can be used as mantle probes depends upon the degree to which their compositions reflect their source regions rather than their subsequent histories. Mantle heterogeneities in the central Arizona Transition Zone were studied, and the degree to which interaction with the crust has modified the lavas masking these original variations was examined. Basalts from a thick sequence of basaltic flows in the Hickey Formation and two younger flows were sampled in order to provide a time transgressive suite of rocks. These rocks were dated and an extensive set of analytical data is now available for them.

  19. A trachyte-syenite core within a basaltic nest: filtering of primitive injections by a multi-stage magma plumbing system (Oki-Dōzen, south-west Japan)

    NASA Astrophysics Data System (ADS)

    Brenna, Marco; Nakada, Setsuya; Miura, Daisuke; Toshida, Kiyoshi; Ito, Hisatoshi; Hokanishi, Natsumi; Nakai, Shun'ichi

    2015-08-01

    Oki-Dōzen (Japan) is a Late Miocene (7-5 Ma) intraplate alkalic volcano composed of a central trachytic pyroclastic complex surrounded by a ring-shaped succession of basaltic to trachybasaltic lavas and pyroclastic rocks and dispersed trachytic bodies. The central trachytic complex is in contact with a syenite that was intruded into the basement early Miocene volcano-sedimentary succession. In the centre of the system there are no alkalic basaltic rocks that are correlative of the outer flank ring. We present whole-rock major and trace element chemistry, Sr-Nd-Pb isotopic compositions and petrological data from the central trachytic volcanic complex and the intrusive syenite body, as well as from the outer ring basaltic succession. We also present and discuss a new set of zircon U/Pb ages collected from the central trachyte and syenite bodies. All the eruptive products of Oki-Dōzen, as well as the syenite, plot on a single liquid line of descent initiated from a mantle-derived alkalic basaltic parent. A younger (2.8 Ma) basaltic eruption (Uzuka basalt) has isotopic compositions that distinguish it from the rest of the system. Geochemical modelling indicates that magmatic differentiation through crystal fractionation and minor crustal assimilation occurred in crustal and shallow sub-volcanic magma reservoirs. In the central part of the system, a number of vertically spaced reservoirs acted as a filter, capturing basaltic dykes and hindering their ascent. In the outer region, dykes either reached the surface unhindered and erupted to form the basaltic/trachybasaltic succession or stalled at crustal levels and differentiated to trachyte before forming dispersed domes/flows. The central plumbing system "filter" resulted in a nest-shaped volcano, with a trachytic core surrounded by basaltic products, and stopped direct injection of basaltic magmas into the shallow syenitic magma reservoir, likely preventing its destabilization and explosive eruption.

  20. An experimental study of focused magma transport and basalt-peridotite interactions beneath mid-ocean ridges: implications for the generation of primitive MORB compositions

    NASA Astrophysics Data System (ADS)

    Lambart, Sarah; Laporte, Didier; Schiano, Pierre

    2009-04-01

    We performed experiments in a piston-cylinder apparatus to determine the effects of focused magma transport into highly permeable channels beneath mid-ocean ridges on: (1) the chemical composition of the ascending basalt; and (2) the proportions and compositions of solid phases in the surrounding mantle. In our experiments, magma focusing was supposed to occur instantaneously at a pressure of 1.25 GPa. We first determined the equilibrium melt composition of a fertile mantle (FM) at 1.25 GPa-1,310°C; this composition was then synthesised as a gel and added in various proportions to peridotite FM to simulate focusing factors Ω equal to 3 and 6 (Ω = 3 means that the total mass of liquid in the system increased by a factor of 3 due to focusing). Peridotite FM and the two basalt-enriched compositions were equilibrated at 1 GPa-1,290°C; 0.75 GPa-1,270°C; 0.5 GPa-1,250°C, to monitor the evolution of phase proportions and compositions during adiabatic decompression melting. Our main results may be summarised as follows: (1) magma focusing induces major changes of the coefficients of the decompression melting reaction, in particular, a major increase of the rate of opx consumption, which lead to complete exhaustion of orthopyroxene (and clinopyroxene) and the formation of a dunitic residue. A focusing factor of ≈4—that is, a magma/rock ratios equal to ≈0.26—is sufficient to produce a dunite at 0.5 GPa. (2) Liquids in equilibrium with olivine (±spinel) at low pressure (0.5 GPa) have lower SiO2 concentrations, and higher concentrations in MgO, FeO, and incompatible elements (Na2O, K2O, TiO2) than liquids produced by decompression melting of the fertile mantle, and plot in the primitive MORB field in the olivine-silica-diopside-plagioclase tetrahedron. Our study confirms that there is a genetic relationship between focused magma transport, dunite bodies in the upper mantle, and the generation of primitive MORBs.

  1. Assimilation of granite by basaltic magma at Burnt Lava flow, Medicine Lake volcano, northern California: Decoupling of heat and mass transfer

    USGS Publications Warehouse

    Grove, T.L.; Kinzler, R.J.; Baker, M.B.; Donnelly-Nolan, J. M.; Lesher, C.E.

    1988-01-01

    At Medicine Lake volcano, California, andesite of the Holocene Burnt Lava flow has been produced by fractional crystallization of parental high alumina basalt (HAB) accompanied by assimilation of granitic crustal material. Burnt Lava contains inclusions of quenched HAB liquid, a potential parent magma of the andesite, highly melted granitic crustal xenoliths, and xenocryst assemblages which provide a record of the fractional crystallization and crustal assimilation process. Samples of granitic crustal material occur as xenoliths in other Holocene and Pleistocene lavas, and these xenoliths are used to constrain geochemical models of the assimilation process. A large amount of assimilation accompanied fractional crystallization to produce the contaminated Burnt lava andesites. Models which assume that assimilation and fractionation occurred simultaneously estimate the ratio of assimilation to fractional crystallization (R) to be >1 and best fits to all geochemical data are at an R value of 1.35 at F=0.68. Petrologic evidence, however, indicates that the assimilation process did not involve continuous addition of granitic crust as fractionation occurred. Instead, heat and mass transfer were separated in space and time. During the assimilation process, HAB magma underwent large amounts of fractional crystallization which was not accompanied by significant amounts of assimilation. This fractionation process supplied heat to melt granitic crust. The models proposed to explain the contamination process involve fractionation, replenishment by parental HAB, and mixing of evolved and parental magmas with melted granitic crust. ?? 1988 Springer-Verlag.

  2. Impact melts in the MAC88105 lunar meteorite: Inferences for the lunar magma ocean hypothesis and the diversity of basaltic impact melts

    SciTech Connect

    Taylor, G.J. )

    1991-11-01

    The MAC88105 lunar meteorite, as represented by thin section 78, contains three major types of impact melt breccias. The most abundant type is clast-laden, fine grained, and rich in Al{sub 2}O{sub 3} (28 wt%); these clasts constitute most of the meteorite. Their abundance and aluminous nature indicate that the MAC88105 source area was very aluminous. This is consistent with formation of the primordial lunar crust from a global magma ocean. The second type of impact melt is represented by only one clast in 78. It has a basaltic bulk composition similar to many other lunar impact melts, but is significantly richer in P{sub 2}O{sub 5} than most and has a much lower MgO/(MgO + FeO). These data show that basaltic impact melts are compositionally diverse. Dating samples of the Al-rich impact melts and the new types of basaltic impact melts from this meteorite can test that idea that the Moon suffered a terminal cataclysm 3.9 Ga ago.

  3. Lithospheric influences on magma compositions of late Mesozoic and Cenozoic intraplate basalts (the Older Volcanics) of Victoria, south-eastern Australia

    NASA Astrophysics Data System (ADS)

    Price, Richard C.; Nicholls, Ian A.; Day, Arthur

    2014-10-01

    distinctive convex upwards patterns but are characterised by strong depletions of K, Rb and Ba relative to Nb. In both groups there is additional subtle variation with some samples having patterns with relative enrichments in Nb, Sr and Eu and/or depletions in Pb. Group 1 basalt compositions can be approximated by quantitative models involving 2 to 10% partial melting of an originally depleted mantle composition that has been metasomatised by the addition of 2 to 3% of an enriched component with a composition similar to EM1 intraplate basalt. The trace element patterns of Group 2 basalts can be modelled by 2 to 10% partial melting of an originally depleted mantle metasomatised by the addition of 1% of a calci-carbonatite composition. When Sr isotope data for Older Volcanics are projected onto an east-west profile across the state of Victoria, they outline distinctive discontinuities in isotopic composition that appear to be related to surface and subsurface structural features within the basement. One such discontinuity has previously been identified using data for the Newer Volcanics of the Western District Province of Victoria. Lithospheric blocks present beneath southern Victoria range in age from NeoProterozoic or Cambrian to Palaeozoic and some of the lowest 87Sr/86Sr ratios are observed in basalts erupted above an older basement unit (the Selwyn Block). The inference is that there is some form of lithospheric control on basaltic magma chemistry and since a substantial proportion of Older Volcanics have the geochemical characteristics of primary magmas (high Mg# and moderate to high abundances of Ni and Cr), this could indicate that magmas have been sourced from regionally heterogeneous, variably metasomatised, sub-continental lithospheric mantle. Neither the temporal and spatial relationships of the magmatic activity that followed continental breakup nor the uplift history of the south-eastern Australian passive margin are readily explained in terms of deep mantle plume

  4. Impact melts in the MAC88105 lunar meteorite - Inferences for the lunar magma ocean hypothesis and the diversity of basaltic impact melts

    NASA Technical Reports Server (NTRS)

    Taylor, G. J.

    1991-01-01

    The MAC88105 lunar meteorite, as represented by thin section 78, contains three major types of impact melt breccias. The most abundant type is clast-laden, fine-grained, and rich in Al2O3 (28 wt pct); these clasts constitute most of the meteorite. Their abundance and aluminous nature indicate that the MAC88105 source area was very aluminous. This is consistent with formation of the primordial lunar crust from a global magma ocean. The second type of impact melt is represented by only one clast in 78. It has a basaltic bulk composition similar to many other lunar impact melts, but is significantly richer in P2O5 than most and has a much lower MgO/(MgO + FeO). The third impact-melt type resembles a prominent melt group at Apollo 16, but has lower MgO/(MgO + FeO). These data show that basaltic impact melts are compositionally diverse. Dating samples of the Al-rich impact melts and the new types of basaltic impact melts from this meteorite can test the idea that the Moon suffered a terminal cataclysm 3.9 Ga ago.

  5. Project Hotspot: Temporal Compositional Variation in Basalts of the Kimama Core and Implications for Magma Source Evolution, Snake River Scientific Drilling Project, Idaho

    NASA Astrophysics Data System (ADS)

    Potter, K. E.; Shervais, J. W.; Champion, D.; Duncan, R. A.; Christiansen, E. H.

    2012-12-01

    Project Hotspot produced continuous core from three drill sites in the Snake River plain, including 1912 m of core from the Kimama drill site on the axis of the plain. Ongoing major and trace element chemical characterization of the Kimama core and new 40Ar/39Ar and paleomagnetic age data demonstrate temporal variations in the evolution of Snake River Plain volcanism. Cyclic fluctuations in magma chemistry identify over a hundred chemically distinct basalt flow groups (comprising 550 individual lava flows) within 54 periods of volcanic activity, separated by hiatuses of decades to many millennia. From a surface age of 700 ka to a bottom-hole age of 6.5 Ma, the Kimama core records the presence of several nearly coeval but compositionally different lava flows, ranging from highly evolved lavas to non-evolved tholeiites. Determining whether Kimama lavas are genetically unrelated or extreme differentiates of a single magma batch relies upon a combination of detailed chemostratigraphy and absolute and relative age data. Age and geochemical data introduce new ideas on the role of multiple magma sources and/or differentiation processes in the development of central Snake River Plain volcanic systems. The relatively short gestation of evolved liquids is demonstrated throughout the Kimama core, with evidence for cyclic fractionation of mafic lavas at depths of 318 m, 350 m, 547 m, and 1078 m. Here, highly evolved lava flows (FeOT 16.0-18.4 wt %; TiO2 3.43-4.62 wt %) are stratigraphically bounded by more primitive tholeiitic basalts (FeOT 9.9-14.8 wt%; TiO2 1.22-3.56 wt%) within the same inclination range, suggesting that cyclic fractionation is a regular feature of shield volcano development on the central Snake River Plain. Between 1.60 ± 0.13 Ma (453.5 m depth) and 1.54 ± 0.15 Ma (320.0 m depth), Kimama lavas ranged in composition from primitive tholeiite (FeOT 11.7 wt %; TiO2 1.76 wt %) to evolved basalt (FeOT 16.0 wt %; TiO2 4.00 wt %). At depths of 1119 m and 1138 m

  6. Very low Ti /VLT/ basalts - A new mare rock type from the Apollo 17 drill core

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Papike, J. J.

    1977-01-01

    Phaneritic fragments, vitrophyres, and glass beads of a new very low Ti (VLT) mare basalt are found in the Apollo 17 drill core. VLT lithic fragments are characterized by TiO2 content of approximately 0.5%, Mg/(Mg + Fe) of approximately 0.52, CaO/Al2O3 of approximately 0.9, and low alkali content. Although mineral systematics and modal composition of VLT basalt are similar to Apollo 12 and 15 low Ti basalts, VLT basalts cannot be related to these mare basalts by crystal fractionation. Since VLT basalt is isochemical with some of the less mafic green glasses, fractionation of VLT magma from a liquid of green-glass composition is a possibility. Spectral reflectance studies suggest that VLT-type basalts may be relatively common in mare basins.

  7. Light Lithophile Elements in Natural and Experimental Phases in Martian Basalts: Implications for the Degassing of Water from Martian Magmas

    NASA Technical Reports Server (NTRS)

    Herd, C. D. K.; Treiman, A. H.; McKay, G. A.; Shearer, C. K.

    2003-01-01

    Lentz et al. argued that zoning trends in light lithophile elements (LLE) in pyroxene in Shergotty and Zagami are evidence for the degassing of magmatic water. We tested this inference by obtaining: additional LLE analyses of Shergotty and Zagami pyroxene; analyses of Pasamonte pyroxene; and silicate and phosphate partition coefficients for B and Li for martian magma and mineral compositions.

  8. The Etendeka Igneous Province: magma types and their stratigraphic distribution with implications for the evolution of the Paraná-Etendeka flood basalt province

    NASA Astrophysics Data System (ADS)

    Marsh, J. S.; Ewart, A.; Milner, S. C.; Duncan, A. R.; Miller, R. McG.

    2001-02-01

    Detailed geochemical and field data for the volcanic sequence and intrusions of the Etendeka Igneous Province are used to construct a stratigraphic framework for petrogenetic interpretation of the evolution of the Etendeka-Paraná continental flood volcanic event. Geochemical and petrographic characterization of over 1,000 analyzed samples allows 8 mafic and 17 silicic magma types to be recognized. Both silicic and mafic types can be grouped into high-Ti and low-Ti suites on the basis of elevated Ti relative to other elements. The mafic magmas are: Khumib (high-Ti), Tafelberg, Kuidas, Horingbaai, Huab, Tafelkop, Albin, and Esmeralda (all low-Ti). Amongst the silicic types, the Goboboseb, Springbok, Wereldsend, Grootberg, and Beacon low-Ti quartz latites, and the Nil Desperandum high-Ti latite have been described previously. In addition, the Hoas (low-Ti), Nadas, Sechomib, and Hoarusib, (all high-Ti) latites and the Fria (low-Ti), Sarusas, Ventura, Khoraseb, Naudé, and Elliott (all high-Ti) quartz latites are described for the first time here. There is a marked provinciality in the distribution of the high- and low-Ti suites, with the former concentrated in the Northern Etendeka region and the latter dominant in the Southern Etendeka. Stratigraphic distribution of magma types allows two new formations to be defined in the Northern Etendeka - the Khumib Formation of basaltic flows and the Skeleton Coast Formation dominated by silicic sheets. The geochemical provinciality hampers precise correlations between Northern and Southern Etendeka. Available evidence suggests that the lower part of the Awahab Formation in the Southern Etendeka is coeval with the lower part of the Khumib Formation and that the silicic units in the upper part of the Tafelberg Formation probably correlate with the Skeleton Coast Formation. The paucity of Khumib dykes in relation to Tafelberg dykes and their field relationships with regard to the volcanic sequence in the Northern Etendeka

  9. Volatile constraints on the magma supply, dynamics and plumbing system of a top-ranking basaltic gas emitter: Ambrym volcano, Vanuatu Arc

    NASA Astrophysics Data System (ADS)

    Allard, Patrick

    2016-04-01

    P. Allard1,2, A. Aiuppa3,4, P. Bani5, N. Métrich1,6, A. Bertagnini6, M. Burton7, P-J. Gauthier5, F. Parello3, H. Shinohara8, G. Sawyer9, E. Bagnato3, E. Garaebiti10 1IPGP, UMR7154 CNRS, Paris France; 2INGV, Sezione di Catania, Italy; 3DiSTEM, Palermo University, Italy; 4INGV, Sezione di Palermo, Italy; 5LMV-OPGC, Clermont-Ferrand, France; 6INGV, Sezione di Pisa, Italy; 7SEAES, University of Manchester, UK; 8Geological Survey of Japan, Tsukuba, Japan; 9Department of Geography, University of Cambridge, UK; 10GEOHAZARD, Port Vila, Vanuatu. Ambrym basaltic volcano (central Vanuatu arc) is one of the most active volcanic systems of the Southwest Pacific region, where recurrent lava lake activity sustains voluminous gas release from two main cones, Benbow and Marum, in a 12 km-wide summit caldera. In 2007-2008 we could perform the first detailed investigations of gas emissions from this very active but remote and hardly accessible intra-oceanic arc volcano, combining ground-based and airborne measurements and using both in situ and remote sensing tools. The degassing budget of major, minor, trace and radioactive volatile species reveals that Ambrym ranks amongst the three most powerful persistent emitters of magmatic volatiles at global scale [1]. Coupled with the analysis of dissolved volatiles in the feeding basalt (olivine-hosted melt inclusions), the gas emission rates imply a very high average magma supply/degassing rate of 25 m3/s - 6 times the rate at Mount Etna - from a reservoir emplaced at about 4 km depth beneath the caldera floor. The chemical composition of emitted volcanic gases is compatible with dominant closed-system ascent and degassing of the basalt, followed by open degassing at shallow depth as water exsolution becomes extensive. The modest time-averaged extrusion rate, estimated from caldera infilling over the past 2 ka, requires convective downward recycling of the denser degassed magma in conduits with diameter of order 10 m. High resolution OP

  10. H 2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes

    NASA Astrophysics Data System (ADS)

    Sisson, T. W.; Layne, G. D.

    1993-06-01

    Total dissolved H 2O and major element abundances were measured in basalt and basaltic andesite glass inclusions in olivine phenocrysts from Quaternary eruptions of four subduction-related volcanoes to test the hypothesis that low-MgO high-alumina basalts contain high H 2O at depth [1] and to reveal any petrogenetically significant correlations between arc basalt compositions and H 2O contents. Total dissolved H 2O (combined molecular H 2O and OH groups) measured by ion microprobe in mafic glass inclusions from the 1974 eruption of Fuego, Guatemala, reaches 6.2 wt.%. Dissolved H 2O contents decrease in more evolved Fuego glasses. Correlations of H 2O with MgO, Na 2O, K 2O, S and Cl indicate that aqueous fluid exsolution during magma ascent forced crystallization and differentiation of residual liquids. Low-K 2O magnesian high-alumina basalt glass inclusions from the 3 ka eruption of Black Crater (Medicine Lake volcano, California) have low H 2O contents, near 0.2 wt.%, which are consistent with the MORB-like character of these and other primitive lavas of the Medicine Lake region. Basalt and basaltic andesite glass inclusions from Copco Cone and Goosenest volcano on the Cascade volcanic front north of Mt. Shasta have H 2O contents of up to 3.3 wt.%. The range of H 2O contents in Cascade mafic magmas is too large to have resulted solely from enrichment by crystallization and indicates the participation of an H 2O-rich component in magma generation or crustal-level modification. Whereas fluid-absent melting of amphibole-bearing peridotite can account for the H 2O in most mafic arc liquids, the very high H 2O/alkali ratios of the 1974 Fuego eruptives suggest that an aqueous fluid was involved in the generation of Fuego basalts.

  11. The "Large" in Large Igneous Provinces: Using Digital Geological Maps to Determine the Area, Magma Flux, and Potential Environmental Impact of the Wrangellia Flood Basalts

    NASA Astrophysics Data System (ADS)

    Scoates, J. S.; Greene, A. R.; Weis, D. A.

    2010-12-01

    Large igneous provinces (LIPs), such as continental flood basalts and oceanic plateaus, are formed by relatively short duration, massive outpourings of basalt in intraplate settings. Their emplacement has been associated with global climatic and biotic change (e.g., end-Permian Siberian LIP). The magmatic products of a LIP typically cover an area >1 Mkm2, however erosion and exhumation may substantially reduce the original area and volume of a LIP, especially oceanic plateaus that have been tectonically dispersed during accretion (e.g., Caribbean, Wrangellia). The availability of digital geologic maps from government geologic surveys now allows for measuring the precise areal distribution of remnant LIP-products, which is essential information for estimating total volumes and ultimately potential environmental effects. The Wrangellia flood basalts represent one of the best-exposed accreted oceanic plateaus on Earth. This Triassic LIP is exposed in numerous fault-bound blocks in a belt extending discontinuously for 2300 km in the Pacific Northwest of North America. It contains exposures of submarine and subaerial volcanic rocks representing composite stratigraphic thicknesses of 3.5-6 km. From recently compiled digital geologic maps (British Columbia, Yukon, Alaska), the mapped exposures of the Wrangellia flood basalts are relatively small (25,256 km2 with 75% from Vancouver Island), which leads to minimum calculated erupted volumes of up to 1.4 x 105 km3 and an estimated magma flux of 0.03 km3/yr. The original areal distribution was substantially greater, perhaps by an order of magnitude or more, as the outcrop extent does not include regions covered by younger strata and surficial deposits nor does it account for the volcanic component of the terrane that may have been subducted. However, even this minimum volumetric output rate is comparable to recent estimates of long-term volumetric eruption rates for ocean islands such as Iceland (0.02-0.04 km3/yr) and Hawaii

  12. Crystal preferred orientations of minerals from mantle xenoliths in alkali basaltic rocks form the Catalan Volcanic Zone (NE Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-Roig, Mercè; Galán, Gumer; Mariani, Elisabetta

    2015-04-01

    Mantle xenoliths in alkali basaltic rocks from the Catalan Volcanic Zone, associated with the Neogene-Quaternary rift system in NE Spain, are formed of anhydrous spinel lherzolites and harzburgites with minor olivine websterites. Both peridotites are considered residues of variable degrees of partial melting, later affected by metasomatism, especially the harzburgites. These and the websterites display protogranular microstructures, whereas lherzolites show continuous variation between protogranular, porphyroclastic and equigranular forms. Thermometric data of new xenoliths indicate that protogranular harzburgites, lherzolites and websterites were equilibrated at higher temperatures than porphyroclastic and equigranular lherzolites. Mineral chemistry also indicates lower equilibrium pressure for porphyroclastic and equigranular lherzolites than for the protogranular ones. Crystal preferred orientations (CPOs) of olivine and pyroxenes from these new xenoliths were determined with the EBSD-SEM technique to identify the deformation stages affecting the lithospheric mantle in this zone and to assess the relationships between the deformation fabrics, processes and microstructures. Olivine CPOs in protogranular harzburgites, lherzolites and a pyroxenite display [010]-fiber patterns characterized by a strong point concentration of the [010] axis normal to the foliation and girdle distribution of [100] and [001] axes within the foliation plane. Olivine CPO symmetry in porphyroclastic and equigranular lherzolites varies continuously from [010]-fiber to orthorhombic and [100]-fiber types. The orthorhombic patterns are characterized by scattered maxima of the three axes, which are normal between them. The rare [100]-fiber patterns display strong point concentration of [100] axis, with normal girdle distribution of the other two axes, which are aligned with each other. The patterns of pyroxene CPOs are more dispersed than those of olivine, especially for clinopyroxene, but

  13. 57Fe Mössbauer spectroscopy of mineral assemblages in mantle spinel lherzolites from Cenozoic alkali basalt, eastern China: Petrological applications

    NASA Astrophysics Data System (ADS)

    Hao, Xi-Luo; Li, Yi-Liang

    2013-01-01

    Mineral assemblages in spinel lherzolite xenoliths from the Cenozoic alkali basalt of eastern China were analyzed by 57Fe Mössbauer spectroscopy for Fe3+/ΣFe and distribution of Fe2+/Fe3+ in non-equivalent crystal cites. Orthopyroxene, clinopyroxene and spinel have 0.08-0.13, 0.19-0.31 and 0.13-0.23 Fe3+/ΣFe, respectively. The cation-exchange equilibrium temperatures, Fe3+ partition coefficient and oxygen fugacity of the upper mantle peridotites were calculated. The equilibrium temperatures are between 1103 K and 1405 K consistent with those reported elsewhere. The oxygen fugacities of spinel lherzolites calculated with olivine-orthopyroxene-spinel (ΔlogƒO2 from - 1.1 to 0) and clinopyroxene-olivine-orthopyroxene oxybarometers (ΔlogƒO2 from - 2.0 to 0.7) are consistent with previously reported upper mantle values.

  14. Major element chemistry of Apollo 14 mare basalt clasts and highland plutonic clasts from lunar breccia 14321: Comparison with neutron activation results

    NASA Technical Reports Server (NTRS)

    Shervais, John W.; Vetter, Scott K.

    1993-01-01

    Studies of lithic components in lunar breccias have documented a wide variety of rock types and magma suites which are not found among large, discrete lunar samples. Rock types found exclusively or dominantly as clasts in breccias include KREEP basalts, VHK mare basalts, high-alumina mare basalts, olivine vitrophyres, alkali anorthosites, and magnesian anorthosites and troctolites. These miniature samples are crucial in petrogenetic studies of ancient mare basalts and the highlands crust of the western nearside, both of which have been battered by basin-forming impacts and no longer exist as distinct rock units.

  15. Source Components and Intensive Parameters of Magma Genesis in the CentAm and North IBM Arcs: Analyses using Arc Basalt Simulator Version 2 Model

    NASA Astrophysics Data System (ADS)

    Kimura, J.; Hacker, B. R.; van Keken, P. E.; Kent, A. J.; Kawabata, H.; Stern, R. J.

    2008-12-01

    We have developed a mass balance calculation model for basalt magma genesis in subduction zones. The Arc Basalt Simulator version 2 (ABS2) model includes: 1) calculation of slab fluid composition based on PerpleX (ver.7) metamorphic mineralogy for altered oceanic crust (AOC) and sediment (SED) along the slab P-T trajectory derived by the latest geodynamic model; 2) zone refining chemical modification of the slab-derived fluid by interaction with the mantle peridotite, using mineralogy calculated by PerpleX for low-T hydrous peridotite and for high-T peridotite with nominally anhydrous minerals; and 3) fluid-fluxed, open system melting of the high-T mantle peridotite based on pMELTS mineralogy and Katz et al. (2003)s hydrous melting parameterization. Application of the ABS2 model to the northern Izu arc (N-Izu) and the Central America arcs (CentAm) highlights differences between the two arc systems. N-Izu basalts are best fit by a mixture of 10% sediment (SED) and 90% altered oceanic crust (AOC), with fluid dehydration at 4GPa/850°C beneath the volcanic front (VF) and 5GPa/900°C rear arc beneath the rear-arc (RA). Mantle melting conditions for N-Izu lavas are F=24% with 2-5% fluid at 1.0-2.5GPa/1250-1400°C (VF) and 6-20%F with 1-5% fluid at 2.5 GPa/1000-1200°C (RA). Guatemala-Nicaraguan basalts require two AOC components: Cocos-Nazca Spreading Center (CNS) and Northern Galapagos domain (NGD) with increasing HIMU component in that order. Guatemala VF basalt (Izarco) requires CNS-AOC, SED, and PM with SED:AOC = 25:75, dehydrated at 5GPa/870°C, and mantle melting at 15%F/2.7GPa/1050°C with 4% fluid. Costa Rica VF basalt (Arenal: strongest HIMU signature) requires NGD-AOC, SED, and PM. Slab dehydration conditions are SED:AOC = 30:70 at 5.7GPa/990°C. Melting conditions are 13%F/2.8GPa/1100°C with 4% fluid. Slab dehydration temperature is generally higher beneath CentAm VF (830-900°C) than N-Izu VF (780-860°C), reflecting the much younger age of the CentAm slab

  16. Insights into mantle heterogeneities: mid-ocean ridge basalt tapping an ocean island magma source in the North Fiji Basin

    NASA Astrophysics Data System (ADS)

    Brens, R., Jr.; Jenner, F. E.; Bullock, E. S.; Hauri, E. H.; Turner, S.; Rushmer, T. A.

    2015-12-01

    The North Fiji Basin (NFB), and connected Lau Basin, is located in a complex area of volcanism. The NFB is a back-arc basin (BAB) that is a result of an extinct subduction zone, incorporating the complicated geodynamics of two rotating landmasses: Fiji and the Vanuatu island arc. Collectively this makes the spreading centers of the NFB the highest producing spreading centers recorded. Here we present volatile concentrations, major, and trace element data for a previously undiscovered triple junction spreading center in the NFB. We show our enrichment samples contain some of the highest water contents yet reported from (MORB). The samples from the NFB exhibit a combination of MORB-like major chemical signatures along with high water content similar to ocean island basalts (OIB). This peculiarity in geochemistry is unlike other studied MORB or back-arc basin (to our knowledge) that is not attributed to subduction related signatures. Our results employ the use of volatiles (carbon dioxide and water) and their constraints (Nb and Ce) combined with trace element ratios to indicate a potential source for the enrichment in the North Fiji Basin. The North Fiji Basin lavas are tholeiitic with similar major element composition as averaged primitive normal MORB; with the exception of averaged K2O and P2O5, which are still within range for observed normal MORB. For a mid-ocean ridge basalt, the lavas in the NFB exhibit a large range in volatiles: H2O (0.16-0.9 wt%) and CO2 (80-359 ppm). The NFB lavas have volatile levels that exceed the range of MORB and trend toward a more enriched source. In addition, when compared to MORB, the NFB lavas are all enriched in H2O/Ce. La/Sm values in the NFB lavas range from 0.9 to 3.8 while, Gd/Yb values range from 1.2 to 2.5. The NFB lavas overlap the MORB range for both La/Sm (~1.1) and Gd/Yb (~1.3). However, they span a larger range outside of the MORB array. High La/Sm and Gd/Yb ratios (>1) are indications of deeper melting within the

  17. Early and Late Alkali Igneous Pulses and a High-3He Plume Origin for the Deccan Flood Basalts.

    PubMed

    Basu, A R; Renne, P R; Dasgupta, D K; Teichmann, F; Poreda, R J

    1993-08-13

    Several alkalic igneous complexes of nephelinite-carbonatite affinities occur in extensional zones around a region of high heat flow and positive gravity anomaly within the continental flood basalt (CFB) province of Deccan, India. Biotites from two of the complexes yield (40)Ar/(39)Ar dates of 68.53 +/- 0.16 and 68.57 +/- 0.08 million years. Biotite from a third complex, which intrudes the flood basalts, yields an (40)Ar/(39)Ar date of 64.96 +/- 0.1 1 million years. The complexes thus represent early and late magmatism with respect to the main pulse of CFB volcanism 65 million years ago. Rocks from the older complexes show a (3)He/(4)He ratio of 14.0 times the air ratio, an initial (87)Sr/(86)Sr ratio of 0.70483, and other geochemical characteristics similar to ocean island basalts; the later alkalic pulse shows isotopic evidence of crustal contamination. The data document 3.5 million years of incubation of a primitive, high-(3)He mantle plume before the rapid eruption of the Deccan CFB. PMID:17783739

  18. Early and Late Alkali Igneous Pulses and a High-3He Plume Origin for the Deccan Flood Basalts.

    PubMed

    Basu, A R; Renne, P R; Dasgupta, D K; Teichmann, F; Poreda, R J

    1993-08-13

    Several alkalic igneous complexes of nephelinite-carbonatite affinities occur in extensional zones around a region of high heat flow and positive gravity anomaly within the continental flood basalt (CFB) province of Deccan, India. Biotites from two of the complexes yield (40)Ar/(39)Ar dates of 68.53 +/- 0.16 and 68.57 +/- 0.08 million years. Biotite from a third complex, which intrudes the flood basalts, yields an (40)Ar/(39)Ar date of 64.96 +/- 0.1 1 million years. The complexes thus represent early and late magmatism with respect to the main pulse of CFB volcanism 65 million years ago. Rocks from the older complexes show a (3)He/(4)He ratio of 14.0 times the air ratio, an initial (87)Sr/(86)Sr ratio of 0.70483, and other geochemical characteristics similar to ocean island basalts; the later alkalic pulse shows isotopic evidence of crustal contamination. The data document 3.5 million years of incubation of a primitive, high-(3)He mantle plume before the rapid eruption of the Deccan CFB.

  19. Crystallization kinetics in magmas during decompression

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Burton, Mike; Carroll, Michael R.

    2016-04-01

    Many variables play a role during magma crystallization at depth or in a volcanic conduit, and through experimentally derived constraints we can better understand pre- and syn-eruptive magma crystallization behavior. The thermodynamic properties of magmas have been extensively investigated as a function of T, P, fO2 and magma composition [1], and this allows estimation of the stability of equilibrium phases and physical parameters (e.g., density, viscosity). However, many natural igneous rocks contain geochemical, mineralogical and textural evidence of disequilibrium, suggesting that magmas frequently follow non-equilibrium, time-dependent pathways that are recorded in the geochemical and petrographic characteristics of the rocks. There are currently no suitable theoretical models capable of calculating nucleation and growth rates in disequilibrium conditions without experimental constraints. The aim of this contribution is provide quantitative data on growth and nucleation rates of feldspar crystals in silicate melts obtained through decompression experiments, in order to determine the magma evolution in pre- and sin-eruptive conditions. Decompression is one of the main processes that induce the crystallization of feldspar during the magma ascent in the volcanic conduit. Decompression experiments have been carried out on trachytic and basaltic melts to investigate crystallization kinetics of feldspar as a function of the effect of the degassing, undercooling and time on nucleation and crystal growth process [2; 3]. Furthermore, feldspar is the main crystals phase present in magmas, and its abundance can strongly vary with small changes in pressure, temperature and water content in the melt, implying appreciable variations in the textures and in the crystallization kinetics. Crystallization kinetics of trachytic melts show that long experiment durations involve more nucleation events of alkali feldspar than short experiment durations [2]. This is an important

  20. Underplating of basaltic magmas and crustal growth in a continental arc: Evidence from Late Mesozoic intermediate-felsic intrusive rocks in southern Qiangtang, central Tibet

    NASA Astrophysics Data System (ADS)

    Hao, Lu-Lu; Wang, Qiang; Wyman, Derek A.; Ou, Quan; Dan, Wei; Jiang, Zi-Qi; Wu, Fu-Yuan; Yang, Jin-Hui; Long, Xiao-Ping; Li, Jie

    2016-02-01

    depleted isotope compositions [(87Sr/86Sr)i = 0.7054-0.7065; εNd(t) = - 0.61 to + 0.25; zircon εHf(t) = + 4.7 to + 9.7] of the granodiorite porphyries indicate that they were most probably generated by partial melting of newly underplated and thickened basaltic lower crust. Taking into account ophiolites in the Bangong-Nujiang Suture and Late Mesozoic magmatic rocks in the southern Qiangtang sub-block, we suggest that this area was located in a continental arc setting. Moreover, from the Late Jurassic to Early Cretaceous, the ancient lower crust in the southern Qiangtang sub-block was gradually replaced by mantle-derived juvenile materials. The crustal evolution indicates that, in a continental arc, basaltic magma underplating plays a key role in vertical crustal growth.

  1. Petrogenesis of Late Cenozoic basalts from North Hainan Island: Constraints from melt inclusions and their host olivines

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Qiang; Ren, Zhong-Yuan; Nichols, Alexander R. L.; Song, Mao-Shuang; Qian, Sheng-Ping; Zhang, Yan; Zhao, Pei-Pei

    2015-03-01

    Melt inclusions and their host olivines in basaltic lavas provide important information about the nature of their mantle source. We present the first analyzed chemical data of olivine-hosted melt inclusions in Cenozoic basalts from the North Hainan Island and report the discovery of both tholeiitic and alkalic melt inclusions in a single rock sample. Cenozoic basalts from the Hainan Island are predominantly tholeiites with only small amounts of alkali basalts. There is a much broader compositional variation in melt inclusions than whole rocks. Compared to partial melts of mantle peridotite, the Hainan basalts have lower CaO, Na2O/TiO2, CaO/Al2O3 and Co/Fe, and higher TiO2, FeO∗, Fe/Mn, Zn/Fe and Zn/Mn. The olivine phenocrysts from the Hainan basalts contain lower Ca and Mn, and higher Ni and Fe/Mn than those of olivines crystallized from partial melts of peridotite. Projections from or towards olivine into the plane CS-MS-A for melt inclusions and whole rocks with MgO >7.5 wt% imply that the residual minerals in the source of the tholeiites are mainly clinopyroxene and garnet, possibly with some orthopyroxene, while in the source of the alkali basalts they are dominated by clinopyroxene and garnet. This indicates that a pyroxenite component could serve as the source lithology of the Hainan basalts. The OIB-like trace element compositions, with Ba, Sr, Nb and Ta positive anomalies, and Th and U negative anomalies, of the Hainan basalts suggest that a recycled oceanic crust component was involved in the source of the Hainan basalts. Based on a CMAS projection of primary magma compositions of the whole rocks and melt inclusions, we infer that a stage-2 silica-deficient pyroxenite derived from melt-peridotite reaction or mechanical mixing between recycled oceanic crust and peridotite can serve as the source lithology. Partial melts derived from such a source can match the overall compositions of the Hainan basalts better than those of MORB-eclogite and fertile

  2. Dynamics of magma ascent through the Sierra Nevada, California

    SciTech Connect

    Kovach, L.A.

    1984-01-01

    A 9 m.y. old alkali basalt intrudes the Red Lake pluton, approx.90 m.y. old granodiorite of the Huntington Lake quadrangle in the Sierra Nevada, California. The basaltic neck, standing 5 meters above the floor of the Big Creek drainage (approx. 25 meters in diameter), appears to have been the feeder for the flows that cap Chinese Peak (approx. 1 km to the south). The surrounding Red Lake granodiorite was partially fused during the intrusive process. Ten meters of the fused rock is now exposed surrounding the basaltic neck. Thermal models indicate that magma must have flowed through the pipe for approx. 1000 years to produce the extensive melting of the country rock. The basalt was probably intruded at a temperature of 900/sup 0/C, ultramafic nodules indicate its mantle origin. Surrounding the inner basaltic core is a region of basalt interlayered with granitic melt and xenoliths, which formed due to interaction of the basalt and partially molten wall rock during magma ascent. The partially fused granodiorite wall rock contains 40-45% melt at the contact, decreasing to 20% melt 10 meters from the contact. The glass composition (approx.73%-approx.75% SiO/sub 2/, 5% K/sub 2/O) suggests invariant melting. Data on Rb, Sr, and Sr isotopic composition of the glass, residual crystals, and whole rocks are used to model chemical and isotopic equilibration of silicic liquids with their residual crystals. In comparison to the granodiorite, the glass is enriched in Rb (approx.250 ppm), depleted in Sr (approx.135 ppm), permitting the construction of an apparent isochron 11.0 +/- 2.7 m.y.

  3. Hydrogen isotope systematics of submarine basalts

    USGS Publications Warehouse

    Kyser, T.K.; O'Neil, J.R.

    1984-01-01

    The D/H ratios and water contents in fresh submarine basalts from the Mid-Atlantic Ridge, the East Pacific Rise, and Hawaii indicate that the primary D/H ratios of many submarine lavas have been altered by processes including (1) outgassing, (2) addition of seawater at magmatic temperature, and (3) low-temperature hydration of glass. Decreases in ??D and H2O+ from exteriors to interiors of pillows are explained by outgassing of water whereas inverse relations between ??D and H2O+ in basalts from the Galapagos Rise and the FAMOUS Area are attributed to outgassing of CH4 and H2. A good correlation between ??D values and H2O is observed in a suite of submarine tholeiites dredged from the Kilauea East Rift Zone where seawater (added directly to the magma), affected only the isotopic compositions of hydrogen and argon. Analyses of some glassy rims indicate that the outer millimeter of the glass can undergo lowtemperature hydration by hydroxyl groups having ??D values as low as -100. ??D values vary with H2O contents of subaerial transitional basalts from Molokai, Hawaii, and subaerial alkali basalts from the Society Islands, indicating that the primary ??D values were similar to those of submarine lavas. Extrapolations to possible unaltered ??D values and H2O contents indicate that the primary ??D values of most thoteiite and alkali basalts are near -80 ?? 5: the weight percentages of water are variable, 0.15-0.35 for MOR tholeiites, about 0.25 for Hawaiian tholeiites, and up to 1.1 for alkali basalts. The primary ??D values of -80 for most basalts are comparable to those measured for deep-seated phlogopites. These results indicate that hydrogen, in marked contrast to other elements such as Sr, Nd, Pb, and O, has a uniform isotopic composition in the mantle. This uniformity is best explained by the presence of a homogeneous reservoir of hydrogen that has existed in the mantle since the very early history of the Earth. ?? 1984.

  4. Chemical heterogeneity of Mt. Etna magmas in the last 15 ka. Inferences on their mantle sources

    NASA Astrophysics Data System (ADS)

    Corsaro, Rosa Anna; Métrich, Nicole

    2016-05-01

    Primitive basaltic magmas are crucial in the study of the geochemical heterogeneity documented in Etna magmas and their inferred mantle sources. We undertook a systematic sampling of the less evolved basalts (Mg# > 50) erupted over the last 15 ka, a time period which corresponds to the activity of the youngest volcanic edifice of Mt. Etna complex, i.e. Mongibello volcano. We focused on lava flows and pyroclastites emplaced during 'deep-dyke fed' (DDF) eruptions which were driven by the rapid ascent of deeply-rooted magma intrusions that bypassed the shallow plumbing system of the volcano. All the samples were analyzed by the same laboratory to avoid analytical bias, to build a comprehensive dataset on their major and trace element compositions and to propose a coherent framework for interpreting the geochemical fingerprints of present-day Etna basalts. Trace element modeling, together with literature data for Sr isotopes, gave insight into long-term magmatic processes related to different melting degrees of the heterogeneous mantle beneath Mt Etna. DDF magma batches provide good snapshots of their mantle source heterogeneities that point to the variable involvement of clinopyroxenitic lithology, Rb-87Sr-Cl-rich fluid component(s) possibly controlled by their source mineralogy, and slab-derived fluids selectively enriched in alkalis (Rb, K). The ongoing alkali (Rb, K) enrichment of the present-day magmas, well manifest since the 1970s, is decoupled from that of Sr and Cl. We propose that this process is linked to mantle source composition and is concomitant with changes in both volcanological and seismotectonic patterns of the volcano. There is no time evolution of DDF magma chemistry.

  5. Bubble coalescence in magmas

    NASA Technical Reports Server (NTRS)

    Herd, Richard A.; Pinkerton, Harry

    1993-01-01

    The most important factors governing the nature of volcanic eruptions are the primary volatile contents, the ways in which volatiles exsolve, and how the resulting bubbles grow and interact. In this contribution we assess the importance of bubble coalescence. The degree of coalescence in alkali basalts has been measured using Image Analysis techniques and it is suggested to be a process of considerable importance. Binary coalescence events occur every few minutes in basaltic melts with vesicularities greater than around 35 percent.

  6. Flow in the shallow mantle in the westernmost Mediterranean: insights from xenoliths in Plio-Pleistocene alkali basalts from the eastern Betic Cordillera (SE Spain)

    NASA Astrophysics Data System (ADS)

    Konc, Zoltán; Hidas, Károly; Garrido, Carlos J.; Tommasi, Andréa; Vauchez, Alain; Padrón Navarta, José Alberto; Marchesi, Claudio; Acosta-Vigil, Antonio; Szabó, Csaba; Varas-Reus, Maria Isabel

    2016-04-01

    Peridotite mantle xenoliths in Plio-Pleistocene alkali basalts of the eastern Betic Cordillera (Cartagena area, Murcia, SE Spain) provide a snapshot of the structure and composition of the lithospheric mantle at the northern limb of the Alpine Betic-Rif arched belt in the westernmost Mediterranean. The xenoliths are spinel and plagioclase lherzolite with minor harzburgite and wehrlite, displaying porphyroclastic to equigranular textures. Regardless of composition and texture, the Crystal Preferred Orientation (CPO) of olivine shows an axial-[100] pattern characterized by a strong alignment of [100]-axes near or parallel to the peridotite lineation and a girdle distribution of [010]-axes with a maximum normal to the peridotite foliation. This CPO pattern is consistent with ductile deformation accommodated by dislocation creep with dominant activation of the high temperature {0kl}[100] olivine slip system, indicative of deformation by simple shear or combinations of simple shear and pure shear with a transtensional component. Calculated seismic properties are characterized by fast propagation of P-waves and polarization of fast S-waves parallel to olivine [100]-axis, indicating the flow direction. SKS and Pn anisotropy in the eastern Betics can be explained by a lithospheric mantle peridotite with similar fabric to the one displayed by the studied mantle xenoliths. Considering the limited thickness of the mantle lithosphere in the Betics (40-80 km), the measured azimuths and delays of SKS waves in the eastern Betics are consistent with a steeply dipping mantle foliation and a subhorizontal lineation with ENE strike. This geometry of the lithospheric fabrics implies active or frozen mantle flow with a dominantly strike-slip component subparallel to the paleo-Iberian margin. Synkinematic overprinting of mineral assemblages from the garnet-spinel to the plagioclase facies demonstrates 36-40 km uplift continuously accommodated by ductile shear thinning of the

  7. Melt rock components in KREEPy breccia 15205: Petrography and mineral chemistry of KREEP basalts and quartz-normative mare basalts

    NASA Technical Reports Server (NTRS)

    Shervais, John W.; Vetter, Scott K.

    1993-01-01

    Many current models for the origin of lunar highland rocks feature as an essential component the assimilation of KREEPy material by primitive magmas parental to the Mg-rich suite and alkali suite plutonic rocks. Similar models have also been proposed for the origin of various mare basalt suites. However, any model which considers assimilation of KREEP an important petrologic process must sooner-or-later deal with the question: what is KREEP? Because pristine KREEP basalts are rare, and most known samples are small (e.g., 15382/15386), the geochemical variability of KREEP basalts is poorly known. Other KREEP compositions which are commonly used in these models include the hypothetical 'high-K KREEP' component of Warren and Wasson, which is derived from Apollo 14 soil data, and the 'superKREEP' quartz-monzodiorite 15405. Lunar breccia 15205 is a polymict regolith breccia that consists of approximately 20% KREEP basalt clasts and 20% quartz-normative basalt clasts in a KREEP-rich matrix. Bulk rock mixing calculations show that this sample comprises about 84% KREEP. The clasts range up to 1 cm in size, but most are considerably smaller. The primary aim is to characterize pristine KREEP basalts petrographically, to establish the range in chemical compositions of KREEP basalts, and to test models that were proposed for their origin. In addition, we may be able to extend the compositional range recognized in the quartz-normative basalt suite and cast some light on its origin as well. Preliminary whole rock geochemical data on the KREEP basalts are presented in a companion paper by M.M. Lindstrom and co-workers. Concentration is on petrography and mineral chemistry of these clasts, and the implications these data have for the origin of the different melt rock suites.

  8. The oxygen-hafnium isotope paradox in the early post Columbia River Basalt silicic volcanism: Evidence for complex batch assembly of upper crustal, lower crustal and low-δ18O silicic magmas

    NASA Astrophysics Data System (ADS)

    Colon, D.; Bindeman, I. N.; Ellis, B. S.; Schmitt, A. K.; Fisher, C. M.; Vervoort, J. D.

    2013-12-01

    Eruptions of the Columbia River flood basalts were immediately followed by large eruptions of silicic magmas; some may have been coeval, others genetically-linked to the CRB. Among the most voluminous of these eruptions was the Jarbidge Rhyolite, which comprises ~500 km3 of lava erupted from 16.1-15.0 Ma in northern Nevada. Activity at Jarbidge was followed at 15.0 Ma by a series of rhyolitic ignimbrites and lavas in the J-P Desert of Idaho ~50 km NW of the Jarbidge Rhyolite center. To constrain magmatic origins and upper crustal magma storage conditions of these two silicic magmatic systems, we conducted bulk and high spatial resolution analysis of whole rocks and minerals (quartz, feldspar, and zircon). Bulk quartz and plagioclase δ18O values of the J-P Desert units are only moderately lower than mantle values, with δ18O-quartz of 5.0-5.5‰ and plagioclase δ18O of ~3.9-5.8‰, along with slightly unradiogenic Nd and Hf whole rock values (average ɛHf and ɛNd of -13.1 and -10.0, respectively), while quartz from the Jarbidge Rhyolite has normal δ18O (+8.4‰), but very unradiogenic ɛHf-ɛNd (ɛHf = -34.7, ɛNd = -24.0), fingerprinting Archean upper crust. SIMS analysis of J-P Desert zircons reveals considerably diverse δ18O values, ranging from -0.6‰ to +6.5‰ in a single unit. The same zircon spots yielded U-Pb SIMS ages which generally agree with the 40Ar/39Ar eruption ages, with no evidence of inheritance of pre-Miocene zircons. Combined with LA-MC-ICP-MS analysis of Hf isotopes overlapping the earlier SIMS spots, these zircons show a clear near-linear correlation between ɛHf and δ18O values observed in individual zircons. This relationship suggests variable mixing of two distinct silicic magmas prior to eruption of the J-P Desert rhyolites. One of these, characterized by extremely low ɛHf values and normal δ18O values, is likely a mantle magma strongly contaminated with shallow Archean crust, represented by the Jarbidge Rhyolite. The other is

  9. Asthenosphere versus lithosphere as possible sources for basaltic magmas erupted during formation of the Red Sea: constraints from Sr, Pb and Nd isotopes

    NASA Astrophysics Data System (ADS)

    Altherr, Rainer; Henjes-Kunst, Friedhelm; Baumann, Albrecht

    1990-01-01

    Representative basalts from the axial trough of the Red Sea and from volcanic fields of the Arabian Peninsula ranging in composition from N-type MORB to basanite and in age from Early Miocene to Recent show a limited variation in their isotopic compositions: 87Sr/ 86Sr= 0.70240-0.70361 , 206Pb/ 204Pb= 18.040-19.634 , 207Pb/ 204Pb= 15.496-15.666 , 208Pb/ 204Pb= 37.808-39.710 , 143Nd/ 144Nd= 0.513194-0.512670 . There is a poorly constrained correlation between chemical composition and isotope ratios: with increasing alkalinity, Sr and Pb isotope ratios increase and the Nd isotope ratio tends to decrease. In Pb isotope variation diagrams most of the basalts plot significantly above the NHRLs, irrespective of tectonic setting, i.e. thickness of underlying crust and/or lithosphere. MORBs from the axial trough of the Red Sea have higher Pb isotope ratios for a given 87Sr/ 86Sr than MORBs from the Indian Ocean ridges, including the Carlsberg Ridge. It is therefore suggested that both spreading ridges tap different convective systems in the asthenosphere. The tectonic setting of the basalts is reflected in their Nd sbnd Sr isotope characteristics. Basalts from areas where the continental lithosphere is drastically thinned or absent (i.e. Red Sea axial trough and coastal plain, Afar) plot along a reference line defined by N-type MORB and Tristan da Cunha. Basalts erupted in areas with Pan-African crust of normal thickness and moderately thinned lithospheric mantle (i.e. rift shoulder) are characterized by relative low 143Nd/ 144Nd ratios and plot below the reference line towards an EM I component which is also found in the subcontinental lithospheric mantle. These differences in the Nd sbnd Sr isotopic compositions of the basalts are independent of bulk-rock chemistry and are therefore controlled by tectonic setting alone. It is suggested that the low- 143Nd/ 144Nd trend of basalts from the Arabian rift shoulder is caused by a significant contribution of the pre

  10. Alkali content of alpine ultramafic rocks

    USGS Publications Warehouse

    Hamilton, W.; Mountjoy, W.

    1965-01-01

    The lower limit of abundance of sodium and potassium in ultramafic rocks is less than the threshold amount detectable by conventional analytical methods. By a dilutionaddition modification of the flame-spectrophotometric method, sodium and potassium have been determined in 40 specimens of alpine ultramafic rocks. Samples represent six regions in the United States and one in Australia, and include dunite, peridotite, pyroxenite, and their variably serpentinized and metamorphosed derivatives. The median value found for Na2O is 0.004 per cent, and the range of Na2O is 0.001-0.19. The median value for K2O is 0.0034 per cent and the range is 0.001-0.031 per cent. Alkali concentrations are below 0.01 per cent Na2O in 28 samples and below 0.01 per cent K2O in 35. Derivation of basalt magma from upper-mantle material similar to such ultramafic rocks, as has been postulated, is precluded by the relative amounts of sodium and potassium, which are from 200 to 600 times more abundant in basalt than in the ultramafic rocks. Similar factors apply to a number of other elements. No reasonable process could produce such concentrations in, for example, tens of thousands of cubic miles of uniform tholeiitic basalt. The ultramafic rocks might have originated either as magmatic crystal precipitates or as mantle residues left after fusion and removal of basaltic magma. Injection of ultramafic rocks to exposed positions is tectonic rather than magmatic. ?? 1965.

  11. Magma Differentiation and Storage Inferred from Crystal Textures at Harrat Rahat Volcanic Field, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Witter, M. R.; Mahood, G. A.; Stelten, M. E.; Downs, D. T.; Zahran, H. M.

    2015-12-01

    We present results of a petrographic study of Harrat Rahat volcanic field in western Saudi Arabia as part of a collaborative project between the U.S.G.S. and the Saudi Geological Survey. Lavas range in composition from alkali basalt to trachyphonolite. Basalts have <2-10 vol.% phenocrysts of euhedral olivine and plagioclase (± minor clinopyroxene). In intermediate lavas, phenocrysts (<5 vol.%) of olivine and plagioclase are resorbed, and plagioclase also exhibits sieve textures and strong zoning, indicative of complex magmatic histories. Trachyphonolite lavas have 0-35 vol.% large phenocrysts of anorthoclase and trace fayalitic olivine but are characterized by a size distribution of crystals that is seriate in hand specimen, so that most exceeded 45% crystals at the time of eruption. Some contain groundmass alkali amphibole. Crystal size distributions (CSD) of crystal-rich trachyphonolites produce simple linear trends (see below), which are interpreted as signifying that all the crystals are related through a common nucleation and growth history, at more or less constant pressure. Linear CSDs indicate no loss of small crystals due to reheating of magmas by recharge, no gain of small crystals due to late-stage nucleation on ascent or degassing, and no addition of large phenocrysts by crystal accumulation or magma mixing. Experimental studies demonstrate that silica-undersaturated evolved magmas like those erupted at Harrat Rahat can form by fractionation of alkali basalts at crustal depths greater than ~25 km. The observed phenocryst assemblage in the trachyphonolites, however, forms at shallow depths, ~2-4 km, according to MELTS modeling. Coupled with CSD data, this suggests that deep extraction events yield crystal-poor trachyphonolite magmas that rise to the upper crust where they undergo crystallization. Extensive shallow crystallization of trachyphonolites may have triggered eruptions by causing vapor saturation, which lowers magma density via vesiculation and

  12. Unraveling the Eyjafjallajökull 2010 plumbing system and magma chamber dynamics through high-resolution geochemical investigations

    NASA Astrophysics Data System (ADS)

    Laeger, Kathrin; Petrelli, Maurizio; Andronico, Daniele; Scarlato, Piergiorgio; Cimarelli, Corrado; Misiti, Valeria; del Bello, Elisabetta; Perugini, Diego

    2016-04-01

    The April-May 2010 eruption of the Eyjafjallajökull volcano (EFJ, Iceland) was triggered by an intrusion of fresh magma coming from deeper portions of the crust migrating into shallower depth of 3-6 km in the magmatic system. Here, we present new EMPA and LA-ICP-MS analyses on groundmass glasses of ash particles erupted between 18 and 22 May 2010, the last days of the eruption. The glasses define two well separated groups. The first group is basaltic in composition with SiO2 ranging from 49.98 to 51.76 wt.% and a total alkali content (Na2O + K2O) in the range between 4.63 and 5.17 wt.%. The second group ranges between trachyandesitic and rhyolitic compositions with SiO2 ranging between 57.13 to 70.38 wt.% and a total alkali content from 7.21 to 10.90 wt.%. Least square modelling after Störmer and Nicholls (1978) discriminates best the origin of the basaltic glass by both fractional crystallization of a more primitive basalt or mixing of a basalt and a felsic magma. Furthermore, this model proves that the trachyandesitic range is the result of mixing of trachyandesite and trachyte magma. Magma mixing modeling after Langmuir (1978) and element concentration histograms indicate a probable incomplete magma mixing as the main process forming the great compositional variability observed in the erupted products. Finally, we estimated mixing end-members of intermediate (~59 wt.% SiO2) and felsic composition (~66-68 wt.% SiO2) with a felsic melt-proportion of 0.35-0.47. In the 90s, recorded seismicity and ground deformation indicated intrusions at shallow depth under the EFJ edifice probably forming separated sills. Therefore, the origin of the trachyandesite is presumably to find in a discrete magma batch that generated years before eruption. The rhyolite composition can be considered as the residual melt that remained in the plumbing system of EFJ since the last eruption in 1821-23. We suggest that these different magma batches formed the plumbing system of EFJ and have

  13. Residence times of alkali feldspar phenocrysts from magma feeding the Agnano-Monte Spina Eruption (4.7 ka), Campi Flegrei caldera (Napoli, southern Italy) based on Ba-zonation modelling

    NASA Astrophysics Data System (ADS)

    Iovine, Raffaella Silvia; Wörner, Gerhard; Carmine Mazzeo, Fabio; Arienzo, Ilenia; Fedele, Lorenzo; Civetta, Lucia; D'Antonio, Massimo; Orsi, Giovanni

    2016-04-01

    Timescales governing the development of crustal magma reservoirs are a key for understanding magmatic processes such as ascent, storage and mixing event. An estimate of these timescales can provide important constraints for volcanic hazard assessment of active volcanoes. We studied the Agnano-Monte Spina eruption (A-MS; 4.7 ka; VEI = 4; 0.85 km3 D.R.E. of magma erupted) of the Campi Flegrei caldera, one of the most dangerous volcanic areas on Earth. The A-MS eruption has been fed by magmas varying from more to less evolved trachyte whose variable 87Sr/86Sr and trace elements features suggest magma mixing between two end-members. Ba zonation profiles of alkali feldspar phenocrysts have been determined through combined energy-dispersive and wavelength-dispersive electron microprobe analyses (EDS-WDS-EMPA). We focused on distinct compositional breaks near the rim of the crystals that likely represent the last mixing event prior to eruption. We always chose the steepest gradients close to the crystal rims, taking into account that any effects related to cutting angles or crystal orientation should give longer apparent diffusion times. Two different approaches were undertaken: (1) a quantitative Ba compositional profiles were measured by point analyses along a short transect crossing growth discontinuities and (2) grey-scale profiles were taken parallel to the acquired point profiles. Assuming that Ba dominates the backscattered electron intensities in sanidines, greyscale gradients can be used as a diffusive tracer. BSE images were processed using the ImageJ® software, in order to extract a numerical greyscale profile. In both cases, each profile was interpolated through a non-linear Boltzmann fit curve with the Mathematica® software. A few traverses done at angles smaller than 90° to the compositional boundary interface were corrected by multiplying the distance values by the sinus of the traverse angle relative to the vertical on the interface. Our preliminary

  14. Earliest Silicic Volcanism Associated with Mid-Miocene Flood Basalts: Tuffs Interbedded with Steens Basalt, Nevada and Oregon

    NASA Astrophysics Data System (ADS)

    Luckett, M.; Mahood, G. A.; Benson, T. R.

    2013-12-01

    During the main phase of Steens and Columbia River flood basalt eruptions between ~16.7 and 15.0 Ma, spatially associated silicic volcanism was widespread, ~4,000 km3 of silicic magma erupting at calderas and smaller centers dispersed across ~25,000 km2 in eastern Oregon and northern Nevada (Coble and Mahood, 2012). The oldest flood basalts erupted from a focus at Steens Mountain in eastern Oregon, where the section of lavas is ~1 km thick. The Steens Basalt thins southward to only a few flows thick in northern Nevada, either because fewer flows were emplaced this far from the focus or because fewer dikes propagated to the surface on encountering thicker continental crust and/or were intercepted by growing bodies of silicic magma that ultimately erupted in McDermitt Caldera Field (Rytuba and McKee, 1984), High Rock Caldera Complex, and the Lone Mountain/Hawks Valley center (Wypych et al., 2011). Rhyolitic tuffs have not been recognized interbedded with the basalt lavas in the type section, but we have identified several silicic tuffs interbedded with Steens Basalt in the southern Pueblo Mountains and in the Trout Creek Mountains. Although noted by previous workers (e.g., Avent, 1965; Minor, 1986; Hart et al., 1989), they have not been studied. We identified six tuffaceous intervals 20 cm to 15 m thick in the escarpment of the southern Pueblo Mountains near the Oregon-Nevada border where the Steens basalt section is ~250 m thick, with the base unexposed. Two intervals are lithic-rich, reworked volcaniclastic sediments, but four are primary or only slightly reworked sequences of fall deposits that range from fine ash to lapilli in grain size. The heat and weight of the overlying basaltic lava flows has fused the tuffs so that the upper parts of thicker tuffaceous intervals and entire thinner ones are converted to vitrophyres, with crystals of alkali feldspar × quartz × biotite typically 1-2 mm in diameter set in a dense, black, variably hydrated, glassy matrix. We

  15. Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area, southern China

    NASA Astrophysics Data System (ADS)

    Ho, Kung-suan; Chen, Ju-chin; Juang, Wen-shing

    2000-06-01

    The Leiqiong area, which includes the Leizhou Peninsula and the northern part of the Hainan Island, is the largest province of exposed basalts in southern China. Ar-Ar and K-Ar dating indicates that incipient volcanism in the Leiqiong area may have taken place in late Oligocene time and gradually increased in tempo toward the Miocene and Pliocene Epoch. Volcanic activities were most extensive during Pleistocene, and declined and ended in Holocene. Based on radiometric age dating and geographic distribution, Pliocene and Quaternary volcanism in Hainan Island can be grouped into two stages and six eruptive regions. The early volcanism is dominated by flood type fissure eruption of quartz tholeiites and olivine tholeiites whereas the later phase is dominated by central type eruption of alkali olivine basalts and olivine tholeiites. The systematic decrease of MgO, ΣFeO and TiO 2 with increasing SiO 2 content for basalts from Hainan Island indicates that fractional crystallization of olivine, clinopyroxene and Ti-bearing opaques may have occurred during magmatic evolution. From coexisting Fe-Ti oxide minerals, it is estimated that the equilibrium temperatures range from 895-986°C and oxygen fugacities range from 10 -13.4 to 10 -10.7 atmospheres in the basaltic magmas. The incompatible element ratios and the chondrite-normalized REE patterns of basalts from the Leiqiong area are generally similar to OIB. The Nb/U ratios (less than 37) in most of the tholeiitic rocks and the negative Nb anomaly observed in the spidergram of some basalts indicated that the influence of a paleo-subduction zone derived component can not be excluded in considering the genesis of the basalts from the Leiqiong area. The tholeiites in the Leiqiong area may have mixed with a more enriched lithospheric mantle component as well as undergone relatively larger percentages of partial melting than the alkali basalts.

  16. Production of hybrid granitic magma at the advancing front of basaltic underplating: Inferences from the Sesia Magmatic System (south-western Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Sinigoi, Silvano; Quick, James E.; Demarchi, Gabriella; Klötzli, Urs S.

    2016-05-01

    The Permian Sesia Magmatic System of the southwestern Alps displays the plumbing system beneath a Permian caldera, including a deep crustal gabbroic complex, upper crustal granite plutons and a bimodal volcanic field dominated by rhyolitic tuff filling the caldera. Isotopic compositions of the deep crustal gabbro overlap those of coeval andesitic basalts, whereas granites define a distinct, more radiogenic cluster (Sri ≈ 0.708 and 0.710, respectively). AFC computations starting from the best mafic candidate for a starting melt show that Nd and Sr isotopic compositions and trace elements of andesitic basalts may be modeled by reactive bulk assimilation of ≈ 30% of partially depleted crust and ≈ 15%-30% gabbro fractionation. Trace elements of the deep crustal gabbro cumulates require a further ≈ 60% fractionation of the andesitic basalt and loss of ≈ 40% of silica-rich residual melt. The composition of the granite plutons is consistent with a mixture of relatively constant proportions of residual melt delivered from the gabbro and anatectic melt. Chemical and field evidence leads to a conceptual model which links the production of the two granitic components to the evolution of the Mafic Complex. During the growth of the Mafic Complex, progressive incorporation of packages of crustal rocks resulted in a roughly steady state rate of assimilation. Anatectic granite originates in the hot zone of melting crust located above the advancing mafic intrusion. Upward segregation of anatectic melts facilitates the assimilation of the partially depleted restite by stoping. At each cycle of mafic intrusion and incorporation, residual and anatectic melts are produced in roughly constant proportions, because the amount of anatectic melt produced at the roof is a function of volume and latent heat of crystallization of the underplated mafic melt which in turn produces proportional amounts of hybrid gabbro cumulates and residual melt. Such a process can explain the

  17. Understanding highly explosive basaltic eruptions: Evidence from olivine-hosted melt inclusions from Sunset Crater, AZ

    NASA Astrophysics Data System (ADS)

    Allison, C. M.; Roggensack, K.; Clarke, A. B.; Alfano, F.

    2013-12-01

    Basaltic scoria cone volcanoes are the most abundant volcanic landform on Earth and occur in all tectonic settings. Basaltic magmas have lower viscosities, higher temperatures, and lower volatile contents than silicic magmas, and therefore generally have a lower potential for explosive activity. However, basaltic eruptions display great variability, from mild lava flows to more energetic explosions with large plumes. The mechanism controlling highly explosive basaltic eruptions, such as the ca. 1085 AD eruption of Sunset Crater, is poorly understood. Processes or conditions such as high volatile content in the source magma, injection of a compositionally distinct magma at depth, interaction with shallow magma reservoirs, or rapid crystallization and/or bubble nucleation in the shallow subsurface could increase explosivity of basaltic magmas. One method to test these hypotheses is melt inclusion analysis in order to constrain initial melt composition, volatile content and minimum storage depth. The San Francisco Volcanic Field (SFVF) in northern Arizona, active from 6 Ma-present, consists of over 600 volcanoes - mainly alkali basalt scoria cones along with five silicic centers. The eruption of Sunset Crater in the SFVF during the Holocene was an anomalously large basaltic explosive eruption, consisting of >8 explosive phases and 3 lava flows. Typical scoria cone-forming eruptions produce <0.1 km3 DRE of material, while the Sunset Crater tephra deposit is on the order of ~0.3 km3 DRE, with each phase characterized by volumes of 0.02-0.08 km3 DRE. The phases vary in size and style; the beginning stages of explosive activity (phases 1-2) were considerably smaller than phases 3-5, classified as subplinian. Because of the young age and desert setting of the volcano, the eruptive material is fresh and the deposit is well preserved. The bulk composition is an alkali basalt with Mg# 74. We studied 40 primary melt inclusions (MIs) hosted in 36 olivine crystals 0.5-2 mm in

  18. Melt inclusion constraints on the magma source of Eyjafjallajökull 2010 flank eruption

    NASA Astrophysics Data System (ADS)

    Moune, S.; Sigmarsson, O.; Schiano, P.; Thordarson, T.; Keiding, J. K.

    2012-09-01

    The 2010 eruptive activity at the Eyjafjallajökull volcanic system began 20 March with a basaltic flank eruption on a 300 m long fissure on the Fimmvörðuháls Pass, in between Eyjafjallajökull and Mýrdalsjökull volcanoes. The magma expelled from the fissure is olivine- and plagioclase-bearing mildly alkali basalt that exhibits uniform and rather primitive whole-rock composition. This event provides a rare opportunity to assess deep magmatic processes in Iceland. Melt inclusions (MIs) hosted in olivine phenocrysts were analyzed for their major, trace and volatile element concentrations to enable identification of magmatic source(s) for Eyjafjallajökull volcano and to better constrain processes occurring at depth. The MIs, in particular those in Mg-rich olivines, record primary magma composition before homogenisation and differentiation during magma ascent. The olivine phenocrysts hosting the MIs have a large compositional range, extending from Fo73 to Fo87, reflecting changes in the magma characteristics from the source to the surface. The MI compositions exhibit significant variations with MgO ranging from 5.2 to 7.2 wt%. This compositional range was caused by a binary mixing of two basaltic end-members followed by fractional crystallization process. The sources of these end-members are identical to those of Katla and Surtsey basalts, with a dominant role of the Katla source. Trace element characteristics of the Fimmvörðuháls MIs suggest important proportions of recycled oceanic crust in their mantle sources.

  19. Source component mixing in the regions of arc magma generation

    NASA Astrophysics Data System (ADS)

    Arculus, Richard J.; Powell, Roger

    1986-05-01

    Most recent workers attribute the main features of island arc basalt geochemistry to variable contributions of at least two source components. The major source appears to be the peridotitic wedge of upper mantle overlying the subducted slab, but the nature of the second component and the processes by which the sources become mixed during genesis of arc magmas are in dispute. A metasomatic addition to the wedge resulting from devolatilization in the slab is the simplest explanation of the marked enrichment of the alkali and alkaline earth elements with respect to the rare earths in island arc basalts, together with the variably developed trends in Pb, Sr, and Nd isotopic data toward sedimentary contaminants. However, lack of the correlations between relative degrees of trace element fractionation and radiogenic isotopic ratios expected of such processes requires a more complex explanation. Alternative models that suggest that all of the characteristics of island arc basalts can be accounted for by melting of an intraoceanic, hot spot type of mantle source also face specific difficulties, particularly with regard to the strong depletions of trace high-field-strength elements in arc compared with hot spot magmas. A possible resolution of these specific geochemical difficulties may lie in dynamic transport processes within the wedge linked with the slab through coupled drag, and the marked depression of mantle isotherms in subduction zones. Inefficient escape of melts and subsequent repeated freezing within the overturning wedge can lead to local mineralogic and geochemical heterogeneity of the peridotite overlying the slab. Fluids released from the slab may infiltrate the heterogeneous wedge and preferentially scavenge the alkalis and alkaline earths with respect to the rare earths and high field strength elements from locally enriched portions of the wedge. Incorporation of such metasomatic fluids in renewed melting at shallower but hotter levels within the wedge can

  20. Dynamics of an open basaltic magma system: The 2008 activity of the Halema‘uma‘u Overlook vent, Kīlauea Caldera

    USGS Publications Warehouse

    Eychenne, Julia; Houghton, Bruce; Swanson, Don; Carey, Rebecca; Swavely, Lauren

    2015-01-01

    On March 19, 2008 a small explosive event accompanied the opening of a 35-m-wide vent (Overlook vent) on the southeast wall of Halema‘uma‘u Crater in Kīlauea Caldera, initiating an eruptive period that extends to the time of writing. The peak of activity, in 2008, consisted of alternating background open-system outgassing and spattering punctuated by sudden, short-lived weak explosions, triggered by collapses of the walls of the vent and conduit. Near-daily sampling of the tephra from this open system, along with exceptionally detailed observations, allow us to study the dynamics of the activity during two eruptive sequences in late 2008. Each sequence includes background activity preceding and following one or more explosions in September and October 2008 respectively. Componentry analyses were performed for daily samples to characterise the diversity of the ejecta. Nine categories of pyroclasts were identified in all the samples, including wall-rock fragments. The six categories of juvenile clasts can be grouped in three classes based on vesicularity: (1) poorly, (2) uniformly highly to extremely, and (3) heterogeneously highly vesicular. The wall-rock and juvenile clasts show dissimilar grainsize distributions, reflecting different fragmentation mechanisms. The wall-rock particles formed by failure of the vent and conduit walls above the magma free surface and were then passively entrained in the eruptive plume. The juvenile componentry reveals consistent contrasts in degassing and fragmentation processes before, during and after the explosive events. We infer a crude ‘layering’ developed in the shallow melt, in terms of both rheology and bubble and volatile contents, beneath a convecting free surface during background activity. A tens-of-centimetres thick viscoelastic surface layer was effectively outgassed and relatively cool, while at depths of less than 100 m, the melt remained slightly supersaturated in volatiles and actively vesiculating

  1. Dynamics of an open basaltic magma system: The 2008 activity of the Halema'uma'u Overlook vent, Kīlauea Caldera

    NASA Astrophysics Data System (ADS)

    Eychenne, Julia; Houghton, Bruce F.; Swanson, Donald A.; Carey, Rebecca J.; Swavely, Lauren

    2015-01-01

    On March 19, 2008 a small explosive event accompanied the opening of a 35-m-wide vent (Overlook vent) on the southeast wall of Halema'uma'u Crater in Kīlauea Caldera, initiating an eruptive period that extends to the time of writing. The peak of activity, in 2008, consisted of alternating background open-system outgassing and spattering punctuated by sudden, short-lived weak explosions, triggered by collapses of the walls of the vent and conduit. Near-daily sampling of the tephra from this open system, along with exceptionally detailed observations, allow us to study the dynamics of the activity during two eruptive sequences in late 2008. Each sequence includes background activity preceding and following one or more explosions in September and October 2008 respectively. Componentry analyses were performed for daily samples to characterise the diversity of the ejecta. Nine categories of pyroclasts were identified in all the samples, including wall-rock fragments. The six categories of juvenile clasts can be grouped in three classes based on vesicularity: (1) poorly, (2) uniformly highly to extremely, and (3) heterogeneously highly vesicular. The wall-rock and juvenile clasts show dissimilar grainsize distributions, reflecting different fragmentation mechanisms. The wall-rock particles formed by failure of the vent and conduit walls above the magma free surface and were then passively entrained in the eruptive plume. The juvenile componentry reveals consistent contrasts in degassing and fragmentation processes before, during and after the explosive events. We infer a crude 'layering' developed in the shallow melt, in terms of both rheology and bubble and volatile contents, beneath a convecting free surface during background activity. A tens-of-centimetres thick viscoelastic surface layer was effectively outgassed and relatively cool, while at depths of less than 100 m, the melt remained slightly supersaturated in volatiles and actively vesiculating. Decoupled metre

  2. Liquidus tracking by vigorous convection in ascending magma

    NASA Astrophysics Data System (ADS)

    Winslow, N. W.; Marsh, B.

    2007-12-01

    the Fourier modulus, which is a dimensionless time measuring the rate of ascent or rate of superheat production. When superheat is available, thermal convection is rapid and cooling is rapid. With approach to the liquidus, convection and cooling wane, but continued ascent attempts to follow the adiabat, which initiates new superheat and the cycle repeats itself. Because the rise time for convection is short and heat transfer highly efficient, for a constant ascent velocity an equilibrium is established between the rates of superheat production and loss due to cooling. The pattern of cooling does not oscillate about the liquidus, but instead tracks the liquidus in a slightly superheated state. Because convection ceases at the liquidus, the cooling trajectory cannot reach or cross the liquidus unless conductive heat loss is also included. That the final temperature of erupting magmas is so often near the liquidus probably reflects the slow rate of conductive heat loss once the liquidus is crossed and the contribution of latent heat with the onset of nucleation, which acts as an internal heat source or an enhanced heat capacity. The faster the ascent rate, the more vigorous the rate of convection. The not uncommon presence in alkali basalts of anorthoclase megacrysts, which may be several cm in size, may reflect this process of large crystals growing and being suspended in vigorous convection, perhaps akin to hailstones, in rapidly ascending magmas.

  3. Timescale of Petrogenetic Processes Recorded in the Mount Perkins Magma System, Northern Colorado River Extension Corridor, Arizona

    NASA Technical Reports Server (NTRS)

    Danielson, Lisa R.; Metcalf, Rodney V.; Miller, Calvin F.; Rhodes Gregory T.; Wooden, J. L.

    2013-01-01

    The Miocene Mt. Perkins Pluton is a small composite intrusive body emplaced in the shallow crust as four separate phases during the earliest stages of crustal extension. Phase 1 (oldest) consists of isotropic hornblende gabbro and a layered cumulate sequence. Phase 2 consists of quartz monzonite to quartz monzodiorite hosting mafic microgranitoid enclaves. Phase 3 is composed of quartz monzonite and is subdivided into mafic enclave-rich zones and enclave-free zones. Phase 4 consists of aphanitic dikes of mafic, intermediate and felsic compositions hosting mafic enclaves. Phases 2-4 enclaves record significant isotopic disequilibrium with surrounding granitoid host rocks, but collectively enclaves and host rocks form a cogenetic suite exhibiting systematic variations in Nd-Sr-Pb isotopes that correlate with major and trace elements. Phases 2-4 record multiple episodes of magma mingling among cogenetic hybrid magmas that formed via magma mixing and fractional crystallization at a deeper crustal. The mafic end-member was alkali basalt similar to nearby 6-4 Ma basalt with enriched OIB-like trace elements and Nd-Sr-Pb isotopes. The felsic end-member was a subalkaline crustal-derived magma. Phase 1 isotropic gabbro exhibits elemental and isotopic compositional variations at relatively constant SiO2, suggesting generation of isotropic gabbro by an open-system process involving two mafic end-members. One end-member is similar in composition to the OIB-like mafic end-member for phases 2-4; the second is similar to nearby 11-8 Ma tholeiite basalt exhibiting low epsilon (sub Nd), and depleted incompatible trace elements. Phase 1 cumulates record in situ fractional crystallization of an OIB-like mafic magma with isotopic evidence of crustal contamination by partial melts generated in adjacent Proterozoic gneiss. The Mt Perkins pluton records a complex history in a lithospheric scale magma system involving two distinct mantle-derived mafic magmas and felsic magma sourced in the

  4. Externally triggered renewed bubble nucleation in basaltic magma: the 12 October 2008 eruption at Halema‘uma‘u Overlook vent, Kīlauea, Hawai‘i, USA

    USGS Publications Warehouse

    Carey, Rebecca J.; Manga, Michael; Degruyter, Wim; Swanson, Donald; Houghton, Bruce; Orr, Tim R.; Patrick, Matthew R.

    2012-01-01

    From October 2008 until present, dozens of small impulsive explosive eruptions occurred from the Overlook vent on the southeast side of Halema‘uma‘u Crater, at Kīlauea volcano, USA. These eruptions were triggered by rockfalls from the walls of the volcanic vent and conduit onto the top of the lava column. Here we use microtextural observations and data from clasts erupted during the well-characterized 12 October 2008 explosive eruption at Halema‘uma‘u to extend existing models of eruption triggering. We present a potential mechanism for this eruption by combining microtextural observations with existing geophysical and visual data sets. We measure the size and number density of bubbles preserved in juvenile ejecta using 2D images and X-ray microtomography. Our data suggest that accumulations of large bubbles with diameters of >50μm to at least millimeters existed at shallow levels within the conduit prior to the 12 October 2008 explosion. Furthermore, a high number density of small bubbles <50 μm is measured in the clasts, implying very rapid nucleation of bubbles. Visual observations, combined with preexisting geophysical data, suggest that the impact of rockfalls onto the magma free surface induces pressure changes over short timescales that (1) nucleated new additional bubbles in the shallow conduit leading to high number densities of small bubbles and (2) expanded the preexisting bubbles driving upward acceleration. The trigger of eruption and bubble nucleation is thus external to the degassing system.

  5. Investigating Mantle Sources of Basaltic Melts Using Olivine LA-ICPMS Analysis, Mount Taylor Volcanic Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Schrader, C. M.; Schmidt, M. E.; Thomas, A.; Bryce, J. G.; Fahnestock, M. F.

    2015-12-01

    The Mount Taylor Volcanic Field (MTVF), New Mexico, is located along the Jemez Lineament, a major crustal feature and a focus of post-Laramide magmatism. The MTVF comprises at least three regions containing contemporaneous (~3.7 to 1.26 Ma) Ne-normative volcanic rocks. The intermediate Mount Taylor (MT) strata-volcano contains early central and flanking mantle xenolith-bearing alkali basalts and hawaiites. The Rio Puerco (RP) volcanic necks contain mantle xenolith-bearing basanites and alkali basalts and no evolved lavas. Mesa Chivato (MC) contains an alkaline mafic to felsic suite with geochemical similarities to RP and MT lavas but no known mantle-xenoliths. The MTVF xenoliths are diverse (e.g., Thomas et al., 2012, AGU Fall Meeting, V43A-2825) and suggest varying degrees of melt enrichment/fertilization. By LA-ICPMS, we are characterizing olivine trace element chemistry from the mantle xenoliths and basaltic (sensu lato) phenocrysts to test how much can be determined about likely source rocks by phenocryst olivine alone. This is part of a continuing project to investigate spatial trends in Laramide mantle melt metasomatism and its relation to post-Laramide magma compositions. We have analyzed samples from a RP neck (lherzolite in alkali basalt); flows from the MT flank (websterite in alkali basalt) and from the MT amphitheater (wehrlite in hawaiite). Additionally, we analyzed olivine phenocrysts from three xenolith-free lavas: a MT basanite and MC alkali basalt and hawaiite. (1) As diverse as the xenoliths are, their olivine clusters together with regards to most trace elements, though the xenoliths can be discriminated from each other by Co abundances alone or in Cr-Al and Cr-Zn space. (2) Phenocrysts from xenolith-bearing alkali basalts cluster with the xenolith olivine, suggesting the melt was in equilibrium with a lithology of a similar trace element budget. (3) Phenocrysts from the xenolith-bearing MT hawaiite and most MC phenocrysts are depleted in

  6. Geochemical fingerprint of the primary magma composition in the marine tephras originated from the Baegdusan and Ulleung volcanoes

    NASA Astrophysics Data System (ADS)

    Lim, Chungwan; Kim, Seonyoung; Lee, Changyeol

    2014-12-01

    The intraplate Baegdusan (Changbai) and Ulleung volcanoes located on the border of China, North Korea, and East/Japan Sea, respectively, have been explained by appeals to both hotspots and asthenospheric mantle upwelling (wet plume) caused by the stagnant Pacific plate. To understand the origin of the Baegdusan and Ulleung volcanism, we performed geochemical analyses on the tephra deposits in the East/Japan Sea basins originating from the Baegdusan and Ulleung volcanoes. The volcanic glass in the tephra from the Baegdusan and Ulleung volcanoes ranged from alkaline trachyte to peralkaline rhyolite and from phonolite to trachyte, respectively. The tephra from the two intraplate volcanoes showed highly enriched incompatible elements, such as Tb, Nb, Hf, and Ta, distinct from those of the ordinary arc volcanoes of the Japanese islands. The straddle distribution of the Th/Yb and Ta/Yb ratios of the tephra deposits from the Baegdusan volcano may originate from the alkali basaltic magma resulting from mixing between the wet plume from the stagnant Pacific plate in the transition zone and the overlying shallow asthenospheric mantle. In contrast, the deposits from the Ulleung volcano show a minor contribution of the stagnant slab to the basaltic magma, implying either partial melting of a more enriched mantle, smaller degrees of partial melting of a garnet-bearing mantle source, or a combination of both processes as the magma genesis. Our study indicated that the Baegdusan and Ulleung volcanoes have different magma sources and evolutionary histories.

  7. Petrologic and Volcanologic Constraints on Depths of Evolved Magma Generation and Storage at Northern Harrat Rahat and Harrat Khaybar, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Mahood, G. A.; Calvert, A. T.; Witter, M. R.; Stelten, M. E.; Zahran, H. M.; Shawali, J.; Hassan, K. H.; Muquyyim, F. A.; Ashur, M. S.

    2015-12-01

    We present preliminary results of a petrologic study of northern Harrat Rahat that is part of an interdisciplinary hazard assessment of this rift-related volcanic field in Saudi Arabia. Alkali basalts and hawaiites occur with mugearites and trachyphonolites. This silica-undersaturated suite is consistent with fractionation at crustal depths greater than 25 km, i.e., at pressures for which experimental studies find that sodic clinopyroxene dominates the liquidus assemblage, resulting in a differentiation trend in which SiO2 rises only moderately. Trachyphonolites lack positive Eu anomalies despite abundant anorthoclase phenocrysts, and exhibit linear crystal-size distributions indicative of a simple, one-stage crystallization history. We suggest that trachyphonolite melts are extracted from extensively crystallized alkali basalts in the middle to lower crust. Any crystals entrained from depth (e.g., sodic clinopyroxene) are resorbed during ascent of these water-poor magmas to shallow levels, where they cool and crystallize. Abundant phenocrysts and low H2O contents resulted in viscous magmas that produced numerous cryptodomes along with domes and spines that pierced the uplifts. Eruption of trachyphonolite domes was accompanied by poorly fluidized scoria flows that traveled up to 4 km from their vents. Explosive disruption of domes produced block flows that ring craters. Vulcanian deposits with accretionary lapilli and lithics of rounded metamorphic rocks point to the involvement of groundwater sourced in basinal sediments eroded from Precambrian basement. Although phreatomagmatic eruptions produced tuff rings up to 1.5 km in diameter, there is no evidence for collapse calderas, suggesting there have not been sizable reservoirs of evolving magma in the shallow crust, consistent with petrologic evidence for a deep origin of the trachyphonolite magmas. In contrast, Harrat Khaybar, which lies 140 km NNE of Harrat Rahat, erupted silica-saturated evolved magmas

  8. Th-230 - U-238 series disequilibrium of the Olkaria basalts Gregory Rift Valley, Kenya: Petrogenesis

    NASA Technical Reports Server (NTRS)

    Black, S.; Macdonald, R.; Kelly, M.

    1993-01-01

    Strong mixing trends on a (Th-230/Th-232) versus Th diagram show that the basalts are mixed magmas which have undergone interaction with the crust. Instantaneous Th/U ratios are less than time integrated ones but these exceed the Th/U ratios in the MORB and OIB sources. This indicates that the mantle may have undergone some metasomatic fluxing, crustal contamination of the basalts will also enhance these ratios. Early activity on the Akira plain is represented by early basalts and hawaiites. The early basalt samples are known to predate the earliest comendites. The most recent phase of activity is represented by another cinder cone 40-50 m high being feldspar and clinopyroxene phyric. Inclusions which occur in the comendites vary in size and distribution. The largest and most porphyritic are the trachytes (up to 40 cm) with alkali feldspar phases up to 6 mm and small pyroxenes in the ground mass. The second set of inclusions are smaller (up to 10 cm) and are largely aphyric. The distribution of the inclusions are not uniform, the Broad Acres (C5) lavas contain 2-5 percent. The size of the inclusions decrease from south to north, as does the abundance of the trachytic inclusions. The major element variations in the Naivasha basalts, hawaiites and magmatic inclusions are discussed.

  9. The Surtsey Magma Series

    PubMed Central

    Ian Schipper, C.; Jakobsson, Sveinn P.; White, James D.L.; Michael Palin, J.; Bush-Marcinowski, Tim

    2015-01-01

    The volcanic island of Surtsey (Vestmannaeyjar, Iceland) is the product of a 3.5-year-long eruption that began in November 1963. Observations of magma-water interaction during pyroclastic episodes made Surtsey the type example of shallow-to-emergent phreatomagmatic eruptions. Here, in part to mark the 50th anniversary of this canonical eruption, we present previously unpublished major-element whole-rock compositions, and new major and trace-element compositions of sideromelane glasses in tephra collected by observers and retrieved from the 1979 drill core. Compositions became progressively more primitive as the eruption progressed, with abrupt changes corresponding to shifts between the eruption’s four edifices. Trace-element ratios indicate that the chemical variation is best explained by mixing of different proportions of depleted ridge-like basalt, with ponded, enriched alkalic basalt similar to that of Iceland’s Eastern Volcanic Zone; however, the systematic offset of Surtsey compositions to lower Nb/Zr than other Vestmannaeyjar lavas indicates that these mixing end members are as-yet poorly contained by compositions in the literature. As the southwestern-most volcano in the Vestmannaeyjar, the geochemistry of the Surtsey Magma Series exemplifies processes occurring within ephemeral magma bodies on the extreme leading edge of a propagating off-axis rift in the vicinity of the Iceland plume. PMID:26112644

  10. The Surtsey Magma Series

    NASA Astrophysics Data System (ADS)

    Ian Schipper, C.; Jakobsson, Sveinn P.; White, James D. L.; Michael Palin, J.; Bush-Marcinowski, Tim

    2015-06-01

    The volcanic island of Surtsey (Vestmannaeyjar, Iceland) is the product of a 3.5-year-long eruption that began in November 1963. Observations of magma-water interaction during pyroclastic episodes made Surtsey the type example of shallow-to-emergent phreatomagmatic eruptions. Here, in part to mark the 50th anniversary of this canonical eruption, we present previously unpublished major-element whole-rock compositions, and new major and trace-element compositions of sideromelane glasses in tephra collected by observers and retrieved from the 1979 drill core. Compositions became progressively more primitive as the eruption progressed, with abrupt changes corresponding to shifts between the eruption’s four edifices. Trace-element ratios indicate that the chemical variation is best explained by mixing of different proportions of depleted ridge-like basalt, with ponded, enriched alkalic basalt similar to that of Iceland’s Eastern Volcanic Zone; however, the systematic offset of Surtsey compositions to lower Nb/Zr than other Vestmannaeyjar lavas indicates that these mixing end members are as-yet poorly contained by compositions in the literature. As the southwestern-most volcano in the Vestmannaeyjar, the geochemistry of the Surtsey Magma Series exemplifies processes occurring within ephemeral magma bodies on the extreme leading edge of a propagating off-axis rift in the vicinity of the Iceland plume.

  11. The Surtsey Magma Series.

    PubMed

    Schipper, C Ian; Jakobsson, Sveinn P; White, James D L; Michael Palin, J; Bush-Marcinowski, Tim

    2015-06-26

    The volcanic island of Surtsey (Vestmannaeyjar, Iceland) is the product of a 3.5-year-long eruption that began in November 1963. Observations of magma-water interaction during pyroclastic episodes made Surtsey the type example of shallow-to-emergent phreatomagmatic eruptions. Here, in part to mark the 50(th) anniversary of this canonical eruption, we present previously unpublished major-element whole-rock compositions, and new major and trace-element compositions of sideromelane glasses in tephra collected by observers and retrieved from the 1979 drill core. Compositions became progressively more primitive as the eruption progressed, with abrupt changes corresponding to shifts between the eruption's four edifices. Trace-element ratios indicate that the chemical variation is best explained by mixing of different proportions of depleted ridge-like basalt, with ponded, enriched alkalic basalt similar to that of Iceland's Eastern Volcanic Zone; however, the systematic offset of Surtsey compositions to lower Nb/Zr than other Vestmannaeyjar lavas indicates that these mixing end members are as-yet poorly contained by compositions in the literature. As the southwestern-most volcano in the Vestmannaeyjar, the geochemistry of the Surtsey Magma Series exemplifies processes occurring within ephemeral magma bodies on the extreme leading edge of a propagating off-axis rift in the vicinity of the Iceland plume.

  12. The Surtsey Magma Series.

    PubMed

    Schipper, C Ian; Jakobsson, Sveinn P; White, James D L; Michael Palin, J; Bush-Marcinowski, Tim

    2015-01-01

    The volcanic island of Surtsey (Vestmannaeyjar, Iceland) is the product of a 3.5-year-long eruption that began in November 1963. Observations of magma-water interaction during pyroclastic episodes made Surtsey the type example of shallow-to-emergent phreatomagmatic eruptions. Here, in part to mark the 50(th) anniversary of this canonical eruption, we present previously unpublished major-element whole-rock compositions, and new major and trace-element compositions of sideromelane glasses in tephra collected by observers and retrieved from the 1979 drill core. Compositions became progressively more primitive as the eruption progressed, with abrupt changes corresponding to shifts between the eruption's four edifices. Trace-element ratios indicate that the chemical variation is best explained by mixing of different proportions of depleted ridge-like basalt, with ponded, enriched alkalic basalt similar to that of Iceland's Eastern Volcanic Zone; however, the systematic offset of Surtsey compositions to lower Nb/Zr than other Vestmannaeyjar lavas indicates that these mixing end members are as-yet poorly contained by compositions in the literature. As the southwestern-most volcano in the Vestmannaeyjar, the geochemistry of the Surtsey Magma Series exemplifies processes occurring within ephemeral magma bodies on the extreme leading edge of a propagating off-axis rift in the vicinity of the Iceland plume. PMID:26112644

  13. Lunar magma transport phenomena

    NASA Technical Reports Server (NTRS)

    Spera, Frank J.

    1992-01-01

    An outline of magma transport theory relevant to the evolution of a possible Lunar Magma Ocean and the origin and transport history of the later phase of mare basaltic volcanism is presented. A simple model is proposed to evaluate the extent of fractionation as magma traverses the cold lunar lithosphere. If Apollo green glasses are primitive and have not undergone significant fractionation en route to the surface, then mean ascent rates of 10 m/s and cracks of widths greater than 40 m are indicated. Lunar tephra and vesiculated basalts suggest that a volatile component plays a role in eruption dynamics. The predominant vapor species appear to be CO CO2, and COS. Near the lunar surface, the vapor fraction expands enormously and vapor internal energy is converted to mixture kinetic energy with the concomitant high-speed ejection of vapor and pyroclasts to form lunary fire fountain deposits such as the Apollo 17 orange and black glasses and Apollo 15 green glass.

  14. Sulfide Stability of Planetary Basalts

    NASA Technical Reports Server (NTRS)

    Caiazza, C. M.; Righter, K.; Gibson, E. K., Jr.; Chesley, J. T.; Ruiz, J.

    2004-01-01

    The isotopic system, 187Re 187Os, can be used to determine the role of crust and mantle in magma genesis. In order to apply the system to natural samples, we must understand variations in Re/Os concentrations. It is thought that low [Os] and [Re] in basalts can be attributed to sulfide (FeS) saturation, as Re behaves incompatibly to high degrees of evolution until sulfide saturation occurs [1]. Previous work has shown that lunar basalts are sulfide under-saturated, and mid-ocean ridge, ocean-island and Martian (shergottites) basalts are saturated [2,3]. However, little is known about arc basalts. In this study, basaltic rocks were analyzed across the Trans-Mexican Volcanic Belt.

  15. Lu-Hf constraints on the evolution of lunar basalts

    SciTech Connect

    Fujimaki, H.; Tatsumoto, M.

    1984-02-15

    Very low Ti basalts andd green glass samples from the moon show high Lu/Hf ratios and low Hf concentrations. Low-Ti lunar basalts show high and variable Lu/Hf ratios and higher Hf concentrations, whereas high-Ti lunar basalts show low Lu/Hf ratios and high Hf concentrations. KREEP basalts have constant Lu/Hf ratios and high but variable Hf concentrations. Using the Lu-Hf behavior as a constraint, we propose a model for the mare basalts evolution. This constraint requires extensive crystallization of the primary lunar magma ocean prior to formation of the lunar mare basalt sources and the KREEP basalts. Mare basalts are produced by the melting of the cumulate rocks, and KREEP basalts represent the residual liquid of the magma ocean.

  16. Magma energy

    SciTech Connect

    Dunn, J.C.

    1987-01-01

    The thermal energy contained in magmatic systems represents a huge potential resource. In the US, useful energy contained in molten and partially-molten magma within the upper 10 km of the crust has been estimated at 5 to 50 x 10/sup 22/ J (50,000 to 500,000 Quads). The objective of the Magma Energy Extraction Program is to determine the engineering feasibility of locating, accessing, and utilizing magma as a viable energy resource. This program follows the DOE/OBES-funded Magma Energy Research Project that concluded scientific feasibility of the magma energy concept. A primary long-range goal of this program is to conduct an energy extraction experiment directly in a molten, crustal magma body. Critical to determining engineering feasibility are several key technology tasks: (1) Geophysics - to obtain detailed definition of potential magma targets, (2) Geochemistry/Materials - to characterize the magma environment and select compatible engineering materials, (3) Drilling - to develop drilling and completion techniques for entry into a magma body, and (4) Energy Extraction - to develop heat extraction technology.

  17. Magma Fragmentation

    NASA Astrophysics Data System (ADS)

    Gonnermann, Helge M.

    2015-05-01

    Magma fragmentation is the breakup of a continuous volume of molten rock into discrete pieces, called pyroclasts. Because magma contains bubbles of compressible magmatic volatiles, decompression of low-viscosity magma leads to rapid expansion. The magma is torn into fragments, as it is stretched into hydrodynamically unstable sheets and filaments. If the magma is highly viscous, resistance to bubble growth will instead lead to excess gas pressure and the magma will deform viscoelastically by fracturing like a glassy solid, resulting in the formation of a violently expanding gas-pyroclast mixture. In either case, fragmentation represents the conversion of potential energy into the surface energy of the newly created fragments and the kinetic energy of the expanding gas-pyroclast mixture. If magma comes into contact with external water, the conversion of thermal energy will vaporize water and quench magma at the melt-water interface, thus creating dynamic stresses that cause fragmentation and the release of kinetic energy. Lastly, shear deformation of highly viscous magma may cause brittle fractures and release seismic energy.

  18. Petrogenesis and evolution of Quaternary basaltic rocks from the Wulanhada area, North China

    NASA Astrophysics Data System (ADS)

    Fan, Qi-Cheng; Chen, Sheng-Sheng; Zhao, Yong-Wei; Zou, Hai-Bo; Li, Ni; Sui, Jian-Li

    2014-10-01

    The origin of alkali basalts in eastern China has been the subject of considerable debate. Here we focus on the Wulanhada basalts located in the western block of North China Craton to provide new insights into recent deep mantle dynamics. The Wulanhada volcanic group has 30 volcanic cones with variable volumes, consisting of scoria cone (cinder cone + spatter cone) and lava. The Wulanhada volcanoes exhibit Strombolian eruption activities during late Pleistocene epoch and Holocene. The Wulanhada basalts are strongly alkaline rocks (tephrite). According to the characteristics of trace elements and Sr-Nd-Pb-Hf isotopic compositions, the Wulanhada magmas were mainly derived from garnet-bearing peridotite within the asthenosphere and underwent fractional crystallization of olivine and clinopyroxene without significant crustal contamination. Their elevated values of Na, Al, Sr/Sm, Sm/Hf, Zr/Hf, and Nb/Ta, positive Ba, K, Pb, and Sr anomalies and negative Zr, Hf anomalies, combined with a negative correlation between 176Hf/177Hf and 143Nd/144Nd and relatively low 87Sr/86Sr, suggest that the magma source may be a mixture of garnet peridotites and carbonated melts. The presence of carbonated melts is likely associated with the sediments or fluids carried by the subducted or stagnant Pacific Plate.

  19. Mare Basaltic Magmatism: A View from the Sample Suite With and Without a Remote-Sensing Prospective

    NASA Astrophysics Data System (ADS)

    Shearer, C. K.; Papike, J. J.; Gaddis, L. R.

    1999-01-01

    and will continue to bear fruit are the duration and early history of lunar volcanism and the relationship between mare basalt composition and eruptive history. Although the petrologic record has been obscured by the early catastrophic impact history of the Moon, there is abundant evidence of pre-3.9 Ga nonmare basaltic volcanism [e.g., 7-8]. Most of this record is retained in small clasts from highland soils and breccias or has been identified through remote sensing. The relationship between the samples and units identified through remote sensing is speculative. Further identification and delineation of older episodes of volcanism and their relationship to episodes of crustal plutonism (Mg and alkali suites) is critical to our interpretation of mantle evolution following magma ocean crystallization and prior to the onset of mare volcanism. Combined sample and remote sensing data sets will allow us to better distinguish among the wide range of models that have been proposed for these early periods of lunar magmatism (Mg suite, alkali suite, KREEP basalts). These models include (1) impact origin; (2) magma ocean crystallization; (3) melting and remobilization of late magma ocean cumulates and/or KREEP infiltrated lower crust; (4) melting of the lower portions of the cumulate pile followed by assimilation of KREEP or anorthositic crust; and (5) melting of deep, hybrid mixed cumulate sources. Additional information is contained in the original.

  20. Clinopyroxene compositions in the Deccan and Rajmahal Traps and their bearing on magma types and evolution

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, P.; Mahoney, J. J.; Gopalan, K.; MacDougall, J. D.

    2014-04-01

    Electron probe analyses of clinopyroxenes from several areas of the Deccan and Rajmahal Traps consisting mostly of subalkalic and alkalic basalts, picritic basalts and a few dolerite dykes have been obtained. Evaluation of the data indicate the absence of pigeonite from subalkalic basalts that occur in close spatial association with mild or strongly alkalic basalts in areas such as Rajpipla, Navagam and central Kachchh. Co-existence of augite and pigeonite, however, has been noticed in subalkalic basalts/dykes and picritic basalts from a number of Deccan localities such as Sagar, Igatpuri, Kalsubai, Triambak, Pavagarh and Girnar besides the one sample from Rajmahal. Diopside, salite, and wollastonite-rich compositions dominate the basanites and foidites of Kachchh whereas chrome-diopside and salite are the main types in the picrite basalt samples from Anila, Botad and Paliyad in Saurashtra akin to those found in contiguous areas in the east from borehole flows at Dhandhuka and Wadhwan studied in detail previously. Compositional variations in zoned clinopyroxenes indicate differentiation of the parental magma and also mixing of different magma types (subalkalic and alkalic) from areas such as Igatpuri, Rajpipla and Kachchh. Based on host-rock chemistry, total alkalis-silica plot, CIPW norms, estimated temperatures of eruption and augite - pigeonite thermometry, it has been inferred that clinopyroxene compositions, especially the incidence of pigeonite, appear to be very sensitive to bulk chemistry of host rocks, especially their Na2O, K2O, SiO2, total iron and TiO2 contents. Non-quadrilateral cationic components in the clinopyroxenes, such as Al in tetrahedral and octahedral positions together with Si, Na, Ti and Cr abundances have been found to be useful to discriminate clinopyroxenes from alkalic and subalkalic basalt types besides inferences on the ferric iron component in them. Evaluation of host-rock compositions in the ternary olivine-clinopyroxene-quartz plot

  1. Electrical Properties of Hydrous Magmas

    NASA Astrophysics Data System (ADS)

    Laumonier, M.; Sifre, D.; Gaillard, F.

    2013-12-01

    Volatiles strongly affect physical and chemical properties of magmas which are major vectors of mass and heat transfer in the Earth's. In subduction zones, hydrated melts prevail during the entire course of differentiation from basalts, andesites, dacites to rhyolites. Several electrical surveys obtained by magneto telluric investigations are currently deployed at subduction zones. The electrical conductivity of hydrous melts is however poorly constrained: so far only three studies have experimentally addressed this topic. Here, we show in situ electrical impedance of natural dacites, andesites (from Uturuncu Volcano, Bolivia) and basaltic magmas obtained with a 4-wire set up in a piston cylinder and internally heated pressure vessel. The range of temperature (500 to 1300°C), pressure (0.3 to 2 Gpa), and the various water contents and crystal fractions covers the respective ranges occurring at natural conditions. First results show that the conductivity increases with the temperature, the melt fraction, and a slightly decreases with the pressure and the crystal fraction. The compilation of these results with previous studies (rhyolitic, phonolitic and basaltic compositions) will lead to a general model of the electrical properties of magmas. Such a model will help in (i) interpreting the electrical signature of natural magmas and (ii) constraining their conditions (chemical composition, temperature, pressure, water content, melt fraction) from the source to the storage location.

  2. The Plumbing System of a Highly Explosive Basaltic Volcano: Sunset Crater, AZ

    NASA Astrophysics Data System (ADS)

    Allison, C. M.; Roggensack, K.; Clarke, A. B.

    2015-12-01

    We seek to better understand highly explosive basaltic eruptions with specific focus on magmatic volatile solubility in alkali basalts and the magma plumbing system. Sunset Crater, an alkali basalt (~3.7 wt.% alkalis) scoria cone volcano, erupted explosively in 1085 AD. We analyzed 125 primary melt inclusions (MIs) from Sunset Crater tephra deposited by 2 subplinian phases and 1 Strombolian explosion to compare magma volatiles and storage conditions. We picked rapidly quenched free olivine crystals and selected large volume MIs (50-180 μm) located toward crystal cores. MIs are faceted and exhibit little major element composition variability with minor post entrapment crystallization (2-10%). MIs are relatively dry but CO2-rich. Water content varies from 0.4 wt.% to 1.5 wt.% while carbon dioxide abundance ranges between 1,150 ppm and 3,250 ppm. Most MIs contain >1 wt.% H2O and >2,150 ppm CO2. All observed MIs contain a vapor bubble, so we are evaluating MI vapor bubbles with Raman spectroscopy and re-homogenization experiments to determine the full volatile budget. Because knowledge of volatile solubility is critical to accurately interpret results from MI analyses, we measured H2O-CO2 solubility in the Sunset Crater bulk composition. Fluid-saturated experiments at 4 and 6 kbar indicate shallower entrapment pressures for these MIs than values calculated for this composition using existing models. Assuming fluid saturation, MIs record depths from 6 km to 14 km, including groupings suggesting two pauses for longer-term storage at ~6 km and ~10.5 km. We do not observe any significant differences in MIs from phases exhibiting different eruptive styles, suggesting that while a high CO2 content may drive rapid magma ascent and be partly responsible for highly explosive eruptions, shallower processes may govern the final eruptive character. To track shallow processes during magma ascent from depth of MI-entrapment up to the surface, we are examining MI re-entrants.

  3. Magma energy

    SciTech Connect

    Hardee, H.C.

    1985-01-01

    The paper briefly describes the potential magma resources in the US and worldwide, and possible ways of exploiting this resource. Two target sites for field experiments to characterize magma targets are identified: Long Valley Caldera and Coso Hot Springs. 11 refs. (ACR)

  4. Variations in magma supply and magma partitioning: the role of tectonic settings

    NASA Astrophysics Data System (ADS)

    Takada, Akira

    1999-11-01

    Magma supply rates for 200 years at Krafla and Lakagigar, Iceland, and those for 150 years at Kilauea and Mauna Loa, Hawaii, are estimated roughly, based on their geophysical and geological observations. A diagram that relates erupted volumes to eruption intervals at volcanoes under various tectonic settings is represented. These results lead to a new model that a large volume (1-10 km 3) of magma is supplied intermittently at a long interval (10 2-10 4 years) beneath volcanoes in rift zones, while magma is supplied continuously with oscillations or fluctuations beneath intraplate volcanoes. Chemical data such as the MgO wt.% of lava may be one indicator in evaluating the magma supply rates of Hawaiian volcanoes. Systematic variation with time in magma partitioning within a volcano or to the surface is obtained in comparisons between among migration patterns of eruption sites, cumulative supplied volumes, and the volume ratios of erupted to supplied magma at Krafla and Kilauea. The variations suggest that a magma plumbing system may act under self-control (regulating) system through stress as one system. In response to a change in magma supply rate, the system partitions magma horizontally into dikes or vertically toward the surface. A large magma supply rate promotes the vertical extent of a crack to result in an eruption with a large volume ratio of erupted to supplied magma. This tendency is supported by field observations of flood basalts. The partitioned magma as dike intrusions suppresses magma supply partially in the shallow crust. Using analog experiments on liquid-filled cracks in gelatin, this paper demonstrates fundamental processes for magma partitioning on the effect of magma supply and stress change by the partitioned magma. A dynamical system of two differential equations on magma supply rate and stress around a magma plumbing system is proposed, to understand the qualitative variations in magma supply rate imposed by tectonic settings.

  5. Mare Basalt Volcanism: Generation, Ascent, Eruption, and History of Emplacement of Secondary Crust on the Moon

    NASA Astrophysics Data System (ADS)

    Head, J. W.; Wilson, L.

    2016-05-01

    Theoretical analyses of the generation, ascent, intrusion and eruption of basaltic magma provides new insight into magma source depths, supply processes, transport and emplacement mechanisms (dike intrusions, effusive and explosive eruptions).

  6. Viscous flow behavior of tholeiitic and alkaline Fe-rich martian basalts

    NASA Astrophysics Data System (ADS)

    Chevrel, Magdalena Oryaëlle; Baratoux, David; Hess, Kai-Uwe; Dingwell, Donald B.

    2014-01-01

    The chemical compositions of martian basalts are enriched in iron with respect to terrestrial basalts. Their rheology is poorly known and liquids of this chemical composition have not been experimentally investigated. Here, we determine the viscosity of five synthetic silicate liquids having compositions representative of the diversity of martian volcanic rocks including primary martian mantle melts and alkali basalts. The concentric cylinder method has been employed between 1500 °C and the respective liquidus temperatures of these liquids. The viscosity near the glass transition has been derived from calorimetric measurements of the glass transition. Although some glass heterogeneity limits the accuracy of the data near the glass transition, it was nevertheless possible to determine the parameters of the non-Arrhenian temperature-dependence of viscosity over a wide temperature range (1500 °C to the glass transition temperature). At superliquidus conditions, the martian basalt viscosities are as low as those of the Fe-Ti-rich lunar basalts, similar to the lowest viscosities recorded for terrestrial ferrobasalts, and 0.5 to 1 order of magnitude lower than terrestrial tholeiitic basalts. Comparison with empirical models reveals that Giordano et al. (2008) offers the best approximation, whereas the model proposed by Hui and Zhang (2007) is inappropriate for the compositions considered. The slightly lower viscosities exhibited by the melts produced by low degree of mantle partial melting versus melts produced at high degree of mantle partial melting (likely corresponding to the early history of Mars), is not deemed sufficient to lead to viscosity variations large enough to produce an overall shift of martian lava flow morphologies over time. Rather, the details of the crystallization sequence (and in particular the ability of some of these magmas to form spinifex texture) is proposed to be a dominant effect on the viscosity during martian lava flow emplacement and

  7. Thermodynamics and Phase Equilibria of Concurrent Assimilation and Fractional Crystallization (AFC) in Crustal Magma Bodies

    NASA Astrophysics Data System (ADS)

    Creamer, J. B.; Spera, F. J.; Bohrson, W. A.; Ghiorso, M. S.

    2009-12-01

    the melt fraction in the wallrock exceeds a critical threshold fraction based on percolation theory (~ 0.05), a portion of anatectic melt is transferred to the magma such that the fraction of melt remaining in wallrock is 0.05. Results are presented where the initial mass ratio of wallrock to magma ranges from 1:10 to 1:2, pressure is varied between 0.05 to 0.5 GPa and pristine magma compositions include MORB, Alkali Basalt, and Calc-Alkaline Basalt. Oceanic gabbros, granodiorites, and pelitic metasedimentary compositions are used as wallrock representatives. Wallrock volatile compositions vary from dry to water saturated (sub-solidus), and the water content of pristine magma varies from 0.2 to 3 wt %. For each simulation only one of the aforementioned parameters is varied in order to isolate the effects of a specific variable. Each of the parameters exerts an important effect on the compositional evolution of magma undergoing concurrent AFC and is graphically portrayed.

  8. Primitive magmas at five Cascade volcanic fields: Melts from hot, heterogeneous sub-arc mantle

    USGS Publications Warehouse

    Bacon, C.R.; Bruggman, P.E.; Christiansen, R.L.; Clynne, M.A.; Donnelly-Nolan, J. M.; Hildreth, W.

    1997-01-01

    Major and trace element concentrations, including REE by isotope dilution, and Sr, Nd, Pb, and O isotope ratios have been determined for 38 mafic lavas from the Mount Adams, Crater Lake, Mount Shasta, Medicine Lake, and Lassen volcanic fields, in the Cascade arc, northwestern part of the United States. Many of the samples have a high Mg# [100Mg/(Mg + FeT) > 60] and Ni content (>140 ppm) such that we consider them to be primitive. We recognize three end-member primitive magma groups in the Cascades, characterized mainly by their trace-element and alkali-metal abundances: (1) High-alumina olivine tholeiite (HAOT) has trace element abundances similar to N-MORB, except for slightly elevated LILE, and has Eu/Eu* > 1. (2) Arc basalt and basaltic andesite have notably higher LILE contents, generally have higher SiO2 contents, are more oxidized, and have higher Cr for a given Ni abundance than HAOT. These lavas show relative depletion in HFSE, have lower HREE and higher LREE than HAOT, and have smaller Eu/Eu* (0.94-1.06). (3) Alkali basalt from the Simcoe volcanic field east of Mount Adams represents the third end-member, which contributes an intraplate geochemical signature to magma compositions. Notable geochemical features among the volcanic fields are: (1) Mount Adams rocks are richest in Fe and most incompatible elements including HFSE; (2) the most incompatible-element depleted lavas occur at Medicine Lake; (3) all centers have relatively primitive lavas with high LILE/HFSE ratios but only the Mount Adams, Lassen, and Medicine Lake volcanic fields also have relatively primitive rocks with an intraplate geochemical signature; (4) there is a tendency for increasing 87Sr/86Sr, 207Pb/204Pb, and ??18O and decreasing 206Pb/204Pb and 143Nd/144Nd from north to south. The three end-member Cascade magma types reflect contributions from three mantle components: depleted sub-arc mantle modestly enriched in LILE during ancient subduction; a modern, hydrous subduction component

  9. A high 87Sr 86Sr mantle source for low alkali tholeiite, northern Great Basin

    USGS Publications Warehouse

    Mark, R.K.; Lee, Hu C.; Bowman, H.R.; Asaro, F.; McKee, E.H.; Coats, R.R.

    1975-01-01

    Olivine tholeiites, the youngest Tertiary units (about 8-11 m.y. old) at five widely spaced localities in northeastern Nevada, are geologically related to the basalts of the Snake River Plain, Idaho, to the north and are similar in major element and alkali chemistry to mid-ocean ridge basalts (MORB) and island arc tholeiites. The measured K (1250-3350 ppm), Rb (1??9-6??2 ppm) and Sr (140-240 ppm) concentrations overlap the range reported for MORB. Three of the five samples have low, unfractionated rare earth element (REE) patterns, the other two show moderate light-REE enrichment. Barium concentration is high and variable (100-780 ppm) and does not correlate with the other LIL elements. The rocks have 87Sr/86Sr = 0??7052-0??7076, considerably higher than MORB (~0??702-0??703). These samples are chemically distinct (i.e. less alkalic) from the olivine tholeiites from the adjacent Snake River Plain, but their Sr isotopic compositions are similar. They contain Sr that is distinctly more radiogenic than the basalts from the adjacent Great Basin. About 10 b.y. would be required for the mean measured Rb/Sr (~ 0??02) of these samples to generate, in a closed system, the radiogenic Sr they contain. The low alkali content of these basalts makes crustal contamination an unlikely mechanism. If the magma is uncontaminated, the time-averaged Rb/Sr of the source material must have been ~0??04. A significant decrease in Rb/Sr of the source material (a factor 2??) thus most probably occurred in the relatively recent (1??09 yr) past. Such a decrease of Rb/Sr in the mantle could accompany alkali depletion produced by an episode of partial melting and magma extraction. In contrast, low 87Sr 86Sr ratios indicate that the source material of the mid-ocean ridge basalts may have been depleted early in the Earth's history. ?? 1975.

  10. Extensive mixing features at 27-41 Ka postcaldera trachytes at Long Valley caldera, CA: Mixing/mingling of basalt with trachyte and mobilization of young granitic material to form kspar megacrysts

    NASA Astrophysics Data System (ADS)

    Hagmann, I. J.; Mahood, G.

    2014-12-01

    Five small lava domes erupted at the NW margin of Long Valley caldera from 41 to 27 Ka. They range from trachyte (66% SiO2) to trachyandesite (60%), with the youngest lava being the most mafic. Mixing features are pervasive, with enclaves, kspar megacrysts, crystal clots of various grain sizes, compositions, and degrees of resorption indicating multiple episodes of mafic injection, mobilization of young granitic material, and mixing/mingling of alkali basalt with trachyte to alkali rhyolite magmas similar to those at Mammoth Mountain. Enclaves range from 49 to 57% SiO2 and form a mixing line with a felsic end member at 67% SiO2. In order to quantify the distribution of enclaves and large (1-4 cm), resorbed, kspar megacrysts, outcrop-scale point counting was performed at >200 locations on the lavas. Contour maps show that kspar content is highest at the vent, but mafic-intermediate enclaves are irregularly distributed. Fe-Ti oxide temperatures for the host trachytic magmas are 915-1080°C, with the coolest temperatures at flow termini. Enclave temperatures are similar, 950-1120°C, with cooler temperatures in more felsic enclaves that are typically located near flow termini, indicating prolonged thermal and chemical interaction with the host magma. Calculated pressures are 2-4 kbar for host magmas, but some mafic crystal clots yield pressures up to 12 kbar, near the Moho at Long Valley. The kspar megacrysts match the composition of phenocrysts in late-erupted Bishop Tuff, suggesting that the megacrysts originated from solidified equivalents of magma remaining after eruption of the Bishop Tuff at 760 Ka. These data suggest a model in which alkali basalts are generated in the uppermost mantle and, through AFC, evolve into trachytes. Repeated basaltic injections keep the trachyte hot and partially melt young granites, resulting in entrainment of kspar megacrysts. The most mafic enclaves in the NW domes match the alkali basalt compositions of the most mafic enclaves in

  11. The Perils of Partition: Erroneous Results from Applying D Mineral/Magma to Rocks that Equilibrated Without Magma

    NASA Astrophysics Data System (ADS)

    Treiman, A. H.

    1995-09-01

    Compositions of extraterrestrial magmas are commonly derived from mineral compositions using, using experimentally determined mineral/basalt partition coefficients, Dmineral/basalt [1]. However, Dmineral/basalts cannot be applied to minerals which have experienced post-magmatic (subsolidus or metamorphic) chemical equilibration [2]. A failure to recognize post-magmatic equilibration can lead to wildly erroneous estimates of magma compositions and unrealistic scenarios of magmatic and planetary evolution [3]. To judge the effects of subsolidus chemical equilibration, consider REE distributions in a eucrite basalt, formed from a magma with CREE = 10 x CI. Let this magma crystallize and chemically equilibrate just below its solidus to a rock consisting of 49.5% plagioclase, 49.5% pigeonite, 0.1% whitlockite (a Ca phosphate), and 0.9% minor phases no REE content (silica, Fe metal, troilite); exact proportions are not critical. The total REE content ofthe rock is unchanged at 10 x CI, and distributions of REE among its minerals can be calculated from solidus-temperature Ds, e.g., Dpigeonite/plagioclase = Dpigeonite/basalt / Dplagioclase/basalt (where Dmineral/basalts are chosen to reflect the same magma compositions and temperature). REE abundances in minerals of this equilibrated rock (Figure 1 [5]) are significantly higher than they would be in the presence of magma. For instance, if this eucrite basalt system consisted of 50% magma, 25% pigeonite, and 25% plagioclase, one calculates C(La)Pigeonite = 0 04 x CI and C(La)Plagioclase = 0.8 x CI; with no magma present (Figure 1), C(La)Pigeonite = 0.4 x CI and CLaPIagioclase = 9 x CI! In the absence of magma, the incompatible REE must go somewhere!! If a mineral grain from this rock were used with Dmineral/basalts to derive a magma composition, that "Hparent basalt" would be rich in REE (130-200 x CI), enrichmed in light REE (La/Lu = 1.6 x CI), and strongly depleted in Eu. Compare this to the original eucrite, with REE at

  12. Zinc and volatile element loss during planetary magma ocean phases

    NASA Astrophysics Data System (ADS)

    Dhaliwal, Jasmeet K.; Day, James M. D.; Moynier, Frédéric

    2016-10-01

    Zinc is a moderately volatile element and a key tracer of volatile depletion on planetary bodies due to lack of significant isotopic fractionation under high-temperature processes. Terrestrial basalts have δ66Zn values similar to some chondrites (+ 0.15 to 0.3‰ where [{66Zn/64Znsample/66Zn/64ZnJMC-Lyon-1} × 1000]) and elevated Zn concentrations (100 ppm). Lunar mare basalts yield a mean δ66Zn value of +1.4 ± 0.5‰ and have low Zn concentrations (~2 ppm). Late-stage lunar magmatic products, such as ferroan anorthosite, Mg-suite and Alkali suite rocks exhibit heavier δ66Zn values (+3 to +6‰). The heavy δ66Zn lunar signature is thought to reflect evaporative loss and fractionation of zinc, either during a giant impact or in a magma ocean phase.We explore conditions of volatile element loss within a lunar magma ocean (LMO) using models of Zn isotopic fractionation that are widely applicable to planetary magma oceans. For the Moon, our objective was to identify conditions that would yield a δ66Zn signature of ~ +1.4‰ within the mantle, assuming a terrestrial mantle zinc starting composition.We examine two cases of zinc evaporative fractionation: (1) lunar surface zinc fractionation that was completed prior to LMO crystallization and (2) lunar surface zinc fractionation that was concurrent with LMO crystallization. The first case resulted in a homogeneous lunar mantle and the second case yielded a stratified lunar mantle, with the greatest zinc isotopic enrichment in late-stage crystallization products. This latter case reproduces the distribution of zinc isotope compositions in lunar materials quite well.We find that hydrodynamic escape was not a dominant process in losing Zn, but that erosion of a nascent lunar atmosphere, or separation of condensates into a proto-lunar crust are possible. While lunar volatile depletion is still possible as a consequence of the giant impact, this process cannot reproduce the variable δ66Zn found in the Moon. Outgassing

  13. A basalt trigger for the 1991 eruptions of Pinatubo volcano?

    USGS Publications Warehouse

    Pallister, J.S.; Hoblitt, R.P.; Reyes, A.G.

    1992-01-01

    THE eruptive products of calc-alkaline volcanos often show evidence for the mixing of basaltic and acid magmas before eruption (see, for example, refs 1, 2). These observations have led to the suggestion3 that the injection of basaltic magma into the base of a magma chamber (or the catastrophic overturn of a stably stratified chamber containing basaltic magma at its base) might trigger an eruption. Here we report evidence for the mixing of basaltic and dacitic magmas shortly before the paroxysmal eruptions of Pinatubo volcano on 15 June 1991. Andesitic scoriae erupted on 12 June contain minerals and glass with disequilibrium compositions, and are considerably more mafic than the dacitic pumices erupted on 15 June. Differences in crystal abundance and glass composition among the pumices may arise from pre-heating of the dacite magma by the underlying basaltic liquid before mixing. Degassing of this basaltic magma may also have contributed to the climatologically important sulphur dioxide emissions that accompanied the Pinatubo eruptions.

  14. A Xenolith-rich, Basaltic Peperite on Earth: Analogue for Other Planets?

    NASA Astrophysics Data System (ADS)

    Obenholzner, J. H.

    2002-12-01

    Peperites are typically the product of wet sediment-magma/lava/hot volcaniclastic deposits interaction and are therefore indicative for the existence of frozen/liquefied or fluid water in the history of a planet. Most of the peperites on Earth are found in a paleo-near-surface environment and are exposed to alteration if burial did not protect them (Skilling et al. 2002). Sediments can be incorporated into ascending magma (Obenholzner et al. 2003). These macro- or micro-xenoliths show various degrees of metamorphism. Carbonate and evaporite xenoliths brought to the surface could include fossils or even bacteria, otherwise hidden deeply in the sedimentary record. A xenolith-rich basaltic peperite of Pliocene age is exposed in a quarry at Neuhaus/Kl./Burgenland/Austria. These alkali basalts are related to the time-equivalent volcanism of the W Pannonian Basin/Hungary. Although the peperite sequence is highly altered the primary structures are well preserved. The xenolith spectrum comprises marls, argillitic and other basement rocks showing various degrees of metamorphism. The xenoliths are white to yellow colored, egg-shaped or blocky and typically manteled by the grey basalt in peperite fragments. This encapsulation of xenoliths by the basalt protects the xenoliths against various atmospheric interaction, execpt for Earth where water easily enters the peperite fragments. This sequence could be used as a structural model for similar sequences on planets known for the occurrences of basaltic volcanism and potential water-bearing sediments. The Neuhaus peperite represents a training site for scientists working with remotely operated analyzers to differentiate between xenoliths, the peperite (basalt and sandy sediment) and alteration-related structures. Similar peperites could be encountered on Mars and would be a proof for the existence of water or other fluids in its history, even if the alteration history of peperite sequences would be different from what is known on

  15. The Mantle and Basalt-Crust Interaction Below the Mount Taylor Volcanic Field, New Mexico

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.; Crumpler, Larry S.; Schmidt, Marick E.

    2010-01-01

    The Mount Taylor Volcanic Field (MTVF) lies on the Jemez Lineament on the southeastern margin of the Colorado Plateau. The field is centered on the Mt. Taylor composite volcano and includes Mesa Chivato to the NE and Grants Ridge to the WSW. MTVF magmatism spans approximately 3.8-1.5 Ma (K-Ar). Magmas are dominantly alkaline with mafic compositions ranging from basanite to hy-basalt and felsic compositions ranging from ne-trachyte to rhyolite. We are investigating the state of the mantle and the spatial and temporal variation in basalt-crustal interaction below the MTVF by examining mantle xenoliths and basalts in the context of new mapping and future Ar-Ar dating. The earliest dated magmatism in the field is a basanite flow south of Mt. Taylor. Mantle xenolith-bearing alkali basalts and basanites occur on Mesa Chivato and in the region of Mt. Taylor, though most basalts are peripheral to the main cone. Xenolith-bearing magmatism persists at least into the early stages of conebuilding. Preliminary examination of the mantle xenolith suite suggests it is dominantly lherzolitic but contains likely examples of both melt-depleted (harzburgitic) and melt-enriched (clinopyroxenitic) mantle. There are aphyric and crystal-poor hawaiites, some of which are hy-normative, on and near Mt. Taylor, but many of the more evolved MTVF basalts show evidence of complex histories. Mt. Taylor basalts higher in the cone-building sequence contain >40% zoned plagioclase pheno- and megacrysts. Other basalts peripheral to Mt. Taylor and at Grants Ridge contain clinopyroxene and plagioclase megacrysts and cumulate-textured xenoliths, suggesting they interacted with lower crustal cumulates. Among the questions we are addressing: What was the chemical and thermal state of the mantle recorded by the basaltic suites and xenoliths and how did it change with time? Are multiple parental basalts (Si-saturated vs. undersaturated) represented and, if so, what changes in the mantle or in the tectonic

  16. Petrogenesis of Luna 16 aluminous mare basalts

    NASA Technical Reports Server (NTRS)

    Ma, M.-S.; Schmitt, R. A.; Nielsen, R. L.; Taylor, G. J.; Warner, R. D.; Keil, K.

    1979-01-01

    Bulk compositions, petrology and mineralogy of Luna 16 aluminous mare basalt particles of less than 0.5 mm are described. The data rule out any close genetic relationships between Luna 16 and other major types of lunar mare basalts. Compared to high-Ti mare basalts, the Luna 16 basalts contain lower TiO2 and Ta and higher Al2O3 and REE abundances, suggesting that the Luna 16 source rocks crystallized later than (i.e. stratigraphically above) the ilmenite-bearing high-Ti basalt cumulate source rocks. The REE pattern for the Luna 16 basalts requires that the source material from which they were derived crystallized from a light REE enriched magma.

  17. Geochemical diversity of shergottite basalts: Mixing and fractionation, and their relation to Mars surface basalts

    NASA Astrophysics Data System (ADS)

    Treiman, Allan H.; Filiberto, Justin

    2015-04-01

    The chemical compositions of shergottite meteorites, basaltic rocks from Mars, provide a broad view of the origins and differentiation of these Martian magmas. The shergottite basalts are subdivided based on their Al contents: high-Al basalts (Al > 5% wt) are distinct from low-Al basalts and olivine-phyric basalts (both with Al < 4.5% wt). Abundance ratios of highly incompatible elements (e.g., Th, La) are comparable in all the shergottites. Abundances of less incompatible elements (e.g., Ti, Lu, Hf) in olivine-phyric and low-Al basalts correlate well with each other, but the element abundance ratios are not constant; this suggests mixing between components, both depleted and enriched. High-Al shergottites deviate from these trends consistent with silicate mineral fractionation. The "depleted" component is similar to the Yamato-980459 magma; approximately, 67% crystal fractionation of this magma would yield a melt with trace element abundances like QUE 94201. The "enriched" component is like the parent magma for NWA 1068; approximately, 30% crystal fractionation from it would yield a melt with trace element abundances like the Los Angeles shergottite. This component mixing is consistent with radiogenic isotope and oxygen fugacity data. These mixing relations are consistent with the compositions of many of the Gusev crater basalts analyzed on Mars by the Spirit rover (although with only a few elements to compare). Other Mars basalts fall off the mixing relations (e.g., Wishstone at Gusev, Gale crater rocks). Their compositions imply that basalt source areas in Mars include significant complexities that are not present in the source areas for the shergottite basalts.

  18. Water Content of Lunar Alkali Fedlspar

    NASA Technical Reports Server (NTRS)

    Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

    2016-01-01

    Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of < 1 ppm in urKREEP. Using these data, predict that the bulk water content of the magma ocean would have <10 ppm. In contrast, estimate water contents of 320 ppm for the bulk Moon and 1.4 wt % for urKREEP from plagioclase in ferroan anorthosites. Results and interpretation: NanoSIMS data from granitic clasts from Apollo sample 15405,78 show that alkali feldspar, a common mineral in K-enriched rocks, can have approx. 20 ppm of water, which implies magmatic water contents of approx. 1 wt % in the high-silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was

  19. Comparative Magma Oceanography

    NASA Technical Reports Server (NTRS)

    Jones, J. H.

    1999-01-01

    The question of whether the Earth ever passed through a magma ocean stage is of considerable interest. Geochemical evidence strongly suggests that the Moon had a magma ocean and the evidence is mounting that the same was true for Mars. Analyses of martian (SNC) meteorites have yielded insights into the differentiation history of Mars, and consequently, it is interesting to compare that planet to the Earth. Three primary features of Mars contrast strongly to those of the Earth: (i) the extremely ancient ages of the martian core, mantle, and crust (about 4.55 b.y.); (ii) the highly depleted nature of the martian mantle; and (iii) the extreme ranges of Nd isotopic compositions that arise within the crust and depleted mantle. The easiest way to explain the ages and diverse isotopic compositions of martian basalts is to postulate that Mars had an early magma ocean. Cumulates of this magma ocean were later remelted to form the SNC meteorite suite and some of these melts assimilated crustal materials enriched in incompatible elements. The REE pattern of the crust assimilated by these SNC magmas was LREE enriched. If this pattern is typical of the crust as a whole, the martian crust is probably similar in composition to melts generated by small degrees of partial melting (about 5%) of a primitive source. Higher degrees of partial melting would cause the crustal LREE pattern to be essentially flat. In the context of a magma ocean model, where large degrees of partial melting presumably prevailed, the crust would have to be dominated by late-stage, LREE-enriched residual liquids. Regardless of the exact physical setting, Nd and W isotopic evidence indicates that martian geochemical reservoirs must have formed early and that they have not been efficiently remixed since. The important point is that in both the Moon and Mars we see evidence of a magma ocean phase and that we recognize it as such. Several lines of theoretical inference point to an early Earth that was also hot

  20. Precaldera lavas of the southeast San Juan Volcanic Field: Parent magmas and crustal interactions

    NASA Astrophysics Data System (ADS)

    Colucci, M. T.; Dungan, M. A.; Ferguson, K. M.; Lipman, P. W.; Moorbath, S.

    1991-07-01

    Early intermediate composition volcanic rocks of the Oligocene (circa 34-29 Ma) southeast San Juan volcanic field, southern Colorado, comprise the Conejos Formation. Conejos lavas include both high-K calc-alkaline and alkaline magma series (54-69% SiO2) ranging in composition from basaltic andesite (basaltic trachyandesite) to dacite (trachydacite). The subsequent Platoro caldera complex (29-27 Ma) was superimposed on a cluster of broadly precursory Conejos stratocones. Precaldera volcanism occurred in three pulses corresponding to three time-stratigraphic members: (1) the Horseshoe Mountain member, (2) the Rock Creek member, and (3) the Willow Mountain member. Each member exhibits distinctive phenocryst modes and incompatible trace element contents. Horseshoe Mountain lavas (hornblende-phyric) have relatively low alkali and incompatible element abundances, Rock Creek lavas (anhydrous phenocrysts) and ash-flow tuffs have the highest abundances, and Willow Mountain lavas (diverse mineralogy) are intermediate. All Conejos lavas exhibit low ratios of lead (206Pb/204Pb = 17.5 to 18.2) and neodymium (ɛNd = -8 to -4) isotopes and high 87Sr/86Sr (0.7045 to 0.7056) compared to depleted asthenospheric mantle. These values lie between those of likely mantle compositions and the isotopic composition of Proterozoic crust of the southern Rocky Mountains. Mafic lavas of the Horseshoe Mountain member have the lowest Pb and Nd isotope ratios among Conejos members but trend toward higher isotopic values with increasing degrees of differentiation. Compositions within the Rock Creek series trend toward higher Pb and lower Nd isotope ratios with increasing SiO2. Willow mountain volcanic sequences define diverse chemical-isotopic correlations. We interpret the chemical and isotopic differences observed between mafic lavas of each member to reflect derivation from compositionally distinct mantle derived parent magmas that have experienced extensive deep level crustal contamination

  1. Mush Column Magma Chambers

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  2. Magma mixing in a zoned alkalic intrusion

    SciTech Connect

    Price, J.G.; Henry, C.D.; Barker, D.S.; Rubin, J.N.

    1985-01-01

    The Marble Canyon stock is unique among the alkalic intrusions of the Trans-Pecos magmatic province in being zoned from a critically silica-undersaturated rim of alkali gabbro (AG) to a silica-oversaturated core of quartz syenite (QS). Hybrid rocks of intermediate chemical and mineralogical compositions occur between the rim and core. Nepheline-syenite dikes occur only within the AG. Silica-rich dikes of quartz trachyte, pegmatite, and aplite cut the AG, QS, and hybrid rocks. Thermodynamic calculations of silica activity in the magmas illustrate the presence of two trends with decreasing temperature: a silica-poor trend from AG to nepheline syenite and a silica-rich trend from hybrid rocks to QS. Least-square modeling of rock and mineral compositions suggests 1) the nepheline syenites were derived by crystal-liquid fractionation from nearly solidified AG at the rim of the stock, 2) AG magma farther from the rim mixed with a small proportion of granitic magma, and 3) the mixture then differentiated to produce the hybrid rocks and QS. Zirconium dioxide inclusions in plagioclase crystals of the hybrid rocks and QS indicate that the AG magma contained some crystals before it mixed with the granitic magma. Two origins for the granitic magma are possible: 1) a late-stage differentiate of a mantle-derived hypersthene-normative magma and 2) melting of crustal material by the AG magma. Recognition of magma mixing might not have been possible if the AG had been hypersthene-normative.

  3. Basaltic cannibalism at Thrihnukagigur volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Hudak, M. R.; Feineman, M. D.; La Femina, P. C.; Geirsson, H.

    2014-12-01

    Magmatic assimilation of felsic continental crust is a well-documented, relatively common phenomenon. The extent to which basaltic crust is assimilated by magmas, on the other hand, is not well known. Basaltic cannibalism, or the wholesale incorporation of basaltic crustal material into a basaltic magma, is thought to be uncommon because basalt requires more energy than higher silica rocks to melt. Basaltic materials that are unconsolidated, poorly crystalline, or palagonitized may be more easily ingested than fully crystallized massive basalt, thus allowing basaltic cannibalism to occur. Thrihnukagigur volcano, SW Iceland, offers a unique exposure of a buried cinder cone within its evacuated conduit, 100 m below the main vent. The unconsolidated tephra is cross-cut by a NNE-trending dike, which runs across the ceiling of this cave to a vent that produced lava and tephra during the ~4 Ka fissure eruption. Preliminary petrographic and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) analyses indicate that there are two populations of plagioclase present in the system - Population One is stubby (aspect ratio < 1.7) with disequilibrium textures and low Ba/Sr ratios while Population Two is elongate (aspect ratio > 2.1), subhedral to euhedral, and has much higher Ba/Sr ratios. Population One crystals are observed in the cinder cone, dike, and surface lavas, whereas Population Two crystals are observed only in the dike and surface lavas. This suggests that a magma crystallizing a single elongate population of plagioclase intruded the cinder cone and rapidly assimilated the tephra, incorporating the stubbier population of phenocrysts. This conceptual model for basaltic cannibalism is supported by field observations of large-scale erosion upward into the tephra, which is coated by magma flow-back indicating that magma was involved in the thermal etching. While the unique exposure at Thrihnukagigur makes it an exceptional place to investigate basaltic

  4. Chemical and isotopic constraints on the petrogenesis of the large mare basalt clast in breccia 15459

    NASA Technical Reports Server (NTRS)

    Nyquist, L.; Lindstrom, M.; Bansal, B.; Mittlefehldt, D.; Shih, C.-Y.

    1989-01-01

    Results are presented that demonstrate that the large mare basalt clast in Apollo 15 breccia 15459 may represent one or more independent magma types. The complex nonequilibrium pyroxene and plagioclase compositions and relatively abundant mesostasis suggest that the 15459 clast is not a slowly cooled crystal cumulate. The addition of about 40 percent olivine to an olivine-normative basalt parental magma is found to be necessary to explain the high MgO abundances of picritic basalts by the accumulation of olivine in the magma. The present clast has a slightly younger age and a slightly higher Sr-87/Sr-86 ratio than most Apollo 15 basalts.

  5. The basalts of Mare Frigoris

    NASA Astrophysics Data System (ADS)

    Kramer, G. Y.; Jaiswal, B.; Hawke, B. R.; Öhman, T.; Giguere, T. A.; Johnson, K.

    2015-10-01

    This paper discusses the methodology and results of a detailed investigation of Mare Frigoris using remote sensing data from Clementine, Lunar Prospector, and Lunar Reconnaissance Orbiter, with the objective of mapping and characterizing the compositions and eruptive history of its volcanic units. With the exception of two units in the west, Mare Frigoris and Lacus Mortis are filled with basalts having low-TiO2 to very low TiO2, low-FeO, and high-Al2O3 abundances. These compositions indicate that most of the basalts in Frigoris are high-Al basalts—a potentially undersampled, yet important group in the lunar sample collection for its clues about the heterogeneity of the lunar mantle. Thorium abundances of most of the mare basalts in Frigoris are also low, although much of the mare surface appears elevated due to contamination from impact gardening with the surrounding high-Th Imbrium ejecta. There are, however, a few regional thorium anomalies that are coincident with cryptomare units in the east, the two youngest mare basalt units, and some of the scattered pyroclastic deposits and volcanic constructs. In addition, Mare Frigoris lies directly over the northern extent of the major conduit for a magma plumbing system that fed many of the basalts that filled Oceanus Procellarum, as interpreted by Andrews-Hanna et al. (2014) using data from the Gravity Recovery and Interior Laboratory mission. The relationship between this deep-reaching magma conduit and the largest extent of high-Al basalts on the Moon makes Mare Frigoris an intriguing location for further investigation of the lunar mantle.

  6. Chemistry and fluxes of magmatic gases powering the explosive trachyandesitic phase of Eyjafjallajokull 2010 eruption: constraints on degassing magma volumes and processes

    NASA Astrophysics Data System (ADS)

    Allard, P.; Burton, M. R.; Oskarsson, N.; Michel, A.; Polacci, M.

    2010-12-01

    The 2010 Eyjafjallajökull eruption developed in two distinct phases, with initial lateral effusion of alkali basalt since March 20, followed by highly explosive extrusion of a quite homogenous and crystal-poor trachyandesitic magma [1] through the central volcano ice cap between April 14 and May 24. As usual, magmatic volatiles played a key role in the eruption dynamics. Here we report on the chemical composition and the mass output of magmatic gases powering intense explosive activity during the second eruptive phase in early May. On May 8 we could measure the composition of magmatic gases directly issuing from the eruptive vents, by using OP-FTIR spectroscopy from the crater rim (~900 m distance) and molten lava blocks as IR radiation source. FTIR spectra reveal a variable mixture between two gas components equally rich in H2O (91.3 mol%) and CO2 (8%) but differing in their SO2/HCl ratio (up to 3.5 for the main one and 0.5 for the Cl-richer second one). Analysis of S-Cl-F in ash leachates and in ash and lava bomb samples (pyrohydrolysis) show that this second component was generated by greater chlorine loss during extensive magma fragmentation into fine ash. S/Cl and Cl/F ratios from both these analyses and solar occultation FTIR plume sensing indicate a modest fluorine content in emitted gas and its preferential adsorption onto solid particles during plume transport. DOAS traverses under the volcanic plume (4-6 km height), though hampered by dense ash load, gave most reliable SO2 fluxes of 4500-6600 tons d-1 on May 9, consistent with OMI satellite data [2]. These imply the daily co-emission of 7.2x105 tons of H2O, 1.5x105 tons of CO2, 2000 tons of HCl and ≤200 tons of HF. Eyjafjallajökull thus produced more hydrous and relatively CO2-poorer gas, in much greater quantities, during that stage than during its first basaltic phase [3]. Linear variations of dissolved S with TiO2/FeO ratio in nearby Katla alkali magmas [4] suggest possible pre-eruptive S contents

  7. Isotopic characteristics of mantle sources for Quaternary continental alkaline magmas in the northern Canadian Cordillera

    NASA Astrophysics Data System (ADS)

    Carignan, Jean; Ludden, John; Francis, Don

    1994-12-01

    Three mantle compositions are identified as potential source end members for Quaternary to recent alkaline volcanic rocks from Fort Selkirk, Llangorse-Hirschfeld, Alligator Lake and Mt. Edziza in the northern Canadian Cordillera. These are: (1) an amphibole-rich source, characterized by unradiogenic Sr, Nd and Pb, from which the olivine nephelinite lavas formed, (2) the continental lithospheric mantle which is characterised by high Pb-207/Pb-204 and appears to be involved in the formation of the alkali olivine basalts of Fort Selkirk, and (3) a mantle with radiogenic Pb and unradiogenic Sr (HIMU-type) represented by lavas from Mt. Edziza. The Mt. Edziza volcano is the largest of the volcanic centres in the region, and is considered to reflect melting of sublithospheric mantle of HIMU composition below central British Columbia. Incipient melting of amphibole-veined subcontinental mantle lithosphere resulted from plume upwelling and/or transtensional pressure release and produced the small nephelinite to olivine basalt centres of the northern Cordilleran Province. The source of the nephelinite magmas is slightly more radiogenic than present-day Pacific Mid-Ocean ridge basalts (MORB), and is best represented by the most depleted component of the Aleutian magmas. This suggests enrichment of the subcontinental lithosphere in the northern Cordillera by melts of this isotopic composition during Cretaceous subduction. The Alligator Lake complex is anomalous and charaterized by the most radiogenic lavas. Despite the presence of crustal xenoliths there is no clear geochemical signature for crustal contamination and, in contrast to the other volcanic centers which were erupted through the Intermontain Belt, the lavas of this center may have been derived from a highly radiogenic lithospheric mantle beneath the Coast Plutonic complex.

  8. Are flood basalt eruptions monogenetic or polygenetic?

    NASA Astrophysics Data System (ADS)

    Sheth, Hetu C.; Cañón-Tapia, Edgardo

    2015-11-01

    A fundamental classification of volcanoes divides them into "monogenetic" and "polygenetic." We discuss whether flood basalt fields, the largest volcanic provinces, are monogenetic or polygenetic. A polygenetic volcano, whether a shield volcano or a stratovolcano, erupts from the same dominant conduit for millions of years (excepting volumetrically small flank eruptions). A flood basalt province, built from different eruptive fissures dispersed over wide areas, can be considered a polygenetic volcano without any dominant vent. However, in the same characteristic, a flood basalt province resembles a monogenetic volcanic field, with only the difference that individual eruptions in the latter are much smaller. This leads to the question how a flood basalt province can be two very different phenomena at the same time. Individual flood basalt eruptions have previously been considered monogenetic, contrasted by only their high magma output (and lava fluidity) with typical "small-volume monogenetic" volcanoes. Field data from Hawaiian shield volcanoes, Iceland, and the Deccan Traps show that whereas many feeder dykes were single magma injections, and the eruptions can be considered "large monogenetic" eruptions, multiple dykes are equally abundant. They indicate that the same dyke fissure repeatedly transported separate magma batches, feeding an eruption which was thus polygenetic by even the restricted definition (the same magma conduit). This recognition helps in understanding the volcanological, stratigraphic, and geochemical complexity of flood basalts. The need for clear concepts and terminology is, however, strong. We give reasons for replacing "monogenetic volcanic fields" with "diffuse volcanic fields" and for dropping the term "polygenetic" and describing such volcanoes simply and specifically as "shield volcanoes," "stratovolcanoes," and "flood basalt fields."

  9. Mid-Tertiary magmatism in western Big Bend National Park, Texas, U.S.A.: Evolution of basaltic source regions and generation of peralkaline rhyolite

    NASA Astrophysics Data System (ADS)

    Parker, Don F.; Ren, Minghua; Adams, David T.; Tsai, Heng; Long, Leon E.

    2012-07-01

    then descended as magmatism died out. Variation within Burro Mesa Rhyolite is best explained by fractional crystallization of a mix of alkali feldspar, fayalite and Fe-Ti oxide. Comendite of the Burro Mesa Rhyolite evolved from trachyte as batches in relatively small independent magma systems, as suggested by widespread occurrence of trachytic magma enclaves within Burro Mesa lava and results of fractionation modeling. Trachyte may have been derived by fractional crystallization of intermediate magma similar to that erupted as part of Bee Mountain Basalt. ɛNdt values of trachyte lava (0.745) and two samples of Burro Mesa Rhyolite (- 0.52 and 1.52) are consistent with the above models. In all, ~ 5 wt.% comendite may be produced from 100 parts of parental trachybasalt. Negative Nb anomalies in some Bee Mountain, Tule Mountain Trachyte and Burro Mesa incompatible element plots may have been inherited from lithospheric mantle rather than from a descending plate associated with subduction. Late phase basalts lack such a Nb anomaly, as do all of our Alamo Creek analyses but one. Even if some slab fluids partially metasomatized lithospheric mantle, these igneous rocks are much more typical of continental rifts than continental arcs. We relate Big Bend magmatism to asthenospheric mantle upwelling accompanying foundering of the subducted Farallon slab as the convergence rate between the North American and the Farallon plates decreased beginning about 50 Ma. Upwelling asthenosphere heated the base of the continental lithosphere, producing the Alamo Creek series; magmatism climaxed with main phase magmatism generated within middle continental lithosphere, and then, accompanying regional extension, gradually died out by 18 Ma.

  10. Petrogenetic evaluation of the Laohutai basalts from North China Craton: Melting of a two-component source during lithospheric thinning in the late Cretaceous-early Cenozoic

    NASA Astrophysics Data System (ADS)

    Kuang, Y. S.; Wei, X.; Hong, L. B.; Ma, J. L.; Pang, C. J.; Zhong, Y. T.; Zhao, J.-X.; Xu, Y.-G.

    2012-12-01

    While the consensus has been reached as to the lithospheric thinning beneath the North China Craton, the timing of this event remains controversial. Whether it took place during the Early Cretaceous or it extended over a period from late Triassic to early Cenozoic is a matter of hot debate. With aims of contributing to this issue, we performed geochronological and geochemical analyses on basalts of the Laohutai Formation which were emplaced in the Fushun basin at 60-70 Ma. The Laohutai Formation consists of Ne- or Hy-normative alkali basalts in the lower part and Q-normative tholeiitic basalts in the upper part. The tholeiites are characterized by positive Eu and Sr anomalies and show higher ɛNd(t) (3.2-5.3) than the co-existing alkali basalts (1.8-2.4), opposite to the common observation made in other occurrences. Depletion of highly incompatible elements, positive Nbsbnd Ta and negative Pb anomalies in the Laohutai basalts are indicative of oceanic crustal components (likely in form of pyroxenite/eclogite) in their magma source. Since Eu and Sr anomalies are not related to magmatic differentiation, the negative correlation between 87Sr/86Sri and Eu/Eu* suggests that the melting process and sampling of source heterogeneity are intrinsically related. We propose a differential melting of a two-component source in association with lithospheric thinning to account for the temporal variation of the Laohutai basalts. Specifically, earlier alkali basalts were formed by low degree of melting of a source at a greater depth, modified by melts derived from a hydrothermally altered, upper oceanic crust; whereas the later tholeiitic basalts were generated by high degree of melting of a gabbroic lower oceanic crust and minor peridotite at a shallower depth. When the lithospheric lid effect is applied, this petrogenetic model suggests the late Cretaceous-early Cenozoic as an important period of lithospheric thinning, therefore leaning support to the idea of the protracted

  11. Magma oceanography. I - Thermal evolution. [of lunar surface

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.; Longhi, J.

    1977-01-01

    Fractional crystallization and flotation of cumulate plagioclase in a cooling 'magma ocean' provides the simplest explanation for early emplacement of a thick feldspar-rich lunar crust. The complementary mafic cumulates resulting from the differentiation of such a magma ocean have been identified as the ultimate source of mare basalt liquids on the basis or rare-earth abundance patterns and experimental petrology studies. A study is conducted concerning the thermal evolution of the early differentiation processes. A range of models of increasing sophistication are considered. The models developed contain the essence of the energetics and the time scale for magma ocean differentiation. Attention is given to constraints on a magma ocean, modeling procedures, single-component magma oceans, fractionating magma oceans, and evolving magma oceans.

  12. Thermal structure and melting conditions associated with `hot' subduction: Implications from thermobarometry of Garibaldi belt basalts, northern Cascadia Subduction System

    NASA Astrophysics Data System (ADS)

    Green, N. L.

    2005-12-01

    The northern Cascadia margin of North America is the classic example of a "hot" subduction system. The downgoing Juan de Fuca plate decreases in age from ca. 10 m.y. off the central Washington coast to less than 5 m.y. off central Vancouver Island; beneath the Garibaldi volcanic belt (GVB) 250 km east of the convergent margin, inferred age of the oceanic lithosphere decreases northward from ca. 22 m.y to 13 m.y. Primitive and near-primitive mafic lavas, which primarily occur trenchward of the GVB volcanic front, range northward from high-Al olivine tholeiites, Mg-andesites and LILE- and LREE-enriched calc-alkaline basalts at Glacier Peak, through transitional basalts in the Cheakamus Valley to alkali olivine basalts and trachybasalts at Meager Mountain, Salal Glacier and Bridge River. The more northerly GVB basaltic magmas show the least evidence of slab-derived components in their source regions. Application of various olivine-melt and pyroxene-melt thermobarometers to GVB basalts indicates a general increase in magmatic temperatures from 1150-1200 C in Mount Baker and Glacier Peak basalts to 1225-1300 C in Bridge River and Salal Glacier lavas. Fe-Ti oxide thermobarometry suggests that northernmost basalts equilibrated under oxygen fugacities conditions between QFM and NNO, whereas Glacier Peak lavas equilibrated at higher oxygen fugacities (ca. 1 log unit above NNO). Estimated P and T conditions of mantle segregation suggest that GVB basalts ascended from increasingly greater depths northward along the volcanic arc. Similar variation is indicated by calculated P-T of basalt equilibrations with both Mg- and Fe-rich peridotite mineral assemblages, based on diopside and albite activity-composition relations. Estimated mantle equilibration temperatures correlate positively with some HFSE abundances (e.g., Hf), but negatively with those of fluid mobile elements (e.g., Cs and B). These relationships are considered in terms of the influence of slab thermal structure on

  13. Remobilization of granitoid rocks through mafic recharge: evidence from basalt-trachyte mingling and hybridization in the Manori-Gorai area, Mumbai, Deccan Traps

    NASA Astrophysics Data System (ADS)

    Zellmer, Georg F.; Sheth, Hetu C.; Iizuka, Yoshiyuki; Lai, Yi-Jen

    2012-01-01

    Products of contrasting mingled magmas are widespread in volcanoes and intrusions. Subvolcanic trachyte intrusions hosting mafic enclaves crop out in the Manori-Gorai area of Mumbai in the Deccan Traps. The petrogenetic processes that produced these rocks are investigated here with field data, petrography, mineral chemistry, and whole rock major, trace, and Pb isotope chemistry. Local hybridization has occurred and has produced intermediate rocks such as a trachyandesitic dyke. Feldspar crystals have complex textures and an unusually wide range in chemical composition. Crystals from the trachytes cover the alkali feldspar compositional range and include plagioclase crystals with anorthite contents up to An47. Crystals from the mafic enclaves are dominated by plagioclase An72-90, but contain inclusions of orthoclase and other feldspars covering the entire compositional range sampled in the trachytes. Feldspars from the hybridized trachyandesitic dyke yield mineral compositions of An80-86, An47-54, Ab94-99, Or45-60, and Or96-98, all sampled within individual phenocrysts. We show that these compositional features are consistent with partial melting of granitoid rocks by influx of mafic magmas, followed by magma mixing and hybridization of the partial melts with the mafic melts, which broadly explains the observed bulk rock major and trace element variations. However, heterogeneities in Pb isotopic compositions of trachytes are observed on the scale of individual outcrops, likely reflecting initial variations in the isotopic compositions of the involved source rocks. The combined data point to one or more shallow-level trachytic magma chambers disturbed by multiple injections of trachytic, porphyritic alkali basaltic, and variably hybridized magmas.

  14. Petrologic models of 15388, a unique Apollo 15 mare basalt

    NASA Technical Reports Server (NTRS)

    Hughes, S. S.; Dasch, E. J.; Nyquist, L. E.

    1993-01-01

    Mare basalt 15388, a feldspathic microgabbro from the Apennine Front, is chemically and petrographically distinct from Apollo 15 picritic, olivine-normative (ON), and quartz-normative basalts. The evolved chemistry, coarse texture, lack of olivine, and occurrence of cristobalite in 15388 argue for derivation by a late-stage magmatic process that is significantly removed from parental magma. It either crystallized from a magma evolved from the more mafic Apollo 15 basalts, or it crystallized from a currently unrepresented magma. Rb-Sr and Sm-Nd isotopic systematics yield isochron ages of 3.391 plus or minus 0.036 and 3.42 plus or minus 0.07 Ga, respectively, and epsilon(sub Nd) = 8.6 plus or minus 2.4, which is relatively high for Apollo 15 mare basalts. In contrast to chemical patterns of average Apollo 15 ON basalts and Apollo 15 picritic basalt, 15388 has a strongly positive LREE slope, high Ti, shallower HREE slope and a slightly positive Eu anomaly. These features argue against 15388 evolution by simple olivine fractionation of a parental ON or picritic basalt magma, although olivine is a dominant liquidus phase in both potential parents.

  15. Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily)

    SciTech Connect

    Aiuppa, A.; Allard, P.; D'Alessandro, W.; Michel, A.; Parello, F.; Treuil, M.; Valenza, M.

    2000-06-01

    The concentrations and fluxes of major, minor and trace metals were determined in 53 samples of groundwaters from around Mt. Etna, in order to evaluate the conditions and extent of alkali basalt weathering by waters enriched in magma-derived CO{sub 2} and the contribution of aqueous transport to the overall metal discharge of the volcano. The authors show that gaseous input of magmatic volatile metals into the Etnean aquifer is small or negligible, being limited by cooling of the rising fluids. Basalt leaching by weakly acidic, CO{sub 2}-charged water is the overwhelming source of metals and appears to be more extensive in two sectors of the S-SW (Paterno) and E (Zafferana) volcano flanks, where out flowing groundwaters are the richest in metals and bicarbonate of magmatic origin. Thermodynamic modeling of the results allows evaluation of the relative mobility and chemical speciation of various elements during their partitioning between solid and liquid phases through the weathering process. At Mt. Etna, poorly mobile elements (Al, Th, Fe) are preferentially retained in the solid residue of weathering, while alkalis, alkaline earth and oxo-anion-forming elements (As, Se, Sb, Mo) are more mobile and released to the aqueous system. Transition metals display an intermediate behavior and are strongly dependent on either the redox conditions (Mn, Cr, V) or solid surface-related processes (V, Zn, Cu).

  16. Lunar ferroan anorthosites and mare basalt sources - The mixed connection

    NASA Technical Reports Server (NTRS)

    Ryder, Graham

    1991-01-01

    Global overturn of a hot, gravitationally unstable lunar mantle immediately following the solidification of a magma ocean explains several characteristics of lunar petrology. Lunar mare basalt sources are inferred to be depleted in europium and alumina. These depletions are consensually attributed to complementary plagioclase floating from a magma ocean. However, in contrast to the mare basalt source parent magma, the ferroan anorthosite parent magma was more evolved by virtue of its lower Mg/Fe ratio and Ni abundances, although less evolved in its poverty of clinopyroxene constituents, flat rare earth pattern, and lower incompatible element abundances. The europium anomaly in mare sources is inferred to be present at 400 km depth, too deep to have been directly influenced by plagioclase crystallization. Massive overturning of the post-magma ocean mantle would have carried down clinopyroxene, ilmenite, and phases containing fractionated rare earths, europium anomalies, and some heat-producing radionuclides.

  17. Experimental constraints on depths of fractionation of mildly alkalic basalts and associated felsic rocks: Pantelleria, Strait of Sicily

    NASA Astrophysics Data System (ADS)

    Mahood, Gail A.; Baker, Don R.

    1986-06-01

    Pantelleria, Italy, is a continental rift volcano consisting of alkalic basalt, trachyte, and pantellerite. At 1 atm along the FMQ buffer, the least-evolved basalt (Mg #= 58.5% norm ne) yields olivine on the liquidus at ˜1,180° C, followed by plagioclase, then by clinopyroxene, and by titanomagnetite and ilmenite at ˜ 1,075°. After ˜70% crystallization, the residual liquid at ˜1,025° is still basaltic and also contains apatite and possibly kaersutite. A less alkalic basalt shows the same order of phase appearance. Glass compositions define an Fe-enrichment trend and a density maximum for anhydrous liquids that coincides with a minimum in Mg#. During the initial stages of crystallization at 1 atm, liquids remain near the critical plane of silica-undersaturation until, at lower temperatures, Fe-Ti oxide precipitation drives the composition toward silica saturation. Thus the qtz-normative trachytes and pantellerites typically associated with mildly ne-normative basalts in continental rifts could be produced by low-pressure fractional crystallization or by shallow-level partial melting of alkali gabbro. At 8 kbar, clinopyroxene is the liquidus phase at ˜1,170° C, followed by both olivine and plagioclase at ˜1,135°. Because clinopyroxene dominates the crystallizing assemblage and plagioclase is more albitic than at 1 atm, liquids at 8 kbar are driven toward increasingly ne-normative compositions, suggesting that higher-pressure fractionation favors production of phonolitic derivatives. Natural basaltic samples at Pantelleria are aphyric or contain 1 10% phenocrysts of plag≥ ol≥cpx or ol>cpx, with groundmass Fe-Ti oxides and apatite. The lack of phenocrystic plagioclase in two of the lavas suggests that crystallization at slightly higher PH2O may have destabilized plagioclase relative to the 1-atm results, but there is no preserved evidence for significant fractionation at mantle depths as clinopyroxene is the least abundant phenocryst phase in all samples

  18. Oxidized sulfur-rich mafic magma at Mount Pinatubo, Philippines

    USGS Publications Warehouse

    de Hoog, J.C.M.; Hattori, K.H.; Hoblitt, R.P.

    2004-01-01

    Basaltic fragments enclosed in andesitic dome lavas and pyroclastic flows erupted during the early stages of the 1991 eruption of Mount Pinatubo, Philippines, contain amphiboles that crystallized during the injection of mafic magma into a dacitic magma body. The amphiboles contain abundant melt inclusions, which recorded the mixing of andesitic melt in the mafic magma and rhyolitic melt in the dacitic magma. The least evolved melt inclusions have high sulfur contents (up to 1,700 ppm) mostly as SO42, which suggests an oxidized state of the magma (NNO + 1.4). The intrinsically oxidized nature of the mafic magma is confirmed by spinel-olivine oxygen barometry. The value is comparable to that of the dacitic magma (NNO + 1.6). Hence, models invoking mixing as a means of releasing sulfur from the melt are not applicable to Pinatubo. Instead, the oxidized state of the dacitic magma likely reflects that of parental mafic magma and the source region in the sub-arc mantle. Our results fit a model in which long-lived SO2 discharge from underplated mafic magma accumulated in the overlying dacitic magma and immiscible aqueous fluids. The fluids were the most likely source of sulfur that was released into the atmosphere during the cataclysmic eruption. The concurrence of highly oxidized basaltic magma and disproportionate sulfur output during the 1991 Mt. Pinatubo eruption suggests that oxidized mafic melt is an efficient medium for transferring sulfur from the mantle to shallow crustal levels and the atmosphere. As it can carry large amounts of sulfur, effectively scavenge sulfides from the source mantle and discharge SO2 during ascent, oxidized mafic magma forms arc volcanoes with high sulfur fluxes, and potentially contributes to the formation of metallic sulfide deposits. ?? Springer-Verlag 2003.

  19. Making rhyolite in a basalt crucible

    NASA Astrophysics Data System (ADS)

    Eichelberger, John

    2016-04-01

    Iceland has long attracted the attention of those concerned with the origin of rhyolitic magmas and indeed of granitic continental crust, because it presents no alternative for such magmas other than deriving them from a basaltic source. Hydrothermally altered basalt has been identified as the progenitor. The fact that rhyolite erupts as pure liquid requires a process of melt-crustal separation that is highly efficient despite the high viscosity of rhyolite melt. Volcanoes in Iceland are foci of basaltic magma injection along the divergent plate boundary. Repeated injection produces remelting, digestion, and sometimes expulsion or lateral withdrawal of material resulting in a caldera, a "crucible" holding down-dropped and interlayered lava flows, tephras, and injected sills. Once melting of this charge begins, a great deal of heat is absorbed in the phase change. Just 1% change in crystallinity per degree gives a melt-present body an effective heat capacity >5 times the subsolidus case. Temperature is thus buffered at the solidus and melt composition at rhyolite. Basalt inputs are episodic ("fires") so likely the resulting generation of rhyolite by melting is too. If frequent enough to offset cooling between events, rhyolite melt extractions will accumulate as a rhyolite magma reservoir rather than as discrete crystallized sills. Evidently, such magma bodies can survive multiple firings without themselves erupting, as the 1875 eruption of Askja Caldera of 0.3 km3 of rhyolite equilibrated at 2-km depth without previous leakage over a ten-millennium period and the surprise discovery of rhyolite magma at 2-km depth in Krafla suggest. Water is required for melting; otherwise melting cannot begin at a temperature lower than that of the heat source. Because the solubility of water in melt is pressure-dependent and almost zero at surface pressure, there must be a minimum depth at which basalt-induced melting can occur and a rhyolite reservoir sustained. In practice, the

  20. Lu-Hf constraints on the evolution of lunar basalts

    NASA Technical Reports Server (NTRS)

    Fujimaki, H.; Tatsumoto, M.

    1984-01-01

    It is shown that a cumulate-remelting model best explains the recently acquired data on the Lu-Hf systematics of lunar mare basalts. The model is constructed using Lu and Hf concentration data and is strengthened by Hf isotopic evidence of Unruh et al. (1984). It is shown that the similarity in MgO/FeO ratios and Cr2O3 content in high-Ti and low-Ti basalts are not important constraints on lunar basalt petrogenesis. The model demonstrates that even the very low Ti or green glass samples are remelting products of a cumulate formed after at least 80-90 percent of the lunar magma ocean had solidified. In the model, all the mare basalts and green glasses were derived from 100-150 km depth in the lunar mantle. The Lu-Hf systematics of KREEP basalts clearly indicate that they would be the final residual liquid of the lunar magma ocean.

  1. Magma mixing enhanced by bubble ascent

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Morgavi, D.; Perugini, D.; De Campos, C. P.; Hess, K.; Lavallee, Y.; Dingwell, D. B.

    2012-12-01

    Understanding the processes that affect the rate of liquid state homogenization provides fundamental clues on the otherwise inaccessible subsurface dynamics of magmatic plumbing systems. Compositional heterogeneities detected in the matrix of magmatic rocks represent the arrested state of a chemical equilibration. Magmatic homogenization has been divided into a) the mechanical interaction of magma batches (mingling) and b) the diffusive equilibration of compositional gradients, where diffusive equilibration is exponentially enhanced by progressive mechanical interaction [1]. The mechanical interaction between two distinct batches of magma has commonly been attributed to shear and folding movements between two liquids of distinct viscosities. A mode of mechanical interaction scarcely invoked is the advection of mafic material into a felsic one through bubble motion. Yet, experiments with analogue materials demonstrated that bubble ascent has the potential to enhance the fluid mechanical component of magma mixing [2]. Here, we present preliminary results from bubble-advection experiments. For the first time, experiments of this kind were performed using natural materials at magmatic temperatures. Cylinders of Snake River Plain (SRP) basalt were drilled with a cavity of defined volume and placed underneath cylinders of SRP rhyolite. Upon melting, the gas pocket, or bubble trapped within the cavity, rose into the rhyolite, so entraining a layer of basalt. Successive iterations of the same experiment at progressive intervals ensured a time series of magmatic interaction caused by bubble segregation. Variations in initial bubble size allowed the tracking of bubble volume to advected material ratio at defined viscosity contrast. The resulting plume-like structures that the advected basalt formed within the rhyolite were characterized by microCT and subsequent high-resolution EMP analyses. The mass of advected material per bubble correlated positively with bubble size. The

  2. Ilchulbong tuff cone, Jeju Island, Korea, revisited: A compound monogenetic volcano involving multiple magma batches, shifting vents, and discrete eruptive phases

    NASA Astrophysics Data System (ADS)

    Sohn, Y.; Brenna, M.; Smith, I. E.; Nemeth, K.; White, J. D.; Murtagh, R.; Jeon, Y.; Kwon, C.; Cronin, S. J.

    2010-12-01

    Ilchulbong (Sunrise Peak) tuff cone is a UNESCO World Heritage site that owes its scientific importance to the outstanding coastal exposures that surround it. It is also one of the classic sites that provided the sedimentary evidence for the primary pyroclastic processes that occur during phreatomagmatic basaltic eruptions. It has been long considered, based on the cone morphology, that this classic cone was produced via eruption from a single vent site. Reanalysis of the detailed sedimentary sequence has now revealed that two subtle paraconformities occur in this deposition sequence, one representing a significant time break of perhaps days to weeks or months, during which erosion and compaction of the lower cone occurred, the conduit cooled and solidified and a subsequent resumption of eruption took place in a new vent location. Detailed geochemical study of the juvenile clasts through this cone reveals that three separate alkali basaltic magma batches were erupted, the first and third erupted may be genetically related, with the latter showing evidence for longer periods of shallow-level fractionation. The second magma batch erupted was generated in a different mantle source area. Reconstructing the eruption sequence, the lower Ilchulbong cone was formed by eruption of magma 1. Cessation of eruption was accompanied by erosion to generate a volcano-wide unconformity, associated with reworked deposits in the lower cone flanks. The eruption resumed with magma 2 that, due to the cooled earlier conduit, was forced to erupt in a new site to the west of the initial vent. This formed the middle cone sequence over the initially formed structure. The third magma batch erupted with little or no interval after magma 2 from the same vent location, associated with cone instability and slumping, and making up the deposits of the upper cone. These results demonstrate how critical the examination for sedimentary evidence for time breaks in such eruption sequences is for

  3. Geochemical and mineralogical evidence for the occurrence of at least three distinct magma types in the `famous' region

    NASA Astrophysics Data System (ADS)

    Le Roex, Anton P.; Erlank, A. J.; Needham, H. D.

    1981-03-01

    Bulk rock major and trace element variations in selected basalts from the Famous area, in conjunction with a detailed study of the chemical compositions of phenocryst minerals and associated melt inclusions are used to place constraints on the genetic relationship among the various lava types. The distribution of NiO in olivine and Cr-spinel phenocrysts distinguishes the picritic basalts, plagioclase phyric basalts and plagioclase-pyroxene basalts from the olivine basalts. For a given Mg/Mg+Fe2+ atomic ratio of the mineral, the NiO content of these phenocrysts in the former three basalt types is low relative to that in the phenocrysts in the olivine basalts. The Zr/Nb ratio of the lavas similarly distinguishes the olivine basalts from the plagioclase phyric and plagioclase pyroxene basalts and, in addition, distinguishes the picritic basalts from the other basalt types. These differences indicate that the different magma groups could not have been processed through the same magma chamber, and preclude any direct inter-relationship via open or closed system fractional crystallization. The Fe-Mg partitioning between olivine and host rock suggests that the picritic basalts represent olivine (±Cr-spinel) enriched magmas, derived from a less MgO rich parental magma. The partitioning of Fe and Mg between olivine, Cr-spinel and coexisting liquid is used to predict a primary magma composition parental to the picritic basalts. This magma is characterized by relatively high MgO (12.3%) and CaO (12.6%) and low FeO* (7.96%) and TiO2 (0.63%). Least squares calculations indicate that the plagioclase phyric basalts are related to the plagioclase-pyroxene basalts by plagioclase and minor clinopyroxene and olivine accumulation. The compositional variations within the olivine basalts can be accounted for by fractionation of plagioclase, clinopyroxene and olivine in an open system, steady state, magma chamber in the average proportions 45∶32∶23. It is suggested that the most

  4. Submarine basalt from the Revillagigedo Islands region, Mexico

    USGS Publications Warehouse

    Moore, J.G.

    1970-01-01

    Ocean-floor dredging and submarine photography in the Revillagigedo region off the west coast of Mexico reveal that the dominant exposed rock of the submarine part of the large island-forming volcanoes (Roca Partida and San Benedicto) is a uniform alkali pillow basalt; more siliceous rocks are exposed on the upper, subaerial parts of the volcanoes. Basalts dredged from smaller seamounts along the Clarion fracture zone south of the Revillagigedo Islands are tholeiitic pillow basalts. Pillows of alkali basalts are more vesicular than Hawaiian tholeiitic pillows collected from the same depths. This difference probably reflects a higher original volatile content of the alkali basalts. Manganese-iron oxide nodules common in several dredge hauls generally contain nucleii of rhyolitic pumice or basalt pillow fragments. The pumice floated to its present site from subaerial eruptions, became waterlogged and sank, and was then coated with manganese-iron oxides. The thickness of palagonite rinds on the glassy pillow fragments is proportional to the thickness of manganese-iron oxide layers, and both are a measure of the age of the nodule. Both oldest basalts (10-100 m.y.) and youngest (less than 1 m.y.) are along the Clarion fracture zone, whereas basalts from Roca Partida and San Benedicto volcanoes are of intermediate age. ?? 1970.

  5. Megacrystic Clinopyroxene Basalts Sample A Deep Crustal Underplate To The Mount Taylor Volcanic Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Schmidt, M. E.; Schrader, C. M.; Crumpler, L. S.; Wolff, J. A.

    2012-12-01

    The alkaline and compositionally diverse (basanite to high-Si rhyolite) Mount Taylor Volcanic Field (MTVF), New Mexico comprises 4 regions that cover ~75 x 40 km2: (1) Mount Taylor, a large composite volcano and a surrounding field of basaltic vents; (2) Grants Ridge, constructed of topaz rhyolitic ignimbrite and coulees; (3) Mesa Chivato, a plateau of alkali basalts and mugearitic to trachytic domes; and (4) the Rio Puero basaltic necks. Distributed throughout its history (~3.6 to 1.26 Ma; Crumpler and Goff, 2012) and area (excepting Rio Puerco Necks) is a texturally distinct family of differentiated basalts (Mg# 43.2-53.4). These basalts contain resorbed and moth-eaten megacrysts (up to 2 cm) of plagioclase, clinopyroxene, and olivine ±Ti-magnetite ±ilmenite ±rare orthopyroxene. Some megacrystic lava flows have gabbroic cumulate inclusions with mineral compositions similar to the megacrysts, suggesting a common origin. For instance, gabbroic and megacrystic clinopyroxenes form linear positive arrays in TiO2 (0.2-2.3 wt%) with respect to Al2O3 (0.7-9.3 wt%). The lowest Al clinopyroxenes are found in a gabbroic inclusion and are associated with partially melted intercumulus orthopyroxene. Megacrystic and gabbroic plagioclase (An 41-80) in 4 representative thin sections were analyzed for 87Sr/86Sr by Laser Ablation ICP-MS. 87Sr/86Sr values for the suite range from 0.7036 to 0.7047. The low 87Sr/86Sr plagioclases (0.7036 to 0.7037) are associated with high Ti-Al clinopyroxenes. Likewise, the higher 87Sr/86Sr plagioclases (0.7043 to 0.7047) are associated with the low-Al clinopyroxenes. Taken together, these megacrysts track the differentiation of an intrusive body (or related bodies) from alkaline to Si-saturated conditions by fractional crystallization and crustal assimilation. The intrusive body likely underplates portions of the MTVF that have generated silicic magmas (Mount Taylor, Grants Ridge, Mesa Chivato). Although disequilibrium is implied by resorbed

  6. Characterization of mesostasis regions in lunar basalts: Understanding late-stage melt evolution and its influence on apatite formation

    NASA Astrophysics Data System (ADS)

    Potts, Nicola J.; TartèSe, Romain; Anand, Mahesh; Westrenen, Wim; Griffiths, Alexandra A.; Barrett, Thomas J.; Franchi, Ian A.

    2016-09-01

    Recent studies geared toward understanding the volatile abundances of the lunar interior have focused on the volatile-bearing accessory mineral apatite. Translating measurements of volatile abundances in lunar apatite into the volatile inventory of the silicate melts from which they crystallized, and ultimately of the mantle source regions of lunar magmas, however, has proved more difficult than initially thought. In this contribution, we report a detailed characterization of mesostasis regions in four Apollo mare basalts (10044, 12064, 15058, and 70035) in order to ascertain the compositions of the melts from which apatite crystallized. The texture, modal mineralogy, and reconstructed bulk composition of these mesostasis regions vary greatly within and between samples. There is no clear relationship between bulk-rock basaltic composition and that of bulk-mesostasis regions, indicating that bulk-rock composition may have little influence on mesostasis compositions. The development of individual melt pockets, combined with the occurrence of silicate liquid immiscibility, exerts greater control on the composition and texture of mesostasis regions. In general, the reconstructed late-stage lunar melts have roughly andesitic to dacitic compositions with low alkali contents, displaying much higher SiO2 abundances than the bulk compositions of their host magmatic rocks. Relevant partition coefficients for apatite-melt volatile partitioning under lunar conditions should, therefore, be derived from experiments conducted using intermediate compositions instead of compositions representing mare basalts.

  7. Characterization of mesostasis regions in lunar basalts: Understanding late-stage melt evolution and its influence on apatite formation

    NASA Astrophysics Data System (ADS)

    Potts, Nicola J.; TartèSe, Romain; Anand, Mahesh; Westrenen, Wim; Griffiths, Alexandra A.; Barrett, Thomas J.; Franchi, Ian A.

    2016-07-01

    Recent studies geared toward understanding the volatile abundances of the lunar interior have focused on the volatile-bearing accessory mineral apatite. Translating measurements of volatile abundances in lunar apatite into the volatile inventory of the silicate melts from which they crystallized, and ultimately of the mantle source regions of lunar magmas, however, has proved more difficult than initially thought. In this contribution, we report a detailed characterization of mesostasis regions in four Apollo mare basalts (10044, 12064, 15058, and 70035) in order to ascertain the compositions of the melts from which apatite crystallized. The texture, modal mineralogy, and reconstructed bulk composition of these mesostasis regions vary greatly within and between samples. There is no clear relationship between bulk-rock basaltic composition and that of bulk-mesostasis regions, indicating that bulk-rock composition may have little influence on mesostasis compositions. The development of individual melt pockets, combined with the occurrence of silicate liquid immiscibility, exerts greater control on the composition and texture of mesostasis regions. In general, the reconstructed late-stage lunar melts have roughly andesitic to dacitic compositions with low alkali contents, displaying much higher SiO2 abundances than the bulk compositions of their host magmatic rocks. Relevant partition coefficients for apatite-melt volatile partitioning under lunar conditions should, therefore, be derived from experiments conducted using intermediate compositions instead of compositions representing mare basalts.

  8. Evidence for multiple mechanisms of crustal contamination of magma from compositionally zoned plutons and associated ultramafic intrusions of the Alaska Range

    USGS Publications Warehouse

    Reiners, P.W.; Nelson, B.K.; Nelson, S.W.

    1996-01-01

    /86Sr)i that are too high, and ??(T)Nd that are too low, to represent the expected isotopic composition of typical depleted mantle. However, gabbro xenoliths with typical depleted-mantle isotopic compositions are found in the plutons. This situation requires either an additional enriched mantle component to provide the parental magma for these plutons, or some mechanism of crustal contamination of the parent magma that did not cause significant crystallization and differentiation of the magma to more felsic compositions. Thermodynamic modeling indicates that assimilation of alkali- and water-rich partial melt of the metapelite country rock by fractionating, near-liquidus basaltic magma could cause significant contamination while suppressing significant crystallization and differentiation.

  9. Bubble Growth in Lunar Basalts

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2009-05-01

    Although Moon is usually said to be volatile-"free", lunar basalts are often vesicular with mm-size bubbles. The vesicular nature of the lunar basalts suggests that they contained some initial gas concentration. A recent publication estimated volatile concentrations in lunar basalts (Saal et al. 2008). This report investigates bubble growth on Moon and compares with that on Earth. Under conditions relevant to lunar basalts, bubble growth in a finite melt shell (i.e., growth of multiple regularly-spaced bubbles) is calculated following Proussevitch and Sahagian (1998) and Liu and Zhang (2000). Initial H2O content of 700 ppm (Saal et al. 2008) or lower is used and the effect of other volatiles (such as carbon dioxide, halogens, and sulfur) is ignored. H2O solubility at low pressures (Liu et al. 2005), concentration-dependent diffusivity in basalt (Zhang and Stolper 1991), and lunar basalt viscosity (Murase and McBirney 1970) are used. Because lunar atmospheric pressure is essentially zero, the confining pressure on bubbles is completely supplied by the overlying magma. Due to low H2O content in lunar basaltic melt (700 ppm H2O corresponds to a saturation pressure of 75 kPa), H2O bubbles only grow in the upper 16 m of a basalt flow or lake. A depth of 20 mm corresponds to a confining pressure of 100 Pa. Hence, vesicular lunar rocks come from very shallow depth. Some findings from the modeling are as follows. (a) Due to low confining pressure as well as low viscosity, even though volatile concentration is very low, bubble growth rate is extremely high, much higher than typical bubble growth rates in terrestrial melts. Hence, mm-size bubbles in lunar basalts are not strange. (b) Because the pertinent pressures are so low, bubble pressure due to surface tension plays a main role in lunar bubble growth, contrary to terrestrial cases. (c) Time scale to reach equilibrium bubble size increases as the confining pressure increases. References: (1) Liu Y, Zhang YX (2000) Earth

  10. Phonolites and peralkaline rhyolites from a single magma source in the mantle : A new look at some Black Hills rocks

    SciTech Connect

    Kirchner, J.G. . Dept. of Geography-Geology)

    1993-03-01

    A re-evaluation of existing data from the Deer Mountain-Terry Peak-Sugarloaf Mountain area of the Black Hills, plus some new data, suggests the real possibility that both silica-undersaturated and silica-oversaturated alkaline-peralkaline rocks evolved from the same mantle-derived parent magma. Mineralogically, aegirine rhyolites, phonolites, a minette and the mantle are linked by an association of Mg-rich olivine-phlogopite structures, zenocrystic phlogopite and diopside-cored pyroxene phenocrysts. Trends of silica vs. major elements, trace elements (V,Sc,Ni) and MgO/FeOt are continuous and preclude being fortuitous. Peralkalinity also increases with silica in a well-defined trend. Increasing ferric oxide to total iron oxide indicates increasing oxygen fugacity with silica saturation. A mantle origin for the phonolites is supported by Sr-isotope data of Beintema (1986) and Beintema and Montgomery (1986). Higher Sr-isotope ratios for the aegirine rhyolites, suggesting a lower crustal origin, actually may result from magmatic processes, as shown by others for ocean island basalt-phonolite-comendite associations. Early fractionation of mafic phases drives trends away from the Ne-minimum on the residua diagram, indicating that magma evolution took place above residua temperatures, thus avoiding the thermal divide. Later fractionation of alkali feldspars accounts for variation in the aegirine rhyolites. Rising alkalies and oxygen explain variations in peralkalinity and ferric iron content. Pressure-dependent immiscibility possibly may be the cause of a silica gap in rock types, as rocks with low quartz contents are not found, except as phaneritic inclusions. A model is suggested in which either a fractionating minette or trachyte magma could yield the series of rocks under study.

  11. Geochemical characteristics of the "Mid-Alkaline Basalts" from the "adventive cones" of Piton de la Fournaise volcano (La Réunion Island)

    NASA Astrophysics Data System (ADS)

    Valer, Marina; Bachèlery, Patrick; Schiano, Pierre; Upton, Brian G. J.

    2016-04-01

    Piton de la Fournaise, the youngest volcano of La Réunion Island, is renowned for being frequently active. Its lavas (younger than ~450 ka) have been subdivided into three compositional groups (see Lénat et al. 2012 for a review). Almost all recent and historical lavas belong to two of these groups: "cotectic basalts" and "olivine-rich basalts", marked by a constant CaO/Al2O3 ratio of ~0.8, and MgO content ranging from 5 to 30 wt % reflecting different degrees of olivine accumulation. Whereas that current activity is mainly located within the "Enclos Fouqué" caldera, ~100 strombolian cones lie on the volcano's flanks, thought to date from ~300 years to a few thousand years. Our study focuses on these "adventive cones", by studying bulk-rock major and trace element compositions, isotopic compositions, mineral phases and olivine-hosted melt inclusions. The bulk-rock compositions correspond to the third group of the Piton de la Fournaise lavas (see above), called the "mid-alkaline basalts". They mainly consist of magnesian basalts at 7.55 - 10.24 wt% MgO and CaO/Al2O3 values down to 0.55. At constant MgO content, this group shows higher alkali content and a relative deficiency in Ca compared to the historic basalts. The "adventive cones" lavas usually contain magnesian olivine crystals (Fo > 86). Such crystals are not at the equilibrium with their host lava, raising thus the question of the recycling processes. The volatile contents of these olivine-hosted melt inclusions (work in progress) will allow to determine if such magnesian olivine crystals come from deep storage levels, as previously proposed by Bureau et al. (1998; 1999). The specific geochemistry the "adventive cones" lavas is attributed either to a high-pressure fractionation of a clinopyroxene-rich assemblage (Albarède et al. 1997), or to an assimilation process involving wehrlite-gabbro cumulates (e.g. Salaün et al. 2010). Although the trace element data show that the source of these magmas is

  12. Isotopic and REE studies of lunar basalt 12038 - Implications for petrogenesis of aluminous mare basalts

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Wooden, J. L.; Shih, C.-Y.; Wiesmann, H.; Bansal, B. M.

    1981-01-01

    Sr, Nd, and Sm isotopic studies of lunar basalt 12038, one of the so-called aluminous mare basalts, are reported. The evolution of the Sr and Nd isotopic compositions and the rare earth element (REE) abundances is successfully modeled within the framework of the model developed by Nyquist et al. (1977, 1979) for Apollo 12 olivine-pigeonite and ilmenite basalts. It is pointed out that the isotopic and trace element features of 12038 can by modeled as produced by partial melting of a cumulate mantle source which crystallized from a lunar magma ocean with a chondrite-normalized REE pattern of constant negative slope. Chondrite-normalized La/Yb is equal to 2.2 for this hypothetical magma ocean pattern.

  13. Yamato 980459: Crystallization of Martian Magnesian Magma

    NASA Technical Reports Server (NTRS)

    Koizumi, E.; Mikouchi, T.; McKay, G.; Monkawa, A.; Chokai, J.; Miyamoto, M.

    2004-01-01

    Recently, several basaltic shergottites have been found that include magnesian olivines as a major minerals. These have been called olivinephyric shergottites. Yamato 980459, which is a new martian meteorite recovered from the Antarctica by the Japanese Antarctic expedition, is one of them. This meteorite is different from other olivine-phyric shergottites in several key features and will give us important clues to understand crystallization of martian meteorites and the evolution of Martian magma.

  14. Taxonomy Of Magma Mixing I: Magma Mixing Metrics And The Thermochemistry Of Magma Hybridization Illuminated With A Toy Model

    NASA Astrophysics Data System (ADS)

    Spera, F. J.; Bohrson, W. A.; Schmidt, J.

    2013-12-01

    The rock record preserves abundant evidence of magma mixing in the form of mafic enclaves and mixed pumice in volcanic eruptions, syn-plutonic mafic or silicic dikes and intrusive complexes, replenishment events recorded in cumulates from layered intrusions, and crystal scale heterogeneity in phenocrysts and cumulate minerals. These evidently show that magma mixing in conjunction with crystallization (perfect fractional or incremental batch) is a first-order petrogenetic process. Magma mixing (sensu lato) occurs across a spectrum of mixed states from magma mingling to complete blending. The degree of mixing is quantified (Oldenburg et al, 1989) using two measures: the statistics of the segregation length scales (scale of segregation, L*) and the spatial contrast in composition (C) relative to the mean C (intensity of segregation, I). Mingling of dissimilar magmas produces a heterogeneous mixture containing discrete regions of end member melts and populations of crystals with L* = finite and I > 0. When L*→∞ and I→0 , the mixing magmas become hybridized and can be studied thermodynamically. Such hybrid magma is a multiphase equilibrium mixture of homogeneous melt, unzoned crystals and possible bubbles of a supercritical fluid. Here, we use a toy model to elucidate the principles of magma hybridization in a binary system (components A and B with pure crystals of α or β phase) with simple thermodynamics to build an outcome taxonomy. This binary system is not unlike the system Anorthite-Diopside, the classic low-pressure model basalt system. In the toy model, there are seven parameters describing the phase equilibria (eutectic T and X, specific heat, melting T and fusion enthalpies of α and β crystals) and five variables describing the magma mixing conditions: end member bulk compositions, temperatures and fraction of resident magma (M) that blends with recharge (R) magma to form a single equilibrium hybrid magma. There are 24 possible initial states when M

  15. Loki Patera: A Magma Sea Story

    NASA Technical Reports Server (NTRS)

    Veeder, G. J.; Matson, D. L.; Rathbun, A. G.

    2005-01-01

    We consider Loki Patera on Io as the surface expression of a large uniform body of magma. Our model of the Loki magma sea is some 200 km across; larger than a lake but smaller than an ocean. The depth of the magma sea is unknown, but assumed to be deep enough that bottom effects can be ignored. Edge effects at the shore line can be ignored to first order for most of the interior area. In particular, we take the dark material within Loki Patera as a thin solidified lava crust whose hydrostatic shape follows Io's isostatic surface (approx. 1815 km radius of curvature). The dark surface of Loki appears to be very smooth on both regional and local (subresolution) scales. The thermal contrast between the low and high albedo areas within Loki is consistent with the observed global correlation. The composition of the model magma sea is basaltic and saturated with dissolved SO2 at depth. Its average, almost isothermal, temperature is at the liquidus for basalt. Additional information is included in the original extended abstract.

  16. Climate Throughout Geologic Time Has Been Controlled Primarily by the Balance Between Cooling Caused by Major Explosive Eruptions of Evolved Magmas Typical of Island Arcs and Warming Caused by Voluminous Effusive Eruptions of Basaltic Magma Typical of Subaerial Ocean Ridges and Island Chains

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2014-12-01

    Most volcanic eruptions deplete ozone ~6% for a few years, allowing more high-energy, ultraviolet-B radiation to warm earth. Record low levels of total column ozone followed the 1991 explosive eruption of Pinatubo. Yet 6% depletion also followed the smaller and more effusive eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011) in Iceland. Explosive volcanoes also eject 10-20 megatons of sulfur dioxide into the lower stratosphere, forming sulfuric-acid aerosols that reflect and diffuse sunlight causing a net cooling of ~0.5°C for 3 years. High rates of explosive volcanos cool earth into ice ages while high rates of effusive basaltic volcanism in Iceland between 11,500 and 9,500 years ago clearly warmed Earth out of the last ice age depositing sulfate recorded in ice cores in Greenland. Basalts from these eruptions are observed as tuyas in Iceland dated during this period. The 25 Dansgaard-Oeschger abrupt warmings are contemporaneous with increased sulfate in Greenland and with the few older dates available for tuyas in Iceland. Extensive flood basalts were formed during the Paleocene Eocene Thermal Maximum and during times of most major mass extinctions when global temperatures rose substantially, with fossil evidence for ozone depletion. Greenhouse-gas theory assumes electromagnetic radiation travels through space as waves and therefore thermal energy reaching earth is proportional to the square of wave amplitude. Thus the change in energy reaching Earth due to ozone depletion is considered small compared to infrared energy absorbed by greenhouse gases. But waves travel in matter and there is no matter in space. Electromagnetic energy is transmitted as frequency, as shown by radio signals, where energy equals frequency times the Planck constant. Thus thermal energy reaching earth when ozone is depleted is 50 times thermal energy involved in greenhouse gases. Global warming from 1970 to 1998 was caused primarily by 3% ozone depletion due to anthropogenic

  17. Hotspots, basalts, and the evolution of the mantle.

    PubMed

    Anderson, D L

    1981-07-01

    The trace element concentration patterns of continental and ocean island basalts and of mid-ocean ridge basalts are complementary. The relative sizes of the source regions for these fundamentally different basalt types can be estimated from the trace element enrichment-depletion patterns. Their combined volume occupies most of the mantle above the 670 kilometer discontinuity. The source regions separated as a result of early mantle differentiation and crystal fractionation from the resulting melt. The mid-ocean ridge basalts source evolved from an eclogite cumulate that lost its late-stage enriched fluids at various times to the shallower mantle and continental crust. The mid-ocean ridge basalts source is rich in garnet and clinopyroxene, whereas the continental and ocean island basalt source is a garnet peridotite that has experienced secondary enrichment. These relationships are consistent with the evolution of a terrestrial magma ocean. PMID:17741173

  18. Hotspots, basalts, and the evolution of the mantle.

    PubMed

    Anderson, D L

    1981-07-01

    The trace element concentration patterns of continental and ocean island basalts and of mid-ocean ridge basalts are complementary. The relative sizes of the source regions for these fundamentally different basalt types can be estimated from the trace element enrichment-depletion patterns. Their combined volume occupies most of the mantle above the 670 kilometer discontinuity. The source regions separated as a result of early mantle differentiation and crystal fractionation from the resulting melt. The mid-ocean ridge basalts source evolved from an eclogite cumulate that lost its late-stage enriched fluids at various times to the shallower mantle and continental crust. The mid-ocean ridge basalts source is rich in garnet and clinopyroxene, whereas the continental and ocean island basalt source is a garnet peridotite that has experienced secondary enrichment. These relationships are consistent with the evolution of a terrestrial magma ocean.

  19. Chemical Zoning of Feldspars in Lunar Granitoids: Implications for the Origins of Lunar Silicic Magmas

    NASA Technical Reports Server (NTRS)

    Mills, R. D; Simon, J. I.; Alexander, C.M. O'D.; Wang, J.; Christoffersen, R.; Rahman, Z..

    2014-01-01

    Fine-scale chemical and textural measurements of alkali and plagioclase feldspars in the Apollo granitoids (ex. Fig. 1) can be used to address their petrologic origin(s). Recent findings suggest that these granitoids may hold clues of global importance, rather than of only local significance for small-scale fractionation. Observations of morphological features that resemble silicic domes on the unsampled portion of the Moon suggest that local, sizable net-works of high-silica melt (>65 wt % SiO2) were present during crust-formation. Remote sensing data from these regions suggest high concentrations of Si and heat-producing elements (K, U, and Th). To help under-stand the role of high-silica melts in the chemical differentiation of the Moon, three questions must be answered: (1) when were these magmas generated?, (2) what was the source material?, and (3) were these magmas produced from internal differentiation. or impact melting and crystallization? Here we focus on #3. It is difficult to produce high-silica melts solely by fractional crystallization. Partial melting of preexisting crust may therefore also have been important and pos-sibly the primary mechanism that produced the silicic magmas on the Moon. Experimental studies demonstrate that partial melting of gabbroic rock under mildly hydrated conditions can produce high-silica compositions and it has been suggested by that partial melting by basaltic underplating is the mechanism by which high-silica melts were produced on the Moon. TEM and SIMS analyses, coordinated with isotopic dating and tracer studies, can help test whether the minerals in the Apollo granitoids formed in a plutonic setting or were the result of impact-induced partial melting. We analyzed granitoid clasts from 3 Apollo samples: polymict breccia 12013,141, crystalline-matrix breccia 14303,353, and breccia 15405,78

  20. Thermal and rheological controls on magma migration in dikes: Examples from the east rift zone of Kilauea volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Parfitt, E. A.; Wilson, L.; Pinkerton, H.

    1993-01-01

    Long-lived eruptions from basaltic volcanoes involving episodic or steady activity indicate that a delicate balance has been struck between the rate of magma cooling in the dike system feeding the vent and the rate of magma supply to the dike system from a reservoir. We describe some key factors, involving the relationships between magma temperature, magma rheology, and dike geometry that control the nature of such eruptions.

  1. The Implications of Petit-Spot Volcanism for the Origin of Alkaline Intraplate Magmas

    NASA Astrophysics Data System (ADS)

    Pilet, S.; Rochat, L.; Abe, N.

    2014-12-01

    The compositions of alkaline lavas are mostly similar even though they are observed in various tectonic contexts. This similarity has been used to suggest that these rocks are all produced by deep processes. Nevertheless, the formation of petit-spot seamounts, which are interpreted as low-degree melts extracted from the base of the lithosphere in response to plate flexure, demonstrates that alkaline lavas could also be produced by shallow tectonic processes. In this presentation, petit-spot lavas will be compared to intraplate basalts to reveal the processes that control the petrogenesis of intraplate lavas. Petit-spot lavas are characterized by an alkaline basaltic composition rich in potassium (K2O/Na2O>0.7). This distinguishes them from oceanic island basalts, which are characterized by a lower alkali ratio. The K-rich nature of petit-spot melts is explained either by the melting of an asthenospheric mantle domain enriched in K2O, TiO2 and trace elements, or by the interaction of low-degree melts extracted from the low velocity zone (LVZ) with phlogopite-rich metasomatic lithologies present in the lower part of the lithospheric mantle; metasomatic cumulates formed during an early stage of LVZ melt migration. The latter model is supported by the recent discovery of metasomatized peridotite xenoliths in petit-spot lavas which demonstrates that low degree melts, similar in composition to the melts responsible for the formation of phlogopite-rich cumulates in continental lithospheric mantle, percolate through the oceanic lithospheric mantle producing a metasomatic enrichment. The involvement of metasomatic processes in the formation of petit-spot lavas provides a link to the metasomatic lithospheric model for the origin of alkaline magmas, a model that suggests that these rocks are not produced directly from the asthenosphere, but by the melting of hydrous veins produced by the percolation and differentiation of low degree asthonospheric melts across the

  2. Interpreting chemical compositions of small scale basaltic systems: A review

    NASA Astrophysics Data System (ADS)

    McGee, Lucy E.; Smith, Ian E. M.

    2016-10-01

    Small scale basaltic magmatic systems occur in all of the major tectonic environments of planet Earth and are characteristically expressed at the Earth's surface as fields of small monogenetic cones. The chemical compositions of the materials that make up these cones reflect processes of magma generation and differentiation that occur in their plumbing system. The volumes of magmas involved are very small and significantly their compositional ranges reveal remarkably complex processes which are overwhelmed or homogenized in larger scale systems. Commonly, compositions are basaltic, alkalic and enriched in light rare earth elements and large ion lithophile elements, although the spectrum extends from highly enriched nephelinites to subalkalic and tholeiitic basalts. Isotopic analyses of rocks from volcanic fields almost always display compositions which can only be explained by the interaction of two or more mantle sources. Ultimately their basaltic magmas originate by small scale melting of mantle sources. Compositional variety is testament to melting processes at different depths, a range of melting proportions, a heterogeneous source and fractionation, magma mixing and assimilation within the plumbing system that brings magmas to the surface. The fact that such a variety of compositions is preserved in a single field shows that isolation of individual melting events and their ascent is an important and possibly defining feature of monogenetic volcanism, as well as the window their chemical behavior provides into the complex process of melt generation and extraction in the Earth's upper mantle.

  3. Pb isotopic heterogeneity in basaltic phenocrysts

    SciTech Connect

    Bryce, Julia G.; DePaolo, Donald J.

    2002-06-01

    The Pb isotopic compositions of phenocrystic phases in young basaltic lavas have been investigated using the Getty-DePaolo method (Getty S. J. and DePaolo D. J. [1995] Quaternary geochronology by the U-Th-Pb method. Geochim. Cosmochim. Acta 59, 3267 3272), which allows for the resolution of small isotopic differences. Phenocryst, matrix, and whole rock analyses were made on samples from the 17 Myr-old Imnaha basalts of the Columbia River Group, a zero-age MORB from the Mid-Atlantic Ridge, and a ca. 260 kyr-old tholeiite from Mount Etna. Plagioclase feldspar phenocrysts have low-(U, Th)/Pb, and in each sample the plagioclase has significantly lower 206Pb/207Pb and 208Pb/207Pb values than whole rock, matrix, and magnetite-rich separates. The Pb isotopic contrast between plagioclase and matrix/whole rock is found in three samples with varying grain sizes (0.5 2 cm for the Imnaha basalt and MORB and <1 mm for the Etna sample) from different tectonic settings, suggesting that these results are not unique. The isotopic contrasts are only slightly smaller in magnitude than the variations exhibited by whole rock samples from the region. The Imnaha basalts also have Sr isotopic heterogeneity evident only in plagioclase phenocrysts, but the MORB and Etna lavas do not. The isotopic heterogeneities reflect magma mixing, and indicate that isotopically diverse magmas were mixed together just prior to eruption. The results reinforce indications from melt inclusion studies that magma source region isotopic heterogeneities have large amplitudes at short length scales, and that the isotopic variations imparted to the magmas are not entirely homogenized during segregation and transport processes.

  4. Germanium abundances in lunar basalts: Evidence of mantle metasomatism

    SciTech Connect

    Dickinson, T.; Taylor, G.J.; Keil, T.K.; Bild, R.W.

    1988-01-01

    To fill in gaps in the present Ge data base, mare basalts were analyzed for Ge and other elements by RNAA and INAA. Mare basalts from Apollo 11, 12, 15, 17 landing sites are rather uniform in Ge abundance, but Apollo 14 aluminous mare basalts and KREEP are enriched in Ge by factors of up to 300 compared to typical mare basalts. These Ge enrichments are not associated with other siderophile element enrichments and, thus, are not due to differences in the amount of metal segregated during core formation. Based on crystal-chemical and inter-element variations, it does not appear that the observed Ge enrichments are due to silicate liquid immiscibility. Elemental ratios in Apollo 14 aluminous mare basalts, green and orange glass, average basalts and KREEP suggest that incorporation of late accreting material into the source regions or interaction of the magmas with primitive undifferentiated material is not a likely cause for the observed Ge enrichments. We speculate that the most plausible explanation for these Ge enrichments is complexing and concentration of Ge by F, Cl or S in volatile phases. In this manner, the KREEP basalt source regions may have been metasomatized and Apollo 14 aluminous mare basalt magmas may have become enriched in Ge by interacting with these metasomatized areas. The presence of volatile- and Ge-rich regions in the Moon suggests that the Moon was never totally molten. 71 refs., 1 fig., 6 tabs.

  5. Hanford basalt flow mineralogy

    SciTech Connect

    Ames, L.L.

    1980-09-01

    Mineralogy of the core samples from five core wells was examined in some detail. The primary mineralogy study included an optical examination of polished mounts, photomicrographs, chemical analyses of feldspars, pyroxenes, metallic oxides and microcrystalline groundmasses and determination from the chemical analyses of the varieties of feldspars, pyroxenes and metallic oxides. From the primary mineralogy data, a firm understanding of the average Hanford basalt flow primary mineralogy emerged. The average primary feldspar was a laboradorite, the average pyroxene was an augite and the average metallic oxide was a solid solution of ilmenite and magnetite. Secondary mineralization consisted of vug filling and joint coating, chiefly with a nontronite-beidellite clay, several zeolites, quartz, calcite, and opal. Specific flow units also were examined to determine the possibility of using the mineralogy to trace flows between core wells. These included units of the Pomona, the Umatilla and a high chromium flow just below the Huntzinger. In the Umatilla, or high barium flow, the compositional variation of the feldspars was unique in range. The pyroxenes in the Pomona were relatively highly zoned and accumulated chromium. The high chromium flow contained chromium spinels that graded in chromium content into simple magnetites very low in chromium content. A study of the statistical relationships of flow unit chemical constituents showed that flow unit constituents could be roughly correlated between wells. The probable cause of the correlation was on-going physical-chemical changes in the source magma.

  6. Petrogenesis of coeval sodic and potassic alkaline magmas at Spanish Peaks, Colorado: Magmatism related to the opening of the Rio Grande rift

    NASA Astrophysics Data System (ADS)

    Lord, A. Brooke Hamil; McGregor, Heath; Roden, Michael F.; Salters, Vincent J. M.; Sarafian, Adam; Leahy, Rory

    2016-07-01

    Approximately coeval, relatively primitive (∼5-10% MgO with exception of a trachyandesite) alkaline mafic dikes and sills at or near Spanish Peaks, CO are divided into relatively sodic and potassic varieties on the basis of K2O/Na2O. Many of these dikes are true lamprophyres. In spite of variable alkali element ratios, the alkaline rocks share a number of geochemical similarities: high LIL element contents, high Ba and similar Sr, Nd and Hf isotope ratios near that of Bulk Earth. One important difference is that the potassic rocks are characterized by lower Al2O3 contents, typically less than 12 wt.%, than the sodic dikes/sills which typically have more than 13 wt.% Al2O3, and this difference is independent of MgO content. We attribute the distinct Al2O3 contents to varying pressure during melting: a mica-bearing, Al-poor vein assemblage for the potassic magmas melted at higher pressure than an aluminous amphibole-bearing vein assemblage for the sodic magmas. Remarkable isotopic and trace element similarities with approximately contemporaneous, nearby Rio Grande rift-related basalts in the San Luis Valley, indicate that the magmatism at Spanish Peaks was rift-related, and that lithosphere sources were shared between some rift magmas and those at Spanish Peaks. High Zn/Fe ratios in the Spanish Peaks mafic rocks point to a clinopyroxene- and garnet-rich source such as lithosphere veined by pyroxenite or eclogite. Lithospheric melting was possibly triggered by foundering of cool, dense lithosphere beneath the Rio Grande rift during the initiation of rifting with the potassic parent magmas generated by higher pressure melting of the foundered lithosphere than the sodic parent magmas. This process, caused by gravitational instability of the lithosphere (Elkins-Tanton, 2007) may be common beneath active continental rifts.

  7. Occurrence and Mineral Chemistry of High Pressure Phases, Potrillo Basalt, Southcentral New Mexico. M.S. Thesis Final Technical Report, 1 Jun. 1980 - 31 May 1982

    NASA Technical Reports Server (NTRS)

    Sheffield, T. M.

    1982-01-01

    The presence of an older plagioclase-rich basalt and a younger olivine-rich basalt were confirmed by modal and chemical analysis. Chemical analysis also confirmed the presence of flows that are tholeiitic in composition and could be remnants of an original tholeittic parent magma. Eruptions from different levels of a differentiated magma chamber are proposed to account for the two members.

  8. Dredged trachyte and basalt from kodiak seamount and the adjacent aleutian trench, alaska.

    PubMed

    Forbes, R B; Hoskin, C M

    1969-10-24

    Blocky fragments of aegirine-augite trachyte (with accompanying icerafted gravels.) were recovered from the upper slopes of Kodiak Seamount in several dredge hauls. An alkali basalt pillow segment was also dredged from a moatlike depression, at a depth of 5000 meters, near the west base of the seamount. These retrievals confirm the volcanic origin of Kodiak Seamount and further support the view of Engel, Engel, and Havens that the higher elevations of seamounts are composed of alkali basalts or related variants.

  9. Geologic evidence for a magma chamber beneath Newberry Volcano, Oregon

    SciTech Connect

    Macleod, N.S.; Sherrod, D.R.

    1988-09-10

    At Newberry Volcano, central Oregon, more than 0.5 m.y. of magmatic activity, including caldera collapse and renewed caldera-filling volcanism, has created a structural and thermal chimney that channels magma ascent. Holocene rhyolitic eruptions (1) have been confined mainly within the caldera in an area 5 km in diameter, (2) have been very similar in chemical composition, phenocryst mineralogy, and eruptive style, and (3) have occurred as recently as 1300 years ago, with repose periods of 2000--3000 years between eruptions. Holocene basaltic andesite eruptions are widespread on the flanks but are excluded from the area of rhyolitic volcanism. Basaltic andesite in fissures at the edge of the rhyolite area has silicic inclusions and shows mixed basalt-rhyolite magma relations. These geologic relations and the high geothermal gradient that characterizes the lower part of a drill hole in the caldera (U.S. Geological Survey Newberry 2) indicate that a rhyolitic magma chamber has existed beneath the caldera throughout the Holocene. Its longevity probably is a result of intermittent underplating by basaltic magma.

  10. Trace-element modelling of mare basalt parental melts: Implications for a heterogeneous lunar mantle

    NASA Astrophysics Data System (ADS)

    Hallis, L. J.; Anand, M.; Strekopytov, S.

    2014-06-01

    The heterogeneous-source model of mare basalt formation indicates that Lunar Magma Ocean (LMO) overturn produced an uneven mixture of early-formed olivine and pyroxene, and late-formed, ilmenite-rich cumulates, which subsequently partially melted to give rise to mare magmas. These heterogeneous cumulate source regions would not only have been characterised by different mineral modal abundances, but also by different trace element compositions. The aim of this work was to investigate the petrology and geochemistry of a diverse suite of Apollo mare basalts, and utilise trace-element modelling in order to understand their petrogenetic history. Chemical modelling confirms that the mare basalts were produced by relatively small degrees of partial melting (<10%) of the LMO cumulates, and that the dominant melting type (batch vs. fractional) varies among different basalt groups. Similarly, single-source mineralogy cannot be applied to all mare basalt types, confirming that the lunar mantle was heterogeneous at the time of generation of mare magmas. Plagioclase is not required in the source of most mare basalts, with the notable exception of the Apollo 14 high-Al basalts. Addition of more than 1% plagioclase to the source of other basalts produces weaker negative Eu anomalies than those observed in the samples. AFC calculations demonstrate the compositional differences between materials assimilated into the Apollo 14 high-Al and Apollo 11 high-K mare basalt partial melts, highlighting the complexities of mare basalt petrogenesis.

  11. New Insights to the Mid Miocene Calc-alkaline Lavas of the Strawberry Volcanics, NE Oregon Surrounded by the Coeval Tholeiitic Columbia River Basalt Province

    NASA Astrophysics Data System (ADS)

    Steiner, A. R.; Streck, M. J.

    2013-12-01

    The Strawberry Volcanics (SV) of NE Oregon were distributed over 3,400 km2 during the mid-Miocene and comprise a diverse volcanic suite, which span the range of compositions from basalt to rhyolite. The predominant composition of this volcanic suite is calc-alkaline (CA) basaltic andesite and andesite, although tholeiitic (TH) lavas of basalt to andesite occur as well. The coeval flood basalts of the Columbia River province surround the SV. Here we will discuss new ages and geochemical data, and present a new geologic map and stratigraphy of the SV. The SV are emplaced on top of pre-Tertiary accreted terranes of the Blue Mountain Province, Mesozoic plutonic rocks, and older Tertiary volcanic rocks thought to be mostly Oligocene of age. Massive rhyolites (~300 m thick) are exposed mainly along the western flank and underlie the intermediate composition lavas. In the southern portion of this study area, alkali basaltic lavas, thought to be late Miocene to early Pliocene in age, erupted and overlie the SV. In addition, several regional ignimbrites reach into the area. The 9.7 Ma Devine Canyon Tuff and the 7.1 Ma Rattlesnake Tuff also overlie the SV. The 15.9-15.4 Ma Dinner Creek Tuff is mid-Miocene, and clear stratigraphic relationships are found in areas where the tuff is intercalated between thick SV lava flows. All of the basalts of the SV are TH and are dominated by phenocryst-poor (≤2%) lithologies. These basalts have an ophitic texture dominated by plagioclase, clinopyroxene and olivine (often weathered to iddingsite). Basalts and basaltic andesites have olivine Fo #'s ranging from 44 at the rims (where weathered to iddingsite) and as high as 88 at cores. Pyroxene Mg #'s range from 65 to 85. Andesites of the SV are sub-alkaline, and like the basalts, are exceedingly phenocryst-poor (≤3%) with microphenocrysts of plagioclase and lesser pyroxene and olivine, which occasionally occur as crystal clots of ~1-3 mm instead of single crystals. In addition, minimal

  12. Magma storage depths beneath an active rift volcano in Afar (Dabbahu), constrained by melt inclusion analyses, seismicity and Interferometric Synthetic Aperture Radar (INSAR)

    NASA Astrophysics Data System (ADS)

    Field, L.; Blundy, J.; Wright, T. J.; Yirgu, G.; Afar Consortium

    2010-12-01

    Dabbahu volcano is located at the northern end of the active Manda Hararo rift segment in western Afar, Ethiopia. In 2005 a major rifting episode began in the segment, which has been modelled as basalt dyke injections (1). Seismic activity, inflation and deflation have been recorded at the volcano. The aim of this research is to provide an insight into the history and evolution of a silicic magmatic centre in the rift, and to contribute to the wider aims of the NERC Afar Consortium to track the creation, migration, evolution and emplacement of magma from the asthenosphere to the crust. The volatile contents of rare melt inclusions trapped within phenocrysts of alkali feldspar, clinopyroxene and olivine from Dabbahu have been studied using secondary ion mass spectrometry. The host lavas are mildly peralkaline obsidians, which, based on field evidence and preliminary results from 40Ar-39Ar dating, represent the youngest samples on the volcano (<4 ka). Whilst the obsidian and pumice groundmass glasses are largely degassed, the H2O contents of the analysed inclusions are up to 5.8 wt%. CO2 contents are generally low; <462 ppm in the alkali feldspar-hosted inclusions, but higher values (up to 1457 ppm) have been found in the clinopyroxene-hosted inclusions. The pressure (and depth) of pre-eruptive magma storage beneath Dabbahu has been constrained using H2O and CO2 data, which suggest shallow magma storage at depths of ~1 - 5 km below the surface. These depths are consistent with observations from recorded seismicity and InSAR at Dabbahu. Seismicity has been recorded from deformation caused by deflation of the magma chamber following the 2005 dyke emplacement event (Oct 2005 - Apr 2006)(2) and InSAR has monitored deflation and subsequent steady inflation after this event. We show that melt inclusions accurately record a stable, shallow magma chamber as corroborated by remote sensing and geophysical observations at Dabbahu volcano. 1 Ayele et al. 2009 ‘September 2005

  13. Neodymium isotopes in flood basalts from the Siberian Platform and inferences about their mantle sources

    PubMed Central

    DePaolo, D. J.; Wasserburg, G. J.

    1979-01-01

    The initial isotopic compositions of Nd and Sr in basalts from the Central Siberian Plateau and other major continental flood basalts are reported. The continental flood basalts appear to be the product of partial melting of mantle sources that consist of relatively primitive undifferentiated material and are clearly distinct from midocean ridge basalts, which sample mantle reservoirs that have been modified by extraction of continental crust earlier in earth history. These observations provide fundamental constraints on models of mantle structure and dynamics. Isotopic effects of crustal contamination are clearly recognizable in some continental flood basalts, but these effects can be distinguished from isotopic patterns inherited from the mantle magma sources. PMID:16592671

  14. Neodymium isotopes in flood basalts from the Siberian Platform and inferences about their mantle sources.

    PubMed

    Depaolo, D J; Wasserburg, G J

    1979-07-01

    The initial isotopic compositions of Nd and Sr in basalts from the Central Siberian Plateau and other major continental flood basalts are reported. The continental flood basalts appear to be the product of partial melting of mantle sources that consist of relatively primitive undifferentiated material and are clearly distinct from midocean ridge basalts, which sample mantle reservoirs that have been modified by extraction of continental crust earlier in earth history. These observations provide fundamental constraints on models of mantle structure and dynamics. Isotopic effects of crustal contamination are clearly recognizable in some continental flood basalts, but these effects can be distinguished from isotopic patterns inherited from the mantle magma sources.

  15. Magma mixing enhanced by bubble segregation

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Morgavi, D.; Renggli, C. J.; Perugini, D.; De Campos, C. P.; Hess, K.-U.; Ertel-Ingrisch, W.; Lavallée, Y.; Dingwell, D. B.

    2015-08-01

    In order to explore the materials' complexity induced by bubbles rising through mixing magmas, bubble-advection experiments have been performed, employing natural silicate melts at magmatic temperatures. A cylinder of basaltic glass was placed below a cylinder of rhyolitic glass. Upon melting, bubbles formed from interstitial air. During the course of the experimental runs, those bubbles rose via buoyancy forces into the rhyolitic melt, thereby entraining tails of basaltic liquid. In the experimental run products, these plume-like filaments of advected basalt within rhyolite were clearly visible and were characterised by microCT and high-resolution EMP analyses. The entrained filaments of mafic material have been hybridised. Their post-experimental compositions range from the originally basaltic composition through andesitic to rhyolitic composition. Rheological modelling of the compositions of these hybridised filaments yield viscosities up to 2 orders of magnitude lower than that of the host rhyolitic liquid. Importantly, such lowered viscosities inside the filaments implies that rising bubbles can ascend more efficiently through pre-existing filaments that have been generated by earlier ascending bubbles. MicroCT imaging of the run products provides textural confirmation of the phenomenon of bubbles trailing one another through filaments. This phenomenon enhances the relevance of bubble advection in magma mixing scenarios, implying as it does so, an acceleration of bubble ascent due to the decreased viscous resistance facing bubbles inside filaments and yielding enhanced mass flux of mafic melt into felsic melt via entrainment. In magma mixing events involving melts of high volatile content, bubbles may be an essential catalyst for magma mixing. Moreover, the reduced viscosity contrast within filaments implies repeated replenishment of filaments with fresh end-member melt. As a result, complex compositional gradients and therefore diffusion systematics can be

  16. New Insights into Basaltic Balloon Formation during Submarine Eruptions

    NASA Astrophysics Data System (ADS)

    Carey, S.; Kelly, J.; Rosi, M.; Pistolesi, M.; Marani, M.; Roman, C.; Croff Bell, K. L.

    2014-12-01

    Remotely operated vehicle (ROV) explorations in the area of the 1891 Foerstner submarine eruption (Pantelleria, Italy) during cruise NA-018 of the E/V Nautilus has provided the first examination of the vent site of a basaltic balloon-forming eruption. Ultra high-resolution bathymetric mapping defined a mound-like vent morphology in water depths of ~250 meter, constructed dominantly of highly vesicular scoriaceous fragments with minor pillow lava flows. The formation of floating basaltic balloons that reached the surface of the Strait of Sicily during the eruption is attributed to a hybrid Strombolian eruption mechanism that involved pre-concentration of volatiles into gas-rich portions of magma beneath the vent. An important difference of this Strombolian mechanism compared to its subaerial counterpart is the occurrence of buoyant magma discharge in the submarine environment caused by localized high gas contents. The added buoyancy flux modifies the fluid dynamic configuration of magma venting on the seafloor allowing for detachment of highly-inflated parcels of gas-rich magma. Some of these parcels contain large gas cavities that are enveloped in a partially quenched shell and maintain sufficient buoyancy to rise to the sea surface as a basaltic balloon. The majority of the vesicular magma maintains only partial positive buoyancy or negative buoyancy and is explosively fragmented to form large quantities of decimeter-scale fragments that accumulate close to the vent. Formation of the basaltic balloons is thus considered a somewhat accidental process that involves a subset of the total erupted volume of magma during the eruption. Suitable conditions for balloon formation include low magma viscosity, pre-concentration of gas, and moderate pressures (i.e.water depth). The dampening effect of seawater greatly reduces the dispersal of pyroclasts resulting in a mound-like vent morphology compared to subaerial scoria cones typically associated with Strombolian activity.

  17. Magma mixing in the San Francisco Volcanic Field, AZ

    NASA Astrophysics Data System (ADS)

    Bloomfield, Anne L.; Arculus, Richard J.

    1989-08-01

    A wide variety of rock types are present in the O'Leary Peak and Strawberry Crater volcanics of the Pliocene to Recent San Francisco Volcanic Field (SFVF), AZ. The O'Leary Peak flows range from andesite to rhyolite (56 72 wt % SiO2) and the Strawberry Crater flows range from basalt to dacite (49 64 wt % SiO2). Our interpretation of the chemical data is that both magma mixing and crustal melting are important in the genesis of the intermediate composition lavas of both suites. Observed chemical variations in major and trace elements can be modeled as binary mixtures between a crustal melt similar to the O'Leary dome rhyolite and two different mafic end-members. The mafic end-member of the Strawberry suite may be a primary mantle-derived melt. Similar basalts have also been erupted from many other vents in the SFVF. In the O'Leary Peak suite, the mafic end-member is an evolved (low Mg/(Mg+ Fe)) basalt that is chemically distinct from the Strawberry Crater and other vent basalts as it is richer in total Fe, TiO2, Al2O3, MnO, Na2O, K2O, and Zr and poorer in MgO, CaO, P2O5, Ni, Sc, Cr, and V. The derivative basalt probably results from fractional crystallization of the more primitive, vent basalt type of magma. This evolved basalt occurs as xenolithic (but originally magmatic) inclusions in the O'Leary domes and andesite porphyry flow. The most mafic xenolith may represent melt that mixed with the O'Leary dome rhyolite resulting in andesite preserved as other xenoliths, a pyroclastic unit (Qoap), porphyry flow (Qoaf) and dacite (Darton Dome) magmas. Thermal constraints on the capacity of a melt to assimilate (and melt) a volume of solid material require that melt mixing and not assimilation has produced the observed intermediate lavas at both Strawberry Crater and O'Leary Peak. Textures, petrography, and mineral chemistry support the magma mixing model. Some of the inclusions have quenched rims where in contact with the host. The intermediate rocks, including the

  18. Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily)

    NASA Astrophysics Data System (ADS)

    Aiuppa, Alessandro; Allard, Patrick; D'Alessandro, Walter; Michel, Agnes; Parello, Francesco; Treuil, Michel; Valenza, Mariano

    2000-06-01

    The concentrations and fluxes of major, minor and trace metals were determined in 53 samples of groundwaters from around Mt Etna, in order to evaluate the conditions and extent of alkali basalt weathering by waters enriched in magma-derived CO 2 and the contribution of aqueous transport to the overall metal discharge of the volcano. We show that gaseous input of magmatic volatile metals into the Etnean aquifer is small or negligible, being limited by cooling of the rising fluids. Basalt leaching by weakly acidic, CO 2-charged water is the overwhelming source of metals and appears to be more extensive in two sectors of the S-SW (Paternò) and E (Zafferana) volcano flanks, where out flowing groundwaters are the richest in metals and bicarbonate of magmatic origin. Thermodynamic modeling of the results allows to evaluate the relative mobility and chemical speciation of various elements during their partitioning between solid and liquid phases through the weathering process. The facts that rock-forming minerals and groundmass dissolve at different rates and secondary minerals are formed are taken into account. At Mt. Etna, poorly mobile elements (Al, Th, Fe) are preferentially retained in the solid residue of weathering, while alkalis, alkaline earth and oxo-anion-forming elements (As, Se, Sb, Mo) are more mobile and released to the aqueous system. Transition metals display an intermediate behavior and are strongly dependent on either the redox conditions (Mn, Cr, V) or solid surface-related processes (V, Zn, Cu). The fluxes of metals discharged by the volcanic aquifer of Etna range from 7.0 × 10 -3 t/a (Th) to 7.3 × 10 4 t/a (Na). They are comparable in magnitude to the summit crater plume emissions for a series of elements (Na, K, Ca, Mg, U, V, Li) with lithophile affinity, but are minor for volatile elements. Basalt weathering at Mt Etna also consumes about 2.1 × 10 5 t/a of magma-derived carbon dioxide, equivalent to ca. 7% of contemporaneous crater plume

  19. Vesicularity and CO2 in mid-ocean ridge basalt

    USGS Publications Warehouse

    Moore, J.G.

    1979-01-01

    Vesicles and included CO2are enriched in deep-sea basalts that are also enriched in light rare earth and incompatible elements. This enrichment probably results from a unique deep mantle origin of such melts but may have been modified by CO2 bubbles rising in shallow magma chambers. ?? 1979 Nature Publishing Group.

  20. Ibitira: A basaltic achondrite from a distinct parent asteroid

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    2004-01-01

    I have done detailed petrologic study of Ibitira, nominally classified as a basaltic eucrite. The Fe/Mn ratio of Ibitira pyroxenes with <10 mole % wollastonite component is 36.4 0.4, and is well-resolved from those of five basaltic eucrites studied for comparison; 31.2-32.2. Data for the latter completely overlap. Ibitira pyroxenes have lower Fe/Mg than the basaltic eucrite pyroxenes. Thus, the higher Fe/Mn ratio does not reflect a simple difference in oxidation state. Ibitira also has an oxygen isotopic composition, alkali element contents and a Ti/Hf ratio that distinguish it from basaltic eucrites. These differences support derivation from a distinct parent asteroid. Ibitira is the first recognized representative of the fifth known asteroidal basaltic crust.

  1. Magma Energy Extraction

    SciTech Connect

    Dunn, J.C.; Ortega, A.; Hickox, C.E.; Chu, T.Y.; Wemple, R.P.; Boehm, R.F.

    1987-01-20

    The rate at which energy can be extracted from crustal magma bodies has an important influence on the economic viability of the magma energy concept. Open heat exchanger systems where fluid is circulated through solidified magma offer the promise of high energy extraction rates. This concept was successfully demonstrated during experiments in the molten zone of Kilauea Iki lava lake. Ongoing research is directed at developing a fundamental understanding of the establishment and long term operation of open systems in a crustal magma body. These studies show that magma solidifying around a cooled borehole will be extensively fractured and form a permeable medium through which fluid can be circulated. Numerical modeling of the complete magma energy extraction process predicts that high quality thermal energy can be delivered to the wellhead at rates that will produce from 25 to 30 MW electric. 10 figs., 10 refs.

  2. Heterogeneity in titaniferous lunar basalts

    NASA Technical Reports Server (NTRS)

    Walker, D.; Longhi, J.; Hays, J. F.

    1976-01-01

    Small but real chemical differences exist between subsamples of fine-grained quench-textured titaniferous lunar basalts. The existence of different textural domains with different chemistries is thought to account for most of this variation. In addition to the textural domains, lunar sample 74275 has a population of olivine 'megacrysts' as well as dunite fragments. These materials are thought to be extraneous and to compromise the primary nature of 74275. Recognition of the small chemical variations present may aid in understanding some discrepancies in the experimental-petrology literature. However, these small variations have a distressing petrogenetic significance since they severely limit resolution in recognizing the number and depth of origin of primary magmas.

  3. Why do Martian Magmas erupt?

    NASA Astrophysics Data System (ADS)

    Balta, J. B.; McSween, H. Y.

    2011-12-01

    Eruption of silicate lava, whether on Earth or another planet, requires that at some depth the melt has lower density than the surrounding rocks. As the densities of silicate liquids change during crystallization, whether a particular silicate liquid will erupt or be trapped at a level of neutral buoyancy is a complex yet fundamental issue for planetary dynamics. In general, 3 factors drive surface eruptions: inherent buoyancy relative to mantle phases, compositional evolution, and volatile contents. These factors manifest on Earth as terrestrial basalts commonly have compositions close to a density minimum [1]. Recent work has produced estimates of Martian parental magma compositions [2-5] based on shergottite meteorites and from Gusev crater. Using the MELTS algorithm [6] and other density calibrations, we simulated evolution of these liquids, focusing on density changes. For much of the crystallization path, density is controlled by FeO. All of the liquids begin with ρ ~ 2.8 g/cc at 1 bar, and the evolution of liquid density is controlled by the liquidus phases. At low pressures, olivine is the liquidus phase for each melt, and as FeO is not incompatible in olivine, olivine crystallization decreases liquid density, increasing buoyancy with crystallization. However, FeO is incompatible in pyroxene, and thus liquids crystallizing pyroxene become denser and less buoyant with crystallization, producing liquids with densities up to and above 3.0 g/cc. As the olivine-pyroxene saturation relationship is affected by pressure and chemistry, the identity of the liquidus phase and density evolution will vary between magmas. Without spreading centers, Mars has no location where the mantle approaches the surface, and it is likely that any magma which is denser than the crust will stall below or within that crust. The crystallization path of a liquid is a function of pressure, with pyroxene crystallizing first at P > 10 kbar (~80 km depth), close to the base of the Martian

  4. Genetic relations of oceanic basalts as indicated by lead isotopes

    USGS Publications Warehouse

    Tatsumoto, M.

    1966-01-01

    The isotopic compositions of lead and the concentrations of lead, uranium, and thorium in samples of oceanic tholeiite and alkali suites are determined, and the genetic relations of the oceanic basalts are discussed. Lead of the oceanic tholeiites has a varying lead-206 : lead-204 ratio between 17.8 and 18.8, while leads of the alkali basalt suites from Easter Island and Guadalupe Island are very radiogenic with lead-206 : lead-204 ratios between 19.3 and 20.4. It is concluded that (i) the isotopic composition of lead in oceanic tholeiite suggests that the upper mantle source region of the tholeiite was differentiated from an original mantle material more than 1 billion years ago and that the upper mantle is not homogeneous at the present time, (ii) less than 20 million years was required for the crystal differentiation within the alkali suite from Easter Island, (iii) no crustal contamination was involved in the course of differentiation of rocks from Easter Island; however, some crustal contamination may have affected Guadalupe Island rocks, and (iv) alkali basalt may be produced from the tholeiite in the oceanic region by crystal differentiation. Alternatively the difference in the isotopic composition of lead in oceanic basalts may be produced by partial melting at different depths of a differentiated upper mantle.

  5. Can we identify source lithology of basalt?

    PubMed

    Yang, Zong-Feng; Zhou, Jun-Hong

    2013-01-01

    The nature of source rocks of basaltic magmas plays a fundamental role in understanding the composition, structure and evolution of the solid earth. However, identification of source lithology of basalts remains uncertainty. Using a parameterization of multi-decadal melting experiments on a variety of peridotite and pyroxenite, we show here that a parameter called FC3MS value (FeO/CaO-3*MgO/SiO2, all in wt%) can identify most pyroxenite-derived basalts. The continental oceanic island basalt-like volcanic rocks (MgO>7.5%) (C-OIB) in eastern China and Mongolia are too high in the FC3MS value to be derived from peridotite source. The majority of the C-OIB in phase diagrams are equilibrium with garnet and clinopyroxene, indicating that garnet pyroxenite is the dominant source lithology. Our results demonstrate that many reputed evolved low magnesian C-OIBs in fact represent primary pyroxenite melts, suggesting that many previous geological and petrological interpretations of basalts based on the single peridotite model need to be reconsidered.

  6. Can we identify source lithology of basalt?

    PubMed Central

    Yang, Zong-Feng; Zhou, Jun-Hong

    2013-01-01

    The nature of source rocks of basaltic magmas plays a fundamental role in understanding the composition, structure and evolution of the solid earth. However, identification of source lithology of basalts remains uncertainty. Using a parameterization of multi-decadal melting experiments on a variety of peridotite and pyroxenite, we show here that a parameter called FC3MS value (FeO/CaO-3*MgO/SiO2, all in wt%) can identify most pyroxenite-derived basalts. The continental oceanic island basalt-like volcanic rocks (MgO>7.5%) (C-OIB) in eastern China and Mongolia are too high in the FC3MS value to be derived from peridotite source. The majority of the C-OIB in phase diagrams are equilibrium with garnet and clinopyroxene, indicating that garnet pyroxenite is the dominant source lithology. Our results demonstrate that many reputed evolved low magnesian C-OIBs in fact represent primary pyroxenite melts, suggesting that many previous geological and petrological interpretations of basalts based on the single peridotite model need to be reconsidered. PMID:23676779

  7. An estimate of the juvenile sulfur content of basalt

    USGS Publications Warehouse

    Moore, J.G.; Fabbi, Brent P.

    1971-01-01

    Sulfur analyses by X-ray fluorescence give an average content of 107 ppm for 9 samples of fresh subaerially-erupted oceanic basalt and 680 ppm for 38 samples of submarine erupted basalt. This difference is the result of retention of sulfur in basalt quenched on the sea floor and loss of sulfur in basalt by degassing at the surface. The outer glassy part of submarine erupted basalt contains 800??150 ppm sulfur, and this amount is regarded as an estimate of the juvenile sulfur content of the basalt melt from the mantle. The slower cooled interiors of basalt pillows are depleted relative to the rims owing to degassing and escape through surface fractures. Available samples of deep-sea basalts do not indicate a difference in original sulfur content between low-K tholeiite, Hawaiian tholeiite, and alkali basalt. The H2O/S ratio of analyzed volcanic gases is generally lower than the H2O/S ratio of gases presumed lost from surface lavas as determined by chemical differences between pillow rims and surface lavas. This enrichment of volcanic gases in sulfur relative to water may result from a greater degassing of sulfur relative to water from shallow intrusive bodies beneath the volcano. ?? 1971 Springer-Verlag.

  8. The petrogenesis of primary mid-ocean ridge basalts

    NASA Technical Reports Server (NTRS)

    Elthon, Don

    1990-01-01

    The nature of primary mid-ocean ridge basalts (MORB) is reviewed from the primary-magma composition point of view. The concept of primary MORB magma used in the study stipulates that melting of the mantle produces a discrete identifiable magma that separates from the mantle and ascends toward the surface. Constraints from abyssal peridotites are considered along with constraints from high-pressure phase equilibria studies with emphasis on partial melting of mantle peridotites, basalt-peridotite sandwich techniques, high-pressure experiments on MORB-type compositions, and constraints on the pressure of origin from mineral compositions. Compositional variations in primitive MORB glasses are discussed, and possible models for the origin of these glasses are presented.

  9. Magma mixing enhanced by bubble segregation

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Daniele, M.; Renggli, C.; Perugini, D.; De Campos, C.; Hess, K. U.; Ertel-Ingrisch, W.; Lavallée, Y.; Dingwell, D. B.

    2014-12-01

    Rising bubbles may significantly affect magma mixing paths as has been demonstrated by analogue experiments in the past. Here, bubble-advection experiments are performed for the first time employing natural materials at magmatic temperatures. Cylinders of basaltic glass were placed below cylinders of rhyolite glass. Upon melting, interstitial air formed bubbles that rose into the rhyolite melt, thereby entraining tails of basaltic liquid. The formation of plume-like filaments of advected basalt within the rhyolite was characterized by microCT and subsequent high-resolution EMP analyses. Melt entrainment by bubble ascent appears as efficient mechanism to mingle contrasting melt compositions. MicroCT imaging shows bubbles trailing each other and trails of multiple bubbles having converged. Rheological modelling of the filaments yields viscosities of up to 2 orders of magnitude lower than for the surrounding rhyolitic liquid. Such a viscosity contrast implies that subsequent bubbles rising are likely to follow the same pathways that previously ascending bubbles have generated. Filaments formed by multiple bubbles would thus experience episodic replenishment with mafic material. Fundamental implications for the concept of bubble advection in magma mixing are thus a) an acceleration of mixing because of decreased viscous resistance for bubbles inside filaments and b) non-conventional diffusion systematics because of intermittent supply of mafic material (instead of a single pulse) inside a filament. Inside these filaments, the mafic material was variably hybridised to andesitic through rhyolitic composition. Compositional profiles alone are ambiguous, however, to determine whether single or multiple bubbles were involved during formation of a filament. Statistical analysis, employing concentration variance as measure of homogenisation, demonstrates that also filaments appearing as single-bubble filaments are likely to have experienced multiple bubbles passing through

  10. Origin of distinct silicic magma types from the Guachipelín Caldera, NW Costa Rica: Evidence for magma mixing and protracted subvolcanic residence

    NASA Astrophysics Data System (ADS)

    Deering, Chad D.; Vogel, Thomas A.; Patino, Lina C.; Alvarado, Guillermo E.

    2007-09-01

    Lower Pleistocene pyroclastic deposits in NW Costa Rica represent sequential eruptions of distinct dacitic-rhyolitic (69-79% SiO 2) magmas from the Guachipelín Caldera that were emplaced in a period of 0.75 myr. This southern segment of the Central American arc, the Chorotega block, evolved on the modified Caribbean Large igneous province, an overthickened oceanic plateau; silicic magmatism is uncommon in settings such as this, void of continental crust. Previously, models have proposed the generation of silicic magmas in this type of setting by the partial melting or extreme crystal fractionation of intermediate source rocks (e.g. [Tamura, Y., Tatsumi, Y., 2002. Remelting of an andesitic crust as a possible origin for rhyolite magma in oceanic arcs: an example from the Izu-Bonin arc. Journal of Petrology 43, 1029-1047]). In fact, recent melting experiments performed by Sisson et al. [Sisson, T.W., Ratajeski, K., Hankins, W.B., Glazner, A.F., 2005. Voluminous granitic magmas from common basaltic sources. Contributions to Mineralogy and Petrology 148 (5), 542-565] suggest that melting of andesite or high-K basalts, common along the Central American volcanic arc, could produce silicic melts with the characteristic alkali content of these types of eruptives. Geochemical evaluation of the pumice-clasts through the complete sequence of Guachipelín eruptive products allows for subdivision into two major silica groups. First, the dacites are (66-72 wt.% SiO 2 pumice clast; 75.2-76.5 wt.% SiO 2 glass) orthopyroxene-bearing with plagioclase (An 36-65) ± magnesiohornblende, which are found intermittently from the base of the sequence through the uppermost ash-flow deposit. Second, the rhyolites are (72-79 wt.% SiO 2 pumice clast; 74.5-78.6 wt.% SiO 2 glass) biotite and quartz-bearing, with plagioclase (An 24-51) and magnesiohornblende. Chemical heterogeneities were discovered within each of these groups through evaluation of incompatible trace element ratios. Consequently

  11. Origin of rhyolite by crustal melting and the nature of parental magmas in the Oligocene Conejos Formation, San Juan Mountains, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Parker, D. F.; Ghosh, A.; Price, C. W.; Rinard, B. D.; Cullers, R. L.; Ren, M.

    2005-01-01

    Four closely spaced volcanoes (Summer Coon; Twin Mountains; Del Norte; Carnero Creek) form the east-central cluster of Conejos volcanic centers. These Conejos rocks range from high-K basaltic andesite to rhyolite, with andesite volumetrically the most abundant. Summer Coon and Twin Mountains are composite volcanoes. The Del Norte and Carnero Creek volcanoes are deeply eroded dacite shields. Rhyolite (10% of our Conejos analyses but a much smaller percentage by volume) is only known from Summer Coon and Twin Mountains volcanoes, although high-SiO 2 dacite occurs in the Del Norte volcano. The younger Hinsdale Formation contains a related series ranging from transitional basalt to high-K andesite; we use Hinsdale Formation analyses to represent Conejos parental magmas. Conejos and Hinsdale magmas evolved through AFC processes: Basalt, after interacting with lower crust, assimilated low K/Rb crust, similar in some ways to Taylor and McLennan (Taylor, S.R., and McLennan, S.M., 1985, The continental crust: its composition and evolution. Oxford, Blackwell Scientific.) model upper crust; main series basaltic andesite fractionated to high-K andesite; rhyolite was produced by melting of high K/Ba upper crustal rocks similar to granite gneiss known from inclusions and basement outcrops. Some rhyolite may have been back-mixed into fractionating andesite and dacite. Field evidence for assimilation includes sanidinite-facies, partially melted, gneiss blocks up to 1 m in diameter. Temperature estimates (1100-900 ° C) from two-pyroxene equilibria are consistent with this interpretation, as are the sparsely porphyritic nature of the most-evolved rhyolites and the absence of phenocrystic alkali feldspar. Our study supports the conclusions of previous workers on AFC processes in similar, but generally more mafic, Conejos magmas of the southeastern San Juan Mountains. Our results, however, emphasize the importance of crustal melting in the generation of Conejos rhyolite. We further

  12. Geochemistry, Petrology, and Provenance of Magnetite-Rich Ortaklar Cu Deposit Hosting Basalts from Koçali Complex, Gaziantep, Turkey

    NASA Astrophysics Data System (ADS)

    Yun, E.; Lee, I.; Kang, J.; Dönmez, C.; Yildirim, N.

    2015-12-01

    Magnetite-rich Cyprus type VMS deposit has been recently discovered from the Ortaklar-Gaziantep region within Koçali complex, SE Turkey. Magnetite rich sulfide ore bodies are in close contact with underlying footwall spilitic basalts. These basalts are part of Koçali mélange, which represents an accreted oceanic complex during closing of southern Neotethys. These extrusives are low-K, low alkali tholeiites with Ca rich, partially sericitized plagioclase subophitically enclosed by augite with disseminated Fe-Ti oxides and pyrite. Mineral crystallization sequence of plagioclase followed by augite and opaque is typical of MORB. Major and trace element analyses for least altered basalts based on LOI (1.5~3.6 wt%), Ce/Ce* (0.9~1.1) exhibit limited range of element abundances. Low Mg# (59~60) suggests that basalts were derived from moderately evolved magma with fractional crystallization. HFSE (Th, Nb, Hf, Zr) were used for tectonic discrimination and basalts were plotted within MORB end spectrum, near MORB-IAT boundary. N-MORB normalized La to Lu ranges from 0.4 to 0.9 times N-MORB with LREE depletion [(La/Sm)N = 0.58~0.67] and flat HREE [(Tb/Lu)N = 0.95~1.05]. Chondrite normalized REE patterns resemble those of N-MORB but characterized by severe LREE depletion [(La/Sm)CN = 0.35~0.45]. LREE depletion coupled with high Sm/Nd (0.36~0.43), high CaO/Na2O (5.0~6.2) and low Nb/Yb (0.23~0.39) suggest depleted N-MORB composition derived from the refractory mantle source. Analyzed basalts are similar to those found from other rift (Costa Rica Rift Hole 504b) and intra-transform fault (Siqueiros transform). Magnetite emplacement occurring close to the ore-host boundary and lack of pyrrhotite from hosting basalts imply an involvement of oxidized hydrothermal fluids. Basalts probably have formed by late stage, partial melting of the refractory mantle at low pressure, shallow depth, and H2O rich environment. Possible source of mantle heterogeneity can be identified by isotope

  13. A new lunar high-Ti basalt type defined from clasts in Apollo 16 breccia 60639

    NASA Astrophysics Data System (ADS)

    Fagan, A. L.; Neal, C. R.

    2016-01-01

    This paper reports the detailed examination of three basalt clasts from Apollo 16 breccia 60639 that represent a new variant of high-Ti basalt returned from the Moon by the Apollo 16 mission. Mineral chemistry and whole-rock analyses were conducted on aliquots from three clasts (breccia matrix, basalt, and basalt + breccia matrix). The basalt clasts, which are not overtly porphyritic, contain compositionally zoned pyroxene, olivine, and plagioclase crystals that represent the evolution of the magma during crystallization; ilmenite does not exhibit major-element compositional zoning within individual crystals. Mineral compositions are distinct between the basalt and breccia matrix lithologies. In addition, whole-rock analyses identify clear compositional differences between the basalt and breccia matrix lithologies in both major and trace element concentrations. The composition of the mixed lithology aliquots (i.e., basalt + breccia matrix) do not indicate simple two component mixing (i.e., compositions are not intermediate to the basalt and breccia end-members); this apparent incongruity can be accounted for by adding ∼19-40% plagioclase to an amalgamation of the average basalt and individual breccia clast compositions via impact mixing. Whole-rock analyses are consistent with previous analyses of one 60639 basalt clast, which were interpreted to indicate chemical similarity with Apollo 11 and 17 basalts. However, both major and trace elements suggest that the 60639 basalt clasts examined here have compositions that are distinct from Apollo 11 and 17 high-Ti basalts. Although the 60639 basalt clasts have similar characteristics to a variety of previously identified basalt types, the more extensive whole-rock analyses reported here indicate that they represent a type of Apollo high-Ti basalt heretofore unrecognized in the Apollo and lunar meteorite collections. By placing these new analyses in the context of other mare basalt compositions, a petrogenetic model for

  14. Petrological, magnetic and chemical properties of basalt dredged from an abyssal hill in the North-east pacific

    USGS Publications Warehouse

    Luyendyk, B.P.; Engel, C.G.

    1969-01-01

    OVER the years, samples of basalt from the oceanic crust have been taken mainly from seamounts, fracture zones and ridge and rise crests1-6, and rarely from the vast fields of abyssal hills which cover a large part of the deep-sea floor. The basalt sampled from the deeper regions of the oceanic crust (for example, on fault scarps) is a distinct variety of tholeiitic basalt, while alkali basalt is restricted to the volcanic edifices4. Oceanic tholeiitic basalt differs from alkali basalt and continental tholeiite chiefly in having a relatively low percentage of K2O (0.2 weight per cent)4. Some authors have speculated that this type of tholeiitic basalt is the major extrusion from the upper mantle and constitutes the predominant rock type in the upper oceanic crust. ?? 1969 Nature Publishing Group.

  15. Continental Flood Basalts

    NASA Astrophysics Data System (ADS)

    Continental flood basalts have been receiving considerable scientific attention lately. Recent publications have focused on several particular flood-basalt provinces (Brito-Arctic, Karoo, Parana', Deccan, and Columbia Plateau), and much attention has been given to the proposed connection between flood-basalt volcanism, bolide impacts, and mass extinctions. The editor of Continental Flood Basalts, J. D. Macdougall, conceived the book to assemble in a single volume, from a vast and scattered literature, an overview of each major post-Cambrian flood-basalt province.Continental Flood Basalts has 10 chapters; nine treat individual flood-basalt provinces, and a summary chapter compares and contrasts continental flood-basalts and mid-oceanic ridge basalts. Specifically, the chapters address the Columbia River basalt, the northwest United States including the Columbia River basalt, the Ethiopian Province, the North Atlantic Tertiary Province, the Deccan Traps, the Parana' Basin, the Karoo Province, the Siberian Platform, and Cenozoic basaltic rocks in eastern China. Each chapter is written by one or more individuals with an extensive background in the province.

  16. Direct Observation of Rhyolite Magma by Drilling: The Proposed Krafla Magma Drilling Project

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Sigmundsson, F.; Papale, P.; Markusson, S.; Loughlin, S.

    2014-12-01

    Remarkably, drilling in Landsvirkjun Co.'s geothermal field in Krafla Caldera, Iceland has encountered rhyolite magma or hypersolidus rhyolite at 2.1-2.5 km depth in 3 wells distributed over 3.5 km2, including Iceland Deep Drilling Program's IDDP-1 (Mortensen, 2012). Krafla's most recent rifting and eruption (basalt) episode was 1975-1984; deformation since that time has been simple decay. Apparently rhyolite magma was either emplaced during that episode without itself erupting or quietly evolved in situ within 2-3 decades. Analysis of drill cuttings containing quenched melt from IDDP-1 yielded unprecedented petrologic data (Zierenberg et al, 2012). But interpreting active processes of heat and mass transfer requires knowing spatial variations in physical and chemical characteristics at the margin of the magma body, and that requires retrieving core - a not-inconceivable task. Core quenched in situ in melt up to 1150oC was recovered from Kilauea Iki lava lake, Hawaii by the Magma Energy Project >30 years ago. The site from which IDDP-1 was drilled, and perhaps IDDP-1 itself, may be available to attempt the first-ever coring of rhyolite magma, now proposed as the Krafla Magma Drilling Project (KMDP). KMDP would also include geophysical and geochemical experiments to measure the response of the magma/hydrothermal system to fluid injection and flow tests. Fundamental results will reveal the behavior of magma in the upper crust and coupling between magma and the hydrothermal system. Extreme, sustained thermal power output during flow tests of IDDP-1 suggests operation of a Kilauea-Iki-like freeze-fracture-flow boundary propagating into the magma and mining its latent heat of crystallization (Carrigan et al, EGU, 2014). Such an ultra-hot Enhanced Geothermal System (EGS) might be developable beneath this and other magma-heated conventional hydrothermal systems. Additionally, intra-caldera intrusions like Krafla's are believed to produce the unrest that is so troubling in

  17. The parent magma of the Nakhla (SNC) meteorite: Reconciliation of composition estimates from magmatic inclusions and element partitioning

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.

    1993-01-01

    The composition of the parent magma of the Nakhla meteorite was difficult to determine, because it is accumulate rock, enriched in olivine and augite relative to a basalt magma. A parent magma composition is estimated from electron microprobe area analyses of magmatic inclusions in olivine. This composition is consistent with an independent estimate based on the same inclusions, and with chemical equilibria with the cores of Nakhla's augites. This composition reconciles most of the previous estimates of Nakhla's magma composition, and obviates the need for complex magmatic processes. Inconsistency between this composition and those calculated previously suggests that magma flowed through and crystallized into Nakhla as it cooled.

  18. The Parent Magmas of the Cumulate Eucrites: A Mass Balance Approach

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1996-01-01

    The cumulate eucrite meteorites are gabbros that are related to the eucrite basalt meteorites. The eucrite basalts are relatively primitive (nearly flat REE patterns with La approx. 8-30 x CI), but the parent magmas of the cumulate eucrites have been inferred as extremely evolved (La to greater than 100 x CI). This inference has been based on mineral/magma partitioning, and on mass balance considering the cumulate eucrites as adcumulates of plagioclase + pigeonite only; both approaches have been criticized as inappropriate. Here, mass balance including magma + equilibrium pigeonite + equilibrium plagiociase is used to test a simple model for the cumulate eucrites: that they formed from known eucritic magma types, that they consisted only of magma + crystals in chemical equilibrium with the magma, and that they were closed to chemical exchange after the accumulation of crystals. This model is tested for major and Rare Earth Elements (REE). The cumulate eucrites Serra de Mage and Moore County are consistent, in both REE and major elements, with formation by this simple model from a eucrite magma with a composition similar to the Nuevo Laredo meteorite: Serra de Mage as 14% magma, 47.5% pigeonite, and 38.5% plagioclase; Moore County as 35% magma, 37.5% pigeonite, and 27.5% plagioclase. These results are insensitive to the choice of mineral/magma partition coefficients. Results for the Moama cumulate eucrite are strongly dependent on choice of partition coefficients; for one reasonable choice, Moama's composition can be modeled as 4% Nuevo Laredo magma, 60% pigeonite, and 36% plagioclase. Selection of parent magma composition relies heavily on major elements; the REE cannot uniquely indicate a parent magma among the eucrite basalts. The major element composition of Y-791195 can be fit adequately as a simple cumulate from any basaltic eucrite composition. However, Y-791195 has LREE abundances and La/Lu too low to be accommodated within the model using any basaltic

  19. An Apollo 15 Mare Basalt Fragment and Lunar Mare Provinces

    NASA Technical Reports Server (NTRS)

    Ryder, Graham; Burling, Trina Cox

    1996-01-01

    Lunar sample 15474,4 is a tiny fragment of olivine-augite vitrophyre that is a mare basalt. Although petroraphically distinct from all other Apollo 15 samples, it has been ignored since its first brief description. Our new petrographic and mineral chemical data show that the olivines and pyroxenes are distinct from those in other basalts. The basalt cooled and solidified extremely rapidly; some of the olivine might be cumulate or crystallized prior to extrusion. Bulk-chemical data show that the sample is probably similar to an evolved Apollo 15 olivine-normative basalt in major elements but is distinct in its rare earth element pattern. Its chemical composition and petrography both show that 15474,4 cannot be derived from other Apollo 15 mare basalts by shallow-level crystal fractionation. It represents a distinct extrusion of magma. Nonetheless, the chemical features that 15474,4 has in common with other Apollo 15 mare basalts, including the high FeO/Sc, the general similarity of the rare earth element pattern, and the common (and chondritic) TiO2/Sm ratio, emphasize the concept of a geochemical province at the Apollo 15 site that is distinct from basalts and provinces elsewhere. In making a consistent picture for the derivation of all of the Apollo 15 basalts, both the commonalities and the differences among the basalts must be explained. The Apollo 15 commonalities and differences suggest that the sources must have consisted of major silicate phases with the same composition but with varied amounts of a magma trapped from a contemporary magma ocean. They probably had a high olivine/pyroxene ratio and underwent small and reasonably consistent degrees of partial melting to produce the basalts. These inferences may be inconsistent with models that suggest greatly different depths of melting among basalts, primitive sources for the green glasses, or extensive olivine fractionation during ascent. An integrated approach to lunar mare provinces, of which the Apollo 15

  20. Modeling Central American basalts using the Arc Basalt Simulator

    NASA Astrophysics Data System (ADS)

    Feigenson, M.; Carr, M. J.

    2011-12-01

    We have used the Arc Basalt Simulator (ABS), developed by JI Kimura, to explore the conditions and components of melting beneath the Central American volcanic front. ABS is a comprehensive forward model that incorporates slab dehydration and melting and mantle wedge fluxing and melting using realistic P-T conditions and experimentally determined phase relations. We have applied ABS versions 3 and 4 to model representative magma types in Nicaragua, which span a broad geochemical range including proximal high- and low-Ti lavas in Nicaragua. Sr-Nd-Pb data require appropriate selection of previously identified sources, including: separate carbonate and hemipelagic sediments, DMM, an enriched mantle isotopically similar to the alkaline basalts of Yojoa, a Himu-influenced mantle derived from Galapagos material and altered oceanic crust (AOC) derived from both MORB and Galapagos seamounts. Following the dry solidus, the dominant arc basalts, exemplified by Cerro Negro lavas, can be generated at about 80-90 km where lawsonite and zoisite break down, releasing LILEs into a hydrous fluid that travels into the wedge. The fluid-triggered melting occurs just above the garnet stability field in the wedge to fit the HREEs. Below 90 Km, slab melting begins and the AOC component dominates, generating a fluid with little or no HFSE depletions, consistent with the unusual high-Ti lavas found in Nicaragua. However, the isotopic data require a much lower sediment input for the high-Ti lavas (consistent with 10Be results on the high-Ti lavas) and an enriched component for the AOC and/or mantle wedge. Following the wet solidus, fits to the Cerro Negro magma only occur in the absence of phengite in the AOC and with the presence of HFSE attracting minerals, rutile, zircon and allanite. The depth of the best fit is 135 km, consistent with current best estimates of the depth to the seismic zone beneath Cerro Negro. Below 150 km, the high-Ti lavas can be generated if the HFSE retaining

  1. Magma fluxes and storage beneath Grímsvötn volcano, Iceland, estimated from ice-kept historical tephra

    NASA Astrophysics Data System (ADS)

    Sigmarsson, Olgeir; Carpentier, Marion; Larsen, Guðrún; Guðmundsson, Magnús

    2016-04-01

    Compositional time-series can unravel the dynamics of magma systems beneath active volcanoes. In ideal cases, parameters such as magma flux, reservoir geometry, its lifetime and the transfer time of magma can be inferred from the compositional variations. Quantification of these parameters will improve the understanding of volcano behaviour and, thus, the predictions of their future activity. From the Grímsvötn volcano, Iceland, ice-kept historical tephra has been precisely analysed for trace element concentrations and Sr-, Nd- and Pb isotope ratios. Most of the tephra have uniform isotope ratios suggesting co-genetic magma evolution. Temporal variations of the tephra compositions over the last eight centuries reveal linear decrease and increase in compatible and incompatible trace element concentrations, respectively, caused by eruptions of increasingly differentiated basaltic magma with time. The trace element systematic is readily explained by polybaric fractional crystallization suggesting a magma system composed of multiple storage zones beneath Grímsvötn volcano. The simple mechanism of magma differentiation and the temporal variations allow estimation of diminishing melt fraction (F) in the magma system as a function of time. Increasing concentrations of incompatible elements in the basalts suggest that F decreased by 35% over the last 800 years. This corresponds to a slow magma differentiation rate, or ˜4 x10-4 yr-1. Magma production rate for the 20th century suggests that approximately 8 km3 of basalts have erupted since AD 1200, whereas the volume of the magma system has decreased from approximately 100 km3 to 70±20 km3. Assuming a similar future behaviour, Grímsvötn volcano will produce for the next 500-1000 yrs basalts of increasingly evolved composition with higher volatile contents. Consequently, Plinian basaltic eruptions such as that of 2011 are likely to become more frequent.

  2. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  3. The global pattern of trace-element distributions in ocean floor basalts.

    PubMed

    O'Neill, Hugh St C; Jenner, Frances E

    2012-11-29

    The magmatic layers of the oceanic crust are created at constructive plate margins by partial melting of the mantle as it wells up. The chemistry of ocean floor basalts, the most accessible product of this magmatism, is studied for the insights it yields into the compositional heterogeneity of the mantle and its thermal structure. However, before eruption, parental magma compositions are modified at crustal pressures by a process that has usually been assumed to be fractional crystallization. Here we show that the global distributions of trace elements in ocean floor basalts describe a systematic pattern that cannot be explained by simple fractional crystallization alone, but is due to cycling of magma through the global ensemble of magma chambers. Variability in both major and incompatible trace-element contents about the average global pattern is due to fluctuations in the magma fluxes into and out of the chambers, and their depth, as well as to differences in the composition of the parental magmas.

  4. Basalt generation at the Apollo 12 site. Part 2: Source heterogeneity, multiple melts, and crustal contamination

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Hacker, Matthew D.; Snyder, Gregory A.; Taylor, Lawrence A.; Liu, Yun-Gang; Schmitt, Roman A.

    1994-01-01

    The petrogenesis of Apollo 12 mare basalts has been examined with emphasis on trace-element ratios and abundances. Vitrophyric basalts were used as parental compositions for the modeling, and proportions of fractionating phases were determined using the MAGFOX prograqm of Longhi (1991). Crystal fractionation processes within crustal and sub-crustal magma chambers are evaluated as a function of pressure. Knowledge of the fractionating phases allows trace-element variations to be considered as either source related or as a product of post-magma-generation processes. For the ilmenite and olivine basalts, trace-element variations are inherited from the source, but the pigeonite basalt data have been interpreted with open-system evolution processes through crustal assimilation. Three groups of basalts have been examined: (1) Pigeonite basalts-produced by the assimilation of lunar crustal material by a parental melt (up to 3% assimilation and 10% crystal fractionation, with an 'r' value of 0.3). (2) Ilmenite basalts-produced by variable degrees of partial melting (4-8%) of a source of olivine, pigeonite, augite, and plagioclase, brought together by overturn of the Lunar Magma Ocean (LMO) cumulate pile. After generation, which did not exhaust any of the minerals in the source, these melts experienced closed-system crystal fractionation/accumulation. (3) Olivine basalts-produced by variable degrees of partial melting (5-10%) of a source of olivine, pigeonite, and augite. After generation, again without exhausting any of the minerals in the source, these melts evolved through crystal accumulation. The evolved liquid counterparts of these cumulates have not been sampled. The source compositions for the ilmenite and olivine basalts were calculated by assuming that the vitrophyric compositions were primary and the magmas were produced by non-modal batch melting. Although the magnitude is unclear, evaluation of these source regions indicates that both be composed of early- and

  5. Experimental constraints on CO2 and H2O in the Martian mantle and primary magmas

    NASA Technical Reports Server (NTRS)

    Holloway, John R.; Domanik, Kenneth J.; Cocheo, Peter A.

    1993-01-01

    We present new data on the stability of hornblende in a Martian mantle composition, on CO2 solubility in iron-rich basaltic magmas, and on the solubility of H2O in an alkalic basaltic magma. These new data are combined with a summary of data from the literature to present a summary of the current state of our estimates of solubilities of H2O and CO2 in probable Martian magmas and the stability of hornblende in a slightly hydrous mantle. The new results suggest that hornblende stability is not sensitive to the Mg/(Mg+Fe) ratio (mg#) of the mantle, that is the results for terrestrial mantle compositions are similar to the more iron-rich Martian composition. Likewise, CO2 solubility in iron-rich tholeiitic basaltic magmas is similar to iron-poor terrestrial compositions. The solubility of H2O has been measured in an alkalic basaltic (basanite) composition for the first time, and it is significantly lower than predicted for models of water solubility in magmas. The lack of mg# dependence observed in hornblende stability and on CO2 solubility that in many cases terrestrial results can be applied to Martian compositions. This conclusion does not apply to other phenomena such as primary magma compositions and major mantle mineral mineralogy.

  6. Assimilation of solids during ascent of magmas from the Bartoy Field of the Baikal Region, Siberia

    NASA Technical Reports Server (NTRS)

    Haas, Johnson R.; Haskin, Larry A.; Luhr, James; Rasskazov, Sergei

    1993-01-01

    Most investigators ascribe mare basalt magma genesis to partial melting at depths of approximately 130 to greater than 400 km within the cumulate pile deposited from a lunar magma ocean. Mare basalts share with mid-ocean ridge basalts the characteristic of relative depletion in LREE and other incompatible trace elements that arises from melting within 'used' mantle, from which crust-forming elements have already been separated. Some mare basalt types do not show the classical, La-Nd depleted mare basalt REE distributions; however, some types are isotopically heterogeneous. These differences have been ascribed to assimilation, mainly AFC-style, of KREEPy highland material overlying the source region. Might such assimilation occur during magma ascent through the KREEPy material? To gain information from a terrestrial setting on possible assimilation during ascent, we have studied a suite of Quaternary nepheline-hawalites and nepheline-mugearites from the Bartoy cinder cone complex of the Baikal Rift, Siberia. The Bartoy magmas originated from greater than 80 km deep, and erupted through thick Archean crust. We find evidence for assimilation of approximately 31 wt. percent xenocrysts of garnet, aluminous clinopyroxene, kaersutite, and olivine, all presumably from the basalt source region, but no appreciable assimilation of overlying crust, consistent with isotopic constraints. Magmatic superheat made available by rapid ascent and decomposition accounts adequately for the energy of assimilation; no accompanying fractional crystallization is required or evident.

  7. Is plagioclase removal responsible for the negative Eu anomaly in the source regions of mare basalts

    SciTech Connect

    Shearer, C.K.; Papike, J.J. )

    1989-12-01

    The nearly ubiquitous presence of a negative Eu anomaly in the mare basalts has been suggested to indicate prior separation and flotation of plagioclase from the basalt source region during its crystallization from a lunar magma ocean (LMO). Are there any mare basalts derived from a mantle source which did not experience prior plagioclase separation Crystal chemical rationale for REE substitution in pyroxene suggests that the combination of REE size and charge, M2 site characteristics of pyroxene, fO{sub 2}, magma chemistry, and temperature may account for the negative Eu anomaly in the source region of some types of primitive, low TiO{sub 2} mare basalts. This origin for the negative Eu anomaly does not preclude the possibility of the LMO as many mare basalts still require prior plagioclase crystallization and separation and/or hybridization involving a KREEP component.

  8. Is plagioclase removal responsible for the negative Eu anomaly in the source regions of mare basalts?

    NASA Technical Reports Server (NTRS)

    Shearer, C. K.; Papike, J. J.

    1989-01-01

    The nearly ubiquitous presence of a negative Eu anomaly in the mare basalts has been suggested to indicate prior separation and flotation of plagioclase from the basalt source region during its crystallization from a lunar magma ocean (LMO). Are there any mare basalts derived from a mantle source which did not experience prior plagioclase separation? Crystal chemical rationale for REE substitution in pyroxene suggests that the combination of REE size and charge, M2 site characteristics of pyroxene, fO2, magma chemistry, and temperature may account for the negative Eu anomaly in the source region of some types of primitive, low TiO2 mare basalts. This origin for the negative Eu anomaly does not preclude the possibility of the LMO as many mare basalts still require prior plagioclase crystallization and separation and/or hybridization involving a KREEP component.

  9. DIET of alkali atoms from mineral surfaces

    NASA Astrophysics Data System (ADS)

    Yakshinskiy, B. V.; Madey, T. E.

    2003-03-01

    To investigate mechanisms for the origin of alkalis in the atmosphere of the Moon, we are studying the electron- and photon-stimulated desorption (ESD and PSD) of K atoms from model mineral surfaces (SiO 2 films), and ESD and PSD of Na atoms from a lunar basalt sample. X-ray photoelectron spectroscopy demonstrates the existence of traces of Na in the lunar sample. To obtain an increased signal for detailed measurements of desorption parameters (appearance thresholds, yields), a fractional monolayer of Na is deposited onto the lunar sample surface. An alkali atom detector based on surface ionization and a time-of-flight technique are used for DIET measurements, together with a pulsed electron gun, and a mechanically chopped and filtered mercury arc light source. We find that bombardment of the alkali covered surfaces by UV photons or by electrons with energies E>4 eV causes desorption of "hot" alkali atoms. The results are consistent with the model based on charge transfer from the substrate to adsorbate which was developed to explain our previous measurements of sodium desorption from a silica surface and desorption of K atoms from water ice. The data support the suggestion that PSD by UV solar photons is a dominant source process for alkalis in the tenuous lunar atmosphere.

  10. Mantle metasomatism vs host magma interaction at Sal Island (Cape Verde Archipelago)

    NASA Astrophysics Data System (ADS)

    Bonadiman, Costanza; Coltorti, Massimo; Beccaluva, Luigi; Siena, Franca

    2010-05-01

    The Cape Verde Islands lie in the Atlantic Ocean off West Africa, in a clearly oceanic setting. Xenoliths from Miocene (16Ma) neck in the northern part of Sal Island bear extensive evidence of metasomatic reactions, characterized by secondary parageneses (ol+sp+cpx+glass+K-feld) around primary orthopyroxene, clinopyroxenes and spinel. These textures are commonly observed in many xenolith populations worldwide, independently of the nature of the carrying alkaline magma (i.e. basalts, lamproitic or kimberlitic melt). The interpretation as a product of metasomatism has been recently put under discussion by Shaw et al. (2006) and Shaw & Dingwell (2008) who consider that most of these textures are imposed on the xenoliths during magma transport and/or residence in a magma chamber. This contribution aims at emphasizing the criteria which allow to discriminate between the metasomatic and host magma infiltration processes, reinforcing the concept and validity of metasomatism within the mantle. To pursue this, various petrographic and geochemical criteria from a selected well-studied suite of mantle xenoliths that clearly testify for an interaction of the peridotites with silicate melts at depth (metasomatised samples) or during the transport to the surface (host basalt infiltration samples) will be presented. Few pristine samples (two lherzolites and one harburgite) devoid of any textural evidences for basaltic infiltration or metasomatic processes were also used for comparison. The metasomatised samples are constituted by three lherzolites and one harzburgite whose metasomatic textures include glassy pools, patches or veins with secondary parageneses made up of ol, cpx, sp and K-feld or spongy rims and sieved crystals of pyroxenes and spinels. The infiltrated samples are represented by one lherzolite and one harzburgite cut by glassy veinlets filled with euhedral to subeuhedral ol + plag + magnetites crystallites. In the metasomatic samples the secondary olivines at

  11. Oxygen isotope constraints on the petrogenesis of Aleutian arc magmas

    SciTech Connect

    Singer, B.S.; O'Neil, J.R. ); Brophy, J.G. )

    1992-04-01

    The first measurement of {sup 18}O/{sup 16}O ratios of plagioclase, clinopyroxene, orthopyroxene, and titanomagnetite phenocrysts from modern Aleutian island-arc lavas provides new insight and independent constraints on magma sources and intracrustal processes. Basalts are heterogeneous on the scale of the entire arc and individual volcanic centers. Combined with Sr isotope and trace element data {delta}{sup 18}O{sub plag} values suggest a variable magma source characterized by differences in the mantle wedge or the subducted sediment component along the volcanic front. Seven tholeiitic basalt to rhyodacite lavas from the Seguam volcanic center have nearly identical {delta}{sup 18}O{sub plag} values of 6.0{per thousand} {plus minus} 0.2{per thousand}, reflecting extensive closed-system plagioclase-dominated crystal fractionation. Oxygen isotope thermometry and pyroxene and oxide equilibria indicate that differentiation occurred between 1,150 {plus minus} 100C (basalt) and 950 {plus minus} 100C (rhyodacite). In contrast, {delta}{sup 18}O{sub plag} values of 12 calc-alkalic basaltic andesites and andesites from the smaller Kanaga volcanic center span a broader range of 5.9{per thousand}-6.6{per thousand}, and consist of mostly higher values. Isotopic disequilibrium in the Kanaga system is manifest in two ways: two types of basaltic inclusions with contrasting {delta}{sup 18}O values occur in one andesite, and in two other andesites plagioclase-titanomagnetite and clinopyroxene-titanomagnetite oxygen isotope temperatures are inconsistent.

  12. Low- and high-TiO 2 flood basalts of southern Brazil: origin from picritic parentage and a common mantle source

    NASA Astrophysics Data System (ADS)

    Fodor, R. V.

    1987-08-01

    The Serra Geral (Paraná) continental flood-basalt province of southern Brazil has two main basalt types: low-TiO 2 (˜ 1 wt.%) basalts occupy the southern portion, and high-TiO 2 (> 3 wt.%) basalts are largely in the northern part. Low-Ti basalts are less evolved (Mg# 60) and more radiogenic (e.g., 87Sr/ 86Sr˜ 0.708) than high-Ti basalts (Mg# 35; 87Sr/ 86Sr˜ 0.705). This is consistent with a model that invokes variable melting of a single mantle source to produce picritic magmas that have relatively lower and higher incompatible element contents. Varying percentages of melting can be related to varying proximity to the early Tristan da Cunha hotspot. The Mg-rich magmas fractionated 60-75% olivine, clinopyroxene, and plagioclase to yield low- or high-Ti flood basalts, assimilating more or less crust in the process. The extent of fractionation and assimilation depended on crustal "warmth" (also tied to location relative to hotspot): (1) above zones of ˜ 25% melting, warm crust relatively easily contaminated crystallizing picritic magma that originated by a high degree of melting (i.e., magma with lower incompatible element contents); additionally, high degrees of melting sustained replenishment of magma with low-Ti magma characteristics; (2) above ˜ 10% melting zones, cooler crust comparatively restricted assimilation during crystallization (of magma with higher incompatible element contents) and permitted magma evolution to high-Ti derivatives; lesser degrees of melting also limited replenishment magma and thereby allowed greater evolution of existing magma. This model refers all diagnostic geochemical and isotopic features of Serra Geral basalts to percentages of partial melting of an essentially homogeneous mantle material.

  13. Formation of redox gradients during magma-magma mixing

    NASA Astrophysics Data System (ADS)

    Ruprecht, P.; Fiege, A.; Simon, A. C.

    2015-12-01

    Magma-mixing is a key process that controls mass transfer in magmatic systems. The variations in melt compositions near the magma-magma interface potentially change the Fe oxidation state [1] and, thus, affect the solubility and transport of metals. To test this hypothesis, diffusion-couple experiments were performed at 1000 °C, 150 MPa and QFM+4. Synthesized crystal-bearing cylinders of hydrous dacite and hydrous basaltic andesite were equilibrated for up to 80 h. The run products show that mafic components (Fe, Mg, etc.) were transported from the andesite into the dacite, while Si, Na and K diffused from the dacite into the andesite. A crystal dissolution sequence in the order of cpx, opx, plag, and spl/il was observed for the andesite. We combined μ-XANES spectroscopy at Fe K-edge [2] with two-oxide oxybarometry [3] to measure redox profiles within our experiments. Here, fO2 decreased towards the interface within the dacite and increased towards the interface within the andesite. This discontinuous fO2 evolution, with a sharp redox gradient of ~1.8 log fO2 units at the interface was maintained throughout the time-series despite the externally imposed fO2 of the vessel. We propose a combination of two mechanisms that create and sustain this redox gradient: 1) The dissolution of cpx and opx in the andesite mainly introduced Fe2+ into the melt, which diffused towards the dacite, lowering Fe3+/SFe near the interface. 2) Charge balance calculations in the melt during diffusive exchange suggest net positive charge excess in the andesite near the interface (i.e., oxidation) and net negative charge excess in the dacite near the interface (i.e., reduction). We suggest that this (metastable) redox layer can help to explain the contrasting Au/Cu ratios observed for arc-related porphyry-type ore deposits. [1] Moretti (2005), Ann. Geophys. 48, 583-608. [2] Cottrell et al. (2009), Chem. Geol. 268, 167-179. [3] Ghiorso and Evans (2008), Am. J. Sci. 308, 957-1039.

  14. Vapor segregation and loss in basaltic melts

    USGS Publications Warehouse

    Edmonds, M.; Gerlach, T.M.

    2007-01-01

    Measurements of volcanic gases at Pu'u'O??'o??, Kilauea Volcano, Hawai'i, reveal distinct degassing regimes with respect to vapor segregation and loss during effusive activity in 2004-2005. Three styles of vapor loss are distinguished by the chemical character of the emitted volcanic gases, measured by open path Fourier transform infrared spectroscopy: 1 persistent continuous gas emission, 2 gas piston events, and 3 lava spattering. Persistent continuous gas emission is associated with magma ascent and degassing beneath the crater vents, then eruption of the degassed magma from flank vents. Gas piston events are the result of static gas accumulation at depths of 400-900 m beneath Pu'u'O??'o??. A CO2-rich gas slug travels up the conduit at a few meters per second, displacing magma as it expands. Lava spattering occurs due to dynamic bubble coalescence in a column of relatively stagnant magma. The Large gas bubbles are H2O rich and are generated by open-system degassing at depths of <150 m. Static gas accumulation and dynamic bubble coalescence are both manifestations of vapor segregation in basaltic melts, but their implications differ. Accumulation and segregation of CO2-rich vapor at depth does not deplete the melt of H2O (required to drive lava fountains near to the surface) and therefore gas piston events can occur interspersed with lava fountaining activity. Lava spattering, however, efficiently strips H2O-rich vapor from magma beneath the crater vents; the magma must then erupt effusively from vents on the flank of the cone. ?? 2007 The Geological Society of America.

  15. Continental crustal formation and recycling: Evidence from oceanic basalts

    NASA Technical Reports Server (NTRS)

    Saunders, A. D.; Tarney, J.; Norry, M. J.

    1988-01-01

    Despite the wealth of geochemical data for subduction-related magma types, and the clear importance of such magmas in the creation of continental crust, there is still no concensus about the relative magnitudes of crustal creation versus crustal destruction (i.e., recycling of crust into the mantle). The role of subducted sediment in the formation of the arc magmas is now well documented; but what proportion of sediment is taken into the deeper mantle? Integrated isotopic and trace element studies of magmas erupted far from presently active subduction zones, in particular basaltic rocks erupted in the ocean basins, are providing important information about the role of crustal recycling. By identifying potential chemical tracers, it is impossible to monitor the effects of crustal recycling, and produce models predicting the mass of material recycled into the mantle throughout long periods of geological time.

  16. Products of a Subglacial Flood Basalt Eruption

    NASA Astrophysics Data System (ADS)

    Gorny, C. F.; White, J. D. L.; Gudmundsson, M. T.

    2015-12-01

    The Snæbýlisheiði unit, SE Iceland, is a ca. 26 km³ elongate, flat-topped ridge of volcaniclastic debris coupled with and intruded by coherent basalt stretching over 34 km from the eruption site perpendicular to the rift fissure source. It formed from a single subglacial flood basalt eruption during a recent glaciation, and its elongation reflects glacial control on dispersal via the hydraulic potential gradient at the glacier's base, which drove towards the glacier terminus the meltwater+debris formed during the eruption by quenching and fragmentation. High magma discharge and outgassing drove segregation of magma into down-flow propagating intrusions. Edifice growth was mediated by the extent of ice melting, extent and efficiency of meltwater+debris drainage, and hydraulic gradients locally favoring meltwater accumulation. Eruption style reflected magma flux, edifice stability, and accessibility of water to the vent area via flooding or infiltration. Deposits reflect these competing factors in their chaotic internal organization and stratigraphy, limited lithofacies continuity, and diverse particle populations from multiple source vents. Linear growth of the ridge down-gradient from the eruption site was driven primarily by propagation and continuous fragmentation of shoaling intrusions that formed an interconnected intrusive complex with extensive peperites. Advance was along gently meandering and locally bifurcating sub-ice conduits within hyaloclastite with sheet-lobe levees and lobate fingered intrusions. Irregular dikes, apophyses, horns, and tendrils extended from the main body and generated voluminous lapilli tuff and contorticlasts while providing additional heat to the system. Prolonged transport and deposition of debris produced complexly bedded volcaniclastic deposits derived from and intruded by the basalt sheet. The bedding and depositional features of volcaniclastic debris and relationship to their adjacent intrusions suggest transport and

  17. Influence of slab thermal structure on basalt source regions and melting conditions: REE and HFSE constraints from the Garibaldi volcanic belt, northern Cascadia subduction system

    NASA Astrophysics Data System (ADS)

    Green, Nathan L.

    2006-03-01

    Garibaldi volcanic belt (GVB) basalts were erupted above the relatively young (≤ 24 Ma) Juan de Fuca plate, which comprises the subducted oceanic lithosphere that becomes progressively younger (22-13 Ma), and presumably hotter, northward along the northern Cascadia convergent margin. Primitive and near-primitive mafic lavas of the 15-km-wide volcanic belt change from high-alumina olivine tholeiites and magnesian andesites near Glacier Peak, northwestern Washington, through transitional basalts to alkali-olivine basalts and basanites in the Bridge River-Salal Glacier areas, southwestern British Columbia. The distribution of different basalt types is consistent with varied source conditions imposed by differences in the thermal structure of the underlying subducted plate. Significant arc-parallel variations characterize REE and HFSE contents in GVB basalts and suggest that source enrichment processes and melting conditions vary within the mantle wedge as the age and thermal state of the underlying subducted plate changes. More northerly GVB basaltic suites tend to have higher TiO 2, Nb, Ta, total REE, La, Sm / Yb, Nb / Yb, Ti / V, Y / Sc and Zr / Yb and lower Th / U, Zr / Ti and Zr / Nb than their southern counterparts. The basalts have sub-chondritic to chondritic Nb / Ta (6-21) and super-chondritic Zr / Hf (up to 55.90) ratios that exhibit positive correlation. Only Mount Baker and Glacier Peak basalts exhibit the distinctive negative Nb-Ta anomalies associated with arc lavas. Inter-HFSE and REE fractionations (including La / Yb, La / Nb and Ce / Pb) show significant correlations with the inferred age of the underlying subducted plate. Proportions of slab-derived HFSE-REE components (SC) transferred to basalt sources in the Cascadia mantle wedge appear to vary from negligible (Ti, Nb, Ta, Zr, Hf, Y, Sm, Eu and Tb: less than 15% SC) to perceptible (Nd: up to 35% SC) through moderate (La: up to 75% SC) to substantial (U, Th and Pb: up to 95% SC). Arc-parallel HFSE

  18. Workshop on Mare Volcanism and Basalt Petrogenesis: Astounding Fundamental Concepts (AFC) Developed Over the Last Fifteen Years

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A. (Editor); Longi, John (Editor)

    1991-01-01

    Papers presented at the workshop on mare volcanism and basalt petrogenesis are compiled. The discussion of recent ideas and concepts within the context of this workshop permitted to catch up on the developments over the last 15 years. The following subject areas were covered: (1) geological setting; (2) magma evolution and source regions; (3) magma source and ascent processes; and (4) history of volcanism.

  19. Composition and depth of origin of primary mid-ocean ridge basalts

    NASA Astrophysics Data System (ADS)

    Presnall, D. C.; Hoover, J. D.

    1984-09-01

    Some workers have held that mid-ocean ridge basalts are fractionated from high pressure (15 30 kbar) picritic primary magmas whereas others have favored primary magmas generated at about 10 kbar with compositions close to those of mid-ocean ridge basalts. Of critical significance are presumed differences in composition between experimentally determined primary magmas and the least fractionated mid-ocean ridge basalts. To evaluate the significance of these differences, all based on electron microprobe analyses, we consider three sources of uncertainty: (1) analytical uncertainties for a single microprobe laboratory, (2) systematic interlaboratory analytical differences, and (3) real variations in the possible compositions of primary magmas that can be produced from a peridotite source at a given pressure. The first source of error is surprisingly large and can account for a substantial part of the total variation of normative quartz (hypersthene calculated as equivalent olivine and quartz) in FAMOUS basalts. The second is not as serious but remains undetermined for many laboratories. The third is potentially the largest but is not yet fully documented. The least fractionated FA-MOUS basalts have high mg numbers (70 73) compatible with derivation from the mantle by direct partial melting with little or no subsequent fractional crystallization. Because of the wide range of normative quartz content in these basalts, it appears necessary to consider them as representatives of multiple parental magmas. When all the sources of uncertainty are taken into account, we conclude that the experimental data by various investigators are all fairly consistent and favor derivation of the least fractionated mid-ocean ridge basalts by at most only a small amount of fractional crystallization from primary magmas having a wide range of normative quartz content and generated over a range of pressures from about 7 11 kbar.

  20. Abrupt transition from fractional crystallization to magma mixing at Gorely volcano (Kamchatka) after caldera collapse

    NASA Astrophysics Data System (ADS)

    Gavrilenko, Maxim; Ozerov, Alexey; Kyle, Philip R.; Carr, Michael J.; Nikulin, Alex; Vidito, Christopher; Danyushevsky, Leonid

    2016-07-01

    A series of large caldera-forming eruptions (361-38 ka) transformed Gorely volcano, southern Kamchatka Peninsula, from a shield-type system dominated by fractional crystallization processes to a composite volcanic center, exhibiting geochemical evidence of magma mixing. Old Gorely, an early shield volcano (700-361 ka), was followed by Young Gorely eruptions. Calc-alkaline high magnesium basalt to rhyolite lavas have been erupted from Gorely volcano since the Pleistocene. Fractional crystallization dominated evolution of the Old Gorely magmas, whereas magma mixing is more prominent in the Young Gorely eruptive products. The role of recharge-evacuation processes in Gorely magma evolution is negligible (a closed magmatic system); however, crustal rock assimilation plays a significant role for the evolved magmas. Most Gorely magmas differentiate in a shallow magmatic system at pressures up to 300 MPa, ˜3 wt% H2O, and oxygen fugacity of ˜QFM + 1.5 log units. Magma temperatures of 1123-1218 °C were measured using aluminum distribution between olivine and spinel in Old and Young Gorely basalts. The crystallization sequence of major minerals for Old Gorely was as follows: olivine and spinel (Ol + Sp) for mafic compositions (more than 5 wt% of MgO); clinopyroxene and plagioclase crystallized at ˜5 wt% of MgO (Ol + Cpx + Plag) and magnetite at ˜3.5 wt% of MgO (Ol + Cpx + Plag + Mt). We show that the shallow magma chamber evolution of Old Gorely occurs under conditions of decompression and degassing. We find that the caldera-forming eruption(s) modified the magma plumbing geometry. This led to a change in the dominant magma evolution process from fractional crystallization to magma mixing. We further suggest that disruption of the magma chamber and accompanying change in differentiation process have the potential to transform a shield volcanic system to that of composite cone on a global scale.

  1. Derivation of primary magmas and melting of crustal materials on Venus - Some preliminary petrogenetic considerations

    NASA Technical Reports Server (NTRS)

    Hess, Paul C.; Head, James W.

    1990-01-01

    As an aid to understanding crustal formation and evolution processes on Venus, a general paradigm is developed for the derivation of primary magmas, and the range of possibilities of conditions for remelting of crustal materials and the evolution of the products of remelting. The present knowledge of the bulk and surface composition is used as a basis. A wide range of magma types is possible for the range of conditions of derivation of primary magmas and crustal remelting and no magma type can be arbitrarily excluded from consideration on Venus. The composition of Venus and the nature of source materials for melting, the melting of mantle material peridotites, and the melting of basalts including tholeiites and modified basalts are discussed. Magmatic differentiation is considered, and a comparison to terrestrial magmatic environments is conducted. It is concluded the magnetic and volcanic activity on Venus could be very similar to that on the earth, although eruption styles are expected to vary due to environmental conditions.

  2. Isotope geochemistry of early Kilauea magmas from the submarine Hilina bench: The nature of the Hilina mantle component

    USGS Publications Warehouse

    Kimura, Jun-Ichi; Sisson, Thomas W.; Nakano, Natsuko; Coombs, Michelle L.; Lipman, Peter W.

    2006-01-01

    Submarine lavas recovered from the Hilina bench region, offshore Kilauea, Hawaii Island provide information on ancient Kilauea volcano and the geochemical components of the Hawaiian hotspot. Alkalic lavas, including nephelinite, basanite, hawaiite, and alkali basalt, dominate the earliest stage of Kilauea magmatism. Transitional basalt pillow lavas are an intermediate phase, preceding development of the voluminous tholeiitic subaerial shield and submarine Puna Ridge. Most alkalic through transitional lavas are quite uniform in Sr–Nd–Pb isotopes, supporting the interpretation that variable extent partial melting of a relatively homogeneous source was responsible for much of the geochemical diversity of early Kilauea magmas (Sisson et al., 2002). These samples are among the highest 206Pb/204Pb known from Hawaii and may represent melts from a distinct geochemical and isotopic end-member involved in the generation of most Hawaiian tholeiites. This end-member is similar to the postulated literature Kea component, but we propose that it should be renamed Hilina, to avoid confusion with the geographically defined Kea-trend volcanoes. Isotopic compositions of some shield-stage Kilauea tholeiites overlap the Hilina end-member but most deviate far into the interior of the isotopic field defined by magmas from other Hawaiian volcanoes, reflecting the introduction of melt contributions from both “Koolau” (high 87Sr/86Sr, low 206Pb/204Pb) and depleted (low 87Sr/86Sr, intermediate 206Pb/204Pb) source materials. This shift in isotopic character from nearly uniform, end-member, and alkalic, to diverse and tholeiitic corresponds with the major increase in Kilauea's magmatic productivity. Two popular geodynamic models can account for these relations: (1) The upwelling mantle source could be concentrically zoned in both chemical/isotopic composition, and in speed/extent of upwelling, with Hilina (and Loihi) components situated in the weakly ascending margins and the

  3. Magmatic processes that generate chemically distinct silicic magmas in NW Costa Rica and the evolution of juvenile continental crust in oceanic arcs

    NASA Astrophysics Data System (ADS)

    Vogel, T. A.; Deering, C. D.; Patino, L. C.; Alvarado, G. E.; Szymanski, D. W.

    2010-12-01

    Northwestern Costa Rica is built upon an oceanic plateau that has developed chemical and geophysical characteristics of the upper continental crust. A major factor in converting the oceanic plateau to continental crust is the production, evolution and emplacement of silicic magmas. In Costa Rica, the Caribbean Large Igneous Province (CLIP) forms the overriding plate in the subduction of the Cocos Plate - a process that has occurred for at least the last 25 my. Igneous rocks in Costa Rica older than about 10 Ma have chemical compositions typical of oceanic basalts and intra-oceanic arcs. In contrast, younger igneous deposits (<10 Ma) contain abundant silicic rocks with geochemical signatures similar to the average continental crust, which are significantly enriched in SiO2, alkalis and light rare-earth elements. The silicic deposits of NW Costa Rica occur in two major compositional groups: a high-Ti and a low-Ti group with no overlap between the two. The major and trace element characteristics of these groups are consistent with these magmas being derived from liquids that were extracted from crystal mushes. In relative terms, the high-Ti silicic liquids were extracted from a hot, dry crystal mush with low-oxygen fugacity where plagioclase and pyroxene were the dominant phases crystallizing, along with lesser amounts of hornblende. In contrast, the low-Ti silicic liquids were extracted from a cool, wet crystal mush with high oxygen fugacity where plagioclase and amphibole were the dominant phases crystallizing. The hot-dry-reducing magmas dominate the older sequence, but the youngest sequence contains only magmas from the cold-wet-oxidized group. Silicic volcanic deposits from other oceanic arcs (e.g. Izu-Bonin, Marianas) have chemical characteristics distinctly different from continental crust, whereas the NW Costa Rican silicic deposits have chemical characteristics nearly identical to the upper continental crust. The transition in NW Costa Rica from mafic oceanic

  4. Magmatic processes that generate chemically distinct silicic magmas in NW Costa Rica and the evolution of juvenile continental crust in oceanic arcs

    NASA Astrophysics Data System (ADS)

    Deering, Chad D.; Vogel, Thomas A.; Patino, Lina C.; Szymanski, David W.; Alvarado, Guillermo E.

    2012-02-01

    Northwestern Costa Rica is built upon an oceanic plateau that has developed chemical and geophysical characteristics of the upper continental crust. A major factor in converting the oceanic plateau to continental crust is the production, evolution, and emplacement of silicic magmas. In Costa Rica, the Caribbean Large Igneous Province (CLIP) forms the overriding plate in the subduction of the Cocos Plate—a process that has occurred for at least the last 25 my. Igneous rocks in Costa Rica older than about 8 Ma have chemical compositions typical of ocean island basalts and intra-oceanic arcs. In contrast, younger igneous deposits contain abundant silicic rocks, which are significantly enriched in SiO2, alkalis, and light rare-earth elements and are geochemically similar to the average upper continental crust. Geophysical evidence (high Vp seismic velocities) also indicates a relatively thick (~40 km), addition of evolved igneous rocks to the CLIP. The silicic deposits of NW Costa Rica occur in two major compositional groups: a high-Ti and a low-Ti group with no overlap between the two. The major and trace element characteristics of these groups are consistent with these magmas being derived from liquids that were extracted from crystal mushes—either produced by crystallization or by partial melting of plutons near their solidi. In relative terms, the high-Ti silicic liquids were extracted from a hot, dry crystal mush with low oxygen fugacity, where plagioclase and pyroxene were the dominant phases crystallizing, along with lesser amounts of hornblende. In contrast, the low-Ti silicic liquids were extracted from a cool, wet crystal mush with high oxygen fugacity, where plagioclase and amphibole were the dominant phases crystallizing. The hot-dry-reducing magmas dominate the older sequence, but the youngest sequence contains only magmas from the cold-wet-oxidized group. Silicic volcanic deposits from other oceanic arcs (e.g., Izu-Bonin, Marianas) have chemical

  5. Mineral chemistry of Pangidi basalt flows from Andhra Pradesh

    NASA Astrophysics Data System (ADS)

    Nageswara Rao, P. V.; Swaroop, P. C.; Karimulla, Syed

    2012-04-01

    This paper elucidates the compositional studies on clinopyroxene, plagioclase, titaniferous magnetite and ilmenite of basalts of Pangidi area to understand the geothermometry and oxybarometry conditions. Petrographic evidence and anorthite content (up to 85%) of plagioclase and temperature estimates of clinopyroxene indicate that the clinopyroxene is crystallized later than or together with plagioclase. The higher An content indicates that the parent magma is tholeiitic composition. The equilibration temperatures of clinopyroxene (1110-1190°C) and titaniferous magnetite and ilmenite coexisting mineral phases (1063-1103°C) are almost similar in lower basalt flow and it is higher for clinopyroxene (900-1110°C) when compared to titaniferous magnetite and ilmenite coexisting mineral phases (748-898°C) in middle and upper basalt flows. From this it can be inferred that the clinopyroxene is crystallized earlier than Fe-Ti oxide phases reequilibration, which indicates that the clinopyroxene temperature is the approximate eruption temperature of the present lava flows. The wide range of temperatures (900-1190°C) attained by clinopyroxene may point out that the equilibration of clinopyroxene crystals initiated from depth till closer to the surface before the melt erupted. Pangidi basalts follow the QFM buffer curve which indicates the more evolved tholeiitic composition. This suggests the parent tholeiitic magma suffered limited fractionation at high temperature under increasing oxygen fugacity in lower basalt flow and more fractionation at medium to lower temperatures under decreasing oxygen fugacity conditions during cooling of middle and upper basalt flows. The variation of oxygen fugacity indicates the oxidizing conditions for lower basalt flow (9.48-10.3) and extremely reducing conditions for middle (12.1-15.5) and upper basalt (12.4-15.54) flows prevailed at the time of cooling. Temperature vs. (FeO+Fe2O3)/(FeO+Fe2O3 +MgO) data plots for present basalts suggested

  6. Nature of basalt-deep crust interaction in the petrogenesis of a potassium-rich, silicic-dominated eruptive system, Davis Mountain volcanic field, west Texas

    SciTech Connect

    Ward, R.L.; Walker, J.A. . Dept. of Geology)

    1993-04-01

    The Davis Mountain volcanic field (DMVF) is one of several silicic-dominated eruptive centers that constitute the bulk of the Trans Pecos volcanic province (TPVP). New major-, trace element, and Pb-O isotope data on local granulite-facies xenoliths and the DMVF are used in evaluating the extent of basalt-deep crust interaction to produce voluminous silicic lavas and -ignimbrites. The DMVF (39.3--35.4 Ma) is a high-K, alkali basalt-potassic trachybasalt-shoshonite-latite-trachyte-rhyolite volcanoplutonic series with the evolved members being silica-saturated. DMF silicic rocks are characterized by high concentrations of Rb, Th, U, and K, low-[sup 18]O and have a broad range in Pb isotopes. These characteristics are inconsistent with an origin by partial melting of a Rb-Th-U depleted, unradiogenic Pb granulitic deep crust. However, distinctly different Pb isotope compositions between mafic and silicic rocks preclude an origin by fractional crystallization alone. Multistage-AFC involving a mantle-source, various proportions of OL-CPX-PLAG-KSPAR-MAG-AP-BIO-QTZ-aenigmatite-ZR differentiation, limited (<10%) amounts of deep and upper crustal contamination, and mixing between mafic and silicic magmas can satisfactorily account for the observed chemical and isotopic variation in the DMVF.

  7. Carbon and its isotopes in mid-oceanic basaltic glasses

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.; Moore, J. G.

    1984-01-01

    Sample surface carbon, mantle carbon dioxide in vesicles, and mantle carbon dissolved in glasses, are the three carbon components evident in the 11 mid-oceanic basalts presently analyzed. The total carbon content may be controlled by the depth of the shallowest ridge magma chamber, and carbon isotopic fractionation accompanies magma degassing. Using He-3 and carbon data for submarine hydrothermal fluids, the present day midoceanic ridge carbon flux is approximately estimated to be 1.0 x 10 to the 13th g C/yr, requiring 8 Gyr to accumulate the earth's present crustal carbon inventory.

  8. Hf sbnd Nd sbnd Sr isotopes and incompatible element abundances in island arcs: implications for magma origins and crust-mantle evolution

    NASA Astrophysics Data System (ADS)

    White, William M.; Patchett, Jonathan

    1984-02-01

    We present Hf, Nd and Sr isotopic data and abundances of K, Rb, Cs, Ba, Sr, Hf and REE for 32 samples from seven intra-oceanic island arcs. Samples from the Marianas, Izu, Aleutian and New Britain arcs have tightly grouped 176Hf/ 177Hf˜ 0.28320, 143Nd/ 144Nd˜ 0.51303 and 87Sr/ 86Sr˜ 0.7035 close to, but distinct from, mid-ocean ridge basalts (MORB) for 143Nd/ 144Nd and 87Sr/ 86Sr . In contrast, samples from the Sunda, Banda and Lesser Antilles arcs are much more variable towards lower 176Hf/ 177Hf and 143Nd/ 144Nd , and higher 87Sr/ 86Sr . Isotopically, island arcs on the whole are closely similar to ocean islands. Some commonly-occurring features of the trace element geochemistry of island arcs are apparent in our data: alkali and alkaline-earth elements, particularly Cs, have high abundance relative to LREE compared to oceanic basalts; negative Ce anomalies occur in six out of seven arcs. However, Hf does not appear underabundant relative to REE. The isotopic data require a continental component in all island arcs, in addition to probable mantle and oceanic crust contributions, even for the arcs with isotope ratios close to MORB. In the absence of continental crust, we can best explain this component by subducted pelagic sediment in the arc magma source region. The involvement of sediments in all arcs implies that there is an inherent recycling of older continent to island arcs, and potentially to new continent, of at least 1%. Conservative calculations show that the upper subducted slab (basalt + sediment) passes beyond the arc magma genesis zone and enters the deep mantle with a minimum of 500-1000 ppm K, and corresponding amounts of other incompatible elements. If this material is not completely homogenized with the mantle and later becomes part of the source of ocean island magmas, then the ocean island—island arc isotopic similarity is a result of their similar mix of source materials—mantle peridotite with trace element signatures from oceanic crust

  9. Magmatic inclusions in rhyolites, contaminated basalts, and compositional zonation beneath the Coso volcanic field, California

    USGS Publications Warehouse

    Bacon, C.R.; Metz, J.

    1984-01-01

    Basaltic lava flows and high-silica rhyolite domes form the Pleistocene part of the Coso volcanic field in southeastern California. The distribution of vents maps the areal zonation inferred for the upper parts of the Coso magmatic system. Subalkalic basalts (<50% SiO2) were erupted well away from the rhyolite field at any given time. Compositional variation among these basalts can be ascribed to crystal fractionation. Erupted volumes of these basalts decrease with increasing differentiation. Mafic lavas containing up to 58% SiO2, erupted adjacent to the rhyolite field, formed by mixing of basaltic and silicic magma. Basaltic magma interacted with crustal rocks to form other SiO2-rich mafic lavas erupted near the Sierra Nevada fault zone. Several rhyolite domes in the Coso volcanic field contain sparse andesitic inclusions (55-61% SiO2). Pillow-like forms, intricate commingling and local diffusive mixing of andesite and rhyolite at contacts, concentric vesicle distribution, and crystal morphologies indicative of undercooling show that inclusions were incorporated in their rhyolitic hosts as blobs of magma. Inclusions were probably dispersed throughout small volumes of rhyolitic magma by convective (mechanical) mixing. Inclusion magma was formed by mixing (hybridization) at the interface between basaltic and rhyolitic magmas that coexisted in vertically zoned igneous systems. Relict phenocrysts and the bulk compositions of inclusions suggest that silicic endmembers were less differentiated than erupted high-silica rhyolite. Changes in inferred endmembers of magma mixtures with time suggest that the steepness of chemical gradients near the silicic/mafic interface in the zoned reservoir may have decreased as the system matured, although a high-silica rhyolitic cap persisted. The Coso example is an extreme case of large thermal and compositional contrast between inclusion and host magmas; lesser differences between intermediate composition magmas and inclusions lead to

  10. Magma Dynamics at Yucca Mountain, Nevada

    SciTech Connect

    D. Krier

    2005-08-29

    Small-volume basaltic volcanic activity at Yucca Mountain has been identified as one of the potential events that could lead to release of radioactive material from the U.S. Department of Energy (DOE) designated nuclear waste repository at Yucca Mountain. Release of material could occur indirectly as a result of magmatic dike intrusion into the repository (with no associated surface eruption) by changing groundwater flow paths, or as a result of an eruption (dike intrusion of the repository drifts, followed by surface eruption of contaminated ash) or volcanic ejection of material onto the Earth's surface and the redistribution of contaminated volcanic tephra. Either release method includes interaction between emplacement drifts and a magmatic dike or conduit, and natural (geologic) processes that might interrupt or halt igneous activity. This analysis provides summary information on two approaches to evaluate effects of disruption at the repository by basaltic igneous activity: (1) descriptions of the physical geometry of ascending basaltic dikes and their interaction with silicic host rocks similar in composition to the repository host rocks; and (2) a summary of calculations developed to quantify the response of emplacement drifts that have been flooded with magma and repressurized following blockage of an eruptive conduit. The purpose of these analyses is to explore the potential consequences that could occur during the full duration of an igneous event.

  11. The production of intermediate magmas through magma mixing and commingling: Evidence from the Hoover Dam Volcanics, Mohave County, Arizona and Clark County, Nevada

    SciTech Connect

    Mills, J.G. Jr. . Dept. of Geoscience)

    1993-04-01

    The Hoover Dam Volcanic section ([approximately]14 Ma) is composed of the reversely-zoned dacitic tuff of Hoover Dam, Switchyard basaltic andesite, Sugarloaf dacite, Black Canyon dacite and Kingman Wash basaltic andesite (Mills, 1985). The origin of this suite is best explained by the commingling and mixing of end-member mafic and felsic magmas. These end-member magmas were most likely formed by partial melting of the mantle and subsequent advective heating and melting of the crust respectively. Textural evidence for these processes is observed in the Black Canyon dacite which contains enclaves of basaltic andesite, and, in the Paint Pots pluton which contains commingled basaltic andesite and monzonite. The Black Canyon dacite is a biotite (4%), homblende (1%) and plagioclase 10% phyric dacite flow which contains up to 5% enclaves of basaltic andesite. The enclaves contain 54 wt% SiO[sub 2], 7.22 ppm Tl, 65 ppm Rb, 1,274 ppm Sr and 1,810 ppm Ba. The gray to purplish-red enclaves have crenulate margins, are commonly vesiculated and contain phenocrysts of biotite (< 1%), hornblende ([much lt]1%), plagioclase (1%) and clinopyroxene( ) (2%). Chemically, the enclaves are distinct from the Switchyard and Kingman Wash basaltic andesites. The enclaves most likely represent a more primitive magma from which the Switchyard and Kingman Wash basaltic andesites were derived. These two units were subsequently chemically modified by mixing with crustal melt and/or crystal fractionation. The presence of a small, clinopyroxenite xenolith (clinopyroxene 90%, garnet 5%, plagioclase 4%) within one of the enclaves indicates an upper mantle source for the enclave magma.

  12. Luna 16 sample G36 - Another crystalline product of an extremely mafic magma.

    NASA Technical Reports Server (NTRS)

    Hollister, L. S.; Kulick, C. G.

    1972-01-01

    Luna 16 sample G36 is a microbasalt containing skeletal olivine, plagioclase, ilmenite, and interstitial pyroxene. It apparently resulted from very rapid crystallization of a highly fractionated, totally liquid mafic magma. Although different in many details, G36 is generally similar to the ferromagnesian-rich Apollo 11 and 12 basalts. In this respect, it emphasizes the continuing problem of identifying a process on the moon which generated highly mafic magmas.

  13. Experimental Magma Mixing and Mingling in Volcanic Environments

    NASA Astrophysics Data System (ADS)

    Morgavi, D.; Laumonier, M.; Petrelli, M.; Perugini, D.

    2015-12-01

    Magma mixing and mingling features are commonly observed in both plutonic and volcanic environments. Major occurrences are represented by hybrid products, enclaves and crystals in disequilibrium with the melt. According to present knowledge the complete mixing of magmas in crustal reservoirs (leading to the production of hybrids) requires a low viscosity contrast between the two end-members (0.5 log unit). On another hand, recent experimental and field works have shown that (1) crystal-free magmas with viscosity difference of 3 orders of magnitude produced mingling and mixing features at higher deformation conditions (strain and strain rate) and (2) these features are found in volcanic products out of the above mentioned rheological window. In this study, we performed magma mixing experiments, to test the effects of chaotic deformation of a two component system at volcanic conditions and strain rates comparable to natural magmatic systems (volcanic conduits and lava flows): in the ChaOtic Magma Mixing Apparatus (COMMA) installed at the University of Perugia, a synthetic haplotonalite and a natural basalt from Santorini volcano were juxtaposed and chaotically mixed for several hours at ~1140°C with a moderate strain rate of ~5.10-3. The textural and geochemical (electronic microprobe, laser ablation mass spectrometry) features developed during the experiments show the development of complex patterns with high inter-exchange between both magmas. Our results show how chaotic convection extends the mixing capacities at moderate strain rate.

  14. Crustal influence in the generation of continental flood basalts

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Lugmair, G. W.; Macdougall, J. D.

    1981-01-01

    The suggestion that primordial undifferentiated material may exist in the earth's mantle has recently been revived on the strength of Nd isotope data for two types of young continental rocks - flood basalts and kimberlites. The limited published data show a clustering of Nd isotopic compositions close to those for meteorites with chondritic relative rare-earth (REE) abundance. In contrast, data are presented for samples from the Columbia flood basalt province of the northwestern United States which show large isotopic variability suggestive of mixing processes acting after the separation of the primary magmas from their mantle source.

  15. The chlorine isotope fingerprint of the lunar magma ocean

    PubMed Central

    Boyce, Jeremy W.; Treiman, Allan H.; Guan, Yunbin; Ma, Chi; Eiler, John M.; Gross, Juliane; Greenwood, James P.; Stolper, Edward M.

    2015-01-01

    The Moon contains chlorine that is isotopically unlike that of any other body yet studied in the Solar System, an observation that has been interpreted to support traditional models of the formation of a nominally hydrogen-free (“dry”) Moon. We have analyzed abundances and isotopic compositions of Cl and H in lunar mare basalts, and find little evidence that anhydrous lava outgassing was important in generating chlorine isotope anomalies, because 37Cl/35Cl ratios are not related to Cl abundance, H abundance, or D/H ratios in a manner consistent with the lava-outgassing hypothesis. Instead, 37Cl/35Cl correlates positively with Cl abundance in apatite, as well as with whole-rock Th abundances and La/Lu ratios, suggesting that the high 37Cl/35Cl in lunar basalts is inherited from urKREEP, the last dregs of the lunar magma ocean. These new data suggest that the high chlorine isotope ratios of lunar basalts result not from the degassing of their lavas but from degassing of the lunar magma ocean early in the Moon’s history. Chlorine isotope variability is therefore an indicator of planetary magma ocean degassing, an important stage in the formation of terrestrial planets. PMID:26601265

  16. The chlorine isotope fingerprint of the lunar magma ocean.

    PubMed

    Boyce, Jeremy W; Treiman, Allan H; Guan, Yunbin; Ma, Chi; Eiler, John M; Gross, Juliane; Greenwood, James P; Stolper, Edward M

    2015-09-01

    The Moon contains chlorine that is isotopically unlike that of any other body yet studied in the Solar System, an observation that has been interpreted to support traditional models of the formation of a nominally hydrogen-free ("dry") Moon. We have analyzed abundances and isotopic compositions of Cl and H in lunar mare basalts, and find little evidence that anhydrous lava outgassing was important in generating chlorine isotope anomalies, because (37)Cl/(35)Cl ratios are not related to Cl abundance, H abundance, or D/H ratios in a manner consistent with the lava-outgassing hypothesis. Instead, (37)Cl/(35)Cl correlates positively with Cl abundance in apatite, as well as with whole-rock Th abundances and La/Lu ratios, suggesting that the high (37)Cl/(35)Cl in lunar basalts is inherited from urKREEP, the last dregs of the lunar magma ocean. These new data suggest that the high chlorine isotope ratios of lunar basalts result not from the degassing of their lavas but from degassing of the lunar magma ocean early in the Moon's history. Chlorine isotope variability is therefore an indicator of planetary magma ocean degassing, an important stage in the formation of terrestrial planets. PMID:26601265

  17. The chlorine isotope fingerprint of the lunar magma ocean.

    PubMed

    Boyce, Jeremy W; Treiman, Allan H; Guan, Yunbin; Ma, Chi; Eiler, John M; Gross, Juliane; Greenwood, James P; Stolper, Edward M

    2015-09-01

    The Moon contains chlorine that is isotopically unlike that of any other body yet studied in the Solar System, an observation that has been interpreted to support traditional models of the formation of a nominally hydrogen-free ("dry") Moon. We have analyzed abundances and isotopic compositions of Cl and H in lunar mare basalts, and find little evidence that anhydrous lava outgassing was important in generating chlorine isotope anomalies, because (37)Cl/(35)Cl ratios are not related to Cl abundance, H abundance, or D/H ratios in a manner consistent with the lava-outgassing hypothesis. Instead, (37)Cl/(35)Cl correlates positively with Cl abundance in apatite, as well as with whole-rock Th abundances and La/Lu ratios, suggesting that the high (37)Cl/(35)Cl in lunar basalts is inherited from urKREEP, the last dregs of the lunar magma ocean. These new data suggest that the high chlorine isotope ratios of lunar basalts result not from the degassing of their lavas but from degassing of the lunar magma ocean early in the Moon's history. Chlorine isotope variability is therefore an indicator of planetary magma ocean degassing, an important stage in the formation of terrestrial planets.

  18. Melt density and the efficiency of fractional crystallization for the generation of phonolite magmas

    NASA Astrophysics Data System (ADS)

    Seifert, R.; Malfait, W. J.; Petitgirard, S.; Sanchez-Valle, C.

    2012-12-01

    The natural Plateau phonolites from the Kenya rift exceed the total combined volume of phonolite lava found elsewhere in the world by several orders of magnitude [1]. These alkali-rich magmas are thought to form as fractionation products from low-silica, primary compositions such as nephelinite and melililite [2] or are generated directly within the mantle by melting or fractionation [3]. Although the density contrast between melt and crystal has an important effect on crystal fractionation and magma differentiation rates, density data for alkaline magmas typically found in continental rift zone setting is not available, precluding the assessment of the efficiency of crystal fractionation processes as a mechanism to generate phonolitic melts. We present in-situ density measurements of phonolitic melts at crustal and upper mantle conditions (1.0-3.1 GPa, 1585-1855 K) using synchrotron X-ray absorption in a Paris-Edinburgh press [4]. The starting material is a synthetic haplo-phonolite glass based on the Plateau flood phonolites from the Kenya rift [5]. Single-crystal diamond cylinders were used as sample containers and the density was determined as a function of pressure and temperature from the X-ray absorption contrast between the sample and the diamond capsule. The results were combined with available density data at room conditions to derive the first experimental equation of state (EoS) of phonolitic liquids at crustal and upper mantle conditions. The equation of state is calibrated up to 3.1 GPa, but can be reliably extrapolated to higher pressures; melt densities range from 2.45 g/cm3 up to 2.62 g/cm3 for a depth of 30 to 60 km, respectively - A comparison of our results with literature data shows that the compressibility of silicate melts decreases with increasing silica content in a similar manner observed for silicate glasses: phonolitic melts are more compressible than peridotitic and basaltic melts. The low compressibility of phonolites causes small

  19. Iron Redox Systematics of Shergottites and Martian Magmas

    NASA Technical Reports Server (NTRS)

    Righter, Kevin; Danielson, L. R.; Martin, A. M.; Newville, M.; Choi, Y.

    2010-01-01

    Martian meteorites record a range of oxygen fugacities from near the IW buffer to above FMQ buffer [1]. In terrestrial magmas, Fe(3+)/ SigmaFe for this fO2 range are between 0 and 0.25 [2]. Such variation will affect the stability of oxides, pyroxenes, and how the melt equilibrates with volatile species. An understanding of the variation of Fe(3+)/SigmaFe for martian magmas is lacking, and previous work has been on FeO-poor and Al2O3-rich terrestrial basalts. We have initiated a study of the iron redox systematics of martian magmas to better understand FeO and Fe2O3 stability, the stability of magnetite, and the low Ca/high Ca pyroxene [3] ratios observed at the surface.

  20. Degassing of reduced carbon from planetary basalts

    PubMed Central

    Wetzel, Diane T.; Rutherford, Malcolm J.; Jacobsen, Steven D.; Hauri, Erik H.; Saal, Alberto E.

    2013-01-01

    Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential. PMID:23569260

  1. Degassing of reduced carbon from planetary basalts.

    PubMed

    Wetzel, Diane T; Rutherford, Malcolm J; Jacobsen, Steven D; Hauri, Erik H; Saal, Alberto E

    2013-05-14

    Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential. PMID:23569260

  2. Depositional processes of the basaltic Elie Ness diatreme, East Fife, Scotland

    NASA Astrophysics Data System (ADS)

    Gernon, Thomas; Hincks, Thea

    2010-05-01

    cross-cuts an anticlinal fold to the NE, and that the vent-fill is folded with a similar NE-SW fold axis orientation. This suggests that the Elie Ness diatreme was probably emplaced during the Variscan deformation, analogous with the Black Ball Head diatreme, SW Ireland. The Elie Ness diatreme offers new insights into the volcanism of low viscosity, alkali-rich silica under-saturated magmas, and provides empirical constraints on the architecture and internal workings of other types of volcanic conduit and maar-crater systems. The processes elucidated for alkali basaltic tuff diatremes are general and can also be applied to other deep volcanic conduits.

  3. The Role of Magma Mixing in Creating Magmatic Diversity

    NASA Astrophysics Data System (ADS)

    Davidson, J. P.; Collins, S.; Morgan, D. J.

    2012-12-01

    Most magmas derived from the mantle are fundamentally basaltic. An assessment of actual magmatic rock compositions erupted at the earth's surface, however, shows greater diversity. While still strongly dominated by basalts, magmatic rock compositions extend to far more differentiated (higher SiO2, LREE enriched) compositions. Magmatic diversity is generated by differentiation processes, including crystal fractionation/ accumulation, crustal contamination and magma mixing. Among these, magma mixing is arguably inevitable in magma systems that deliver magmas from source-to-surface, since magmas will tend to multiply re-occupy plumbing systems. A given mantle-derived magma type will mix with any residual magmas (and crystals) in the system, and with any partial melts of the wallrock which are generated as it is repeatedly flushed through the system. Evidence for magma mixing can be read from the petrography (identification of crystals derived from different magmas), a technique which is now well-developed and supplemented by isotopic fingerprinting (1,2) As a means of creating diversity, mixing is inevitably not efficient as its tendency is to blend towards a common composition (i.e. converging on homogeneity rather than diversity). It may be surprising then that many systems do not tend to homogenise with time, meaning that the timescales of mixing episodes and eruption must be similar to external magma contributions of distinct composition (recharge?). Indeed recharge and mixing/ contamination may well be related. As a result, the consequences of magma mixing may well bear on eruption triggering. When two magmas mix, volatile exsolution may be triggered by retrograde boiling, with crystallisation of anhydrous phase(s) in either of the magmas (3) or volatiles may be generated by thermal breakdown of a hydrous phase in one of the magmas (4). The generation of gas pressures in this way probably leads to geophysical signals too (small earthquakes). Recent work pulling

  4. Water In The Lunar Mantle: Results From Magma Ocean Modeling

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, Linda

    2010-05-01

    the lunar magma ocean beginning with 100 ppm water would result in a source region for lunar picritic glasses and mare basalts with less than 10 ppm water, insufficient to explain the suggested source water contents in Saal et al. (2008). With an initial 1,000 ppm water, the relevant mantle cumulates obtain about 50 ppm water. If volcanic glasses represent 20% melting, then the magma begins with 250 ppm that is reduced to 5 ppm upon eruptive degassing, matching measurements from Saal et al. (2008). Such a high initial magma ocean water content, however, would produce exceptionally water-rich final magma ocean liquids (KREEP). Water enrichment in later-forming cumulates may not be consistent with observed lunar petrology, which includes iron metal. Further, high water contents suppress plagioclase solidification and would work against formation of the observed anorthosite flotation crust. Water enrichments in volcanic glasses, therefore, may not be a primary source characteristic. The time of highest volatile degassing is at the end of magma ocean solidification when residual liquids are beneath the conductive anorthosite lid. This lid, therefore, may have been fluxed with volatiles. Cold temperatures in the lid would act as a volatile condensation trap. When the lid begins to form the magma ocean is hot and liquid; cooling in the lid proceeds slowly over millions of years, allowing substantial time for the growth of crustal volatile reservoirs. Magmas would later percolate upward into the lid and assimilate water-rich reservoirs. This hypothesis predicts that water and non-volatile trace elements would be decoupled, and magmas would only assimilate volatiles without attendant trace element enrichments found in KREEP materials. This hypothesis may be tested by measuring volatile contents in KREEP-rich materials and in crustal materials, and by producing experimentally-determined equilibrium calculations for the water contents allowed in mare basalt magmas.

  5. Evaluating crustal contamination in continental basalts: the isotopic composition of the Picture Gorge Basalt of the Columbia River Basalt Group

    NASA Astrophysics Data System (ADS)

    Brandon, Alan D.; Hooper, Peter R.; Goles, Gordon G.; Lambert, Richard St J.

    1993-09-01

    constraints indicate that these compositional characteristics were inherited in the Picture Gorge magmas at crustal pressures, and thus the second isotopic component is most likely crustal in origin. Mixing and open-system calculations can produce the isotopic composition of the most evolved Picture Gorge flows from the most primitive compositions by 8 to 21% contamination of isotopic compositions similar to accreted terrane crust found in the Pacific Northwest. Therefore, in spite of the disadvantages for crustal contamination and their narrow range in isotopic compositions, the process controlling isotopic variation within the Picture Gorge Basalt is primarily crustal contamination. We suggest that comprehensive analyses for basaltic suites and careful consideration of these data must be made to test for crustal contamination, before variation resulting from mantle heterogeneity can be assessed.

  6. Role of mechanical erosion in controlling the effusion rate of basaltic eruptions

    NASA Astrophysics Data System (ADS)

    Piombo, Antonello; Tallarico, Andrea; Dragoni, Michele

    2016-09-01

    In many basaltic eruptions, observations show that the effusion rate of magma has a typical dependence on time: the effusion rate curves show first a period of increasing and later a decreasing phase by a maximum value. We present a model to explain this behavior by the emptying of a magma reservoir through a vertical cylindrical conduit with elliptical cross section, coupled with the its widening due to mechanical erosion, produced by the magma flow. The model can reproduce the observed dependence on time of effusion rate in basaltic eruptions. Eruption duration and the maximum value of effusion rate depend on the size of magma chamber, on lava viscosity and strongly on erosion rate per unit traction.

  7. A complex magma mixing origin for rocks erupted in 1915, Lassen Peak, California

    USGS Publications Warehouse

    Clynne, M.A.

    1999-01-01

    The eruption of Lassen Peak in May 1915 produced four volcanic rock types within 3 days, and in the following order: (1) hybrid black dacite lava containing (2) undercooled andesitic inclusions, (3) compositionally banded pumice with dark andesite and light dacite bands, and (4) unbanded light dacite. All types represent stages of a complex mixing process between basaltic andesite and dacite that was interrupted by the eruption. They contain disequilibrium phenocryst assemblages characterized by the co-existence of magnesian olivine and quartz and by reacted and unreacted phenocrysts derived from the dacite. The petrography and crystal chemistry of the phenocrysts and the variation in rock compositions indicate that basaltic andesite intruded dacite magma and partially hybridized with it. Phenocrysts from the dacite magma were reacted. Cooling, cyrstallization, and vesiculation of the hybrid andesite magma converted it to a layer of mafic foam. The decreased density of the andesite magma destabilized and disrupted the foam. Blobs of foam rose into and were further cooled by the overlying dacite magma, forming the andesitic inclusions. Disaggregation of andesitic inclusions in the host dacite produced the black dacite and light dacite magmas. Formation of foam was a dynamic process. Removal of foam propagated the foam layer downward into the hybrid andesite magma. Eventually the thermal and compositional contrasts between the hybrid andesite and black dacite magmas were reduced. Then, they mixed directly, forming the dark andesite magma. About 40-50% andesitic inclusions were disaggregated into the host dacite to produce the hybrid black dacite. Thus, disaggregation of inclusions into small fragments and individual crystals can be an efficient magma-mixing process. Disaggregation of undercooled inclusions carrying reacted host-magma phenocrysts produces co-existing reacted and unreacted phenocrysts populations.

  8. Dike injection and magma mixing in Kenya rift volcanoes

    NASA Astrophysics Data System (ADS)

    Anthony, E. Y.; Espejel, V.; Biggs, J.

    2009-12-01

    A nexus of volcanoes in the rift graben at approximately the latitude of Nairobi consist of central vent trachyte, phonolite, and peralkaline rhyolite and cinder cone and fissure-fed flows of basalt to benmoreite. The volcanoes are referred to as the Central Kenya Peralkaline Province (CKPP, Macdonald and Scaillet, 2006, Lithos 91, 59-73) and formed by a combination of processes including fractional crystallization, magma mixing, and volatile transport (Ren et al., 2006, Lithos 91, 109-124; Macdonald et al., 2008, JPet 49, 1515-1547). This presentation focuses on magma mixing for trachytes and phonolites for Suswa rocks, which are the southernmost part of the CKPP. We also explore the contribution of magma process studies to the interpretation of recent geodetic data, which indicate inflation/deflation of up to 21 cm for Kenyan volcanoes from 1997 to present (Biggs et al., 2009, Geology, in press). Incontrovertible evidence for magma mixing is found in field evidence, where a basaltic trachyandesite ash horizon is found interbedded with syncaldera trachyte (Skilling, 1993, J. Geol. Society London 150, 885-896), hand-specimen and thin-section petrography, and disequilibrium mineral chemistry. Precaldera lavas contain a homogeneous group of anorthoclase crystals with An content 6% or less. Syncaldera samples contain this same group and two other populations: polysynthetic twinned labradorite and andesine and anorthoclase with An content of 17%. Textures for all three groups indicate disequilibrium. Postcaldera flows contain the high and low An anorthoclase populations but lack the polysynthetic twinned labradorite and andesine. These observations suggest a model of injection of mafic magmas via diking into shallow trachtytic magma systems. Recent geodetic studies of dike injection and subsequent seismic/volcanic activity in both Ethiopia and Lengai point to the ongoing importance of these processes to rift evolution in East Africa.

  9. Lunar Magma Ocean Crystallization: Constraints from Fractional Crystallization Experiments

    NASA Technical Reports Server (NTRS)

    Rapp, J. F.; Draper, D. S.

    2015-01-01

    The currently accepted paradigm of lunar formation is that of accretion from the ejecta of a giant impact, followed by crystallization of a global scale magma ocean. This model accounts for the formation of the anorthosite highlands crust, which is globally distributed and old, and the formation of the younger mare basalts which are derived from a source region that has experienced plagioclase extraction. Several attempts at modelling the crystallization of such a lunar magma ocean (LMO) have been made, but our ever-increasing knowledge of the lunar samples and surface have raised as many questions as these models have answered. Geodynamic models of lunar accretion suggest that shortly following accretion the bulk of the lunar mass was hot, likely at least above the solidus]. Models of LMO crystallization that assume a deep magma ocean are therefore geodynamically favorable, but they have been difficult to reconcile with a thick plagioclase-rich crust. A refractory element enriched bulk composition, a shallow magma ocean, or a combination of the two have been suggested as a way to produce enough plagioclase to account for the assumed thickness of the crust. Recently however, geophysical data from the GRAIL mission have indicated that the lunar anorthositic crust is not as thick as was initially estimated, which allows for both a deeper magma ocean and a bulk composition more similar to the terrestrial upper mantle. We report on experimental simulations of the fractional crystallization of a deep (approximately 100km) LMO with a terrestrial upper mantle-like (LPUM) bulk composition. Our experimental results will help to define the composition of the lunar crust and mantle cumulates, and allow us to consider important questions such as source regions of the mare basalts and Mg-suite, the role of mantle overturn after magma ocean crystallization and the nature of KREEP

  10. First-order major element variation in basalt glasses from the Mid-Atlantic ridge : 29/sup 0/N to 73/sup 0/N

    SciTech Connect

    Sigurdsson, H.

    1981-10-10

    Basaltic glasses from 29/sup 0/N to 73/sup 0/N on the Mid-Atlantic Ridge define two geographic and compositional groups that are characterized by different major element concentrations, phase assemblages and partition coefficients. Group A glasses occur on the ridge segment north of Gibbs Fracture Zone, from 54/sup 0/N, along the Reykjanes Ridge, the western volcanic zone of Iceland and Kolbeinsey Ridge, up to 70/sup 0/N. Similar glasses occur also on the ridge from 29/sup 0/N to 34/sup 0/N. Group A is characterized by pronounced alumina depletion and iron-enrichment trends, lower silica and alkalis and higher iron and high CaO/Al/sub 2/O/sub 3/. Clinopyroxene is only present in the more evolved group A glasses (Mg-value<58). Olivine-glass partition coefficients for Mg and Fe are systematically lower in group A than group B (Schilling and Sigurdsson, 1979), reflecting effects of melt composition on structure of the liquids. Group B glasses define the ridge segment north of 35/sup 0/N over the Azores platform and up to Gibbs F. Z., at 53/sup 0/N. They are also present on the Mohns Ridge north of the Jan Mayen F. Z. at 71/sup 0/N and at least as far north as 73/sup 0/. Group B glasses are characterized by higher silica and alkalis, low iron and lack of alumina depletion and iron-enrichment trends. They contain calcic clinopyroxene (Cpx) throughout the compositional range, whereas the sub-calcic augite is absent. The major-element variation within each group can be modeled quantitatively by fractional crystallization involving the phenocryst phases. The range of glass compositions in the two groups forms two distinct but parallel cotectic trends within the basalt tetrahedron, which are believed to define the quaternary univariant line 01-P1-Cpx-Liq along which the magmas evolved during fractionation at low to intermediate pressure.

  11. Origin of the Grande Ronde Basalts, Columbia River Basalt Group

    NASA Astrophysics Data System (ADS)

    Durand, S. R.; Sen, G.; Reidel, S. P.

    2005-12-01

    The Columbia River basalts are generally thought to have formed by plume melting. Takahashi et al. (1998) suggested that the near-aphyric Grande Ronde Basalts (GR), which comprise ~63% of the CRBG, are essentially primary melts formed by nearly complete fusion of eclogite source rock in the plume and that such melting took place ~2.0 GPa. Durand and Sen (2002) examined phenocrysts and whole rock analyses and concluded that all the basalts are non-primary and, more importantly, that they underwent significant "processing" in shallow crustal magma chambers which erased their higher pressure geochemical signal, thus casting doubt on the validity of the eclogitic plume melting model. Here we report the results of our efforts to simulate the higher pressure histories of GR basalts using COMAGMAT and MELTS software. Our intent was to evaluate (1) whether such melts could be derived from primary melts formed by partial melting of a peridotite source as an alternative to the eclogite model, or if bulk melting of eclogite is required; and (2) at what pressure such primary melts could have been in equilibrium with the mantle. We carried out both forward and inverse modeling. In the forward models we chose different starting melt compositions, all produced in laboratory experiments, from peridotite vs. eclogitic sources. Our starting melts were produced by 6-17% partial melting of the peridotite KLB-1 (Hirose and Kushiro, 1993) and 18-40% melting of eclogites (77SL-582; CRB72-31; Keshav et al., 2004; Takahashi et al., 1998) at 1-3.0 GPa. In a second model, our starting melt composition was the most primitive GR lava with 6.5 wt. % MgO. We extrapolated a linear regression through the GR data to 8 wt. % MgO. We then assumed that such a melt was only olivine-equilibrated, and incrementally added olivine while maintaining equilibrium between olivine and melt using a Kd of 0.3, until a melt in equilibrium with the mantle olivine (Fo89) was found. This composition was fractionated

  12. Watching magma from space

    USGS Publications Warehouse

    Lu, Zhong; Wicks, Charles W.; Dzurisin, Daniel; Thatcher, Wayne R.; Freymueller, Jeffrey T.; McNutt, Stephen R.; Mann, Dorte

    2000-01-01

    Westdahl is a broad shield volcano at the western end of Unimak Island in the Aleutian chain. It has apparently been dormant since a 1991-92 eruption and seismicity levels have been low. However, satellite radar imaging shows that in the years following 1992 the upper flanks of Westdahl have risen several centimeters, probably from the influx of new magma deep below its summit. Until now, deep magma reservoirs have been difficult to detect beneath most volcanoes. But using space geodetic technologies, specifically interferometric synthetic aperture radar (InSAR), we have discovered a deep magmatic source beneath Westdahl. 

  13. Magma mixing enhanced by bubble segregation

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Morgavi, D.; Renggli, C.; Perugini, D.; De Campos, C. P.; Hess, K.-U.; Ertel-Ingrisch, W.; Lavallée, Y.; Dingwell, D. B.

    2015-04-01

    That rising bubbles may significantly affect magma mixing paths has already been demon strated by analogue experiments. Here, for the first time, bubble-advection experiments are performed employing volcanic melts at magmatic temperatures. Cylinders of basaltic glass were placed below cylinders of rhyolite glass. Upon melting, interstitial air formed bubbles that rose into the rhyolite melt, thereby entraining tails of basaltic liquid. The formation of plume-like filaments of advected basalt within the rhyolite was characterized by microCT and subsequent high-resolution EMP analyses. Melt entrainment by bubble ascent appears to be an efficient mechanism for mingling volcanic melts of highly contrasting compositions and properties. MicroCT imaging reveals bubbles trailing each other and multiple filaments coalescing into bigger ones. Rheological modelling of the filaments yields viscosities of up to 2 orders of magnitude lower than for the surrounding rhyolitic liquid. Such a viscosity contrast implies that bubbles rising successively are likely to follow this pathway of low resistance that previously ascending bubbles have generated. Filaments formed by multiple bubbles would thus experience episodic replenishment with mafic material. Inevitable implications for the concept of bubble advection in magma mixing include thereby both an acceleration of mixing because of decreased viscous resistance for bubbles inside filaments and non-conventional diffusion systematics because of intermittent supply of mafic material (instead of a single pulse) inside a material. Inside the filaments, the mafic material was variably hybridised to andesitic through rhyolitic composition. Compositional profiles alone are ambiguous, however, to determine whether single or multiple bubbles were involved during formation of a filament. Statistical analysis, employing concentration variance as measure of homogenisation, demonstrates that also filaments appearing as single-bubble filaments

  14. Supertoxic Flood Basalts: The CAMP - Siberian Trap Connection

    NASA Astrophysics Data System (ADS)

    Puffer, J. H.

    2007-12-01

    Several diverse magma types are represented throughout the CAMP and Siberian Trap LIPs, however, the main extrusive phase of each province is highly unusual among continental flood basalts. The most widespread extrusions were intermediate titanium (ITi-type) CAMP basalt and the lower portion of the Upper Sequence of Siberian Trap. New and recently published data indicate that the geochemistry and petrology of these basalt suites closely resemble each other and infer similar origins. The basalts are characterized by strong negative Nb- Ta anomalies and unusual island arc-like depletion in high field strength elements, particularly Ti, plotted on spider diagrams. The geochemical data is consistent with significant contributions from subducted slabs into the magma source regions. If contaminated, volatile enriched mantle wedges were trapped beneath thick continental plates during the assembly of Pangea, fertile magma sources would have remained dormant until decompression melting was triggered during failed rift, then early rift stages of continental plate disassembly. The combination of volatile enriched sources and highly extensional tectonism would create rare perfect storms of toxicity. Calculated low viscosities assuming negligible carbon dioxide are consistent with rapid crustal penetration. Resulting aphyric melts extruded at enormous effusive rates as thick sub-parallel flows across wide subareal terrains through fissures extending several hundred km in length. High fountain heights would afford ample opportunity for efficient degassing, perhaps into the stratosphere. When the supply of volatile flux was exhausted magmatism ceased. The mass extinctions that coincide with CAMP and Siberian volcanism contrast with some large plume and superplume events that correlate with expansions of biodiversity. This may be due in part to contrasting magma access to sources of toxic volatiles, particularly sulfur concentrations in anoxic subducted sediments.

  15. Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia

    USGS Publications Warehouse

    Sisson, T.W.; Bronto, S.

    1998-01-01

    The melting of peridotite in the mantle wedge above subduction zones is generally believed to involve hydrous fluids derived from the subducting slab. But if mantle peridotite is upwelling within the wedge, melting due to pressure release could also contribute to magma production. Here we present measurements of the volatile content of primitive magmas from Galunggung volcano in the Indonesian are which indicate that these magmas were derived from the pressure-release melting of hot mantle peridotite. The samples that we have analysed consist of mafic glass inclusions in high-magnesium basalts. The inclusions contain uniformly low H2O concentrations (0.21-0.38 wt%), yet relatively high levels of CO2 (up to 750 p.p.m.) indicating that the low H2O concentrations are primary and not due to degassing of the magma. Results from previous anhydrous melting experiments on a chemically similar Aleutian basalts indicate that the Galunggung high-magnesium basalts were last in equilibrium with peridotite at ~1,320 ??C and 1.2 GPa. These high temperatures at shallow sub-crustal levels (about 300-600 ??C hotter than predicted by geodynamic models), combined with the production of nearly H2O- free basaltic melts, provide strong evidence that pressure-release melting due to upwelling in the sub-are mantle has taken place. Regional low- potassium and low-H2O (ref. 5) basalts found in the Cascade are indicate that such upwelling-induced melting can be widespread.

  16. Subduction zone mantle enrichment by fluids and Zr-Hf-depleted crustal melts as indicated by backarc basalts of the Southern Volcanic Zone, Argentina

    NASA Astrophysics Data System (ADS)

    Holm, Paul M.; Søager, Nina; Alfastsen, Mads; Bertotto, Gustavo W.

    2016-10-01

    We aim to identify the components metasomatizing the mantle above the subducting Nazca plate under part of the Andean Southern Volcanic Zone (SVZ). We present new major and ICP-MS trace element and Sr, Nd and high-precision Pb isotope analyses of primitive olivine-phyric alkali basalts from the Northern Segment Volcanic Field, part of the Payenia province in the backarc of the Transitional SVZ. One new 40Ar-39Ar age determination confirms the Late Pleistocene age of this most northerly part of the province. All analysed rocks have typical subduction zone type incompatible element enrichment, and the rocks of the Northern Segment, together with the neighbouring Nevado Volcanic Field, have isotopic compositions intermediate between adjacent Transitional SVZ arc rocks and southern Payenia OIB-type basaltic rocks. Modelling the Ba-Th-Sm variation we demonstrate that fluids as well as 1-2% melts of upper continental crust (UCC) enriched their mantle sources, and La-Nb-Sm variations additionally indicate that the pre-metasomatic sources ranged from strongly depleted to undepleted mantle. Low Eu/Eu* and Sr/Nd also show evidence for a UCC component in the source. The contribution of Chile Trench sediments to the magmas seems insignificant. The Zr/Sm and Hf/Sm ratios are relatively low in many of the Northern Segment rocks, ranging down to 17 and 0.45, respectively, which, together with relatively high Th/U, is argued to indicate that the metasomatizing crustal melts were derived by partial melting of subducted UCC that had residual zircon, in contrast to the UCC melts added to Transitional SVZ arc magmas. Mixing between depleted and undepleted mantle, enriched by UCC and fluids, is suggested by Sr, Nd and Pb isotopes of the Northern Segment and Nevado magmas. The metasomatized undepleted mantle south of the Northern Segment is suggested to be part of upwelling OIB-type mantle, whereas the pre-metasomatically depleted mantle also can be found as a component in some arc

  17. Petrology and geochemistry of Cenozoic intra-plate basalts in east-central China: Constraints on recycling of an oceanic slab in the source region

    NASA Astrophysics Data System (ADS)

    Li, Yan-Qing; Ma, Chang-Qian; Robinson, Paul T.

    2016-10-01

    Cenozoic mafic rocks in Jiangsu and Anhui Provinces, east-central China are chiefly basanites and alkali olivine basalts with subordinate tholeiites, which were erupted in three stages; Paleogene, Neogene and Quaternary. The rocks become increasingly alkaline as they become younger. On a primitive mantle-normalized multi-element plot, these lavas exhibit typical OIB-like trace element patterns, including enrichment in most incompatible elements (LILE and HFSE) and negative K and Pb anomalies. The compositions of the mafic rocks indicate that they were derived from a mantle source mainly containing clinopyroxene and garnet, most probably a mixture of pyroxenite/eclogite and peridotite. A mineral equilibrium projection shows that all the mafic magmas were produced at pressures of 3-4 GPa, implying an asthenospheric origin. Their positive Ba and Sr anomalies and relatively high 87Sr/86Sr ratios suggest derivation from an EM1-type mantle source. However, poor correlations between 87Sr/86Sr and 143Nd/144Nd indicate an isotopically heterogeneous source for the magmas, including DMM, EM1 and EM2, representing mantle peridotite, recycled ancient oceanic crust and seafloor sedimentary rocks, respectively. Variable correlations between 87Sr/86Sr and 143Nd/144Nd ratios, CaO-MgO contents and Eu/Eu* and Ce/Ce* anomalies with rock type imply that marine sediments (plus variable amounts of oceanic crust) and peridotites were the dominant source lithologies of the basanites, whereas recycled oceanic crust (pyroxenite/eclogite) was the main source of the weakly alkaline basalts. This hypothesis is supported by seismic tomographic images of the mantle beneath the region, which show the presence of a stagnant subducted slab in the mantle transition zone. Thus, we propose a petrological model in which a hybrid magma column originated from the mantle transition zone and assimilated some of the overlying peridotite during upwelling, to become the parental magmas of these mafic rocks

  18. The solubility of olivine in basaltic liquids - An ionic model

    NASA Technical Reports Server (NTRS)

    Herzberg, C. T.

    1979-01-01

    A model is presented which enables the temperature at which olivine is in equilibrium with any alkali-depleted basaltic compound to be calculated to within + or - 30 C. It is noted that the error increases substantially when applied to terrestrial basalts which contain several weight percent alkalis. In addition the model predicts and quantifies the reduced activity of SiO4(4-) monomers due to increasing SiO2 concentrations in the melt. It is shown that the coordination of alumina in melts which precipitate olivine only appears to be dominantly octahedral, while titanium acts as a polmerizing agent by interconnecting previously isolated SiO4(4-) monomers. It is concluded that the model is sufficiently sensitive to show that there are small repulsive forces between Mg(2+) and calcium ions which are in association with normative diopside in the melt.

  19. Long-Term Volumetric Eruption Rates and Magma Budgets

    SciTech Connect

    Scott M. White Dept. Geological Sciences University of South Carolina Columbia, SC 29208; Joy A. Crisp Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA 91109; Frank J. Spera Dept. Earth Science University of California, Santa Barbara Santa Barbara, CA 93106

    2005-01-01

    A global compilation of 170 time-averaged volumetric volcanic output rates (Qe) is evaluated in terms of composition and petrotectonic setting to advance the understanding of long-term rates of magma generation and eruption on Earth. Repose periods between successive eruptions at a given site and intrusive:extrusive ratios were compiled for selected volcanic centers where long-term (>104 years) data were available. More silicic compositions, rhyolites and andesites, have a more limited range of eruption rates than basalts. Even when high Qe values contributed by flood basalts (9 ± 2 Å~ 10-1 km3/yr) are removed, there is a trend in decreasing average Qe with lava composition from basaltic eruptions (2.6 ± 1.0 Å~ 10-2 km3/yr) to andesites (2.3 ± 0.8 Å~ 10-3 km3/yr) and rhyolites (4.0 ± 1.4 Å~ 10-3 km3/yr). This trend is also seen in the difference between oceanic and continental settings, as eruptions on oceanic crust tend to be predominately basaltic. All of the volcanoes occurring in oceanic settings fail to have statistically different mean Qe and have an overall average of 2.8 ± 0.4 Å~ 10-2 km3/yr, excluding flood basalts. Likewise, all of the volcanoes on continental crust also fail to have statistically different mean Qe and have an overall average of 4.4 ± 0.8 Å~ 10-3 km3/yr. Flood basalts also form a distinctive class with an average Qe nearly two orders of magnitude higher than any other class. However, we have found no systematic evidence linking increased intrusive:extrusive ratios with lower volcanic rates. A simple heat balance analysis suggests that the preponderance of volcanic systems must be open magmatic systems with respect to heat and matter transport in order to maintain eruptible magma at shallow depth throughout the observed lifetime of the volcano. The empirical upper limit of Å`10-2 km3/yr for magma eruption rate in systems with relatively high intrusive:extrusive ratios may be a consequence of the fundamental parameters

  20. Magma storage under Iceland's Eastern Volcanic Zone

    NASA Astrophysics Data System (ADS)

    Maclennan, J.; Neave, D.; Hartley, M. E.; Edmonds, M.; Thordarson, T.; Morgan, D. J.

    2014-12-01

    The Eastern Volcanic Zone (EVZ) of Iceland is defined by a number of volcanic systems and large basaltic eruptions occur both through central volcanoes (e.g. Grímsvötn) and on associated fissure rows (e.g. Laki, Eldgjá). We have collected a large quantity of micro-analytical data from a number of EVZ eruptions, with the aim of identifying common processes that occur in the premonitory stages of significant volcanic events. Here, we focus on the AD 1783 Laki event, the early postglacial Saksunarvatn tephra and the sub-glacially erupted Skuggafjöll tindar and for each of these eruptions we have >100 olivine-hosted or plagioclase-hosted melt inclusion analyses for major, trace and volatile elements. These large datasets are vital for understanding the history of melt evolution in the plumbing system of basaltic volcanoes. Diverse trace element compositions in melt inclusions hosted in primitive macrocrysts (i.e. Fo>84, An>84) indicate that the mantle melts supplied to the plumbing system of EVZ eruptions are highly variable in composition. Concurrent mixing and crystallisation of these melts occurs in crustal magma bodies. The levels of the deepest of these magma bodies are not well constrained by EVZ petrology, with only a handful of high-CO2 melt inclusions from Laki providing evidence for magma supply from >5 kbar. In contrast, the volatile contents of melt inclusions in evolved macrocrysts, which are close to equilibrium with the carrier liquids, indicate that final depths of inclusion entrapment are 0.5-2 kbar. The major element composition of the matrix glasses shows that the final pressure of equilibration between the melt and its macrocryst phases also occurred at 0.5-2 kbar. The relationship between these pressures and seismic/geodetic estimates of chamber depths needs to be carefully evaluated. The melt inclusion and macrocryst compositional record indicates that injection of porphyritic, gas-rich primitive melt into evolved/enriched and degassed shallow

  1. Carbon dioxide in magmas and implications for hydrothermal systems

    USGS Publications Warehouse

    Lowenstern, J. B.

    2001-01-01

    This review focuses on the solubility, origin, abundance, and degassing of carbon dioxide (CO2) in magma-hydrothermal systems, with applications for those workers interested in intrusion-related deposits of gold and other metals. The solubility of CO2 increases with pressure and magma alkalinity. Its solubility is low relative to that of H2O, so that fluids exsolved deep in the crust tend to have high CO2/H2O compared with fluids evolved closer to the surface. Similarly, CO2/H2O will typically decrease during progressive decompression- or crystallization-induced degassing. The temperature dependence of solubility is a function of the speciation of CO2, which dissolves in molecular form in rhyolites (retrograde temperature solubility), but exists as dissolved carbonate groups in basalts (prograde). Magnesite and dolomite are stable under a relatively wide range of mantle conditions, but melt just above the solidus, thereby contributing CO2 to mantle magmas. Graphite, diamond, and a free CO2-bearing fluid may be the primary carbon-bearing phases in other mantle source regions. Growing evidence suggests that most CO2 is contributed to arc magmas via recycling of subducted oceanic crust and its overlying sediment blanket. Additional carbon can be added to magmas during magma-wallrock interactions in the crust. Studies of fluid and melt inclusions from intrusive and extrusive igneous rocks yield ample evidence that many magmas are vapor saturated as deep as the mid crust (10-15 km) and that CO2 is an appreciable part of the exsolved vapor. Such is the case in both basaltic and some silicic magmas. Under most conditions, the presence of a CO2-bearing vapor does not hinder, and in fact may promote, the ascent and eruption of the host magma. Carbonic fluids are poorly miscible with aqueous fluids, particularly at high temperature and low pressure, so that the presence of CO2 can induce immiscibility both within the magmatic volatile phase and in hydrothermal systems

  2. Dredged trachyte and basalt from kodiak seamount and the adjacent aleutian trench, alaska.

    PubMed

    Forbes, R B; Hoskin, C M

    1969-10-24

    Blocky fragments of aegirine-augite trachyte (with accompanying icerafted gravels.) were recovered from the upper slopes of Kodiak Seamount in several dredge hauls. An alkali basalt pillow segment was also dredged from a moatlike depression, at a depth of 5000 meters, near the west base of the seamount. These retrievals confirm the volcanic origin of Kodiak Seamount and further support the view of Engel, Engel, and Havens that the higher elevations of seamounts are composed of alkali basalts or related variants. PMID:17731907

  3. On the conditions of magma mixing and its bearing on andesite production in the crust.

    PubMed

    Laumonier, Mickael; Scaillet, Bruno; Pichavant, Michel; Champallier, Rémi; Andujar, Joan; Arbaret, Laurent

    2014-12-15

    Mixing between magmas is thought to affect a variety of processes, from the growth of continental crust to the triggering of volcanic eruptions, but its thermophysical viability remains unclear. Here, by using high-pressure mixing experiments and thermal calculations, we show that hybridization during single-intrusive events requires injection of high proportions of the replenishing magma during short periods, producing magmas with 55-58 wt% SiO2 when the mafic end-member is basaltic. High strain rates and gas-rich conditions may produce more felsic hybrids. The incremental growth of crustal reservoirs limits the production of hybrids to the waning stage of pluton assembly and to small portions of it. Large-scale mixing appears to be more efficient at lower crustal conditions, but requires higher proportions of mafic melt, producing more mafic hybrids than in shallow reservoirs. Altogether, our results show that hybrid arc magmas correspond to periods of enhanced magma production at depth.

  4. Using Intensive Variables to Constrain Magma Source Regions

    NASA Astrophysics Data System (ADS)

    Edwards, B. R.; Russell, J. K.

    2006-05-01

    In the modern world of petrology, magma source region characterization is commonly the realm of trace element and isotopic geochemistry. However, major element analyses of rocks representing magmatic compositions can also be used to constrain source region charactertistics, which enhance the results of isotopic and trace element studies. We show examples from the northern Cordilleran volcanic province (NCVP), in the Canadian Cordillera, where estimations of thermodynamic intensive variables are used to resolve different source regions for mafic alkaline magmas. We have taken a non-traditional approach to using the compositions of three groups of mafic, alkaline rocks to characterize the source regions of magmas erupted in the NCVP. Based on measured Fe2O3 and FeO in rocks from different locations, the Atlin volcanic district (AVD), the Fort Selkirk volcanic complex (FSVC), the West Tuya volcanic field, (WTVF), we have estimated oxygen fugacities (fO2) for the source regions of magmas based on the model of Kress and Carmichael (1991) and the computational package MELTS/pMelts (Ghiorso and Sack, 1995; Ghiorso et al., 2002). We also have used Melts/pMelts to estimate liquidus conditions for the compositions represented by the samples as well as activities of major element components. The results of our calculations are useful for distinguishing between three presumably different magma series: alkaline basalts, basanites, and nephelinites (Francis and Ludden, 1990; 1995). Calculated intensive variables (fO2, activities SiO2, KAlSiO4, Na2SiO3) show clear separation of the samples into two groups: i) nephelinites and ii) basanites/alkaline basalts. The separation is especially evident on plots of log fO2 versus activity SiO2. The source region for nephelinitic magmas in the AVD is up to 2 log units more oxidized than that for the basanites/basalts as well as having a distinctly lower range of activities of SiO2. Accepting that our assumptions about the magmas

  5. High alumina (HA) and very high potassium (VHK) basalt clasts from Apollo 14 breccias. II - Whole rock geochemistry - Further evidence for combined assimilation and fractional crystallization within the lunar crust

    NASA Technical Reports Server (NTRS)

    Neal, C. R.; Taylor, L. A.; Schmitt, R. A.; Hughes, S. S.; Lindstrom, M. M.

    1989-01-01

    The understanding of basalt petrogenesis at the Apollo 14 site has increased markedly due to the study of 'new' samples from breccia 'pull-apart' efforts. Whole-rock compositions of 26 new high alumina (HA) and 7 very high potassium (VHK) basalts emphasize the importance of combined assimilation and fractional crystallization in a lunar regime. Previously formulated models for HA and VHK basalt petrogenesis are modified in order to accomodate these new data, although modeling parameters are essentially the same. The required range in HA basalt compositions is generated by the assimilation of KREEP by a 'primitive' parental magma. The VHK basalts can be generated by three parental HA basalts assimilating granite. Results indicate that VHK basalt compositions are dominated by the parental magma, and only up to 8 percent granite assimilation is required. This modeling indicates that at least three VHK basalt flows must be present at the Apollo 14 site.

  6. Self Sealing Magmas

    NASA Astrophysics Data System (ADS)

    von Aulock, Felix W.; Wadsworth, Fabian B.; Kennedy, Ben M.; Lavallee, Yan

    2015-04-01

    During ascent of magma, pressure decreases and bubbles form. If the volume increases more rapidly than the relaxation timescale, the magma fragments catastrophically. If a permeable network forms, the magma degasses non-violently. This process is generally assumed to be unidirectional, however, recent studies have shown how shear and compaction can drive self sealing. Here, we additionally constrain skin formation during degassing and sintering. We heated natural samples of obsidian in a dry atmosphere and monitored foaming and impermeable skin formation. We suggest a model for skin formation that is controlled by diffusional loss of water and bubble collapse at free surfaces. We heated synthetic glass beads in a hydrous atmosphere to measure the timescale of viscous sintering. The beads sinter at drastically shorter timescales as water vapour rehydrates an otherwise degassed melt, reducing viscosity and glass transition temperatures. Both processes can produce dense inhomogeneities within the timescales of magma ascent and effectively disturb permeabilities and form barriers, particularly at the margins of the conduit, where strain localisation takes place. Localised ash in failure zones (i.e. Tuffisite) then becomes associated with water vapour fluxes and alow rapid rehydration and sintering. When measuring permeabilities in laboratory and field, and when discussing shallow degassing in volcanoes, local barriers for degassing should be taken into account. Highlighting the processes that lead to the formation of such dense skins and sintered infills of cavities can help understanding the bulk permeabilities of volcanic systems.

  7. Magma energy for power generation

    SciTech Connect

    Dunn, J.C.

    1987-01-01

    Thermal energy contained in crustal magma bodies represents a large potential resource for the US and magma generated power could become a viable alternative in the future. Engineering feasibility of the magma energy concept is being investigated as part of the Department of Energy's Geothermal Program. This current project follows a seven-year Magma Energy Research Project where scientific feasibility of the concept was concluded.

  8. Physicochemical properties of alkali carbonatite lavas:Data from the 1988 eruption of Oldoinyo Lengai, Tanzania

    NASA Astrophysics Data System (ADS)

    Dawson, J. B.; Pinkerton, H.; Norton, G. E.; Pyle, D. M.

    1990-03-01

    Alkali carbonatite lavas extruded from Oldoinyo Lengai, Tanzania, in November 1988 are similar in composition to lavas extruded in 1960. Extrusion temperatures are 585 ±10 °C. Apparent viscosities in this temperature range are between 0.3 and 120 Paṡs, the highest values coming from very frothy and phenocryst-rich magma. The viscosities and temperatures are the lowest known for terrestrial magmas.

  9. Testing the Origins of Basalt Fragments fro Apollo 16

    NASA Technical Reports Server (NTRS)

    Donohue, P. H.; Stevens, R. E.; Neal, C. R.; Zeigler, R. A.

    2013-01-01

    Several 2-4 mm regolith fragments of basalt from the Apollo 16 site were recently described by [1]. These included a high-Ti vitrophyric basalts (60603,10-16) and one very-low-titanium (VLT) crystalline basalt (65703,9-13). As Apollo 16 was the only highlands sample return mission distant from the maria, identification of basaltic samples at the site indicates input from remote sites via impact processes [1]. However, distinguishing between impact melt and pristine basalt can be notoriously difficult and requires significant sample material [2-6]. The crystal stratigraphy method utilizes essentially non-destructive methods to make these distinctions [7,8]. Crystal stratigraphy combines quantitative petrography in the form of crystal size distributions (CSDs) coupled with mineral geochemistry to reveal the petrogenetic history of samples. The classic CSD plot of crystal size versus population density can reveal insights on growth/cooling rates, residence times, and magma history which in turn can be used to evaluate basaltic vs impact melt origin [7-9]. Electron microprobe (EMP) and laser ablation (LA)-ICP-MS analyses of mineral phases complement textural investigations. Trace element variations document subtle changes occurring during the formation of the samples, and are key in the interpretation and preservation of this rare lunar sample collection.

  10. Hotspots, basalts, and the evolution of the mantle

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1981-01-01

    It is noted that the trace element concentration patterns of continental and ocean island basalts and of mid-ocean ridge basalts are complementary. Estimates of the relative sizes of the source regions for these fundamentally different basalt types can be arrived at from the trace element enrichment-depletion patterns. Their combined volume occupies the greater part of the mantle above the 670 km discontinuity. It is pointed out that the source regions separated as a result of early mantle differentiation and crystal fractionation from the resulting melt. The mid-ocean ridge basalts source evolved from an eclogite cumulate that gave up its late-stage enriched fluids at various times to the shallower mantle and continental crust. The mid-ocean ridge basalts source is rich in garnet and clinopyroxene, while the continental and ocean island basalt source is a garnet peridotite that has experienced secondary enrichment. These relationships are found to be consistent with the evolution of a terrestrial magma ocean.

  11. Magma energy: a feasible alternative

    SciTech Connect

    Colp, J.L.

    1980-03-01

    A short review of the work performed by Sandia Laboratories in connection with its Magma Energy Research Project is provided. Results to date suggest that boreholes will remain stable down to magma depths and engineering materials can survive the downhole environments. Energy extraction rates are encouraging. Geophysical sensing systems and interpretation methods require improvement, however, to clearly define a buried magma source.

  12. Modeling the compositional evolution of recharging, evacuating, and fractionating (REFC) magma chambers: Implications for differentiation of arc magmas

    NASA Astrophysics Data System (ADS)

    Lee, Cin-Ty A.; Lee, Tien Chang; Wu, Chi-Tang

    2014-10-01

    are high and warm country rock decrease the cooling rates of magma chambers. By contrast, REFC should be less significant in shallow crustal magma chambers, which erupt and cool more efficiently due to lower confining pressures, colder country rock, and the cooling effects of hydrothermal systems. We thus speculate that the effects of REFC will be small in mid-ocean ridge settings and most pronounced in arc settings, particularly mature island arcs or continental arcs, where magma chambers >10 km depth are possible. This begs the question of whether high Fe3+, H2O and CO2 (all of which can be treated as incompatible “elements”) in arc basalts could be enhanced by REFC processes and thus not just reflect inheritance from the mantle source. We show that REFC can plausibly explain observed enrichments in Fe3+ and H2O in arc melts without significant depletion in MgO. Because the difference between calc-alkaline and tholeiitic differentiation series is mostly likely due to higher water and oxygen fugacity in the former, it may be worth considering the effects of REFC. Thus, if REFC is more pronounced in deep crustal magma chambers, mature island arcs and continental arcs would tend towards calc-alkaline differentiation, whereas juvenile island arcs would be more tholeiitic. To fully test the significance of REFC will require detailed analysis of other highly incompatible elements, but presently the relative differences in bulk D of such elements may not be constrained well enough. The equations presented here provide a framework for evaluating whether REFC should be considered when interpreting geochemical data in differentiated magmas. For completeness, we have also provided the more general equations for a magma chamber undergoing recharge (R), evacuation (E), crustal assimilation (A) and fractional crystallization (FC), e.g., REAFC, for constant mass, growing and dying magma chambers.

  13. Magma Differentiation in the Plumbing System of an Alkaline Ocean Island Volcano (Fuerteventura, Canary Island).

    NASA Astrophysics Data System (ADS)

    Tornare, E.; Bussy, F.; Pilet, S.

    2014-12-01

    Magma differentiation and mixing are generally regarded as taking place in magma chambers, sills or reservoirs, while magma stagnates before continuing to ascent or erupt. Here we consider differentiation to occur during magma rise in vertical dykes, as documented in the PX1 pluton, Fuerteventura, which is part of the root-zone of an eroded ocean island volcano. PX1 is a vertically layered cumulative body composed of meter to decameter-wide bands of clinopyroxenites and gabbros, surrounded by a very high-grade contact aureole (ca. 1000°C, Hobson et al., 1998). Many clinopyroxenites are characterized by a coarse-grained texture and complexly zoned clinopyroxene crystals. Resorption features and reverse zoning observed in rims are evidence for successive pulses. Percolation of high temperature basaltic melts through the accumulating crystal-rich mush would generate the complexly zoned clinopyroxenes and lead to crystal coarsening. We interpret these coarse-grained clinopyroxenites as crystal-rich magma channels, through which sustained magma fluxes travelled to the surface over a long period of time, thus generating the contact aureole. On the other hand, gabbro bands are interpreted as sluggish magma pulses emplaced in a cooler environment during the waning stages of magmatic activity. We thus propose a model of magma differentiation by dynamic fractionation in dykes throughout magma ascent in the plumbing system of basaltic volcanoes. This model assumes fractional crystallization of continuously rising magmas in vertical channels all along their way to the surface through phenocryst accumulation and crystal-melt interaction processes.

  14. Geochemical characteristics of the Cenozoic basaltic rocks, Northwestern Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Saif, S. I.; Shah, S. M. A.

    1992-02-01

    In northwestern Saudi Arabia, an area of about 15 200 km is intermittently covered by basaltic rocks representing Cenozoic, intraplate continental volcanism. The present study is focused on the geochemical characteristics of these rocks, which are distinguished on the basis of field occurrences into three suites: 1. layered basalt (LB), 2. fragmented basalt (FB), and 3. cinder-cone material (CM), with varied ages. The rocks are olivine normative, belonging to the basanite-picrite-ankaramite series, with sodic and potassic varieties. A high degree of ferromagnesian fractionation and some compositional layering in the magma chamber are concluded. Crustal contamination indicated by some trace elements, progressively decreases with age, and hence, is interpreted as time dependent.

  15. Magma Storage, Recharge and the Caldera Cycle at Rabaul, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Fabbro, G.; Bouvet de Maisonneuve, C.; Sindang, M.

    2015-12-01

    Many calderas have a history of repeated caldera-forming eruptions, interspersed with periods of more minor activity. Rabaul, for instance, has had at least 11 ignimbrite-forming eruptions over the last 200 ky. The most recent of these was the '1400 BP' eruption, which led to caldera collapse. Since then, there has been multiple smaller eruptions, including the ongoing activity from Tavurvur and Vulcan. An important question facing volcanology today is what controls the size of eruptions at calderas such as Rabaul.Detailed stratigraphic sampling of the 1400BP eruption reveals that prior to eruption, the magma reservoir below Rabaul contained a well-mixed dacite with whole-rock SiO2 contents of 65.0-66.4 wt%. The dacite contains a single phenocryst assemblage of plag (An44-52), cpx (En43-46Fs13-15Wo40-41), opx (En69-71Fs25-28Wo3) and magnetite, along with minor apatite. The homogeneity of the dacite is underscored by the narrow range of compositions of both the matrix glass and the melt inclusions (67.8-69.0 wt% SiO2). The only exception to this is at the top of the ignimbrite, representing some of the last magma to have been withdrawn. Dispersed throughout the dacitic pumices are darker, more mafic blebs. Streaks of mingled magma with a range of SiO2 contents, down to 59.9 wt% SiO2 are also found in the pumice, suggesting that a mafic recharge magma was intruded into the base of the reservoir shortly before eruption. High TiO2 contents rule out the direct involvement of basalt, and instead imply the magma that intruded into the reservoir was an andesite with at least 56 wt% SiO2. Phenocrysts related to this recharge magma are rare, and the crystals found in the dark blebs are identical in composition to those found in the dacite, indicating that the recharge was aphyric. The present-day, post-caldera recharge magma is different to the pre-1400 BP recharge magma: it is basaltic. This suggests that the plumbing system of Rabaul is different during the pre-caldera and

  16. A chemical model for generating the sources of mare basalts - Combined equilibrium and fractional crystallization of the lunar magmasphere

    NASA Technical Reports Server (NTRS)

    Snyder, Gregory A.; Taylor, Lawrence A.; Neal, Clive R.

    1992-01-01

    A chemical model for simulating the sources of the lunar mare basalts was developed by considering a modified mafic cumulate source formed during the combined equilibrium and fractional crystallization of a lunar magma ocean (LMO). The parameters which influence the initial LMO and its subsequent crystallization are examined, and both trace and major elements are modeled. It is shown that major elements tightly constrain the composition of mare basalt sources and the pathways to their creation. The ability of this LMO model to generate viable mare basalt source regions was tested through a case study involving the high-Ti basalts.

  17. Zr and Nb partition coefficients - Implications for the genesis of mare basalts, KREEP, and sea floor basalts

    NASA Technical Reports Server (NTRS)

    Mccallum, I. S.; Charette, M. P.

    1978-01-01

    The distribution coefficients of Zr and Nb have been found between armalcolite, ilmenite, clinopyroxene, rutile, plagioclase, and a coexisting high-Ti mare basalt melt in the 1105-1128 C temperature range. Henry's Law is not broken over the compositional range evaluated. The distribution coefficients of clinopyroxene are strongly dependent on melt and crystal compositions. The Al2O3 activity in the melt is a strong controlling parameter. It is concluded that: (1) Apollo 11 (low K) and Apollo 17 high-Ti mare basalts may have been generated by the partial melting of an ilmenite-rich cumulate, (2) Apollo 11 (high K) basalts may have been generated by a small amount of partial melting of a more fractionated ilmenite-rich cumulate, (3) KREEP magmas may have been formed as residual melts produced by fractional crystallization of the lunar magma ocean, and (4) anomalous (type II) MOR basalts may have been generated by small degrees of partial melting of a relatively undepleted mantle with clinopyroxene remaining in the residium.

  18. Depleted components in the source of hotspot magmas: Evidence from the Ninetyeast Ridge (Kerguelen)

    NASA Astrophysics Data System (ADS)

    Frey, Frederick A.; Nobre Silva, Inês G.; Huang, Shichun; Pringle, Malcolm S.; Meleney, Peter R.; Weis, Dominique

    2015-09-01

    Although most ocean island basalts (OIB) are enriched in incompatible elements relative to mid-ocean ridge basalts, OIB depleted in these elements also occur on some islands. The Ninetyeast Ridge (NER) in the eastern Indian Ocean is a 5000 km long hotspot track defined by submarine basaltic volcanoes that were islands when they formed from 43 to 77 Ma. A subset of NER basalts, described as depleted, has high abundances of Sc, Y and Lu, which are relatively compatible in clinopyroxene and especially in garnet. It is unusual for magmas to have the trace element characteristics of a mineral. A likely explanation is that the depleted NER basalts were derived from a source that was created as a garnet- and clinopyroxene-bearing residue during partial melting. When this residue formed, the extent of melting must have been low as not all of the garnet and clinopyroxene was melted. To provide sufficient time for the relatively high Lu/Hf of the residue to develop the high 176Hf/177Hf that is characteristic of depleted NER basalts, this melting event must have been ancient. In the second much younger melting event that formed the NER, the extent of melting was sufficiently high to eliminate garnet and clinopyroxene from the ancient residue. Basalts erupted on a segment of the Mid-Atlantic Ridge near the Azores were also derived from an ancient garnet-bearing residue. Residues from ancient partial melting events involving low extents of melting are the dominant source of mid-ocean ridge basalts and depleted magmas associated with the Kerguelen and Azores hotspots. In contrast, a very different process has been inferred for creating the source of depleted Icelandic basalts. Their source was gabbro containing cumulate plagioclase and clinopyroxene. Such gabbros are common in the lower oceanic crust, and if recycled into the Icelandic hotspot they are a source of depleted Icelandic basalts.

  19. Layer Formation in Convective Magma Chambers

    NASA Astrophysics Data System (ADS)

    Höink, T.; Schmalzl, J.; Hansen, U.

    2004-12-01

    timescale. Layer formation in all observed layering cases occurs on this time scale, even though the average settling velocity is reduced by at least one order of magnitude due to hindered settling. In many cases (e.g. basaltic magma chambers) the settling time is short compared to the time that magma chambers take to solidify. We conclude that dynamical layer formation that is connected to crystal settling and the crystals' density contribution is a likely mechanism for creating layered structures within the convective lifetime of a magma chamber.

  20. Sulfur evolution of the 1991 Pinatubo magmas based on apatite

    NASA Astrophysics Data System (ADS)

    Van Hoose, A. E.; Streck, M. J.; Pallister, J. S.

    2011-12-01

    The 1991 eruptions of Mt. Pinatubo, Philippines, were triggered by basaltic recharge into the 50 km3 dacitic magma reservoir, and released 20 million tonnes of SO2 into the stratosphere. Three primary juvenile products erupted: dacite, hybrid andesite, and basaltic inclusions. Sulfur bearing apatites occur in all three juvenile components, yet observed S content is variable. Basaltic magma includes only high-S (>0.7 wt.% SO3) apatites, while dacitic and hybrid andesitic magmas carry low- (<0.3 wt.% SO3), med.- (0.3-0.7 wt.% SO3), and high-S apatites. Pre-eruption conditions (~780°C, 220 MPa, NNO+1.7, and 77 ppm S) (Rutherford & Devine, 1996; Scaillet & Evans, 1999) and a partition coefficient of 13 (Baker & Rutherford, 1996) could yield only low-S apatite containing up to 0.25 wt.% SO3, which is consistent with the SO3 concentrations found in large (≤200 μm) apatite microphenocrysts in glass. Med.-S apatite would still be consistent with pre-eruption conditions if melt sulfur was once at the solubility maximum of ~350 ppm (cf., Clemente et al., 2004). However, concentrations of SO3 in nearly 30% of dacite-hosted apatites analyzed exceeded 0.7 wt.%, which is much higher than can be achieved through apatite/melt equilibrium partitioning. Such high-S apatite of dacite occur only as inclusions in other phenocrysts (anhydrite, plagioclase, hornblende, and Fe-Ti oxide) and were likely generated during conditions leading to accumulation of the pre-eruptive, separate S gas phase responsible for the "excess sulfur" at Pinatubo. Other explanations, such as inheritance from mafic magmas or diffusional exchange with closely associated anhydrite, can be ruled out. Evidence against the former is found in distinct crystal populations based on major (e.g. Mg, Cl) and trace elements (e.g. total REE, Eu/Eu*, Sr), separating "silicic" apatites (i.e. those hosted in dacite or andesite, irrespective of S content) from basalt apatites. S element maps of apatites hosted by anhydrite

  1. Nanoparticulate mineral matter from basalt dust wastes.

    PubMed

    Dalmora, Adilson C; Ramos, Claudete G; Querol, Xavier; Kautzmann, Rubens M; Oliveira, Marcos L S; Taffarel, Silvio R; Moreno, Teresa; Silva, Luis F O

    2016-02-01

    Ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been the subject of some concern recently around the world for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the mining district of Nova Prata in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3 and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition we have identified a number of trace metals such as Cd, Cu, Cr, Zn that are preferentially concentrated into the finer, inhalable, dust fraction and could so present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in typical BDW samples highlights the need to develop cleaning procedures to minimise exposure to these natural fertilizing basalt dust wastes and is thus of direct relevance to both the industrial sector of basalt mining and to agriculture in the region.

  2. Nanoparticulate mineral matter from basalt dust wastes.

    PubMed

    Dalmora, Adilson C; Ramos, Claudete G; Querol, Xavier; Kautzmann, Rubens M; Oliveira, Marcos L S; Taffarel, Silvio R; Moreno, Teresa; Silva, Luis F O

    2016-02-01

    Ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been the subject of some concern recently around the world for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the mining district of Nova Prata in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3 and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition we have identified a number of trace metals such as Cd, Cu, Cr, Zn that are preferentially concentrated into the finer, inhalable, dust fraction and could so present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in typical BDW samples highlights the need to develop cleaning procedures to minimise exposure to these natural fertilizing basalt dust wastes and is thus of direct relevance to both the industrial sector of basalt mining and to agriculture in the region. PMID:26551199

  3. Comparative Magma Oceanography

    NASA Technical Reports Server (NTRS)

    Jones, John H.

    1999-01-01

    The question of whether the Earth ever passed through a magma ocean stop is of considerable interest. Geochemical evidence strongly suggests that the Moon had a magma ocean and the evidence is mounting that the same was true for Mars. Analyses of mar (SNC) meteorites have yielded insights into the differentiation history of Mars, and consequently, it is interesting to compare that planet to the Earth. Three primary features of An contrast strongly to those of the Earth: (1) the extremely ancient ages of the martian core, mantle, and crust (approx. 4.55 b.y.); (2) the highly depleted nature of the martian mantle; and (3) the extreme ranges of Nd isotopic compositions that arise within the crust and depleted mantle.

  4. 210Pb-226Ra disequilibria in Icelandic basalts and implications for melt transport time

    NASA Astrophysics Data System (ADS)

    Sigmarsson, O.

    2003-04-01

    Primitive basalts with radioactive disequilibrium between isotopes of the 238U decay chain may provide constraints on the timescales of mantle melt migration. The disequilibria between 238U, 230Th and 226Ra have been studied in several Recent basalts whereas very few results exist on the 210Pb-226Ra disequilibria. Only basalts significantly younger than 100 years old can be studied for 210Pb-226Ra disequilibria due to the short half-live of 210Pb (22.3 years). Most lavas measured so far show either 210Pb-226Ra equilibria or 210Pb-deficit which have been attributed to the degassing of 222Rn in shallow magma chambers. Icelandic tholeiites from the last century are in radioactive equilibrium with (210Pb/226Ra) equal to unity. These basalts are fed from shallow magma chambers having residence time exceeding 100 years. In contrast, primitive alkaline basalts (MgO =7-12%) from Surtsey island had (210Pb/226Ra) ranging from 0.45±0.04 to 0.82±0.06 at the time of eruption. These large 210Pb deficits are unlikely to result from shallow magma degassing since no magma chamber existed beneath this volcanic island which was born during the 1963-67 eruption. The 210Pb-226Ra disequilibria increase from the beginning towards the end of the eruption when the most primitive basalts were produced, and decreases systematically with increasing Th content. These same basalts show a negative correlation between Pb and Cu abundances which are inconsistent with exsolution of sulfur rich liquid or crystallisation of sulphides as a fractionation mechanism of 210Pb and 226Ra. The large deficit of 210Pb in Surtsey lavas were thus most likely generated during mantle partial melting. In such a case, the time of melt transport from the source region to surface is constrained to be significantly shorter than 100 years.

  5. Calderas and magma reservoirs

    NASA Astrophysics Data System (ADS)

    Cashman, Katharine; Giordano, Guido

    2015-04-01

    Large caldera-forming eruptions have long been a focus of both petrological and volcanological studies; traditionally, both have assumed that eruptible magma is stored within a single long-lived melt body. Over the past decade, however, advances in analytical techniques have provided new views of magma storage regions, many of which provide evidence of multiple melt lenses feeding a single eruption, and/or rapid pre-eruptive assembly of large volumes of melt. These new petrological views of magmatic systems have not yet been fully integrated into volcanological perspectives of caldera-forming eruptions. We discuss the implications of syn-eruptive melt extraction from complex, rather than simple, reservoirs and its potential control over eruption size and style, and caldera collapse timing and style. Implications extend to monitoring of volcanic unrest and eruption progress under conditions where successive melt lenses may be tapped. We conclude that emerging views of complex magma reservoir configurations provide exciting opportunities for re-examining volcanological concepts of caldera-forming systems

  6. Additive Construction using Basalt Regolith Fines

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Lippitt, Thomas C.; Mantovani, James G.; Nugent, Matthew W.; Townsend, Ivan I.

    2014-01-01

    Planetary surfaces are often covered in regolith (crushed rock), whose geologic origin is largely basalt. The lunar surface is made of small-particulate regolith and areas of boulders located in the vicinity of craters. Regolith composition also varies with location, reflecting the local bedrock geology and the nature and efficiency of the micrometeorite-impact processes. In the lowland mare areas (suitable for habitation), the regolith is composed of small granules (20 - 100 microns average size) of mare basalt and volcanic glass. Impacting micrometeorites may cause local melting, and the formation of larger glassy particles, and this regolith may contain 10-80% glass. Studies of lunar regolith are traditionally conducted with lunar regolith simulant (reconstructed soil with compositions patterned after the lunar samples returned by Apollo). The NASA Kennedy Space Center (KSC) Granular Mechanics & Regolith Operations (GMRO) lab has identified a low fidelity but economical geo-technical simulant designated as Black Point-1 (BP-1). It was found at the site of the Arizona Desert Research and Technology Studies (RATS) analog field test site at the Black Point lava flow in adjacent basalt quarry spoil mounds. This paper summarizes activities at KSC regarding the utilization of BP-1 basalt regolith and comparative work with lunar basalt simulant JSC-1A as a building material for robotic additive construction of large structures. In an effort to reduce the import or in-situ fabrication of binder additives, we focused this work on in-situ processing of regolith for construction in a single-step process after its excavation. High-temperature melting of regolith involves techniques used in glassmaking and casting (with melts of lower density and higher viscosity than those of metals), producing basaltic glass with high durability and low abrasive wear. Most Lunar simulants melt at temperatures above 1100 C, although melt processing of terrestrial regolith at 1500 C is not

  7. Basaltic island sand provenance

    SciTech Connect

    Marsaglia, K.M. . Dept. of Geological Sciences)

    1992-01-01

    The Hawaiian Islands are an ideal location to study basaltic sand provenance in that they are a series of progressively older basaltic shield volcanoes with arid to humid microclimates. Sixty-two sand samples were collected from beaches on the islands of Hawaii, Maui, Oahu and Kauai and petrographically analyzed. The major sand components are calcareous bioclasts, volcanic lithic fragments, and monomineralic grains of dense minerals and plagioclase. Proportions of these components vary from island to island, with bioclastic end members being more prevalent on older islands exhibiting well-developed fringing reef systems and volcanic end members more prevalent on younger, volcanically active islands. Climatic variations across the island of Hawaii are reflected in the percentage of weathered detritus, which is greater on the wetter, northern side of the island. The groundmass of glassy, basaltic lithics is predominantly black tachylite, with lesser brown sideromelane; microlitic and lathwork textures are more common than holohyaline vitric textures. Other common basaltic volcanic lithic fragments are holocrystalline aggregates of silt-sized pyroxene or olivine, opaque minerals and plagioclase. Sands derived from alkalic lavas are texturally and compositionally indistinguishable from sands derived from tholeiitic lavas. Although Hawaiian basaltic sands overlap in composition with magmatic arc-derived sands in terms of their relative QFL, QmPK and LmLvLs percentages, they are dissimilar in that they lack felsic components and are more enriched in lathwork volcanic lithic fragments, holocrystalline volcanic lithic fragments, and dense minerals.

  8. The Sense of Magma Flow in Neogene Dike Intrusions from East Iceland (Invited)

    NASA Astrophysics Data System (ADS)

    Riishuus, M. S.; Eriksson, P. I.; Elming, S.

    2013-12-01

    Neogene dike intrusions in east Iceland have been subjected to field studies and magnetic fabric analyses. We examine the applicability of the AMS (anisotropy of magnetic susceptibility) method to define fossil magma flow directions, and test models for propagation of magma during dike emplacement. The Streitishvarf composite dike with basalt margins and a quartz-porphyry core extends for ~15 km along strike (NNE-SSW) and displays indisputable field evidence, in the form of parabolic shaped flow banding, of a lateral magma flow component directed from north to south. AMS and rock magnetic studies have been made on conjugate margins from three outcrops of the quartz-porphyry along the length of the dike. The magnetic fabric is interpreted according to the imbrication model, using the minor susceptibility axis as shear plane indicator. The absolute directions given by the minor susceptibility axis are quantified using vector algebra. The fossil magma is interpreted to flow from north to south, with an upward inclination between 30° and 64° (95% confidence ellipse of 3°-9°), in support of the field observations. Our preferred emplacement model for the Streitishvarf dike involves rupture of stagnant felsic magma by a hotter basaltic dike, mobilizing the felsic magma to propagate south within the insulated pathway established by the dolerite dike. With confirmation that the AMS method can produce reliable directional data tested against independent field observations, we examine the fossil magma flow in a suite of basaltic dikes for which field evidence of magma flow directions is typically scarce. Regional dikes extending north of the Álftafjördur central volcano form an elongated swarm, ~5 km in width and up to 40 km in length. Samples were collected from 24 dikes at varying lateral distance from the central volcano. Contemporaneous shear resolved on the dike walls may modify a pure flow-induced fabric and such shear regimes are therefore retracted. The magma

  9. Does temperature increase or decrease in adiabatic decompression of magma?

    NASA Astrophysics Data System (ADS)

    Kilinc, A. I.; Ghiorso, M. S.; Khan, T.

    2011-12-01

    We have modeled adiabatic decompression of an andesitic and a basaltic magma as an isentropic process using the Melts algorithm. Our modeling shows that during adiabatic decompression temperature of andesitic magma increases but temperature of basaltic magma decreases. In an isentropic process entropy is constant so change of temperature with pressure can be written as dT/dP=T (dV/dT)/Cp where T (dV/dT)/Cp is generally positive. If delta P is negative so is delta T. In general, in the absence of phase change, we expect the temperature to decrease with adiabatic decompression. The effect of crystallization is to turn a more entropic phase (liquid) into a less entropic phase (solid), which must be compensated by raising the temperature. If during adiabatic decompression there is small amount or no crystallization, T (dV/dT)/Cp effect which lowers the temperature overwhelms the small amount of crystallization, which raises the temperature, and overall system temperature decreases.

  10. Assimilation by lunar mare basalts: Melting of crustal material and dissolution of anorthite

    NASA Technical Reports Server (NTRS)

    Finnila, A. B.; Hess, P. C.; Rutherford, M. J.

    1994-01-01

    We discuss techniques for calculating the amount of crustal assimilation possible in lunar magma chambers and dikes based on thermal energy balances, kinetic rates, and simple fluid mechanical constraints. Assuming parent magmas of picritic compositions, we demonstrate the limits on the capacity of such magmas to melt and dissolve wall rock of anorthitic, troctolitic, noritic, and KREEP (quartz monzodiorite) compositions. Significant melting of the plagioclase-rich crustal lithologies requires turbulent convection in the assimilating magma and an efficient method of mixing in the relatively buoyant and viscous new melt. Even when this occurs, the major element chemistry of the picritic magmas will change by less than 1-2 wt %. Diffusion coefficients measured for Al2O3 from an iron-free basalt and an orange glass composition are 10(exp -12) sq m/s at 1340 C and 10(exp -11) sq m/s at 1390 C. These rates are too slow to allow dissolution of plagioclase to significantly affect magma compositions. Picritic magmas can melt significant quantities of KREEP, which suggests that their trace element chemistry may still be affected by assimilation processes; however, mixing viscous melts of KREEP composition with the fluid picritic magmas could be prohibitively difficult. We conclude that only a small part of the total major element chemical variation in the mare basalt and volcanic glass collection is due to assimilation/fractional crystallization processes near the lunar surface. Instead, most of the chemical variation in the lunar basalts and volcanic glasses must result from assimilation at deeper levels or from having distinct source regions in a heterogeneous lunar mantle.

  11. Assimilation by Lunar Mare Basalts: Melting of Crustal Material and Dissolution of Anorthite

    NASA Technical Reports Server (NTRS)

    Finnila, A. B.; Hess, P. C.; Rutherford, M. J.

    1994-01-01

    We discuss techniques for calculating the amount of crustal assimilation possible in lunar magma chambers and dikes based on thermal energy balances, kinetic rates, and simple fluid mechanical constraints. Assuming parent magmas of picritic compositions, we demonstrate the limits on the capacity of such magmas to melt and dissolve wall rock of anorthitic, troctolitic, noritic, and KREEP (quartz monzodiorite) compositions. Significant melting of the plagioclase-rich crustal lithologies requires turbulent convection in the assimilating magma and an efficient method of mixing in the relatively buoyant and viscous new melt. Even when this occurs, the major element chemistry of the picritic magmas will change by less than 1-2 wt %. Diffusion coefficients measured for Al2O3 from an iron-free basalt and an orange glass composition are 10(exp -12) m(exp 2) s(exp -1) at 1340 C and 10(exp -11) m(exp 2) s(exp -1) at 1390 C. These rates are too slow to allow dissolution of plagioclase to significantly affect magma compositions. Picritic magmas can melt significant quantities of KREEP, which suggests that their trace element chemistry may still be affected by assimilation processes; however, mixing viscous melts of KREEP composition with the fluid picritic magmas could be prohibitively difficult. We conclude that only a small part of the total major element chemical variation in the mare basalt and volcanic glass collection is due to assimilation/fractional crystallization processes near the lunar surface. Instead, most of the chemical variation in the lunar basalts and volcanic glasses must result from assimilation at deeper levels or from having distinct source regions in a heterogeneous lunar mantle.

  12. Ar-Ar Ages of Lake Tahoe Basalts Confirm Several Eruptions at 2.3 to 2.0 Ma and Establish 0.92 Ma Activity

    NASA Astrophysics Data System (ADS)

    Kortemeier, W. T.; Moore, J. G.; Schweickert, R. A.; Calvert, A. T.

    2009-12-01

    New geochronology of Plio-Pleistocene basaltic flows from the Tahoe City, CA area in the NW part of the Lake Tahoe basin requires reassessment of the volcanic hazard, as the youngest volcanism in the basin, previously believed to be about 2 Ma, is less than 1 Ma. Six new 40Ar/39Ar incremental heating experiments on groundmass from crystalline interiors of lavas yielded interpretable results ranging from 0.92 Ma to 4.1 Ma. These data indicate the volcanic field should be considered dormant, not extinct. Our new data establish that basaltic volcanism occurred in two major pulses: (1) 2.3 - 2.0 Ma -- geochemically diverse alkali basalts erupted, forming subaerial and water-contact lavas at Eagle Rock, Granlibakken Creek, Rocky Ridge, and Tahoe City quarry [confirming Dalrymple’s (1964) data at Tahoe City quarry]; (2) 0.92 Ma -- trachyandesite erupted from a vent or vents ~ 2km north of Tahoe City, burying basaltic units and still older andesite (dated at 4.1 Ma at Rampart in this study), and filling a graben or channel carved in the older basalt at Tahoe City (Muehlberg, 2007). Lava and tephra from both 2.3-2.0 Ma and 0.92 Ma eruptive pulses interacted with wet, diatomaceous sediments of a shallow, warm, diatom-rich lake (“Prototahoe”) indicating this was a shallow, lava-dammed lake for over a million years. Shorelines of Prototahoe are now up to 200 m above present lake level as marked by the transition between pillow lava/breccia and subaerial columnar lava dated at two sites at 2.3 and 2.0 Ma. Prototahoe extended from the Tahoe-Sierra frontal fault zone on the west to east of the Dollar Point fault and south beyond Sugar Pine Point. Incision of the Truckee River canyon occurred later than the 0.92 Ma lava eruptions. The volcanic hazard at Lake Tahoe is greater than previously thought, based on the <1 Ma age of youngest volcanism within the east-dipping Tahoe-Sierra frontal fault zone, as well as on a deep earthquake swarm and rapid crustal movement in the

  13. Derivation of Apollo 14 High-Al Basalts at Discrete Times: Rb-Sr Isotopic Constraints

    NASA Astrophysics Data System (ADS)

    Hui, H.; Neal, C. R.; Shih, C.-Y.; Nyquist, L. E.

    2012-03-01

    Four eruption episodes were identified for A-14 high-Al basalts. Rb-Sr isotopic data and ITE ratios show that their parental melt compositions of are correlated through mixing of evolved components with a relatively primitive magma ocean cumulate.

  14. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  15. Magma energy: engineering feasibility of energy extraction from magma bodies

    SciTech Connect

    Traeger, R.K.

    1983-12-01

    A research program was carried out from 1975 to 1982 to evaluate the scientific feasibility of extracting energy from magma, i.e., to determine if there were any fundamental scientific roadblocks to tapping molten magma bodies at depth. The next stage of the program is to evaluate the engineering feasibility of extracting energy from magma bodies and to provide insight into system economics. This report summarizes the plans, schedules and estimated costs for the engineering feasibility study. Tentative tasks and schedules are presented for discussion and critique. A bibliography of past publications on magma energy is appended for further reference. 69 references.

  16. Sunset Crater, AZ: Evolution of a highly explosive basaltic eruption as indicated by granulometry and clast componentry

    NASA Astrophysics Data System (ADS)

    Allison, C. M.; Clarke, A. B.; Pioli, L.; Alfano, F.

    2011-12-01

    Basaltic scoria cone volcanoes are the most abundant volcanic edifice on Earth and occur in all tectonic settings. Basaltic magmas have lower viscosities, higher temperatures, and lower volatile contents than silicic magmas, and therefore generally have a lower potential for explosive activity. However, basaltic eruptions display great variability in eruptive style, from mild lava flows to more energetic explosions with large plumes. The San Francisco Volcanic Field (SFVF) in northern Arizona, active from 6 Ma-present, consists of over 600 volcanoes, mostly alkali basalt scoria cones, and five silicic centers [Wood and Kienle (1990), Cambridge University Press]. The eruption of Sunset Crater in the SFVF during the Holocene was an anomalously large basaltic explosive eruption, consisting of eight tephra-bearing phases and three lava flows [Amos (1986), MS thesis, ASU]. Typical scoria cone-forming eruptions have volumes <0.1km3 DRE, while the Sunset Crater deposit is at least 0.6km3 DRE [Amos (1986)]. The phases vary in size and style; the beginning stages of explosive activity (phases 1-2) were considerably smaller than phases 3-5, classified as subplinian. Due to its young age, the eruptive material is fresh and the deposit is well-preserved. We sampled the first five tephra units at 25 locations, ranging from 6 km to 20 km from the vent, concentrating our efforts in the downwind direction (E and SE of the vent) along the primary dispersal axes of several phases. Notable variations among the first five phases were found from evaluation of juvenile clast componentry, with each phase containing some proportion of red, grey, and glassy to iridescent clasts. The red and grey clasts are sub-rounded to rounded with high sphericity, while the other clasts are highly angular and slightly elongate, with blue-black to gold glassy and iridescent surfaces. The glassy and iridescent clasts likely represent fresh, juvenile ejecta, which were quenched rapidly, whereas the red and

  17. Deducing the magma chamber processes of middle Eocene volcanics, Sivas and Tokat regions; NE Turkey: Insights from clinopyroxene chemistry

    NASA Astrophysics Data System (ADS)

    Göçmengil, Gönenç; Karacık, Zekiye; Genç, Ş. Can; Prelevic, Dejan

    2016-04-01

    Middle Eocene Tokat and Sivas volcanic successions occur within the İzmir-Ankara-Erzincan suture zone. Different models are suggested for the development of the middle Eocene volcanism such as post-collisional, delamination and slab-breakoff models as well as the arc magmatism. In both areas, volcanic units cover all the basement units with a regional disconformity and comprise lavas spanning a compositional range from mainly basalt-basaltic andesite to a lesser amount trachyte. Here, we report mineral chemistry of different basaltic lavas through transect from northern continent (Tokat region, Pontides) to southern continent (Sivas region, Kırşehir block) to deduce the characteristics of the magma chamber processes which are active during the middle Eocene. Basaltic lavas include olivine bearing basalts (Ol-basalt: ± olivine + clinopyroxene + plagioclase); amphibole bearing basaltic andesite (Amp-basaltic andesite: amphibole + clinopyroxene + plagioclase ± biotite) and pyroxene bearing basaltic andesite (Px-basaltic andesite: clinopyroxene + plagioclase). Microlitic, glomeroporphyric and pilotaxitic texture are common. Clinopyroxene phenocrystals (macro ≥ 750 μm and micro ≤300 μm) are common in all three lava series which are investigated by transecting core to rim compositional profiles. They are generally augite and diopside; euhedral to subhedral in shape with oscillatory, normal and reverse zoning patterns. Also, all clinopyroxene phenocrystals are marked by moderately high Mg# (for Ol-basalt: 67-91; avg. 80; Amp-basaltic andesite: 76-83, avg: 80; Px -basaltic andesite 68-95, avg: 81). In Ol-basalt, clinopyroxene phenocrystals show normal zonation (high Mg# cores and low Mg# rims). In Amp-basaltic andesite, clinopyroxenes are generally homogenous in composition with minor variation of Mg# towards the rims. On the contrary, in Px-basaltic andesite, clinopyroxene macro phenocrystals show reverse zonation with the core with low Mg# and the rims with

  18. Nd-Sr isotopes, petrochemistry, and origin of the Siberian flood basalts, USSR

    SciTech Connect

    Sharma, M.; Basu, A.R. ); Nesterenko, G.V. )

    1991-04-01

    The Siberian Flood Basalt Province (SFBP) of Permo-Triassic age is one of the largest flood basalt provinces with an estimated area of exposure of 337 000 km{sup 2}, average thickness of 1 km, and a magma volume of 337 000 km{sup 3}. Forty-seven basaltic rocks from two main subprovinces, Norilsk (5-10{percent} of area, thickness up to 3 km) and Putorana (90-95{percent} of area, thickness of more than 2 km), were selected, on the basis of petrography and volcano-stratigraphic relation, for major-element analysis. Twenty-six of these basalts, twelve from Norilsk and fourteen from Putorana, were analyzed for Nd- and Sr-isotopic compositions. The Norilsk and Putorana basalts show some contrasting behavior in terms of the ratios of the highly incompatible elements of Ti, P, and K as a function of their Mg. The Norilsk basalts are more variable, suggesting the role of fractional crystallization-assimilation in their evolution. In contrast, the Putorana basalts show remarkable uniformity in their bulk chemical compositions. In Nd- and Sr-isotopic space, most of the Siberian basalts also fall within the field defined by the ocean island basalts data, implying common mantle sources. It is concluded that the SFBP originated by hotspot volcanism due to the rise of a large and relatively primitive lower mantle-derived plume beneath the Siberian continent.

  19. Magma deformation and emplacement in rhyolitic dykes

    NASA Astrophysics Data System (ADS)

    McGowan, Ellen; Tuffen, Hugh; James, Mike; Wynn, Peter

    2016-04-01

    Silicic eruption mechanisms are determined by the rheological and degassing behaviour of highly-viscous magma ascending within shallow dykes and conduits. However, we have little knowledge of how magmatic behaviour shifts during eruptions as dykes and conduits evolve. To address this we have analysed the micro- to macro-scale textures in shallow, dissected rhyolitic dykes at the Tertiary Húsafell central volcano in west Iceland. Dyke intrusion at ~3 Ma was associated with the emplacement of subaerial rhyolitic pyroclastic deposits following caldera formation[1]. The dykes are dissected to ~500 m depth, 2-3 m wide, and crop out in two stream valleys with 5-30 m-long exposures. Dykes intrude diverse country rock types, including a welded ignimbrite, basaltic lavas, and glacial conglomerate. Each of the six studied dykes is broadly similar, exhibiting obsidian margins and microcrystalline cores. Dykes within pre-fractured lava are surrounded by external tuffisite vein networks, which are absent from dykes within conglomerate, whereas dykes failed to penetrate the ignimbrite. Obsidian at dyke margins comprises layers of discrete colour. These display dramatic thickness variations and collapsed bubble structures, and are locally separated by zones of welded, brecciated and flow-banded obsidian. We use textural associations to present a detailed model of dyke emplacement and evolution. Dykes initially propagated with the passage of fragmented, gas-charged magma and generation of external tuffisite veins, whose distribution was strongly influenced by pre-existing fractures in the country rock. External tuffisites retained permeability throughout dyke emplacement due to their high lithic content. The geochemically homogenous dykes then evolved via incremental magma emplacement, with shear deformation localised along emplacement boundary layers. Shear zones migrated between different boundary layers, and bubble deformation promoted magma mobility. Brittle

  20. The role of bubble ascent in magma mixing

    NASA Astrophysics Data System (ADS)

    Wiesmaier, Sebastian; Morgavi, Daniele; Perugini, Diego; De Campos, Cristina; Hess, Kai-Uwe; Lavallée, Yan; Dingwell, Donald B.

    2013-04-01

    Understanding the processes that affect the rate of liquid state homogenization provides fundamental clues on the otherwise inaccessible subsurface dynamics of magmatic plumbing systems. Compositional heterogeneities detected in the matrix of magmatic rocks represent the arrested state of a chemical equilibration. Magmatic homogenization is divided into a) the mechanical interaction of magma batches (mingling) and b) the diffusive equilibration of compositional gradients, where diffusive equilibration is exponentially enhanced by progressive mechanical interaction [1]. The mechanical interaction between two distinct batches of magma has commonly been attributed to shear and folding movements between two distinct liquids. A mode of mechanical interaction scarcely invoked is the advection of mafic material into a felsic one through bubble motion. Yet, experiments with analogue materials demonstrated that bubble ascent has the potential to enhance the fluid mechanical component of magma mixing [2]. Here, we present preliminary results from bubble-advection experiments. For the first time, experiments of this kind were performed using natural materials at magmatic temperatures. Cylinders of Snake River Plain (SRP) basalt were drilled with a cavity of defined volume and placed underneath cylinders of SRP rhyolite. Upon melting, the gas pocket (=bubble) trapped within the cavity, rose into the rhyolite, and thus entraining a portion of basaltic material in the shape of a plume trail. These plume-like structures that the advected basalt formed within the rhyolite were characterized by microCT and subsequent high-resolution EMP analyses. Single protruding filaments at its bottom end show a composite structure of many smaller plume tails, which may indicate the opening of a preferential pathway for bubbles after a first bubble has passed. The diffusional gradient around the plume tail showed a progressive evolution of equilibration from bottom to top of the plume tail

  1. Efficiency of differentiation in the Skaergaard magma chamber

    NASA Astrophysics Data System (ADS)

    Tegner, C.; Lesher, C. E.; Holness, M. B.; Jakobsen, J. K.; Salmonsen, L.; Humphreys, M.; Thy, P.

    2011-12-01

    Although it is largely agreed that crystallization occurs inwardly in crystal mushes along the margins of magma chambers, the efficiency and mechanisms of differentiation are not well constrained. The fractionation paradigm hinges on mass exchange between the crystal mush and the main magma reservoir resulting in coarse-grained, refractory (cumulate) rocks of primary crystals, and complementary enrichment of incompatible elements in the main reservoir of magma. Diffusion, convection, liquid immiscibility and compaction have been proposed as mechanisms driving this mass exchange. Here we examine the efficiency of differentiation in basaltic crystal mushes in different regions of the Skaergaard magma chamber. The contents of incompatible elements such as phosphorus and calculated residual porosities are high in the lowermost cumulate rocks of the floor (47-30%) and decrease upsection, persisting at low values in the uppermost two-thirds of the floor rock stratigraphy (~5% residual porosity). The residual porosity is intermediate at the walls (~15%) and highest and more variable at the roof (10-100%). This is best explained by compaction and expulsion of interstitial liquid from the accumulating crystal mush at the floor and the inefficiency of these processes elsewhere in the intrusion. In addition, the roof data imply upwards infiltration of interstitial liquid. Remarkably uniform residual porosity of ~15% for cumulates formed along the walls suggest that their preservation is related to the rheological properties of the mush, i.e. at ≤ 15% porosity the mush is rigid enough to adhere to the wall, while at higher porosity it is easily swept away. We conclude that the efficiency of compaction and differentiation can be extremely variable along the margins of magma chambers. This should be taken into account in models of magma chamber evolution.

  2. Molybdenite saturation in silicic magmas: Occurrence and petrological implications

    USGS Publications Warehouse

    Audetat, A.; Dolejs, D.; Lowenstern, J. B.

    2011-01-01

    We identified molybdenite (MoS2) as an accessory magmatic phase in 13 out of 27 felsic magma systems examined worldwide. The molybdenite occurs as small (<20 ??m) triangular or hexagonal platelets included in quartz phenocrysts. Laser-ablation inductively coupled plasma mass spectrometry analyses of melt inclusions in molybdenite-saturated samples reveal 1-13 ppm Mo in the melt and geochemical signatures that imply a strong link to continental rift basalt-rhyolite associations. In contrast, arc-associated rhyolites are rarely molybdenite-saturated, despite similar Mo concentrations. This systematic dependence on tectonic setting seems to reflect the higher oxidation state of arc magmas compared with within-plate magmas. A thermodynamic model devised to investigate the effects of T, f O2 and f S2 on molybdenite solubility reliably predicts measured Mo concentrations in molybdenite-saturated samples if the magmas are assumed to have been saturated also in pyrrhotite. Whereas pyrrhotite microphenocrysts have been observed in some of these samples, they have not been observed from other molybdenite-bearing magmas. Based on the strong influence of f S2 on molybdenite solubility we calculate that also these latter magmas must have been at (or very close to) pyrrhotite saturation. In this case the Mo concentration of molybdenite-saturated melts can be used to constrain both magmatic f O2 and f S2 if temperature is known independently (e.g. by zircon saturation thermometry). Our model thus permits evaluation of magmatic f S2, which is an important variable but is difficult to estimate otherwise, particularly in slowly cooled rocks. ?? The Author 2011. Published by Oxford University Press. All rights reserved.

  3. Sloshing of a bubbly magma reservoir as a mechanism of triggered eruptions

    NASA Astrophysics Data System (ADS)

    Namiki, Atsuko; Rivalta, Eleonora; Woith, Heiko; Walter, Thomas R.

    2016-06-01

    Large earthquakes sometimes activate volcanoes both in the near field as well as in the far field. One possible explanation is that shaking may increase the mobility of the volcanic gases stored in magma reservoirs and conduits. Here experimentally and theoretically we investigate how sloshing, the oscillatory motion of fluids contained in a shaking tank, may affect the presence and stability of bubbles and foams, with important implications for magma conduits and reservoirs. We adopt this concept from engineering: severe earthquakes are known to induce sloshing and damage petroleum tanks. Sloshing occurs in a partially filled tank or a fully filled tank with density-stratified fluids. These conditions are met at open summit conduits or at sealed magma reservoirs where a bubbly magma layer overlays a newly injected denser magma layer. We conducted sloshing experiments by shaking a rectangular tank partially filled with liquids, bubbly fluids (foams) and fully filled with density-stratified fluids; i.e., a foam layer overlying a liquid layer. In experiments with foams, we find that foam collapse occurs for oscillations near the resonance frequency of the fluid layer. Low viscosity and large bubble size favor foam collapse during sloshing. In the layered case, the collapsed foam mixes with the underlying liquid layer. Based on scaling considerations, we constrain the conditions for the occurrence of foam collapse in natural magma reservoirs. We find that seismic waves with lower frequencies < 1 Hz, usually excited by large earthquakes, can resonate with magma reservoirs whose width is > 0.5 m. Strong ground motion > 0.1 m s- 1 can excite sloshing with sufficient amplitude to collapse a magma foam in an open conduit or a foam overlying basaltic magma in a closed magma reservoir. The gas released from the collapsed foam may infiltrate the rock or diffuse through pores, enhancing heat transfer, or may generate a gas slug to cause a magmatic eruption. The overturn in the

  4. Long-distance lateral magma transport from intra-oceanic island arc volcanoes

    NASA Astrophysics Data System (ADS)

    Ishizuka, O.; Geshi, N.; Kawanabe, Y.; Ogitsu, I.; Tuzino, T.; Nakano, S.; Arai, K.; Sakamoto, I.; Taylor, R. N.; Sano, K.; Yamamoto, T.

    2011-12-01

    Long-distance lateral magma transport in oceanic island arc volcanoes is emerging as a common phenomenon where the regional stress regime is favorable. It should also be recognized as an important factor in the construction and growth of island arcs. In this contribution, we report on recent investigations into the magma plumbing of Izu-Oshima volcano: an active basaltic volcano with an extensive fissure system. Geophysical observations in the Izu-Bonin intra-oceanic island arc indicate that magma is transported long distances laterally from the main basaltic composite volcano. When Miyakejima erupted in 2000, seismic activity migrated about 30km northwestward from the volcanic centre (Geshi et al., 2002). This event is interpreted to reflect northwestward dike injection and propagation from Miyakejima, transporting magma at a depth range between 12 and 20km (Kodaira et al., 2002). We demonstrated that long-distance lateral magma transport also occurred at the Nishiyama volcano on Hachijojima Island using petrological, geochemical and structural studies of satellite vents (Ishizuka et al., 2008). Nishiyama provided evidence for two types of magma transport. In the first type, primitive magma moved laterally NNW for at least 20km in the middle to lower crust (10-20km deep). The other type is characterized by magmas that have experienced differentiation in a shallow magma chamber beneath Nishiyama and have been transported short distances (<5km). The long-distance magma transport seems to be controlled by a regional extensional stress regime, while short distance transport may be controlled by local stress regime affected by the load generated by the main volcanic edifice. Izu-Oshima volcano comprises numerous, subparallel NW-SE trending submarine ridges extending up to 22 km to the NW and SE from the summit of Izu-Oshima. A recent diving survey has revealed that: 1) NW-SE trending ridges are fissures which erupted basaltic spatter and lava flows. 2) Basaltic

  5. Identifying recycled ash in basaltic eruptions

    NASA Astrophysics Data System (ADS)

    D'Oriano, Claudia; Bertagnini, Antonella; Cioni, Raffaello; Pompilio, Massimo

    2014-07-01

    Deposits of mid-intensity basaltic explosive eruptions are characterized by the coexistence of different types of juvenile clasts, which show a large variability of external properties and texture, reflecting alternatively the effects of primary processes related to magma storage or ascent, or of syn-eruptive modifications occurred during or immediately after their ejection. If fragments fall back within the crater area before being re-ejected during the ensuing activity, they are subject to thermally- and chemically-induced alterations. These `recycled' clasts can be considered as cognate lithic for the eruption/explosion they derive. Their exact identification has consequences for a correct interpretation of eruption dynamics, with important implications for hazard assessment. On ash erupted during selected basaltic eruptions (at Stromboli, Etna, Vesuvius, Gaua-Vanuatu), we have identified a set of characteristics that can be associated with the occurrence of intra-crater recycling processes, based also on the comparison with results of reheating experiments performed on primary juvenile material, at variable temperature and under different redox conditions.

  6. Identifying recycled ash in basaltic eruptions.

    PubMed

    D'Oriano, Claudia; Bertagnini, Antonella; Cioni, Raffaello; Pompilio, Massimo

    2014-07-28

    Deposits of mid-intensity basaltic explosive eruptions are characterized by the coexistence of different types of juvenile clasts, which show a large variability of external properties and texture, reflecting alternatively the effects of primary processes related to magma storage or ascent, or of syn-eruptive modifications occurred during or immediately after their ejection. If fragments fall back within the crater area before being re-ejected during the ensuing activity, they are subject to thermally- and chemically-induced alterations. These 'recycled' clasts can be considered as cognate lithic for the eruption/explosion they derive. Their exact identification has consequences for a correct interpretation of eruption dynamics, with important implications for hazard assessment. On ash erupted during selected basaltic eruptions (at Stromboli, Etna, Vesuvius, Gaua-Vanuatu), we have identified a set of characteristics that can be associated with the occurrence of intra-crater recycling processes, based also on the comparison with results of reheating experiments performed on primary juvenile material, at variable temperature and under different redox conditions.

  7. Slab melting and magma generation beneath the southern Cascade Arc

    NASA Astrophysics Data System (ADS)

    Walowski, K. J.; Wallace, P. J.; Clynne, M. A.

    2014-12-01

    Magma formation in subduction zones is interpreted to be caused by flux melting of the mantle wedge by fluids derived from dehydration of the downgoing oceanic lithosphere. In the Cascade Arc and other hot-slab subduction zones, however, most dehydration reactions occur beneath the forearc, necessitating a closer investigation of magma generation processes in this setting. Recent work combining 2-D steady state thermal models and the hydrogen isotope composition of olivine-hosted melt inclusions from the Lassen segment of the Cascades (Walowski et al., 2014; in review) has shown that partial melting of the subducted basaltic crust may be a key part of the subduction component in hot arcs. In this model, fluids from the slab interior (hydrated upper mantle) rise through the slab and cause flux-melting of the already dehydrated MORB volcanics in the upper oceanic crust. In the Shasta and Lassen segments of the southern Cascades, support for this interpretation comes from primitive magmas that have MORB-like Sr isotope compositions that correlate with subduction component tracers (H2O/Ce, Sr/P) (Grove et al. 2002, Borg et al. 2002). In addition, mass balance calculations of the composition of subduction components show ratios of trace elements to H2O that are at the high end of the global arc array (Ruscitto et al. 2012), consistent with the role of a slab-derived melt. Melting of the subducted basaltic crust should contribute a hydrous dacitic or rhyolitic melt (e.g. Jego and Dasgupta, 2013) to the mantle wedge rather than an H2O-rich aqueous fluid. We are using pHMELTS and pMELTS to model the reaction of hydrous slab melts with mantle peridotite as the melts rise through the inverted thermal gradient in the mantle wedge. The results of the modeling will be useful for understanding magma generation processes in arcs that are associated with subduction of relatively young oceanic lithosphere.

  8. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  9. Lu-Hf and Sm-Nd evolution in lunar mare basalts

    NASA Technical Reports Server (NTRS)

    Unruh, D. M.; Tatsumoto, M.; Stille, P.; Patchett, P. J.

    1984-01-01

    Existing cumulate remelting models for mare basalt genesis are evaluated in light of Lu-Hf, Rb-Sr, Sm-Nd data and overall REE characteristics in order to determine the simplest model that can account for these data. A data base for comparing Lu-Hf evolution in the lunar mantle as inferred from Lu-Hf analyses of oceanic basalts is presented along with a preliminary comparison of Lu-Hf and Sm-Nd evolution betwee mare basalts and terrestrial oceanic basalts. It is found that Lu/Hf characteristics of mare basalts cannot be explained in terms of modal melting of cumulate sources formed from a magma ocean with chondritic Lu/Hf. The data are consistent with a model in which the cumulate sources formed from a light REE + HF-enriched magma ocean. Nonmodal melting of ilmenite in the sources is also required. The Lu-Hf data suggest that even the high-Ti basalt sources contained no more than about 3 percent ilmenite.

  10. Basaltic volcanism, mantle plumes, and the mechanics of rifting: The Paraná flood basalt province of South America

    NASA Astrophysics Data System (ADS)

    Harry, Dennis L.; Sawyer, Dale S.

    1992-03-01

    Dynamic modeling of continental extension between South America and Africa shows that the mechanics of rifting played an important role in determining the pattern of volcanism within the Paraná and Etendeka flood-basalt provinces on the Brazilian and Namibian margins. The key feature of the model is the development of a horizontal pressure gradient in the lower crust during the early stages of extension, which provided a mechanism for transporting magma generated beneath the incipient sea-floor spreading axis into the Paraná province, 100-200 km distant. The horizontal pressure gradient developed as a consequence of the dynamic interaction of preexisting weaknesses in the middle crust and upper mantle during rifting. The model accounts for the large quantity of basalt, the asymmetric distribution of basalt on the conjugate margins, and the northward migration of the eruptive center with time. The rapidity of magma genesis is in agreement with models of decompression melting during rifting. The model indicates that although elevated asthenosphere temperatures associated with the Tristan plume account for the volume of melt generated, the mechanics of rifting control the location and style of emplacement. The model suggests that extension in the region began ca. 150-155 Ma, and lasted about 25 m.y.

  11. Simulation of Layered Magma Chambers.

    ERIC Educational Resources Information Center

    Cawthorn, Richard Grant

    1991-01-01

    The principles of magma addition and liquid layering in magma chambers can be demonstrated by dissolving colored crystals. The concepts of density stratification and apparent lack of mixing of miscible liquids is convincingly illustrated with hydrous solutions at room temperature. The behavior of interstitial liquids in "cumulus" piles can be…

  12. Reconciling Volatile Outputs with Heat Flow and Magma Intrusion Rates at the Yellowstone Magma-Hydrothermal System

    NASA Astrophysics Data System (ADS)

    Lowenstern, J. B.; Hurwitz, S.

    2012-12-01

    The Yellowstone hydrothermal system releases hundreds of millions of liters of water on a daily basis. Gigawatts of heat and kilotons of magmatic volatiles (CO2, S, Cl, F and He) are discharged by these waters. By quantifying the relative contributions of crustal, meteoric, and mantle-derived components, we can estimate the rate at which magma is fed to the crust from below (1). Combining isotopic studies with mass discharge rates of geothermal gases and aqueous dissolved solids, we recognize that over 20,000 tons of CO2 is released from basaltic magmas ponding beneath any silicic magma reservoir in the mid to shallow crust (1,2). In contrast, silicic magma provides significantly less volatiles than what emerges from the hydrothermal system. Estimates of heat flow range from ~3 to 8 GW (1,3,4), derived from satellite, surface geophysics and geochemical methods. Such values, combined with estimates from gas flux, imply prolific basalt intrusion rates between 0.05 and 0.3 cubic kilometers per year (1). Over the history of the Yellowstone Plateau Volcanic Field, a picture emerges where the lower crust is converted from Precambrian metasediments and silicic intrusions into a thick gabbroic batholith similar to that envisioned by some to reside beneath the Snake River Plain along the ancestral track of the Yellowstone Hot Spot (5). (1) Lowenstern and Hurwitz, 2008, Elements 4: 35-40. (2) Werner and Brantley, 2003, G-Cubed 4;7: 1061 (3) Vaughan and others, 2012, JVGR 233-234: 72-89. (4) Hurwitz and others, in press, JGR (5) Shervais and others, 2006, Geology 34:365-368.

  13. The Middle Fork Plutonic Complex: A plutonic association of coeval peralkaline and metaluminous magmas in the north-central Alaska Range

    SciTech Connect

    Solie, D.N.

    1988-01-01

    The 57 m.y. Middle Fork Plutonic Complex (MFPC) intrudes Paleozoic metasedimentary rocks south of the Farewell Fault zone in the north-central Alaska Range. Though spatially related to the late Cretaceous - Early Tertiary subduction-related Alaska Range batholith, MFPC is more characteristic of an extensional or anorogenic setting. A swarm of basalt, hawaiite and rhyolite dikes east of the complex intruded, and was intruded by, the plutonic rocks. Approximately 30% of the exposed rock in the 125 km[sup 2] complex is hedenbergite - fayalite syenite, [approx equal]20% is peralkalin arfvedsonite-biotite alkali-feldspar granite (AF granite), and [le]20% is pyroxene-olivine-biotite gabbro. The rest is a mixed unit including clinopyroxene-biotite-amphibole diorite, and hornblende-biotite granite (HB granite). K-Ar and Rb-Sr radiometric dating of rock types shows that they are coeval. Their close spatial and temporal relationships led to complex magmatic interactions. Calculated initial [sup 87]Sr/[sup 86]Sr for gabbro and diorite group is around 0.705 to 0.706. HB granites are heterogeneous, but fall mostly around 0.707 to 0.708. Hypersolvus syenites and AF granites form an isochron with initial [sup 87]Sr/[sup 86]Sr of 0.70965. These groupings suggest that at least three different magmas formed the MFPC; scatter of isotopic data reflects mutual contamination and assimilation. Consanguinous hypersolvus syenite and AF granite mineralogy appears to be controlled by fluorine in the magma chamber. Eruptive stratigraphy, as predicted by intrusive history of MFPC, compares favorably with volcanic stratigraphies of peralkaline volcanic systems worldwide, and MFPC may be modelled as the root zone of a peralkaline volcanic system.

  14. Partial crystallization of picritic melt and its applications for the genesis of high-Ti and low-Ti basalts

    NASA Astrophysics Data System (ADS)

    Yang, J.; WANG, C.; Jin, Z.; Jin, S.; Yan, S.

    2015-12-01

    Geochemical and petrological studies have revealed the existence of high-Ti and low-Ti basalts in large igneous provinces (LIPs). However the originate of these high-Ti and low-Ti magmas are still under debate. Several different mechanisms have been proposed: (1) the high-Ti basalts are formed by the melting of mantle plume containing recycled oceanic crust (Spandler et al., 2008) while low-Ti basalts are formed by the melting of subcontinental lithospheric mantle (Xiao et al., 2004); (2) both high-Ti and low-Ti basalts are from mantle plume source, but the production of high-Ti basalts are associated with the thick lithosphere while the low-Ti basalts are controlled by the thin lithosphere (Arndt et al., 1993); (3) they are derived from the different degrees of melting, with high-Ti basalts representing low degree of partial melting of mantle plume (Xu et al., 2004). The low Mg# (below 0.7) of high-Ti and low-Ti basalts provides that they are far away from direct melting of mantle peridotite. In addition, seismic data indicate unusually high seismic velocities bodies beneath the LIPs which explained by the fractionated cumulates from picritic magmas (Farnetani et al., 1996). Therefore, we believed that the crystallization differentiation process might play a more significant role in the genesis of high-Ti and low-Ti basalts.In order to investigate the generation of high-Ti and low-Ti basalts, a series of high pressure and high temperature partial crystallization experiments were performed at pressures of 1.5, 3.0 and 5.0 GPa and a temperature range of 1200-1700℃. The starting material is picrate glass with relative high TiO2 (2.7 wt %), which is synthesized according to the chemical composition of primary magmas of Emeishan LIP (Xu et al., 2001). The experimental results show that: (1) At a given pressure, the TiO2 content is decreased with increasing melt fraction; (2) At a given melt fraction, the TiO2 content of melts is increased with increasing pressure. On

  15. Eruption of Alkaline Basalts Prior to the Calc-alkaline Lavas of Mt. Cleveland Volcano, Aleutian Arc, Alaska

    NASA Astrophysics Data System (ADS)

    Bridges, D. L.; Nicolaysen, K. P.

    2005-12-01

    Mt. Cleveland is a 1,730 m stratovolcano, located on Chuginadak Island, that has erupted at least 23 times historically, with the latest occurring in August 2005. Major, trace, and REE analyses of 63 samples from Mt. Cleveland, including 8 from proximal cinder cones and 4 from andesitic domes on the lower flanks, identify two distinct lava suites. Modern Cleveland (MC) basalts to dacites (50.5-66.7 wt.% SiO2) exhibit a calc-alkaline differentiation trend. Major element trends suggest crystal fractionation of plagioclase +/- ortho- and clinopyroxene in MC lavas and olivine in cinder cone deposits. Resorption textures on plagioclase and olivine phenocrysts and multiple populations of plagioclase predominate throughout the MC suite suggesting magma mixing is a major process at Cleveland. Frothy white xenoliths of plagioclase + quartz + biotite are encased in glass and erupted as small pumiceous fragments in 2001. The partial resorption of the xenocrysts indicates assimilation is also an active crustal process at Cleveland. MC trace element spider diagrams exhibit a typical arc pattern in which HFS elements including Nb are depleted, and Pb and LIL elements are enriched. Th/La, Sm/La, and Sr, Nd, Pb, and Hf isotopic ratios indicate both a North Pacific MORB and a sediment component in the source of modern Cleveland lavas, consistent with sediment flux estimates of 90 to 95 m3/m/yr and an updip sediment thickness of 1300 to 1400 meters. Average 206Pb/204Pb, 207Pb/204Pb, 87Sr/86Sr, and 143Nd/144Nd values for the calc-alkaline suite are 18.93, 15.58, 0.70345, and 0.51303 respectively. The second suite consists of 3 olivine-rich, mildly alkaline basalts (48.5-49.4 wt.% SiO2), of older stratigraphic position than MC lavas representing deposits from an older phase of activity (ancestral Cleveland, AC). La/Yb, Sr/Y, and Th/Nb ratios indicate lower degrees of partial melting, relative to MC lavas, and suggests presence of garnet in the source region. The AC lavas, however, are

  16. Elemental Abundances Relevant to Identification of Magma Sources

    NASA Astrophysics Data System (ADS)

    Kay, R. W.

    1984-04-01

    The search for chemical characteristics of magma sources is usually done by analysing the magmas themselves. This indirect approach has limitations: clearly the magma has only some of the source's characteristics. What we require are process-independent chemical characteristics, analogous to the isotopic abundance of radiogenic daughter isotopes that have been used so successfully in defining magma sources. Process-independent chemical characteristics in mid-oceanic ridge, oceanic island and island-arc basalts (m.o.r.b., o.i.b., i.a.b.) have been used to identify contrasting chemical characteristics of mantle peridotite from these three tectonically distinct regions. As an example, the abundance ratios of one group of elements (e.g. Cs, K, Rb, Ba, U, and perhaps Th) relative to another group (e.g. light r.e.e., Zr, Hf) are found to be fractionation-independent during most shallow-level basalt fractionation. These ratios are presumed to reflect the chemical characteristics of the mantle source of basalt from the three tectonic environments. In particular the ratios indicate the large cation-depleted nature of all m.o.r.b. and most o.i.b. peridotite sources. In common with many other island arcs, the abundance ratios are consistently higher in mantle under the Aleutian arc than in adjacent non-arc mantle represented by oceanic ridge, oceanic island, and back-arc basalts. The contention that subduction of sediment could result in arc mantle sources with these high ratios is substantiated by trace element analyses of Ba and Cs-rich deep sea sediments of the type that are being subducted at present at the Aleutian trench. The importance of recycling of sediment into the mantle at island arcs as an important control on the trace element (and isotopic) evolution of the mantle is indicated. Trace element heterogeneity in the source regions of magmas as diverse as basalts and leucogranites can be established using analyses of fractionation-independent elements of the magmas

  17. Alkali metal ion battery with bimetallic electrode

    SciTech Connect

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  18. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  19. Rheology of phonolitic magmas - the case of the Erebus lava lake

    NASA Astrophysics Data System (ADS)

    Le Losq, Charles; Neuville, Daniel R.; Moretti, Roberto; Kyle, Philip R.; Oppenheimer, Clive

    2015-02-01

    Long-lived active lava lakes are comparatively rare and are typically associated with low-viscosity basaltic magmas. Erebus volcano, Antarctica, is unique today in hosting a phonolitic lava lake. Phonolitic magmas can erupt explosively, as in the 79 CE Plinian eruption of Vesuvius volcano, Italy, and it is therefore important to understand their physical properties. The phonolite at Erebus has slightly higher silica content than that at Vesuvius yet its present activity is predominantly non-explosive. As a contribution to understanding such contrasting eruptive behaviour, we focus on the rheological differences between these comparable magmas. In particular, we evaluate the viscosity of the Erebus phonolite magma by integrating new experimental data within a theoretical and empirical framework. The resulting model enables estimation of the Erebus melt viscosity as a function of temperature, crystal and water concentrations, with an uncertainty of, at most, ± 0.45 log (Pa s). Using reported ranges for these parameters, we predict that the magma viscosity in the upper region of the plumbing system of Erebus ranges between 105 and 107 Pas. This is substantially higher than has been hitherto considered with significant implications for modelling the dynamics of the lava lake, conduit and magma reservoir system. Our analysis highlights the generic challenges encountered in calculation of magma viscosity and presents an approach that can be applied to other cases.

  20. Water-rich and volatile-undersaturated magmas at Hekla volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Lucic, Gregor; Berg, Anne-Sophie; Stix, John

    2016-08-01

    Olivine-hosted melt inclusions from four eruptions at Hekla volcano in Iceland were analyzed for their dissolved H2O, CO2, S, and Cl contents. A positive correlation among the repose interval, magmatic evolution, and volatile contents of magmas is revealed. H2O is the dominant volatile species; it behaves as an incompatible component, increasing in concentration over time as a result of fractional crystallization in the magma. The full suite of H2O contents ranges from a low of 0.80 wt % in basaltic andesites to a maximum of 5.67 wt % in rhyolites. Decreasing H2O/K2O at fixed major element compositions suggests that syneruptive degassing reduces H2O contents significantly. Hekla magmas are CO2 poor, with very low concentrations present only in the most evolved compositions (˜20-30 ppm or less). The decrease in S content from basaltic andesite to rhyolite demonstrates that sulfide saturation is attained when the melt composition reaches basaltic andesite, resulting in the precipitation of pyrrhotite. Low CO2/Nb ratios suggest that vapor saturation is most likely reached during an early period of cooling and solidification in the crust. Fresh injections of mafic magma interact with previously solidified intrusives, producing new melts that are volatile undersaturated. Vapor saturation pressures obtained using the most volatile-rich melt inclusions suggest the presence of a magma chamber at a minimum depth of ˜7 km. This is in agreement with geophysical observations from recent small-volume eruptions, but given the possibility of volatile-undersaturated melts, some of the magmas may reside at greater depths.

  1. Stability of rift axis magma reservoirs: Spatial and temporal evolution of magma supply in the Dabbahu rift segment (Afar, Ethiopia) over the past 30 kyr

    NASA Astrophysics Data System (ADS)

    Medynski, S.; Pik, R.; Burnard, P.; Vye-Brown, C.; France, L.; Schimmelpfennig, I.; Whaler, K.; Johnson, N.; Benedetti, L.; Ayelew, D.; Yirgu, G.

    2015-01-01

    Unravelling the volcanic history of the Dabbahu/Manda Hararo rift segment in the Afar depression (Ethiopia) using a combination of cosmogenic (36Cl and 3He) surface exposure dating of basaltic lava-flows, field observations, geological mapping and geochemistry, we show in this paper that magmatic activity in this rift segment alternates between two distinct magma chambers. Recent activity in the Dabbahu rift (notably the 2005-2010 dyking crises) has been fed by a seismically well-identified magma reservoir within the rift axis, and we show here that this magma body has been active over the last 30 kyr. However, in addition to this axial magma reservoir, we highlight in this paper the importance of a second, distinct magma reservoir, located 15 km west of the current axis, which has been the principal focus of magma accumulation from 15 ka to the subrecent. Magma supply to the axial reservoir substantially decreased between 20 ka and the present day, while the flank reservoir appears to have been regularly supplied with magma since 15 ka ago, resulting in less variably differentiated lavas. The trace element characteristics of magmas from both reservoirs were generated by variable degrees of partial melting of a single homogeneous mantle source, but their respective magmas evolved separately in distinct crustal plumbing systems. Magmatism in the Dabbahu/Manda Hararo rift segment is not focussed within the current axial depression but instead is spread out over at least 15 km on the western flank. This is consistent with magneto-telluric observations which show that two magma bodies are present below the segment, with the main accumulation of magma currently located below the western flank, precisely where the most voluminous recent (<15 ka) flank volcanism is observed at the surface. Applying these observations to slow spreading mid-ocean ridges indicates that magma bodies likely have a lifetime of a least 20 ka, and that the continuity of magmatic activity is

  2. Effects of magma mingling in the granites of Mount Desert Island, Maine

    SciTech Connect

    Seaman, S.J.; Ramsey, P.C. )

    1992-07-01

    Textures and compositional relationships associated with dark-colored, fine-grained enclaves in the Cadillac Mountain and Somesville granites, Mount Desert Island, Maine, preserve abundant evidence for contamination of host granitic magmas by enclave liquids. Fine-grained enclaves, which apparently represent chilled magmatic droplets, have affected the composition and texture of the host granites by three possible mechanisms: (1) crystallization of feldspar-quartz-hornblende pegmatite pods from fluids of enclave origin in the granite surrounding enclaves, and the disaggregation of the pods and dispersion of crystals into the granite; (2) ionic exchange between enclaves and granitic magmas; (3) the generation around enclaves of rinds consisting of an inner alkali feldspar-quartz zone and an outer zone of hornblende-enriched granite. Thermal calculations suggest that the alkali feldspar-quartz zones of the rinds surrounding enclaves may result from resorption of alkali feldspar and quartz crystals in the granitic magma by heat of cooling and crystallization of enclave material. The interaction between the hot enclave and the alkali feldspar-quartz composition liquid may be analogous to that between a pluton and meteoric water in a hydrothermal system. The segregation of alkali feldspar-quartz and hornblende-rich zones may result from the minimum melt composition fluid migrating toward the enclave, leaving behind unmelted hornblende, as part of a convection circuit set up by the enclave. Alternatively, hornblende-rich zones concentric to and outside of the alkali feldspar-quartz rinds may record limit of movement of a front of hydrous fluid driven from the enclave boundary down a thermal gradient.

  3. Magma dynamics above the Karoo plume, South Africa

    NASA Astrophysics Data System (ADS)

    Ferre, Eric; Geissman, John; Stephanie, Maes; Aneesa, Gillum; Julian, Marsh

    2015-04-01

    fabrics. K1 axes are systematically subhorizontal and mark the magma flow direction. This regional scale flow pattern indicates that the Karoo plume head was not located under the Drakensberg basalts, the thickest part of the Karoo volcanic pile. Instead the plume head might have been located to the NW of the Karoo Basin, in Namibia. Overall these results show that magnetic fabrics are an efficient tool to analyze large-scale magma dynamics.

  4. Chlor-Alkali Technology.

    ERIC Educational Resources Information Center

    Venkatesh, S.; Tilak, B. V.

    1983-01-01

    Chlor-alkali technology is one of the largest electrochemical industries in the world, the main products being chlorine and caustic soda (sodium hydroxide) generated simultaneously by the electrolysis of sodium chloride. This technology is reviewed in terms of electrochemical principles and manufacturing processes involved. (Author/JN)

  5. Pyroxenes and olivines from a Galapagos spreading center (GSC) rhyodacite record crystal fractionation and magma mixing

    SciTech Connect

    Mattson, S.R.; Byerly, G.R.; Carpenter, P.

    1985-01-01

    Phenocrysts and xenocrysts of augite, subcalcic augite, pigeonite, orthopyroxene, and olivine in two glassy rhyodacite dredge samples from 95/sup 0/W on the GSC reflect a complex history of fractional crystallization and magma mixing. The pyroxene compositions can be grouped into clusters reflecting three major sources: a) Fenumber approx. 0.2 from basalt, b) Fenumber approx. 0.5 from rhyodacite, and c) Fenumber approx. 0.6 from rhyolite. Pyroxene Ti/Al ratios of 1:14, 1:7 and 1:3 have Fenumbers suggesting original crystallization from basalt, rhyodacite, and rhyolite melts respectively. These general compositional groups are typical of those produced during fractional crystallization of basalt to rhyolite. At relatively constant Fenumber the augites in any group display a wide spectrum of variation in Wo, Al, and Ti. Basaltic augite core to rim variations exhibit both increases and decreases in Ti at nearly constant Fenumber. A continuous variation in subcalcic augites is present from Fe-augite to Fe-pigeonite. These effects are likely kinetic, perhaps due to rapid cooling rates, but possibly due to supersaturation produced during mixing. Magma mixing may have played an important role in bringing together these contrasting components. The abundance of very-fine-grained basaltic xenoliths and xenocrysts, the glassy rhyolitic inclusions and associated xenocrysts, along with major reverse zoning in Fenumber or major discontinuities in Fenumber in the ferromagnesian phases all point to coexisting melts of radically differing composition.

  6. Carbon and its isotopes in mid-oceanic basaltic glasses

    USGS Publications Warehouse

    Des Marais, D.J.; Moore, J.G.

    1984-01-01

    Three carbon components are evident in eleven analyzed mid-oceanic basalts: carbon on sample surfaces (resembling adsorbed gases, organic matter, or other non-magmatic carbon species acquired by the glasses subsequent to their eruption), mantle carbon dioxide in vesicles, and mantle carbon dissolved in the glasses. The combustion technique employed recovered only reduced sulfur, all of which appears to be indigenous to the glasses. The dissolved carbon concentration (measured in vesicle-free glass) increases with the eruption depth of the spreading ridge, and is consistent with earlier data which show that magma carbon solubility increases with pressure. The total glass carbon content (dissolved plus vesicular carbon) may be controlled by the depth of the shallowest ridge magma chamber. Carbon isotopic fractionation accompanies magma degassing; vesicle CO2 is about 3.8??? enriched in 13C, relative to dissolved carbon. Despite this fractionation, ??13CPDB values for all spreading ridge glasses lie within the range -5.6 and -7.5, and the ??13CPDB of mantle carbon likely lies between -5 and -7. The carbon abundances and ??13CPDB values of Kilauea East Rift glasses apparently are influenced by the differentiation and movement of magma within that Hawaiian volcano. Using 3He and carbon data for submarine hydrothermal fluids, the present-day mid-oceanic ridge mantle carbon flux is estimated very roughly to be about 1.0 ?? 1013 g C/yr. Such a flux requires 8 Gyr to accumulate the earth's present crustal carbon inventory. ?? 1984.

  7. Complex Formation History of Highly Evolved Basaltic Shergottite, Zagami

    NASA Technical Reports Server (NTRS)

    Niihara, T.; Misawa, K.; Mikouchi, T.; Nyquist, L. E.; Park, J.; Hirata, D.

    2012-01-01

    Zagami, a basaltic shergottite, contains several kinds of lithologies such as Normal Zagami consisting of Fine-grained (FG) and Coarse-grained (CG), Dark Mottled lithology (DML), and Olivine-rich late-stage melt pocket (DN). Treiman and Sutton concluded that Zagami (Normal Zagami) is a fractional crystallization product from a single magma. It has been suggested that there were two igneous stages (deep magma chamber and shallow magma chamber or surface lava flow) on the basis of chemical zoning features of pyroxenes which have homogeneous Mg-rich cores and FeO, CaO zoning at the rims. Nyquist et al. reported that FG has a different initial Sr isotopic ratio than CG and DML, and suggested the possibility of magma mixing on Mars. Here we report new results of petrology and mineralogy for DML and the Olivine-rich lithology (we do not use DN here), the most evolved lithology in this rock, to understand the relationship among lithologies and reveal Zagami s formation history

  8. Diary of a flood basalt: A stratigraphic tour of two sections within the Oligocene Ethiopian Traps

    NASA Astrophysics Data System (ADS)

    Rooney, T. O.; Bradley, B. L.; Krans, S. R.; Kappelman, J. W.; Yirgu, G.; Ayalew, D.<