Science.gov

Sample records for alkali feldspar granite

  1. Origin of alkali-feldspar granites: An example from the Poimena Granite, northeastern Tasmania, Australia

    SciTech Connect

    Mackenzie, D.E.; Black, L.P.; Sun, Shensu )

    1988-10-01

    The Lottah Granite is a composite pluton of tin mineralized strongly peraluminous alkali-feldspar granite which intrudes the Poimena Granite, a major component of the mid-Devonian Blue Tier Batholith of northeastern Tasmania. Earlier workers interpreted the Lottah Granite as a metasomatised differentiate of the Poimena Granite. The Poimena Granite is a slightly peraluminous, felsic, I-type biotite granite which contains restite minerals and shows linear trends on Harker plots, both consistent with restite separation. The mineralogy, chemical variation, and isotopic characteristics of the Lottah Granite are consistent with origin as a magma genetically unrelated to the host granite. The Lottah Granite contains sanidine, albite, topaz, zinnwaldite and other minerals consistent with crystallization from a melt. Furthermore, Rb-Sr isotopic dating indicates that the Lottah Granite was emplaced about 10 Ma after the Poimena Granite, and initial Sr and Nd isotope ratios indicate that the Lottah Granite was derived from a higher-{sup 87}Sr/{sup 86}Sr, higher-{epsilon}Nd source composition. Chemical and mineralogical evolution of the Lottah Granite conform to the experimental behavior of Li-F-rich melts, and indicate a possible crystallization temperature range as extreme as 750-430{degree}C. Many other examples of alkali-feldspar granite, and much of the associated mineralization, are probably also of essentially primary magmatic origin rather than of metasomatic or hydrothermal origin as commonly interpreted. They may also be genetically unrelated to granites with which they are associated.

  2. Lunar granites with unique ternary feldspars

    NASA Technical Reports Server (NTRS)

    Ryder, G.; Stoeser, D. B.; Marvin, U. B.; Bower, J. F.

    1975-01-01

    An unusually high concentration of granitic fragments, with textures ranging from holocrystalline to glassy, occurs throughout Boulder 1, a complex breccia of highland rocks from Apollo 17, Station 2. Among the minerals included in the granites are enigmatic K-Ca-rich feldspars that fall in the forbidden region of the ternary diagram. The great variability in chemistry and texture is probably the result of impact degradation and melting of a granitic source-rock. Studies of the breccia matrix suggest that this original granitic source-rock may have contained more pyroxenes and phosphates than most of the present clasts contain. Petrographic observations on Apollo 15 KREEP basalts indicate that granitic liquids may be produced by differentiation without immiscibility, and the association of the granites with KREEP-rich fragments in the boulder suggests that the granites represent a residual liquid from the plutonic fractional crystallization of a KREEP-rich magma. Boulder 1 is unique among Apollo 17 samples in its silica-KREEP-rich composition. We conclude that the boulder represents a source-rock unlike the bedrock of South Massif.

  3. Elastic properties of alkali-feldspars

    NASA Astrophysics Data System (ADS)

    Waeselmann, N.; Brown, J.; Angel, R. J.; Ross, N.; Kaminsky, W.

    2013-12-01

    New measurements of single crystal elastic moduli for a suite of the alkali feldspars are reported. In order to interpret Earth's seismic structure, knowledge of the elastic properties of constituent minerals is essential. The elasticity of feldspar minerals, despite being the most abundant phase in Earth's crust (estimated to be more than 60%), were previously poorly characterized. All prior seismic and petrologic studies have utilized 50-year-old results, of questionable quality, based on 1-bar measurements on pseudo-single crystals. Alkali-feldspars present a large experimental challenge associated with their structural complexity. In the K-end member (KAlSi3O8) the symmetry is governed by Al/Si ordering, in the Na-end member (NaAlSi3O8) the symmetry is governed by whether or not there is a displacive collapse of the framework independent of the Al/Si ordering. K-feldspars exhibit monoclinic (C2/m) symmetry (necessitating determination of 13 elastic moduli) if disordered and triclinic (C-1) symmetry (21 elastic moduli) if ordered. Exsolution of Na-rich and K-rich phases is ubiquitous in natural samples, making it difficult to find suitable single phase and untwinned samples for study. The small single domain samples selected for this study were previously characterized by x-ray diffraction and microprobe analysis to ensure adequate sample quality. Surface wave velocities were measured on oriented surfaces of natural and synthetic single crystals using impulsively stimulated light scattering. A surface corrugation with a spacing of about 2 microns was impulsively created by the overlap of 100 ps infrared light pulses. The time evolution of the stimulated standing elastic waves was detected by measuring the intensity of diffraction from the surface corrugation of a variably delayed probe pulse. This method allows accurate (better than 0.2%) determination of velocities on samples smaller than 100 microns. The combination of measured surface wave velocities and

  4. Differential rates of feldspar weathering in granitic regoliths

    USGS Publications Warehouse

    White, A.F.; Bullen, T.D.; Schulz, M.S.; Blum, A.E.; Huntington, T.G.; Peters, N.E.

    2001-01-01

    Differential rates of plagioclase and K-feldspar weathering commonly observed in bedrock and soil environments are examined in terms of chemical kinetic and solubility controls and hydrologic permeability. For the Panola regolith, in the Georgia Piedmont Province of southeastern United States, petrographic observations, coupled with elemental balances and 87Sr/86Sr ratios, indicate that plagioclase is being converted to kaolinite at depths > 6 m in the granitic bedrock. K-feldspar remains pristine in the bedrock but subsequently weathers to kaolinite at the overlying saprolite. In contrast, both plagioclase and K-feldspar remain stable in granitic bedrocks elsewhere in Piedmont Province, such as Davis Run, Virginia, where feldspars weather concurrently in an overlying thick saprolite sequence. Kinetic rate constants, mineral surface areas, and secondary hydraulic conductivities are fitted to feldspar losses with depth in the Panola and Davis Run regoliths using a time-depth computer spreadsheet model. The primary hydraulic conductivities, describing the rates of meteoric water penetration into the pristine granites, are assumed to be equal to the propagation rates of weathering fronts, which, based on cosmogenic isotope dating, are 7 m/106 yr for the Panola regolith and 4 m/106 yr for the Davis Run regolith. Best fits in the calculations indicate that the kinetic rate constants for plagioclase in both regoliths are factors of two to three times faster than K-feldspar, which is in agreement with experimental findings. However, the range for plagioclase and K-feldspar rates (kr = 1.5 x 10-17 to 2.8 x 10-16 mol m-2 s-1) is three to four orders of magnitude lower than for that for experimental feldspar dissolution rates and are among the slowest yet recorded for natural feldspar weathering. Such slow rates are attributed to the relatively old geomorphic ages of the Panola and Davis Run regoliths, implying that mineral surface reactivity decreases significantly with

  5. Atmospheric weathering and silica-coated feldspar: Analogy with zeolite molecular sieves, granite weathering, soil formation, ornamental slabs, and ceramics

    PubMed Central

    Smith, Joseph V.

    1998-01-01

    Feldspar surfaces respond to chemical, biological, and mechanical weathering. The simplest termination is hydroxyl (OH), which interacts with any adsorption layer. Acid leaching of alkalis and aluminum generated a silica-rich, nanometers-thick skin on certain feldspars. Natural K, Na-feldspars develop fragile surfaces as etch pits expand into micrometer honeycombs, possibly colonized by lichens. Most crystals have various irregular coats. Based on surface-catalytic processes in molecular sieve zeolites, I proposed that some natural feldspars lose weakly bonded Al-OH (aluminol) to yield surfaces terminated by strongly bonded Si-OH (silanol). This might explain why some old feldspar-bearing rocks weather slower than predicted from brief laboratory dissolution. Lack of an Al-OH infrared frequency from a feldspar surface is consistent with such a silanol-dominated surface. Raman spectra of altered patches on acid-leached albite correspond with amorphous silica rather than hydroxylated silica–feldspar, but natural feldspar may respond differently. The crystal structure of H-exchanged feldspar provides atomic positions for computer modeling of complex ideas for silica-terminated feldspar surfaces. Natural weathering also depends on swings of temperature and hydration, plus transport of particles, molecules, and ionic complexes by rain and wind. Soil formation might be enhanced by crushing granitic outcrops to generate new Al-rich surfaces favorable for chemical and biological weathering. Ornamental slabs used by architects and monumental masons might last longer by minimizing mechanical abrasion during sawing and polishing and by silicifying the surface. Silica-terminated feldspar might be a promising ceramic surface. PMID:9520371

  6. Cathodoluminescence Characterization of Maskelynite and Alkali Feldspar in Shergottite (Dhofar 019)

    SciTech Connect

    Kayama, M.; Nakazato, T.; Nishido, H.; Ninagawa, K.; Gucsik, A.

    2009-08-17

    Dhofar 019 is classified as an olivine-bearing basaltic shergottite and consists of subhedral grains of pyroxene, olivine, feldspar mostly converted to maskelynite and minor alkali feldspar. The CL spectrum of its maskelynite exhibits an emission band at around 380 nm. Similar UV-blue emission has been observed in the plagioclase experimentally shocked at 30 and 40 GPa, but not in terrestrial plagioclase. This UV-blue emission is a notable characteristic of maskelynite. CL spectrum of alkali feldspar in Dhofar 019 has an emission bands at around 420 nm with no red emission. Terrestrial alkali feldspar actually consists of blue and red emission at 420 and 710 nm assigned to Al-O{sup -}-Al and Fe{sup 3+} centers, respectively. Maskelynite shows weak and broad Raman spectral peaks at around 500 and 580 cm{sup -1}. The Raman spectrum of alkali feldspar has a weak peak at 520 cm{sup -1}, whereas terrestrial counterpart shows the emission bands at 280, 400, 470, 520 and 1120 cm{sup -1}. Shock pressure on this meteorite transformed plagioclase and alkali feldspar into maskelynite and almost glass phase, respectively. It eliminates their luminescence centers, responsible for disappearance of yellow and/or red emission in CL of maskelynite and alkali feldspar. The absence of the red emission band in alkali feldspar can also be due to the lack of Fe{sup 3+} in the feldspar as it was reported for some lunar feldspars.

  7. [Study on the fine structure of K-feldspar of Qichun granite].

    PubMed

    Du, Deng-Wen; Hong, Han-Lie; Fan, Kan; Wang, Chao-Wen; Yin, Ke

    2013-03-01

    Fine structure of K-feldspar from the Qichun granite was investigated using X-ray diffraction (XRD), Fourier infrared absorption spectroscopy (FTIR), and inductively coupled plasma mass spectrometry methods to understand the evolution of the granitic magmatism and its correlation to molybdenite mineralization. The XRD results showed that K-feldspar of the potassic alteration veins has higher ordering index and triclinicity and is namely microcline with triclinic symmetry. K-feldspar of the early cretaceous granite has relatively lower ordering index and has widening [131] peak and is locally triclinic ordering. K-feldspar of the late cretaceous granite has lowest ordering index and sharp [131] peak and is honiogeneously monoclinic. The FTIR results showed that the IR spectra of the Qichun K-feldspar are similar to that of orthoclase reported by Farmer (1974). The 640 cm-1 absorption band increases while the 540 cm-' absorption band decreases with increase in K-feldspar ordering index, also, the 1,010 cm-1 absorption band separates into 1,010 and 1,046 cm-1 absorption bands, with a change in the band shape from widening to sharp outline. The ICP-MS results suggested that K-feldspar of the early cretaceous granite has relatively higher metal elements and rare earth elements, and the granite exhibits better mineralization background, K-feldspar of the potassic alteration veins has markedly lower Sr and Ba, indicating that the alteration fluid originated from the granitic magmatism, and hence, potassic alteration is a good indicator for molybdenite exploration. PMID:23705418

  8. Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: petrologic constraints and geodynamic settings

    NASA Astrophysics Data System (ADS)

    Bonin, Bernard; Azzouni-Sekkal, Abla; Bussy, François; Ferrag, Sandrine

    1998-12-01

    The end of an orogenic Wilson cycle corresponds to amalgamation of terranes into a Pangaea and is marked by widespread magmatism dominated by granitoids. The post-collision event starts with magmatic processes still influenced by subducted crustal materials. The dominantly calc-alkaline suites show a shift from normal to high-K to very high-K associations. Source regions are composed of depleted and later enriched orogenic subcontinental lithospheric mantle, affected by dehydration melting and generating more and more K- and LILE-rich magmas. In the vicinity of intra-crustal magma chambers, anatexis by incongruent melting of hydrous minerals may generate peraluminous granitoids bearing mafic enclaves. The post-collision event ends with emplacement of bimodal post-orogenic (PO) suites along transcurrent fault zones. Two suites are defined, (i) the alkali-calcic monzonite-monzogranite-syenogranite-alkali feldspar granite association characterised by [biotite+plagioclase] fractionation and moderate [LILE+HFSE] enrichments and (ii) the alkaline monzonite-syenite-alkali feldspar granite association characterised by [amphibole+alkali feldspar] fractionation and displaying two evolutionary trends, one peralkaline with sodic mafic mineralogy and higher enrichments in HFSE than in LILE, and the other aluminous biotite-bearing marked by HFSE depletion relative to LILE due to accessory mineral precipitation. Alkali-calcic and alkaline suites differ essentially in the amounts of water present within intra-crustal magma chambers, promoting crystallisation of various mineral assemblages. The ultimate enriched and not depleted mantle source is identical for the two PO suites. The more primitive LILE and HFSE-rich source rapidly replaces the older orogenic mantle source during lithosphere delamination and becomes progressively the thermal boundary layer of the new lithosphere. Present rock compositions are a mixture of major mantle contribution and various crustal components

  9. Anisotropy of magnetic susceptibility in alkali feldspar and plagioclase

    NASA Astrophysics Data System (ADS)

    Biedermann, Andrea R.; Pettke, Thomas; Angel, Ross J.; Hirt, Ann M.

    2016-01-01

    Feldspars are the most abundant rock-forming minerals in the Earth's crust, but their magnetic properties have not been rigorously studied. This work focuses on the intrinsic magnetic anisotropy of 31 feldspar samples with various chemical compositions. Because feldspar is often twinned or shows exsolution textures, measurements were performed on twinned and exsolved samples as well as single crystals. The anisotropy is controlled by the diamagnetic susceptibility and displays a consistent orientation of principal susceptibility axes; the most negative or minimum susceptibility is parallel to [010], and the maximum (least negative) is close to the crystallographic [001] axis. However, the magnetic anisotropy is weak when compared to other rock-forming minerals, 1.53*10-9 m3 kg-1 at maximum. Therefore, lower abundance minerals such as augite, hornblende or biotite often dominate the bulk paramagnetic anisotropy of a rock. Ferromagnetic anisotropy is not significant in most samples. In the few samples that do show ferromagnetic anisotropy, the principal susceptibility directions of the ferromagnetic subfabric do not display a systematic orientation with respect to the feldspar lattice. These results suggest that paleointensity estimates of the geomagnetic field made on single crystals of feldspar will not be affected by a systematic orientation of the ferromagnetic inclusions within the feldspar lattice.

  10. Anisotropy of magnetic susceptibility in alkali feldspar and plagioclase

    NASA Astrophysics Data System (ADS)

    Biedermann, Andrea R.; Pettke, Thomas; Angel, Ross J.; Hirt, Ann M.

    2016-04-01

    Feldspars are the most abundant rock-forming minerals in the Earth's crust, but their magnetic properties have not been rigorously studied. This work focuses on the intrinsic magnetic anisotropy of 31 feldspar samples with various chemical compositions. Because feldspar is often twinned or shows exsolution textures, measurements were performed on twinned and exsolved samples as well as single crystals. The anisotropy is controlled by the diamagnetic susceptibility and displays a consistent orientation of principal susceptibility axes; the most negative or minimum susceptibility is parallel to [010], and the maximum (least negative) is close to the crystallographic [001] axis. However, the magnetic anisotropy is weak when compared to other rock-forming minerals, 1.53 × 10-9 m3 kg-1 at maximum. Therefore, lower abundance minerals, such as augite, hornblende or biotite, often dominate the bulk paramagnetic anisotropy of a rock. Ferromagnetic anisotropy is not significant in most samples. In the few samples that do show ferromagnetic anisotropy, the principal susceptibility directions of the ferromagnetic subfabric do not display a systematic orientation with respect to the feldspar lattice. These results suggest that palaeointensity estimates of the geomagnetic field made on single crystals of feldspar will not be affected by a systematic orientation of the ferromagnetic inclusions within the feldspar lattice.

  11. Igneous phenocrystic origin of K-feldspar megacrysts in granitic rocks from the Sierra Nevada batholith

    USGS Publications Warehouse

    Moore, J.G.; Sisson, T.W.

    2008-01-01

    Study of four K-feldspar megacrystic granitic plutons and related dikes in the Sierra Nevada composite batholith indicates that the megacrysts are phenocrysts that grew in contact with granitic melt. Growth to megacrystic sizes was due to repeated replenishment of the magma bodies by fresh granitic melt that maintained temperatures above the solidus for extended time periods and that provided components necessary for K-feldspar growth. These intrusions cooled 89-83 Ma, are the youngest in the range, and represent the culminating magmatic phase of the Sierra Nevada batholith. They are the granodiorite of Topaz Lake, the Cathedral Peak Granodiorite, the Mono Creek Granite, the Whitney Granodiorite, the Johnson Granite Porphyry, and the Golden Bear Dike. Megacrysts in these igneous bodies attain 4-10 cm in length. All have sawtooth oscillatory zoning marked by varying concentration of BaO ranging generally from 3.5 to 0.5 wt%. Some of the more pronounced zones begin with resorption and channeling of the underlying zone. Layers of mineral inclusions, principally plagioclase, but also biotite, quartz, hornblende, titanite, and accessory minerals, are parallel to the BaO-delineated zones, are sorted by size along the boundaries, and have their long axes preferentially aligned parallel to the boundaries. These features indicate that the K-feldspar megacrysts grew while surrounded by melt, allowing the inclusion minerals to periodically attach themselves to the faces of the growing crystals. The temperature of growth of titanite included within the K-feldspar megacrysts is estimated by use of a Zr-in-titanite geothermometer. Megacryst-hosted titanite grains all yield temperatures typical of felsic magmas, mainly 735-760 ??C. Titanite grains in the granodiorite hosts marginal to the megacrysts range to lower growth temperatures, in some instances into the subsolidus. The limited range and igneous values of growth temperatures for megacryst-hosted titanite grains support the

  12. Thermodynamic assessment of hydrothermal alkali feldspar-mica-aluminosilicate equilibria

    USGS Publications Warehouse

    Sverjensky, D.A.; Hemley, J.J.; d'Angelo, W. M.

    1991-01-01

    The thermodynamic properties of minerals retrieved from consideration of solid-solid and dehydration equilibria with calorimetric reference values, and those of aqueous species derived from studies of electrolytes, are not consistent with experimentally measured high-temperature solubilities in the systems K2O- and Na2O-Al2O3-SiO2-H2O-HCl (e.g., K-fs - Ms - Qtz - K+ - H+). This introduces major inaccuracies into the computation of ionic activity ratios and the acidities of diagenetic, metamorphic, and magmatic hydrothermal fluids buffered by alkali silicate-bearing assemblages. We report a thermodynamic analysis of revised solubility equilibria in these systems that integrates the thermodynamic properties of minerals obtained from phase equilibria studies (Berman, 1988) with the properties of aqueous species calculated from a calibrated equation of state (Shock and Helgeson, 1988). This was achieved in two separate steps. First, new values of the free energies and enthalpies of formation at 25??C and 1 bar for the alkali silicates muscovite and albite were retrieved from the experimental solubility equilibria at 300??C and Psat. Because the latter have stoichiometric reaction coefficients different from those for solid-solid and dehydration equilibria, our procedure preserves exactly the relative thermodynamic properties of the alkali-bearing silicates (Berman, 1988). Only simple arithmetic adjustments of -1,600 and -1,626 (??500) cal/mol to all the K- and Na-bearing silicates, respectively, in Berman (1988) are required. In all cases, the revised values are within ??0.2% of calorimetric values. Similar adjustments were derived for the properties of minerals from Helgeson et al. (1978). Second, new values of the dissociation constant of HCl were retrieved from the solubility equilibria at temperatures and pressures from 300-600??C and 0.5-2.0 kbars using a simple model for aqueous speciation. The results agree well with the conductance-derived dissociation

  13. Time-temperature evolution of microtextures and contained fluids in a plutonic alkali feldspar during heating

    NASA Astrophysics Data System (ADS)

    Parsons, Ian; Fitz Gerald, John D.; Lee, James K. W.; Ivanic, Tim; Golla-Schindler, Ute

    2010-08-01

    Microtextural changes brought about by heating alkali feldspar crystals from the Shap granite, northern England, at atmospheric pressure, have been studied using transmission and scanning electron microscopy. A typical unheated phenocryst from Shap is composed of about 70 vol% of tweed orthoclase with strain-controlled coherent or semicoherent micro- and crypto-perthitic albite lamellae, with maximum lamellar thicknesses <1 μm. Semicoherent lamellae are encircled by nanotunnel loops in two orientations and cut by pull-apart cracks. The average bulk composition of this microtexture is Ab27.6Or71.8An0.6. The remaining 30 vol% is deuterically coarsened, microporous patch and vein perthite composed of incoherent subgrains of oligoclase, albite and irregular microcline. The largest subgrains are ~3 μm in diameter. Heating times in the laboratory were 12 to 6,792 h and T from 300°C into the melting interval at 1,100°C. Most samples were annealed at constant T but two were heated to simulate an 40Ar/39Ar step-heating schedule. Homogenisation of strain-controlled lamellae by Na↔K inter-diffusion was rapid, so that in all run products at >700°C, and after >48 h at 700°C, all such regions were essentially compositionally homogeneous, as indicated by X-ray analyses at fine scale in the transmission electron microscope. Changes in lamellar thickness with time at different T point to an activation energy of ~350 kJmol-1. A lamella which homogenised after 6,800 h at 600°C, therefore, would have required only 0.6 s to do so in the melting interval at 1,100°C. Subgrains in patch perthite homogenised more slowly than coherent lamellae and chemical gradients in patches persisted for >5,000 h at 700°C. Homogenisation T is in agreement with experimentally determined solvi for coherent ordered intergrowths, when a 50-100°C increase in T for An1 is applied. Homogenisation of lamellae appears to proceed in an unexpected manner: two smooth interfaces, microstructurally sharp

  14. Alkali-aggregate reaction in concrete containing high-alkali cement and granite aggregate

    SciTech Connect

    Owsiak, Z

    2004-01-01

    The paper discusses results of the research into the influence of high-alkali Portland cement on granite aggregate. The deformation of the concrete structure occurred after 18 months. The research was carried out by means of a scanning electron microscope equipped with a high-energy dispersive X-ray analyzer that allowed observation of unpolished sections of concrete bars exhibiting the cracking pattern typical of the alkali-silica reaction. Both the microscopic observation and the X-ray elemental analysis confirm the presence of alkali-silica gel and secondary ettringite in the cracks.

  15. Igneous origin of K-feldspar Megacrysts in Granitic Rocks of the Sierra Nevada Batholith

    NASA Astrophysics Data System (ADS)

    Moore, J. G.; Sisson, T. W.

    2007-12-01

    Study of the four principal K-feldspar megacrystic granitic plutons and related porphyrys in the Sierra Nevada composite batholith indicates that the included megacrysts are phenocrysts that grew in contact with granitic melt in long-lasting magma chambers. These 89-83 Ma plutons or intrusions are the youngest in the range, and represent the culminating magmatic phase of the batholith. They are the: Granodiorite of Topaz Lake; Cathedral Peak Granodiorite, Mono Creek Granite, Whitney Granodiorite, Johnson Granite Porphyry, and Golden Bear Dike. The zoned megacrysts in each of these igneous bodies attain 4-10 cm in length and all display oscillatory zoning with each zone beginning with a sharp increase followed by a gradual decrease in the concentration of BaO - commonly from 3 to 1 weight percent. Some of the more pronounced zones overlie resorption and channeling features on the underlying zone. Trains of small mineral inclusions (plagioclase, biotite, hornblende, quartz, sphene, and accessory minerals) are parallel to the BaO-delineated zones. The long axes of the inclusions are preferentially aligned parallel to the zone boundaries and inclusions are sorted by size from zone to zone. The growth temperature of sphene included in K-feldspar megacrysts is estimated by use of a Zr-in-sphene geothermometer. The sphene grains all yield igneous temperatures, mainly 735 - 760 °C. Sphene grains in the granodiorite host marginal to the megacrysts range to lower growth temperatures, in some instances into the subsolidus range. The zoning of the megacrysts, their presence in quenched porphry dikes, and the limited range and igneous values of growth temperatures of sphene inclusions within them, support the interpretation that the megacrysts formed as igneous sanidine phenocrysts, and that intrusion temperatures varied by only small amounts while the megacrysts grew. Each Ba- enriched zone was apparently formed by a repeated surge of new, hot melt injected into the large

  16. Experimental alkali feldspar dissolution at 100 degree C by carboxylic acids and their anions

    SciTech Connect

    Stoessell, R.K. ); Pittman, E.D. )

    1990-05-01

    Feldspar dissolution will enhance sandstone porosity if the released aluminum can be transported away in the subsurface waters. Carboxylic acids have been proposed to provide hydrogen ions to promote dissolution and anions to complex aqueous aluminum to keep it in solution. However, the hydrogen ions should react quickly following acid generation in source beds, leaving monocarboxylic anions with lesser amounts of dicarboxylic acids and their anions on feldspar dissolution and the apparent complexing of aluminum in solution. Two-week dissolution experiments of alkali feldspar were run at 100{degree}C and 300 bars in acetic acid, oxalic acid, and sodium salt solutions of chloride, acetate, propionate, oxalate, and malonate. Extrapolation of the results, to reservoir conditions during sandstone diagenesis, implies that concentrations of aluminum-organic complexes are not significant for acetate and propionate and are possibly significant for oxalate and malonate, depending upon fluid compositions. Propionate appeared to inhibit feldspar dissolution and hence might decrease secondary porosity formation. Increases in aluminum concentrations in the presence of oxalic and acetic acid solutions appear to be due to enhanced dissolution kinetics and greater aluminum solubility under low-pH conditions. Such low-pH fluids are generally absent in subsurface reservoirs, making this an unlikely mechanism for enhancing porosity. Furthermore, the observed thermal instability of oxalate and malonate anions explains their general low concentrations in subsurface fluids which limits their aluminum complexing potential in reservoirs during late diagenesis.

  17. Lattice strain across Na-K interdiffusion fronts in alkali feldspar: an electron back-scatter diffraction study

    NASA Astrophysics Data System (ADS)

    Schäffer, Anne-Kathrin; Jäpel, Tom; Zaefferer, Stefan; Abart, Rainer; Rhede, Dieter

    2014-11-01

    Cation exchange experiments between gem quality sanidine and KCl melt produced chemical alteration of alkali feldspar starting at the grain surface and propagating inwards by highly anisotropic Na-K interdiffusion on the alkali sublattice. Diffusion fronts developing in b-direction are very sharp, while diffusion fronts within the a- c-plane are comparatively broad. Due to the composition dependence of the lattice parameters of alkali feldspar, the diffusion induced compositional heterogeneity induces coherency stress and elastic strain. Electron back-scatter diffraction combined with the cross-correlation technique was employed to determine the lattice strain distribution across the Na-K interdiffusion fronts in partially exchanged single crystals of alkali feldspar. The strain changes gradually across the broad fronts within the a- c-plane, with a successive extension primarily in a-direction conferring to the composition strain in unstressed alkali feldspar. In contrast, lattice strain characterised by pronounced extension in b-direction is localised at the sharp diffusion fronts parallel to b, followed by a slight expansion in a-direction in the orthoclase-rich rim. This strain pattern does not confer with the composition induced lattice strain in a stress-free alkali feldspar. It may rather be explained by the mechanical coupling of the exchanged surface layer and the mechanically strong substratum. The lattice distortion localised at the sharp diffusion front may have an influence on the diffusion process and appears to produce a self-sharpening feedback, leading to a local reduction of component mobilities.

  18. Crystallization kinetics of alkali feldspars in cooling and decompression-induced crystallization experiments in trachytic melt

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Carroll, Michael R.

    2013-10-01

    Cooling and decompression experiments have been carried out on trachytic melts in order to investigate crystallization kinetics of alkali feldspar, the effect of the degree of undercooling ( ΔT = T liquidus - T experimental) and time on nucleation and crystal growth process. This experimental work gives us new data about crystallization kinetics of trachytic melts, and it that will be useful to better understand the natural system of Campi Flegrei volcanoes. Experiments have been conducted using cold seal pressure vessel apparatus, at pressure between 30 and 200 MPa, temperature between 750 and 855 °C, time between 7,200 and 57,600 s and redox condition close to the NNO +0.8 buffer. These conditions are ideal to reproducing pre- and syn-eruptive conditions of the Campi Flegrei volcanoes, where the "conditions" pertain to the complete range of pressures, temperatures and time at which the experiments were performed. Alkali feldspar is the main phase present in this trachyte, and its abundance can strongly vary with small changes in pressure, temperature and water content in the melt, implying appreciable variations in the textures and in the crystallization kinetics. The obtained results show that crystallization kinetics are strictly related to ΔT, time, final pressure, superheating (- ΔT) and water content in the melt. ΔT is the driving force of the crystallization, and it has a strong influence on nucleation and growth processes. In fact, the growth process dominates crystallization at small ΔT, whereas the nucleation dominates crystallization at large ΔT. Time also is an important variable during crystallization process, because long experiment durations involve more nucleation events of alkali feldspar than short experiment durations. This is an important aspect to understand magma evolution in the magma chamber and in the conduit, which in turn has strong effects on magma rheology.

  19. P- T conditions of crystallization and origin of plagioclase-mantled alkali feldspar megacrysts in the Mesozoic granitoids in the Qinling orogen (China)

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Wang, Tao; Haapala, Ilmari; Mao, Jingwen

    2008-07-01

    The Qinling orogen between the North China and South China cratons was intruded at 211-217 Ma by calc-alkaline quartz monzonitic to monzogranitic plutons characterized by I- to A-type geochemistry and in many places contain plagioclase-mantled alkali feldspar megacrysts (rapakivi texture sensu lato). The felsic rocks contain mafic to intermediate magmatic enclaves suggestive of mingling and mixing of mafic and felsic magmas. The P- T conditions of crystallization have been determined for early mineral assemblages (inner parts of alkali feldspar megacrysts and their plagioclase, quartz, amphibole and biotite inclusions) and late assemblages (matrix minerals) of the rapakivi-textured granitoids. Al contents in amphibole from the early and late mineral assemblages yield pressures of 1.2-3.0 and 0.7-3.0 kbar, respectively, and indicate only minor pressure change between the crystallization of the early and late assemblages. Amphibole-plagioclase thermometry gives temperatures mainly of the order of 900 to 1000 °C for both the early and late assemblages indicating nearly isothermal conditions. Feldspar thermometers yield lower temperatures. Relative abundances of minerals and their chemical compositions indicate that the late mineral assemblages tend to be richer in MgO, Na 2O and CaO than the early assemblages. Rapakivi texture is interpreted in this case mainly as a result of compositional changes related to the hybridization between granitic and more mafic magmas. Small release of pressure during crystallization of the magmas may have contributed to the origin of the mantled alkali feldspar megacrysts.

  20. Potassium Feldspar Megacrysts in Granites: Passive Markers of Magma Dynamics or Products of Textural Coarsening?

    NASA Astrophysics Data System (ADS)

    Johnson, B. R.; Glazner, A. F.; Coleman, D. S.

    2006-12-01

    Megacrysts of potassium feldspar (K-spar) in granitic rocks are commonly interpreted as early-crystallizing phases whose textural relationships record flow, settling, and diapirism within evolving magma chambers. However, experimental studies on granitic magmas show that K-spar does not begin to nucleate until the system is at least 30% crystalline, and that much of the final crystallization history records co-crystallization of K-spar, quartz, and sodic plagioclase. These data require that the megacrysts cannot have reached large sizes until the magma was largely crystallized and incapable of flow. We have made chemical and textural observations of K-spar megacrysts from the Tuolumne Intrusive Suite (TIS), California. Cathodoluminescence images show sawtooth oscillatory zoning in K-spars, albite-rich rims on plagioclase, reaction zones at boundaries between plagioclase and K-spar, and almost no perthite. Electron microprobe analyses of the sawtooth zones reveal a sharp outward increase in Ba concentration at each zone boundary. Plagioclase core compositions follow whole-rock compositions, becoming increasingly albitic toward the center of the TIS, but K-spar in all units is highly potassic (Or80-95). A three-feldspar assemblage (An15-35, An1-7, and Or80-95) occurs in several megacrystic samples. Stained rock slabs reveal tentacles of interstitial K-spar radiating from megacryst edges far into the adjacent matrix, and a deficit of smaller K-spar crystals in megacrystic units. K-spar size measurements across the contacts of the TIS from the 10 largest crystals within a 1 m2 area show a steady increase in the average megacryst area from 0.2 to 30 cm2. In contrast, bulk rock K2O and K-spar mode (vol%) are constant across this same transect (at 3.7± 0.5 wt% and 22± 5 vol% respectively). Extreme feldspar compositions, phase equilibria, and textural observations argue for late development of K- spar megacrysts during the prolonged and probably cyclic cooling history of

  1. 3D distribution and evolution of porosity during albitization and patch perthitization of alkali feldspars

    NASA Astrophysics Data System (ADS)

    Norberg, N.; Neusser, G.; Wirth, R.; Harlov, D. E.

    2010-12-01

    Fluid-mediated replacement of minerals and rocks often results in the formation of an extensive porosity. This reaction-induced porosity is generally assumed to be pervasive enabling the constant progress of the alteration process and fluid infiltration of initially impermeable rocks (e.g. Putnis, 2009 Rev Min Geochem, 70, 87). This hypothesis was tested utilizing state-of-the-art micro- to nano-analytical techniques including FIB in combination with SEM and TEM. For this study two different alkali feldspar replacement reactions common in natural rocks were reproduced experimentally; (i) albitization of K-rich alkali-feldspar (Or85-95) and (ii) patch perthitization of intermediate (exsolved) alkali feldspars (Ab60Or40). 3D analysis of the pore distribution was done by a combination of alternate removal of 100 nm slices using FIB followed by SE imaging of the dissected surface. Series of 100-200 SE images were obtained from 20 × 8 × 20 µm3 sample blocks and translated into a 3-dimensional model using Fiji software package (resolution ~0.03 × 0.03 × 0.1 µm3). Analyses of the experimentally albitized and patch-perthitized alkali feldspar demonstrate that in both cases single-crystalline starting materials are replaced by highly porous, polycrystalline replacement products. In the case of albitization the replacement rim consists of two generations of polycrystalline intergrowths of slightly tilted albite sub-grains visible in TEM. These are a fine-grained, highly porous and a coarse-grained, almost non-porous albite that seems to progressively replace the former. The total reaction-induced porosity clearly exceeds the difference in the molar volume of the reaction of ~ -7.5%. Pores are mostly elongated forming several micron long channels. However, despite the abundance of porosity within the albitized areas, neither 3D analysis nor TEM could detect any significant interconnection between these channels. The same holds true in the case of patch perthitization

  2. Highly retentive core domains in K-feldspar preserve argon ages from high temperature stages of granite exhumation

    NASA Astrophysics Data System (ADS)

    Forster, Marnie; Lister, Gordon

    2016-04-01

    Retentive core domains are characterized by diffusion parameters that imply K-feldspar should be able to retain argon even at temperatures near or above the granite solidus. In this case it should be possible to date granite emplacement using argon geochronology, and the same answer should be obtained as by using other methods. We present one case study where this is the case, from the elevated Capoas granite stock on Palawan, in the Philippines, and another where it is not, from the South Cyclades Shear Zone, on Ios, Greece. We attempt to determine the factors such as the role of fluid ingress in triggering the in situ recrystallization that can eliminate and/or modify the core domains, leading to relatively youthful ages. Thermochronology is still possible, because less retentive diffusion domains exist, but different methods need to be applied to interpret the data. The work also demonstrates that K-feldspar can be sufficiently retentive as to allow direct dating of processes that reduce the dimensions of diffusion domains, e.g., cataclased and/or recrystallized K-feldspar in fault rock and/or mylonite. These are important developments in the methodology of 40Ar/39Ar geochronology, but to further advance we need to clarify the nature of these highly retentive core domains. In particular, we need better understand how they are modified by microstructural processes during deformation and metamorphism. We need also to assess the role of any crystal structural changes during step-heating in vacuo.

  3. Structure-dependent interactions between alkali feldspars and organic compounds: implications for reactions in geologic carbon sequestration.

    PubMed

    Yang, Yi; Min, Yujia; Jun, Young-Shin

    2013-01-01

    Organic compounds in deep saline aquifers may change supercritical CO(2) (scCO(2))-induced geochemical processes by attacking specific components in a mineral's crystal structure. Here we investigate effects of acetate and oxalate on alkali feldspar-brine interactions in a simulated geologic carbon sequestration (GCS) environment at 100 atm of CO(2) and 90 °C. We show that both organics enhance the net extent of feldspar's dissolution, with oxalate showing a more prominent effect than acetate. Further, we demonstrate that the increased reactivity of Al-O-Si linkages due to the presence of oxalate results in the promotion of both Al and Si release from feldspars. As a consequence, the degree of Al-Si order may affect the effect of oxalate on feldspar dissolution: a promotion of ~500% in terms of cumulative Si concentration was observed after 75 h of dissolution for sanidine (a highly disordered feldspar) owing to oxalate, while the corresponding increase for albite (a highly ordered feldspar) was ~90%. These results provide new insights into the dependence of feldspar dissolution kinetics on the crystallographic properties of the mineral under GCS conditions. PMID:22978468

  4. Ionic conductivity in gem-quality single-crystal alkali feldspar from the Eifel: temperature, orientation and composition dependence

    NASA Astrophysics Data System (ADS)

    El Maanaoui, Hamid; Wilangowski, Fabian; Maheshwari, Aditya; Wiemhöfer, Hans-Dieter; Abart, Rainer; Stolwijk, Nicolaas A.

    2016-05-01

    We measured the ion conductivity of single-crystal alkali feldspar originating from two different locations in the Eifel/Germany, named Volkesfeld and Rockeskyller sanidine and having potassium site fractions C_K of 0.83 and 0.71, respectively. The dc conductivities resulting from electrochemical impedance spectroscopy over the temperature range of 300-900°C show a weak composition dependence but pronounced differences between the b-direction [perp (010)] and c^{*}-direction [perp (001)] of the monoclinic feldspar structure. Conductivity activation energies obtained from the observed linear Arrhenius plots are close to 1.2 eV in all cases, which is closely similar to the activation energies of the ^{22}Na tracer diffusivity in the same crystals. Taking into account literature data on K tracer diffusion and diffusion correlation effects, the present results point to a predominance of the interstitialcy mechanism over the vacancy mechanism in mass and charge transport on the alkali sublattice in potassium-rich alkali feldspar.

  5. Alkali-granitoids as fragments within the ordinary chondrite Adzhi-Bogdo: Evidence for highly fractionated, alkali-granitic liquids on asteroids

    NASA Technical Reports Server (NTRS)

    Bischoff, A.

    1993-01-01

    Adzhi-Bogdo is an ordinary chondrite regolith breccia (LL3-6) that fell October 30, 1949 in Gobi Altay, Mongolia. The rock consists of submm- to cm-sized fragments embedded in a fine-grained elastic matrix. The breccia contains various types of clasts, some of which must be of foreign heritage. Based on chemical compositions of olivine some components have to be classified as L-type. Components of the breccia include chondrules, impact melts (some are K-rich, similar to those found in other LL-chondrites, highly recrystalized rock fragments ('granulites'), pyroxene-rich fragments with achondritic textures, and alkali-granitoidal fragments that mainly consist of K-feldspar and quartz or tridymite. Probably, this is the first report on granitoids from asteroids. It can be ruled out that these fragments represent huge rock assemblages of the parent body like granites do on Earth. Therefore, to avoid misunderstandings, these rocks will be designated as granitoids. In one thin section four granitoids were observed. The main phases within these clasts are K-feldspar and SiO2-phases. Minor phases include albite, Cl-apatite, whitlockite, ilmenite, zircon, Ca-poor pyroxene, and an unidentified Na,Ti-bearing silicate. Based on chemical composition and on optical properties quartz appears to be the SiO2-phase in two fragments, whereas tridymite seems to occur in the other two. The calculated formula of the unknown Na,Ti-rich silicate is very close to (Na,Ca)2.7(Fe,Mg)6(Ti)1.3(Si)7(O)24. Quartz and K-feldspar can reach sizes of up to 700 microns. Thus, the fragments can be described as coarse-grained (by chondritic standards). This is especially the case considering that quartz and K-feldspar are very rare minerals in ordinary chondrites. Representative analyses of minerals from some granitoidal clasts are given. Based on the mineral compositions and the modal abundances the bulk compositions were calculated. Besides these granitoidal rocks, pyroxene-rich fragments occur that

  6. Example of trondhjemite genesis by means of alkali metasomatism: Rockford Granite, Alabama Appalachians

    SciTech Connect

    Drummond, M.S.; Wesolowski, D.; Ragland, P.C.; Ragland, J.

    1985-01-01

    An alternative model for trondhjemite genesis is proposed where granite is transformed to trondhjemite via infiltration by a Na-rich metamorphic fluid. The Rockford Granite serves as the case example for this process and is characterized as a synmetamorphic, peraluminous trondhjemite-granite suite. The major process operative in the conversion of granite to trondhjemite involves cation exchange of Na for K in the feldspar and mica phases through a volatile fluid medium. Whole-rock delta/sup 18/O values for the trondhjemites are negatively correlated with the atomic prop. K/Na ratio indicating a partial reequilibration of the altered granitoids with a Na- and /sup 18/O-rich metamorphically derived fluid. Biotite decomposition to an Al-epidote-paragonitic muscovite-quartz assemblage is also associated with the Na-metasomatism, as are apatite replacement by Al-epidote and secondary zircon crystallization. The replacement of magmatic phases by metasomatic phases exemplifies the chemical changes produced during infiltration metasomatism where the trondhjemites are depleted in all REE's. The timing of the infiltration metasomatism is thought to have occurred during regional metamorphism, producing a discrete fluid phase in the surrounding amphibolite-grade metasediments. Foliation planes in the granitoid apparently served as conduts for fluid flow with reaction enhanced permeability accompanying the 8% molar volume reduction during Na for K exchange in the feldspars. A model is proposed where metamorphic fluids migrated updip and along strike from their source and were buffered by the presence or absence of two feldspars in the metasediments.

  7. The igneous charnockite-high-K alkali-calcic I-type granite-incipient charnockite association in Trivandrum Block, southern India

    NASA Astrophysics Data System (ADS)

    Rajesh, H. M.

    The Pan-African (640 Ma) Chengannoor granite intrudes the NW margin of the Neoproterozoic high-grade metamorphic terrain of the Trivandrum Block (TB), southern India, and is spatially associated with the Cardamom hills igneous charnockite massif (CM). Geochemical features characterize the Chengannoor granite as high-K alkali-calcic I-type granite. Within the constraints imposed by the high temperature, anhydrous, K-rich nature of the magmas, comparison with recent experimental studies on various granitoid source compositions, and trace- and rare-earth-element modelling, the distinctive features of the Chengannoor granite reflect a source rock of igneous charnockitic nature. A petrogenetic model is proposed whereby there was a period of basaltic underplating; the partial melting of this basaltic lower crust formed the CM charnockites. The Chengannoor granite was produced by the partial melting of the charnoenderbites from the CM, with subsequent fractionation dominated by feldspars. In a regional context, the Chengannoor I-type granite is considered as a possible heat source for the near-UHT nature of metamorphism in the northern part of the TB. This is different from previous studies, which favoured CM charnockite as the major heat source. The occurrence of incipient charnockites (both large scale as well as small scale) adjacent to the granite as well as pegmatites (which contain CO2, CO2-H2O, F and other volatiles), suggests that the fluids expelled from the alkaline magma upon solidification generated incipient charnockites through fluid-induced lowering of water activity. Thus the granite and associated alkaline pegmatites acted as conduits for the transfer of heat and volatiles in the Achankovil Shear Zone area, causing pervasive as well as patchy charnockite formation. The transport of CO2 by felsic melts through the southern Indian middle crust is suggested to be part of a crustal-scale fluid system that linked mantle heat and CO2 input with upward migration

  8. Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 4. Numerical modeling of kinetic reaction paths

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Lu, Peng; Zheng, Zuoping; Ganor, Jiwchar

    2010-07-01

    This paper explores how dissolution and precipitation reactions are coupled in batch reactor experimental systems at elevated temperatures. This is the fourth paper in our series of "Coupled Alkali Feldspar Dissolution and Secondary Mineral Precipitation in Batch Systems". In our third paper, we demonstrated via speciation-solubility modeling that partial equilibrium between secondary minerals and aqueous solutions was not attained in feldspar hydrolysis batch reactors at 90-300 °C and that a strong coupling between dissolution and precipitation reactions follows as a consequence of the slower precipitation of secondary minerals ( Zhu and Lu, 2009). Here, we develop this concept further by using numerical reaction path models to elucidate how the dissolution and precipitation reactions are coupled. Modeling results show that a quasi-steady state was reached. At the quasi-steady state, dissolution reactions proceeded at rates that are orders of magnitude slower than the rates measured at far from equilibrium. The quasi-steady state is determined by the relative rate constants, and strongly influenced by the function of Gibbs free energy of reaction ( ΔG) in the rate laws. To explore the potential effects of fluid flow rates on the coupling of reactions, we extrapolate a batch system ( Ganor et al., 2007) to open systems and simulated one-dimensional reactive mass transport for oligoclase dissolution and kaolinite precipitation in homogeneous porous media. Different steady states were achieved at different locations along the one-dimensional domain. The time-space distribution and saturation indices (SI) at the steady states were a function of flow rates for a given kinetic model. Regardless of the differences in SI, the ratio between oligoclase dissolution rates and kaolinite precipitation rates remained 1.626, as in the batch system case ( Ganor et al., 2007). Therefore, our simulation results demonstrated coupling among dissolution, precipitation, and flow rates

  9. The evolution and significance of microfracturing within feldspars in low-grade granitic mylonites: A case study from the Eastern Ghats Mobile Belt, India

    NASA Astrophysics Data System (ADS)

    Sinha, Suspa; Alsop, G. Ian; Biswal, T. K.

    2010-10-01

    Patterns of microfracturing are investigated in plagioclase and K-feldspar porphyroclasts formed within granitic mylonites along the boundary of the Eastern Ghats Mobile Belt, India. The mineral assemblage comprising quartz, feldspar, biotite and hornblende suggests lower greenschist facies conditions during mylonitisation, with the contrasting ductile behaviour of quartz and brittle fracturing of feldspars restricting the temperature range during deformation to 300-350 °C. Microfracturing of feldspars takes place by concentration of pure shear within the feldspar-rich layers. This may reflect strain partitioning into dominantly pure and simple shear due to the competency contrasts between the two major constituent minerals (quartz and feldspar). The microfractures occur in conjugates (here designated T 1 and T 2) with T 1 inclined in the same direction as the S-fabric and showing an antithetic sense to the NW verging shear, while T 2 is inclined in an opposite sense to the S-fabric and displays synthetic shear. The direction of maximum compression occurs at high angles to the C-fabric, and the T 1 and T 2 fractures are the result of pure shear localized into brittle layers within the mylonite. With progressive shear, the fractures along with their host feldspar grains are rotated. Theoretical graphs are plotted between bulk shear ( γ) and the angle of initiation ( α) of T 1 and T 2 with respect to C-planes, for fractures hosted in a circular or elliptical objects. The kinematics of these fractures are also analyzed with regard to variations in shear strain and sense of shear along them. The sense of shear may vary or remain stable within fractures, depending on their initial angle of inclination with respect to the C-fabric. As T 1 is inclined at low angles to the XY plane and in the same direction as the S-fabric, it undergoes maximum shear strain compared to T 2 and may even exceed the bulk shear. This facilitates breakdown of feldspar porphyroclasts during

  10. Mineralogical indicators of volatile loss and alkali metasomatism in roof zones of the biotite granite in the Kwandonkaya Complex, Nigeria

    NASA Astrophysics Data System (ADS)

    Sakoma, Emmanuel M.; Martin, Robert F.

    2004-06-01

    The plutonic rocks in the Kwandonkaya complex, located within the NYG province of Nigeria, have some hypersolvus granites composed mainly of orthoclase microperthite and interstitial annite. These are inferred to have formed from a relatively F-poor, and relatively dry felsic melt. During cooling, Al-Si order was not completely achieved when the inversion of sanidiness to orthoclase and exsolution occurred. A majority of the granites contain intermediate to low microcline with annite to siderophyllite. The samples were incipiently modified in the subsolidus at very low fluid-rock ratios. Drusy granites result from resurgent boiling and volatile loss, which produced orthoclase-dominant feldspar and zoned zinnwaldite, with microcline lining cavities, whereas late loss of volatiles resulted in low microcline and zinnwaldite and metasomatism associated with cassiterite-topaz mineralization. Mica composition in both types of drusy granite is similar and seems to have been fluid-buffered. Albitization was rock-buffered and resulted in variable degree of Al-Si order in K-feldspar and mild modification of mica composition. Key factors affecting both the degree of Al-Si order of K-feldspar and mica compositions at Kwandonkaya seem to be the degree of volatile build-up and loss, and extent of fluid-rock interactions.

  11. Effects of magma mingling in the granites of Mount Desert Island, Maine

    SciTech Connect

    Seaman, S.J.; Ramsey, P.C. )

    1992-07-01

    Textures and compositional relationships associated with dark-colored, fine-grained enclaves in the Cadillac Mountain and Somesville granites, Mount Desert Island, Maine, preserve abundant evidence for contamination of host granitic magmas by enclave liquids. Fine-grained enclaves, which apparently represent chilled magmatic droplets, have affected the composition and texture of the host granites by three possible mechanisms: (1) crystallization of feldspar-quartz-hornblende pegmatite pods from fluids of enclave origin in the granite surrounding enclaves, and the disaggregation of the pods and dispersion of crystals into the granite; (2) ionic exchange between enclaves and granitic magmas; (3) the generation around enclaves of rinds consisting of an inner alkali feldspar-quartz zone and an outer zone of hornblende-enriched granite. Thermal calculations suggest that the alkali feldspar-quartz zones of the rinds surrounding enclaves may result from resorption of alkali feldspar and quartz crystals in the granitic magma by heat of cooling and crystallization of enclave material. The interaction between the hot enclave and the alkali feldspar-quartz composition liquid may be analogous to that between a pluton and meteoric water in a hydrothermal system. The segregation of alkali feldspar-quartz and hornblende-rich zones may result from the minimum melt composition fluid migrating toward the enclave, leaving behind unmelted hornblende, as part of a convection circuit set up by the enclave. Alternatively, hornblende-rich zones concentric to and outside of the alkali feldspar-quartz rinds may record limit of movement of a front of hydrous fluid driven from the enclave boundary down a thermal gradient.

  12. Shock melting of K-feldspar and interlacing with cataclastically deformed plagioclase in granitic rocks at Toqqusap Nunaa, southern West Greenland: Implications for the genesis of the Maniitsoq structure

    NASA Astrophysics Data System (ADS)

    Keulen, Nynke; Garde, Adam A.; Jørgart, Tommy

    2015-11-01

    Folded sheets of Mesoarchaean, leucocratic plagioclase-K-feldspar-mesoperthite-bearing granitic rocks in the Toqqusap Nunaa area of the Maniitsoq structure, West Greenland, are characterised by their very fine grain sizes and microstructures without normal igneous or planar/linear tectonic fabrics. Quartz forms equidimensional and branching, ductilely deformed aggregates and bifurcating panels with protrusions, constrictions and chains of ball-shaped grains with healed, radiating intergranular fractures. Plagioclase (An10-20) was cataclastically deformed and comminuted, whereas K-feldspar and mesoperthite are devoid of cataclastic microstructures. K-feldspar forms dispersed, highly irregular grains with numerous cusps and saddles, indicating almost ubiquitous direct (shock) melting of this mineral. It is commonly located along former fractures in plagioclase, resulting in an 'interlaced' feldspar microstructure with contact shapes indicating subsequent melting of plagioclase directly adjacent to K-feldspar. Mesoperthite forms separate, rounded, and irregular grains with protrusions and cusped margins indicating crystallisation from melts. Some mesoperthite grains are texturally and compositionally heterogeneous and contain internal lenses of K-feldspar and/or plagioclase. Other mesoperthite grains comprise coarsened, 'unzipped' areas, presumably due to localised, fluid-controlled dissolution-reprecipitation processes. The ternary feldspar precursor of the mesoperthite is interpreted as having crystallised from variably effectively mixed K-feldspar shock melts and plagioclase contact melts. Direct melting of K-feldspar, but no whole-rock melting, requires shock metamorphism with a short-lived temperature excursion to above the melting temperature of K-feldspar (~ 1300 °C). The presence of three different feldspar species and absence of chemical zonation, magmatic mantling, or metamorphic coronas furthermore hinders interpretations solely by means of endogenic

  13. Matrix diffusion of some alkali- and alkaline earth-metals in granitic rock

    SciTech Connect

    Johansson, H.; Byegaard, J.; Skarnemark, G.; Skaalberg, M.

    1997-12-31

    Static through-diffusion experiments were performed to study the diffusion of alkali- and alkaline earth-metals in fine-grained granite and medium-grained Aespoe-diorite. Tritiated water was used as an inert reference tracer. Radionuclides of the alkali- and alkaline earth-metals (mono- and divalent elements which are not influenced by hydrolysis in the pH-range studied) were used as tracers, i.e., {sup 22}Na{sup +}, {sup 45}Ca{sup 2+} and {sup 85}Sr{sup 2+}. The effective diffusivity and the rock capacity factor were calculated by fitting the breakthrough curve to the one-dimensional solution of the diffusion equation. Sorption coefficients, K{sub d}, that were derived from the rock capacity factor (diffusion experiments) were compared with K{sub d} determined in batch experiments using crushed material of different size fractions. The results show that the tracers were retarded in the same order as was expected from the measured batch K{sub d}. Furthermore, the largest size fraction was the most representative when comparing batch K{sub d} with K{sub d} evaluated from the diffusion experiments. The observed effective diffusivities tended to decrease with increasing cell lengths, indicating that the transport porosity decreases with increasing sample lengths used in the diffusion experiments.

  14. Dissolution of Quartz, Albite and K-feldspar Into H2O-Saturated Haplogranitic Melt at 800oC and 200 MPa: Diffusive Transport Properties of Granitic Melts at Crustal Anatectic Temperatures

    NASA Astrophysics Data System (ADS)

    Acosta, A.; London, D.; Dewers, T.; Morgan, G.

    2002-12-01

    With the aim of investigating the diffusive transport properties of granitic melts at crustal anatectic conditions and obtaining some constraints on speciation and coordination in the melt, we conducted albite, K-feldspar and quartz dissolution experiments in H2O-saturated metaluminous haplogranitic glass (nominal composition of the 200 MPa H2O-saturated haplogranite eutectic of Tuttle and Bowen, 1958) at 800oC and 200 MPa. Mineral and glass cylinders were juxtaposed against flat polished surfaces inside platinum or gold capsules, then run for durations in the range 120-960 h. Based on the time dependence of interface retreat dissolution is interface reaction-controlled up to 700 h, and becomes diffusion-controlled afterwards. Upon dissolution of albite, Al and Na entering the melt decouple and Na diffuses away from the interface to maintain a constant Al/Na molar ratio throughout the entire melt column. Potassium from the bulk melt diffuses uphill towards the albite-melt interface to maintain a constant Aluminum Saturation Index (ASI=molar Al2O3/Na2O+K2O) of 1.00 throughout the entire melt column. Dissolution of K-feldspar results in migration of K away from the interface and uphill diffusion of Na from the bulk melt towards the interface, again maintaining constant Al/Na and ASI ratios in the bulk melt. Dissolution of quartz produces enrichment in SiO2 versus dilution of the rest of components in the interface melt. These results indicate that in the five-component H2O-saturated metaluminous haplogranite system, uncoupled diffusion takes place along the following four directions in composition space: SiO2; Na2O; K2O; and a combination of Al2O3 and alkalis such that the Al/Na molar ratio is equal to that in the bulk melt, and the Al2O3/Na2O+K2O molar ratio is equal to the equilibrium ASI of the melt. These observations are in accord with results obtained from corundum and andalusite dissolution experiments in the same system and P-T-X conditions (Acosta-Vigil et

  15. Alkali feldspar dissolution and secondary mineral precipitation in batch systems: 3. Saturation states of product minerals and reaction paths

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Lu, Peng

    2009-06-01

    In order to evaluate the complex interplay between dissolution and precipitation reaction kinetics, we examined the hypothesis of partial equilibria between secondary mineral products and aqueous solutions in feldspar-water systems. Speciation and solubility geochemical modeling was used to compute the saturation indices (SI) for product minerals in batch feldspar dissolution experiments at elevated temperatures and pressures and to trace the reaction paths on activity-activity diagrams. The modeling results demonstrated: (1) the experimental aqueous solutions were supersaturated with respect to product minerals for almost the entire duration of the experiments; (2) the aqueous solution chemistry did not evolve along the phase boundaries but crossed the phase boundaries at oblique angles; and (3) the earlier precipitated product minerals did not dissolve but continued to precipitate even after the solution chemistry had evolved into the stability fields of minerals lower in the paragenesis sequence. These three lines of evidence signify that product mineral precipitation is a slow kinetic process and partial equilibria between aqueous solution and product minerals were not held. In contrast, the experimental evidences are consistent with the hypothesis of strong coupling of mineral dissolution/precipitation kinetics [e.g., Zhu C., Blum A. E. and Veblen D. R. (2004a) Feldspar dissolution rates and clay precipitation in the Navajo aquifer at Black Mesa, Arizona, USA. In Water-Rock Interaction (eds. R. B. Wanty and R. R. I. Seal). A.A. Balkema, Saratoga Springs, New York. pp. 895-899]. In all batch experiments examined, the time of congruent feldspar dissolution was short and supersaturation with respect to the product minerals was reached within a short period of time. The experimental system progressed from a dissolution driven regime to a precipitation limited regime in a short order. The results of this study suggest a complex feedback between dissolution and

  16. Origin of hydrous alkali feldspar-silica intergrowth in spherulites from intra-plate A2-type rhyolites at the Jabal Shama, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Surour, Adel A.; El-Nisr, Said A.; Bakhsh, Rami A.

    2016-03-01

    Miocene rhyolites (19.2 ± 0.9 Ma) at the Jabal Shama in western Saudi Arabia represent an example of rift-related silicic volcanism that took place during the formation of the Red Sea. They mostly consist of tuffaceous varieties with distinct flow banding, and pea-sized spherulites, obsidian and perlitized rhyolite tuffs. Although they have the geochemical signature of A2-type rhyolites, these silicic rocks are not typically alkaline but alkali-calcic to calc-alkaline. They developed in a within-plate regime and possibly derived from a recycled mafic subducted slab in depleted sub-continental mantle beneath the western Arabian plate. The Jabal Shama rhyolites are younger in age than their Miocene counterparts in Yemen and Ethiopia. The Jabal Shama spherulites consist of hydrous alkali feldspar-silica radial intergrowths with an occasional brown glass nucleus. Carbonate- and glass-free spherulites give up to 4.45 wt% L.O.I. The hydrous nature of these silicates and the absence of magnetite in the spherulites is a strong indication of oxidizing conditions. The spherulites contain hydrous feldspars with up to ∼6 wt% H2O, and they develop by diffusion and devitrification of glass in the rhyolite tuff at ∼800 °C. Owing to higher undercooling due to supersaturation, the radial hydrous phases within spherulites might grow faster and led to coagulation. The polygonal contacts between spherulites and the ∼120° dihedral angle suggest solid-state modification and recrystallization as the process of devitrification proceeds as low as ∼300 °C. The sum of FeO + MgO is positively correlated with total alkalies along with magnetite oxidation in the matrix to Fe-oxyhydroxides, and to the incorporation of OH- into silicates within the spehrulites themselves. Structural H2O in glass of the Jabal Shama perlite (obsidian) is considerable (∼9-12 wt%) with 3.72-5.6 wt% L.O.I. of the whole-rock. The presence of deleterious silica impurities would lower the ore grade due to

  17. K-feldspar megacrysts growth and their link to the granitic mush: insight from high precision U-Pb dates (ID-TIMS) and trace elements (TIMS-TEA) on zircon

    NASA Astrophysics Data System (ADS)

    Barboni, M.; Schoene, B.

    2012-12-01

    K-feldspar megacrysts are common in granitic to granodioritic rocks though their origin and evolution is still poorly understood. Their occurrence seems to reflect a low nucleation rate relative to growth rate at low degrees of supersaturation. Though K-feldspar has been argued to be one of the last minerals to saturate in felsic magma, crystal mush may still contain 60-70% liquid at the initiation of crystallization. Therefore, abundant liquid might be available for development of large crystals early in the magma cooling process. The recent recognition that many granitoid plutons are built incrementally by many magma injections open new perspectives for K-feldspar megacrysts formation. Repeated replenishment, reheating and reinvigoration of the mush might play a significant role in making and preserving K-feldspar megacrysts. The Miocene Elba island intrusives (Italy) are famous for having some of the largest K-feldspar megacrysts ever found (up to 25 cm.). This young plutonic body emplaced incrementally at shallow crustal level (ca. 3km) and displays extensive evidence of interactions between magmas of contrasting compositions. We have sampled three different families of K-feldspar megacrysts occurring in different host rock and have combined U/Pb high precision dates (ID-TIMS) with trace elements (TIMS-TEA) and Hf isotopes of zircons that are included within the K-feldspar megacrysts and compared them to zircons from the host rock. Ages of zircon included in the megacrysts could document whether the crystals grew early in the magmatic system (inclusions older than the host rock) or late during the cooling history (similar ages within inclusions and host rock). Ti-in zircon thermometer combined with trace-elements signature could record slight differences between megacrysts and host rock zircons, documenting the development of the megacrysts in comparison with the one of the host granite. Strong field evidence support a magmatic/ phenocrystic origin for the Elba

  18. Pan-African alkali granites and syenites of Kerala as imprints of taphrogenic magmatism in the South Indian shield

    NASA Technical Reports Server (NTRS)

    Santosh, M.; Drury, S. A.; Iyer, S. S.

    1988-01-01

    Granite and syenite plutons with alkaline affinities ranging in age from 550 to 750 Ma sporadically puncture the Precambrian granulites of the Kerala region. All the bodies are small (20 to 60 sq km), E-W to NW-SE elongated elliptical intrusives with sharp contacts and lie on or close to major late Proterozoic lineaments. Geochemical plots of A-F-M and An-Ab-Or relations show an apparent alkali enrichment trend on the former, but the plutons define relatively distinct fields on the latter. Most of the plutons are adamellitic to granitic by chemistry. The variations of SiO2 with log sub 10 K2O/MgO (1) brings out the distinct alkaline nature of the plutons. Some of the granites are extremely potassic, like the Peralimala pluton, which shows up to 11.8 percent K2O. On a SiO2-Al2O3-Na2O+K2O (mol percent) plot, the plutons vary from peraluminous to peralkaline, but none are nepheline normative. Low MgO, low to moderate CaO and high Fe2O3/FeO values are other common characteristics. Among trace elements, depletion of Ba, Sr and Rb with high K/Ba and K/Rb values are typical. Overall, the plutons show a trend of decreasing K/Rb ratio with increasing K content. Individual plutons show more clearly defined trends similar to those from granitic masses characterized by plagioclase fractionation.

  19. New U Pb SHRIMP zircon age for the Schurwedraai alkali granite: Implications for pre-impact development of the Vredefort Dome and extent of Bushveld magmatism, South Africa

    NASA Astrophysics Data System (ADS)

    Graham, I. T.; De Waal, S. A.; Armstrong, R. A.

    2005-12-01

    The Schurwedraai alkali granite is one of a number of prominent ultramafic-mafic and felsic intrusions in the Neoarchaean to Palaeoproterozoic sub-vertical supracrustal collar rocks of the Vredefort Dome, South Africa. The alkali granite intruded the Neoarchaean Witwatersrand Supergroup and has a peralkaline to peraluminous composition. A new zircon SHRIMP crystallization age of 2052 ± 14 Ma for the Schurwedraai alkali granite places it statistically before the Vredefort impact event at 2023 ± 4 Ma and within the accepted emplacement interval of 2050-2060 Ma of the Bushveld magmatic event. The presence of the alkali granite and associated small ultramafic-mafic intrusions in the Vredefort collar rocks extends the southern extremity of Bushveld-related intrusions to some 120 km south of Johannesburg and about 150 km south of the current outcrop area of the Bushveld Complex. The combined effect of these ultramafic-mafic and felsic bodies may have contributed to a pronouncedly steep pre-impact geothermal gradient in the Vredefort area, and to the amphibolite-grade metamorphism observed in the supracrustal collar rocks of the Vredefort Dome.

  20. The geochemical characteristics of Haiyang A-type granite complex in Shandong, eastern China

    NASA Astrophysics Data System (ADS)

    Li, He; Ling, Ming-xing; Ding, Xing; Zhang, Hong; Li, Cong-ying; Liu, Dun-yi; Sun, Wei-dong

    2014-07-01

    Haiyang granite complex consists of K-feldspar granite and syenite, with a total exposure area of ~ 600 km2. The K-feldspar granite is metaluminous (A/CNK = 0.70 to 0.99) and the syenite is slightly peraluminous (A/CNK = 1.01 to 1.10), both of which have typical characteristics of A-type granite with high total alkali contents and FeOT/(FeOT + MgO) ratios. Zircon U-Pb age are 116.8 ± 1.7 Ma and 115.8 ± 2.2 Ma, for the K-feldspar granite and the syenite, respectively. This is consistent with field observation that the syenite intruded into the K-feldspar granite. Varied zircon O isotope (5.65-7.78‰ for K-feldspar granite and 4.68-7.08‰ for syenite) with peak values that are marginally higher than those of mantle zircon reflects important mantle contributions. These together with large variation of zircon εHf(t) values of K-feldspar granite (- 22.4 to - 15.6) and syenite (- 24.6 to - 13.5), can best be explained by the involvement of at least two components, e.g., enriched lithospheric mantle +/- subducted materials, and upwelling asthenosphere. Apatite has right decline REE pattern. The apatite from K-feldspar granite has higher Cl contents than those of syenite, implying more influence from a subduction released fluid in K-feldspar granite source. This distinction is supported by the systematically higher oxygen fugacity of K-feldspar granite as indicated by zircon Ce4 +/Ce3 + ratios. In the Yb/Ta-Y/Nb, Ce/Nb-Y/Nb diagrams, both K-feldspar granite and syenite plot in A1-type, with K-feldspar granite plotting closer to A2. In the Nb-Y-3Ga and Nb-Y-Ce charts, syenite plots near the boundary between A1 and A2, whereas some K-feldspar granite samples plot in A2 field, indicating a tendency of transition originally from A2 to A1. In general A1 granites form in intraplate settings, whereas A2 granite forms in post-collision. It is likely that mantle components metasomatized by subduction released fluids are easier to be partially melted, forming K-feldspar granite

  1. Petrogenesis of pegmatites and granites in southwestern Maine

    SciTech Connect

    Tomascak, P.B.; Walker, R.J.; Krogstad, E.J. . Dept. of Geology)

    1993-03-01

    Granitic pegmatites occurring near the town of Topsham in southwestern Maine are mineralogically diverse, featuring abundant dikes and contain rare earth element minerals as well as one pegmatite that contains Li minerals. The pegmatite series crops out near the Brunswick granite, a texturally diverse granitic pluton, and lies 13 km southeast of the Mississippian age Sebago batholith. Areas intruded by pegmatites that possess such different mineral assemblages are globally rare. The origins of these mixed'' pegmatite series have not been comprehensively investigated. There is no known pattern of regional zonation (mineral/chemical) among Topsham series pegmatites, hence simple fractionation processes are probably not responsible for the compositional variations. The authors are attempting to clarify pegmatite petrogenesis using common Pb isotopic ratios of feldspars and Sm-Nd isotopic data from whole rocks and minerals. Pb isotopic ratios from leached feldspars reflect the Pb ratios of the source from which they were derived. The range of Pb isotopic compositions of alkali feldspars from 7 granitic pegmatites is as follows: [sup 206]Pb/[sup 204]Pb = 18.5-19.1; [sup 207]Pb/[sup 204]Pb = 15.53-15.69; [sup 208]Pb/[sup 204]Pb = 38.3-38.6. The Brunswick granite has K-feldspars with [sup 206]Pb/[sup 204]Pb = 18.40-18.47, [sup 207]/[sup 204]Pb = 15.64-15.66 and [sup 208]Pb/[sup 204]Pb = 38.29-38.39. The Pb isotopic compositions of both pegmatites and granites are significantly more radiogenic than existing data for the Sebago granite and argue against the consanguinity of Topsham pegmatites and the Sebago batholith. These data instead support a genetic link between the pegmatites and the Brunswick granite, which ranges from a fine-grained two-mica granite to a garnet-bearing pegmatitic leucogranite.

  2. Radioactivity and distribution of U and Th in some granitic masses, Wadi El-Saqia Area, Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Abdel-Monem, A. A.; Hussein, H. A.; Abdel-Kader, Z. M.; Abu Zied, H. T.; Ammar, S. E.

    1996-05-01

    Radioactivity measurements and U and Th content determinations were carried out on 3 small granitic plutons, Gabal Abu Aqarib, Gabal El-Himeiyer and Gabal Um Zarabit, in the Central Eastern Desert. The Abu Aqarib and Um Zarabit alkali feldspar granites are elenogated bodies intruded into the Dokhan Volcanics, whereas El-Himeiyir is intruded into an ophiolitic melange section. Compared to the average content of U and Th of world granites, El-Himeiyir alkali feldspar granites show normal content of both U and Th. On the other hand, Abu Aqarib alkali feldspar granite shows some enrichments in both U and Th, whereas Um Zarabit granite shows enrichments in U contents only. The two discovered anomalous radioactive sites show 154 ppm U, and 256 ppm Th contents for Gabal Abu Aqarib site, and 24 ppm U, and 107 ppm Th contents for El-Himeiyir one. The two sites are associated with NE-trending shear zones and exhibit hydrothermal alteration features such a hematitization and silicification. The high radioactivity is ascribed to unusual accumulations of zircon and/or apatite; however, some of the enriched U may be of epigenetic origin.

  3. Biochemical evolution II: origin of life in tubular microstructures on weathered feldspar surfaces.

    PubMed

    Parsons, I; Lee, M R; Smith, J V

    1998-12-22

    Mineral surfaces were important during the emergence of life on Earth because the assembly of the necessary complex biomolecules by random collisions in dilute aqueous solutions is implausible. Most silicate mineral surfaces are hydrophilic and organophobic and unsuitable for catalytic reactions, but some silica-rich surfaces of partly dealuminated feldspars and zeolites are organophilic and potentially catalytic. Weathered alkali feldspar crystals from granitic rocks at Shap, north west England, contain abundant tubular etch pits, typically 0.4-0.6 microm wide, forming an orthogonal honeycomb network in a surface zone 50 microm thick, with 2-3 x 10(6) intersections per mm2 of crystal surface. Surviving metamorphic rocks demonstrate that granites and acidic surface water were present on the Earth's surface by approximately 3.8 Ga. By analogy with Shap granite, honeycombed feldspar has considerable potential as a natural catalytic surface for the start of biochemical evolution. Biomolecules should have become available by catalysis of amino acids, etc. The honeycomb would have provided access to various mineral inclusions in the feldspar, particularly apatite and oxides, which contain phosphorus and transition metals necessary for energetic life. The organized environment would have protected complex molecules from dispersion into dilute solutions, from hydrolysis, and from UV radiation. Sub-micrometer tubes in the honeycomb might have acted as rudimentary cell walls for proto-organisms, which ultimately evolved a lipid lid giving further shelter from the hostile outside environment. A lid would finally have become a complete cell wall permitting detachment and flotation in primordial "soup." Etch features on weathered alkali feldspar from Shap match the shape of overlying soil bacteria. PMID:9860941

  4. Mineralogy of silicate inclusions of the Colomera IIE iron and crystallization of Cr-diopside and alkali feldspar from a partial melt

    NASA Astrophysics Data System (ADS)

    Takeda, Hiroshi; Hsu, Weibiao; Huss, Gary R.

    2003-06-01

    We studied the mineralogy, mineral chemistry, and compositions of 48 interior silicate inclusions and a large K-rich surface inclusion from the Colomera IIE iron meteorite. Common minerals in the interior silicate inclusions are Cr diopside and Na plagioclase (albite). They are often enclosed by or coexist with albitic glasses with excess silica and minor Fe-Mg components. This mineral assemblage is similar to the "andesitic" material found in the Caddo County IAB iron meteorite for which a partial melt origin has been proposed. The fairly uniform compositions of Cr diopside (Ca 44Mg 46Fe 10) and Na plagioclase (Or 2.5Ab 90.0An 7.5 to Or 3.5Ab 96.1An 0.4) in Colomera interior inclusions and the angular boundaries between minerals and metal suggest that diopside and plagioclase partially crystallized under near-equilibrium conditions from a common melt before emplacement into molten metal. The melt-crystal assemblage has been called "crystal mush." The bulk compositions of the individual composite inclusions form an array between the most diopside-rich inclusion and plagioclase. This is consistent only with a simple mechanical mixing relationship, not a magmatic evolution series. We propose a model in which partly molten metal and crystal mush were mixed together by impact on the IIE parent body. Other models involving impact melting of the chondritic source material followed by growth of diopside and plagioclase do not easily explain near equilibrium growth of diopside and Na plagioclase, followed by rapid cooling. In the K-rich surface inclusion, K feldspar, orthopyroxene, and olivine were found together with diopside for the first time. K feldspar (sanidine, Or 92.7Ab 7.2An 0.1 to Or 87.3Ab 11.0An 1.7) occurs in an irregular veinlike region in contact with large orthopyroxene crystals of nearly uniform composition (Ca 1.3Mg 80.5Fe 17.8 to Ca 3.1Mg 78.1Fe 18.9) and intruding into a relict olivine with deformed-oval shape. Silica and subrounded Cr diopside are

  5. Geochemical study of the granitic rocks from the Ryongnam massif, Geochang, South Korea

    NASA Astrophysics Data System (ADS)

    Han, M.; Kim, J.; Yang, K.

    2009-12-01

    The geochemical studies on the granitic rocks of the central part of the Ryongnam massif were carried out in order to constrain the petrogenesis and the paleotectonic environment. The area is composed of Precambrian gneissic rocks and metamorphosed sedimentary rocks, age-unknown granite and dioritic rocks, and Jurassic granitic rocks. The modal compositions indicate that the studied granitic rocks are granodiorite, monzogranite, syeno-granite, and alkali-feldspar granite. Except for Na2O and K2O, the contents of most oxides such as P2O5, TiO2, Al2O3, CaO, MgO and Fe2O3 decrease when SiO2 increases. These granitic rocks belong to the calc-alkaline series in the TAS and AFM diagram. They also show high-K nature, indicating the rocks experienced considerable differentiations. The studied granitic rocks correspond to Peraluminous and I-type(less than 1.1) in the A/CNK diagram. Chondrite-normalized REE patterns show generally enrichment in LREE and depleted in HREE. This suggests that the magma has been largely differentiated at an early stage. REE patterns of different granitic rocks in composition are subparallel each other, suggesting cogenetic in origin. The (-) anomaly of Eu shows that the granitic rocks were generated from residual magma which had fractionated plagioclase. Furthermore, the amount of total REE of the studied granitic rocks ranges 46.93~108.84 ppm, which corresponds to the range of granitic rocks from the continental margin granite. On the N-type MORB normalized spiderdiagram, the studied rocks generally show Nb-Ta and Hf-Zr trough, indicating the subduction-related products. According to the tectonomagmatic discrimination diagram, they correspond to volcanic arc granite(VAG). The major and trace element characteristics of the granitic rocks support their emplacement at the active continental margin.

  6. A-type granite and the Red Sea opening

    USGS Publications Warehouse

    Coleman, R.G.; DeBari, S.; Peterman, Z.

    1992-01-01

    Miocene-Oligocene A-type granite intrudes the eastern side of the Red Sea margin within the zone of extension from Jiddah, Saudi Arabia south to Yemen. The intrusions developed in the early stages of continental extension as Arabia began to move slowly away from Africa (around 30-20 Ma). Within the narrow zone of extension silicic magmas formed dikes, sills, small plutons and extrusive equivalents. In the Jabal Tirf area of Saudi Arabia these rocks occur in an elongate zone consisting of late Precambrian basement to the east, which is gradually invaded by mafic dikes. The number of dikes increases westward until an igneous complex is produced parallel to the present Red Sea axis. The Jabal Tirf igneous complex consists of diabase and rhyolite-granophyre sills (20-24 Ma). Although these are intrusine intrusive rocks their textures indicate shallow depths of intrusion (< 1 km). To the south, in the Yemen, contemporaneous with alkali basaltic eruptions (26-30 Ma) and later silicic eruptions, small plutons, dikes, and stocks of alkali granite invaded thick (1500 m) volcanic series, at various levels and times. Erosion within the uplifted margin of Yemen suggests that the maximum depth of intrusion was less than 1-2 km. Granophyric intrusions (20-30 Ma) within mafic dike swarms similar to the Jabal Tirf complex are present along the western edge of the Yemen volcanic plateau, marking a north-south zone of continental extension. The alkali granites of Yemen consist primarily of perthitic feldspar and quartz with some minor alkali amphiboles and acmite. These granites represent water-poor, hypersolvus magmas generated from parent alkali basalt magmas. The granophyric, two-feldspar granites associated with the mafic dike swarms and layered gabbros formed by fractional crystallization from tholeiitic basalt parent developed in the early stages of extension. Initial 87Sr/86Sr ratios of these rocks and their bulk chemistry indicate that production of peralkaline and

  7. Primary and Secondary Magnetizations in the Long Mountain Granite, Wichita Mountains, Oklahoma

    NASA Astrophysics Data System (ADS)

    Hamilton, M.; Elmore, R. D.; Weaver, B.

    2011-12-01

    The Cambrian Long Mountain Granite, exposed in the western Wichita Mountains, Oklahoma, is red at the surface but grades into a dark gray to green granite where it has been exposed by quarrying operations. Both red and green granite where investigated to determine if a primary magnetization could be isolated and to determine the timing and origin of the reddening in the granite. The green granite is a highly granophyric, fluorite-bearing alkali feldspar granite with hedenbergite as the dominant mafic phase. Magnetite and ilmenite are present as exsolved grains. Anisotropy of magnetic susceptibility analysis shows that the green granite contains what appears to be a primary magnetic fabric that is consistent with the sill-like emplacement of Wichita-group granites. Demagnetization yields a characteristic remanent magnetization (ChRM) with easterly declinations and moderate to steep positive inclinations that is removed between 500-540°C and has a pole at 8.8°S, 134.7°E. This is interpreted as a primary Cambrian thermal remanent magnetization residing in magnetite, and is consistent with several other paleomagnetic poles of similar age, providing additional constraints to the Cambrian apparent polar wander path (APWP) for Laurentia. The red granite also consists of granophyric intergrowths, and geochemical studies indicate that major and trace element abundances are similar. The oxidation state of iron (FeO vs. Fe2O3) is different with the average Fe2+/Fe3+ dropping from 1.74 to 0.54 in the red compared to the green granite. The mafic crystals in red granite are largely destroyed with the voids filled by clays, amorphous silica, calcite, and epidote-group minerals. Hematite occurs as fracture fill, grain boundary coatings and as slivers inserted along cleavage and exsolution planes in alkali feldspars. The Fe in the hematite appears to be sourced from the oxidation of magnetite and ilmenite and the breakdown of mafic minerals. The red granite contains

  8. Evaluation of laboratory test method for determining the potential alkali contribution from aggregate and the ASR safety of the Three-Gorges dam concrete

    SciTech Connect

    Lu Duyou . E-mail: duyoulu@njut.edu.cn; Zhou, Xiaoling; Xu Zhongzi; Lan Xianghui; Tang Mingshu; Fournier, Benoit

    2006-06-15

    The releasable alkali from granite, which was used in the Three-Gorges concrete dam project in China, and from gneiss and feldspar was estimated by extraction in distilled water and super-saturated Ca(OH){sub 2} solution. Results show that: i) the finer the particles and the higher the temperature, the greater and faster the release of alkali; ii) compared with extraction by distilled water, super-saturated Ca(OH){sub 2} solution had a stronger activation on feldspar than on granite and gneiss; iii) for the three rocks tested, thermal activation had the largest effect on gneiss and a lower and similar effect on granite and feldspar. For very fine particles, temperature had a similar effect on the release of alkali by all three rocks. Because the aggregate used in the Three-Gorges dam concrete is non-reactive and a low calcium fly ash was used in the concrete, ASR would not be an issue for the dam, despite the release of alkali from the aggregate into the concrete.

  9. Age and origin of Pan-African granites and associated U-Mo mineralization at Ekomédion, southwestern Cameroon

    NASA Astrophysics Data System (ADS)

    Mosoh Bambi, C. K.; Frimmel, H. E.; Zeh, A.; Suh, C. E.

    2013-12-01

    Various granites in the Pan-African Neoproterozoic Fold Belt of Cameroon were investigated in an area around Ekomédion (southwestern Cameroon) in order to set constraints on their genesis and age. The studied granites were likely emplaced in relation with the Central Cameroon Shear Zone (CCSZ). Hence dating the granites provides an age for the dextral transcurrent tectonics event responsible for the CCSZ. The interest in these granitic rocks is spurred by noticeable Mo and U mineralization in a pegmatite that is hosted by two-mica granite. The studied granites comprise post-collisional syn-D4 two-mica granite, alkali-feldspar granite, biotite-rich granite and porphyritic granite. Based on lithogeochemical data, the granites can be characterized as ferroan, peraluminous and high-K calc-alkaline. The biotite-rich and alkali feldspar granites show I-type characteristics, whereas the porphyritic and two-mica granites reveal S-type affinity. All of them are marked by strong light rare earth element fractionation and a strong negative Eu anomaly, and they are strongly depleted in Ba, Nb, P, Sr and Ti, pointing to a crustal origin. Crust assimilation is also evident from zircon xenocrysts in the two-mica granite with upper intercept U-Pb ages of 2051 ± 44 Ma and 1550 ± 24 Ma. U-Pb dating of zircon, monazite and xenotime grains/domains yielded indistinguishable ages for both the two-mica granite (578 ± 4 Ma) and the porphyritic granite (579 ± 3 Ma). An identical age (578 ± 11 Ma) was obtained by Re-Os dating of molybdenite that occurs together with uraninite in pegmatite within the two-mica granite, thus clearly attesting to a late-magmatic origin of the ore. The studied granites have many similarities, both in composition and age, with granites in Nigeria and northeastern Brazil, supporting the continuation of a large Pan-African/Braziliano magmatic province from west-central Africa to northeastern Brazil.

  10. Li- and F-bearing alkali amphibole from granitic pegmatite at Hurricane Mountain, Carroll County, New Hampshire

    USGS Publications Warehouse

    Foord, E.E.; Erd, Richard C.; Robie, S.B.; Lichte, F.E.; King, V.T.

    1996-01-01

    At Hurricane Mountain, Carroll County, New Hampshire, bodies of granitic pegmatite in riebeckite granite contain large (up to 10 cm long and 2 cm across) primary crystals of Li-bearing fluor-arfvedsonite in miarolitic cavities, grading to euhedral Li- and F-poor arfvedsonite. Fine-grained, fibrous, light blue-gray riebeckite occurs as a late-stage hydrothermal filling in the miarolitic cavities. The early, Li-rich, fluor-arfvedsonite has: a 9.836(5), b 17.997(7), c 5.316(4) A??, ?? 103.735(4)??, V 914.20(6) A??3; Z = 2, Dmeas. 3.34 g/cm3, Dcalc. 3.353 g/cm3; biaxial (-), 2Vmeas. 44(1)??, 2Vcalc. 46??; ?? 1.681(2), ?? 1.692(2), ?? 1.694(2), inclined dispersion, r > v; X ??? c -7??, Y = b, Z ??? a +7??; X dark blue, Y lavender gray, Z pale yellowish brown; X > Y > Z; X is opaque at 0.03 mm thickness. A structural formula, on the basis of 24 (O,OH,F) atoms is: (Na0.86K0.25)Na2(Fe2+2.54Fe3+1.485Mn0.10Zn 0.02Li0.49Ti0.07)(Si7.71Al 0.07)O22(F1.34OH0.63). Arfvedsonite within the miarolitic cavities contains less Li and F than that of the earlier generation, and the still later riebeckite contains only 0.09 wt.% Li2O and 0.3 wt.% F. The Fe3+:Fe2+ ratio of the early Li-bearing fluor-arfvedsonite and that of the euhedral arfvedsonite crystals within miarolitic cavities is 0.58. The late, fibrous, cavity-filling riebeckite has an Fe3+:Fe2+ ratio of 0.99. The total iron content of the three amphiboles increases with continued crystallization. These amphiboles are products of peralkaline pegmatites locally derived from peralkaline granite.

  11. Feldspar-fluid interactions in braid microperthites: pleated rims and vein microperthites

    NASA Astrophysics Data System (ADS)

    Lee, Martin R.; Waldron, Kim A.; Parsons, I.; Brown, William L.

    Braid microperthitic alkali feldspars in the Klokken, South Greenland and Coldwell, Ontario syenite intrusions have bulk-compositional variations along grain boundaries called pleated rims. These, together with vein microperthites in aplites which cross-cut the syenites, have been investigated by SEM and TEM. We distinguish two main types of pleated rims, ``arched '' and ``parallel-sided '', consisting of alternating Ab- and Or-rich areas on (001), which are 0.5-300 μm in length normal to (010) and 0.2-20 μm in width along (010). The smallest pleats, which occur on intracrystalline boundaries in Klokken feldspars, are fully coherent and composed of low albite and low microcline. Above the heads of some of the coarser pleats, braid microperthite grades into a film crypto- and micro-perthite and antiperthite microtexture called a ``transitional zone'' containing roughly planar lamellae of low albite and tweed orthoclase. During pleat development, local alternating volumes form in which the proportions of the phases differ ( phase separation) and the morphology of the intergrowths changes from braided to straight in response to this change in local bulk composition. Straightening is also accompanied by transformation of low microcline to tweed orthoclase. The coarsest pleats, which occur along grain boundaries in feldspars from the Coldwell syenite, are semi- or in-coherent and have a thick coherent and semicoherent transitional zone. Coarsening of pleats and development of the transitional zone has been facilitated by diffusion of ``water'' into grain interiors. In many cases, pleated rims have suffered deuteric alteration, by dissolution-reprecipitation processes, through the action of a water-rich fluid from the grain boundary, in which tweed orthoclase was transformed into irregular microcline and micropores developed. Vein microperthites in aplites from Klokken, and by extension the vein microperthites almost universal in most alkali granites, are interpreted

  12. A detailed study of ice nucleation by feldspar minerals

    NASA Astrophysics Data System (ADS)

    Whale, T. F.; Murray, B. J.; Wilson, T. W.; Carpenter, M. A.; Harrison, A.; Holden, M. A.; Vergara Temprado, J.; Morris, J.; O'Sullivan, D.

    2015-12-01

    Immersion mode heterogeneous ice nucleation plays a crucial role in controlling the composition of mixed phase clouds, which contain both supercooled liquid water and ice particles. The amount of ice in mixed phase clouds can affect cloud particle size, lifetime and extent and so affects radiative properties and precipitation. Feldspar minerals are probably the most important minerals for ice nucleation in mixed phase clouds because they nucleate ice more efficiently than other components of atmospheric mineral dust (Atkinson et al. 2013). The feldspar class of minerals is complex, containing numerous chemical compositions, several crystal polymorphs and wide variations in microscopic structure. Here we present the results of a study into ice nucleation by a wide range of different feldspars. We found that, in general, alkali feldspars nucleate ice more efficiently than plagioclase feldspars. However, we also found that particular alkali feldspars nucleate ice relatively inefficiently, suggesting that chemical composition is not the only important factor that dictates the ice nucleation efficiency of feldspar minerals. Ice nucleation by feldspar is described well by the singular model and is probably site specific in nature. The alkali feldspars that do not nucleate ice efficiently possess relatively homogenous structure on the micrometre scale suggesting that the important sites for nucleation are related to surface topography. Ice nucleation active site densities for the majority of tested alkali feldspars are similar to those found by Atkinson et al (2013), meaning that the validity of global aerosol modelling conducted in that study is not affected. Additionally, we have found that ice nucleation by feldspars is strongly influenced, both positively and negatively, by the solute content of droplets. Most other nucleants we have tested are unaffected by solutes. This provides insight into the mechanism of ice nucleation by feldspars and could be of importance

  13. Melting granites to make granites

    NASA Astrophysics Data System (ADS)

    Carvalho, Bruna B.; Sawyer, Edward W.; Janasi, Valdecir de A.

    2014-05-01

    Large-scale partial melting in the continental crust is widely attributed to fluid-absent incongruent breakdown of hydrous minerals in the case of pelites, greywackes and meta-mafic rocks. Granite is a far more common rock in the continental crust, but fluid-absent hydrate-breakdown melting is unlikely to result in significant melting in granites because of their low modal abundance of mica or amphibole. Experiments show that fluid-present melting can produce ~30% melt at low temperatures (690°C). Thus, granites and leucogranites can be very fertile if H2O-present melting occurs via reactions such as plagioclase + quartz + K-feldspar + H2O = melt, because of their high modal proportions of the reactant phases. Our study investigates the Kinawa Migmatite in the São Francisco Craton, southeastern Brazil. This migmatite is derived from an Archaean TTG sequence and can be divided into; 1) pink diatexites, 2) leucosomes, 3) grey gneisses and 4) amphibolites. The migmatite records upper-amphibolite to beginning of granulite facies metamorphism in a P-T range from 5.1-6.6 kbar and ~650-780°C. Pink diatexites are the most abundant rocks, and their appearance varies depending on the amount of melt they contained. Three types are recognised: residual diatexites (low melt fraction (Mf)), schlieren diatexites (moderate Mf) and homogeneous diatexites (high Mf). They are very closely related spatially in the field, with mostly transitional contacts. There is a sequence with progressive loss of ferromagnesian minerals, schollen and schlieren through the sequence to the most melt-rich parts of the diatexites as magmatic flow became more intense. There are fewer ferromagnesian minerals, thus the melt becomes cleaner (more leucocratic) and, because the schlieren have disaggregated the aspect is more homogeneous. These parts are texturally similar to leucogranites in which the biotite is randomly distributed and pre-melting structures are completely destroyed. The likely protolith

  14. Residence times of alkali feldspar phenocrysts from magma feeding the Agnano-Monte Spina Eruption (4.7 ka), Campi Flegrei caldera (Napoli, southern Italy) based on Ba-zonation modelling

    NASA Astrophysics Data System (ADS)

    Iovine, Raffaella Silvia; Wörner, Gerhard; Carmine Mazzeo, Fabio; Arienzo, Ilenia; Fedele, Lorenzo; Civetta, Lucia; D'Antonio, Massimo; Orsi, Giovanni

    2016-04-01

    Timescales governing the development of crustal magma reservoirs are a key for understanding magmatic processes such as ascent, storage and mixing event. An estimate of these timescales can provide important constraints for volcanic hazard assessment of active volcanoes. We studied the Agnano-Monte Spina eruption (A-MS; 4.7 ka; VEI = 4; 0.85 km3 D.R.E. of magma erupted) of the Campi Flegrei caldera, one of the most dangerous volcanic areas on Earth. The A-MS eruption has been fed by magmas varying from more to less evolved trachyte whose variable 87Sr/86Sr and trace elements features suggest magma mixing between two end-members. Ba zonation profiles of alkali feldspar phenocrysts have been determined through combined energy-dispersive and wavelength-dispersive electron microprobe analyses (EDS-WDS-EMPA). We focused on distinct compositional breaks near the rim of the crystals that likely represent the last mixing event prior to eruption. We always chose the steepest gradients close to the crystal rims, taking into account that any effects related to cutting angles or crystal orientation should give longer apparent diffusion times. Two different approaches were undertaken: (1) a quantitative Ba compositional profiles were measured by point analyses along a short transect crossing growth discontinuities and (2) grey-scale profiles were taken parallel to the acquired point profiles. Assuming that Ba dominates the backscattered electron intensities in sanidines, greyscale gradients can be used as a diffusive tracer. BSE images were processed using the ImageJ® software, in order to extract a numerical greyscale profile. In both cases, each profile was interpolated through a non-linear Boltzmann fit curve with the Mathematica® software. A few traverses done at angles smaller than 90° to the compositional boundary interface were corrected by multiplying the distance values by the sinus of the traverse angle relative to the vertical on the interface. Our preliminary

  15. Effect of Fe and Mg on crystallization in granitic systems

    SciTech Connect

    Naney, M.T.; Swanson, S.E.

    1980-07-01

    Single-step and multistep undercooling experiments using both Fe, Mg-free and Fe, Mg-bearing model granitic compositions were conducted to investigate the influence of mafic components on the crystallization of granitic melts. Crystallization of granite and granodiorite compositions in the system NaAlSi/sub 3/O/sub 8/-KAlSi/sub 3/O/sub 8/-CaAl/sub 2/Si/sub 2/O/sub 8/-SiO/sub 2/-H/sub 2/O produces assemblages containing one or more of the following phases: plagioclase, alkali feldspar, quartz, silicate liquid, and vapor. The observed phase assemblages are generally in good agreement with equilibrium data reported in the literature on the same bulk compositions. With the addition of Fe and Mg to these bulk compositions six new phases participate in the equilibria (orthopyroxene, clinopyroxene, biotite, hornblende,epidote, and magnetite). However, crystalline assemblages produced in phase equilibrium and crystal growth experiments brought to the same final P-T-X/sub H/sub 2/O/ conditions are in general not equivalent. Perhaps the addition of Fe and Mg has caused a breakdown of the Si-O framework in the melt, thereby promoting the more rapid nucleation of the ino- and phyllosilicates rather than the framework silicates. Border zones of granitic plutons, commonly rich in mafic minerals, may result from the more rapid nucleation of mafic phases from the silicate liquid. These zones are thought to develop by early crystallization along the walls of the pluton. Our results suggest the mafic phases should nucleate more quickly than the feldspars and quartz and thus should enrich the early crystallization products in ferromagnesian minerals.

  16. Principles of Thermal Expansion in Feldspars

    NASA Astrophysics Data System (ADS)

    Hovis, Guy; Medford, Aaron; Conlon, Maricate; Tether, Allison; Romanoski, Anthony

    2010-05-01

    Following the recent thermal expansion work of Hovis et al. (1) on AlSi3 feldspars, we have investigated the thermal expansion of plagioclase, Ba-K, and Ca-K feldspar crystalline solutions. X-ray powder diffraction data were collected between room temperature and 925 °C on six natural plagioclase specimens ranging in composition from anorthite to oligoclase, the K-exchanged equivalents of these plagioclase specimens, and five synthetic Ba-K feldspars with compositions ranging from 25 to 99 mol % BaAl2Si2O8. The resulting thermal expansion coefficients (α) for volume have been combined with earlier results for end-member Na- and K-feldspars (2,3). Unlike AlSi3 feldspars, Al2Si2 feldspars, including anorthite and celsian from the present study plus Sr- and Pb-feldspar from other workers (4,5), show essentially constant and very limited thermal expansion, regardless of divalent cation size. In the context of structures where the Lowenstein rule (6) requires Al and Si to alternate among tetrahedra, the proximity of bridging Al-O-Si oxygen ions to divalent neighbors (ranging from 0 to 2) produces short Ca-O (or Ba-O) bonds (7,8) that apparently are the result of local charge-balance requirements (9). Gibbs et al. (10) suggest that short bonds such as these have a partially covalent character. This in turn stiffens the structure. Thus, for feldspar series with coupled substitution the change away from a purely divalent M-site occupant gives the substituting (less strongly bonded) monovalent cations increasingly greater influence on thermal expansion. Overall, then, thermal expansion in the feldspar system is well represented on a plot of α against room-temperature volume, where one sees a quadrilateral bounded by data for (A) AlSi3 feldspars whose expansion behavior is controlled largely by the size of the monovalent alkali-site occupant, (B) Al2Si2 feldspars whose expansion is uniformly limited by partially-covalent bonds between divalent M-site occupants and

  17. SilMush: A procedure for modeling of the geochemical evolution of silicic magmas and granitic rocks

    NASA Astrophysics Data System (ADS)

    Hertogen, Jan; Mareels, Joyce

    2016-07-01

    A boundary layer crystallization modeling program is presented that specifically addresses the chemical fractionation in silicic magma systems and the solidification of plutonic bodies. The model is a Langmuir (1989) type approach and does not invoke crystal settling in high-viscosity silicic melts. The primary aim is to model a granitic rock as a congealed crystal-liquid mush, and to integrate major element and trace element modeling. The procedure allows for some exploratory investigation of the exsolution of H2O-fluids and of the fluid/melt partitioning of trace elements. The procedure is implemented as a collection of subroutines for the MS Excel spreadsheet environment and is coded in the Visual Basic for Applications (VBA) language. To increase the flexibility of the modeling, the procedure is based on discrete numeric process simulation rather than on solution of continuous differential equations. The program is applied to a study of the geochemical variation within and among three granitic units (Senones, Natzwiller, Kagenfels) from the Variscan Northern Vosges Massif, France. The three units cover the compositional range from monzogranite, over syenogranite to alkali-feldspar granite. An extensive set of new major element and trace element data is presented. Special attention is paid to the essential role of accessory minerals in the fractionation of the Rare Earth Elements. The crystallization model is able to reproduce the essential major and trace element variation trends in the data sets of the three separate granitic plutons. The Kagenfels alkali-feldspar leucogranite couples very limited variation in major element composition to a considerable and complex variation of trace elements. The modeling results can serve as a guide for the reconstruction of the emplacement sequence of petrographically distinct units. Although the modeling procedure essentially deals with geochemical fractionation within a single pluton, the modeling results bring up a

  18. Deep drilling at the Siljan Ring impact structure: oxygen-isotope geochemistry of granite

    USGS Publications Warehouse

    Komor, S.C.; Valley, J.W.

    1990-01-01

    The Siljan Ring is a 362-Ma-old impact structure formed in 1700-Ma-old I-type granites. A 6.8-km-deep borehole provides a vertical profile through granites and isolated horizontal diabase sills. Fluid-inclusion thermometry, and oxygen-isotope compositions of vein quartz, granite, diabase, impact melt, and pseudotachylite, reveal a complex history of fluid activity in the Siljan Ring, much of which can be related to the meteorite impact. In granites from the deep borehole, ??18O values of matrix quartz increase with depth from near 8.0 at the surface to 9.5??? at 5760 m depth. In contrast, feldspar ??18O values decrease with depth from near 10 at the surface to 7.1??? at 5760 m, forming a pattern opposite to the one defined by quartz isotopic compositions. Values of ??18O for surface granites outside the impact structure are distinct from those in near-surface samples from the deep borehole. In the deep borehole, feldspar coloration varies from brick-red at the surface to white at 5760 m, and the abundances of crack-healing calcite and other secondary minerals decrease over the same interval. Superimposed on the overall decrease in alteration intensity with depth are localized fracture zones at 4662, 5415, and 6044 m depth that contain altered granites, and which provided pathways for deep penetration of surface water. The antithetic variation of quartz and feldspar ??18O values, which can be correlated with mineralogical evidence of alteration, provides evidence for interaction between rocks and impact-heated fluids (100-300?? C) in the upper 2 km of the pluton. Penetration of water to depths below 2 km was restricted by a general decrease in impact-fracturing with depth, and by a 60-m-thick diabase sill at 1500 m depth that may have been an aquitard. At depths below 4 km in the pluton, where water/rock ratios were low, oxygen isotopic compositions preserve evidence for limited high-temperature (>500?? C) exchange between alkali feldspar and fluids. The high

  19. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups

    NASA Astrophysics Data System (ADS)

    Hulsbosch, Niels; Hertogen, Jan; Dewaele, Stijn; André, Luc; Muchez, Philippe

    2014-05-01

    This study presents a general model for the evaluation of Rayleigh fractional crystallisation as the principal differentiation mechanism in the formation of regionally zoned common and rare-element pegmatites. The magmatic evolution of these systems from a granitic source is reconstructed by means of alkali element and rare earth element (REE) analyses of rock-forming minerals (feldspars, micas and tourmaline), which represent a whole sequence of regional pegmatite zonation. The Gatumba pegmatite field (Rwanda, Central Africa) is chosen as case study area because of its well-developed regional zonation sequence. The pegmatites are spatially and temporally related to peraluminous G4-granites (986 ± 10 Ma). The regional zonation is developed around a G4-granite and the proximal pegmatites grade outwardly into biotite, two-mica and muscovite pegmatites. Rare-element (Nb-Ta-Sn) pegmatites occur most distal from the granite.

  20. A-type and I-type granitoids and mylonitic granites of Hassan Salaran area of SE Saqqez, Kurdistan, Iran

    NASA Astrophysics Data System (ADS)

    Abdullah, Fakhraddin Mohammad; Saeed Ahmad, Sheler

    2014-05-01

    The Hassan Salarn area is located 20km to southeast of Saqqez city in Kurdistan Province, western Iran. In this area there are two distinct granitic rock suites consisting A-type and I-type granites and also mylonitic granites. These A-type and I-type granites have various petrological and geochemical characteristics. They also have different origins and petrogenesis. A-type granitoids comprise alkali feldspar granite, syenogranite and quartz alkali feldspar syenite, whereas I-type granitoids are composed of monzogranite, granodiorite and tonalite. Geochemically, A-type granitoids are peralkaline and acmite-normative but I-type granitoids are subalkaline (calc-alkaline), metaluminous and diopside-normative. A-type granitoids are also ferroan alkali and ferroan alkali-calcic whereas I-type granitoids are magnesian and calcic. A-type granitoids resemble to within plate granites and post-orogenic granites whereas I-type granitoids resemble to volcanic arc granites. A-type granitoids contain higher concentrations of alkalies, Zr, Rb, Nb, Y, Th, Ce, high FeO/MgO ratios and lower concentrations of Mg, Ca and Sr, resembling post-orogenic A-type granites. It is possible that heat from a mantle-derived magma which intruded into the lower crust, and/or rapid crustal extension have been essential generation of approriate melts producing A-type granitoids. Thus we can conclude that A-type granitoids were generated from a mixed mantle-crust source. Negative Nb anomalies and low contents of Ti and P probably indicate a subduction-related origin for protolith of I-type granitoids. Negative Nb anomalies and enrichment in Ce relative to its adjacent elements can be related to involvement of continental crust in magmatic processes. I-type granitoids are also enriched in Rb, Ba, K, Th, Ce and depleted in Nb, Zr and Y, indicating that they have had interacted with crust. I-type granitoids may result from contamination of mantle-derived magmas by continental crust during a subduction

  1. Oriented feldspar-feldspathoid intergrowths in rocks of the Khibiny massif: genetic implications

    NASA Astrophysics Data System (ADS)

    Ageeva, Olga A.; Abart, Rainer; Habler, Gerlinde; Ye. Borutzky, Boris; Trubkin, Nikolay V.

    2012-09-01

    Poikilitic megacrysts of alkali feldspar with abundant inclusions of feldspar-nepheline and feldspar-kalsilite micrographic or lamellar intergrowths are characteristic for the rischorrites of the Khibiny massif. Strict crystallographic orientation relations were identified among the intergrowth phases based on optical investigation using a 4-axes universal stage and crystal orientation imaging using electron back scatter diffraction. The most frequently observed orientation relation is the parallel orientation of the kalsilite and nepheline [001] directions with the [010] direction of the alkali feldspar host and concomitant coincidence of the feldspathoid [100] directions with the [100]-, [101]- and [001] directions of the alkali feldspar. The presence of relic nepheline within intergrowth domains and the successive replacement of precursor nepheline by alkali feldspar and associated formation of feldspar-feldspathoid intergrowth suggest development of the rischorrites from feldspar urtites, in which nepheline is the dominant felsic phase. The metasomatic nature of the transformation of urtites to rischorrites is identified from massive introduction of potassium and silica and removal of sodium. Metasomatism occurred at high temperature; the gigantic apatite deposits of the Khibiny massif seem to be related to this metasomatic event.

  2. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles

    PubMed Central

    2015-01-01

    Mineral dusts originating from Earth’s crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. K-feldspar showed by far the highest ice nucleation activity. Finally, we give a potential explanation of this effect, finding alkali-metal ions having different hydration shells and thus an influence on the ice nucleation activity of feldspar surfaces. PMID:25584435

  3. Can cathodoluminescence of feldspar be used as provenance indicator?

    NASA Astrophysics Data System (ADS)

    Scholonek, Christiane; Augustsson, Carita

    2016-05-01

    We have studied feldspar from crystalline rocks for its textural and spectral cathodoluminescence (CL) characteristics with the aim to reveal their provenance potential. We analyzed ca. 60 rock samples of plutonic, volcanic, metamorphic, and pegmatitic origin from different continents and of 16 Ma to 2 Ga age for their feldspar CL textures and ca. 1200 feldspar crystals from these rocks for their CL color spectra. Among the analyzed rocks, igneous feldspar is most commonly zoned, whereby oscillatory zoning can be confirmed to be typical for volcanic plagioclase. The volcanic plagioclase also less commonly contains twin lamellae that are visible in CL light than crystals from other rock types. Alkali feldspar, particularly from igneous and pegmatitic rocks, was noted to be most affected by alteration features, visible as dark spots, lines and irregular areas. The size of all textural features of up to ca. 150 μm, in combination with possible alteration in both the source area and the sedimentary system, makes the CL textures of feldspar possible to use for qualitative provenance research only. We observed alkali feldspar mostly to luminesce in a bluish color and sometimes in red, and plagioclase in green to yellow. The corresponding CL spectra are dominated by three apparent intensity peaks at 440-520 nm (mainly blue), 540-620 nm (mainly green) and 680-740 nm (red to infrared). A dominance of the peak in the green wavelength interval over the blue one for plagioclase makes CL particularly useful for the differentiation of plagioclase from alkali feldspar. An apparent peak position in red to infrared at < 710 nm for plagioclase mainly is present in mafic rocks. Present-day coastal sand from Peru containing feldspar with the red to infrared peak position mainly exceeding 725 nm for northern Peruvian sand and a larger variety for sand from southern Peru illustrates a discriminative effect of different source areas. We conclude that the provenance application

  4. Charnockites and granites of the western Adirondacks, New York, USA: a differentiated A-type suite

    USGS Publications Warehouse

    Whitney, P.R.

    1992-01-01

    Granitic rocks in the west-central Adirondack Highlands of New York State include both relatively homogeneous charnockitic and hornblende granitic gneisses (CG), that occur in thick stratiform bodies and elliptical domes, and heterogeneous leucogneisses (LG), that commonly are interlayered with metasedimentary rocks. Major- and trace-element geochemical analyses were obtained for 115 samples, including both types of granitoids. Data for CG fail to show the presence of more than one distinct group based on composition. Most of the variance within the CG sample population is consistent with magmatic differentiation combined with incomplete separation of early crystals of alkali feldspar, plagioclase, and pyroxenes or amphibole from the residual liquid. Ti, Fe, Mg, Ca, P, Sr, Ba, and Zr decrease with increasing silica, while Rb and K increase. Within CG, the distinction between charnockitic (orthopyroxene-bearing) and granitic gneisses is correlated with bulk chemistry. The charnockites are consistently more mafic than the hornblende granitic gneisses, although forming a continuum with them. The leucogneisses, while generally more felsic than the charnockites and granitic gneisses, are otherwise geochemically similar to them. The data are consistent with the LG suite being an evolved extrusive equivalent of the intrusive CG suite. Both CG and LG suites are metaluminous to mildly peraluminous and display an A-type geochemical signature, enriched in Fe, K, Ce, Y, Nb, Zr, and Ga and depleted in Ca, Mg, and Sr relative to I- and S-type granites. Rare earth element patterns show moderate LREE enrichment and a negative Eu anomaly throughout the suite. The geochemical data suggest an origin by partial melting of biotite- and plagioclase-rich crustal rocks. Emplacement occurred in an anorogenic or post-collisional tectonic setting, probably at relatively shallow depths. Deformation and granulite-facies metamorphism with some partial melting followed during the Ottawan phase

  5. A plutonic view of explosive volcanism: the shatter zone of the Cadillac Mountain granite, Maine

    NASA Astrophysics Data System (ADS)

    Wiebe, R.

    2013-12-01

    The Silurian Cadillac Mountain granite (CMG) is about 15 km in diameter. It is underlain on its deeper western margin by layered gabbro-diorite (GD) up to 3 km thick and on its eastern and southern margins by an intrusive breccia (the 'shatter zone' (SZ)), up to 1 km wide. Coeval rhyolite tuffs, ignimbrites and lavas occur near the southern margin of the granite. The more shallow eastern part of the SZ can be divided into three zones: (SZA) An outer zone against country rock (CR) consists of strongly broken up, deformed sedimentary rocks and angular blocks of diabase invaded by thin irregular veins of aphanitic felsite. All CR fragments are tightly packed with less than ~ 15% matrix, which coarsens inward to vfg quartz, feldspar and biotite. (SZB) A central zone contains abundant sedimentary and scarce rhyolite blocks (typically < 1 m) and larger diabase blocks (from < 1 m to 10s of meters). This zone has 20 to 60% fg to mg matrix with quartz, two feldspars, biotite and abundant pieces of CR down to a few mm. It typically has a strong flow fabric around CR blocks. (SZC) The inner zone has only large (10-80 m) blocks of sedimentary rock, diabase and rhyolite (flows and ignimbrite). The mg granitic matrix (>60%) has blocky hypersolvus feldspar, interstitial to equant quartz, Fe-cpx, Fe-hornblende, two oxides and scarce fayalite. Feldspar in this zone consistently has a sequence of zones consisting of: (1) a homogeneous core of ~ An10Ab80Or10, (2) a transition up to 1 mm wide with 10-15 Or-Ab oscillations (e.g. from Or10 to Or30), each from 20 to 100 microns in width, and (3) a nearly homogeneous rim of variable width averaging about An3Ab70Or27. The occurrence of crystals with such distinctive zoning over such a great distance (18 km) suggests that the zoning was produced by an intensive parameter and not by magma mixing. Because the crystals are restricted to the SZ matrix, processes that produced the shatter zone probably also influenced feldspar zoning. Analysis

  6. A-type granites from the Pan-African orogenic belt in south-western Chad constrained using geochemistry, Sr-Nd isotopes and U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Isseini, Moussa; André-Mayer, Anne-Sylvie; Vanderhaeghe, Olivier; Barbey, Pierre; Deloule, Etienne

    2012-11-01

    The Zabili granitic pluton (SW Chad) exposed in the Mayo Kebbi massif is dominated by a coarse-grained hornblende biotite granite grading into a fine-grained biotite granite along its southern margin. Petrologic (micrographic intergrowth of quartz and alkali feldspars, granophyric microstructures, the presence of fluorite and bastnaesite as accessory minerals) and geochemical data (high silica, alkalis and Fe/Mg, depletions in CaO, MgO, TiO2; high Ga, Nb, Zr, Ga/Al, REE, depletions in Ba, Sr, Eu and compatible elements) indicate that this pluton consists of A-type granites crystallized from hot (apatite and zircon saturation temperatures ranging from 744 °C to 923 °C), extremely differentiated magmas. U-Pb zircon geochronology indicates that the magmas crystallized at 567 ± 10 Ma and reveals the presence of older Neoproterozoic xenocrystic zircons at 668 ± 5 Ma in both facies. Within the fine-grained biotite granite, discordant zircons with U-Pb and Pb-Pb ages ranging from Neoproterozoic to Archaean are also reported. The 668 ± 5 Ma old zircons are considered to derive from country-rocks while discordant zircons, characterized by angular shapes, internal fractures and inherited cores, are likely to represent multi-sources detrital crystals that have recorded at least one metamorphic event. Old pre-Neoproterozoic zircons are reported for the first time for rocks of the Mayo Kebbi massif and they attest to the contribution of an old basement (likely to be the Eastern Nigeria basement and/or the Congo craton) involved in a collisional event with a juvenile Neoproterozoic crust prior to the emplacement of the Zabili granitic pluton. Initial ɛNd values calculated for the Zabili pluton range from + 2.6 to + 7.0, the highest value recorded by one sample from the coarse-grained hornblende-biotite granite being close to the one of the depleted mantle at 570 Ma (ɛNd = + 7.4). Combining geochronology, Nd isotopes composition and geochemical modeling, leads us to

  7. Importance of melt fraction and source rock composition in crustal genesis — the example of two granitic suites of northern Portugal

    NASA Astrophysics Data System (ADS)

    Holtz, François

    1989-12-01

    residual crystals (alkali feldspars and plagioclases as well as dark minerals) in the cordierite granite implies a high viscosity of the melts and therefore water-undersaturated melting conditions.

  8. Elasticity of plagioclase feldspars

    NASA Astrophysics Data System (ADS)

    Brown, J. Michael; Angel, Ross J.; Ross, Nancy L.

    2016-02-01

    Elastic properties are reported for eight plagioclase feldspars that span compositions from albite (NaSi3AlO8) to anorthite (CaSi2Al2O8). Surface acoustic wave velocities measured using Impulsive Stimulated Light Scattering and compliance sums from high-pressure X-ray compression studies accurately determine all 21 components of the elasticity tensor for these triclinic minerals. The overall pattern of elasticity and the changes in individual elastic components with composition can be rationalized on the basis of the evolution of crystal structures and chemistry across this solid-solution join. All plagioclase feldspars have high elastic anisotropy; a* (the direction perpendicular to the b and c axes) is the softest direction by a factor of 3 in albite. From albite to anorthite the stiffness of this direction undergoes the greatest change, increasing twofold. Small discontinuities in the elastic components, inferred to occur between the three plagioclase phases with distinct symmetry (C1>¯, I1>¯, and P1>¯), appear consistent with the nature of the underlying conformation of the framework-linked tetrahedra and the associated structural changes. Measured body wave velocities of plagioclase-rich rocks, reported over the last five decades, are consistent with calculated Hill-averaged velocities using the current moduli. This confirms long-standing speculation that previously reported elastic moduli for plagioclase feldspars are systematically in error. The current results provide greater assurance that the seismic structure of the middle and lower crusts can be accurately estimated on the basis of specified mineral modes, chemistry, and fabric.

  9. Evolution of Mayurbhanj Granite Pluton, eastern Singhbhum, India: a case study of petrogenesis of an A-type granite in bimodal association

    NASA Astrophysics Data System (ADS)

    Misra, Saumitra; Sarkar, Subha Sankar; Ghosh, Sambhunath

    2002-11-01

    including a continuous fractionating sequence from quartz diorite to alkali-feldspar granite in the Notopahar area. Gradational contacts between the gabbro and the Mayurbhanj Granite Pluton in the Gorumahisani area etc., may be attributed to a limited amount of mixing between the gabbroid magma and the newly generated Mayurbhanj Granite magma. The mixing was mainly of liquid-liquid diffusive type, with a subordinate amount of mixing of solid-liquid type. Although A-type granites are commonly described as having high total REE (e.g. ˜270-400 ppm), studies on the late aplogranite phase of the Mayurbhanj Granite show that total REE values (˜100 ppm) are low. This low REE abundance may be attributed to the progressive residual nature of the Singhbhum Granite source during continued partial melting, when the magmas of the microgranite and coarse granite phases had already been removed from the source region.

  10. Thermoluminescence of the mineral components in granite

    SciTech Connect

    Schwartzman, R.G.; Kierstead, J.A.; Levy, P.W.

    1982-01-01

    The thermoluminescence (TL) of the minerals in Climax Stock (Nevada, USA) granite has been studied. The principal mineral constituents are plagioclase, quartz, potassium feldspar and biotite. Pyrite, sphene apatite and zircon occur at one percent or less. All exhibit TL except biotite. The TL kinetics were determined for plagioclase, quartz, potassium feldspar and pyrite. Plagioclase and potassium feldspar exhibit second order and pyrite first orker kinetics. Natural TL of quartz follows second order and artificial TL first order kinetics. However, in these four minerals unrealistic kinetic parameters are often obtained; thus more general kinetics, e.g. interactive kinetics, may apply. 8 figures.

  11. Riftogenic A-type granites of the Polar Urals, Russia

    NASA Astrophysics Data System (ADS)

    Udoratina, Oksana; Kulikova, Ksenia; Shuysky, Alexander

    2016-04-01

    secondary gneiss-likeness and cataclastic, metamorphic or metasomatic fabric (2, 3). Petrographic features of the granitoid vary widely: 1) alkali granites with developed alkali amphibole or pyroxene, 2) subalkaline granites with developed postcataclase metasomatic facies and metasomatic alkaline pyroxene in albitites and quartz-feldspar metasomatites, 3) subalkaline granites with biotite-muscovite parageneses with amphibole (actinolite, tremolite). With 2 type of granites associated ore complex (Nb-Ta, Y and HREE, Zr, rarely Be) deposit, although we consider it is incorrect to regard granites with a wide display of metasomatic facies, because all the characteristic data in them are increased due to the high content of ore components. The studied granites of the Polar Urals are small magmatic intrusions of cutting or layered melt intrusion, as well as metasomatically transformed bodies (metasomatic facies, developing on older granitoids). Granites high alkalinity, potassium, potassium-sodium series with intraplate characteristics. Formation of granitoids occurred in the period 515 (510) -490 (480) Ma.

  12. "Gris Quintana": a Spanish granite from the Past into the Future.

    NASA Astrophysics Data System (ADS)

    José Tejado, Juan; Mota, M. Isabel; Pereira, Dolores

    2014-05-01

    "Gris Quintana" is a medium-grained, biotite and amphibole granodiorite extracted in the Pluton of Quintana de la Serena (Extremadura, Spain). It is a constant light grey granite from the Hercynian geologic with excellent physicomechanical and physicochemical properties. The granodiorite is composed of plagioclase, biotite, quartz and alkali feldspar, with accessory allanite, titanite, apatite, zircon and ilmenite, mostly as inclusions within the biotite crystals. This commercial variety is extracted from many quarries in the late Hercynian plutons located in the Iberian Massif in Spain period (transition between Central Iberian and Ossa-Moren Zones), having large reserves of granite. Many of the quarries have their own transformation factory (high production zone), with which the sector is offered an endless variety of finishes and constructive rock typologies. A wide range of solutions to architects and designers are offered. Gris Quintana granite is one of the materials with highest technological benefits that are used in arquitecture. "Gris Quintana" granite has been used since ancient times, not only at a regional, but also at national and international level: paving, building (structural, exterior façadas, interior uses), urban decoration and funeral art. It can be found in monuments and more recently, in buildings of different styles and uses, that stand out in beauty and splendor, lasting in time. Some singular works in "Gris Quintana" granite all over the world: extension to the "Congreso de Diputados" (Parliament) in Madrid, "Puerta de San Vicente" in Madrid, Andalucia Parliament columns in Sevilla, New Senate Buiding in Madird, "Gran Vía" pavement in Madrid, "Teatro Real façade" in Madrid… "Gris Quintana" granite accomplishes all the requirements for its nomination as Global Heritage Stone Resource, for both its use in construction and for artistic purposes.

  13. Water Content of Lunar Alkali Fedlspar

    NASA Technical Reports Server (NTRS)

    Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

    2016-01-01

    Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of < 1 ppm in urKREEP. Using these data, predict that the bulk water content of the magma ocean would have <10 ppm. In contrast, estimate water contents of 320 ppm for the bulk Moon and 1.4 wt % for urKREEP from plagioclase in ferroan anorthosites. Results and interpretation: NanoSIMS data from granitic clasts from Apollo sample 15405,78 show that alkali feldspar, a common mineral in K-enriched rocks, can have approx. 20 ppm of water, which implies magmatic water contents of approx. 1 wt % in the high-silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was

  14. The Pikes Peak batholith, Colorado front range, and a model for the origin of the gabbro-anorthosite-syenite-potassic granite suite

    USGS Publications Warehouse

    Barker, F.; Wones, D.R.; Sharp, W.N.; Desborough, G.A.

    1975-01-01

    This study of the Pikes Peak batholith includes the mineralogy and petrology of quartz syenite at West Creek and of fayalite-bearing and fayalite-free biotite granite near Mount Rosa; major element chemistry of the batholith; comparisons with similar postorogenic, intracratonic, sodic to potassic intrusives; and genesis of the batholith. The batholith is elongate in plan, 50 by 100 km, composite, and generally subalkalic. It was emplaced at shallow depth 1,040 m. y. ago, sharply transects its walls and may have breached its roof. Biotite granite and biotite-hornblende granite are predominant; quartz syenite, fayalite granite and riebeckite granite are present in minor amounts. Fayalite-bearing and fayalite-free quartz syenite, fayalite-biotite granite and riebeckite granite show a well-defined sodic differentiation trend; the less sodic fayalite-free granites exhibit a broader compositional range and no sharp trends. Crystallization was largely at PH2O < Ptotal; PH2O approached Ptotal only at late stages. Aplite residual to fayalite-free biotite granite in the north formed at about 1,500 bars, or 5 km depth. Feldspar assemblages indicate late stages of crystallization at about 720??C. In the south ilmenite and manganian fayalite indicate fO2 of 10-17 or 10-18 bars. Biotite and fayalite compositions and the 'granite minimum' imply completion of crystallization at about 700??C and 1,500 bars. Nearby fayalite-free biotite granite crystallized at higher water fugacity. All types of syenite and granite contain 5-6% K2O through a range of SiO2 of 63-76%. Average Na2O percentages in quartz syenite are 6.2, fayalite granite 4.2, and fayalite-free granite 3.3 MgO contents are low, 0.03-0.4%; FeO averages 1.9-2.5%. FeO/Fe2O3 ratios are high. Fluorine ranges from 0.3 to 0.6%. The Pikes Peak intrusives are similar in mode of emplacement, composition, and probably genesis to rapakivi intrusives of Finland, the Younger Granites of Nigeria, Cape Ann Granite and Beverly Syenite

  15. Progressive deformation of feldspar recording low-barometry impact processes, Tenoumer impact structure, Mauritania

    NASA Astrophysics Data System (ADS)

    Jaret, Steven J.; Kah, Linda C.; Harris, R. Scott

    2014-06-01

    The Tenoumer impact structure is a small, well-preserved crater within Archean to Paleoproterozoic amphibolite, gneiss, and granite of the Reguibat Shield, north-central Mauritania. The structure is surrounded by a thin ejecta blanket of crystalline blocks (granitic gneiss, granite, and amphibolite) and impact-melt rocks. Evidence of shock metamorphism of quartz, most notably planar deformation features (PDFs), occurs exclusively in granitic clasts entrained within small bodies of polymict, glass-rich breccia. Impact-related deformation features in oligoclase and microcline grains, on the other hand, occur both within clasts in melt-breccia deposits, where they co-occur with quartz PDFs, and also within melt-free crystalline ejecta, in the absence of co-occurring quartz PDFs. Feldspar deformation features include multiple orientations of PDFs, enhanced optical relief of grain components, selective disordering of alternate twins, inclined lamellae within alternate twins, and combinations of these individual textures. The distribution of shock features in quartz and feldspar suggests that deformation textures within feldspar can record a wide range of average pressures, starting below that required for shock deformation of quartz. We suggest that experimental analysis of feldspar behavior, combined with detailed mapping of shock metamorphism of feldspar in natural systems, may provide critical data to constrain energy dissipation within impact regimes that experienced low average shock pressures.

  16. The Late Cretaceous I- and A-type granite association of southeast China: Implications for the origin and evolution of post-collisional extensional magmatism

    NASA Astrophysics Data System (ADS)

    Zhao, Jiao-Long; Qiu, Jian-Sheng; Liu, Liang; Wang, Rui-Qiang

    2016-01-01

    We present new geochronological, mineralogical, and geochemical data for granitic plutons that crop out within the Zhoushan archipelago, northeastern coastal Zhejiang Province, in order to constrain their origin, and the genetic relationship between the I- and A-type granites. These granites can be divided into two groups: (1) the northern I-type Putuoshan (PTS) and Dadong'ao (DDA) plutons; and (2) the southern A-type Daqingshan (DQS), Taohuadao (THD), and Xiazhidao (XZD) plutons. Zircon LA-ICP-MS U-Pb dating yielded ages of 98-96 Ma for the northern I-type plutons and 89-86 Ma for the southern A-type plutons. All of these granites are highly siliceous, K-rich, and have similar total alkali and total rare earth element (REE) abundances. However, there are also geochemical differences between the I-type and the A-type granites. The northern I-type alkali-feldspar granites are high-K calc-alkaline, metaluminous to mildly peraluminous, contain low concentrations of the high field strength elements (HFSE; e.g., Nb, Ta, Zr, and Hf), and have low Ga/Al ratios (2.04-2.44). In contrast, the southern A-type granites are peralkaline and F-rich, and have lower CaO and Al2O3 concentrations, and higher Fe2O3T and HFSE concentrations and Ga/Al ratios (3.25-3.86). Meanwhile, they have slightly higher heavy REE (HREE) concentrations, and are more depleted in Ba, Sr, P, Ti, and Eu than the northern I-type granites. Both the I- and A-type granites have homogeneous whole-rock Nd and highly variable zircon Hf isotopic compositions. Of note, the southern peralkaline A-type granites appear to have more radiogenic Nd and Hf isotope compositions than the northern I-type granites. The present data, together with the results of a previous study on mafic enclaves within the PTS pluton, suggest that the northern I-type alkali-feldspar granites were generated by mixing of mantle-derived material with crustal-derived magmas that formed by dehydration melting of mica-bearing basaltic rocks

  17. Development of modal layering in granites: a case study from the Carna Pluton, Connemara, Ireland

    NASA Astrophysics Data System (ADS)

    McKenzie, Kirsty; McCarthy, William; Hunt, Emma

    2016-04-01

    Modal layering in igneous rocks uniquely record dynamic processes operating in magma chambers and also host a large proportion of Earth's strategic mineral deposits. This research investigates the origin of biotite modal layering and primary pseudo-sedimentary structures in felsic magmas, by using a combination of Crystal Size Distribution (CSD) analysis and Electron Probe Microanalysis (EPMA) to determine the mechanisms responsible for the development of these structures in the Carna Pluton, Connemara, Ireland. The Carna Pluton is a composite granodiorite intrusion and is one of five plutons comprising the Galway Granite Complex (425 - 380 Ma). Prominent 30 cm thick modal layers are defined by sharp basal contacts to a biotite-rich (20%) granite, which grades upward over 10 cm into biotite-poor, alkali-feldspar megacrystic granite. The layering strikes parallel to, and dips 30-60° N toward the external pluton contact. Pseudo-sedimentary structures (cross-bedding, flame structures, slumping and crystal graded bedding) are observed within these layers. Petrographic observations indicate the layers contain euhedral biotite and fresh undeformed quartz and feldspar. Throughout the pluton, alkali-feldspar phenocrysts define a foliation that is sub-parallel to the strike of biotite modal layers. Together these observations indicate that the intrusion's concentric foliation, biotite layers and associated structures formed in the magmatic state and due to a complex interaction between magma flow and crystallisation processes. Biotite CSDs (>250 crystals per sample) were determined for nine samples across three biotite-rich layers in a single unit. Preliminary CSD results suggest biotite within basal contacts accumulated via fractional crystallisation within an upward-growing crystal pile, likely reflecting the yield strength of the magma as a limiting factor to gravitational settling of biotite. This is supported by the abrupt decrease in mean biotite crystal size across

  18. Abundance and distribution of boron in the Hauzenberg (Bavaria) granite complex

    SciTech Connect

    Sauerer, A.; Troll, G. )

    1990-01-01

    Hercynian S-type granites from the Hauzenberg igneous complex show a range of boron concentration from 1 to 12 ppm. The whole-rock boron data are not significantly correlated with concentrations of other trace elements (Zr, Rb, Ba, Sr, Ni, V, Co, Cu, Zn, F); neither is boron correlated with the major elements (except with sodium) or with the differentiation index (DI). The boron budget in the rock-forming minerals (plagioclase, alkali feldspar, quartz, biotite, muscovite) of the tourmaline-free granites reveals that the highest concentrations of boron occur in muscovite, whereas the greatest amount of boron is incorporated in plagioclase (57-69%) due to its high modal amount. Boron in plagioclase increases with the extent of of sericitization (obtained by X-ray diffractometry). Muscovite in a pegmatite contains more than 50% of the total boron. The areal distribution of boron within the complex is neither uniform nor random; an increase of boron concentrations from granodioritic to granitic rocks is indicated, whereas the late differentiates are depleted in boron.

  19. Petrography and Physicomechanical Properties of Rocks from the Ambela Granitic Complex, NW Pakistan

    PubMed Central

    Arif, Mohammad; Bukhari, S. Wajid Hanif; Muhammad, Noor; Sajid, Muhammad

    2013-01-01

    Petrography and physicomechanical properties of alkali granites, alkali quartz syenite, and nepheline syenite from Ambela, NW Pakistan, have been investigated. Whereas the alkali quartz syenite and most of the alkali granites are megaporphyritic, the nepheline syenite and some of the alkali granites are microporphyritic. Their phenocryst shape and size and abundance of groundmass are also different. The values of unconfined compressive strength (UCS) are the lowest and highest for megaporphyritic alkali granite and alkali quartz syenite, respectively. However, all the four rock types are moderately strong. Correspondingly, their specific gravity and water absorption values are within the permissible range for use as construction material. The UCS for the alkali quartz syenite is the highest, most probably because (i) it has roughly equal amounts of phenocryst and groundmass, (ii) it displays maximum size contrast between phenocryst and groundmass, (iii) its phenocrysts are highly irregular, and (iv) it contains substantial amounts of quartz. PMID:23861654

  20. Petrography and physicomechanical properties of rocks from the Ambela granitic complex, NW Pakistan.

    PubMed

    Arif, Mohammad; Bukhari, S Wajid Hanif; Muhammad, Noor; Sajid, Muhammad

    2013-01-01

    Petrography and physicomechanical properties of alkali granites, alkali quartz syenite, and nepheline syenite from Ambela, NW Pakistan, have been investigated. Whereas the alkali quartz syenite and most of the alkali granites are megaporphyritic, the nepheline syenite and some of the alkali granites are microporphyritic. Their phenocryst shape and size and abundance of groundmass are also different. The values of unconfined compressive strength (UCS) are the lowest and highest for megaporphyritic alkali granite and alkali quartz syenite, respectively. However, all the four rock types are moderately strong. Correspondingly, their specific gravity and water absorption values are within the permissible range for use as construction material. The UCS for the alkali quartz syenite is the highest, most probably because (i) it has roughly equal amounts of phenocryst and groundmass, (ii) it displays maximum size contrast between phenocryst and groundmass, (iii) its phenocrysts are highly irregular, and (iv) it contains substantial amounts of quartz. PMID:23861654

  1. Modeling H, Na, and K diffusion in plagioclase feldspar by relating point defect parameters to bulk properties

    NASA Astrophysics Data System (ADS)

    Zhang, Baohua; Shan, Shuangming; Wu, Xiaoping

    2016-02-01

    Hydrogen and alkali ion diffusion in plagioclase feldspars is important to study the evolution of the crust and the kinetics of exsolution and ion-exchange reactions in feldspars. Using the available PVT equation of state of feldspars, we show that the diffusivities of H and alkali in plagioclase feldspars as a function of temperature can be successfully reproduced in terms of the bulk elastic and expansivity data through a thermodynamic model that interconnects point defect parameters with bulk properties. Our calculated diffusion coefficients of H, Na, and K well agree with experimental ones when uncertainties are considered. Additional point defect parameters such as activation enthalpy, activation entropy, and activation volume are also predicted. Furthermore, the electrical conductivity of feldspars inferred from our predicted diffusivities of H, Na, and K through the Nernst-Einstein equation is compared with previous experimental data.

  2. Geochemical Constraints For The Genesis Of A-type Granite From Southeastern Korea

    NASA Astrophysics Data System (ADS)

    Koh, J.; Yun, S.

    2008-12-01

    Mineralogical, geochemical characteristics and Sr-Nd isotopic data are presented for the Namsan A-type granite and Gyeongju I-type granitic rocks in Gyeongju area, Gyeongsan Basin, Korea. The Namsan A-type granite is alkali feldpar granite and consists of quartz, perthite, sodic amphibole (riebeckitic arfvedsonite), annite, and fluorite. Quartz and perthite occurs as early crystallized phase, and others as interstitial phase. The Gyeongju I-type granitic rocks are divided into four plutons based on their petrographical features; The Maseoksan biotite granite(MBG), Tohamsan biotite granite(TBG), Gyeongju hornblende biotite granodiorite(GHBGd), and Gyeongju biotite porphyritic granite(GBPG). Aplitic dykes intrude these granite rocks. Petrochemically, the Namsan alkali feldspar granite is distinctly different from other I-type granites, and is characterized by higher Fe2O3, Fe2O3T, Na2O, Rb, Nb, Y, Ce, Ga, Zr contents and Ga/Al2O3 ratio, and lower TiO2, Al2O3, MgO, CaO, P2O5, Ba and Sr contents. The rocks show flat chondrite-normalized REE patterns with strong Eu negative anomaly. The MBG and TBG, the GHBGd, and the GBPG show the geochemistry of general calc-alkaline I-type granitic rocks, and they have almost constant Ga/Al2O3 ratio and LREE-enriched pattern. Although the aplitic dykes of the Maseoksan and Tohamsan biotite granites are extensively fractionated, compared with the Namsan A-type granite, the former has significantly lower large highly charged cations such as Nb, Y, Ce, Ga, Zr. This geochemical feature suggests that the Namsan A-type granite can not be derived from MBG and TBG magma by fractional crystallization process. Geochemical data indicate that the GBPG was derived from the GHBGd magma by fractionation of amphibole, biotite, plagioclase, sphene, and magnetite. On discrimination diagrams, the Namsan A-type granite is plotted in the field of anorogenic, within plate granites, whereas I-type granitic rocks in the field of subduction-related, volcanic

  3. The Thermal Expansion Of Feldspars

    NASA Astrophysics Data System (ADS)

    Hovis, G. L.; Medford, A.; Conlon, M.

    2009-12-01

    Hovis and others (1) investigated the thermal expansion of natural and synthetic AlSi3 feldspars and demonstrated that the coefficient of thermal expansion (α) decreases significantly, and linearly, with increasing room-temperature volume (VRT). In all such feldspars, therefore, chemical expansion limits thermal expansion. The scope of this work now has been broadened to include plagioclase and Ba-K feldspar crystalline solutions. X-ray powder diffraction data have been collected between room temperature and 925 °C on six plagioclase specimens ranging in composition from anorthite to oligoclase. When combined with thermal expansion data for albite (2,3,4) a steep linear trend of α as a function of VRT emerges, reflecting how small changes in composition dramatically affect expansion behavior. The thermal expansion data for five synthetic Ba-K feldspars ranging in composition from 20 to 100 mole percent celsian, combined with data for pure K-feldspar (3,4), show α-VRT relationships similar in nature to the plagioclase series, but with a slope and intercept different from the latter. Taken as a group all Al2Si2 feldspars, including anorthite and celsian from the present study along with Sr- (5) and Pb-feldspar (6) from other workers, show very limited thermal expansion that, unlike AlSi3 feldspars, has little dependence on the divalent-ion (or M-) site occupant. This apparently is due to the necessitated alternation of Al and Si in the tetrahedral sites of these minerals (7), which in turn locks the tetrahedral framework and makes the M-site occupant nearly irrelevant to expansion behavior. Indeed, in feldspar series with coupled chemical substitution it is the change away from a 1:1 Al:Si ratio that gives feldspars greater freedom to expand. Overall, the relationships among α, chemical composition, and room-temperature volume provide useful predictive tools for estimating feldspar thermal expansion and give insight into the controls of expansion behavior in

  4. Mantle hydrous-fluid interaction with Archaean granite.

    NASA Astrophysics Data System (ADS)

    Słaby, E.; Martin, H.; Hamada, M.; Śmigielski, M.; Domonik, A.; Götze, J.; Hoefs, J.; Hałas, S.; Simon, K.; Devidal, J.-L.; Moyen, J.-F.; Jayananda, M.

    2012-04-01

    Water content/species in alkali feldspars from late Archaean Closepet igneous bodies as well as growth and re-growth textures, trace element and oxygen isotope composition have been studied (Słaby et al., 2011). Both processes growth and re-growth are deterministic, however they differ showing increasing persistency in element behaviour during interaction with fluids. The re-growth process fertilized domains and didn't change their oxygen-isotope signature. Water speciation showed persistent behaviour during heating at least up to 600oC. Carbonate crystals with mantle isotope signature are associated with the recrystallized feldspar domains. Fluid-affected domains in apatite provide evidence of halide exchange. The data testify that the observed recrystallization was a high-temperature reaction with fertilized, halide-rich H2O-CO2 mantle-derived fluids of high water activity. A wet mantle being able to generate hydrous plumes, which appear to be hotter during the Archean in comparison to the present time is supposed by Shimizu et al. (2001). Usually hot fluids, which can be strongly carbonic, precede asthenospheric mantle upwelling. They are supposed to be parental to most recognized compositions, which can be derived by their immiscible separation into saline aqueous-silicic and carbonatitic members (Klein-BenDavid et al., 2007). The aqueous fractions are halogen-rich with a significant proportion of CO2. Both admixed fractions are supposed to be fertile. The Closepet granite emplaced in a major shear zone that delimitates two different terrains. Generally such shear zones, at many places, are supposed to be rooted deep into the mantle. The drain, that favoured and controlled magma ascent and emplacement, seemed to remain efficient after granite crystallization. In the southern part of the Closepet batholiths an evidence of intensive interaction of a lower crust fluid (of high CO2 activity) is provided by the extensive charnockitization of amphibolite facies (St

  5. Grusification of granite (scheme based on the study of granites from Sudety Mts., SW Poland)

    NASA Astrophysics Data System (ADS)

    Kajdas, Bartlomiej; Michalik, Marek

    2014-05-01

    Gruses that are developed on the Karkonosze granite (three outcrops) and the Izera granite (one outcrop) were investigated using optical microscope, scanning electron microscope equipped with EDS and electron microprobe, X-ray diffraction, IR spectrometry, chemical analysis (ICP-AES and ICP-MS), hydrogen and oxygen isotopic ratio determination and K-Ar dating. Three groups of samples were distinguished according to the degree of grusification (group I - compact granite; group II - friable granite; group III - granitic grus). The results of the examination allowed to present the simplified scheme of the grusification: 1. Development of microcracks (caused by tectonic stress, mechanical upload or magma cooling processes) promote circulation of hydrothermal fluids in granites; 2. The presence of the microcracks in granite facilitate the circulation of low-temperature fluids (low-temperature hydrothermal or weathering fluids). Fluids cause hydration and expansion of primary biotite (vermiculitization), what leads to development of secondary cracks in a rock. Fluids can also induce advanced alteration of plagioclases into clay minerals (mainly smectite or vermiculite). Expansion of biotite during vermiculitization is the most important factor in grusification. Other processes of alteration also contribute to grusification. Hydrothermal fluids in granite contribute the increase of alteration degree of primary minerals (e.g. sericitization and albitization of feldspar, chloritization or muscovitization of biotite, decomposition of monazite-(Ce) and formation of secondary REE phosphates). If primary biotite is subjected to muscovitization or chloritization, complete grusification of granite does not occur because of lack of vermiculitation.

  6. The effect of SEM imaging on the Ar/Ar system in feldspars

    NASA Astrophysics Data System (ADS)

    Flude, S.; Sherlock, S.; Lee, M.; Kelley, S. P.

    2010-12-01

    Complex microtextures form in K-feldspar crystals as they cool and are affected by deuteric alteration. This complex structure is the cause of variable closure temperatures for Ar-Ar, a phenomenon which has been utilized in multi domain diffusion (MDD) modelling to recover thermal histories [1]. However, there has been substantial controversy regarding the precise interaction between feldspar microtextures and Ar-diffusion [2,3]. A number of studies have addressed this issue using coupled SEM imaging and Ar/Ar UV laser ablation microprobe (UV-LAMP) analysis on the same sample, to enable direct comparison of microtextures with Ar/Ar age data [4]. Here we have tested the idea that SEM work may affect Ar/Ar ages, leading to inaccurate results in subsequent Ar/Ar analyses. Three splits of alkali feldspar from the Dartmoor Granite in SW England were selected for Ar/Ar UV-LAMP analysis. Split 1 (“control”) was prepared as a polished thick section for Ar/Ar analysis. Split 2 (“SEM”) was prepared as a polished thick section, was chemically-mechanically polished with colloidal silica and underwent SEM imaging (uncoated) and focussed ion beam (FIB) milling (gold coated); electron beam damage in the SEM was maximised by leaving the sample at high magnification for eight minutes. Split 3 (“Etch”) is a cleavage fragment that was etched with HF vapour and underwent low to moderate magnification SEM imaging. The control split gave a range of laser-spot ages consistent with the expected cooling age of the granite and high yields of radiogenic 40Ar* (>90%). The area of the “SEM” split that experienced significant electron beam damage gave younger than expected ages and 40Ar* yields as low as 57%. These are interpreted as a combination of implantation of atmospheric Ar and local redistribution of K within the sample. The area of “SEM” that underwent FIB milling gave ages and 40Ar* yields comparable to the control split, suggesting that the Au-coat minimises FIB

  7. Geology and tin-greisen mineralization of the Akash granite, northern Arabian Shield

    USGS Publications Warehouse

    Kellogg, K.S.; Smith, C.W.

    1986-01-01

    The western margin of the postorogenic Akash granite, 30 km E of Ha'il in the northern Arabian Shield, is greisenized and contains anomalous concentrations of Sn. The pluton intrudes metamorphic and intrusive rocks, and crops out as a 10 by 15 km elliptical body with its long axis oriented N. It consists predominantly of metaluminous alkali-feldspar granite or syenogranite, with accessory biotite and muscovite, and traces of fluorite. Greisenization extends discontinuously in a zone at least 3 km long parallel to the western contact, and along E-trending hematitic quartz veins for more than 2 km from the contact. The veins occupy fractures that were probably conduits for ascending mineralizing fluids. Within about 20 m of the contact, they are enclosed in quartz-white mica greisen containing hematite, fluorite, and locally, topaz and cassiterite. Composite chip samples from the greisenized zone have an average Sn content of 710 ppm, and a maximum of 1600 ppm. Anomalous values for Zn, Fe, Mn, Mo, Bi and Cu also occur, but none of the samples contain detectable W. Three samples of hematitic quartz averaged 126 ppm Sn, and one contained 200 ppm W. ?? 1986.

  8. Early to Middle Devonian granitic and volcanic rocks from the central Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Barr, Sandra M.; Mortensen, James K.; Thompson, Margaret D.; Hermes, O. Don; White, Chris E.

    2011-10-01

    Cashes Ledge igneous suite in the central Gulf of Maine is represented by 10 granitic and two felsic tuff samples collected from bedrock outcrops using the submersible Alvin in 1971-1972 and archived at the Woods Hole Oceanographic Institute. Laser ablation ICP-MS analyses of zircon grains yielded crystallization ages of 414.9 ± 1.1 Ma and 399.7 ± 1.5 Ma for two alkali feldspar granite samples, 407.0 ± 1.9 Ma for a syenogranite sample, and 384.4 ± 2.3 Ma and 383.9 ± 1.6 Ma for two felsic tuff samples. The samples contain iron-rich mafic minerals, including aegirine-augite, grunerite/ferroedenite, and annite. Most of the samples are alkaline to slightly peralkaline, with high concentrations of SiO 2, Y, Zr, Nb, and REE, strong negative Eu anomalies, and positive epsilon Nd values (1.8 to 3.7). The suite resembles part of a belt of similar Silurian-Devonian rocks with ages between 426 and 370 Ma now recognized in the central part of Avalonia in southeastern New England. They formed in a long-lived, likely extensional regime linked to subduction and subsequent complex transcurrent motions among Ganderia, Avalonia, and Meguma, culminating in the closure of the Rheic Ocean.

  9. Structural changes in a heterogeneous solid (granite) under shock wave action

    NASA Astrophysics Data System (ADS)

    Vettegren, V. I.; Shcherbakov, I. P.; Mamalimov, R. I.; Kulik, V. B.

    2016-04-01

    The structure of two granite types (plagiogranite and alaskite) before and after shock wave action has been studied by infrared, Raman, and photoluminescence spectroscopy methods. It has been found that the shock wave caused transformation of quartz and feldspar crystals composing these granites into diaplectic glasses.

  10. Assessment of radiological hazard of commercial granites from Extremadura (Spain).

    PubMed

    Guillén, J; Tejado, J J; Baeza, A; Corbacho, J A; Muñoz, J G

    2014-06-01

    The term "commercial granite" comprises different natural stones with different mineralogical components. In Extremadura, western Spain, "commercial granites" can be classified in three types: granite s.s. (sensus stricti), granodiorite, and diorite. The content of naturally occurring radionuclides depended of the mineralogy. Thus, the (40)K content increased as the relative content of alkaline feldspar increased but decreased as the plagioclase content increased. The radioactive content decreased in the following order: granite s.s. > granodiorite > diorite. In this work, the radiological hazard of these granites as building material was analyzed in terms of external irradiation and radon exposure. External irradiation was estimated based on the "I" index, ranged between 0.073 and 1.36. Therefore, these granites can be use as superficial building materials with no restriction. Radon exposure was estimated using the surface exhalation rates in polished granites. The exhalation rate in granites depends of their superficial finishes (different roughness). For distinct mechanical finishes of granite (polish, diamond sawed, bush-hammered and flamed), the surface exhalation rate increased with the roughness of the finishes. Thermal finish presented the highest exhalation rate, because the high temperatures applied to the granite may increase the number of fissures within it. The exhalation rates in polished granites varied from 0.013 to 10.4 Bq m(-2) h(-1). PMID:24583635

  11. The petrogenesis of the Early Permian Variscan granites of the Cornubian Batholith: Lower plate post-collisional peraluminous magmatism in the Rhenohercynian Zone of SW England

    NASA Astrophysics Data System (ADS)

    Simons, B.; Shail, Robin K.; Andersen, Jens C. Ø.

    2016-09-01

    The Early Permian Cornubian Batholith was generated during an extensional regime following Variscan convergence within the Rhenohercynian Zone of SW England. Its component granites can be classified, using mineralogical, textural and geochemical criteria, into five main types, all of which are peraluminous (A/CNK > 1.1): G1 (two-mica), G2 (muscovite), G3 (biotite), G4 (tourmaline) and G5 (topaz). G1 granites formed through up to 20% muscovite and minor biotite dehydration melting of a metagreywacke source at moderate temperatures and pressures (731-806 °C, > 5 kbar). Younger G3 granites formed through higher temperature, lower pressure (768-847 °C, < 4 kbar) biotite-dominated melting of a similar source. Partial melting was strongly influenced by the progressive lower-mid crustal emplacement of mafic igneous rocks during post-Variscan extension and a minor (< 5%-10%) mantle-derived component in the granites is possible. Two distinct fractionation series, G1-G2 and G3-G4, are defined using whole-rock geochemical and mineral chemical data. Variations in the major elements, Ba, Sr and Rb indicate that G1 and G3 granites underwent 15%-30% fractionation of an assemblage dominated by plagioclase, alkali feldspar and biotite to form more evolved G2 and G4 granites, respectively. Decreasing whole-rock abundances of Zr, Th and REE support the fractionation of zircon, monazite, apatite and allanite. Subsolidus alteration in G2 and G4 granites is indicated by non-primary muscovite and tourmaline and modification of major and trace element trends for G3-G4 granites, particularly for P2O5 and Rb. Topaz (G5) granites show low Zr, REE and extreme enrichment in Rb (up to 1530 ppm) and Nb (79 ppm) that cannot be related in a straightforward manner to continued differentiation of the G1-G2 or G3-G4 series. Instead, they are considered to represent partial melting, mediated by granulite facies fluids, of a biotite-rich restite following extraction of G1 and/or G3 magmas; they do

  12. Magma mixing and crust-mantle interaction in Southeast China during the Early Cretaceous: Evidence from the Furongshan granite porphyry and mafic microgranular enclaves

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Zuo; Chen, Pei-Rong; Sun, Li-Qiang; Ling, Hong-Fei; Zhao, You-Dong; Lan, Hong-Feng

    2015-11-01

    The petrogenesis and tectonic setting of Early Cretaceous granitoids and their enclaves emplaced in the Gan-Hang Tectonic Belt are still controversial. Here, we investigate mafic microgranular enclaves (MMEs) and their host granite porphyry from the Furongshan caldera to elucidate magma mixing and crust-mantle interaction in the Gan-Hang Tectonic Belt. The Furongshan granite porphyry is characterized by enrichments of alkalis, REE, Zr + Nb + Ce + Y contents (averaging 377 ppm), and high zircon saturation temperatures (793-843 °C), suggesting A-type granitic affinities. The granite porphyry can be further classified as an A2 subtype granite based on high Y/Nb ratios (averaging 1.37). Zircon cores from the Furongshan MMEs exhibit the same εHf(t) values (-10.0 to -3.0) and U-Pb ages (127-129 Ma) as zircons form the granite porphyry, implying that they were captured from the felsic magma as xenocrysts. Petrological and mineralogical characteristics (such as needle-like apatite and disequilibrium feldspar xenocryst) suggest that the Furongshan MMEs and host granite porphyry were formed by magma mixing rather than restite, xenolith or fractional crystallization of mafic magma. The Furongshan granite porphyry samples have initial 87Sr/86Sr ratios of 0.7073-0.7099 and εNd(t) values of -3.7 to -3.3, which are similar to those of the MMEs (0.7068-0.7077 and -3.2 to -2.9, respectively). Similar trace element and Sr-Nd isotopic compositions imply a high degree of geochemical equilibration between the granite porphyry and its MMEs, and hence intense magma mixing, although some element contents and zircons εHf(t) values differ due to high zircon closure temperature and rapid cooling of commingled magmas. A binary mixing model based on Sr-Nd isotopes indicates a contribution of ∼50% basaltic melt to the hybrid magma of the Furongshan granite porphyry. A compilation of Sr-Nd-Hf isotopic data of the granitoids and MMEs from the Xiangshan, Furongshan and Muchen areas suggest

  13. Energy related studies utilizing K-feldspar thermochronology

    SciTech Connect

    Not Available

    1993-01-01

    Two distinct sources of information are available from a [sup 40]Ar/[sup 39]Ar step-heating experiment: the age spectrum and Arrhenius plot. Model ages are calculated from the flux of radiogenic argon ([sup 40]Ar*) (assuming trapped argon of atmospheric composition) relative to the reactor produced [sup 39]Ar evolved during discrete laboratory heating steps. With the additional assumption that the [sup 39]Ar is uniformly distributed within the sample, we can infer the spatial distribution of the daughter product. ne associated Arrhenius plot, derived by plotting the diffusion coefficient (obtained from the inversion of the 39[sup Ar] release function assuming a single domain) against the inverse temperature of laboratory heating, are a convolution of the parameters which characterize the individual diffusion domains (whether these be dictated by varying length scale, energetics, etc.). However, many and perhaps Most [sup 40]Ar/[sup 39]Ar age spectra for slowly cooled alkali feldspars are significantly different from model age spectra calculated assuming a single diffusion-domain size. In addition, Arrhenius plots calculated from the measured loss of [sup 39]Ar during the step heating experiment show departures from linearity that are inconsistent with diffusion from domains of equal size. By extending the single diffusion-domain closure model (Dodsontype) to apply to minerals with a discrete distribution of domain sizes, we obtained an internally consistent explanation for the commonly observed features of alkali feldspar age spectra and their associated Arrhenius plots.

  14. Mineral chemistry and geochemistry of the Late Neoproterozoic Gabal Abu Diab granitoids, Central Eastern Dessert, Egypt: Implications for the origin of rare metal post-orogenic A-type granites

    NASA Astrophysics Data System (ADS)

    Sami, Mabrouk; Ntaflos, Theodoros; Farahat, Esam S.; Ahmed, Awaad F.; Mohamed, Haroun A.

    2015-04-01

    within A-type granite worldwide. According to Zhang et al., 2012, the garnet crystallized at the expense of biotite from the MnO-rich evolved melt after fractionation of biotite, plagioclase, K-feldspar, zircon, apatite, and ilmenite. The granitoids are alkali feldspar granites showing distinct geochemical features and most likely, belong to the post-orogenic younger Egyptian granitoids. They are peraluminous A-type alkaline rocks but they have lower Fe2O3, MgO, MnO, CaO, TiO2, P2O5, Sr, Ba, V, and higher SiO2, Na2O, K2O, Nb, Ta, U, Zr, Th, Ga/Al and Rb than the typical rocks of this type. The positive correlation between Ba and Sr, and the negative correlation between Rb and K/Rb reveal fractional crystallization of alkali feldspar. The similarity in most geochemical characteristics suggests that Abu Diab granitoids are genetically related to each other and extremely enrichment in incompatible elements such as Nb and Ta, indicating that they crystallized from extremely differentiated magmas. References: Zhang, J., Ma, C. and She, Z., 2012. An Early Cretaceous garnet-bearing metaluminous A-type granite intrusion in the East Qinling Orogen, central China: Petrological, mineralogical and geochemical constraints. Geoscience Frontiers 3 (5), 635-646.

  15. The geology and petrogenesis of the southern closepet granite

    NASA Technical Reports Server (NTRS)

    Jayananda, M.; Mahabaleswar, B.; Oak, K. A.; Friend, C. R. L.

    1988-01-01

    The Archaean Closepet Granite is a polyphase body intruding the Peninsular Gneiss Complex and the associated supracrustal rocks. The granite out-crop runs for nearly 500 km with an approximate width of 20 to 25 km and cut across the regional metamorphic structure passing from granulite facies in the South and green schist facies in the north. In the amphibolite-granulite facies transition zone the granite is intimately mixed with migmatites and charnockite. Field observations suggests that anatexis of Peninsular gneisses led to the formation of granite melt, and there is a space relationship between migmatite formation, charnockite development and production and emplacement of granite magma. Based on texture and cross cutting relationships four major granite phases are recognized: (1) Pyroxene bearing dark grey granite; (2) Porphyritec granite; (3) Equigranular grey granite; and (4) Equigranular pink granite. The granite is medium to coarse grained and exhibit hypidiomorphic granular to porphyritic texture. The modal composition varies from granite granodiorite to quartz monzonite. Geochemical variation of the granite suite is consistent with either fractional crystallization or partial melting, but in both the cases biotite plus feldspar must be involved as fractionating or residual phases during melting to account trace element chemistry. The trace element data has been plotted on discriminant diagrams, where majority of samples plot in volcanic arc and within plate, tectonic environments. The granite show distinct REE patterns with variable total REE content. The REE patterns and overall abundances suggests that the granite suite represents a product of partial melting of crustal source in which fractional crystallization operated in a limited number of cases.

  16. Exchange of Na+ and K+ between water vapor and feldspar phases at high temperature and low vapor pressure

    USGS Publications Warehouse

    Fournier, R.O.

    1976-01-01

    In order to determine whether gas (steam) containing a small amount of dissolved alkali chloride is effective in promoting base exchange of Na+ and K+ among alkali feldspars and coexisting brine or brine plus solid salt, experiments were carried out at 400-700??C and steam densities ranging down to less than 0.05. For bulk compositions rich in potassium, the low pressure results are close to previous high-pressure results in composition of the fluid and coexisting solid phase. However, when the bulk composition is more sodic, alkali feldspars are relatively richer in potassium at low pressure than at high pressure. This behaviour corresponds to enrichment of potassium in the gas phase relative to coexisting brine and precipitation of solid NaCl when the brine plus gas composition becomes moderately sodic. The gas phase is very effective in promoting base exchange between coexisting alkali feldspars at high temperature and low water pressure. This suggests that those igneous rocks which contain coexisting alkali feldspars out of chemical equilibrium either remained very dry during the high-temperature part of their cooling history or that the pore fluid was a gas containing very little potassium relative to sodium. ?? 1976.

  17. Argon Diffusion in Shocked Pyroxene, Feldspar, and Olivine

    NASA Astrophysics Data System (ADS)

    Weirich, J.; Isachsen, C. E.; Johnson, J. R.; Swindle, T.

    2010-12-01

    low activation energy, somewhat similar to that of unshocked alkali feldspar, despite remaining a high temperature mineral due to a much lower frequency factor. References: [1]Jessberger E. K. and Ostertag R. (1982). GCA 46:1465-1471. [2]Stephan T. and Jessberger E. K. (1992). GCA 56:1591-1605.

  18. Rb-Sr isotopic composition of granites in the Western Krušné hory/Erzgebirge pluton, Central Europe: record of variations in source lithologies, mafic magma input and postmagmatic hydrothermal events

    NASA Astrophysics Data System (ADS)

    Dolejš, David; Bendl, Jiří; Štemprok, Miroslav

    2016-03-01

    The late Variscan (327-318 Ma) Western Krušné hory/Erzgebirge pluton (Czech Republic and Germany) represents a multiply emplaced intrusive sequence ranging from low-F biotite monzogranites (with rare minor bodies of gabbrodiorites and granodiorites) to high-F topaz-zinnwaldite alkali-feldspar granites. This granite suite is characterized by progressively increasing concentrations of incompatible elements (Li, Rb, F), monotonous decrease in mafic components and compatible elements (FeOtot, MgO, TiO2, CaO, Sr) with increasing silica. Consequently, this leads to extreme variations in the Rb/Sr ratios (0.52 to 59), which impose highly variable 87Rb/86Sr and 87Sr/86Sr signatures. The low-F biotite monzogranites represent isotopically heterogeneous mixture with (87Sr/86Sr)323 = 0.707-0.709 between partial melts from the Saxothuringian metasediments and mantle-derived mafic precursors. The medium-F two-mica microgranites show variable (87Sr/86Sr)323 = 0.708-0.714, indicating involvement of multiple precursors and more mature crustal protoliths. The evolved high-F topaz-zinnwaldite alkali-feldspar granites were derived from a precursor with (87Sr/86Sr)320 = 0.707-0.708 at 324-317 Ma by differentiation, which produced the extreme Rb/Sr enrichment and variations. The Li/Rb ratios remain nearly constant (~0.5), thus insensitive to the degree of geochemical differentiation. In comparison to terrestrial variations, the high Li/Rb values indicate derivation of granitic magmas from predominantly sedimentary precursors, in accord with 7Li-6Li and 143Nd-144Nd isotope composition reported previously. The Rb-Sr element variations in each granite unit are sligthly different and indicate ascent and emplacement of separate magma batches, which do not form a single liquid line of descent. We consider the enrichment of granites in incompatible elements (Li, Rb, F) and compatible depletion of ferromagnesian components, CaO and Sr as a combined effect of multiple precursors, changes in

  19. Thermodynamic Mixing Properties of Rb-K-Na Feldspars and Relevance to Rb-, NH4-, K-, Na-, and Li-Feldspar Thermal Expansion

    NASA Astrophysics Data System (ADS)

    Hovis, G. L.; Morabito, J.; Mott, A.

    2006-12-01

    We have investigated a ten-member Rb-K feldspar solid solution series having an ordered Al-Si distribution. Rb-microcline, or rubicline, was synthesized via repeated ion exchange experiments of microcline in molten RbCl. This resulted in Rb-feldspar containing ~92 mol percent Rb, which appears to be the maximum amount of Rb that ordered feldspars can take up using ion-exchange techniques at 1 kbar. [Similarly synthesized Al-Si disordered Rb-feldspar is even more limited in Rb content (Kovalskii and Kotelnikov, EMPG IX, 2002).] Compositions between 0 and 92 mol percent Rb were synthesized by combining rubicline and microcline in the desired molar proportions, then chemically homogenizing the samples at elevated temperature. Enthalpies of solution (20.1 wt percent HF, 50 °C, isoperibolic conditions) for the series are nearly linear with composition, with the possibility of low-magnitude positive enthalpies of Rb-K mixing at Rb-rich compositions. This behavior contrasts sharply with the considerably greater enthalpies of mixing in K-Na feldspars (Hovis, 1986, Journal of Petrology). Feldspars, therefore, which have but a single alkali site, exhibit larger enthalpies of mixing when there is a clear contrast in the sizes of the ions occupying that site. This is not surprising in light of the tendency of chemically homogeneous K-Na feldspars to undergo exsolution with cooling. In the case of the Rb end member, the feldspar structure appears to be stretched nearly to its limit. This is reflected by the coefficients of thermal expansion for Rb, NH4, K, Na and Li feldspar end members (all of which we have measured) that show a linear relationship with room-temperature unit-cell volume: The larger the unit cell at room temperature, the less potential there is for thermal expansion. [Similar relations are found as a function of K:Na in nepheline - kalsilite framework silicates (Hovis and others, Mineralogical Magazine, 2003).] Thus, even at room temperature the Rb-feldspar

  20. Feldspar dissolution rates in the Topopah Spring Tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Bryan, C.R.; Helean, K.B.; Marshall, B.D.; Brady, P.V.

    2009-01-01

    Two different field-based methods are used here to calculate feldspar dissolution rates in the Topopah Spring Tuff, the host rock for the proposed nuclear waste repository at Yucca Mountain, Nevada. The center of the tuff is a high silica rhyolite, consisting largely of alkali feldspar (???60 wt%) and quartz polymorphs (???35 wt%) that formed by devitrification of rhyolitic glass as the tuff cooled. First, the abundance of secondary aluminosilicates is used to estimate the cumulative amount of feldspar dissolution over the history of the tuff, and an ambient dissolution rate is calculated by using the estimated thermal history. Second, the feldspar dissolution rate is calculated by using measured Sr isotope compositions for the pore water and rock. Pore waters display systematic changes in Sr isotopic composition with depth that are caused by feldspar dissolution. The range in dissolution rates determined from secondary mineral abundances varies from 10-16 to 10-17 mol s-1 kg tuff-1 with the largest uncertainty being the effect of the early thermal history of the tuff. Dissolution rates based on pore water Sr isotopic data were calculated by treating percolation flux parametrically, and vary from 10-15 to 10-16 mol s-1 kg tuff-1 for percolation fluxes of 15 mm a-1 and 1 mm a-1, respectively. Reconciling the rates from the two methods requires that percolation fluxes at the sampled locations be a few mm a-1 or less. The calculated feldspar dissolution rates are low relative to other measured field-based feldspar dissolution rates, possibly due to the age (12.8 Ma) of the unsaturated system at Yucca Mountain; because oxidizing and organic-poor conditions limit biological activity; and/or because elevated silica concentrations in the pore waters (???50 mg L-1) may inhibit feldspar dissolution. ?? 2009 Elsevier Ltd. All rights reserved.

  1. Secondary porosity revisited: The chemistry of feldspar dissolution by carboxylic acids and anions

    SciTech Connect

    Stoessell, R.K. ); Pittman, E.D. )

    1990-12-01

    Carboxylic acids in subsurface waters have been proposed as agents for dissolving feldspars and complexing aluminum to create secondary porosity in sandstones. Previously published experimental work indicated high aluminum mobility in the presence of carboxylic acid solutions. In order to further evaluate aluminum mobility, alkali feldspar dissolution experiments were run at 100C and 300 bars in the presence of mono- and dicarboxylic acids and their anions. Experimental results imply that under reservoir conditions, aluminum-organic anion complexes are insignificant for acetate and propionate and possibly significant for oxalate and malonate. Propionate appeared to inhibit alkali feldspar dissolution and, hence, may retard aluminum mobility. Dissolution of feldspar in the presence of oxalic and acetic acid can be explained by enhanced dissolution kinetics and greater aluminum mobility under low-pH conditions. The general absence of such low-pH fluids in subsurface reservoirs makes this an unlikely mechanism for creating secondary porosity. Also, the thermal instability of oxalate and malonate limits their aluminum-complexing potential in reservoirs at temperatures above 100C.

  2. Systematic variations of argon diffusion in feldspars and implications for thermochronometry

    DOE PAGESBeta

    Cassata, William S.; Renne, Paul R.

    2013-03-07

    Coupled information about the time-dependent production and temperature-dependent diffusion of radiogenic argon in feldspars can be used to constrain the thermal evolution attending a host of Earth and planetary processes. To better assess the accuracy of thermal models, an understanding of the mechanisms and pathways by which argon diffuses in feldspars is desirable. Here we present step-heating Ar diffusion experiments conducted on feldspars with diverse compositions, structural states, and microstructural characteristics. The experiments reveal systematic variations in diffusive behavior that appear closely related to these variables, with apparent closure temperatures for 0.1–1 mm grains of ~200–400 °C (assuming a 10more » °C/Ma cooling rate). Given such variability, there is no broadly applicable set of diffusion parameters that can be utilized in feldspar thermal modeling; sample-specific data are required. Diffusion experiments conducted on oriented cleavage flakes do not reveal directionally-dependent diffusive anisotropy to within the resolution limits of our approach (approximately a factor of 2). Additional experiments aimed at constraining the physical significance of the diffusion domain are presented and indicate that unaltered feldspar crystals with or without coherent exsolution lamellae diffuse at the grain-scale, whereas feldspars containing hydrothermal alteration and/or incoherent sub-grain intergrowths do not. Arrhenius plots for argon diffusion in plagioclase and alkali feldspars appear to reflect a confluence of intrinsic diffusion kinetics and structural transitions that occur during incremental heating experiments. These structural transitions, along with sub-grain domain size variations, cause deviations from linearity (i.e., upward and downward curvature) on Arrhenius plots. An atomistic model for Arrhenius behavior is proposed that incorporates the variable lattice deformations of different feldspars in response to heating and

  3. Systematic variations of argon diffusion in feldspars and implications for thermochronometry

    SciTech Connect

    Cassata, William S.; Renne, Paul R.

    2013-03-07

    Coupled information about the time-dependent production and temperature-dependent diffusion of radiogenic argon in feldspars can be used to constrain the thermal evolution attending a host of Earth and planetary processes. To better assess the accuracy of thermal models, an understanding of the mechanisms and pathways by which argon diffuses in feldspars is desirable. Here we present step-heating Ar diffusion experiments conducted on feldspars with diverse compositions, structural states, and microstructural characteristics. The experiments reveal systematic variations in diffusive behavior that appear closely related to these variables, with apparent closure temperatures for 0.1–1 mm grains of ~200–400 °C (assuming a 10 °C/Ma cooling rate). Given such variability, there is no broadly applicable set of diffusion parameters that can be utilized in feldspar thermal modeling; sample-specific data are required. Diffusion experiments conducted on oriented cleavage flakes do not reveal directionally-dependent diffusive anisotropy to within the resolution limits of our approach (approximately a factor of 2). Additional experiments aimed at constraining the physical significance of the diffusion domain are presented and indicate that unaltered feldspar crystals with or without coherent exsolution lamellae diffuse at the grain-scale, whereas feldspars containing hydrothermal alteration and/or incoherent sub-grain intergrowths do not. Arrhenius plots for argon diffusion in plagioclase and alkali feldspars appear to reflect a confluence of intrinsic diffusion kinetics and structural transitions that occur during incremental heating experiments. These structural transitions, along with sub-grain domain size variations, cause deviations from linearity (i.e., upward and downward curvature) on Arrhenius plots. An atomistic model for Arrhenius behavior is proposed that incorporates the variable lattice deformations of different feldspars in response to heating and

  4. Origin and tectonic implications of the ∼200 Ma, collision-related Jerai pluton of the Western Granite Belt, Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Jamil, Azmiah; Ghani, Azman A.; Zaw, Khin; Osman, Syamir; Quek, Long Xiang

    2016-09-01

    Triassic granitoids (∼200-225 Ma) are widespread in the Western Belt of Peninsular Malaysia. The Main Range granite is the biggest batholith in the Western Belt composed of peraluminous to metaluminous granite and granodiorite and displays typical ilmenite-series characteristics. Jerai granitic pluton occurs at the northwestern part of the Main Range granite batholith. The Jerai granite can be divided into three facies: (i) biotite-muscovite granite; (ii) tourmaline granite; and (iii) pegmatite and aplopegmatite. Biotite-muscovite granite accounts for 90% of the Jerai pluton, and the rest is tourmaline granite. Geochemical data reveal that pegmatite and tourmaline granite are more differentiated than biotite-muscovite granite. Both pegmatite and tourmaline granite have a higher SiO2 content (70.95-83.94% versus 69.45-73.35%) and a more pronounced peraluminous character. The U-Pb zircon geochronology of the Jerai granite gave an age ranging from 204 ± 4.3 Ma, 205 ± 4 Ma and 205 ± 2 Ma for pegmatite biotite-muscovite granite and tourmaline granite, respectively. The biotite-muscovite Jerai granites are similar to S-type Main Range granite, but the tourmaline granite has a signature of late-stage hydrothermal fluid interaction such as tourmaline quartz pods, the accumulation of large pegmatitic K-feldspar, pronounced peraluminous character, higher SiO2 content. Age evidence of these two granitic facies suggest that they are from the same magma.

  5. MDD Analysis of Microtexturally Characterized K-Feldspar Fragments

    NASA Astrophysics Data System (ADS)

    Short, C. H.; Heizler, M. T.; Parsons, I.; Heizler, L.

    2011-12-01

    Multiple diffusion domain (MDD) analysis of K-feldspar 40Ar/39Ar age spectra is a powerful thermochronological tool dating back 25 years, but continued validation of the basic assumptions of the model can be afforded by microanalysis of K-feldspar crystal fragments. MDD theory assumes that diffusion of Ar in K-feldspars is controlled by domains of varying size bounded by infinitely fast diffusion pathways. However, the physical character of these domain boundaries is not fully understood and this issue remains a point of criticism of the MDD model. We have evaluated the relationship between texture, age, and thermal history via step heating and modeling of texturally characterized K-feldspar crystal fragments (250-500 μm). K-feldspar phenocrysts from the Shap granite, chosen for their well-studied and relatively simple microtextures, contain large areas of homogenous regular strain-controlled film perthite with periodicities on the order of ~1 μm and abundant misfit dislocations, as well as areas of much coarser, irregular, slightly turbid, patch and vein perthite. Total gas ages (TGA) for all Shap fragments, regardless of texture, show less than 2% variation, but the shape of the age spectra varies with microtexture. Film perthites produce flat spectra whereas patch/vein perthite spectra have initial steps 5 - 25% older than the age of the emplacement with younger plateau or gently rising steps afterward. Patch/vein perthites have substantial microporosity and their spectral shapes may be a consequence of trapped 40Ar* that has diffused into micropores or other defects that have no continuity with the crystal boundaries. Correlations between spectral shape and heating schedule suggest that initial old ages are produced by the early release of trapped 40Ar* separated from the K parent rather than degassing of excess 40Ar*. The MH-42 K-feldspar from the Chain of Ponds Pluton has two primary microtextures: a coarse patch/vein perthite with lamellae 1-20 μm in

  6. Yingmailai Granitic Intrusion in the Southern Tianshan:Magnetite-series or Ilmenite-series?

    NASA Astrophysics Data System (ADS)

    Ma, L.; Zhang, Z.

    2015-12-01

    The Yingmailai granitic intrusion is located in the middle part of the southern Tianshan. It consists predominantly of biotite K-feldspar granite with minor two-mica K-feldspar granite. They have similar whole-rock geochemical characteristics, but distinct mineralogy. Opaque minerals in biotite K-feldspar granite are ilmenite, whereas they are magnetite in two-mica K-feldspar granite. Primary muscovite has been recognized in two-mica K-feldspar granite, which is characterized by high Mg/Fe in biotite, An contents of plagioclase and Ab contents of perthite. According to Ishihara's classification(1977), biotite K-feldspar granite can undoubtedly be classified to ilmenite-series. For instance, opaque oxide minerals are less than 1 vol%, in which ilmenite is unique recognized; Fe-rich biotite (high FeO+Fe2O3) and low MgO, high FeO+Fe2O3/ FeO+Fe2O3+MgO ratio (0.957~0.980), low Mg numbers (<0.6), mostly Fe2+>1.1, and low Fe3+/(Fe3++Fe2+). Although some characteristics, e.g., presence of magnetite and Mg-rich biotite, suggest magnetite-series, it should be noted that the magnetite in two-mica K-feldspar granite is formed by post magmatism. In combination with low Fe3+/(Fe3++Fe2+)ratio and presence of indicating mineral—muscovite, it can be inferred that it also belongs to ilmenite-series. The factors which control the appearance of secondary magnetite are sudden change of fO2, pressure, temperature during magma emplacement rather than their source. In addition, Yingmailai granitic intrusion's characteristics, such as mineralogy, CaO(wt%)<3.7, w(Na2O)/w(K2O)<1, high SiO2 and (87Sr/86Sr)t, low temperature during the process of forming, indicate S type granitoids, suggesting that ilmenite-series defined by Ishihara (1977) correspond to S-type granite in the south Tienshan. This research also suggests that the south Tianshan had not experienced within plate during early Permian.

  7. The granite-upper mantle connection in terrestrial planetary bodies: an anomaly to the current granite paradigm?

    NASA Astrophysics Data System (ADS)

    Bonin, Bernard; Bébien, Jean

    2005-03-01

    Granite formed in the terrestrial planets very soon after their accretion. The oldest granite-forming minerals (4.4 Ga zircon) and granite (4.0 Ga granodiorite) indicate conditions resembling the present-day ones, with the presence of oceans and external processes related to liquid water. As a result, the current granite paradigm states that granite is not issued directly from the melting of the mantle. However, a granite-upper mantle connection is well established from several pieces of evidence. Tiny micrometre- to millimetre-sized enclaves of granite-like glassy and crystalline materials in Earth's mantle rocks are known in oceanic and continental areas. Earth's mantle-forming minerals, such as olivine, pyroxene, and chromite, can contain silicic materials, either as glass inclusions or as crystallised products (quartz or tridymite, sanidine, K-feldspar, and/or plagioclase close to albite end-member). Importantly, the same evidence is amply found in some types of meteorites, whether they are primitive, such as ordinary chondrites, or differentiated, such as IIE irons, howardite eucrite diogenite (HED), and Martian shergottite nakhlite chassignite (SNC) achondrites. Although constituting apparently an anomaly, the granite-upper mantle connection can be reconciled with the current granite paradigm by recognising that the conditions prevailing in the formation of granite are not only necessarily crustal but can occur also at depths in mantle rocks. Unresolved problems to be explored further include whether tiny amounts of granitic material within terrestrial mantles may be hints of greater abundances and more direct mantle involvement, and what role can be played by granite trapped within the upper mantle in lithosphere buoyancy.

  8. Black and red granites in the Egyptian Antiquity Museum of Turin. A minero-petrographic and provenance study.

    NASA Astrophysics Data System (ADS)

    Serra, M.; Borghi, A.; Vaggelli, G.; D'Amicone, E.; Vigna, L.

    2009-04-01

    materials used for two of the best known masterpieces of Egyptian art. As regards to red granites, it has been observed that most of the exposed sculptures were made of rocks closely akin to Aswan granite. Just in one case, the Ram headed sphinx (cat. 836), macroscopic differences in colour index, grain size and isoorientation of feldspar phenocrysts, suggested a different provenance of the source material and determined the choice of picking up a small fragment for minero-petrographic analysis. The sample collected from the sarcophagus of Nefertari (suppl. 5153) during the recent restoration of the sculpture, was analysed in order to test the accuracy of the results, as the provenance of the material used for its realization was already certain. Petrographic observations and chemical analysis were undertaken by a scanning electron microscope equipped with an energy-dispersive spectrometer. Minero-petrographic data primarily showed that all samples vary in composition from granite (red granites) to granodiorite and tonalite (black granites). The main sialic phases are represented by plagioclase (albite to oligoclase), alkali-feldspar (microcline) and quartz, while femic phases are amphibole (green horneblende) and biotite (Fe- to Mg-biotite), always coexisting in variable relative percentages. Minor amount of apatite (≈ 1 wt.%), magnetite, ilmenite, often associated to sphene, zircon, pyrite and allanite also occur. The identification of some compositional markers in all samples suggested a common provenance for all the rocks used for the sculptures. Thus, it was supposed that they could all have been quarried in the famous district of Aswan, well known at least since Dynastic period. This provenance hypothesis was confirmed by geological literature and archeological evidences, considering the relative proximity of Aswan quarries to Nile river and to the key centres of power in the New Kingdom. Therefore, several geological samples were collected in Aswan area, in order

  9. Age of K-feldspar authigenesis in Lower Paleozoic and uppermost Precambrian rocks of the Mississippi Valley area

    SciTech Connect

    Hay, R.L.; Liu, J. . Dept. of Geology); Deino, A. . Geochronology Center); Kyser, T.K. . Dept. of Geology)

    1992-01-01

    Published K-Ar dates (n = 12) of authigenic K-feldspar in Cambrian and Ordovician rocks of the Mississippi Valley area range from 448 to 375 Ma (Late Ordovician to Middle Devonian), suggesting a lengthy episode of K-feldspar authigenesis. Here the authors report an age span of 465--400 Ma (Middle Ordovician to Early Devonian) for authigenic K-feldspar of two samples from the alteration profile widely developed over Precambrian rocks at the unconformity with Cambrian deposits. This dating was done on 42 to 48 mesh grains of K-feldspar by the laser incremental-heating Ar-40/Ar-39 method. One sample, from west-central Wisconsin, is from a vein formed along a fracture in kaolinitic altered granite. Three grains nearest the fracture yielded plateau ages with a range of 9 Ma and an average of 430 Ma. Three grains distant from the fracture yielded a similar range of 10 Ma but with an average age of 397 Ma. Thus the grains grew over an extended period from at least 430 to 400 Ma. The other sample, from the St. Francois Mts. of Missouri, is of diabase replaced by K-feldspar. Three grains yielded plateau ages ranging over 20 Ma and apparently recording an extended history of K-feldspar growth. The average age of these grains is 454 Ma, compared to a K-Ar date of 444 [+-] 9 Ma obtained from a split of the same sample. The period(s) of K-feldspar authigenesis does not support its linkage with orogenic activity. Oxygen-isotope values of authigenic K-feldspar from lower Paleozoic and uppermost Precambrian rocks range from +19.8 to +23.0 [per thousand] and average 21.4 [per thousand] (N = 11). These values are compatible with formation of the K-feldspar from similar fluids and comparable temperatures.

  10. Retention of Anionic Species on Granite: Influence of Granite Composition - 12129

    SciTech Connect

    Videnska, Katerina; Havlova, Vaclava

    2012-07-01

    Technetium (Tc-99, T{sub 1/2} = 2.1.10{sup 5} yrs) and selenium (Se-79, T{sub 1/2} = 6.5.10{sup 4} yrs) belong among fission products, being produced by fission of nuclear fuel. Both elements can significantly contribute to risk due to their complicated chemistry, long life times, high mobility and prevailing anionic character. Therefore, knowledge of migration behaviour under different conditions can significantly improve input into performance and safety assessment models. Granite is considered as a potential host rock for deep geological disposal of radioactive waste in many countries. Granitic rocks consist usually of quartz, feldspar, plagioclase (main components), mica, chlorite, kaolinite (minor components). The main feature of the rock is advection governed transport in fractures, complemented with diffusion process from fracture towards undisturbed rock matrix. The presented work is focused on interaction of anionic species (TcO{sub 4}{sup -}, SeO{sub 4}{sup 2-}, SeO{sub 3}{sup 2-}) with granitic rock. Furthermore, the importance of mineral composition on sorption of anionic species was also studied. The batch sorption experiments were conducted on the crushed granite from Bohemian Massive. Five fractions with defined grain size were used for static batch method. Mineral composition of each granitic fraction was evaluated using X-ray diffraction. The results showed differences in composition of granitic fractions, even though originating from one homogenized material. Sorption experiments showed influence of granite composition on adsorption of both TcO4{sup -} and SeO3{sup 2-} on granitic rock. Generally, Se(IV) showed higher retention than Tc(VII). Se(VI) was not almost sorbed at all. Fe containing minerals are pronounced as a selective Se and Tc sorbent, being reduced on their surface. As micas in granite are usually enriched in Fe, increased sorption of anionic species onto mica enriched fractions can be explained by this reason. On the other hand

  11. Thermal expansion of plagioclase feldspars

    NASA Astrophysics Data System (ADS)

    Tribaudino, M.; Angel, R. J.; Cámara, F.; Nestola, F.; Pasqual, D.; Margiolaki, I.

    2010-12-01

    The volume thermal expansion coefficient and the anisotropy of thermal expansion were determined for nine natural feldspars with compositions, in terms of albite (NaAlSi3O8, Ab) and anorthite (CaAl2Si2O8, An), of Ab100, An27Ab73, An35Ab65, An46Ab54, An60Ab40, An78Ab22, An89Ab11, An96Ab4 and An100 by high resolution powder diffraction with a synchrotron radiation source. Unit-cell parameters were determined from 124 powder patterns of each sample, collected over the temperature range 298-935 K. The volume thermal expansion coefficient of the samples determined by a linear fit of V/ V 0 = α( T - T 0) varies with composition ( X An in mol %) as: αV = 2.90left( 4 right) × 10^{ - 5} - 3.0left( 2 right) × 10^{ - 7} *X_{text{An}} + 1.8left( 2 right) × 10^{ - 9} *X_{text{An}}2 Two empirical models for the non-linear behaviour of volume with temperature give a better fit to the experimental data. The change with composition in the a° parameter of the non-linear Holland-Powell model V/ V 0 = 1 + a°( T - T 0) + 20a° (√ T - √ T 0) is: a^circ = 4.96left( 5 right) × 10^{ - 5} - 4.7left( 2 right) × 10^{ - 7} *X_{text{An}} + 2.2left( 2 right) × 10^{ - 9} *X_{text{An}}2 For the Berman model, V/ V 0 = a 1( T - T 0) + a 2*( T- T 0)2, the parameters change with composition as: begin{aligned}& a1 = 2.44left( {15} right) × 10^{ - 5} - 3.1left( 6 right) × 10^{ - 7} *X_{text{An}}\\& quad + 1.8left( 5 right) × 10^{ - 9} *X_{text{An}}2 \\& a2 = 9left( 1 right) × 10^{ - 9} - 4left( 2 right) × 10^{ - 11} *X_{text{An}} \\ The thermal expansion of all plagioclases is very anisotropic, with more than 70% of the volume expansion being accommodated by a direction fairly close to the (100) plane normal, whereas perpendicular directions exhibit smaller, and in some cases slightly negative or zero, thermal expansion.

  12. Regional and local correlations of feldspar geochemistry of the Peach Spring Tuff, Alvord Mountain, California

    USGS Publications Warehouse

    Buesch, David C.

    2016-01-01

    The chemical composition of feldspar grains in an ignimbrite from the Spanish Canyon Formation in the Alvord Mountain area, California, have been used to confirm similarities in three measured sections locally, and they are similar to exposures of the Peach Spring Tuff (PST) regionally. Feldspar grains were identified on the basis of texture (zoning, as mantled feldspars, or in crystal clusters), whether the grains were attached to glass or were in pumice clasts, or were simply crystal fragments with no textural context. Chemistry was determined by electron microprobe analysis, and each analysis is calculated in terms of the percent endmember and plotted on orthoclase (Or) versus anorthite (An) plots. In general, the PST has sanidine and plagioclase compositions that are consistent with having formed in high-silica rhyolite and trachyte within a zoned magma chamber. Feldspars from the PST in Spanish Canyon area cluster along the rhyolitic trend with no grains along the trachytic trend. Similar clustering of feldspars along the rhyolitic trend with no grains along the trachytic trend also occur in the PST from Granite Spring and Providence Mountains to the east of the Alvord Mountain area, and the ranges in compositions are also similar in these locations. In contrast, the PST in the Kane Wash area of the Newberry Mountains has feldspars only from the rhyolitic trend in the basal deposits, but some grains from the trachytic trend are in the upper part of the deposit, and the range in compositions are greater than in the Spanish Canyon area. The variations in vertical compositional zoning and compositional range in these different deposits suggests there were probably different flow paths (or timing of the delivery) during the eruption and runout of the pyroclastic flow(s) generated from the climactic eruption of the PST magma chamber.

  13. Oxygen isotope compositions of selected laramide-tertiary granitoid stocks in the Colorado Mineral Belt and their bearing on the origin of climax-type granite-molybdenum systems

    USGS Publications Warehouse

    Hannah, J.L.; Stein, H.J.

    1986-01-01

    Quartz phenocrysts from 31 granitoid stocks in the Colorado Mineral Belt yield ??18O values less than 10.4???, with most values between 9.3 and 10.4???. An average magmatic value of about 8.5??? is suggested. The stocks resemble A-type granites; these data support magma genesis by partial melting of previously depleted, fluorine-enriched, lower crustal granulites, followed by extreme differentiation and volatile evolution in the upper crust. Subsolidus interaction of isotopically light water with stocks has reduced most feldspar and whole rock ??18O values. Unaltered samples from Climax-type molybdenumbearing granites, however, show no greater isotopic disturbance than samples from unmineralized stocks. Although meteoric water certainly played a role in post-mineralization alteration, particularly in feldspars, it is not required during high-temperature mineralization processes. We suggest that slightly low ??18O values in some vein and replacement minerals associated with molybdenum mineralization may have resulted from equilibration with isotopically light magmatic water and/or heavy isotope depletion of the ore fluid by precipitation of earlier phases. Accumulation of sufficient quantities of isotopically light magmatic water to produce measured depletions of 18O requires extreme chemical stratification in a large magma reservoir. Upward migration of a highly fractionated, volatile-rich magma into a small apical Climax-type diapir, including large scale transport of silica, alkalis, molybdenum, and other vapor soluble elements, may occur with depression of the solidus temperature and reduction of magma viscosity by fluorine. Climax-type granites may provide examples of 18O depletion in magmatic systems without meteoric water influx. ?? 1986 Springer-Verlag.

  14. A Study of Melt Inclusions in Tin-Mineralized Granites From Zinnwald, Germany

    NASA Astrophysics Data System (ADS)

    Sookdeo, C. A.; Webster, J. D.; Eschen, M. L.; Tappen, C. M.

    2001-12-01

    We have analyzed silicate melt inclusions from drill core samples from the eastern Erzgebirge region, Germany, to investigate magmatic-hydrothermal and mineralizing processes in compositionally evolved, tin-bearing granitic magmas. Silicate melt inclusions are small blebs of glass that are trapped or locked within phenocrysts and may contain high concentrations of volatiles that usually leave magma via degassing. Quartz phenocrysts were carefully hand picked from crushed samples of albite-, zinnwaldite- +/- lepidolite-bearing granitic dikes from Zinnwald and soaked in cold dilute HF to remove any attached groundmass. The cleaned phenocrysts were loaded into precious metal capsules with several drops of immersion oil to create a reducing environment at high temperature. The quartz-bearing capsules were inserted into quartz glass tubes, loaded into a furnace for heating at temperatures of 1025\\deg and 1050\\deg C (1atm) for periods of 20 to 30 hours, and subsequently the inclusions were quenched to glass. The inclusions were analyzed for major and minor elements (including F, Cl, and P) by electron microprobe and for H2O, trace elements, and ore elements by ion microprobe. The melt inclusion compositions are similar to that of the whole-rock sample from which the quartz separates were extracted. The average melt inclusion and whole-rock compositions are peraluminous, high in silica and rare alkalis, and low in MgO, CaO, FeO, MnO, and P2O5. Unlike the whole-rock sample, the melt inclusions contain from 0.5 to more than 4 wt.% F. The Cl contents of the inclusions are variable and range from hundreds of ppm to several thousand ppm. The variable and strong enrichments in F of the melt inclusions may correlate with (Na2O/Na2O+K2O) in the inclusions which is consistent with crystal fractionation of feldspars which drives the residual melt to increasing Na contents. Overall, the compositions of these melt inclusions are different from melt inclusions extracted from the

  15. Petrology of the anorogenic, oxidised Jamon and Musa granites, Amazonian Craton: implications for the genesis of Proterozoic A-type granites

    NASA Astrophysics Data System (ADS)

    Dall'Agnol, Roberto; Rämö, O. Tapani; de Magalhães, Marilia Sacramento; Macambira, Moacir José Buenano

    1999-03-01

    The 1.88 Ga Jamon and Musa granites are magnetite-bearing anorogenic, A-type granites of Paleoproterozoic age. They intrude the Archaean rocks of the Rio Maria Granite-Greenstone Terrain in the eastern part of the Amazonian Craton in northern Brazil. A suite of biotite±amphibole monzogranite to syenogranite, with associated dacite porphyry (DP) and granite porphyry (GP) dykes, dominates in these subalkaline granites that vary from metaluminous to peraluminous and show high FeO/(FeO+MgO) and K 2O/Na 2O. In spite of their broad geochemical similarities, the Jamon and Musa granites show some significant differences in their REE patterns and in the behaviour of Y. The Jamon granites are related by fractional crystallisation of plagioclase, potassium feldspar, quartz, biotite, magnetite±amphibole±apatite±ilmenite. Geochemical modelling and Nd isotopic data indicate that the Archaean granodiorites, trondhjemites and tonalites of the Rio Maria region are not the source of the Jamon Granite and associated dyke magmas. Archaean quartz diorites, differentiated from the mantle at least 1000 m.y. before the emplacement of the granites, have a composition adequate to generate DP and the hornblende-biotite monzogranite magmas by different degrees of partial melting. A larger extent of amphibole fractionation during the evolution of the Musa pluton can explain some of the observed differences between it and the Jamon pluton. The studied granites crystallised at relatively high fO 2 and are anorogenic magnetite-series granites. In this aspect, as well as concerning geochemical characteristics, they display many affinities with the Proterozoic A-type granites of south-western United States. The Jamon and Musa granites differ from the anorthosite-mangerite-charnockite-rapakivi granite suites of north-eastern Canada and from the reduced rapakivi granites of the Fennoscandian Shield in several aspects, probably because of different magmatic sources.

  16. Geological setting and petrogenesis of symmetrically zoned, miarolitic granitic pegmatites at Stak Nala, Nanga Parbat - Haramosh Massif, northern Pakistan

    USGS Publications Warehouse

    Laurs, B.M.; Dilles, J.H.; Wairrach, Y.; Kausar, A.B.; Snee, L.W.

    1998-01-01

    Miarolitic granitic pegmatites in the Stak valley in the northeast part of the Nanga Parbat - Haramosh Massif, in northern Pakistan, locally contain economic quantities of bi- and tricolored tourmaline. The pegmatites form flat-lying sills that range from less than 1 m to more than 3 m thick and show symmetrical internal zonation. A narrow outer or border zone of medium-to coarse-grained oligoclase - K-feldspar - quartz grades inward to a very coarse-grained wall zone characterized by K-feldspar - oligoclase - quartz - schorl tourmaline. Radiating sprays of schorl and flaring megacrysts of K-feldspar (intermediate microcline) point inward, indicating progressive crystallization toward the core. The core zone consists of variable mixtures of blocky K-feldspar (intermediate microcline), oligoclase, quartz, and sparse schorl or elbaite, with local bodies of sodic aplite and miarolitic cavities or "pockets". Minor spessartine-almandine garnet and lo??llingite are disseminated throughout the pegmatite, but were not observed in the pockets. The pockets contain well-formed crystals of albite, quartz, K-feldspar (maximum microcline ?? orthoclase overgrowths), schorl-elbaite tourmaline, muscovite or lepidolite, topaz, and small amounts of other minerals. Elbaite is color-zoned from core to rim: green (Fe2+- and Mn2+-bearing), colorless (Mn2+-bearing), and light pink (trace Mn3+). Within ???10 cm of the pegmatites, the granitic gneiss wallrock is bleached owing to conversion of biotite to muscovite, with local quartz and albite added. Schorl is disseminated through the altered gneiss, and veins of schorl with bleached selvages locally traverse the wallrock up to 1 m from the pegmatite contact. The schorl veins can be traced into the outer part of the wall zone, which suggests that they formed from aqueous fluids derived during early saturation of the pegmatite-forming leucogranitic magma rich in H2O, F, B, and Li. Progressive crystallization resulted in a late-stage sodic

  17. Alkali Bee

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The alkali bee, Nomia melanderi, is native to deserts and semi-arid desert basins of the western United States. It is a very effective and manageable pollinator for the production of seed in alfalfa (=lucerne) and some other crops, such as onion. It is the world’s only intensively managed ground-n...

  18. Natural radioactivity and rare earth elements in feldspar samples, Central Eastern desert, Egypt.

    PubMed

    Walley El-Dine, Nadia; El-Shershaby, Amal; Afifi, Sofia; Sroor, Amany; Samir, Eman

    2011-05-01

    The pegmatite bodies of the Eastern Desert of Egypt are widely distributed especially along the Marsa-Alam-Idfu road. The Abu Dob area covers about 150km(2) of the Arabian Nubian shield at the central part of the Eastern Desert of Egypt. Most of the pegmatite is zoned; the zonation starts with milky quartz at the core followed by alkali feldspar at the margins. The feldspars vary in color from rose to milky and in composition from K-feldspar to Na-feldspar, sometimes interactions of both types are encountered. Thirteen feldspar samples were collected from different locations in the Abu Dob area for measuring the natural radioactivity of (238)U, (232)Th and (40)K using an HPGe detector. The variation in concentration of radionuclides for the area under investigation can be classified into regions of high, medium and low natural radioactivity. The average concentration in BqKg(-1) has been observed to be from 9.5 to 183675.7BqKg(-1) for (238)U, between 6.1 and 94,314.2BqKg(-1) for (232)Th and from 0 to 7894.6BqKg(-1) for (40)K. Radium equivalent activities (Ra(eq)), dose rate (D(R)) and external hazard (H(ex)) have also been determined. In the present work, the concentration of rare earth elements are measured for two feldspar samples using two techniques, Environmental Scanning Electron microscope XIL 30 ESEM, Philips, and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The existence of rare earth elements in this area are very high and can be used in different important industries. PMID:21324705

  19. Nb-Ta-Ti oxides fractionation in rare-metal granites: Krásno-Horní Slavkov ore district, Czech Republic

    NASA Astrophysics Data System (ADS)

    René, Miloš; Škoda, Radek

    2011-11-01

    Nb-Ta-Ti-bearing oxide minerals (Nb-Ta-bearing rutile, columbite-group minerals) represent the most common Nb-Ta host in topaz-albite granites and related rocks from the Krásno-Horní Slavkov ore district. Tungsten-bearing columbite-(Fe), W-bearing ixiolite, wodginite and tapiolite-(Fe) are extremely rare in these rocks. Rutile contains significant levels of Ta (up to 37 wt.% Ta2O5) and Nb (up to 24 wt.% Nb2O5), with Ta/(Ta + Nb) ratio ranging from 0.04 to 0.61. Columbite-group minerals are represented mostly by columbite-(Fe) and rarely by columbite-(Mn), with Mn/(Mn + Fe) ratio ranging from 0.23 to 0.94. The exceptionally rare Fe-rich, W-bearing ixiolite occurs only as inclusions in Nb-Ta-bearing rutile from quartz-free alkali-feldspar syenites (Vysoký Kámen stock). Wodginite was found only in the topaz-albite microgranite of gneissic breccia matrix that occurs in the upper most part of the Hub topaz-albite granite stock. In wodginite, the Mn/(Mn + Fe) ratio is 0.42-0.51, whereas the coexisting tapiolite-(Fe) has a distinctly lower Mn/(Mn + Fe) ratio close to 0.06.

  20. The origin and nature of thermal evolution during Granite emplacement and differentiation and its influence on upper crustal dynamics.

    NASA Astrophysics Data System (ADS)

    Buchwaldt, R.; Toulkeridis, T.; Todt, W.

    2014-12-01

    Structural geological, geochemical and geochronological data were compiled with the purpose to exercise models for the construction of upper crustal batholith. Models for pulsed intrusion of small magma batches over long timescales versus transfer of larger magma bodies on a shorter time scales are able to predict a different thermal, metamorphic, and rheological state of the crust. For this purpose we have applied the chronostratigraphic framework for magma differentiation on three granite complexes namely the St. Francois Mountain granite pluton (Precambrian), the Galway granite (Cambrian), and the Sithonia Plutonic Complex (Eocene). These plutons have similar sizes and range in composition from quartz diorites through granodiorites and granites to alkali granites, indicating multiple intrusive episodes. Thermobarometric calculations imply an upper crustal emplacement. Geochemical, isotopic and petrological data indicate a variety of pulses from each pluton allowing to be related through their liquid line of decent, which is supported by fractional crystallization of predominantly plagioclase, K-feldspar, biotite, hornblende and some minor accessory mineral phases, magma mingling and mixing as well as crustal contamination. To obtain the temporal relationship we carried out high-precision CA-TIMS zircon geochronology on selected samples along the liquid line of decent. The obtained data indicate a wide range of rates: such as different pulses evolved on timescales of about only 10-30ka, although, the construction time of the different complexes ranges from millions of years with prolonged tectonically inactive phases to relatively short lived time ranges of about ~300 ka. For a better understanding how these new data were used and evaluated in order to reconstruct constraints on the dynamics of the magmatic plumbing system, we integrated the short-lived, elevated heat production, due to latent heat of crystallization, into a 2D numerical model of the thermal

  1. A-type granites in the Internal Hellenides (Macedonia, Greece): rift-related or post-orogenic? A reappraisal.

    NASA Astrophysics Data System (ADS)

    Poli, Giampiero; Christofides, Georgios; Koroneos, Antonis

    2010-05-01

    The Serbo-Macedonian Massif belongs to the Internal Hellenides, and is subdivided into two units: the Kerdyllia and Vertiskos Unit in the eastern and central and northwest Chalkidiki Peninsula (Macedonia, Greece), respectively. The Vertiskos Unit mostly comprises various types of gneisses, associated with amphibolites and metasediments, and it is intruded mainly by Mesozoic leucocratic granites and dykes. The largest granitic bodies are those of the Arnea and Kerkini complexes, which were studied using new and literature U-Pb geochronological zircon data as well as new whole rock geochemical data, aiming at investigating the origin and evolution of the two complexes as well as providing constraints on their geodynamic environment. Arnea complex shows differences in ages between the rocks cropping out at South and North of Volvi Lake, with 254 Ma and 244 Ma, respectively, whereas Kerkini has an age of 247 Ma. Arnea and Kerkini complexes are two-mica syenogranite and alkali-feldspar granites containing quartz, K-feldspar, plagioclase, and biotite, and allanite, titanite, zircon, and fluorite as typical main and accessory minerals, respectively. They are variably peraluminous with molar Al2O3/CaO+Na2O+K2O values of 0.96 - 1.34. Both complexes evolved mainly by Fractional Crystallization, separating assemblages consisting of feldspars, biotite, allanite and zircon. Parental magmas are crustal melts derived by partial melting of TTG sources. The smaller bodies and the dykes intruding the Vertiskos Unit were studied using geochemical literature data. They are mainly white mica granites, rich in quartz and albitic feldspar with molar Al2O3/CaO+Na2O+K2O values invariably higher than 1.1. They are considered as the product of partial melting of crust-dominated sources. All the granitic magmatism in the Vertiskos Unit has been considered as A-type, linked to the rift, which led to the formation of a branch of Neotethys (Vardar-Meliata Ocean). This was based mainly on the

  2. Age of authigenic K-feldspar in Lower Paleozoic and uppermost Precambrian rocks of the Mississippi Valley area

    SciTech Connect

    Hay, R.L.; Liu, J. . Dept. of Geology); Deino, A. . Geochronology Center); Kyser, T.K. . Dept. of Geology)

    1993-03-01

    Published K-Ar dates of authigenic K-feldspar in Cambrian and Ordovician rocks of the Mississippi Valley area range from 448 to 375 Ma (Late Ordovician to Middle Devonian), suggesting a lengthy episode of K-feldspar authigenesis. Here the authors report an age span of [approximately]464--400 Ma (Middle Ordovician to Early Devonian) for authigenic K-feldspar of two samples from the alteration profile widely developed over Precambrian rocks at the unconformity with Cambrian deposits. This dating was done on 42 to 48 mesh grains of K-feldspar by the laser incremental-heating [sup 40]Ar/[sup 39]Ar method. One sample, from west-central Wisconsin, is from an 8-mm-thick vein formed along a fracture in kaolinitic altered granite. Three grains nearest the fracture yielded plateau ages with a range of [approximately]9 Ma and an average of 430 Ma. Three grains distant from the fracture yielded a similar range of 10 Ma but with an average age of 397 Ma. Thus the grains grew over an extended period from at least [approximately]430 to 400 Ma. A K-Ar date of 411 Ma was obtained from a sample representing the entire thickness of the vein. The other sample, from the St. Francois Mts. of Missouri, is of diabase replaced by K-feldspar. Three grains yielded plateau ages ranging from [approximately]444 to 464 Ma. Oxygen-isotope values of authigenic K-feldspar from lower Paleozoic and uppermost Precambrian rocks range from +19.8 to +22.2[per thousand] and average 21.4[per thousand] (n = 11). These values are compatible with formation of the K-feldspar from similar fluids and comparable temperatures.

  3. Characterization and Thermodynamics Studies of Feldspar and Feldspathoid Minerals

    NASA Astrophysics Data System (ADS)

    Rudow, M.; Lilova, K.

    2015-12-01

    The application of thermal analysis and calorimetry for the studies of minerals has a history as long as the existence of the thermal methods themselves. New advanced calorimetric techniques have been developed for more accurate characterization of both bulk and nano materials thus impacting their design, processing, and applications. TG-DTA and TG-DSC are used to characterize the composition of complex minerals (e.g. [KxNa1-x(AlSi3)O8]) based on the weight changes and phase transformations observed with temperature increase. Additionally, those techniques allow to determine the quantity of the different types of water contained in natural feldspars and feldspathoids (absorbed, interlayer, structural). The results for several clays will be discussed. The geochemical properties and thermal stability of another class of minerals - aluminosilicate frameworks (alkali sodalities, natrolites, etc.) as related to high-level nuclear waste treatment facilities, radioactive waste storage and management were studied. The natural sodalite Na8[Al6Si6O24]Cl2 and similar frameworks with different anions are part of sodium-aluminosilicate (NAS) low activity radioactive waste produced during steam reforming process treatment. The enthalpies and entropies of formation and the hydration enthalpies of the above-mentioned feltspathoids are obtained and the effect of the different cations and anions on the thermodynamic stability was studied. The results will allow to predict the long term behavior of the compounds in the environment under different conditions.

  4. The surface chemistry of dissolving labradorite feldspar

    NASA Astrophysics Data System (ADS)

    Casey, William H.; Westrich, Henry R.; Arnold, George W.; banfield, Jillian F.

    1989-04-01

    Elastic recoil detection (ERD) analysis was used in conjunction with Rutherford backscattering (RBS) analysis to determine depth profiles of hydrogen, silicon, aluminum and calcium in labradorite crystals reacted under various pH conditions. The inventory of hydrogen in the mineral is strongly affected by solution pH. Hydrogen extensively infiltrates the mineral during reaction for 264 hours with solutions in the pH range 1-3. Infiltration is accompanied by extensive removal of sodium, calcium and aluminum from the mineral. This incongruent reaction proceeds to several hundreds of angstroms of depth and produces a silicon-rich surface which is amorphous to electron diffraction. The amount of hydrogen in the reacted layer is much less than is predicted from knowledge of the quantity of cations leached from the feldspar. These low inventories of hydrogen suggest that hydrogen-bearing groups in the reacted layer repolymermize subsequent to ion exchange and depolymerization reactions. This repolymerization eliminates hydrogen from the layer. At higher pH conditions (pH > 5), hydrogen inventories in the crystals decrease with time relative to an unreacted reference crystal. Hydrogen does not infiltrate beyond the first few unit cells of feldspar. Thus, dissolution in slightly acid, near-neutral, and basic solutions proceeds at the immediate surface of the feldspar. Within the limit of the RBS technique, there is no evidence for incongruent dissolution at these conditions.

  5. Sintering behaviour of feldspar and influence of electric charge effects

    NASA Astrophysics Data System (ADS)

    Gallala, W.; Gaied, M. E.

    2011-04-01

    The characterization of feldspar for electric porcelain and the behaviour of these materials after heating at 1230°C were studied. X-ray diffraction (XRD) and scanning electronic microscopy (SEM) were used to identify the present phases and the densification level. Feldspar sand was treated by flotation. The floated feldspar is constituted by microcline, quartz, and minor amounts of albite. The microstructure of sintered feldspar at 1230°C is essentially vitreous with open microporosities. The dielectrical properties of composites were characterized by using the induced courant method (ICM), which indicates that the charge trapping capacity depends on the mineralogical and chemical composition of feldspar.

  6. Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites

    NASA Astrophysics Data System (ADS)

    Breiter, Karel; Lamarão, Claudio Nery; Borges, Régis Munhoz Krás; Dall'Agnol, Roberto

    2014-04-01

    The trace element content in zircons from A-type granites and rhyolites was investigated by using back-scattered electron images and electron microprobe analyses. The studied Proterozoic (Wiborg batholith, Finland and Pará, Amazonas and Goiás states, Brazil) and Variscan (Krušné Hory/Erzgebirge, Czech Republic and Germany) plutons cover a wide range of rocks, from large rapakivi-textured geochemically primitive plutons to small intrusions of F-, Li-, Sn-, Nb-, Ta-, and U-enriched rare-metal granites. While zircon is one of the first crystallized minerals in less fractionated metaluminous and peraluminous granites, it is a late-crystallized phase in peralkaline granites and in evolved granites that may crystallize during the whole process of magma solidification. The early crystals are included in mica, quartz, and feldspar; the late grains are included in fluorite or cryolite or are interstitial. The zircon in hornblende-biotite and biotite granites from the non-mineralized plutons is poor in minor and trace elements; the zircon in moderately fractionated granite varieties is slightly enriched in Hf, Th, U, Y, and HREEs; whereas the zircon in highly fractionated ore-bearing granites may be strongly enriched in Hf (up to 10 wt.% HfO2), Th (up to 10 wt.% ThO2), U (up to 10 wt.% UO2), Y (up to 12 wt.% Y2O3), Sc (up to 3 wt.% Sc2O3), Nb (up to 5 wt.% Nb2O5), Ta (up to 1 wt.% Ta2O5), W (up to 3 wt.% WO3), F (up to 2.5 wt.% F), P (up to 11 wt.% P2O5), and As (up to 1 wt.% As2O5). Metamictized zircons may also be enriched in Bi, Ca, Fe, and Al. The increase in the Hf content coupled with the decrease in the Zr/Hf value in zircon is one of the most reliable indicators of granitic magma evolution. In the zircon of A-type granites, the Zr/Hf value decreases from 41-67 (porphyritic granite) to 16-19 (equigranular granite) in the Kymi stock, Finland, and from 49-52 (biotite granite) to 18-36 (leucogranite) in the Pedra Branca pluton, Brazil. In the in situ strongly

  7. Energy related studies utilizing K-feldspar thermochronology. Progress performance report, 1990--1993

    SciTech Connect

    Not Available

    1993-05-01

    Two distinct sources of information are available from a {sup 40}Ar/{sup 39}Ar step-heating experiment: the age spectrum and Arrhenius plot. Model ages are calculated from the flux of radiogenic argon ({sup 40}Ar*) (assuming trapped argon of atmospheric composition) relative to the reactor produced {sup 39}Ar evolved during discrete laboratory heating steps. With the additional assumption that the {sup 39}Ar is uniformly distributed within the sample, we can infer the spatial distribution of the daughter product. ne associated Arrhenius plot, derived by plotting the diffusion coefficient (obtained from the inversion of the 39{sup Ar} release function assuming a single domain) against the inverse temperature of laboratory heating, are a convolution of the parameters which characterize the individual diffusion domains (whether these be dictated by varying length scale, energetics, etc.). However, many and perhaps Most {sup 40}Ar/{sup 39}Ar age spectra for slowly cooled alkali feldspars are significantly different from model age spectra calculated assuming a single diffusion-domain size. In addition, Arrhenius plots calculated from the measured loss of {sup 39}Ar during the step heating experiment show departures from linearity that are inconsistent with diffusion from domains of equal size. By extending the single diffusion-domain closure model (Dodsontype) to apply to minerals with a discrete distribution of domain sizes, we obtained an internally consistent explanation for the commonly observed features of alkali feldspar age spectra and their associated Arrhenius plots.

  8. Proterozoic granitic magmatism in the Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Haapala, I.; Lahtinen, R.; Rämö, O. T.

    2003-04-01

    The main tectonic units of the Fennoscandian Shield are 1) the Archean 3.1--2.6 Ga granite gneiss (GGT) -- greenstone belt domain in the east, 2) the broad orogenic Svecofennian domain (1.9--1.8 Ga), and 3) the Southwest Scandinavian domain that consists of granitic gneisses, Gothian arc-type volcanic -- sedimentary and plutonic rocks (1.7--1.55 Ga), and has a Sveconorwegian (Grenvillian) overprint. The Svecofennian domain was formed by sequential accretion of volcanic arcs to the Archean craton (Lahtinen, 1994; Nironen, 1997). Rifting of the Archean craton at 2.50--2.44 Ga led to emplacement of a bimodal suite of layered mafic intrusions and minor A-type quartz syenites -- granites into the Archean crust in nortern Finland and adjacent Russia. Nd isotopes suggest Archean crustal source for some of the silicic plutons (Lauri and Mänttäri, 2003). The earliest Svecofennian granitoid rocks are ˜1.92 Ga gneissic calc-alkalic tonalities and granodiorites in central and northernmost Finland close to the Archean craton. I-type 1.89--1.87 Ga calc-alkalic granitoids of tonalite-granodiorite-granite association are common in the Svecofennian belts. In the Central Finland Granitoid Complex two suites can be separated: the 1.89--1.88 Ga calc-alkalic deformed granodiorites and granites, and the massive 1.88--1.87 Ga alkali-calcic or alkalic quartz monzonites and monzogranites (Nironen et al., 2000; Rämö et al., 2001). Southern Finland is characterized by 1.84--1.80 Ga migmatite-forming peraluminous S-type granites that were formed by anatectic melting of mainly sedimentary -- volcanic rocks of the thick Svecofennian crust. The Svecofennian plutonism was finished by intrusion of extension-related postorogenic (post-collisional) 1.80--1.77 Ga granite stocks that have a shoshonitic affinity and were possibly derived from enriched lithospheric mantle. Nd isotopes of the 1.81--1.77 Ga granites of northern Finland and the 1.88--1.86 Ga granites of eastern Finland near the

  9. Petrology and geochemistry of alkali gabbronorites from lunar breccia 67975

    NASA Technical Reports Server (NTRS)

    James, Odette B.; Flohr, Marta K.; Lindstrom, Marilyn M.

    1987-01-01

    Detailed results of petrologic and compositional studies of three clasts found in thin sections of the Apollo 16 lunar breccia 67975 and of four clasts extracted from the breccia (for instrumental neutron activation analysis) prior to thin sectioning are reported. The alkali gabbronorites of the breccia form two distinct subgroups, magnesian and ferroan. The magnesian gabbronorites are composed of bytownitic plagioclase, hypersthene, augite, a silica mineral, and trace Ba-rich K-feldspar. The ferroan gabbronorites are composed of ternary plagioclase, pigeonite, augite, Ba-rich K-feldspar, and a silica mineral. Trace minerals in both subgroups are apatite, REE-rich whitlockite, and zircon. The magnesian and ferroan alkali gabbronorites appear to have formed by progressive differentiation of the same, or closely related, parent REE-rich magmas.

  10. Transpressional granite-emplacement model: Structural and magnetic study of the Pan-African Bandja granitic pluton (West Cameroon)

    NASA Astrophysics Data System (ADS)

    Sandjo, A. F. Yakeu; Njanko, T.; Njonfang, E.; Errami, E.; Rochette, P.; Fozing, E.

    2016-02-01

    The Pan-African NE-SW elongated Bandja granitic pluton, located at the western part of the Pan-African belt in Cameroon, is a K-feldspar megacryst granite. It is emplaced in banded gneiss and its NW border underwent mylonitization. The magmatic foliation shows NE-SW and NNE-SSW strike directions with moderate to strong dip respectively in its northern and central parts. This mostly, ferromagnetic granite displays magnetic fabrics carried by magnetite and characterized by (i) magnetic foliation with best poles at 295/34, 283/33 and 35/59 respectively in its northern, central and southern parts and (ii) a subhorizontal magnetic lineation with best line at 37/8, 191/9 and 267/22 respectively in the northern, central and southern parts. Magnetic lineation shows an `S' shape trend that allows to (1) consider the complete emplacement and deformation of the pluton during the Pan-African D 2 and D 3 events which occurred in the Pan-African belt in Cameroon and (2) reorganize Pan-African ages from Nguiessi Tchakam et al. (1997) compared with those of the other granitic plutons in the belt as: 686 ±17 Ma (Rb/Sr) for D 1 age of metamorphism recorded in gneiss; and the period between 604-557 Ma for D 2-D 3 emplacement and deformation age of the granitic pluton in a dextral ENE-WSW shear movement.

  11. Petrogenesis of magmatic albite granites associated to cogenetic A-type granites: Na-rich residual melt extraction from a partially crystallized A-type granite mush

    NASA Astrophysics Data System (ADS)

    Barboni, Mélanie; Bussy, François

    2013-09-01

    The uncommon association of cogenetic and nearly contemporaneous potassic K-feldspar A-type granites and sodic albite granites is observed within the 347 Ma-old bimodal Saint-Jean-du-Doigt (SJDD) intrusion, Brittany, France. A-type granites outcrop as small bodies (< 1 km2) of fine-grained, pinkish to yellowish rock or as meter-thick sills in-between mafic layers. They emplaced early within the thermally “cool” part of the SJDD pluton directly beneath the Precambrian host rock, forming the pluton roof. Albite granites are fine-grained hololeucocratic yellowish rocks emplaced slightly after the A-type granites in the thermally mature part of the pluton. They form meter-thick sills that mingle with adjacent mafic layers and represent ca. 1 vol.% of the outcropping part of the pluton. The two granite types are similar in many respects with comparable Sr-Nd-Hf isotope compositions (87Sr/86Sr347 = 0.7071 for A-type granites vs. 0.7073 for albite granites; εNd347 = + 0.2 vs. + 0.3; εHf347zircon = + 2.47 vs. + 2.71, respectively) and SiO2 contents (74.8 vs. 74.4 wt.%). On the other hand, they have contrasting concentrations in K2O (5.30 vs. 1.97 wt.%), Na2O (2.95 vs. 4.73 wt.%) and CaO (0.48 vs. 2.04, respectively) as well as in some trace elements like Sr (59 vs. 158 ppm in average), Rb (87 vs. 35 ppm), Cr (170 vs. 35 ppm) and Ga (30 vs. 20 ppm). The isotopic composition of the A-type and albite granites is very distinct from that of the associated and volumetrically dominant mafic rocks (i.e. 87Sr/86Sr347 = 0.7042; εNd347 = + 5.07; εHf347zircon = + 8.11), excluding a direct derivation of the felsic rocks through fractional crystallization from the basaltic magma. On the other hand, small volumes of hybrid, enclave-bearing granodiorite within the SJDD lopolith suggest mixing processes within a reservoir located at deeper crustal levels. A-type granites may therefore form by magma mixing between the mafic magma and crustal melts. Alternatively, they might derive

  12. Magnetic Properties Of Feldspars And Other Rock-forming Minerals: Evaluation Of Their Potential As Paleointensity Recorders

    NASA Astrophysics Data System (ADS)

    Cottrell, R. D.; Smirnov, A. V.; Tarduno, J. A.

    The continued development of highly sensitive SQUID magnetometers has opened the way for paleomagnetic and paleointensity studies of individual rock forming miner- als. The motivation for these studies is the desire to avoid contamination of magnetic data related to secondary minerals that commonly form in the ground mass of igneous rocks on geologic timescales or during laboratory experiments. As part of a survey of various mineral phases we have examined magnetic hysteresis data of olivine, py- roxene and feldspar separated from mafic lavas flows, quartz separated from tuffs and zircon separated from granites. Our studies of optically clear plagioclase feldspar have shown them to have several properties favorable for paleointensity investigations. Hys- teresis properties indicate that the domain state of magnetic inclusions in the feldspar crystals is single or pseudosingle domain while that of the groundmass is pseudosingle to multidomain. High resolution SEM and TEM analyses indicate that the magnetic inclusions are equant to slightly elongated and are 50 to 350 nm in size. Low tempera- ture data and magnetic unblocking temperatures indicate that the overall composition of the inclusions is similar to that of the bulk volcanic rocks from which they were separated. These properties, together with the relatively rapid cooling characteristics of lavas, suggest that Thellier analyses of plagioclase feldspars will continue to yield important paleointensity data. The potential of other mineral phases for paleomagnetic and paleointensity studies will be discussed.

  13. Petrology and chemistry of two 'large' granite clasts from the moon

    NASA Technical Reports Server (NTRS)

    Warren, P. H.; Taylor, G. J.; Keil, K.; Shirley, D. N.; Wasson, J. T.

    1983-01-01

    Pristine granite clasts in Apollo-14 breccias 14321 and 14303 have estimated masses of 1.8 and 0.17 g, respectively. The 14321 clast is about 60 percent K-feldspar and 40 percent quartz, with traces of extremely Mg-poor mafic silicates and ilmenite. The 14303 clast is roughly 33 percent plagioclase, 32 percent K-feldspar, 23 percent quartz, 11 percent pyroxene, and 1 percent ilmenite; pyroxene and ilmenite are moderately Mg-rich; plagioclase and pyroxene are strongly zoned. Both clasts are severely brecciated, but monomict (pristine). Both have abundant graphic integrowths of K-feldspar with quartz. Unlike the majority of similar earth rocks, both clasts are devoid of hydrous phases. The bulk composition of the 14321 clast is similar to those of several other lunar granitic samples, but the 14303 clast is unique: it bears as close a resemblance to KREEP as it does to other lunar granites. Silicate liquid immiscibility may explain why the granites are low in REE relative to KREEP.

  14. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  15. Determination of Granites' Mineral Specific Porosities by PMMA Method and FESEM/EDAX

    SciTech Connect

    Leskinen, A.; Penttinen, L.; Siitari-Kauppi, M.; Alanso, U.; Garcia-Gutierrez, M.; Missana, T.; Patelli, Alessandro

    2007-07-01

    Over extended periods, long-lived radionuclides (RN) or activation products within geologic disposal sites may be released from the fuel and migrate to the geo/biosphere. In the bedrock, contaminants will be transported along fractures by advection and retarded by sorption on mineral surfaces and by molecular diffusion into stagnant pore water in the matrix along a connected system of pores and micro-fissures. The objective of this paper was to determine the connective porosity and mineral-specific porosities for three granite samples by {sup 14}C methyl-methacrylate ({sup 14}C-PMMA) autoradiography. Scanning electron microscopy and energy-dispersive X-ray analyses (FESEM/EDAX) were performed in order to study the pore apertures of porous regions in greater detail and to identify the corresponding minerals. Finally, the porosity results were used to evaluate the diffusion coefficients of RNs from previous experiments which determined apparent diffusion coefficients for the main minerals in three granite samples by the Rutherford Backscattering technique. The total porosity of the Grimsel granite (0.75%) was significantly higher than the porosities of the El Berrocal and Los Ratones granites (0.3%). The porosities of the Grimsel granite feldspars were two to three times higher than the porosities of the El Berrocal and Los Ratones granites feldspars. However, there was no significant difference between the porosities of the dark minerals. A clear difference was found between the various quartz grains. Quartz crystals were non-porous in the El Berrocal and Los Ratones granites when measured by the PMMA method, but the quartz crystals in the Grimsel granite showed 0.5% intra granular porosity. The apparent diffusion coefficients calculated for uranium diffusion within Grimsel granite on different minerals were very similar (2.10{sup -13} {+-} 0.5 m{sup 2}/s), but differences within both Spanish granites were found from one mineral to another (9 {+-} 1.10{sup -14} m

  16. Characterization of Climax granite ground water

    SciTech Connect

    Isherwood, D.; Harrar, J.; Raber, E.

    1982-08-01

    The Climax ground water fails to match the commonly held views regarding the nature of deep granitic ground waters. It is neither dilute nor in equilibrium with the granite. Ground-water samples were taken for chemical analysis from five sites in the fractured Climax granite at the Nevada Test Site. The waters are high in total dissolved solids (1200 to 2160 mg/L) and rich in sodium (56 to 250 mg/L), calcium (114 to 283 mg/L) and sulfate (325 to 1060 mg/L). Two of the samples contained relatively high amounts of uranium (1.8 and 18.5 mg/L), whereas the other three contained uranium below the level of detection (< 0.1 mg/L). The pH is in the neutral range (7.3 to 8.2). The differences in composition between samples (as seen in the wide range of values for the major constituents and total dissolved solids) suggest the samples came from different, independent fracture systems. However, the apparent trend of increasing sodium with depth at the expense of calcium and magnesium suggests a common evolutionary chemical process, if not an interconnected system. The waters appear to be less oxidizing with depth (+ 410 mV at 420 m below the surface vs + 86 mV at 565 m). However, with Eh measurements on only two samples, this correlation is questionable. Isotopic analyses show that the waters are of meteoric origin and that the source of the sulfate is probably the pyrite in the fracture-fill material. Analysis of the measured water characteristics using the chemical equilibrium computer program EQ3 indicates that the waters are not in equilibrium with the local mineral assemblage. The solutions appear to be supersaturated with respect to the mineral calcite, quartz, kaolinite, muscovite, k-feldspar, and many others.

  17. Quartz and feldspar zoning in the eastern Erzgebirge volcano-plutonic complex (Germany, Czech Republic): evidence of multiple magma mixing

    NASA Astrophysics Data System (ADS)

    Müller, Axel; Breiter, Karel; Seltmann, Reimar; Pécskay, Zoltán

    2005-03-01

    Zoned quartz and feldspar phenocrysts of the Upper Carboniferous eastern Erzgebirge volcano-plutonic complex were studied by cathodoluminescence and minor and trace element profiling. The results verify the suitability of quartz and feldspar phenocrysts as recorders of differentiation trends, magma mixing and recharge events, and suggest that much heterogeneity in plutonic systems may be overlooked on a whole-rock scale. Multiple resorption surfaces and zones, element concentration steps in zoned quartz (Ti) and feldspar phenocrysts (anorthite content, Ba, Sr), and plagioclase-mantled K-feldspars etc. indicate mixing of silicic magma with a more mafic magma for several magmatic phases of the eastern Erzgebirge volcano-plutonic complex. Generally, feldspar appears to be sensitive to the physicochemical changes of the melt, whereas quartz phenocrysts are more stable and can survive a longer period of evolution and final effusion of silicic magmas. The regional distribution of mixing-compatible textures suggests that magma mingling and mixing was a major process in the evolution of these late-Variscan granites and associated volcanic rocks. Quartz phenocrysts from 14 magmatic phases of the eastern Erzgebirge volcano-plutonic complex provide information on the relative timing of different mixing processes, storage and recharge, allowing a model for the distribution of magma reservoirs in space and time. At least two levels of magma storage are envisioned: deep reservoirs between 24 and 17 km (the crystallisation level of quartz phenocrysts) and subvolcanic reservoirs between 13 and 6 km. Deflation of the shallow reservoirs during the extrusion of the Teplice rhyolites triggered the formation of the Altenberg-Teplice caldera above the eastern Erzgebirge volcano-plutonic complex. The deep magma reservoir of the Teplice rhyolite also has a genetic relationship to the younger mineralised A-type granites, as indicated by quartz phenocryst populations. The pre

  18. Sequence of mineral assemblages in differentiated granitic pegmatites.

    USGS Publications Warehouse

    Norton, J.J.

    1983-01-01

    The sequence of mineral assemblages in internally zoned granitic pegmatites recognized by Cameron et al. (1949) is modified here to account for an observed vertical component, especially in feldspar compositions, in addition to the recognized outer contact-to-inner core differentiation process, and the importance of primary lithium minerals other than spodumene, such as petalite. The zonal patterns of 11 well-known granitic pegmatites are consistent with this revised sequence, with additional explanations for the repeated monomineralic zones of quartz or pollucite, etc. The crystallization history of zoned pegmatites is described in general terms, beginning with the magmatic crystallization which produces the outer zones. Aqueous fluid is exsolved continuously from the magma as relatively anhydrous phases precipitate, and plays an important role in the formation of the inner zones; its evolution is thought to be a major cause of pegmatite differentiation.-J.E.S.

  19. Milk-alkali syndrome

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000332.htm Milk-alkali syndrome To use the sharing features on this page, please enable JavaScript. Milk-alkali syndrome is a condition in which there ...

  20. Deformation microstructures of Barre granite: An optical, Sem and Tem study

    USGS Publications Warehouse

    Schedl, A.; Kronenberg, A.K.; Tullis, J.

    1986-01-01

    New scanning electron microscope techniques have been developed for characterizing ductile deformation microstructures in felsic rocks. In addition, the thermomechanical history of the macroscopically undeformed Barre granite (Vermont, U.S.A.) has been reconstructed based on examination of deformation microstructures using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The microstructures reveal three distinct events: 1. (1) a low-stress, high-temperature event that produced subgrains in feldspars, and subgrains and recrystallized grains in quartz; 2. (2) a high-stress, low-temperature event that produced a high dislocation density in quartz and feldspars; and 3. (3) a lowest-temperature event that produced cracks, oriented primarily along cleavage planes in feldspars, and parallel to the macroscopic rift in quartz. The first two events are believed to reflect various stages in the intrusion and cooling history of the pluton, and the last may be related to the last stages of cooling, or to later tectonism. ?? 1986.

  1. Genesis of a zoned granite stock, Seward Peninsula, Alaska

    USGS Publications Warehouse

    Hudson, Travis

    1977-01-01

    A composite epizonal stock of biotite granite has intruded a diverse assemblage of metamorphic rocks in the Serpentine Hot Springs area of north-central Seward Peninsula, Alaska. The metamorphic rocks include amphibolite-facies orthogneiss and paragneiss, greenschist-facies fine-grained siliceous and graphitic metasediments, and a variety of carbonate rocks. Lithologic units within the metamorphic terrane trend generally north-northeast and dip moderately toward the southeast. Thrust faults locally juxtapose lithologic units in the metamorphic assemblage, and normal faults displace both the metamorphic rocks and some parts of the granite stock. The gneisses and graphitic metasediments are believed to be late Precambrian in age, but the carbonate rocks are in part Paleozoic. Dating by the potassium-argon method indicates that the granite stock is Late Cretaceous. The stock has sharp discordant contacts, beyond which is a well-developed thermal aureole with rocks of hornblende hornfels facies. The average mode of the granite is 29 percent plagioclase, 31 percent quartz, 36 percent K-feldspar, and 4 percent biotite. Accessory minerals include apatite, magnetite, sphene, allanite, and zircon. Late-stage or deuteric minerals include muscovite, fluorite, tourmaline, quartz, and albite. The stock is a zoned complex containing rocks with several textural facies that are present in four partly concentric zones. Zone 1 is a discontinuous border unit, containing fine- to coarse-grained biotite granite, that grades inward into zone 2. Zone 2 consists of porphyritic biotite granite with oriented phenocrysts of pinkish-gray microcline in a coarse-grained equigranular groundmass of plagioclase, quartz, and biotite. It is in sharp, concordant to discordant contact with rocks of zone 3. Zone 3 consists of seriate-textured biotite granite that has been intruded by bodies of porphyritic biotite granite containing phenocrysts of plagioclase, K-feldspar, quartz, and biotite in an

  2. Textural and chemical evolution of a fractionated granitic system: the Podlesí stock, Czech Republic

    NASA Astrophysics Data System (ADS)

    Breiter, Karel; Müller, Axel; Leichmann, Jaromír; Gabašová, Ananda

    2005-03-01

    The Podlesí granite stock (Czech Republic) is a fractionated, peraluminous, F-, Li- and P-rich, and Sn, W, Nb, Ta-bearing rare-metal granite system. Its magmatic evolution involved processes typical of intrusions related to porphyry type deposits (explosive breccia, comb layers), rare-metal granites (stockscheider), and rare metal pegmatites (extreme F-P-Li enrichment, Nb-Ta-Sn minerals, layering). Geological, textural and mineralogical data suggest that the Podlesí granites evolved from fractionated granitic melt progressively enriched in H 2O, F, P, Li, etc. Quartz, K-feldspar, Fe-Li mica and topaz bear evidence of multistage crystallization that alternated with episodes of resorption. Changes in chemical composition between individual crystal zones and/or populations provide evidence of chemical evolution of the melt. Variations in rock textures mirror changes in the pressure and temperature conditions of crystallization. Equilibrium crystallization was interrupted several times by opening of the system and the consequent adiabatic decrease of pressure and temperature resulted in episodes of nonequilibrium crystallization. The Podlesí granites demonstrate that adiabatic fluctuation of pressure ("swinging eutectic") and boundary-layer crystallization of undercooled melt can explain magmatic layering and unidirectional solidification textures (USTs) in highly fractionated granites.

  3. Feldspar microtextures and multistage thermal history of syenites from the Coldwell Complex, Ontario

    NASA Astrophysics Data System (ADS)

    Waldron, Kim A.; Parsons, Ian

    1992-06-01

    Optical and TEM (transmission electron microscopy) observations of perthites from augite syenites in the Coldwell Complex (Ontario) reveal a complex set of microtextures that outline a multistage thermal history. Regular microtextures (linear or braid texture, straincontrolled, coherent intergrowths) show a progressive evolution from the margin of the intrusion inwards with lamellar spacings in the range 40 100 nm. The textures evolve in a manner similar to those for the Klokken intrusion and reflect differences in cooling rates and bulk composition. Superimposed upon the regular microtexture are 10 μm scale compositional fluctuations which we call “ripples”. The boundary relationships and bulk composition of ripples, which are themselves Ab-rich and Or-rich linear coherent cryptoperthites, suggest that they formed by coarsening during a phase of high-temperature (˜530°C) fluid-feldspar interaction. This was followed by a return to coherent exsolution in which fluid was not involved. Coarse, irregular, patch microperthite cross-cuts all other microtextures. These final “deuteric” intergrowths are believed to result from a further low-temperature (< 380° C) fluid-feldspar interaction and are associated with subgrain formation and the presence of micropores. The outermost syenite sample, against a gabbro ring structure, has distinctive, modified microtextures, indicating that the gabbro is, at least in part, a later intrusion. Our findings show that TEM work on alkali feldspar microtextures can identify discrete thermal events in the cooling history of igneous plutons and illustrates the potential of such microtextures for establishing the relative ages of intrusive rocks.

  4. Petrology of an unusual orthopyroxene-bearing minette suite from southeastern Peru, Eastern Andean Cordillera: Al-rich lamproites contaminated by peraluminous granites

    NASA Astrophysics Data System (ADS)

    Carlier, Gabriel; Lorand, Jean-Pierre; Audebaud, Etienne; Kienast, Jean-Robert

    1997-01-01

    The Puno minettes (Eastern Andean Cordillera, southern Peru) are phlogopite-phyric rocks with a groundmass consisting mainly of phlogopite, alkali feldspar and apatite microphenocrysts and/or microlites. They display the strong large-ion-lithophile-element enrichments that characterize potassic to ultrapotassic rocks of the lamprophyre clan (Rb, Ba, Sr up to 10 3× Primordial Mantle, REE up to 6.10 2× CI-chondrites). In addition to their close association with granitoids, the rocks of this series show many features of minettes occurring in arc-related collisional zones, i.e., absence of mantle xenoliths, up to 30 vol.% felsic xenocrysts and strong negative Nb and Ti anomalies. However, they are distinguished by unusual phenocryst phases, whole-rock compositions and groundmass mineralogy. Some minettes contain only a few per cent of biotite±quartz±plagioclase xenocrysts immersed in a typical minette groundmass whereas those richer in xenocrysts display the complete liquidus paragenesis of the coexisting peraluminous granite (biotite+quartz+plagioclase+alkali feldspar+cordierite+zircon+pyrite) in a high-K latitic to trachydacitic groundmass. Field relations, radiometric ages, whole-rock data and felsic xenocrysts all indicate that the Puno minettes result from a mixing process involving Al-rich lamproites and peraluminous monzogranites. The most common phenocryst assemblage (highly magnesian phlogopite+olivine±titanian Cr-spinel±Ca-rich enstatite±magnesian ilmenite±Al- and Ti-poor diopside) is similar to that reported in Al-rich phlogopite lamproites from southeastern Spain. Likewise, the host rocks have diagnostic features of Spanish phlogopite lamproites (e.g., K 2O/Al 2O 3 ratios >9, CaO contents <2 wt.%, negative Ba and Sr anomalies in primitive mantle-normalized multi-element plots, La N/Nd N<1.5). Graphite in the groundmass and Cr-spinel and ilmenite compositions devoid of Fe 3+ suggest strongly reduced conditions of formation. Another phenocryst

  5. Black and red granites in the Egyptian Antiquity Museum of Turin. A minero-petrographic and provenance study.

    NASA Astrophysics Data System (ADS)

    Serra, M.; Borghi, A.; Vaggelli, G.; D'Amicone, E.; Vigna, L.

    2009-04-01

    materials used for two of the best known masterpieces of Egyptian art. As regards to red granites, it has been observed that most of the exposed sculptures were made of rocks closely akin to Aswan granite. Just in one case, the Ram headed sphinx (cat. 836), macroscopic differences in colour index, grain size and isoorientation of feldspar phenocrysts, suggested a different provenance of the source material and determined the choice of picking up a small fragment for minero-petrographic analysis. The sample collected from the sarcophagus of Nefertari (suppl. 5153) during the recent restoration of the sculpture, was analysed in order to test the accuracy of the results, as the provenance of the material used for its realization was already certain. Petrographic observations and chemical analysis were undertaken by a scanning electron microscope equipped with an energy-dispersive spectrometer. Minero-petrographic data primarily showed that all samples vary in composition from granite (red granites) to granodiorite and tonalite (black granites). The main sialic phases are represented by plagioclase (albite to oligoclase), alkali-feldspar (microcline) and quartz, while femic phases are amphibole (green horneblende) and biotite (Fe- to Mg-biotite), always coexisting in variable relative percentages. Minor amount of apatite (≈ 1 wt.%), magnetite, ilmenite, often associated to sphene, zircon, pyrite and allanite also occur. The identification of some compositional markers in all samples suggested a common provenance for all the rocks used for the sculptures. Thus, it was supposed that they could all have been quarried in the famous district of Aswan, well known at least since Dynastic period. This provenance hypothesis was confirmed by geological literature and archeological evidences, considering the relative proximity of Aswan quarries to Nile river and to the key centres of power in the New Kingdom. Therefore, several geological samples were collected in Aswan area, in order

  6. Alkali differentiation in LL-chondrites

    NASA Astrophysics Data System (ADS)

    Wlotzka, F.; Palme, H.; Spettel, B.; Wanke, H.; Fredriksson, K.; Noonan, A. F.

    1983-04-01

    The Kraehenberg and Bhola LL-group chondrites are heterogeneous agglomerates which contain a variety of lithic fragments and chondrules as well as crystal fragments. Both meteorites contain large, cm-sized fragments with high K enrichments. The K-rich inclusions are fragments of larger rock bodies which crystallized from melts of chondritic parent material that had previously been enriched in K and in heavier alkalies,while also being depleted in Na and metal. It is suggested that the K enrichment occurred as an exchange for Na in feldspars via a vapor phase, whose presence on the chondrite parent body (or bodies) is supported by the recent finding of fluid inclusions in chondritic silicates. Cooling rate considerations indicate that the K-rich rock units could not have been very large, implying that the K-rich materials were locally molten by, for example, impact.

  7. APPLICATIONS OF CATHODOLUMINESCENCE OF QUARTZ AND FELDSPAR TO SEDIMENTARY PETROLOGY.

    USGS Publications Warehouse

    Ruppert, Leslie F.

    1987-01-01

    Cathodoluminescence (CL), the emission of visible light during electron bombardment, was first used in sandstone petrology in the mid-1960's. CL techniques are especially useful for determining the origin and source of quartz and feldspar, two of the most common constituents in clastic rocks. CL properties of both minerals are dependent on their temperature of crystallization, duration of cooling, and/or history of deformation. Detrital quartz and feldspar are typically derived from igneous and metamorphic sources and luminesce in the visible range whereas authigenic quartz and feldspar form at low temperatures and do not luminesce. Quantification of luminescent and non-luminescent quartz and feldspar with the scanning electron microscope, electron microprobe, or a commercial CL device can allow for the determination of origin, diagenesis, and source of clastic rocks when used in conjunction with field and other petrographic analyses.

  8. Radioactivity and gamma-dose rates observed at the Morungaba granites, Southeastern Brazil.

    PubMed

    Lucas, Fabio de Oliveira; Ribeiro, Fernando Brenha

    2013-07-01

    A ground gamma-ray survey was conducted over part of a large granitic body located near the city of Campinas, eastern São Paulo State, Brazil. The dominant rock types are K-feldspar porphyries-rich granites, porphyritic biotite and hornblend-bearing granites, fine to medium-grained monzogranites and medium to gross grained, biotite and muscovite-bearing monzogranites. The radioactive element distribution reflects local geology, in part re-worked by weathering, and the most radioactive rocks are the K-feldspar-rich granites. The rate of the absorbed dose by the air reflects the integrated effects of the radioactive elements distribution. Most of the observed values vary between 67 and 130 nGy h(-1) and with localised spots with the absorbed dose rate values up to 193 nGy h(-1) and low values of ∼25 nGy h(-1). The mean air absorbed dose rate for the studied area is 77 nGy h(-1). PMID:23222823

  9. Immersion freezing of aqueous suspensions of K-feldspar

    NASA Astrophysics Data System (ADS)

    Peckhaus, Andreas; Kiselev, Alexei; Leisner, Thomas

    2014-05-01

    Recent laboratory measurements showed an increased ice nucleation ability of Kalium-rich feldspar particles in the immersion freezing mode [1]. It was suggested that the proportion of K-feldspar in atmospherically relevant ice nuclei is related to their ice nucleation ability. The importance of K-feldspar is further supported by the field measurements, indicating that it can make a mass fraction of up to 24% in Asian and African mineral dusts [2]. In this contribution we present results of immersion freezing experiments with monodisperse droplets of aqueous suspensions of K-feldspar on a cold stage. We show that the ice nucleation activity strongly depends on i) the particle size distribution (in particular the ice nucleation properties of submicron feldspar particles) ii) the weight concentration of the particles in the aqueous suspension and thus on the total particle surface immersed into the droplets and iii) the age of the particles in an aqueous environment. Further a comparison of different K-feldspars is presented indicating that the origin and the processing methods have a significant impact on the IN activity. The mineralogical composition of feldspar samples is analyzed by means of Raman spectroscopy and a quantification of the particle surface is carried out with environmental scanning electron microscopy (ESEM). The results of freezing experiments are interpreted within the concept of ice nucleation active surface site (INAS) density, which allows a comparison with data obtained with different experimental methods (IN counters, expansion chambers, etc.) 1. Atkinson, J.D., et al., The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature, 2013. 498(7454): p. 355-358. 2. Nickovic, S., et al., Technical Note: High-resolution mineralogical database of dust-productive soils for atmospheric dust modeling. Atmospheric Chemistry and Physics, 2012. 12(2): p. 845-855.

  10. In situ 40K-40Ca ‘double-plus’ SIMS dating resolves Klokken feldspar 40K-40Ar paradox

    NASA Astrophysics Data System (ADS)

    Harrison, T. Mark; Heizler, Matthew T.; McKeegan, Kevin D.; Schmitt, Axel K.

    2010-11-01

    The 40K- 40Ca decay system has not been widely utilized as a geochronometer because quantification of radiogenic daughter is difficult except in old, extremely high K/Ca domains. Even these environments have not heretofore been exploited by ion microprobe analysis due to the very high mass resolving power (MRP) of 25,000 required to separate 40K + from 40Ca +. We introduce a method that utilizes doubly-charged K and Ca species which permits isotopic measurements to be made at relatively low MRP (~ 5000). We used this K-Ca 'double-plus' approach to address an enduring controversy in 40Ar/ 39Ar thermochronology revolving around exsolved alkali feldspars from the 1166 Ma Klokken syenite (southern Greenland). Ion microprobe 40K- 40Ca analysis of Klokken samples reveal both isochron and pseudoisochron behaviors that reflect episodic isotopic and chemical exchange of coarsely exsolved perthites and a near end-member K-feldspar until ≤ 719 Ma, and perhaps as late at ~ 400 Ma. Feldspar microtextures in the Klokken syenite evolved over a protracted interval by non-thermal processes (fluid-assisted recrystallization) and thus this sample makes a poor model from which to address the general validity of 40Ar/ 39Ar thermochronological methodologies.

  11. Investigation of Potassium Feldspar Reactivity in Wet Supercritical CO2 by In Situ Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Thompson, C.; Widener, C.; Schaef, T.; Loring, J.; McGrail, B. P.

    2014-12-01

    Capture and subsequent storage of CO2 in deep geologic reservoirs is progressively being considered as a viable approach to reduce anthropogenic greenhouse gas emissions. In the long term, injected CO2 may become permanently entrapped as silicate minerals react with CO2 enriched fluids to form stable carbonate minerals. Potassium feldspars are highly abundant in the earth's crust and are present in the caprocks and storage formations of many target reservoirs. While the dissolution kinetics and carbonation reactions of feldspars have been well studied in the aqueous phase, comparatively little work has focused on K-feldspar reactivity in the CO2-rich fluid. In this study, we used in situ infrared spectroscopy to investigate the carbonation reactions of natural microcline samples. Experiments were carried out at 50 °C and 91 bar by circulating dry or wet supercritical CO2 (scCO2) past a thin film of powdered sample. Water concentrations ranged from 0% to 125% relative to saturation, and transmission-mode absorbance spectra were recorded as a function of time for 48 hours. No discernible reaction was detected when the samples were exposed to anhydrous scCO2. However, in fully water-saturated scCO2, a thin film of liquid-like water was observed on the samples' surfaces, and up to 0.6% of the microcline was converted to a carbonate phase. Potassium carbonate is the most likely reaction product, but minor amounts of sodium carbonate and siderite may also have formed from minor sample impurities. The extent of reaction appears to be related to the thickness of the water film and is likely a consequence of the film's ability to solvate and transport ions in the vicinity of the mineral surface. Other features observed in the spectra correspond to microcline dissolution and precipitation of amorphous silica. Implications about the role of water in these reactions and the relative effectiveness of alkali feldspars for mineral trapping of CO2 will be discussed.

  12. Early Permian East-Ujimqin mafic-ultramafic and granitic rocks from the Xing'an-Mongolian Orogenic Belt, North China: Origin, chronology, and tectonic implications

    NASA Astrophysics Data System (ADS)

    Cheng, Yinhang; Teng, Xuejian; Li, Yanfeng; Li, Min; Zhang, Tianfu

    2014-12-01

    The East-Ujimqin complex, located north of the Erenhot-Hegenshan fault, North China, is composed of mafic-ultramafic and granitic rocks including peridotite, gabbro, alkali granite, and syenite. We investigated the tectonic setting, age, and anorogenic characteristics of the Xing'an-Mongolian Orogenic Belt (XMOB) through field investigation and microscopic and geochemical analyses of samples from the East-Ujimqin complex and LA-MC-ICP-MS zircon U-Pb dating of gabbro and alkali granite. Petrographic and geochemical studies of the complex indicate that this multiphase plutonic suite developed through a combination of fractional crystallization, assimilation processes, and magma mixing. The mafic-ultramafic rocks are alkaline and have within-plate geochemical characteristics, indicating anorogenic magmatism in an extensional setting and derivation from a mantle source. The mafic-ultramafic magmas triggered partial melting of the crust and generated the granitic rocks. The granitic rocks are alkali and metaluminous and have high Fe/(Fe + Mg) characteristics, all of which are common features of within-plate plutons. Zircon U-Pb geochronological dating of two samples of gabbro and alkali granite yielded ages of 280.8 ± 1.5 and 276.4 ± 0.7 Ma, placing them within the Early Permian. The zircon Hf isotopic data give inhomogeneous εHf(t) values of 8.2-14.7 for gabbroic zircons and extraordinary high εHf(t) values (8.9-12.5) for the alkali granite in magmatic zircons. Thus, we consider the East-Ujimqin mafic-ultramafic and granitic rocks to have been formed in an extensional tectonic setting caused by asthenospheric upwelling and lithospheric thinning. The sources of mafic-ultramafic and granitic rocks could be depleted garnet lherzolite mantle and juvenile continental lower crust, respectively. All the above indicate that an anorogenic magma event may have occurred in part of the XMOB during 280-276 Ma.

  13. Preliminary report on a glass burial experiment in granite

    SciTech Connect

    Clark, D.E.; Zhu, B.F.; Robinson, R.S.; Wicks, G.G.

    1983-01-01

    Preliminary results of a two-year burial experiment in granite are discussed. Three compositions of simulated alkali borosilicate waste glasses were placed in boreholes approximately 350 meters deep. The glass sample configurations include mini-cans (stainless steel rings into which glass has been cast) and pineapple slices (thin sections from cylindrical blocks). Assemblies of these glass samples were prepared by stacking them together with granite, compacted bentonite and metal rings to provide several types of interfaces that are expected to occur in the repository. The assemblies were maintained at either ambient mine temperature (8 to 10/sup 0/C) or 90/sup 0/C. The glasses were analyzed before burial and after one month storage at 90/sup 0/C. The most extensive surface degradation occurred on the glasses interfaced with bentonite. In general, very little attack was observed on glass surfaces in contact with the other materials. The limited field and laboratory data are compared.

  14. Calorimetric investigation of the excess entropy of mixing in analbite-sanidine solid solutions: lack of evidence for Na,K short- range order and implications for two-feldspar thermometry.

    USGS Publications Warehouse

    Haselton, H.T., Jr.; Hovis, G.L.; Hemingway, B.S.; Robie, R.A.

    1983-01-01

    Heat capacities (5-380 K) have been measured by adiabatic calorimetry for five highly disordered alkali feldspars (Ab99Or1, Ab85Or15, Ab55Or45, Ab25Or75 and Ab1Or99). The thermodynamic and mineralogical implications of the results are discussed. The new data are also combined with recent data for plagioclases in order to derive a revised expression for the two-feldspar thermometer. T calculated from the revised expression tend to be higher than previous calculations.-J.A.Z.

  15. Mineralogical Control on Microbial Diversity in a Weathered Granite?

    NASA Astrophysics Data System (ADS)

    Gleeson, D.; Clipson, N.; McDermott, F.

    2003-12-01

    Mineral transformation reactions and the behaviour of metals in rock and soils are affected not only by physicochemical parameters but also by biological factors, particularly by microbial activity. Microbes inhabit a wide range of niches in surface and subsurface environments, with mineral-microbe interactions being generally poorly understood. The focus of this study is to elucidate the role of microbial activity in the weathering of common silicate minerals in granitic rocks. A site in the Wicklow Mountains (Ireland) has been identified that consists of an outcrop surface of Caledonian (ca. 400 million years old) pegmatitic granite from which large intact crystals of variably weathered muscovite, plagioclase, K-feldspar and quartz were sampled, together with whole-rock granite. Culture-based microbial approaches have been widely used to profile microbial communities, particularly from copiotrophic environments, but it is now well established that for oligotrophic environments such as those that would be expected on weathering faces, perhaps less than 1% of microbial diversity can be profiled by cultural means. A number of culture-independent molecular based approaches have been developed to profile microbial diversity and community structure. These rely on successfully isolating environmental DNA from a given environment, followed by the use of the polymerase chain reaction (PCR) to amplify the typically small quantities of extracted DNA. Amplified DNA can then be analysed using cloning based approaches as well as community fingerprinting systems such as denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (TRFLP) and ribosomal intergenic spacer analysis (RISA). Community DNA was extracted and the intergenic spacer region (ITS) between small (16S) and large (23S) bacterial subunit rRNA genes was amplified. RISA fragments were then electrophoresed on a non-denaturing polyacrylamide gel. Banding patterns suggest that

  16. Process of magnetite fabric development during granite deformation

    NASA Astrophysics Data System (ADS)

    Mamtani, Manish A.; Piazolo, Sandra; Greiling, Reinhard O.; Kontny, Agnes; Hrouda, František

    2011-08-01

    This study evaluates the fabric defined by magnetite grains in a syntectonically deformed granite and deciphers the processes that led to magnetite fabric development. Anisotropy of anhysteretic remanence magnetization (AARM) analysis is performed in samples taken from different parts of the granite to establish that the magnetite grains define a fabric. Along with microstructural studies, the AARM data help conclude that this fabric is on account of shape preferred orientation (SPO) of the magnetite grains. The intensity of magnetite fabric (degree of anisotropy of the AARM ellipsoid) is higher in the southern parts as compared to the north, which is inferred to indicate a strain gradient. Electron back scattered diffraction (EBSD) analyses of magnetite grains were performed to determine if there are intracrystalline deformation features that could have influenced magnetite shape and SPO, and thus AARM data. Detailed crystallographic orientation data coupled with orientation contrast imaging did not reveal any subgrains and/or significant variations in crystallographic orientations within magnetite grains. Instead, grains exhibit fractures and are in places associated with quartz pressure fringes. Hence, neither the SPO nor the variation in the magnetite fabric intensity in the granite can be attributed to intracrystalline deformation of magnetite by dislocation creep. It is concluded that the magnetite grains were rheologically rigid and there was relative movement between the magnetite and the matrix minerals (quartz, feldspar and biotite). These matrix minerals actually define the fabric attractor and the magnetite grains passively rotated to align with it. Thus it is demonstrated that the magnetite fabric in the granite stems from rigid body movement rather than dislocation creep.

  17. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  18. Immersion Freezing of Potassium-feldspar and related Natural Samples

    NASA Astrophysics Data System (ADS)

    Zolles, Tobias; Burkart, Julia; Grothe, Hinrich

    2014-05-01

    Ice nucleation activities of mineral dust particles were investigated. The experiments were carried out using cryo-microscopy which is an oil-emulsion based method. The immersion freezing mode was addressed with this experimental setup. The studied samples were common inorganic atmospheric aerosols. Single minerals and natural samples were tested [1]. Mineral dust particles are active ice nuclei in the immersion freezing mode up to 256 K. Only recently potassium-feldspar has been identified as the by far most active ice nucleus followed by other silicates [2, 3]. Natural samples which contain more than 5% K-feldspar are also active. The activity of K-feldspar can be attributed to its surface structure and the presence of potassium ions in the surface. Ice nucleation on mineral dust particles takes place at certain nucleation sites. These sites are domains of molecular sites where water is stabilized in an ice-like structure. To form a good ice nucleation site, the site density of molecular sites needs to be high. More molecular sites are able to form larger domains on the surface, leading to better nucleation sites. This suggests further that the nucleation temperature of mineral dust particles scales with the surface area. The exact configuration of a molecular site is material specific and influenced by the local chemistry and structure of the dust particle surface. A favourable arrangement of the functional groups like surface hydroxyl and oxygen is proposed for the K-feldspar. Potassium ions seem to have a positive or neutral effect on the ice nucleation property of a silicate surface while cations with a higher charge density like calcium and sodium have a negative influence. K-feldspar is abundant in the environment and actually is the most important dust ice nucleus in the atmosphere. The nucleation temperatures of the K-feldspar particles are sufficient to enable further meteorological glaciation processes in high altitude clouds. References [1] Zolles, T

  19. A tin-mineralized topaz rhyolite dike with coeval topaz granite enclaves at Qiguling in the Qitianling tin district, southern China

    NASA Astrophysics Data System (ADS)

    Xie, Lei; Wang, Rucheng; Chen, Jun; Zhu, Jinchu; Zhang, Wenlan; Lu, Jianjun; Zhang, Rongqing

    2013-06-01

    The Qiguling topaz rhyolite is present as a dike within the Qitianling biotite granite batholith of the Nanling Range of southern China. Here, the rhyolitic dike, 4.5 m wide and 500 m long, contains enclaves of topaz granite. These rhyolites contain up to 72 wt.% SiO2, have alumina saturation index (ASI) > 1.1, and have groundmasses with estimated fluorine contents of approximately 1.5 wt.%. Textural relationships provide evidence of a quenched silicate melt that contains quartz, K-feldspar, albite, and zinnwaldite phenocrysts in a groundmass containing abundant topaz. The rhyolites in the study area are also strongly enriched in tin (90-2700 ppm), and generally have a close association between cassiterite and zinnwaldite, although cassiterite is also present as sponge-textured fills between rock-forming minerals. Granite enclaves and their hosted rhyolite have similar major geochemical compositions and mineralogies to each other. Zircon U-Pb dating indicates that the topaz rhyolite (147-150 Ma) and topaz granite enclaves (154 Ma) were formed contemporaneously, with ages that overlap within analytical uncertainty. In addition, the major and trace element compositions of the rhyolite and their granite enclaves are dissimilar to those of the hosting Qitianling biotite granite. This discovery of granite enclaves within rhyolite dikes suggests the presence of a topaz-bearing granite body at depth that may host tin mineralization. The expected hidden tin granite may be of great interest in the further exploration.

  20. An FTIR Calibration for Structural Hydrogen in Feldspars Using 1H MAS NMR

    NASA Astrophysics Data System (ADS)

    Johnson, E. A.; Rossman, G. R.

    2002-05-01

    -200 ppm H2O by weight. The microclines contain structural H2O molecules (1000-1400 ppm H2O) and sanidine contains structural OH (170 ppm H2O). Plots of the total integrated mid-IR absorbance and total mid-IR peak height vs. concentration of structural H in plagioclase and alkali feldspars produce linear trends. Therefore, it is sufficient to use one absorption coefficient for both types of structural H (OH and H2O) in all feldspar compositions. The integral absorption coefficient for total mid-IR peak area is 16 ppm-1ṡcm-2 or 114000 Lṡ(mol H2O)-1ṡcm-2. The absorption coefficient for total mid-IR peak height is 0.06 ppm-1ṡcm-1 or 418 Lṡ(mol H2O) -1ṡcm-1. Since most of the mid-IR band intensity occurs with E || a in plagioclase, it may be possible to determine H concentration in plagioclase using a single polarized spectrum with E || a, facilitating the measurement of H concentration in fine-grained or twinned natural feldspars.

  1. Thermoluminescence signal in K-feldspar grains: Revisited.

    PubMed

    Gong, Gelian; Sun, Weidong; Xu, Hongyun

    2015-11-01

    Recent work has shown that infrared stimulated luminescence (IRSL) signals in sedimentary coarse-grain K-feldspars are derived mainly from high temperature thermoluminescence (TL) peaks around 400°C, and the fading components of the IRSL signal can be preferentially removed by prior IR stimulation at relatively low temperature. Considering the complexity of TL signal for very old samples, we may choose non-fading components from K-feldspar TL signals using the combination of optical and thermal activation methods. This paper examines a protocol of post-IR isothermal TL (i.e. pIRITL) signal for sedimentary coarse-grain K-feldspars, which results from isothermal TL measurements following elevated temperature IR bleaching. We show that a sum of two exponential decay functions can fit well to the pIRITL decay curves, and both the holding temperature for isothermal TL measurements and the prior elevated temperature IR bleaching can affect greatly the fast components of pIRITL signal. The dose response ranges of pIRITL signal are wider than those of post-IR IRSL signals, but the relative high residual pIRITL signal means that it is not appropriate for dating young samples. It is expected that one isothermal TL signal for K-feldspar measured at ~400°C following IR bleaching at 290°C (i.e. pIRITL400) is useful for dating very old samples. PMID:26257084

  2. Dirty or Tidy ? Contrasting peraluminous granites in a collapsing Orogen: Examples from the French Massif Central

    NASA Astrophysics Data System (ADS)

    Villaros, Arnaud; Pichavant, Michel; Moyen, Jean-François; Cuney, Michel; Deveaud, Sarah; Gloaguen, Eric; Melleton, Jérémie

    2013-04-01

    Post collisional collapse commonly enhances crustal melting. Such melting typically produces peraluminous granitic magmas. In the French Massif Central, a mid-crustal segment of the western Variscan belt, two large granitic bodies were produced during the collapse of the Variscan Belt. The St Sylvestre Leucogranitic Complex (SSyL) in the western part of the Massif Central and the Velay Migmatitic Complex (VMC) in the Eastern part. Although these two complexes are formed in similar geodynamic context they present meaningful petrological and geochemical differences. The VMC (~305 Ma) is clearly intrusive in migmatitic terranes. The migmatitic host recorded two successive melting events M3 (720 °C and 5kb) dated between 335 and 315 Ma and M4 (850°C and 4 kb) dated at 305 Ma. The compositions of the VMC are strictly H2O-undersaturated and ranges from leucogranitic to granodioritic. Three main successive granite types have been distinguished (1) A heterogeneous banded biotite granite, (2) A main biotite-cordierite granite, where cordierite can be prismatic, as cockade or pseudomorphic (3) a late magmatic with large K-feldspar phenocryst and prismatic cordierite. The compositions of the VMC granites are quite similar to typical Australian S-type granites in the sense that they also show a positive correlation between ferromagnesian abundance and aluminosity. The SSyL (~320 Ma) is intrusive in upper greenschist facies to upper amphibolite migmatitic metasediment and orthogneiss (~3kb). The compositional variety observed in the SSyL suggests a continuous trend from a moderately mafic, peraluminous magma (cd- and sill- granite) to a H2O saturated granite ("two-mica" granite) facies and finally to an extremely felsic, H2O-saturated magma. Three granitic units have been recognized in the SSyL: (1) the western "Brame Unit" composed of the less evolved cd- and sill- granite facies (2) the central "St Sylvestre Unit", composed mainly by U-rich two-mica granite, intruded by two

  3. Intensive low-temperature tectono-hydrothermal overprint of peraluminous rare-metal granite: a case study from the Dlhá dolina valley (Gemericum, Slovakia)

    NASA Astrophysics Data System (ADS)

    Breiter, Karel; Broska, Igor; Uher, Pavel

    2015-02-01

    A unique case of low-temperature metamorphic (hydrothermal) overprint of peraluminous, highly evolved rare-metal S-type granite is described. The hidden Dlhá dolina granite pluton of Permian age (Western Carpathians, eastern Slovakia) is composed of barren biotite granite, mineralized Li-mica granite and albitite. Based on whole-rock chemical data and evaluation of compositional variations of rock-forming and accessory minerals (Rb-P-enriched K-feldspar and albite; biotite, zinnwaldite and di-octahedral micas; Hf-(Sc)-rich zircon, fluorapatite, topaz, schorlitic tourmaline), the following evolutionary scenario is proposed: (1) Intrusion of evolved peraluminous melt enriched in Li, B, P, F, Sn, Nb, Ta, and W took place followed by intrusion of a large body of biotite granites into Paleozoic metapelites and metarhyolite tuffs; (2) The highly evolved melt differentiated in situ forming tourmaline-bearing Li-biotite granite at the bottom, topaz-zinnwaldite granite in the middle, and quartz albitite to albitite at the top of the cupola. The main part of the Sn, Nb, and Ta crystallized from the melt as disseminated cassiterite and Nb-Ta oxide minerals within the albitite, while disseminated wolframite appears mainly within the topaz-zinnwaldite granite. The fluid separated from the last portion of crystallized magma caused small scale greisenization of the albitite; (3) Alpine (Cretaceous) thrusting strongly tectonized and mylonitized the upper part of the pluton. Hydrothermal low-temperature fluids enriched in Ca, Mg, and CO2 unfiltered mechanically damaged granite. This fluid-driven overprint caused formation of carbonate veinlets, alteration and release of phosphorus from crystal lattice of feldspars and Li from micas, precipitating secondary Sr-enriched apatite and Mg-rich micas. Consequently, all bulk-rock and mineral markers were reset and now represent the P-T conditions of the Alpine overprint.

  4. (Energy related studies utilizing K-feldspar thermochronology)

    SciTech Connect

    Not Available

    1992-01-01

    In our second year of current funding cycle, we have investigated the Ar diffusion properties and microstructures of K-feldspars and the application of domain theory to natural K-feldspars. We completed a combined TEM and argon diffusion study of the effect of laboratory heat treatment on the microstructure and kinetic properties of K-feldspar. We conclude in companion papers that, with one minor exception, no observable change in the diffusion behavior occurs during laboratory extraction procedures until significant fusion occurs at about 1100{degrees}C. The effect that is observed involves a correlation between the homogenization of cryptoperthite lamelle and the apparent increase in retentivity of about 5% of the argon in the K-feldspar under study. We can explain this effect of both as an artifact of the experiment or the loss of a diffusion boundary. Experiments are being considered to resolve this question. Refinements have been made to our experimental protocol that appears that greatly enhance the retrieval of multi-activation energies from K-feldspars. We have applied the multi-domain model to a variety of natural environments (Valles Caldera, Red River fault, Appalachian basin) with some surprising results. Detailed {sup 40}Ar/{sup 39} Ar coverage of the Red River shear zone, thought to be responsible for the accommodation of a significant fraction of the Indo-Asian convergence, strongly suggests that our technique can precisely date both the termination of ductile strike-slip motion and the initiation of normal faulting. Work has continued on improving our numerical codes for calculating thermal histories and the development of computer based graphing tools has significantly increased our productivity.

  5. Energy related studies utilizing K-feldspar thermochronology

    NASA Astrophysics Data System (ADS)

    In our second year of funding, we investigated the Ar diffusion properties and microstructures of K-feldspars and the application of domain theory to natural K-feldspars. We completed a combined TEM and argon diffusion study of the effect of laboratory heat treatment on the microstructure and kinetic properties of K-feldspar. We conclude in companion papers that, with one minor exception, no observable change in the diffusion behavior occurs during laboratory extraction procedures until significant fusion occurs at about 1100 C. The effect that is observed involves a correlation between the homogenization of cryptoperthite lamelle and the apparent increase in retentivity of about 5 percent of the argon in the K-feldspar under study. We can explain this effect of both as an artifact of the experiment or the loss of a diffusion boundary. Experiments are being considered to resolve this question. Refinements have been made to our experimental protocol that appear to enhance the retrieval of multi-activation energies from K-feldspars. We have applied the multi-domain model to a variety of natural environments (Valles Caldera, Red River fault, Appalachian basin) with some surprising results. Detailed Ar-40/Ar-39 coverage of the Red River shear zone, thought to be responsible for the accommodation of a significant fraction of the Indo-Asian convergence, strongly suggests that our technique can precisely date both the termination of ductile strike-slip motion and the initiation of normal faulting. Work has continued on improving our numerical codes for calculating thermal histories and the development of computer based graphing tools has significantly increased our productivity.

  6. Evidence for the compaction of feldspar-rich cumulates in the Pleasant Bay layered intrusion, coastal Maine

    SciTech Connect

    Horrigan, E.K. )

    1993-03-01

    The Pleasant Bay intrusion is roughly 12 km by 20 km. It consists of prominent rhythmic layers, up to 100 m thick, that grade from chilled gabbro on the base, to coarse-grained gabbroic, dioritic, or granitic rocks on the top. These layers were formed by multiple injections of basalt into a large chamber of silicic magma. The focus of this study is on one layer that is about 100 m thick, and is overlain by another basally chilled gabbroic layer at least 50 m thick. Silicic pipes and veins extend upward into the overlying gabbroic chill. The lower part of the layer has dominant calcic plagioclase, An60, augite, and olivine, with subordinate hornblende and biotite. The uppermost part has dominant sodic plagioclase, An20, and two pyroxenes with subordinate quartz, K-feldspar and hornblende. SiO[sub 2] and MgO vary from 49% and 5% at the base to 58% and 1% at the top, respectively. The top 7 m of this layer are characterized by variably deformed minerals. The deformation grades from bent biotite and plagioclase near the bottom to sutured plagioclase at the top. Pockets of undeformed quartz and K-feldspar in the uppermost rocks demonstrate that interstitial liquid was present during a after compaction. The pipes and veins probably represent trapped liquid and some crystals that were expelled into the overlying gabbroic chill.

  7. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  8. Compositions of micas in peraluminous granitoids of the eastern Arabian shield - Implications for petrogenesis and tectonic setting of highly evolved, rare-metal enriched granites

    USGS Publications Warehouse

    du Bray, E.A.

    1994-01-01

    Compositions and pleochroism of micas in fourteen peraluminous alkali-feldspar granites in the eastern part of the Late Proterozoic Arabian Shield are unlike those of micas (principally biotite) in most calc-alkaline granitoid rocks. Compositions of these micas are distinguished by elevated abundances of Li2O, F, and numerous cations and by low MgO abundances. These micas, constituents of highly evolved rare-metal enriched granitoids, represent an iron-lithium substitution series that ranges from lithium-poor siderophyllite to lithium-rich ferroan lepidolite. The eastern Arabian Shield also hosts six epizonal granitoids that contain colorless micas. Compositions of these micas, mostly muscovite, and their host granitoids are distinct from those of the iron-lithium micas and their host granitoids. Compositions of the analyzed micas have a number of petrogenetic implications. The twenty granitoids containing these micas form three compositional groups that reflect genesis in particular tectonic regimes; mica compositions define the same three groups. The presence of magmatic muscovite in six of these shallowly crystallized granitoids conflicts with experimental data indicating muscovite stability at pressures greater than 3 kbar. Muscovite in the Arabian granitoids probably results from its non-ideal composition; the presence of muscovite cannot be used as a pressure indicator. Finally, mineral/matrix partition coefficients are significantly greater than 1.0 for a number of cations, the rare-earth elements in particular, in many of the analyzed iron-lithium micas. Involvement of these types of micas in partial melting or fractionation processes can have a major influence on silicate liquid compositions. ?? 1994 Springer-Verlag.

  9. Crystallization and uplift path of late Variscan granites evidenced by quartz chemistry and fluid inclusions: Example from the Land's End granite, SW England

    NASA Astrophysics Data System (ADS)

    Drivenes, Kristian; Larsen, Rune Berg; Müller, Axel; Sørensen, Bjørn Eske

    2016-05-01

    The megacrystic, coarse-grained granite of the Land's End granitic complex, SW England, has been investigated by analyzing fluid inclusions, trace elements, and cathodoluminescence textures of quartz. By applying the TitaniQ geothermobarometer together with the cathodoluminescence textures, a two-stage emplacement process is proposed. K-feldspar and quartz phenocrysts crystallized in a deep magma chamber at ca. 18-20 km depth. The phenocrysts were transported together with the melt to a shallow emplacement depth at ca. 5-9 km in multiple intrusive events, causing the composite appearance of the granitic complex. This model of emplacement concurs with similar granites from the Erzgebirge. At the emplacement level, the magma exsolved an aqueous fluid with average salinity of 17.3% m/m NaCl and 9.7% m/m CaCl2. Fluids with higher salinities were exsolved deeper in the system, as the magma experienced stages of water saturation and water undersaturation during ascent from the deep magma chamber. The complex fluid inclusion textures are the results of multiple stages of entrapment of aqueous fluids in the host phases as multiple recharge events from the deeper magma chamber supplied fresh melts and aqueous volatiles. Titanium contents in quartz are closely related to the panchromatic cathodoluminescence intensity, and the Al/Ti ratio is reflected by the 3.26 eV/2.70 eV ratio of hyperspectral cathodoluminescence.

  10. Petrology and physical properties of granites from the Illinois Deep Hole in Stephenson County

    NASA Astrophysics Data System (ADS)

    Lidiak, Edward G.; Denison, Roger E.

    1983-09-01

    Two main basement granitoid types have been identified in core samples from the Illinois deep hole project. The main variety is a medium- to coarse-grained porphyritic biotite granite with phenocrysts of microcline perthite and less commonly quartz and sodic plagioclase in a matrix of these minerals and biotite, muscovite, fluorite, magnetite, ilmenite, zircon, hornblende, apatite, sphene, monazite, rutile, and clinopyroxene (relict). The texture is typically hypidiomorphic gradational to recrystallized xenomorphic. The second main granitoid, which occurs in the upper part of hole UPH 3, is a fine-grained granoblastic to lepidoblastic gneissic granite that is distinct from and possibly older than the nonfoliated granite. The textures of both rocks have been modified by a mild cataclastic shearing that has partially recrystallized the more susceptible mineral phases. Thin fracture planes that crosscut the earlier foliations are common. Microprobe analyses indicate that biotites in the gneissic granite are chemically distinct from those in the granite. Biotites in the gneissic granite have higher Fe/Fe + Mg ratio, FeO, and Al2O3 and lower MgO and SiO2. Reflection microscopy and microprobe analyses indicate that the oxide phases in the two rocks are also different. The oxides in the granite are magnetite and ilmenite, whereas hematite and pseudobrookite occur in the gneissic granite. The biotite and Fe-Ti oxide data represent additional evidence in support of the fact that the granite and gneissic granite are distinct rocks and probably not part of a continuous comagmatic sequence. Major element chemical analyses indicate that the granites have affinities to anorogenic rapakivi granites. The granites in the deep holes are high in SiO2, alkalis (Na2O+K2O), F, FeO/MgO; low in Al2O3, FeO, Fe2O3, TiO2, MnO, and P2O5; and slightly low in MgO and CaO. Magnetic susceptibility and density measurements correlate generally well with magnetic susceptibility and density logs

  11. Sources of granite magmatism in the Embu Terrane (Ribeira Belt, Brazil): Neoproterozoic crust recycling constrained by elemental and isotope (Sr-Nd-Pb) geochemistry

    NASA Astrophysics Data System (ADS)

    Alves, Adriana; Janasi, Valdecir de Assis; Campos Neto, Mario da Costa

    2016-07-01

    Whole rock elemental and Sr-Nd isotope geochemistry and in situ K-feldspar Pb isotope geochemistry were used to identify the sources involved in the genesis of Neoproterozoic granites from the Embu Terrane, Ribeira Belt, SE Brazil. Granite magmatism spanned over 200 Ma (810-580 Ma), and is dominated by crust-derived relatively low-T (850-750 °C, zircon saturation) biotite granites to biotite-muscovite granites. Two Cryogenian plutons show the least negative εNdt (-8 to -10) and highest mg# (30-40) of the whole set. Their compositions are strongly contrasted, implying distinct sources for the peraluminous (ASI ∼ 1.2) ∼660 Ma Serra do Quebra-Cangalha batholith (metasedimentary rocks from relatively young upper crust with high Rb/Sr and low Th/U) and the metaluminous (ASI = 0.96-1.00) ∼ 630 Ma Santa Catarina Granite. Although not typical, the geochemical signature of these granites may reflect a continental margin arc environment, and they could be products of a prolonged period of oceanic plate consumption started at ∼810 Ma. The predominant Ediacaran (595-580 Ma) plutons have a spread of compositions from biotite granites with SiO2 as low as ∼65% (e.g., Itapeti, Mauá, Sabaúna and Lagoinha granites) to fractionated muscovite granites (Mogi das Cruzes, Santa Branca and Guacuri granites; up to ∼75% SiO2). εNdT are characteristically negative (-12 to -18), with corresponding Nd TDM indicating sources with Paleoproterozoic mean crustal ages (2.0-2.5 Ga). The Guacuri and Santa Branca muscovite granites have the more negative εNdt, highest 87Sr/86Srt (0.714-0.717) and lowest 208Pb/206Pb and 207Pb/206Pb, consistent with an old metasedimentary source with low time-integrated Rb/Sr. However, a positive Nd-Sr isotope correlation is suggested by data from the other granites, and would be consistent with mixing between an older source predominant in the Mauá granite and a younger, high Rb/Sr source that is more abundant in the Lagoinha granite sample. The

  12. Zarzalejo granite (Spain). A nomination for 'Global Heritage Stone Resource'

    NASA Astrophysics Data System (ADS)

    Freire Lista, David Martin; Fort, Rafael; José Varas-Muriel, María

    2015-04-01

    Zarzalejo granite is quarried in the Sierra de Guadarrama (Spanish Central System) foothills, in and around Zarzalejo village, in the province of Madrid, Spain. It is an inequigranular monzogranite medium-to-coarse grained, with a slight porphyritic texture (feldspar phenocrysts) and mafic micro-grained enclaves. In this abstract the candidacy of Zarzalejo granite as a "Global Heritage Resource Stone" (GHSR) is presented. This stone ideally fits the newly proposed designation as it has been used in many heritage buildings and its good petrophysical properties and durability have allowed well preserved constructions such as a Roman road, San Pedro Church in Zarzalejo (1492), Descalzas Reales Monastery in Madrid (1559-1564) and the San Lorenzo del Escorial Royal Monastery (1563-1584), to be declared a World Heritage Site by UNESCO. This level of construction has been a landmark in the extraction and proliferation of historic quarries created due to the high demand that such colossal monuments and buildings with granite, have required for their construction. In the mid-20th century, More, Zarzalejo granite has also been used in restoration works including the Royal Palace and the Reina Sofía Museum (2001-2005), both buildings in Madrid, Spain. Extraction of granite ashlars from tors has been a very frequent activity in the Zarzalejo neighbourhood until mid-twentieth century. So there is also a need to preserve these historic quarries. This type of stone has created a landscape that has been preserved as an open-air museum today where you can see the marks left in the granite due to historic quarry operations. The granite industry has been one of the main pillars of the Zarzalejo regional economy. For centuries, the local community have been engaged in quarrying and have created a cultural landscape based on its building stone. A quarryman monument has been erected in Zarzalejo in honor of this traditional craft as well as an architecture museum at San Lorenzo del

  13. Alkalis and Skin.

    PubMed

    Greenwood, John E; Tan, Jin Lin; Ming, Justin Choong Tzen; Abell, Andrew D

    2016-01-01

    The aim of this editorial is to provide an overview of the chemical interactions occurring in the skin of our patients on contact with alkaline agents. Strongly basic alkali is highly aggressive and will readily hydrolyze (or cleave) key biological molecules such as lipids and proteins. This phenomenon is known as saponification in the case of lipids and liquefactive denaturation for peptides and proteins. A short section on current first-aid concepts is included. A better understanding of the basic science behind alkali burns will make us better teachers and provide an insight into the urgency needed in treating these common and dangerous chemical injuries. PMID:26182072

  14. Uranium, thorium, and lead systematics in Granite Mountains, Wyoming

    USGS Publications Warehouse

    Rosholt, J.N.; Bartel, A.J.

    1969-01-01

    Uranium, thorium and lead concentrations and isotopic compositions were determined on total rocks and a feldspar sample from widely separated parts of the Granite Mountains in central Wyoming. Linear relations defined by 206Pb/204Pb - 207Pb/204Pb and 208Pb/204Pb - 232Th/204Pb for the total rock samples define 2.8 billion-year isochrons. In contrast, 238U/206Pb ages are anomalously old by a factor of at least four. The low 238U/204Pb values, coupled with the radiogenic 206Pb/204Pb and radiogenic 207Pb/204Pb ratios, indicate that contents of uranium in near-surface rocks would have had to have been considerably greater than those presently observed to have generated the radiogenic lead. It is possible that more than 1011 kg of uranium has been removed from the Granite Mountains, and the most feasible interpretation is that most of this uranium was leached from near-surface rocks at some time during the Cenozoic, thus providing a major source for the uranium deposits in the central Wyoming basins. ?? 1969.

  15. Alkali metal ion battery with bimetallic electrode

    SciTech Connect

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  16. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  17. Sr and Pb isotopic geochemistry of feldspars and implications for the growth of megacrysts in plutonic settings.

    NASA Astrophysics Data System (ADS)

    Munnikhuis, J.; Glazner, A. F.; Coleman, D. S.; Mills, R. D.

    2015-12-01

    Why megacrystic textures develop in silicic igneous rocks is still unknown. One hypothesis is that these crystals nucleate early in a magma chamber with a high liquid content. A supportive observation of this hypothesis is areas in plutons with high concentrations of megacrysts suggesting flow sorting. Another group of hypotheses suggest megacrystic textures form during protracted late-stage coarsening in a low-melt, interlocked matrix due to either thermal oscillations from incremental pluton emplacement, or Ostwald ripening. Isotopic analyses of large, euhedral K-feldspar megacrysts from the Cretaceous intrusive suites of the Sierra Nevada batholith (SNB) provide new insight into their origin. Megacrysts from the SNB reach the decimeter scale, are Or rich (85-90%), are perthitic, and host mineral inclusions of nearly all phases in the host rock. In-situ micro-drilling of transects, from core to rim, of the alkali feldspars provides material for Sr and Pb isotopic analyses by thermal ionization mass spectrometry (TIMS). Preliminary 87Sr/86Sr(i) isotopic data from samples from the Cathedral Peak Granodiorite, of the Tuolumne Intrusive Suite range from 0.706337 to 0.706452 (~1.6ɛSr) near the cores, whereas a sawtooth pattern with larger variability, 0.706179 to 0.706533 (~5ɛSr), occurs nears the rims. We interpret these preliminary data to indicate that the late portion of growth (i.e. crystal rim) was dominated by either cannibalism of small K-feldspar crystals with isotopic variability, or by addition of isotopically diverse late components to the magma. By comparing the Sr and Pb isotopic stratigraphy of megacrysts from a variety of rock matrices and different granitoids in the SNB isotopic trends can be evaluated to determine if crystals sizes are dependent on disequilibrium processes or grow at a steady state.

  18. Bluish granites from Extremadura (Spain): a radiological evaluation.

    NASA Astrophysics Data System (ADS)

    Pereira, Dolores; Neves, Luís.; Peinado, Mercedes; Pereira, Alcides; Rodríguez, Leticia; António Blanco, José

    2010-05-01

    We have found in the area of Trujillo (Extremadura, Spain) a variety of striking bluish granites, outcropping within the Plasenzuela pluton. They are all quarried under different names and are characterized by leucocratic minerals such as quartz, feldspar (both potassium and plagioclase), sometimes giving a fenocrystic texture and muscovite, with some biotite. As accessory phases, idiomorphic tourmaline is found. Recently a bluish phosphate distributed in the whole rock was detected, included within most mineral phases and fillings from stressed structures that are cutting the rock. We attribute the bluish color of the granites to this phosphate. Although biotite is almost always transformed to chlorite, the rock gives an excellent response to be polished. Physico-mechanical properties make this bluish granite a perfect option for most applications. Absorption coefficient is rather low and alteration by thermal changes has not been observed. A secondary facies with yellow colour also occurs, spatially close to the topographic surface, and probably represents an alteration product of the original granite. This facies is also commercialized as ornamental stone. A radiological survey was carried out in the field, using a gamma ray spectrometer. The radiological background is quite homogeneous in the pluton, without significant differences between gamma ray fluxes of both facies (altered and non altered). The average contents of U, Th and K2O determined in situ with the spectrometer are 7.4 ppm, 0.8 ppm and 3.67%, respectively (n=15). Using U as a Ra proxy, the I index of the EU technical document 112 can be determined, and results in a value of 0.64 for the referred composition. This implies that the rock can be used without any restrictions for building purposes. However, a marked difference was observed in radon exhalation tests carried out in laboratorial facilities. The dominant blue variety shows radon exhalation rates comprised between 0.02 and 0.04 Bq.kg-1.h-1

  19. Chlor-Alkali Technology.

    ERIC Educational Resources Information Center

    Venkatesh, S.; Tilak, B. V.

    1983-01-01

    Chlor-alkali technology is one of the largest electrochemical industries in the world, the main products being chlorine and caustic soda (sodium hydroxide) generated simultaneously by the electrolysis of sodium chloride. This technology is reviewed in terms of electrochemical principles and manufacturing processes involved. (Author/JN)

  20. Particle size and X-ray analysis of Feldspar, Calvert, Ball, and Jordan soils

    NASA Technical Reports Server (NTRS)

    Chapman, R. S.

    1977-01-01

    Pipette analysis and X-ray diffraction techniques were employed to characterize the particle size distribution and clay mineral content of the feldspar, calvert, ball, and jordan soils. In general, the ball, calvert, and jordan soils were primarily clay size particles composed of kaolinite and illite whereas the feldspar soil was primarily silt-size particles composed of quartz and feldspar minerals.

  1. Age of granites of Wrangel Island metamorphic complex

    NASA Astrophysics Data System (ADS)

    Luchitskaya, Marina; Sergeev, Sergey; Sokolov, Sergey; Tuchkova, Marianna

    2014-05-01

    Within huge arctic shelf of Eastern-Siberian and Chukchi seas the metamorphic basement (Wrangel complex, Berri Formation) is exposed only on the Wrangel Island. There are different points of views on the age of metamorphic rocks of Wrangel complex (Berri Formation): (1) Neoproterozoic (Kameneva, 1970; Ageev, 1979; Kos'ko et al., 1993, 2003), (2) Devonian (Til'man et al., 1964, 1970; Ganelin, 1989). Metamorphic basement is represented by stratified complex, composed of dislocated metavolcanic, metavolcaniclastic and metasedimentary rocks (schists, metasandstones, metaconglomerated) with single lenses and layers of carbonate rocks (Wrangel Island…, 2003). Among basement rocks in the central part of Wrangel Island there are felsic intrusive bodies. They form small tabular bodies from tens centimeters to 70-80 meters in thickness, rarely dikes and small stocks (up to 20 x 30 m) and are composed of granite-porphyres, rarely muscovite porphyr-like granites and granosyenites (Wrangel Island…, 2003). The age of intrusions allow to determine the age of basement formation. Earlier the age of intrusions was determined by different methods and correlated to the boundary between Neoproterozoic and Paleozoic: K-Ar 570-603 Ma, Pb-Pb 590±50 Ma (S.M. Pavlov, Institute of Precambrian Geology and Geochronology, USSR Academy of Sciences), Rb-Sr 475±31 Ma (I.M.Vasil'eva, Institute of Precambrian Geology and Geochronology, USSR Academy of Sciences), U-Pb 609, 633, 677 Ma (Geological Survey of Canada) (Wrangel Island…, 2003; Kos'ko et al., 1993; Cecile et al., 1991). In the lower part of metamorphic rocks of Wrangel complex there are conformable tabular bodies of gneissosed and foliated granitoides. The latter are meramorphosed and transformed in biotite-muscovite-feldspar-quartz-sericite and muscovite-feldspar-quartz-sericite gneisses and schists, where relics of primary minerals (quartz, plagioclase, potassium feldspar, rarely biotite and muscovite) and equigranular granitic

  2. Mesoscale Approach to Feldspar Dissolution: Quantification of Dissolution Incongruency Based on Al/Si Ordering State

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Min, Y.; Jun, Y.

    2012-12-01

    Dissolution mechanism of aluminosilicates is important for understanding natural and anthropogenic carbon cycles. The total mass of atmospheric CO2 is regulated by the weathering of silicate minerals, and the fate of geologically sequestered CO2 is affected by the interactions between brine, sandstone, caprock, and CO2, which is initiated by mineral dissolution. It has been shown through both experimental and ab initio studies that the dissolution/weathering reactivities of Al and Si in the matrix of an aluminosilicate can be different under many conditions. A subsequent observation is that the release rates of Al and Si, both from the same mineral, may not be stoichiometric when compared to the bulk chemistry of the mineral. For a very long time, the relationship between mineral dissolution incongruency and mineral crystallographic properties remain largely qualitative and descriptive. Here we study the dissolution incongruency of feldspars, the most abundant aluminosilicate on earth. Mineral dissolution experiments for a series of alkali feldspars (albite, anorthoclase, sanidine, and microcline) and plagioclases (oligoclase, andesine, labradorite, bytownite, and anorthite) were conducted at pH 1.68 under ambient conditions. Synchrotron-based X-ray diffraction (HR-XRD), Fourier transform infrared spectroscopy (FTIR), and water chemistry analysis (ICP-MS) are combined to examine the effect of Al/Si ordering on mineral dissolution. Our analysis based on a C1 structure model shows that the incongruency, stemming from the different reactivities of Al-O-Si and Si-O-Si linkages in feldspar's framework, is quantifiable and closely related to the Al/Si ordering state of a feldspar. Our results also suggest that the more random the Al/Si distribution of a mineral, the greater the dissolution incongruency. Our results have significant implications for understanding water-rock interactions. First, when studying the effect of water chemistry on water-rock interaction, smaller

  3. Geochemical characteristics and origin of the Lebowa Granite Suite, Bushveld Complex

    USGS Publications Warehouse

    Hill, M.; Barker, F.; Hunter, D.; Knight, R.

    1996-01-01

    The ??? 2052-Ma Lebowa Granite Suite (LGS) represents the culminating phase of an Early Proterozoic magmatic cycle in the Central Transvaal area of the Kaapvaal Province. Following extrusion of at least 200,000 km3 of intermediate to acid volcanics (Rooiberg Felsite), mafic and ultramafic magmas intruded at 2065 Ma to form the Rustenburg Layered Suite (RLS). The LGS includes the Nebo, Makhutso, Bobbejaankop, Lease, and Klipkloof granites. The Nebo Granite intruded the Rooiberg Felsite as sheets up to 4 km thick above the RLS. Smaller stocks of the other granites crosscut the Nebo. We determined major- and trace-element compositions and oxygen, Rb-Sr, and Sm-Nd isotope ratios for samples of: Nebo Granite; Rooiberg Felsite; granophyre and granophyric granite; Makhutso, Bobbejaankop, and Lease granites; and feldspar porphyry from areas throughout the exposed area of the LGS (Dennilton, Verena Balmoral, Enkeldoorn, Sekhukhune Plateau, Zaaiplaats-Potgeitersrus, and Western Transvaal). Coherent floor-to-roof geochemical trends exist in some areas, although it is not possible to model them convincingly. Regional variations in geochemistry exist and likely are related to source variations in the estimated 200,000 km3 of the Nebo Granite sheets. ??18O for the LGS range from +5.9??? to +9.5???; if these are approximate primary magmatic values, pelitic sediments cannot have been an important source for the LGS. The Rb-Sr isotope system has been altered, a finding consistent with previous studies. A mineral isochron for Nebo Granite near Dennilton yields a York regression age of 1995 ?? 99 Ma, with initial 143Nd/144Nd = 0.50978??8 and ???CHUR=-5.12. Samples from the Sekhukhune Plateau have higher 143Nd/144Nd ratios than do Dennilton-area samples, suggesting that the former originated from older or less LREE-enriched sources. We suggest that intrusion of mafic to ultramafic magmas at depth in the continental crust triggered melting of Archean quartzofeldspathic crystalline

  4. Visible/Near-Infrared Spectra of Experimentally Shocked Plagioclase Feldspars

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.

    2003-01-01

    Minerals subjected to high shock pressures exhibit structural changes with increasing pressure (e.g., fractures, deformations, formation of diaplectic glass, and complete melting [1-6]). Petrologic and thermal infrared spectroscopic studies have shown that diaplectic glass (maskelynite) formation in feldspars occurs between 25-45 GPa, while significant melting occurs above 45 GPa [7- 12]. Past studies of visible/near-infrared spectra of shocked plagioclase feldspars demonstrated few variations in spectral features with pressure except for a decrease in the absorption feature near 1250 nm and an overall decrease in albedo [13-17]. We report new visible/near-infrared spectra of albite- and anorthiterich rocks experimentally shocked from 17-56 GPa.

  5. Visible/near-infrared spectra of experimentally shocked plagioclase feldspars

    USGS Publications Warehouse

    Johnson, J. R.; Horz, F.

    2003-01-01

    High shock pressures cause structural changes in plagioclase feldspars such as mechanical fracturing and disaggregation of the crystal lattice at submicron scales, the formation of diaplectic glass (maskelynite), and genuine melting. Past studies of visible/ near-infrared spectra of shocked feldspars demonstrated few spectral variations with pressure except for a decrease in the depth of the absorption feature near 1250-1300 nm and an overall decrease in reflectance. New visible/near-infrared spectra (400-2500 nm) of experimentally shocked (17-56 GPa) albite- and anorthite-rich rock powders demonstrate similar trends, including the loss of minor hydrated mineral bands near 1410, 1930, 2250, and 2350 nm. However, the most interesting new observations are increases in reflectance at intermediate pressures, followed by subsequent decreases in reflectance at higher pressures. The amount of internal scattering and overall sample reflectance is controlled by the relative proportions of micro-fractures, submicron grains, diaplectic glass, and melts formed during shock metamorphism. We interpret the observed reflectance increases at intermediate pressures to result from progressively larger proportions of submicron feldspar grains and diaplectic glass. The ensuing decreases in reflectance occur after diaplectic glass formation is complete and the proportion of genuine melt inclusions increases. The pressure regimes over which these reflectance variations occur differ between albite and anorthite, consistent with thermal infrared spectra of these samples and previous studies of shocked feldspars. These types of spectral variations associated with different peak shock pressures should be considered during interpretation and modeling of visible/near-infrared remotely sensed spectra of planetary and asteroidal surfaces.

  6. OSL-thermochronometry of feldspar from the KTB borehole, Germany

    NASA Astrophysics Data System (ADS)

    Guralnik, Benny; Jain, Mayank; Herman, Frédéric; Ankjærgaard, Christina; Murray, Andrew S.; Valla, Pierre G.; Preusser, Frank; King, Georgina E.; Chen, Reuven; Lowick, Sally E.; Kook, Myungho; Rhodes, Edward J.

    2015-08-01

    The reconstruction of thermal histories of rocks (thermochronometry) is a fundamental tool both in Earth science and in geological exploration. However, few methods are currently capable of resolving the low-temperature thermal evolution of the upper ∼2 km of the Earth's crust. Here we introduce a new thermochronometer based on the infrared stimulated luminescence (IRSL) from feldspar, and validate the extrapolation of its response to artificial radiation and heat in the laboratory to natural environmental conditions. Specifically, we present a new detailed Na-feldspar IRSL thermochronology from a well-documented thermally-stable crustal environment at the German Continental Deep Drilling Program (KTB). There, the natural luminescence of Na-feldspar extracted from twelve borehole samples (0.1-2.3 km depth, corresponding to 10-70 °C) can be either (i) predicted within uncertainties from the current geothermal gradient, or (ii) inverted into a geothermal palaeogradient of 29 ± 2 °C km-1, integrating natural thermal conditions over the last ∼65 ka. The demonstrated ability to invert a depth-luminescence dataset into a meaningful geothermal palaeogradient opens new venues for reconstructing recent ambient temperatures of the shallow crust (<0.3 Ma, 40-70 °C range), or for studying equally recent and rapid transient cooling in active orogens (<0.3 Ma, >200 °C Ma-1 range). Although Na-feldspar IRSL is prone to field saturation in colder or slower environments, the method's primary relevance appears to be for borehole and tunnel studies, where it may offer remarkably recent (<0.3 Ma) information on the thermal structure and history of hydrothermal fields, nuclear waste repositories and hydrocarbon reservoirs.

  7. Visible/near-infrared spectra of experimentally shocked plagioclase feldspars

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey R.; Hörz, Friedrich

    2003-11-01

    High shock pressures cause structural changes in plagioclase feldspars such as mechanical fracturing and disaggregation of the crystal lattice at submicron scales, the formation of diaplectic glass (maskelynite), and genuine melting. Past studies of visible/near-infrared spectra of shocked feldspars demonstrated few spectral variations with pressure except for a decrease in the depth of the absorption feature near 1250-1300 nm and an overall decrease in reflectance. New visible/near-infrared spectra (400-2500 nm) of experimentally shocked (17-56 GPa) albite- and anorthite-rich rock powders demonstrate similar trends, including the loss of minor hydrated mineral bands near 1410, 1930, 2250, and 2350 nm. However, the most interesting new observations are increases in reflectance at intermediate pressures, followed by subsequent decreases in reflectance at higher pressures. The amount of internal scattering and overall sample reflectance is controlled by the relative proportions of micro-fractures, submicron grains, diaplectic glass, and melts formed during shock metamorphism. We interpret the observed reflectance increases at intermediate pressures to result from progressively larger proportions of submicron feldspar grains and diaplectic glass. The ensuing decreases in reflectance occur after diaplectic glass formation is complete and the proportion of genuine melt inclusions increases. The pressure regimes over which these reflectance variations occur differ between albite and anorthite, consistent with thermal infrared spectra of these samples and previous studies of shocked feldspars. These types of spectral variations associated with different peak shock pressures should be considered during interpretation and modeling of visible/near-infrared remotely sensed spectra of planetary and asteroidal surfaces.

  8. Europium anomaly in plagioclase feldspar: experimental results and semiquantitative model.

    PubMed

    Weill, D F; Drake, M J

    1973-06-01

    The partition of europium between plagioclase feldspar and magmatic liquid is considered in terms of the distribution coefficients for divalent and trivalent europium. A model equation is derived giving the europium anomaly in plagioclase as a function of temperature and oxygen fugacity. The model explains europium anomalies in plagioclase synthesized under controlled laboratory conditions as well as the variations of the anomaly observed in natural terrestrial and extraterrestrial igneous rocks. PMID:17806582

  9. Kinetics of feldspar and quartz dissolution at 70-80°C and near-neutral pH: effects of organic acids and NaCl

    NASA Astrophysics Data System (ADS)

    Blake, R. E.; Waltera, L. M.

    1999-07-01

    strong Al-OA interactions. Modeling of the dependence of feldspar dissolution rates on OA concentration in natural diagenetic environments is complicated by the competing effects of overall solution chemistry and ionic strength on the dissolution mechanism. Results of experiments using labradorite (An 70) indicate that in OA-free solutions, dissolution is progressively slower at increasing NaCl concentrations (up to 2.2 M), in agreement with prior experiments on the effects of alkali metals on feldspar dissolution. The combined effects of oxalate and NaCl on labradorite dissolution rates are such that the rate increase due to oxalate is suppressed by the addition of NaCl. Thus, feldspar dissolution kinetics should be most significantly affected by a given concentration of OAs in low ionic strength solutions.

  10. Thermodynamics and phase equilibria of the silicate-fluoride-water systems: Implications for fluorine-bearing granites

    NASA Astrophysics Data System (ADS)

    Dolejs, David

    The progressive enrichment in volatiles and light incompatible elements observed during upper-crustal differentiation of granitic and rhyolitic magmas leads to significant changes in melt physical-chemical properties and has important implications for ore deposition and volcanic devolatization. Thermodynamic calculations and experimental studies of melting equilibria in the Na 2O-K2O-Al2O3-SiO2-F 2O-1-H2O system are used to evaluate mineral stabilities, fluid compositions, the extent of fluoride-silicate liquid-liquid immiscibility, fluorine and water solubility limits and differentiation paths of natural fluorine-bearing silicic magmas. The interaction of fluorine with rock-forming aluminosilicates corresponds to progressive fluorination by the thermodynamic component F2O-1. Formation of fluorine-bearing minerals first occurs in peralkaline and silica-undersaturated systems that buffer fluorine concentrations at very low levels (villiaumite, fluorite). The highest concentrations of fluorine are achieved in peraluminous silica-oversaturated systems, saturated with fluorite or topaz. Thermodynamic models of fluorosilicate melts indicate clustering of silicate tetrahedra in the Na2O-SiO 2-F2O-1 system, whereas initial NaAl-F short-range order evolves into partial O-F disorder in the albite-cryolite system. Experiments performed at 520-1100°C and 0.1-100 MPa completely describe liquidus relations and differentiation paths of fluorine-bearing felsic magmas. Coordination differences and short-range order effects between [NaAl]-F, Na-F vs. Si-O lead to the fluoride-silicate liquid immiscibility, which extends from the silica-cryolite binary through the peralkaline albite-silica-cryolite ternary and closes in multicomponent, topaz-bearing systems owing to the destabilizing effect of increasing peraluminosity. Liquidus relations indicate that fluoride-silicate liquid-liquid immiscibility is inaccessible to quartz-feldspar-saturated granitic melts. Differentiation paths of

  11. Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: Electron microscopic characterization

    USGS Publications Warehouse

    Zhu, Chen; Veblen, D.R.; Blum, A.E.; Chipera, S.J.

    2006-01-01

    Naturally weathered feldspar surfaces in the Jurassic Navajo Sandstone at Black Mesa, Arizona, was characterized with high-resolution transmission and analytical electron microscope (HRTEM-AEM) and field emission gun scanning electron microscope (FEG-SEM). Here, we report the first HRTEM observation of a 10-nm thick amorphous layer on naturally weathered K-feldspar in currently slightly alkaline groundwater. The amorphous layer is probably deficient in K and enriched in Si. In addition to the amorphous layer, the feldspar surfaces are also partially coated with tightly adhered kaolin platelets. Outside of the kaolin coatings, feldspar grains are covered with a continuous 3-5 ??m thick layer of authigenic smectite, which also coats quartz and other sediment grains. Authigenic K-feldspar overgrowth and etch pits were also found on feldspar grains. These characteristics of the aged feldspar surfaces accentuate the differences in reactivity between the freshly ground feldspar powders used in laboratory experiments and feldspar grains in natural systems, and may partially contribute to the commonly observed apparent laboratory-field dissolution rate discrepancy. At Black Mesa, feldspars in the Navajo Sandstone are dissolving at ???105 times slower than laboratory rate at comparable temperature and pH under far from equilibrium condition. The tightly adhered kaolin platelets reduce the feldspar reactive surface area, and the authigenic K-feldspar overgrowth reduces the feldspar reactivity. However, the continuous smectite coating layer does not appear to constitute a diffusion barrier. The exact role of the amorphous layer on feldspar dissolution kinetics depends on the origin of the layer (leached layer versus re-precipitated silica), which is uncertain at present. However, the nanometer thin layer can be detected only with HRTEM, and thus our study raises the possibility of its wide occurrence in geological systems. Rate laws and proposed mechanisms should consider the

  12. Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: Electron microscopic characterization

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Veblen, David R.; Blum, Alex E.; Chipera, Stephen J.

    2006-09-01

    Naturally weathered feldspar surfaces in the Jurassic Navajo Sandstone at Black Mesa, Arizona, was characterized with high-resolution transmission and analytical electron microscope (HRTEM-AEM) and field emission gun scanning electron microscope (FEG-SEM). Here, we report the first HRTEM observation of a 10-nm thick amorphous layer on naturally weathered K-feldspar in currently slightly alkaline groundwater. The amorphous layer is probably deficient in K and enriched in Si. In addition to the amorphous layer, the feldspar surfaces are also partially coated with tightly adhered kaolin platelets. Outside of the kaolin coatings, feldspar grains are covered with a continuous 3-5 μm thick layer of authigenic smectite, which also coats quartz and other sediment grains. Authigenic K-feldspar overgrowth and etch pits were also found on feldspar grains. These characteristics of the aged feldspar surfaces accentuate the differences in reactivity between the freshly ground feldspar powders used in laboratory experiments and feldspar grains in natural systems, and may partially contribute to the commonly observed apparent laboratory-field dissolution rate discrepancy. At Black Mesa, feldspars in the Navajo Sandstone are dissolving at ˜10 5 times slower than laboratory rate at comparable temperature and pH under far from equilibrium condition. The tightly adhered kaolin platelets reduce the feldspar reactive surface area, and the authigenic K-feldspar overgrowth reduces the feldspar reactivity. However, the continuous smectite coating layer does not appear to constitute a diffusion barrier. The exact role of the amorphous layer on feldspar dissolution kinetics depends on the origin of the layer (leached layer versus re-precipitated silica), which is uncertain at present. However, the nanometer thin layer can be detected only with HRTEM, and thus our study raises the possibility of its wide occurrence in geological systems. Rate laws and proposed mechanisms should consider the

  13. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  14. Geochemistry of alkali syenites from the Budun massif and their petrogenetic properties (Ol'khon Island)

    NASA Astrophysics Data System (ADS)

    Makrygina, V. A.; Suvorova, L. F.; Zarubina, O. V.; Bryanskii, N. V.

    2016-07-01

    The first data on the geochemistry of the alkali syenite massif in Cape Budun of Ol'khon Island, where it makes contact in the south with the Khuzir gabbroid massif, are presented. Syenites occur among granite gneisses of the Sharanur dome and, like its granites, are enriched with Zr and REEs, but depleted in other trace elements. They contain anorthoclase, corundum, rare nepheline, zircon, and hercynite and are accompanied by desilicified pegmatites. Their unusual geochemical properties allow the assumption that alkaline magmas resulted from the interaction between basic and granitoid melts.

  15. Status of LLNL granite projects

    SciTech Connect

    Ramspott, L.D.

    1980-12-31

    The status of LLNL Projects dealing with nuclear waste disposal in granitic rocks is reviewed. This review covers work done subsequent to the June 1979 Workshop on Thermomechanical Modeling for a Hardrock Waste Repository and is prepared for the July 1980 Workshop on Thermomechanical-Hydrochemical Modeling for a Hardrock Waste Repository. Topics reviewed include laboratory determination of thermal, mechanical, and transport properties of rocks at conditions simulating a deep geologic repository, and field testing at the Climax granitic stock at the USDOE Nevada Test Site.

  16. Geophysical and Chemical Weathering Signatures Across the Deep Weathered-Unweathered Granite Boundary of the Calhoun Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Richter, D., Jr.; Bacon, A. R.; Brantley, S. L.; Holbrook, W. S.

    2015-12-01

    To understand the relationship between geophysical measurements and chemical weathering at Earth's surface, we combine comprehensive chemical and physical analyses of a 70-m granite weathering profile in the Southern Piedmont in the southeastern United States. The research site is in the uplands of the Calhoun Critical Zone Observatory and is similar to many geomorphically stable, ancient, and highly-weathered Ultisol soils of the region. Surface and downhole geophysical analyses suggest significant physical changes to depths of about 40 m, where geophysical properties are consistent with competent and unweathered granite. At this depth, surface refraction velocities increase to >4.5 km/s; variations in downhole sonic velocities decrease by more than two-fold; and deviations in the downhole caliper log sharply decrease as well. Forty meters depth is also the depth of initiation of plagioclase feldspar weathering, as inferred from bulk geochemical measurement of the full 70-m deep core. Specifically, element-depth profiles, cast as mass transfer coefficient profiles using Ti and Zr as immobile elements, document inferred loss of plagioclase in the depth interval between 15 and 40-m depth. Plagioclase feldspar is the most abundant of the highly reactive minerals in the granite. Such a wide reaction front is characteristic of weathering granites. Some loss of K is observed at these depths but most K loss, as well as Mg loss, occurs at shallower depths. Nearby geophysical profiles and 3D stress models have been interpreted as showing that seismic velocities decrease at 40 m depth due to opening of fractures as rock is exhumed toward the surface. Given our interpretations of both the geochemical and geophysical data, we infer that the onset of chemical weathering of feldspar coincides with the opening of these fractures. The data highlight the ability of geochemistry and geophysics to complement each other and enrich our understanding of Earth's Critical Zone.

  17. Hydrothermal modification of host rock geochemistry within Mo-Cu porphyry deposits in the Galway Granite, western Ireland

    NASA Astrophysics Data System (ADS)

    Tolometti, Gavin; McCarthy, Will

    2016-04-01

    Hydrothermal alteration of host rock is a process inherent to the formation of porphyry deposits and the required geochemical modification of these rocks is regularly used to indicate proximity to an economic target. The study involves examining the changes in major, minor and trace elements to understand how the quartz vein structures have influenced the chemistry within the Murvey Granite that forms part of the 380-425Ma Galway Granite Complex in western Ireland. Molybdenite mineralisation within the Galway Granite Complex occurred in close association with protracted magmatism at 423Ma, 410Ma, 407Ma, 397Ma and 383Ma and this continues to be of interest to active exploration. The aim of the project is to characterize hydrothermal alteration associated with Mo-Cu mineralisation and identify geochemical indicators that can guide future exploration work. The Murvey Granite intrudes metagabbros and gneiss that form part of the Connemara Metamorphic complex. The intrusion is composed of albite-rich pink granite, garnetiferous granite and phenocrytic orthoclase granite. Minor doleritic dykes post-date the Murvey Granite, found commonly along its margins. Field mapping shows that the granite is truncated to the east by a regional NW-SE fault and that several small subparallel structures host Mo-Cu bearing quartz veins. Petrographic observations show heavily sericitized feldspars and plagioclase and biotite which have undergone kaolinization and chloritisation. Chalcopyrite minerals are fine grained, heavily fractured found crystallized along the margins of the feldspars and 2mm pyrite crystals. Molybdenite are also seen along the margins of the feldspars, crystallized whilst the Murvey Granite cooled. Field and petrographic observations indicate that mineralisation is structurally controlled by NW-SE faults from the selected mineralization zones and conjugate NE-SW cross cutting the Murvey Granite. Both fault orientations exhibit quartz and disseminated molybdenite

  18. Alkali basalts and enclosed ultramafic xenoliths near Ushuaia, Tierra Del Fuego, Argentina.

    PubMed

    Acevedo, Rogelio Daniel

    2016-01-01

    At the southernmost part of Tierra del Fuego a few outcrops and erratic boulders of alkali basaltic rocks with ultramafic enclaves have been studied. Alkali basalt plugs or pipes hitherto identified are scarce, and host rocks are constituted by slates that belong to Mesozoic deposition. The petrography, texture and composition of the basalt and xenoliths were investigated by petrographic microscope and electron microprobe analysis. Xenocrysts of amphibole and alkali feldspar, phenocrysts of nepheline, olivine, spinel, phlogopite and Fe-Ti minerals (10 %) and a diversity of xenoliths, mainly lherzolitic, pyroxenite and wehrlitic nodules (15 %), but also from metamorphic rocks provenance, are contained in the basalt groundmass (75 %). This finer-grained material is made up of laths or needles of plagioclase, pyroxene, opaque minerals, apatite and glass, with intersertal, hyalopilitic and pilotaxitic. Locally, rock has an even granoblastic texture. Former amygdules are filled by analcite, zeolites, sodalite and calcite. The normative classification, based on nepheline content, conclude that this rock is an alkali basalt. The chemical classification, considering immobile elements as Zr/TiO2 versus Nb/Y indicate an alkali basalt too and plots over the TAS diagram fall in the foidite (Na-rich or nephelinite) and basanite fields. The REE patterns are fractionated (La/Yb primitive mantle normalized is approximately 30). The K-Ar isotopic technique on individual macrocrysts gave ages of 146 ± 5 Ma (amphibole) and 127 ± 4 Ma (alkali feldspar); and K-Ar whole rock datum reported 8.3 ± 0.3 Ma. Nevertheless, fertile samples show geochemical features typical of deep derived material thus, based on the position in the actual tectonic setting, indicate that the basalt is older than its isotopic age. PMID:27610313

  19. Chemical and isotopic studies of granitic Archean rocks, Owl Creek Mountains, Wyoming: Geochronology of an Archean granite, Owl Creek Mountains, Wyoming

    SciTech Connect

    Hedge, C.E.; Simmons, K.R.; Stuckless, J.S.

    1986-01-01

    Rubidium-strontium analyses of whole-rock samples of an Archean granite from the Owl Creek Mountains, Wyo., indicate an intrusive age of 2640 {plus minus} 125 Ma. Muscovite-bearing samples give results suggesting that these samples were altered about 2300 Ma. This event may have caused extensive strontium loss from the rocks as potassium feldspar was altered to muscovite. Alteration was highly localized in nature as evidence by unaffected rubidium-strontium mineral ages in the Owl Creek Mountains area. Furthermore, the event probably involved a small volume of fluid relative to the volume of rock because whole-rock {delta}{sup 18}O values of altered rocks are not distinct from those of unaltered rocks. In contrast to the rubidium-strontium whole-rock system, zircons from the granite have been so severely affected by the alteration event, and possibly by a late-Precambrian uplift event, that the zircon system yields little usable age information. The average initial {sup 87}Sr/{sup 86}Sr (0.7033 {plus minus} 0.0042) calculated from the isochron intercept varies significantly. Calculated initial {sup 87}Sr/{sup 86}Sr ratios for nine apparently unaltered samples yield a range of 0.7025 to 0.7047. These calculated initial ratios correlate positively with whole-rock {delta}{sup 18}O values; and, therefore, the granite was probably derived from an isotopically heterogeneous source. The highest initial {sup 87}Sr/{sup 86}Sr ratio is lower than the lowest reported for the metamorphic rocks intruded by the granite as it would have existed at 2640 Ma. Thus, the metamorphic sequence, at its current level of exposure, can represent no more than a part of the protolith for the granite.

  20. Simple model potential and model wave functions for (H-alkali)+ and (alkali-alkali)+ ions

    NASA Astrophysics Data System (ADS)

    Patil, S. H.; Tang, K. T.

    2000-07-01

    A simple model potential is proposed to describe the interaction of a valence electron with the alkali core, which incorporates the correct asymptotic behavior in terms of dipolar polarizabilities, and the short-range exchange effects in terms of a hard core adjusted to give the correct energy for the valence electron. Based on this potential, simple wave functions are developed to describe the (H-alkali)+ and (alkali-alkali)+ ions. These wave functions exhibit some important structures of the ions, and provide a universal description of the properties of all (H-alkali)+ and (alkali-alkali)+ ions, in particular, the equilibrium separations of the nuclei and the corresponding dissociation energies. They also allow us to calculate the dipolar polarizabilities of Li2+, Na2+, K2+, Rb2+, and Cs2+.

  1. Some alkali and titania analyses of tektites before and after G-1 precision monitoring

    USGS Publications Warehouse

    Tatlock, D.B.

    1966-01-01

    A comparison of 55 older analyses of Australasian tektites with 110 modern precisely monitored analyses suggests that more than half of the older alkali and titania determinations are decidedly inaccurate and misleading. Deviations of the older analyses from the restricted values of the modern analyses are comparable to the imprecisions shown by early analyses of G-1 granite and W-1 diabase. This suggests that a high percentage of older alkali and titania analyses, such as those of Washington's tables, are of questionable quality. ?? 1966.

  2. Alkali-vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.; Krupke, W. F.

    2010-02-01

    We report on the results from several of our alkali laser systems. We show highly efficient performance from an alexandrite-pumped rubidium laser. Using a laser diode stack as a pump source, we demonstrate up to 145 W of average power from a CW system. We present a design for a transversely pumped demonstration system that will show all of the required laser physics for a high power system.

  3. The role of external fluid in the Shanggusi dynamic granitic magma system, East Qinling, China: Quantitative integration of textural and chemical data

    NASA Astrophysics Data System (ADS)

    Yang, Zong-Feng; Luo, Zhao-Hua; Lu, Xin-Xiang; Huang, Fan; Chen, Bi-He; Zhou, Jiu-Long; Cheng, Li-Lu

    2014-11-01

    It is well recognized that various degrees of mantle-derived materials are incorporated in the formation of granite, and mantle-derived mafic melts are generally considered to mix with crustal felsic melt. Here, however, we provide an example of the Shanggusi leucocratic granite where external mantle-derived hydrous fluid, rather than mafic melt, might be incorporated into a nearly pure crustal granitic melt system. Field observations suggest that the Shanggusi granite consists of granite porphyry, granite dyke and granitic pegmatite and they have consistent zircon U-Pb ages and molybdenite Re-Os ages. The marginal pegmatite, interconnected miarolitic cavities, heterogeneous molybdenite mineralization and significant variation of micro-texture of the Shanggusi granite physically indicate that strong fluid activities occurred in the granitic system. Accumulation of quartz and K-feldspar and bulk-rock major element data imply that fractional crystallization played an important role in the evolution of the granitic system which, however, cannot reasonably explain the significant trace elements fractionation, non-CHARAC trace elements behavior and simultaneous concave and convex REE tetrad effect of the Shanggusi granite, but which can be best explained by the influence of external fluorine-rich hydrous fluid. Importantly, the chemical fractionation, including bulk-rock trace elements and isotopes, is closely correlated with quantitative textural parameter Lmax (the average length of the four largest quartz crystals in each sample), indicating that the vast majority of physical and chemical characteristics of the granitic system were most likely controlled by the wholesale fluid flow. The Shanggusi granite is highly siliceous (SiO2 = 74.91-79.50 wt.%, except granitic pegmatite with SiO2 = 67.41 wt.%), extremely poor in mafic minerals, and with relative homogeneous bulk-rock major element chemistry and mineralogy, which approximate experimentally pure crustal melt that

  4. The isotopic composition of lead in potassium feldspars from some 1.0-b.y. old North American igneous rocks

    USGS Publications Warehouse

    Zartman, R.E.; Wasserburg, G.J.

    1969-01-01

    The isotopic composition of lead and the uranium, thorium and lead concentrations in potassium feldspars are determined for more than 30 1.0-b.y. old North American igneous rocks. Samples representing a broad spectrum in petrographic type and mode of occurrence were chosen; an effort was made to include only rocks having well-documented ages from 950 to 1140 m.y. and showing minimal evidence of subsequent metamorphism. Most samples, including those from extensive terranes of contemporaneous age, have limited lead isotope variations ( Pb206 Pb204 = 16.74-17.38; Pb207 Pb204 = 15.39-15.59; Pb208 Pb204 = 36.38-37.10), which yield model ages close to the radiometric ages. Granite, pegmatite, and rhyolite from within the Grenville province of Canada and age-equivalent rocks of New York, Virginia, Texas, and Colorado and granophyric units associated with the Duluth Gabbro Complex of Minnesota are among the materials yielding this main isotopic spectrum. Several samples were encountered which had isotopic compositions very different from the above group. Lead showing a marked deficiency in radiogenic isotopes was found in two granitic bodies associated with older Labrador Trough rocks from Quebec, in a rapakivi granite from southern Nevada, and in a small granite stock from Mellen, Wisconsin. These occurrences all involve small intrusions of granite which lie near considerably older areas of basement rock. Model ages calculated from the Pb206 Pb204 ratio are older than the age of the intrusions and approach the age of the host basement rock. Several possible interpretations are offered to explain the isotopic behavior encountered in this study. In particular, a "vertically differentiated crust" model is proposed which will account for both the main spectrum and the anomalous lead. The significance of lead isotopic studies in understanding crustal structure in continental regions is discussed. ?? 1969.

  5. An example of Precambrian channel flow: Anasagar granite revisited near Ajmer, Rajasthan, India.

    NASA Astrophysics Data System (ADS)

    De, Keyur; Dasgupta, Nandini; Dasgupta, Nilanjan

    2014-05-01

    Anasagar Granite Gneiss is exposed in the northern part of the South Delhi Fold Belt, around Ajmer city, western India. It is a K-feldspar megacrystic granite gneiss, emplaced as a concordant sheet like body emplaced within and deformed along with the metasediments of South Delhi Fold Belt (Lopez et al, 1996). The gneiss and its enveloping supracrustals are deformed by polyphase folding, producing a gneissic dome. Field observation suggests that the grain size of the gneiss varies from core to the contact with the associated meta-sediments. Within the core of the granite megacrysts with lengths of 1 to 5 cm are embedded within a gneissic matrix, defined by alternate medium to fine grained felsic (quartz or feldspar) materials and foliated layers predominantly of mafic (biotite and hornblende) composition. The same granite becomes fine grained looking like quartz-biotite-muscovite schist at the margin. Shearing along the granite margin during subsequent deformation has been proposed (Chattopadhyay et al, 2006), leading to grain refinement. To the contrary we believe that the fine grained nature of the contact zone is a primary feature developed due to quick chilling of the magma along its margin. The map pattern shows that the contact zone in the western part has a persistent thickness of 10m on an average. We test the hypothesis of shearing vis-à-vis granite magma flowage structure and probe the microstructural evidences in support of this hypothesis. We propose that differential flowage between the viscous granite magma in the interior domains with respect to the quickly chilled fine grained boundary during emplacement has rotated, stretched and aligned the crystallizing grains to the flow direction along the magmatic foliation. A comparative study of the types of microstructures between the core and the margin of the granite reveal the extent of annealing during later deformation episodes. There is a positive trend of recrystallization in the quartz grains from

  6. Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars

    USGS Publications Warehouse

    Johnson, J. R.; Horz, F.; Staid, M.I.

    2003-01-01

    Thermal infrared emission and reflectance spectra (250-1400 cm-1; ???7???40 ??m) of experimentally shocked albite- and anorthite-rich rocks (17-56 GPa) demonstrate that plagioclase feldspars exhibit characteristic degradations in spectral features with increasing pressure. New measurements of albite (Ab98) presented here display major spectral absorptions between 1000-1250 cm-1 (8-10 ??m) (due to Si-O antisymmetric stretch motions of the silica tetrahedra) and weaker absorptions between 350-700 cm-1 (14-29 ??m) (due to Si-O-Si octahedral bending vibrations). Many of these features persist to higher pressures compared to similar features in measurements of shocked anorthite, consistent with previous thermal infrared absorption studies of shocked feldspars. A transparency feature at 855 cm-1 (11.7 ??m) observed in powdered albite spectra also degrades with increasing pressure, similar to the 830 cm-1 (12.0 ??m) transparency feature in spectra of powders of shocked anorthite. Linear deconvolution models demonstrate that combinations of common mineral and glass spectra can replicate the spectra of shocked anorthite relatively well until shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation. Albite deconvolutions exhibit higher errors overall but do not change significantly with pressure, likely because certain clay minerals selected by the model exhibit absorption features similar to those in highly shocked albite. The implication for deconvolution of thermal infrared spectra of planetary surfaces (or laboratory spectra of samples) is that the use of highly shocked anorthite spectra in end-member libraries could be helpful in identifying highly shocked calcic plagioclase feldspars.

  7. The destruction of quartz, amorphous silica minerals, and feldspars in model experiments and in soils: Possible mechanisms, rates, and diagnostics (the analysis of literature)

    NASA Astrophysics Data System (ADS)

    Sokolova, T. A.

    2013-01-01

    The dissolution of quartz and amorphous SiO2 proceeds via the adsorption of water molecules on the surface of these minerals with the further formation of four silanol groups around the silicon atom and the detachment of the molecules of orthosilicic acid from the surface. The rates of quartz dissolution at pH 7 and 3 constitute 10-15.72 and 10-16.12 mol/m2 s, respectively. They increase by three orders of magnitude upon the rise in pH from 7 to 10; they also increase in the solutions of strong electrolytes and in the presence of the anions of polybasic organic acids. The dissolution of feldspars begins from the release of alkali metals and calcium from the surface of crystal lattices of these minerals into the solution in the course of the cation exchange reaction. This is a fast process, and it does not control the rate of the feldspar dissolution that depends on the concentrations of protonated (in the acid medium) and deprotonated (in the alkaline medium) complexes with participation of the surface Si-O-Si and Al-O-Si groups of the mineral lattices. The rate of dissolution of K-Na feldspars decreases from n × 10-11 to n × 10-12 mol/m2 s upon the rise in pH from 3 to 5; it also increases in the plagioclase series with an increase in the portion of anorthite molecules and in the presence of the anions of polybasic organic acids in the solution. The rate of dissolution of feldspars in the model experiments is by 1-3 orders of magnitude higher than that obtained by different methods for native soils. This may be related to the adequacy of determination of the specific surface and its changes with time in native soils.

  8. Evolved granitic systems as a source of rare-element deposits: The Ponte Segade case (Galicia, NW Spain)

    NASA Astrophysics Data System (ADS)

    Canosa, Francisco; Martin-Izard, Agustín; Fuertes-Fuente, Mercedes

    2012-11-01

    In the Ponte Segade area (Galicia, NW Spain) strongly differentiated granites, often associated with rare-element mineralization (Sn-Ta-Nb-Li-Be-Cs) that could be of economic interest, have recently been discovered. These granites appear in the northern sector of the Ollo de Sapo Antiform (Central Iberian Zone, Variscan Orogen). Three different muscovite-rich synkinematic and peraluminous types of leucogranite (leucogranites s.s., albite-rich leucogranites I and albite-rich leucogranites II) and two pegmatite types associated with the albite-rich leucogranites (zoned and banded) have been identified in the studied area. The geochemistry of whole rock leucogranites indicates an enrichment in incompatible elements (lithium, rubidium, beryllium, cesium and hafnium), Al2O3 and Na2O, and an impoverishment in barium, strontium, zirconium, cerium, yttrium and SiO2. Geochemical studies of zircon, muscovite, K-feldspar and tourmaline in the different types of granites and pegmatites indicate the grade of evolution of the granitic system. With differentiation of the system, the zircon is enriched in hafnium and uranium and is impoverished in zirconium. In muscovite and K-feldspar there is an increase in cesium and rubidium. The opposite behavior is observed with regards to the Mg, Fe and Ti contents. In the case of tourmaline, the increase in Li is the best indicator of the grade of evolution. By contrast, Fe and Mg decrease. The sequence of evolution of the granitic system obtained from the geochemical studies indicates that the leucogranites s.s. are the least differentiated, evolving gradually, in accordance with field relationships, to albite-rich leucogranites I. The albite-rich leucogranites II are the most evolved, but no direct relationship between them and leucogranites s.s. has been found. The banded pegmatites associated with the albite-rich leucogranites II are more differentiated than the zoned pegmatites associated with the albite-rich leucogranites I, but are

  9. Contrasting Sr and Nd isotopic behaviour during magma mingling; new insights from the Mannum A-type granite

    NASA Astrophysics Data System (ADS)

    Pankhurst, M. J.; Vernon, R. H.; Turner, S. P.; Schaefer, B. F.; Foden, J. D.

    2011-10-01

    The Mannum granite in South Australia is a classic A-type granite which displays good evidence for magma mingling, such as numerous syn-plutonic mafic enclaves, and rapakivi feldspars in both the granite and enclave. Study of the Sr and Nd isotopes show that the systems are dominantly controlled by plagioclase and titanite, respectively. The contrasting behaviour of these minerals during the development of a bimodal magmatic system has led to a well-defined 482 Ma isochron across a granite-enclave boundary in the Sr isotope system but not in the Nd isotope system. In-situ techniques, involving the development and production of a new titanite glass standard, were developed to resolve this dichotomy. Inferred repeated interaction with mafic magmas has resulted in the destabilization and restabilization of plagioclase. This has produced rapakivi textures, and provides an effective mechanism for efficient Sr isotope equilibration across the range of bulk rock compositions. Despite this interaction, titanite in the host granite retain a range of initial Nd isotope ratios, indicating multiple parental magmas were assembled to produce the final pluton. Decoupling of the Sr and Nd isotope systems in other magmatic systems could be indicative of magma mixing, as opposed to mingling, where physical evidence (e.g. enclaves, xenocrysts etc.) is absent.

  10. Differentiating pedogenesis from diagenesis in early terrestrial paleoweathering surfaces formed on granitic composition parent materials

    USGS Publications Warehouse

    Driese, S.G.; Medaris, L.G., Jr.; Ren, M.; Runkel, Anthony C.; Langford, R.P.

    2007-01-01

    K-feldspars with reaction rims in weathered basement. The sub-Cambrian paleoweathering profiles formed on granite are remarkably similar to modern weathering profiles formed on granite, in spite of overprinting by potassium diagenesis. ?? 2007 by The University of Chicago. All rights reserved.

  11. Adsorption on Alkali Halides.

    NASA Astrophysics Data System (ADS)

    Urzua Duran, Gilberto Antonio

    1995-01-01

    Using a variety of interionic potentials, I have computed the configurations of adsorbed alkali halides monomers on the (001) surface of selected alkali halides crystals. In the majority of cases studied it is found that the monomer adsorbs perpendicular to the surface with the cation sitting nearly on top of the surface anion. In about ten percent of the cases though the monomer adsorbs tilted from the vertical. In these cases the ion that is closer to the surface can be the cation or the anion. The effect of polarization forces is found to be important. In order to discuss the effects of surface retaxation with adsorbates, I have evaluated the surface relaxation of the alkali halide crystals, using a shell model for the interionic forces. It is found that surface relaxation and rumpling are generally small, especially when the van der Waals forces are included. A theory of the effect of substrate vibrations on the binding of an adsorbed atom is developed. At T = 0 the binding energy is D_0-E, where D_0 is the surface well depth (classical binding energy) and E is the quantum correction. For several simple models, it is found that E is surprisingly model-independent. We compare D _0-E with the binding energies to a rigid substrate, D_0-E_{rs}, and to a vibrationally averaged substrate, D _0-E_{va}. We prove that E_{va}>=q E>=q E_ {rs} and that similar relations hold at finite temperature for the free energy of binding. In most cases E_{rs} is better than E_{va} as an approximation to E.

  12. Low-temperature multi-OSL-thermochronometry of feldspar

    NASA Astrophysics Data System (ADS)

    King, Georgina; Herman, Frederic; Lambert, Renske; Valla, Pierre; Guralnik, Benny

    2016-04-01

    Constraining exhumation rates and landscape histories over Quaternary timescales represents a major challenge for understanding the interaction between changing climate and erosion processes. Facilitated by closure temperatures of as low as ~30 C, OSL-thermochronometry is able to constrain cooling rates from the top few km of the earth's crust, and offers the potential for recent changes in erosion to be determined. Based on the well-established Quaternary dating technique of optically stimulated luminescence dating, OSL-thermochronometry benefits from a strong methodological and theoretical foundation. A further advantage of OSL-thermochronometry is that it is possible to measure multiple luminescence signals from a single mineral, such as feldspar. Therefore OSL-thermochronometry can be used as a multi-thermochronometer whereby different signals from the same mineral have closure temperatures in the range of 30-70 C, enabling the derivation of very precise cooling histories. However, in contrast to other low-temperature methods, OSL-thermochronometry is limited by signal saturation, restricting its application to either elevated temperature settings (e.g. bore holes, tunnels) or rapidly exhuming terranes. Here we outline the principles of multi-OSL-thermochronometry of feldspar and its potential as a low-temperature thermochronometry system.

  13. In situ feldspar dissolution rates in an aquifer

    NASA Astrophysics Data System (ADS)

    Zhu, Chen

    2005-03-01

    In situ silicate dissolution rates within the saturated Navajo sandstone, at Black Mesa, Arizona were determined from elemental fluxes in the aquifer. The mass transfer between groundwater and mineral matrix along flow paths was calculated from inverse mass balance modeling. The reaction time is bound by 14C-based travel time. BET surface areas were measured with N 2 gas adsorption. Dissolution rates for K-feldspar and plagioclase are 10 -19 and 10 -16 mol (feldspar) m -2 s -1, respectively, which are ˜10 5 times slower than laboratory experiment-derived rates under similar pH and temperature but at far from equilibrium conditions. The rates obtained in this study are consistent with the slower field rates found in numerous watershed and soil profile studies. However, these rates are from saturated aquifers, overcoming some concerns on estimated rates from unsaturated systems. The Navajo sandstone is a quartz-sandstone with a relatively simple and well-studied hydrogeology, groundwater geochemistry, and lithology, a large number of groundwater analyses and 14C groundwater ages, groundwater residence times up to ˜37 ky, groundwater pH from ˜8 to 10, and temperature from ˜15 to 35°C.

  14. A petrologic assessment of internal zonation in granitic pegmatites

    NASA Astrophysics Data System (ADS)

    London, David

    2014-01-01

    Cameron et al. (1949) devised the nomenclature and delineated the patterns of internal zonation within granitic pegmatites that are in use today. Zonation in pegmatites is manifested both in mineralogy and in fabric (mineral habits and rock texture). Although internal zonation is a conspicuous and distinctive attribute of pegmatites, there has been no thorough effort to explain that mineralogical and textural evolution in relation to the zoning sequence presented by Cameron et al. (1949), or in terms of the comprehensive petrogenesis of pegmatite bodies (pressure, temperature, and whole-rock composition). This overview of internal zonation within granitic pegmatites consists of four principal parts: (1) a historic review of the subject, (2) a summary of the current understanding of the pegmatite-forming environment, (3) the processes that determine mineralogical and textural zonation in pegmatites, and (4) the applications of those processes to each of the major zones of pegmatites. Based on the concepts presented in London (2008), the fundamental determinates of the internal evolution of pegmatite zones are: (1) the bulk composition of melt, (2) the magnitude of liquidus undercooling prior to the onset of crystallization, (3) subsolidus isothermal fractional crystallization, by which eutectic or minimum melts fractionate by sequential, non-eutectic crystallization, (4) constitutional zone refining via the creation of a boundary layer liquid, chemically distinct from but continuous with the bulk melt at the crystallization front, and (5) far-field chemical diffusion, the long-range and coordinated diffusion of ions, particularly of alkalis and alkaline earths, through melt.

  15. Chemical Zoning of Feldspars in Lunar Granitoids: Implications for the Origins of Lunar Silicic Magmas

    NASA Technical Reports Server (NTRS)

    Mills, R. D; Simon, J. I.; Alexander, C.M. O'D.; Wang, J.; Christoffersen, R.; Rahman, Z..

    2014-01-01

    Fine-scale chemical and textural measurements of alkali and plagioclase feldspars in the Apollo granitoids (ex. Fig. 1) can be used to address their petrologic origin(s). Recent findings suggest that these granitoids may hold clues of global importance, rather than of only local significance for small-scale fractionation. Observations of morphological features that resemble silicic domes on the unsampled portion of the Moon suggest that local, sizable net-works of high-silica melt (>65 wt % SiO2) were present during crust-formation. Remote sensing data from these regions suggest high concentrations of Si and heat-producing elements (K, U, and Th). To help under-stand the role of high-silica melts in the chemical differentiation of the Moon, three questions must be answered: (1) when were these magmas generated?, (2) what was the source material?, and (3) were these magmas produced from internal differentiation. or impact melting and crystallization? Here we focus on #3. It is difficult to produce high-silica melts solely by fractional crystallization. Partial melting of preexisting crust may therefore also have been important and pos-sibly the primary mechanism that produced the silicic magmas on the Moon. Experimental studies demonstrate that partial melting of gabbroic rock under mildly hydrated conditions can produce high-silica compositions and it has been suggested by that partial melting by basaltic underplating is the mechanism by which high-silica melts were produced on the Moon. TEM and SIMS analyses, coordinated with isotopic dating and tracer studies, can help test whether the minerals in the Apollo granitoids formed in a plutonic setting or were the result of impact-induced partial melting. We analyzed granitoid clasts from 3 Apollo samples: polymict breccia 12013,141, crystalline-matrix breccia 14303,353, and breccia 15405,78

  16. Geochronology, petrogenesis and tectonic settings of pre- and syn-ore granites from the W-Mo deposits (East Kounrad, Zhanet and Akshatau), Central Kazakhstan

    NASA Astrophysics Data System (ADS)

    Li, GuangMing; Cao, MingJian; Qin, KeZhang; Evans, Noreen J.; Hollings, Pete; Seitmuratova, Eleonora Yusupovha

    2016-05-01

    There is significant debate regarding the mineralization ages of the East Kounrad, Zhanet and Akshatau W-Mo deposits of Central Kazakhstan, and the petrogenesis and tectono-magmatic evolution of the granites associated with these deposits. To address these issues, we present molybdenite Re-Os dating, zircon U-Pb dating, whole rock geochemistry as well as Sr-Nd-Pb and zircon O-Hf isotopic analyses on the pre-mineralization and ore-forming granites. U-Pb dating of zircons from pre-mineralization granitic rocks yield Late Carboniferous ages of 320-309 Ma, whereas ore-forming granites have Early Permian ages of 298-285 Ma. Molybdenite Re-Os isotopic data indicate a mineralization age of ~ 296 Ma at East Kounrad, ~ 294 Ma at Akshatau and ~ 285 Ma at Zhanet. The pre-ore and ore-forming granites are high-K calc-alkaline, metaluminous to slightly peraluminous I-type granites. The pre-mineralization granites are relatively unfractionated, whereas the ore-forming granites are highly fractionated. The fractionating mineral phases are probably K-feldspar, apatite, Ti-bearing phases and minor plagioclase. The pre-mineralization and ore-forming rocks are characterized by similar Sr-Nd-Pb-Hf-O isotopic compositions ((87Sr/86Sr)i = 0.70308-0.70501, εNd (t) = - 0.5 to + 2.8, 207Pb/204Pb = 15.60-15.82, zircon εHf (t) = + 1.2 to + 15.6 and δ18O = + 4.6 to + 10.3‰), whole rock TDMC (Nd) (840-1120 Ma) and zircon TDMC (Hf) (320-1240 Ma). The isotopic characteristics are consistent with a hybrid magma source caused by 10-30% assimilation of ancient crust by juvenile lower crust. The geochronology and geochemistry of these granites show that the Late Carboniferous pre-mineralization granitic rocks formed during subduction, whereas the Early Permian ore-forming, highly fractionated granite probably underwent significant fractionation with a restite assemblage of K-feldspar, apatite, Ti-bearing phases and minor plagioclase and developed during collision between the Yili and Kazakhstan

  17. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  18. Preparation of alkali metal dispersions

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Landel, R. F. (Inventor)

    1968-01-01

    A method is described for producing alkali metal dispersions of high purity. The dispersions are prepared by varying the equilibrium solubility of the alkali metal in a suitable organic solvent in the presence of aromatic hydrocarbons. The equilibrium variation is produced by temperature change. The size of the particles is controlled by controlling the rate of temperature change.

  19. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  20. Dissolution of K-feldspar at CO2-saturated conditions

    NASA Astrophysics Data System (ADS)

    Rosenqvist, Jörgen; Kilpatrick, Andrew D.; Yardley, Bruce W. D.; Rochelle, Christopher A.

    2014-05-01

    Underground storage of carbon dioxide on a very large scale is widely considered to be an essential part of any strategy to reduce greenhouse gas emissions to the atmosphere. Aquifers in deep sedimentary basins have been identified as suitable targets for geological carbon dioxide storage, especially aquifers located in sandstone host rock. This has led to renewed interest in studying the interaction between sandstone minerals and aqueous fluids, as there is a paucity of data for CO2-containing systems at relevant conditions. In an attempt to improve data coverage for important silicate minerals, we have measured the dissolution kinetics of K-feldspar in CO2-saturated fluids over a range of temperatures. K-feldspar fragments were hand-picked from a larger sample, crushed to a narrow size range and cleaned. The grains were reacted with water in batch-type reactors at temperatures from 20°C to 200°C and pressures up to 200 bar, and the dissolution was followed by periodic withdrawal of aliquots of solution. The mineral grains were allowed to react with pure water for a number of weeks before injection of CO2 into the system. Excess CO2 was provided to ensure CO2 saturation in the experimental systems. While the reaction time before injection was not long enough to attain complete equilibrium, it did considerably lower the degree of undersaturation with respect to K-feldspar and helped highlight the effect of CO2 injection into a rock-equilibrated aqueous fluid. At all temperatures studied, injection of CO2 resulted in a rapid increase in the soluble concentrations of K and Si (and also Na from a plagioclase component). The dissolution then reached apparent steady state conditions after a few days, with observed dissolution rates in the range of 1E-9 to 1E-12 mol/m2/s over the temperature range studied. The CO2-saturated solutions maintained mildly acidic conditions throughout the experiments and the observed rates therefore fall roughly between rates measured in

  1. Microscopic analysis of alkali-aggregate reaction products in a 50-year-old concrete

    SciTech Connect

    Fernandes, Isabel . E-mail: ifernand@fc.up.pt; Noronha, Fernando . E-mail: fmnoronh@fc.up.pt; Teles, Madalena . E-mail: mteles@fe.up.pt

    2004-11-15

    Fifty-year-old concrete from a large dam was examined in the scope of an investigation program concerning the properties of granite as aggregate material for concrete. Site inspection, which was developed in order to detect possible signs of deterioration of the concrete, revealed the existence of efflorescence and exudations. Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) analyses were attempted to identify the composition of these materials and their morphology. From the analyses, it was concluded that some of the exudations were composed by alkali-silica gel. In these samples, an interesting behavior was observed in different moments after a 3-month interval. It was noticed that the initially noncrystalline alkali-silica gel transformed into sodium-rich needles and tablets after a few months kept in a desiccator in the laboratory. Therefore, it was concluded that the materials identified corresponded to different stages of evolution of an alkali-aggregate reaction product.

  2. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  3. Feldspars Detected by ChemCam in Gale Crater with Implications for Future Martian Exploration

    NASA Astrophysics Data System (ADS)

    Gasda, P. J.; Carlson, E.; Wiens, R. C.; Bridges, J.; Sautter, V.; Cousin, A.; Maurice, S.; Gasnault, O.; Clegg, S. M.

    2015-12-01

    Feldspar is a common igneous mineral that can shed light on parent magma temperatures, pressures, and compositions. During the first 801 sols of the NASA Mars Science Laboratory mission, we have detected 125 possible feldspar grains using the ChemCam LIBS instrument. We analyzed spectra from successive laser shots at the same location and approximate whole rock compositions for each target. Feldspar-containing targets range from tephrite-basanite to trachyandesite. The most common feldspar type is andesine; no targets are >An60. Over 30% are anorthoclase, and ~10% have potassium contents up to Or60. Individual shot measurements in a single spot suggest some feldspars are zoned. Most of these rocks are either float or incorporated into conglomerates, and thus we do not know their provenance. Many of the samples may originate from the Gale crater walls, indicative of Southern Highland ancient crust. Some may also be flung from further away (e.g., emplaced by impact processes). Hence, these rocks may give us a general clue to the variety of evolved igneous materials on Mars. The ubiquity of feldspars at Gale suggests that they have been significantly underestimated for the Southern Highlands, if not for the whole of Mars. For example, significant abundance of andesitic feldspars in both the southern highland and northern lowlands of Mars would imply that Martian volcanism has produced a greater extent of evolved igneous materials to a greater degree than previously thought. Remote sensing instruments are insensitive to plagioclase due to dust cover, lack of exposures, or low feldspar FeO content. However, the Mars 2020 rover will be equipped with 3 new instruments, the arm-mounted SHERLOC Raman, PIXL μXRF, and the mast-mounted SuperCam combined Raman-LIBS instruments, which should help characterize Martian feldspars. Additionally, the SuperCam instrument plans to include three feldspars in its suite of 20+ onboard standards to improve feldspar chemical analysis.

  4. Laser cleaning of graffiti in Rosa Porriño granite

    NASA Astrophysics Data System (ADS)

    Fiorucci, M. P.; Lamas, J.; López, A. J.; Rivas, T.; Ramil, A.

    2011-05-01

    This paper presents preliminary results in determining the optimum parameters for graffiti removal in a ornamental granite, Rosa Porriño, by means of Nd:YVO4 laser at the wavelength of 355 nm and different fluences. The spray-paints (black, blue, red and silver) tested in this work were chemically characterized by means of elemental analysis, XRF, SEM/EDX and FTIR. The assessment of cleaning and characterization of the stone substrate before and after irradiation was performed by means of optical microscopy, SEM-EDX, and confocal microscopy. The analysis of the irradiated samples showed in some cases, damage in the granite substrate associated to thermal effects. The severity and kind of damage, depends on the laser fluence delivered, the constituent mineral irradiated, and the color used to paint the stone. So, at the highest levels of fluence the laser beam is able to scratch the surface, being the depth of the grooves in the stone measured by confocal microscopy. Moreover, SEM images show the differential damage caused in mineral constituents of granite i.e., quartz, feldspars, and biotite, the latter providing to be the most affected mineral, reaching melting even at low levels of fluence. It was appreciated that the color of the spray-paint affects the results of cleaning, and observed differences could be attributed to different organic constituents in the paints or the presence of metallic particles in its composition, as occurs with silver paint.

  5. Petrology and mineral chemistry of peraluminous Marziyan granites, Sanandaj-Sirjan metamorphic belt (NW Iran)

    NASA Astrophysics Data System (ADS)

    Darvishi, Esmaiel; Khalili, Mahmoud; Beavers, Roy; Sayari, Mohammad

    2015-10-01

    The Marziyan granites are located in the north of Azna and crop out in the Sanandaj-Sirjan metamorphic belt. These rocks contain minerals such as quartz, K-feldspars, plagioclase, biotite, muscovite, garnet, tourmaline and minor sillimanite. The mineral chemistry of biotite indicates Fe-rich (siderophyllite), low TiO2, high Al2O3, and low MgO nature, suggesting considerable Al concentration in the source magma. These biotites crystallized from peraluminous S-type granite magma belonging to the ilmenite series. The white mica is rich in alumina and has muscovite composition. The peraluminous nature of these rocks is manifested by their remarkably high SiO2, Al2O3 and high molar A/CNK (> 1.1) ratio. The latter feature is reflected by the presence of garnet and muscovite. All field observations, petrography, mineral chemistry and petrology evidence indicate a peraluminous, S-type nature of the Marziyan granitic rocks that formed by partial melting of metapelite rocks in the mid to upper crust possibly under vapour-absent conditions. These rocks display geochemical characteristics that span the medium to high-K and calc-alkaline nature and profound chemical features typical of syn-collisional magmatism during collision of the Afro-Arabian continental plate and the Central Iranian microplate.

  6. Petrographic and geochemical characterization of the granitic rocks of the Araguainha impact crater, Brazil

    NASA Astrophysics Data System (ADS)

    Silva, Dailto; Lana, Cristiano; Souza Filho, Carlos Roberto

    2016-03-01

    Petrographic and geochemical data obtained on the Araguainha impact crater (Goiás/Mato Grosso States, Brazil) indicate the existence of several molten products that originated during impact-induced congruent melting of an alkali-granite exposed in the inner part of the central uplift of the structure. Although previous studies have described these melts to some extent, there is no detailed discussion on the petrographic and geochemical variability in the granite and its impactogenic derivatives, and therefore, little is known about the geochemical behavior and mobility of trace elements during its fusion in the central part of the Araguainha crater. This paper demonstrates that the preserved granitoid exposed in the core of the structure is a magnesium-rich granite, similar to postcollisional, A-type granites, also found in terrains outside the Araguainha crater, in the Brasília orogenic belt. The molten products are texturally distinct and different from the original rock, but have very similar geochemical composition, making it difficult to separate these lithotypes based on concentrations of major and minor elements. This also applies for trace and rare earth elements (REE), thus indicating a high degree of homogenization during impact-induced congruent melting under high pressure and postshock temperature conditions. Petrographic observations, along with geochemical data, indicate that melting occurs selectively, where some of the elements are transported with the melt. Simultaneously, there is an effective dissolution of the rock (granite), which leads to entrainment of the most resistant solid phases (intact or partially molten minerals) into the melt. Minerals more resistant to melting, such as quartz and oxides, contribute substantially to a chemical balance between the preserved granite and the fusion products generated during the meteoritic impact.

  7. Weathering profiles in granites, Sierra Norte (Córdoba, Argentina)

    NASA Astrophysics Data System (ADS)

    Kirschbaum, Alicia; Martínez, Estela; Pettinari, Gisela; Herrero, Silvana

    2005-09-01

    Two weathering profiles evolved on peneplain-related granites in Sierra Norte, Córdoba province, were examined. Several weathering levels, of no more than 2 m thickness, were studied in these profiles. They had developed from similar parent rock, which had been exposed to hydrothermal processes of varying intensity. Fracturing is the most notable feature produced by weathering; iron oxides and silica subsequently filled these fractures, conferring a breccia-like character to the rock. The clay minerals are predominantly illitic, reflecting the mineral composition of the protolith. Smaller amounts of interstratified I/S RO type are also present, as well as scarce caolinite+chlorite that originated from the weathering of feldspar and biotite, respectively. The geochemical parameters define the weathering as incipient, in contrast to the geomorphological characteristics of Sierra Norte, which point to a long weathering history. This apparent incompatibility could be due to the probable erosion of the more weathered levels of the ancient peneplains, of which only a few relicts remain. Similar processes have been described at different sites in the Sierras Pampeanas. Reconstruction and dating of the paleosurfaces will make it possible to set time boundaries on the weathering processes studied and adjust the paleographic and paleoclimatic interpretations of this great South American region.

  8. Fluid-rock interactions in CO2-saturated, granite-hosted geothermal systems: Implications for natural and engineered systems from geochemical experiments and models

    NASA Astrophysics Data System (ADS)

    Lo Ré, Caroline; Kaszuba, John P.; Moore, Joseph N.; McPherson, Brian J.

    2014-09-01

    Hydrothermal experiments were conducted and geochemical models constructed to evaluate the geochemical and mineralogical response of fractured granite and granite + epidote in contact with thermal water, with and without supercritical CO2, at 250 °C and 25-45 MPa. Illite ± smectite ± zeolite(?) precipitate as secondary minerals at the expense of K-feldspar, oligoclase, and epidote. Illite precipitates in experiments reacting granite and granite + epidote with water; metastable smectite forms in the experiments injected with supercritical CO2. Waters are supersaturated with respect to quartz and saturated with respect to chalcedony in CO2-charged experiments, but neither mineral formed. Carbonate formation is predicted for experiments injected with supercritical CO2, but carbonate only formed during cooling and degassing of the granite + epidote + CO2 experiment. Experimental results provide insight into the buffering capacity of granites as well as the drivers of clay formation. Metastable smectite in the experiments is attributed to high water-rock ratios, high silica activities, and high CO2 and magnesium-iron concentrations. Smectite precipitation in supercritical CO2-bearing geothermal systems may affect reservoir permeability. Silicate formation may create or thicken caps within or on the edges of geothermal reservoirs. Carbonate formation, as desired for carbon sequestration projects coinciding with geothermal systems, may require extended periods of time; cooling and degassing of CO2-saturated waters leads to carbonate precipitation, potentially plugging near-surface production pathways.

  9. U-Pb-Nd-Hf isotope geochemistry of the Mesoproterozoic A-type granites in Mannefallknausane, western Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Ramo, O. T.; Kurhila, M.; Luttinen, A. V.; Andersen, T.

    2009-12-01

    The bedrock of western Dronning Maud Land, Antarctica records several stages of anorogenic magmatism. The Grenvillean-age metamorphic basement gneisses of Heimefrontfjella and Mannefallknausane were intruded by mafic dikes (Bauer et al., 2003) and A-type granite plutons (Jacobs, 1991) at circa 1 Ga. A 590 Ma suite of mafic dikes manifests a subsequent episode of Proterozoic anorogenic magmatism (Bauer et al., 2003). Jurassic (180 Ma) continental flood basalts (CFBs), their intrusive equivalents, and associated alkaline mafic rocks represent the third and youngest episode of anorogenic magmatism (Luttinen et al., 1998; Romu and Luttinen, 2007). The crystalline bedrock in western Dronning Maud Land is composed of the Archean Grunehogna craton and the Mesoproterozoic Maud mobile belt. About 100 km south of Archean-Proterozoic transition, in the Proterozoic realm, nunataks of Mannefallknausane (74.5oS, 15oW) are dominated by Precambrian granitoid rocks and rare paragneisses. Three principal granites can be identified: a white, garnet-bearing K-feldspar-megacrystic biotite granite; a red biotite-hornblende±clinopyroxene granite with or without plagioclase-mantled K-feldspar-megacrysts (rapakivi texture); and a dark green porphyritic charnockite with orthopyroxene and hornblende. The presence of rapakivi texture, the mode of occurrence, and geochemical composition of the granites of Mannefallknausane imply A typology. For two varieties of the red granite (wiborgite and pyterlite), our new U-Pb data imply crystallization ages of 1073 ± 6 Ma and 1084 ± 8 Ma, respectively. These are compatible with a U-Pb zircon upper intercept age of 1073 ± 8 Ma of the charnockite (Arndt et al., 1991). The initial Nd isotope composition of these rocks is relatively radiogenic [epsilon-Nd (1075 Ma) value of the biotite granite -0.5; red granite +0.3, +0.5; charnockite +1.4], as is that of a country-rock gneiss from the surrounding bedrock (+1.0). Initial zircon epsilon-Hf values of the

  10. Origin of miarolitic pegmatites in the Königshain granite/Lusatia

    NASA Astrophysics Data System (ADS)

    Thomas, Rainer; Davidson, Paul

    2016-09-01

    In this study we examine an interesting occurrence of miarolitic pegmatites in the Königshain granite of the Lusatia region of the Bohemian Massif. This granite is characterized by the extensive development of micro-sized miarolitic pegmatites (typically with diameters of 5 to 15 mm) irregularly distributed through its upper levels, and larger miarolitic pegmatites (up to 1 m) in the uppermost levels. This granite also shows evidence of varied forms of transport of extremely volatile rich residual melts/fluids, in the form of more or less discrete inter-granular melt bodies, and associated magmatic quartz veins formed in tectonic fissures. Together, these provide evidence for the origin of miarolitic pegmatites, both in the specific case of Königshain, and more generally. Our evidence suggests that miarolitic pegmatites form from volatile- and alkali-rich residual melts, ranging from 10 to 50% H2O, far more than typical granitic melts, but far more silicate components than aqueous fluids or vapor suggested by some authors. Using melt inclusions in quartz from the aplitic and graphic granite zones in miarolitic pegmatites in the Königshain granite, we show that two different inclusion populations are present. We provide evidence that the first inclusion population are those related to the primary granite at the level of intrusion, and the second were trapped during the re-crystallization of the granite wall rocks by silicate-rich supercritical fluids moving through the solid crystal framework with a porosity < 25 and a permeability > 0 (see Clarke et al., 2013). Our results show that a significant volume fraction of the miarolitic pegmatites was not created by a pegmatite-forming fluid, but formed in-situ by re-crystallization of wall-rocks, triggered by highly reactive volatiles exsolved from the pegmatite-forming melts. Evidence is also presented which suggests the nature and speed of emplacement of the Königshain granite. This evidence may explain the unusual

  11. GRANITE PEAK ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    Huber, Donald F.; Thurber, Horace K.

    1984-01-01

    The Granite Peak Roadless Area occupies an area of about 5 sq mi in the southern part of the Trinity Alps of the Klamath Mountains, about 12 mi north-northeast of Weaverville, California. Rock and stream-sediment samples were analyzed. All streams draining the roadless area were sampled and representative samples of the rock types in the area were collected. Background values were established for each element and anomalous values were examined within their geologic settings and evaluated for their significance. On the basis of mineral surveys there seems little likelihood for the occurrence of mineral or energy resources.

  12. Feldspar basalts in lunar soil and the nature of the lunar continents

    NASA Technical Reports Server (NTRS)

    Reid, A. M.; Ridley, W. I.; Harmon, R. S.; Warner, J.; Brett, R.; Jakes, P.; Brown, R. W.

    1974-01-01

    It is found that 25% on the Apollo-14 glasses have the same composition as the glasses in two samples taken from the Luna-16 column. The compositions are equivalent to feldspar basalt and anorthosite gabbro, and are similar to the feldspar basalts identified from Surveyor-7 analysis for lunar continents.

  13. Aluminum position in Rb-feldspar as determined by X-ray photoelectron spectroscopy.

    PubMed

    Kyono, Atsushi; Kimata, Mitsuyoshi; Hatta, Tamao

    2003-09-01

    Al/Si configurations in some natural and synthetic Rb-feldspars have been examined carefully by EMPA and XPS analyses. Our results indicate that a small amount of H2O and excess Si and Al are incorporated in hydrothermally synthesized Rb-feldspar. The quantities of excess Al are 0.056 atoms per formula unit and are negatively correlated with those of the Rb, suggesting the presence of excess Al occupying non-tetrahedral sites in feldspar structures. This leads to incorporation of Al(Al3Si)O8 endmember into Rb-feldspars, estimated as one appropriate endmember indication for unusual chemistry of feldspars. In addition, Si2p, Al2p and O1s XPS signals of Rb-feldspars shift drastically toward the higher energy side than those of any natural feldspars. These provide conclusive evidence not only for existence of perceptible excess Si and Al, but also for Al at both extra-framework and tetrahedral sites in feldspar structures. PMID:14504785

  14. Petrographic and geochemical comparisons between the lower crystalline basement-derived section and the granite megablock and amphibolite megablock of the Eyreville B core, Chesapeake Bay impact structure, USA

    USGS Publications Warehouse

    Townsend, G.N.; Gibson, R.L.; Horton, J.W., Jr.; Reimold, W.U.; Schmitt, R.T.; Bartosova, K.

    2009-01-01

    The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ?? fibrolite ?? garnet ?? tourmaline ?? pyrite ?? rutile ?? pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite- K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase- quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ?? biotite ?? garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ?? muscovite ?? pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ?? epidote ?? amphibole. The lower basement-derived section and both megablocks exhibit similar middleto upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafi c source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites. ?? 2009 The Geological Society of America.

  15. Petrographic and geochemical comparisons between the lower crystalline basement-derived section and the granite megablock and amphibolite megablock of the Eyreville-B core, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Townsend, Gabrielle N.; Gibson, Roger L.; Horton, J. Wright, Jr.; Reimold, Wolf Uwe; Schmitt, Ralf T.; Bartosova, Katerina

    2009-01-01

    The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ± fibrolite ± garnet ± tourmaline ± pyrite ± rutile ± pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite-K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase-quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ± biotite ± garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ± muscovite ± pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ± epidote ± amphibole. The lower basement-derived section and both megablocks exhibit similar middle- to upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafic source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites.

  16. Silicic Melt Generation, Segregation, and Injection by Dolerite Partial Melting of Granitic Wall Rock, McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Hersum, T. G.; Simon, A. C.; Marsh, B. D.

    2005-12-01

    Numerous, long (100's m), thin (< 30 cm), interconnected fine-grained granitic dikes cut Ferrar dolerite sills in the McMurdo Dry Valleys. The source of at least one dike is completely exposed at the upper contact of the Basement Sill and granite country rock. The dike emanates from a thin (5 cm) melt sheet separating chilled dolerite from partially melted granite. Residual interstitial granophyric melt decreases away from the contact from 55% to zero within a distance of < 20 m. Higher than expected dolerite contact temperatures of 900-950°C calculated using two-pyroxene thermometry suggest that the dolerite feeder acted as an open conduit for sustained flux of magma. As a consequence of this flow, the contact temperature was pinned above the `dry' granite minimum, the most restrictive condition necessary to generate granitic melt. Although closed-system partial melting of granite clearly occurred beyond 50 cm from the dolerite chilled margin, compositional moment balances on the feldspar ternary between the orthoclase-enriched melt sheet and granite dike whole-rock compositions are reconciled by melts segregated from increasingly orthoclase-depleted partially melted granite at 12.3 cm and closer to the dolerite chilled margin. Melting models and mass balance calculations predict a range of between 48 to 83% maximum volumes of segregated granitic melt, but these are only estimates as the samples are not exclusively residuum. If granitic melt segregation occurs by viscous compaction of the restitic crystal matrix, then, employing commonly used properties, the compaction length scale is ~3 m. This is an upper bound as the compaction model assumes constant melt fraction, but the result is nevertheless only an order of magnitude larger than the distance over which the partially melted granite has a composition that differs from unmelted granite. Contraction attending cessation of doleritic magma flow and dolerite solidification likely generated deviatoric stresses

  17. 6. Photocopied August 1971 from Photo 13731, Granite Folder #1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopied August 1971 from Photo 13731, Granite Folder #1, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. GRANITE STATION, MAY 24, 1915. - Utah Power Company, Granite Hydroelectric Plant, Holladay, Salt Lake County, UT

  18. New observations on the quartz monzodiorite-granite suite. [in lunar soil

    NASA Technical Reports Server (NTRS)

    Marvin, U. B.; Holmberg, B. B.; Lindstrom, M. M.; Martinez, R. R.

    1991-01-01

    Five new fragments of quartz monzodiorite (QMD) were identified in particles from soil 15403, which was collected from the boulder sampled as rock 15405, an impact-melt breccia containing clasts of KREEP basalt, QMD, granite, and a more primitive alkali norite. Petrographic and geochemical studies of the fragments show considerable variation in modal proportions and bulk composition. This heterogeneity is due to unrepresentative sampling in small fragments of coarse-grained rocks. Variations in the proportions of accessory minerals have marked effects on incompatible-trace-element concentrations and ratios. Semiquantitative calculations support the derivation of QMD from 60-percent fractional crystallization of a KREEP basalt magma as suggested by Hess (1989). Apollo 15 KREEP basalt cannot be the actual parent magma because the evolved rocks predate volcanic KREEP basalts. It is suggested that ancient KREEP basalt magmas have crystallized as plutons, with alkali norite clasts offering the only direct evidence of this precursor.

  19. Granites of southeast Asian tin belt

    SciTech Connect

    Cobbing, E.J.; Mallick, D.I.J.; Pitfield, P.E.J.; Darbyshire, D.P.F.; Teoh, L.H.

    1986-07-01

    The objective of this study is to establish the essential granite geology of the southeast Asian tin belt, distinguishing plutons within batholiths and characterizing them by their component units, field relationships, lithology, texture, petrology, geochemistry, geochronology, and mineral potential. To date, approximately 180 plutons have been recognized and partly or entirely described in the above terms. In addition, four granite provinces have been delineated, each with its own distinctive mineralization pattern. In all provinces, but particularly in the Main Range, granitoids designated as two-phase variants have been recognized where xenocrysts and xenoliths of coarse, primary texture granite are enclosed in and corroded by an invasive, equigranular quartzo-feldspathic matrix. These rocks form an essential part of the granite sequence in all provinces and have probably resulted from the infiltration and disruption of the host granite by late-stage magmatic fluids. Whole-rock geochemistry from peninsular Malaysia shows that the granites from the Main Range and Eastern provinces comprise two contrasted suites, which correspond approximately to the I- and S-type categories advocated by Chappell and White. In addition, individual plutons within batholiths in the two provinces have distinct geochemical parameters. Variation diagrams of plutons having the intrusive sequence primary texture granite-two-phase granite-microgranite show linear trends with increasing SiO/sub 2/, Na/sub 2/O, Rb, W, Sn, and U, and decreasing Sr, Ba, Th, and all other major elements.

  20. Upgrading platform using alkali metals

    SciTech Connect

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  1. Radioelement distributions in the Proterozoic granites and associated pegmatites of Gabal El Fereyid area, Southeastern Desert, Egypt.

    PubMed

    Abd El-Naby, H H; Saleh, G M

    2003-10-01

    Lithologically, the rock types in the Gabal El Fereyid area are dominantly granites with minor amounts of pegmatites. The granites range in composition from tonalite to granite-adamallite with minor acidic dikes, quartz and pegmatite veins. The granite-adamallite is peraluminous and formed as a result of partial melting of amphibole-bearing rocks at depths of approximately 24-30 km and at temperatures of 800-950 degrees C. Among the different rock types, the muscovite-rich pegmatites had the highest U and Th contents (66 and 38 ppm on average, respectively). The high level of radioactivity in pegmatites is attributed to the presence of the radioactive minerals thorianite, uranophane and allanite as confirmed by XRD analysis. Binary relations of Zr/U, Zr/Th, Ce/U and Ce/Th against either U or Th in the granite-adamellite exhibit significant negative correlations indicating that both elements are not preferentially hosted in the accessory minerals phases such as zircon and monazite, but could be associated with major forming minerals such as biotite, muscovite, plagioclase and quartz, or U is situated within labile sites within granite. The uranium and thorium enrichment in the pegmatites is a two-stage process. The primary stage is magmatic whereas the secondary enrichment is from hydrothermal concentration. The magmatic U and Th are indicated by the presence of thorianite and allanite, whereas evidence of hydrothermal mineralization is the alteration of rock-forming minerals such as feldspar and the formation of secondary minerals such as uranophane and pyrite. PMID:14522238

  2. Zircon dating and mineralogy of the Mokong Pan-African magmatic epidote-bearing granite (North Cameroon)

    NASA Astrophysics Data System (ADS)

    Tchameni, R.; Sun, F.; Dawaï, D.; Danra, G.; Tékoum, L.; Nomo Negue, E.; Vanderhaeghe, O.; Nzolang, C.; Dagwaï, Nguihdama

    2015-12-01

    We present the mineralogy and age of the magmatic epidote-bearing granite composing most of the Mokong pluton, in the Central Africa orogenic belt (North Cameroon). This pluton intrudes Neoproterozoic (~830 to 700 Ma) low- to high-grade schists and gneisses (Poli-Maroua group), and is crosscut or interleaved with bodies of biotite granite of various sizes. The pluton is weakly deformed in its interior, but solid-state deformation increases toward its margins marked by narrow mylonitic bands trending NNE-SSW. The magmatic epidote granitic rocks are classified as quartz monzodiorite, granodiorite, monzogranite, and syenogranite. They are medium- to coarse-grained and composed of K-feldspar + plagioclase + biotite + amphibole + epidote + magnetite + titanite + zircon + apatite. In these granites, the pistacite component [atomic Fe+3/(Fe3+ + Al)] in epidote ranges from 16 to 29 %. High oxygen fugacity (log ƒO2 - 14 to -11) and the preservation of epidote suggest that the magma was oxidized. Al-in hornblende barometry and hornblende-plagioclase thermometry indicate hornblende crystallization between 0.53 and 0.78 GPa at a temperature ranging from 633 to 779 °C. Zircon saturation thermometry gives temperature estimates ranging from 504 to 916 °C, the latter being obtained on samples containing inherited zircons. U/Pb geochronology by LA-ICP-MS on zircon grains characterized by magmatic zoning yields a concordia age of 668 ± 11 Ma (2σ). The Mokong granite is the only known occurrence magmatic epidote in Cameroon, and is an important milestone for the comparison of the Central Africa orogenic belt with the Brasiliano Fold Belt, where such granites are much more abundant.

  3. Geochemistry and Rb-sr geochronology of associated proterozoic peralkaline and subalkaline anorogenic granites from Labrador

    NASA Astrophysics Data System (ADS)

    Collerson, Kenneth D.

    1982-12-01

    hornblende to actinolite and also coexist with annite-rich biotite. Whole-rock and mineral isotopic data for the different suites yield isochrons that are within error of ca. 1,260 Ma, but they have variable initial 87Sr/86Sr ratios. The initial 87Sr/86Sr of the syenites and peralkaline granites (0.7076±11) is significantly lower than the initial 87Sr/86Sr of the subsolvus granites (0.7138±22). These isotopic data provide further confirmation of the importance of a late Elsonian alkaline event in Labrador which can be correlated with Gardar igneous activity in south Greenland. The petrogenesis of the peralkaline suite is interpreted to reflect the effects of fractionation of anhydrous phases from mantle derived basic magma which was contaminated during ascent by radiogenic partial melts of crustal derivation. The non-alkaline hypersolvus and subsolvus granites are interpreted as crustal melts which formed under conditions of variable P_{{text{H}}_{text{2}} {text{O}}} in response to the same thermal event, and which subsequently experienced feldspar fractionation during crystallization.

  4. Dissolution rates and surface chemistry of feldspar glass and crystal. Final technical report, June 15, 1995 - August 14, 2001

    SciTech Connect

    Brantley, S.; Pantano, C.

    2002-06-11

    Final report summarizing the completed work of the project entitled 'Dissolution of Feldspar in the Field and Laboratory.' One of the highly debated questions today in low-temperature geochemical kinetics centers upon the rate and mechanism of dissolution of feldspar, the most common mineral in the crust. In this project, the mechanisms of feldspar dissolution were investigated by emphasizing experiments with feldspar glass and crystal while comparing surface and solution chemistry. Specifically, laboratory work focused on the structure of altered surface layers on feldspars, the rate of dissolution of feldspar crystal and glass, and the presence of porosity and surface coatings on feldspars. In a complementary field project, the use of Sr concentrations and isotopic ratios were used to calculate feldspar dissolution rates.

  5. Cambro-Ordovician post-collisional granites of the Ribeira belt, SE-Brazil: A case of terminal magmatism of a hot orogen

    NASA Astrophysics Data System (ADS)

    Valeriano, Claudio de Morisson; Mendes, Julio Cezar; Tupinambá, Miguel; Bongiolo, Everton; Heilbron, Monica; Junho, Maria do Carmo Bustamante

    2016-07-01

    This work presents an overview of the geology and chemical composition of the Cambrian-Ordovician post-collisional (COPC) granites and associated rocks of Ribeira belt, SE-Brazil. These COPC granites make up some of the most picturesque and highest (>2000 m) rocky peaks and cliffs of Rio de Janeiro state, an accessible case of post-orogenic granitic magmatism associated with the terminal stages of a hot Ediacaran-Cambrian (Brasiliano-Panafrican) orogen. The COPC magmatism intruded tonalitic to granitic orthogneisses of the Rio Negro arc (∼790-600 Ma) and associated paragneisses of the São Fidelis Group. Post-collisional magmatism started ∼10 m.y. after the latest collisional event, the Buzios Orogeny, lasting discontinuously from ∼510 Ma until ∼470 Ma. The 15 largest intrusive bodies in Rio de Janeiro State are referred to in the literature as the Parati/Mangaratiba, Vila Dois Rios, Pedra Branca, Suruí, Silva Jardim, Favela, Andorinha, Teresópolis, Frade, Nova Friburgo, Conselheiro Paulino, São José do Ribeirão, Sana and Itaoca granites. They crop out as rounded/elliptical stocks or gently-dipping sheets, always with sharp contacts with the country rocks, along with pegmatite and aplitic veins and dykes. COPC granites are grey and pink undeformed medium-grained biotite monzogranites with (K-feldspar) porphyritic, mega-crystic, equigranular and serial textures. Magmatic flow foliation is frequently observed. Peripheric xenolith zones are common as well as isolated xenoliths from the country rocks. In a compilation of more than 100 chemical compositions, SiO2 contents display a major mode at 71wt%. The COPC magmatism generated high-K calc-alkaline granites and quartz monzonites with predominantly metaluminous granites. Meso to melanocratic gabbroic and dioritic enclaves also have calc-alkaline affinity and likely represent more resistant mafic xenoliths from the Rio Negro Arc.

  6. Fracture process zone in granite

    USGS Publications Warehouse

    Zang, A.; Wagner, F.C.; Stanchits, S.; Janssen, C.; Dresen, G.

    2000-01-01

    In uniaxial compression tests performed on Aue granite cores (diameter 50 mm, length 100 mm), a steel loading plate was used to induce the formation of a discrete shear fracture. A zone of distributed microcracks surrounds the tip of the propagating fracture. This process zone is imaged by locating acoustic emission events using 12 piezoceramic sensors attached to the samples. Propagation velocity of the process zone is varied by using the rate of acoustic emissions to control the applied axial force. The resulting velocities range from 2 mm/s in displacement-controlled tests to 2 ??m/s in tests controlled by acoustic emission rate. Wave velocities and amplitudes are monitored during fault formation. P waves transmitted through the approaching process zone show a drop in amplitude of 26 dB, and ultrasonic velocities are reduced by 10%. The width of the process zone is ???9 times the grain diameter inferred from acoustic data but is only 2 times the grain size from optical crack inspection. The process zone of fast propagating fractures is wider than for slow ones. The density of microcracks and acoustic emissions increases approaching the main fracture. Shear displacement scales linearly with fracture length. Fault plane solutions from acoustic events show similar orientation of nodal planes on both sides of the shear fracture. The ratio of the process zone width to the fault length in Aue granite ranges from 0.01 to 0.1 inferred from crack data and acoustic emissions, respectively. The fracture surface energy is estimated from microstructure analysis to be ???2 J. A lower bound estimate for the energy dissipated by acoustic events is 0.1 J. Copyright 2000 by the American Geophysical Union.

  7. Formation of halloysite from feldspar: Low temperature, artificial weathering versus natural weathering

    USGS Publications Warehouse

    Parham, W.E.

    1969-01-01

    Weathering products formed on surfaces of both potassium and plagioclase feldspar (An70), which were continuously leached in a Soxhlet extraction apparatus for 140 days with 7.21 of distilled water per day at a temperature of approximately 78 ??C, are morphologically identical to natural products developed on potassium feldspars weathered under conditions of good drainage in the humid tropics. The new products, which first appear as tiny bumps on the feldspar surface, start to develop mainly at exposed edges but also at apparently random sites on flat cleavage surfaces. As weathering continues, the bumps grow outward from the feldspar surface to form tapered projections, which then develop into wide-based thin films or sheets. The thin sheets of many projections merge laterally to form one continuous flame-shaped sheet. The sheets formed on potassium feldspars may then roll to form tubes that are inclined at a high angle to the feldspar surface. Etch pits of triangular outline on the artificially weathered potassium feldspars serve as sites for development of continuous, non-rolled, hollow tubes. It is inferred from its morphology that this weathering product is halloysite or its primitive form. The product of naturally weathered potassium feldspars is halloysite . 4H2O. The flame-shaped films or sheets formed on artificially weathered plagioclase feldspar do not develop into hollow tubes, but instead give rise to a platy mineral that is most probably boehmite. These plates form within the flame-shaped films, and with continued weathering are released as the film deteriorates. There is no indication from this experiment that platy pseudohexagonal kaolinite forms from any of these minerals under the initial stage of weathering. ?? 1969.

  8. K-Ca and Rb-Sr Dating of Lunar Granite 14321 Revisited

    NASA Technical Reports Server (NTRS)

    Simon, Justin I.; Shih, C.-Y.; Nyquist, L. E.

    2011-01-01

    K-Ca and Rb-Sr age determinations were made for a bulk feldspar-rich portion of an Apollo rock fragment of the pristine lunar granite clast (14321,1062), an acid-leached split of the sample, and the leachate. K-Ca and Rb-Sr data were also obtained for a whole rock sample of Apollo ferroan anorthosite (FAN, 15415). The recent detection [1] of widespread intermediate composition plagioclase indicates that the generation of a diversity of evolved lunar magmas maybe more common and therefore more important to our understanding of crust formation than previously believed. Our new data strengthen the K-Ca and Rb-Sr internal isochrons of the well-studied Apollo sample 14321 [2], which along with a renewed effort to study evolved lunar magmas will provide an improved understanding of the petrogenetic history of evolved rocks on the Moon.

  9. Feldspar diagenesis in the Frio Formation, Brazoria County, Texas Gulf Coast

    SciTech Connect

    Land, L.S.; Milliken, K.L.

    1981-07-01

    Tremendous quantities of detrital feldspar have been dissolved or albitized below about 14000 ft (4267 m) in the Frio Formation (Oligocene), Chocolate Bayou Field, Brazoria County, Texas. Some sandstones no longer contain any unmodified detrital feldspar grains. Material transfer involved in these reactions is immense, affecting at least 15% of the rock volume. Thus, albitization has important implications for several other diagenetic processes that involve feldspars or their components. These processes include formation of secondary porosity, precipitation of quartz and carbonate cements, and the evolution of Na-Ca-Cl formation water.

  10. Petrology and Li-Be-B geochemistry of muscovite-biotite granite and associated pegmatite near Yellowknife, Canada

    NASA Astrophysics Data System (ADS)

    Kretz, R.; Loop, J.; Hartree, R.

    1989-06-01

    Prosperous granite (Rb-Sr 2520±25 Ma) occurs as several plutons (1 380 km2 outcrop area) in a thick succession of metamorphosed greywacke-mudstone of the Yellowknife Supergroup. The average mineral content of the Sparrow pluton (in vol.%) is quartz (32), plagioclase (31), K-feldspar (24), muscovite (9), biotite (3), and apatite (<1). Average trace-element concentrations (in ppm) are Li (140), Be (4), B (28), Zn (47), Rb (250), Sr (76), Zr (75) and Ba (360). The central portion of the pluton is slightly richer in K, Sr, and Ba than the margin. Li is concentrated in mica (Li in biotite/Li in muscovite=4.7), and Be and B in muscovite and plagioclase. Countless pegmatite dikes occur in the Sparrow pluton and in schist-hornfels to the east; the outer limit is marked by the cordierite isograd, 9 km from the granite contact. Dikes vary greatly in size (1 km to a few cm in length), in mineral content (quartz, albite, K-feldspar, muscovite, tourmaline, beryl, spodumene), in major element composition (especially the Na∶K ratio), and in trace-element content (Li 18 5000 ppm, Be 5 260 ppm, B 20 150 ppm). Compared with Prosperous granite, the pegmatite bodies are richer in P and Rb, and poorer in Ti, Fe, Mg, Zr, and Ba. Dikes rich in tourmaline, beryl, and spodumene occur in overlapping zones situated progressively farther from the centre of the Sparrow pluton. The composition of tourmaline is related to host rock; the highest concentrations of Fe and Zn occur in crystals from pegmetite and the highest concentrations of Mg and V occur in crystals from tourmalinized schist, while those from granite and quartz veins occupy on intermediate position. Complex compositional zoning is present in some tourmaline crystals in pegmatite. Estimates of temperature (500° 600° C) and pressure (2 4 kb) of granite emplacement, based on the distribution of andalusite and sillimanite in the contact rocks, suggest that the final stage of granite emplacement occurred at sub-solidus conditions

  11. CO2 laser cutting of natural granite

    NASA Astrophysics Data System (ADS)

    Riveiro, A.; Mejías, A.; Soto, R.; Quintero, F.; del Val, J.; Boutinguiza, M.; Lusquiños, F.; Pardo, J.; Pou, J.

    2016-01-01

    Commercial black granite boards (trade name: "Zimbabwe black granite") 10 mm thick, were successfully cut by a 3.5 kW CO2 laser source. Cutting quality, in terms of kerf width and roughness of the cut wall, was assessed by means of statistically planned experiments. No chemical modification of the material in the cutting walls was detected by the laser beam action. Costs associated to the process were calculated, and the main factors affecting them were identified. Results reported here demonstrate that cutting granite boards could be a new application of CO2 laser cutting machines provided a supersonic nozzle is used.

  12. Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajás metallogenic province, Brazil

    NASA Astrophysics Data System (ADS)

    Dall'Agnol, Roberto; Teixeira, Nilson P.; Rämö, O. Tapani; Moura, Candido A. V.; Macambira, Moacir J. B.; de Oliveira, Davis C.

    2005-03-01

    Three Paleoproterozoic A-type rapakivi granite suites (Jamon, Serra dos Carajás, and Velho Guilherme) are found in the Carajás metallogenic province, eastern Amazonian craton. Liquidus temperatures in the 900-870 °C range characterize the Jamon suite, those for Serra dos Carajás and Velho Guilherme are somewhat lower. Pressures of emplacement decrease from Jamon (3.2±0.7 kbar) through Serra dos Carajás (2.0±1.0 kbar) to Velho Guilherme (1.0±0.5 kbar). Oxidizing conditions (NNO+0.5) characterized the crystallization of the Jamon magma, the Velho Guilherme magmas were reducing (marginally below FMQ), and the Serra dos Carajás magmas were intermediate between the two in this respect. The three granite suites have Archean T DM model ages and strongly negative ɛNd values (-12 to -8 at 1880 Ma), and they were derived from Archean crust. The Jamon granite suite may have been derived from a quartz dioritic source, and the Velho Guilherme granites from K-feldspar-bearing granitoid rocks with some sedimentary input. The Serra dos Carajás granites either had a somewhat more mafic source than Velho Guilherme or were derived by a larger degree of melting. Underplating of mafic magma was probably the heat source for the melting. The petrological and geochemical characteristics of the Carajás granite suites imply considerable compositional variation in the Archean of the eastern Amazonian craton. The oxidized Jamon suite granites are similar to the Mesoproterozoic magnetite-series granites of Laurentia, and they were derived from Archean igneous sources that were more oxidized than the sources of the Fennoscandian rapakivi granites. The Serra dos Carajás and Velho Guilherme granites approach the classic reduced rapakivi series of Fennoscandia and Laurentia. No counterparts of the Mesoproterozoic two-mica granites of Laurentia have been found, however. Following the model of Hoffman [Hoffman, P., 1989. Speculations on Laurentia's first gigayear (2.0 to 1.0 Ga

  13. Alkalis in Coal and Coal Cleaning Products / Alkalia W Węglu I Productach Jego Wzbogacania

    NASA Astrophysics Data System (ADS)

    Bytnar, Krzysztof; Burmistrz, Piotr

    2013-09-01

    In the coking process, the prevailing part of the alkalis contained in the coal charge goes to coke. The content of alkalis in coal (and also in coke) is determined mainly by the content of two elements: sodium and potasium. The presence of these elements in coal is connected with their occurrence in the mineral matter and moisture of coal. In the mineral matter and moisture of the coals used for the coke production determinable the content of sodium is 26.6 up to 62. per cent, whereas that of potassium is 37.1 up to 73.4 per cent of the total content of alkalis. Major carriers of alkalis are clay minerals. Occasionally alkalis are found in micas and feldspars. The fraction of alkalis contained in the moisture of the coal used for the production of coke in the total amount of alkalis contained there is 17.8 up to 62.0 per cent. The presence of sodium and potassium in the coal moisture is strictly connected with the presence of the chloride ions. The analysis of the water drained during process of the water-extracting from the flotoconcentrate showed that the Na to K mass ratio in the coal moisture is 20:1. Increased amount of the alkalis in the coal blends results in increased content of the alkalis in coke. This leads to the increase of the reactivity (CRI index), and to the decrease of strength (CSR index) determined with the Nippon Steel Co. method. W procesie koksowania przeważająca część zawartych we wsadzie węglowym alkaliów przechodzi do koksu. Zawartość alkaliów w węglu, a co za tym idzie i w koksie determinowana jest głównie zawartością dwóch pierwiastków: sodu i potasu. Obecność tych pierwiastków w węglu wiąże się z występowaniem ich w substancji mineralnej i wilgoci węgla. W substancji mineralnej oraz wilgoci węgli stosowanych do produkcji koksu, oznaczona zawartość sodu wynosi od 26.6 do 62.9%, a zawartość potasu od 37.1 do 73.4% alkaliów ogółem. Głównymi nośnikami alkaliów w substancji mineralnej są minera

  14. Potassium-argon dating of the cape granite and a granitized xenolith at sea point.

    PubMed

    Schreiner, G D; Basson, H H; Verbeek, A A

    1968-11-01

    Ages obtained by potassium-argon dating are reported for the total rock, light mineral fraction and heavy mineral fractions of the Cape Granite, and of a granitized xenolith derived from the Malmesbury sediments. These ages lie between 430 and 554 million years. The heavy mineral fractions from each rock type show the oldest age, 540 (granite) and 554 (xenolith) million years. These ages are interpreted as lower limits, and the granite age confirms the age of 553 million years found by rubidium-strontium dating. The coincidence of the ages of the different fractions of the granite and xenolith samples is discussed in the light of the different suggestions about the age of the Malmesbury sediments. The conclusion is reached that all pre-granitization history has been eliminated. The possibility of the use of argon retention as a measure of metamorphic activity is suggested. PMID:18960415

  15. Experimental studies of alunite: II. Rates of alunite-water alkali and isotope exchange

    USGS Publications Warehouse

    Stoffregen, R.E.; Rye, R.O.; Wasserman, M.D.

    1994-01-01

    Rates of alkali exchange between alunite and water have been measured in hydrothermal experiments of 1 hour to 259 days duration at 150 to 400??C. Examination of run products by scanning electron microscope indicates that the reaction takes place by dissolution-reprecipitation. This exchange is modeled with an empirical rate equation which assumes a linear decrease in mineral surface area with percent exchange (f) and a linear dependence of the rate on the square root of the affinity for the alkali exchange reaction. This equation provides a good fit of the experimental data for f = 17% to 90% and yields log rate constants which range from -6.25 moles alkali m-2s-1 at 400??C to - 11.7 moles alkali m-2s-1 at 200??C. The variation in these rates with temperature is given by the equation log k* = -8.17(1000/T(K)) + 5.54 (r2 = 0.987) which yields an activation energy of 37.4 ?? 1.5 kcal/mol. For comparison, data from O'Neil and Taylor (1967) and Merigoux (1968) modeled with a pseudo-second-order rate expression give an activation energy of 36.1 ?? 2.9 kcal/mol for alkali-feldspar water Na-K exchange. In the absence of coupled alkali exchange, oxygen isotope exchange between alunite and water also occurs by dissolution-reprecipitation but rates are one to three orders of magnitude lower than those for alkali exchange. In fine-grained alunites, significant D-H exchange occurs by hydrogen diffusion at temperatures as low as 100??C. Computed hydrogen diffusion coefficients range from -15.7 to -17.3 cm2s-1 and suggest that the activation energy for hydrogen diffusion may be as low as 6 kcal/mol. These experiments indicate that rates of alkali exchange in the relatively coarse-grained alunites typical of hydrothermal ore deposits are insignificant, and support the reliability of K-Ar age data from such samples. However, the fine-grained alunites typical of low temperature settings may be susceptible to limited alkali exchange at surficial conditions which could cause

  16. Amplitude-Frequency Analysis of Signals of Acoustic Emission from Granite Fractured at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Shcherbakov, I. P.; Chmel‧, A. E.

    2015-05-01

    The problem of stability of underground structures serving to store radioactive waste, to gasify carbon, and to utilize geothermal energy is associated with the action of elevated temperatures and pressures. The acoustic-emission method makes it possible to monitor the accumulation of microcracks arising in stress fields of both thermal and mechanical origin. In this report, the authors give results of a laboratory investigation into the acoustic emission from granite subjected to impact fracture at temperatures of up to 600°C. An amplitude-frequency analysis of acousticemission signals has enabled the authors to evaluate the dimension of the arising microcracks and to determine their character (intergranular or intragranular). It has been shown that intergranular faults on the boundaries between identical minerals predominate at room temperature (purely mechanical action); at a temperature of 300°C (impact plus thermoelastic stresses), there also appear cracks on the quartz-feldspar boundaries; finally, at temperatures of 500-600°C, it is intragranular faults that predominate in feldspar. The dimensions of the above three types of microcracks are approximately 2, 0.8, and 0.3 mm respectively.

  17. Hydrothermal alkali metal catalyst recovery process

    DOEpatents

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  18. Feldspar-Bearing Igneous Rocks at Gale: A ChemCam Campaign

    NASA Astrophysics Data System (ADS)

    Sautter, V.; Fabre, C.; Toplis, M.; Wiens, R. C.; Gasnault, O.; Forni, O.; Mangold, N.

    2014-09-01

    We present the first in situ evidences of feldspar-rich rocks ranging from granodioritic and alkalin effusive rocks (trachy basalts and syenitic liquids). Implication for primitive noachain crust will be discussed.

  19. Authigenic potassium feldspar in Cambrian carbonates: Evidence of Alleghanian brine migration

    USGS Publications Warehouse

    Hearn, P.P., Jr.; Sutter, J.F.

    1985-01-01

    The shallow-water limestones and dolostones of the Conococheague Limestone (Upper Cambrian) of western Maryland contain large amounts of authigenic potassium feldspar. The presence of halite daughter crystals in breached fluid inclusions, low whole-rock ratios of chlorine to bromine, and thermochemical data suggest that the potassium feldspar formed at low temperature by the reaction of connate brines with intercalated siliciclastic debris. Analyses of argon age spectra indicate that the authigenic feldspar probably formed during Late Pennsylvanian to Early Permian time. These results may indicate mobilization and migration of connate brines brought about by Alleghanian folding. The widespread occurrence of authigenic potassium feldspar in Cambrian and Ordovician carbonate rocks throughout the Appalachians suggests that this may have occurred throughout the entire basin.

  20. AMS studies in Portuguese variscan granites

    NASA Astrophysics Data System (ADS)

    Sant'Ovaia, Helena; Martins, Helena; Noronha, Fernando

    2014-05-01

    A large volume of Variscan granitic rocks outcrop in Central Iberian Zone which are well documented concerning geological mapping, petrography and geochemistry but whose magnetic characteristics and fabric remain unknown. In this study we summarize the available AMS data from approximately 644 sampling stations (5152 samples) on different massifs of Variscan Portuguese granites. Despite their different geological, petrographic and geochemical characteristics, magnetic susceptibility (K) values obtained for the majority of the studied granites range from 15 to 300 × 10-6 SI. The dominant paramagnetic behaviour of the granite bodies reflects the presence of ilmenite as the main iron oxide. This feature indicates the reduced conditions involved in the granite melt formation during the Variscan orogeny. The two-mica granites show K values ranging between 15 to 70 × 10-6 SI which are lower than values displayed by the biotite-rich facies scattered within the interval of 70 and 300 × 10-6 SI. The magnetite-bearing granites are scarce but represented in Lavadores, Gerês and Manteigas. Even so, only the Lavadores body could be considered as a true magnetite-type granite (K >3.0 × 10-3 SI) in face of its K, comprised between 1550 and 19303 × 10-6 SI. Magnetic anisotropy can be used as a "marker" for the deformation experienced by granite mushes during their crustal emplacement and further cooling. Magnetic anisotropy can thus be correlated with the finite deformation of a rock, as record by mineral fabrics. Post-tectonic granites, such as those from Vila Pouca de Aguiar, Pedras Salgadas, Caria, Vila da Ponte, Chaves and Lamas de Olo, have a magnetic anisotropy <2.5% which corresponds to a deformation hardly visible to the naked eye. Nevertheless, at microscopic scale, these granites display almost ubiquitous magmatic to submagmatic microstructures (rare wavy extinction in quartz, erratic subgrain boundaries in quartz and, eventually, folded or kinked biotites). For

  1. Evidence for Coordination and Redox Changes of Iron in Shocked Feldspar from Synchrotron MicroXANES

    NASA Technical Reports Server (NTRS)

    Delaney, J. S.; Dyar, M. D.; Hoerz, F.; Johnson, J. R.

    2003-01-01

    Shock modification of feldspar has been documented and experimentally reproduced in many studies since the recognition of maskelynite in Shergotty. Experimentally shocked feldspar samples have been well studied using chemical and crystallographic techniques. The crystallographic, site-specific characterization of major and minor elements is less well documented. We present early x-ray absorption (XAS) spectral data for a suite of albitite samples that were experimentally shocked at pressures between 17 and 50 Gpa.

  2. Feldspar concentrations in lower Cambrian limestones of the Moroccan Atlas: Pyroclastic vs authigenic processes

    NASA Astrophysics Data System (ADS)

    Álvaro, J. Javier; Bauluz, Blanca

    2008-02-01

    Carbonate strata containing abundant euhedral feldspar, usually considered as authigenic, are characteristic of some lower Cambrian exposures in the Atlas Mountains, Morocco. Impure limestones are abundant in the Issendalenian Amouslek Formation of the western Anti-Atlas, and in the Banian Lemdad Formation of the southern High Atlas. Some of their limestone beds contain up to 40% acid insoluble residue, of which feldspar comprises as much as 65% in some samples, the remainder consisting of detrital and authigenic quartz, apatite, pyrite, and clay minerals. The host limestones are bioclastic tempestites, ooidal-oncoidal-bioclastic shoal complexes, archaeocyathan-microbial peri-reef settings (mainly flanks but not reef cores), and microbial reefs. A volcanic origin is adopted for the feldspars based on: (i) fluctuations in feldspar concentration paralleling bedding, but unrelated to host-facies (except for the aforementioned archaeocyathan-microbial reef cores that were controlled by turbidity); (ii) the local association with glassy fragments (with feldspars embedded in glass shards); and (iii) the scattered occurrence of gradational lithofacies from silty tuff to tuffitic limestone. The mineral and chemical composition of the host-rock and diagenetic fluids was the determining factor for the kind of feldspar preservation. Although the primary type of K-feldspar replacement is albitization, secondary albite subsequently suffered from illitization, chloritization, and/or replacement by calcite. A direct implication of this work is the possible geochronological dating of both volcanic eruptions and archaeocyath- and trilobite-bearing host-rocks based on radiometric analyses within unaltered K-feldspar pyroclasts extracted after etching.

  3. Neutrons and Granite: Transport and Activation

    SciTech Connect

    Bedrossian, P J

    2004-04-13

    In typical ground materials, both energy deposition and radionuclide production by energetic neutrons vary with the incident particle energy in a non-monotonic way. We describe the overall balance of nuclear reactions involving neutrons impinging on granite to demonstrate these energy-dependencies. While granite is a useful surrogate for a broad range of soil and rock types, the incorporation of small amounts of water (hydrogen) does alter the balance of nuclear reactions.

  4. Granite Exfoliation, Cosumnes River Watershed, Somerset, California

    NASA Astrophysics Data System (ADS)

    Crockett, I. Q.; Neiss-Cortez, M.

    2015-12-01

    In the Sierra Nevada foothills of California there are many exposed granite plutons within the greater Sierra Nevada batholith. As with most exposed parts of the batholith, these granite slabs exfoliate. It is important to understand exfoliation for issues of public safety as it can cause rock slides near homes, roads, and recreation areas. Through observation, measuring, and mapping we characterize exfoliation in our Cosumnes River watershed community.

  5. Les Granites des Complexes Annulaires

    NASA Astrophysics Data System (ADS)

    Bowden, Peter

    This book, Manual and Methods 4, published by France's BRGM, together with a mouthwatering preface by R. Black promises much for the student of ring complexes. It consists of four distinct chapters, each divided into a number of subsections, with 52 text figures and 9 tables. Although in reality it is based on a doctoral dissertation concerned with the newly discovered ring structures in Corsica, it is spiced with references to past and present research in Nigeria, and observations from French expeditions to the Kerguelen Islands. There are also brief commentaries on the author's observations in New Hampshire and Massachusetts. The text effectively represents a distillation of knowledge concerned with oversaturated alkaline magmatism in continental and oceanic settings. The book has a good bibliography with English-language scientific literature references up to 1980. While aware that ring-complex compositions can be variable, ranging from calc-alkaline to alkaline, the author restricts his writings to granitic and related rocks of the alkaline and peralkaline spectrum.

  6. Composition, age, and origin of the ~620 Ma Humr Akarim and Humrat Mukbid A-type granites: no evidence for pre-Neoproterozoic basement in the Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Ali, Kamal A.; Moghazi, Abdel-Kader M.; Maurice, Ayman E.; Omar, Sayed A.; Wang, Qiang; Wilde, Simon A.; Moussa, Ewais M.; Manton, William I.; Stern, Robert J.

    2012-10-01

    The Humr Akarim and Humrat Mukbid plutons, in the central Eastern Desert of Egypt, are late Neoproterozoic post-collisional alkaline A-type granites. Humr Akarim and Humrat Mukbid plutonic rocks consist of subsolvus alkali granites and a subordinate roof facies of albite granite, which hosts greisen and Sn-Mo-mineralized quartz veins; textural and field evidence strongly suggest the presence of late magmatic F-rich fluids. The granites are Si-alkali rich, Mg-Ca-Ti poor with high Rb/Sr (20-123), and low K/Rb (27-65). They are enriched in high field strength elements (e.g., Nb, Ta, Zr, Y, U, Th) and heavy rare earth elements (La n /Yb n = 0.27-0.95) and exhibit significant tetrad effects in REE patterns. These geochemical attributes indicate that granite trace element distribution was controlled by crystal fractionation as well as interaction with fluorine-rich magmatic fluids. U-Pb SHRIMP zircon dating indicates an age of ~630-620 Ma but with abundant evidence that zircons were affected by late corrosive fluids (e.g., discordance, high common Pb). ɛNd at 620 Ma ranges from +3.4 to +6.8 (mean = +5.0) for Humr Akarim granitic rocks and from +4.8 to +7.5 (mean = +5.8) for Humrat Mukbid granitic rocks. Some slightly older zircons (~740 Ma, 703 Ma) may have been inherited from older granites in the region. Our U-Pb zircon data and Nd isotope results indicate a juvenile magma source of Neoproterozoic age like that responsible for forming most other ANS crust and refute previous conclusions that pre-Neoproterozoic continental crust was involved in the generation of the studied granites.

  7. Temporal evolution of granitic magmas in the Luanchuan metallogenic belt, east Qinling Orogen, central China: Implications for Mo metallogenesis

    NASA Astrophysics Data System (ADS)

    Li, Dong; Han, Jiangwei; Zhang, Shouting; Yan, Changhai; Cao, Huawen; Song, Yaowu

    2015-11-01

    The Luanchuan metallogenic belt, located within the eastern part of the Qinling Orogen, central China, hosts a number of world-class Mo deposits that are closely related to small late Mesozoic granitic plutons. Zircon U-Pb dating of distinct plutons in the Luanchuan metallogenic belt has yielded ages of 153 ± 1, 154 ± 2, 152 ± 2, and 148 ± 1 Ma. Molybdenite Re-Os isotopic compositions of Yuku ore district in the southern part of Luanchuan metallogenic belt has yielded an isochron age of 146 ± 1 Ma, which is consistent with the large-scale mineralization ages in the northern part of the Luanchuan metallogenic belt. A combination of previous studies and new geochronological and isotopic data show a concordant temporal and genetic link between granitic magmatism and Mo mineralization in the Luanchuan metallogenic belt, suggesting that this mineralization episode formed the most extensive Mo mineralization belt in the east Qinling Orogen. Zircon grains from Mo-related granitic plutons show similar trace element distributions. High-precision Multi Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS) Pb isotope analysis of K-feldspar megacrysts from mineralization-related granites suggest that they were derived from the lower crust. Similarly, the Pb isotopic compositions of pyrite coprecipitated with molybdenite also suggest that the metals were derived form the lower crust, with probably minor mantle contribution. A continuum mineralization model that describes the sourcing of Mo from an evolving granitic magma over successive differentiation events, possibly in separate but connected magma chambers, could explain the remarkable Mo enrichment in the Luanchuan metallogenic belt. The volatile- and Mo-bearing granitic magmas ascended as diapirs from the deep crust, and were emplaced as dikes in the upper crust. Lithological differences between these Mo-bearing granites may relate to different stages in the evolution of individual magmas. Finally, ore

  8. Correlation between magnetic fabrics, strain and biotite microstructure with increasing mylonitisation in the pretectonic Wyangala Granite, Australia

    NASA Astrophysics Data System (ADS)

    Lennox, P. G.; de Wall, H.; Durney, D. W.

    2016-04-01

    The Wyangala Granite is a foliated, porphyritic Silurian granite from the Palaeozoic Circum-Pacific type Eastern Lachlan Orogen (ELO) of Australia. It is a paramagnetic ilmenite-bearing, S/marginal I type two-mica- to mainly biotite-granite with different biotite contents and local chlorite alteration. Very highly strained quartz-epidote bands are present. In this contribution, anisotropy of magnetic susceptibility (AMS) is compared with independently measured intensity and 3D style of strain, biotite microstructure and degree of mylonitisation for low-strain granites with weak S-foliations, through medium-strain protomylonitic granites with moderate S- and C-foliations to a high-strain altered granite with a strong single foliation. The samples are further analysed for possible contributions from sample heterogeneity, magmatic flow and 'sub-magmatic' deformation. A good correlation, P‧AMS ~ 1.02 + 0.04 ln P‧(e)Qtz, is obtained between site-average degree of AMS (P‧AMS) in the granite and degree of finite-strain anisotropy (P‧(e)Qtz) from aspect ratios of quartz aggregates in S-foliations in hand specimen and outcrop (P‧AMS 1.03-1.14, P‧(e)Qtz 1.4-19). The magnetic fabric ellipsoids agree with a kinematic regime between neutral and pure oblate predicted by the March model. The observed quartz strains, however, exceed the AMS March strains and are near neutral, plano-linear character. The geological factors that may have contributed to these differences include intra- and inter-crystalline deformation of biotite and bimodality in S and C. Magmatic fabric is not clearly evident in either the AMS or the biotite data. New data for synkinematic oligoclase, low-titanium biotite and low-sodium K-feldspar show that conditions during deformation were approximately transitional greenschist-amphibolite facies: i.e., well below solidus. This agrees with published age data that put the granite emplacement in an extensional, back-arc setting in already deformed

  9. Granite, gabbro and mafic microgranular enclaves in the Gejiu area, Yunnan Province, China: a case of two-stage mixing of crust- and mantle-derived magmas

    NASA Astrophysics Data System (ADS)

    Cheng, Yanbo; Spandler, Carl; Mao, Jingwen; Rusk, Brian G.

    2012-10-01

    Geochronological, geochemical, whole-rock Sr-Nd, and zircon Hf isotopic analyses were carried out on the Jiasha Gabbro, mafic microgranular enclaves (MME) and host Longchahe Granite samples from the Gejiu area in the southeast Yunnan province, SW China, with the aim of characterizing their petrogenesis. Compositional zoning is evident in the gabbro body as the cumulate textures and mineral proportions in the gabbro interior are distinct from the gabbro margin. The Longchahe Granite largely comprises metaluminous quartz monzonite with distinctive K-feldspar megacrysts, but also contains a minor component of peraluminous leucogranite. The MME have spheroidal to elongated/lenticular shapes with sharp, crenulated and occasionally diffuse contacts with the host granite, which we attribute to the undercooling and disaggregation of mafic magma globules within the cooler host felsic magma. Field observations, geochronology, geochemistry, Sr-Nd and zircon Hf isotopic compositions point to a complex petrogenesis for this granite-MME-gabbro association. Zircon 206Pb/238U ages determined by LA-ICP-MS for a mafic enclave, its host granite and the gabbro body are 83.1 ± 0.9 Ma, 83.1 ± 0.4 Ma and 83.2 ± 0.4 Ma, respectively, indicating coeval crystallization of these igneous rock units. Crystal fractionation processes can explain much of the compositional diversity of the Jiasha Gabbro. The geochemical features of the gabbro, such as high Mg# (up to 70) and Cr (up to 327 ppm), enrichment in LILEs (e.g., Rb, Ba, K2O) and LREEs, and depletion in HFSE (e.g., Nb, Ta, Ti), together with initial 87Sr/86Sr ratios of 0.708-0.709 and negative ɛNd(t) values (-5.23 to -6.45), indicate they were derived from a mantle source that had undergone previous enrichment, possibly by subduction components. The Longchahe Granite has a large range of SiO2 (59.87-74.94 wt%), is distinctly alkaline in composition, and has Sr-Nd-Hf isotopic compositions ((87Sr/86Sr)i > 0.712, ɛNd(t) = -6.93 to -7

  10. The mineralogy and geochemistry of quartz-tourmaline schlieren in the granites of the Primorsky Complex, Western Baikal Region

    NASA Astrophysics Data System (ADS)

    Savel'eva, V. B.; Bazarova, E. P.; Kanakin, S. V.

    2014-12-01

    Quartz-tourmaline schlieren have been found within rapakivi-like granites of the Early Proterozoic Primorsky Complex in the Western Baikal Region. These rocks are biotite leucogranites with normal alkalinity (A/CNK = 1.00-1.04); a high iron mole fraction (92-95%); a K2O/Na2O value of about 2.0; relatively high F, Li, Rb, Cs, Sn, Pb, Th, and U contents; and low Ba, Sr, Eu, Zn, Sc, and V contents. The schlieren composed of quartz and tourmaline with relics of feldspar also contain fluorite, rare muscovite, chlorite, and accessory rutile, ilmenite, zircon, monazite, xenotime, and bastnäsite. B2O3 and F contents in the schlieren are 2.29-2.63 and 0.30-0.47 wt %, respectively. Fe2O3 (4.8-5.4 wt %), F, and H2O contents are higher in these schlieren than in the host granite, while SiO2, CaO, Na2O, K2O, and P2O5 contents are lower than in host rocks. K2O/Na2O values decrease in the schlieren down to 0.4. Enrichment of the schlieren in Fe and other ore elements (Zn, Co, Cu, Sn, etc.), together with B, F, H2O, and Na, suggests that they crystallized from fluid-saturated melt segregated from aluminosilicate melt in the apical part of a shallow-seated intrusion. The formation of tourmaline may be related to the interaction of the fluid with feldspars in the crystallizing granites; it was accompanied by a separation of fluid F-CO2. Quartz precipitated at the next stage, due to the acidic character of the aqueous fluid. In general, the relationships of minerals in the schlieren indicate distinct fractionation of LREE, HREE, and Y in the fluid-saturated melt.

  11. Natural radionuclide concentrations in granite rocks in Aswan and Central-Southern Eastern Desert, Egypt and their radiological implications.

    PubMed

    Issa, Shams A M; Uosif, M A M; Abd el-Salam, L M

    2012-07-01

    Different types of granites, used extensively in local construction, were collected from five localities in Egypt, namely: Abu Ziran (Central Eastern Desert), Gabal El Maesala (Aswan) and three areas from Wadi Allaqi, (Gabal Abu Marw, Gabal Haumor and Gabal um Shalman), in the South Eastern Desert. Granite samples were studied radiologically, petrographically and geochemically. The contents of natural radionuclides ((226)Ra, (232)Th and (40)K) were measured in investigated samples by using gamma spectrometry [NaI (Tl) 3'×3']. The activity concentrations of (226)Ra, (232)Th and (40)K in the selected granite samples ranged from 9±0.5 to 111±7, 8±1 to 75±4 and 100±6 to 790±40 Bq kg(-1), respectively. The external hazard index (H(ex)), absorbed dose and annual effective dose rate were evaluated to assess the radiation hazard for people living in dwellings made of the materials studied. The calculated radium equivalents were lower than the values recommended for construction materials (370 Bq kg(-1)). The excess lifetime cancer risks were also calculated. Petrographically, the granites studied are varied in the form of potash-feldspar, quartz, plagioclase, mica and hornblende. The accessory minerals are zircon, apatite and allanite. Geochemically, the chemical composition of the granite is studied especially for major oxides. They are characterized to have SiO(2), K(2)O, Na(2)O and Al(2)O(3) with depletion in CaO, MgO, TiO(2) and P(2)O(5). PMID:22147926

  12. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    DOEpatents

    Joshi, Ashok V.; Balagopal, Shekar; Pendelton, Justin

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  13. Hydrothermal fluids responsible for the formation of precious minerals in the Nigerian Younger Granite Province

    NASA Astrophysics Data System (ADS)

    Abaa, S. I.

    1991-04-01

    Preliminary investigations in the Younger Granite Province of Nigeria have revealed that precious and semi-precious minerals like rubies, sapphires, emeralds, aquamarine, zircon and fluorite can be found in the region. The gem minerals are shown to have been produced either by direct deposition along fissures, veins and greisens by hydrothermal fluids or as a result of hydrothermal fluids reacting with wall-rocks. These wall rocks are either biotite granites from which the hydrothermal fluids originated or basement rocks or any other rocks which the biotite granites intrude and their residual hydrothermal fluids have invaded. The hydrothermal fluids appear to have been rich in alkalis (Na+, K+, etc.), rare elements (Be, Zr, F, REE, etc.) and siliceous. As these fluids rose through fractures and channel ways through the rocks, they either deposited the gem minerals in the fractures at the appropriate stability conditions or reacted with the wall-rocks producing the gem minerals at the expense of elements like Ca and A1 in the minerals of these rocks.

  14. The calcium-alkali syndrome.

    PubMed

    Arroyo, Mariangeli; Fenves, Andrew Z; Emmett, Michael

    2013-04-01

    The milk-alkali syndrome was a common cause of hypercalcemia, metabolic alkalosis, and renal failure in the early 20th century. It was caused by the ingestion of large quantities of milk and absorbable alkali to treat peptic ulcer disease. The syndrome virtually vanished after introduction of histamine-2 blockers and proton pump inhibitors. More recently, a similar condition called the calcium-alkali syndrome has emerged as a common cause of hypercalcemia and alkalosis. It is usually caused by the ingestion of large amounts of calcium carbonate salts to prevent or treat osteoporosis and dyspepsia. We describe a 78-year-old woman who presented with weakness, malaise, and confusion. She was found to have hypercalcemia, acute renal failure, and metabolic alkalosis. Upon further questioning, she reported use of large amounts of calcium carbonate tablets to treat recent heartburn symptoms. Calcium supplements were discontinued, and she was treated with intravenous normal saline. After 5 days, the calcium and bicarbonate levels normalized and renal function returned to baseline. In this article, we review the pathogenesis of the calcium-alkali syndrome as well as the differences between the traditional and modern syndromes. PMID:23543983

  15. The geochemistry of phosphorus in granite rocks and the effect of aluminium

    NASA Astrophysics Data System (ADS)

    Bea, F.; Fershtater, G.; Corretgé, L. G.

    1992-12-01

    Phosphorus has been shown to have a profound influence on the evolution of silicate melt systems. It also controls the geochemical behavior of rare earths, uranium, thorium, strontium and other elements through the relationships between melt and accessory phosphates. Based on experimental data, Harrison and Watson (1984) proposed a model of saturation behavior of apatite in crustal melts as a function of temperature and silica content. Subaluminous granites fit in well with such a model, but departures are evident in the case of peraluminous granites. A systematic study of the distribution of P 2O 5 in granitoids from all over the world shows that there are two modes to describe phosphorus enrichment in peraluminous granitic rocks: (1) The Hoyos-type trend, which is parallel to the one in Harrison and Watson's (HW) model but with higher P 2O 5 concentrations at the same silica contents and (2) The Pedrobernardo-type trend, implying an increase in phosphorus in the most SiO 2-rich differentiates of strongly peraluminous, low-Ca granites. Pedrobernardo-type leucogranites are characterized by the presence of rare phosphates or P-rich feld-spars. Since they have excess P 2O 5 over CaO to form normative apatite, we here propose the term "perphosphorous granites". High phosphorus contents appear to be due to elevated apatite solubility in peraluminous granitic melts rather than to high amounts of restitic apatite. Both the Hoyos- and Pedrobernardo-type departures from the HW model can be "corrected" by using the expression: P 2O 5corrected = P 2O 5HW × efactor, where P 2O 5HW is the prediction according to the HW model, and "factor" is (ASI-1) × ( {6429}/{T}) , ASI being the {Al 2O 3}/{(CaO+Na 2O+K 2O) } molar ratio. We suggest that such departures could be caused by a decrease in the Ca activity in the melt as a result of increased peraluminousity. The Pedrobernardo-type trend is a limiting case in which Ca-activity in the melt is nearly zero and calcium, instead of

  16. Microcracking in impact-damaged granites heated up to 600 °C

    NASA Astrophysics Data System (ADS)

    Chmel, Alexandre; Shcherbakov, Igor'

    2015-06-01

    The acoustic emission (AE) technique was applied for monitoring the high-speed cracking process in three kinds of impact-damaged granites at temperatures 20 °C to 600 °C. The analysis of the amplitude-frequency response of the AE time series showed the presence of a few populations of cracks differing in size in the range 0.25 mm to 2.3 mm. The dependence of the appearance/growth/decay of any given population on temperature and physical and mechanical properties of granites evidenced the interplay between inter- and intragranular cracking under various thermal conditions. At room temperature (pure mechanical forcing), the intergranular damages along boundaries between the same minerals prevail; at 200 °C (impact forcing plus thermoelastic stress), the cracking between grains of quartz and feldspar emerge; finally, in the range 500 °C to 600 °C, the intragranular damages appear.

  17. Late Permian to Early Oligocene granitic magmatism of the Phan Si Pan uplift area, NW Vietnam: their relationship to Phanerozoic crustal evolution of Southwest China

    NASA Astrophysics Data System (ADS)

    Pham, T. T.; Shellnutt, G.

    2015-12-01

    The Phan Si Pan uplift area of NW Vietnam is a part of the Archean to Paleoproterozoic Yangtze Block, Southwest China. This area is of particular interest because it experienced a number of Phanerozoic crustal building events including the Emeishan Large Igneous Province, the India-Eurasia collision and Ailaoshan - Red River Fault displacement. In the Phan Si Pan uplift area, there are at least three different geochronological complexes, including: (1) Late Permian, (2) Eocene and (3) Early Oligocene. (1) The Late Permian silicic rocks are alkali ferroan A1-type granitic rocks with U/Pb ages of 251 ± 3 to 254 ± 3 Ma. The Late Permian silicic rocks of Phan Si Pan uplift area intrude the upper to middle crust and are considered to be part of the ELIP that was displaced during the India-Eurasian collision along the Ailaoshan-Red River Fault shear zone and adjacent structures (i.e. Song Da zone). Previous studies suggest the Late Permian granitic rocks were derived by fractional crystallization of high - Ti basaltic magma. (2) The Eocene rocks are alkali ferroan A1-type granites (U/Pb ages 49 ± 0.9 Ma) and are spatially associated with the Late Permian granitic rocks. The trace element ratios of this granite are similar to the Late Permian rocks (Th/Nb=0.2, Th/Ta = 2.5, Nb/U = 24, Nb/La =1.2, Sr/Y=1). The origin of the Eocene granite is uncertain but it is possible that it formed by fractional crystallization of a mafic magma during a period of extension within the Yangtze Block around the time of the India-Eurasia collision. (3) The Early Oligocene granite is characterized as a peraluminous within-plate granite with U/Pb ages of 31.3 ± 0.4 to 34 ± 1 Ma. The Early Oligocene granite has trace element ratios (Th/Nb = 2.1, Th/Ta = 22.6, Nb/U = 4.4, Nb/La = 0.4, Sr/Y = 60.4) similar to crust melts. The high Sr/Y ratio (Sr/Y = 20 - 205) indicates a lower crust source that was garnet-bearing. The Phan Si Pan uplift was neither a subduction zone nor an arc environment

  18. Nature and origin of authigenic K-feldspar in Precambrian basement rocks of the North American midcontinent

    SciTech Connect

    Duffin, M.E. )

    1989-08-01

    Authigenic K-feldspar occurs in alteration profiles in uppermost Precambrian igneous and metamorphic basement rocks of the midcontinent. The K-feldspar is widespread and has been identified in six states. The profiles occur directly below the Cambrian-Precambrian unconformity and range from about <1 to 8 m in thickness. Authigenic K-feldspar occurs throughout the profile. The K-feldspar is monoclinic or triclinic by X-ray diffraction, of end-member composition, and may compose 63% of rock volume. Much of the K-feldspar formed by replacement of primary feldspar. A sample of wholly authigenic K-feldspar from altered basement in southern Illinois gives a K/Ar data of 549 {plus minus} 18 Ma (Early Cambrian). This data is in agreement with Early Cambrian Rb/Sr dates for potassic alteration of uppermost Precambrian basement in Ohio. Dated authigenic K-feldspars from both Ohio and Illinois give identical {delta}{sup 18}O values of 17.5, suggesting formation from a very similar fluid. Concordancy of both dates and {delta}{sup 18}O values suggests that the K-feldspar formed during an episode of potassic alteration during Early Cambrian time that affected much of midcontinent North America. The dates and {delta}{sup 18}O values for K-feldspar, when considered together, do not fit any of the hypotheses presented here.

  19. In situ zircon U-Pb and Hf-O isotopic results for ca. 73 Ma granite in Hainan Island: Implications for the termination of an Andean-type active continental margin in southeast China

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Yan; Li, Xian-Hua

    2014-03-01

    We report in the paper integrated analyses of in situ zircon U-Pb ages, Hf-O isotopes, whole-rock geochemistry and Sr-Nd isotopes for the Longlou granite in northern Hainan Island, southeast China. SIMS zircon U-Pb dating results yield a crystallization age of ˜73 Ma for the Longlou granite, which is the youngest granite recognized in southeast China. The granite rocks are characterized by high SiO2 and K2O, weakly peraluminous (A/CNK = 1.04-1.10), depletion in Sr, Ba and high field strength elements (HFSE) and enrichment in LREE and large ion lithophile elements (LILE). Chemical variations of the granite are dominated by fractional crystallization of feldspar, biotite, Ti-Fe oxides and apatite. Their whole-rock initial 87Sr/86Sr ratios (0.7073-0.7107) and ɛNd(t) (-4.6 to -6.6) and zircon ɛHf(t) (-5.0 to 0.8) values are broadly consistent with those of the Late Mesozoic granites in southeast China coast. Zircon δ18O values of 6.9-8.3‰ suggest insignificant involvement of supracrustal materials in the granites. These granites are likely generated by partial melting of medium- to high-K basaltic rocks in an active continental margin related to subduction of the Pacific plate. The ca. 73 Ma Longlou granite is broadly coeval with the Campanian (ca. 80-70 Ma) granitoid rocks in southwest Japan and South Korea, indicating that they might be formed along a common Andean-type active continental margin of east-southeast Asia. Tectonic transition from the Andean-type to the West Pacific-type continental margin of southeast China likely took place at ca.70 Ma, rather than ca. 90-85 Ma as previously thought.

  20. "Petit Granit": a Belgian limestone used in heritage, construction and sculpture.

    NASA Astrophysics Data System (ADS)

    Pereira, Dolores; Touneur, Francis; Bernáldez, Lorenzo; García Blázguez, Ana

    2014-05-01

    "Petit Granit" is a Lower Carboniferous (Tournaisian) grey-bluish crinoidal limestone that becomes shiny black when polished. The rock is known under several other names like Pierre Bleue (Blue Stone), but at the same time it should not be confused with other natural stones having a similar commercial name (e.g. Chinese Bluestone or Irish Bluestone) which are superficially similar limestones. It consists of around 96% microcrystalline calcite and a high proportion of fossils, mainly crinoids. In addition some dolomite, quartz, pyrite, marcasite and fluorite are present. Around fifteen quarries are active these days, employing almost one thousand people and thus is an important part of the natural stone economy in Belgium. "Petit Granit" has an Appellation d'Origine Locale (Local Appellation of Origin) designation since 1999. It has been extracted in several regions of South Belgium since the Middle Ages. In a sense the name is misleading because it is not an igneous rock and therefore not a true granite, but it derives from the profusion of numerous white fossil fragments in a dark carbonaceous matrix which look similar to feldspar crystals in a granitic background. The stone characterizes many façades of the urban architecture of Brussels and other Belgian cities, and since the second half of the 19th century it has been used in various countries in Europe and overseas. Its high density and uniformity mean that it takes an excellent polish and thus has versatile use as a dimension stone. "Petit Granit" has also been used widely in sculpture and architecture by several well known artists (e.g. Mateo Hernández, Michel Smolders, Tom Blatt, Elise Delbrassinne, Benoît Luyckx, Santiago Calatrava, among others). However, deterioration has been observed when it has been used for exterior purposes, and appropriate measures need to be taken to prevent this. This stone can be considered as Global Heritage Stone Resource in Europe, for both its use in construction and for

  1. Thorite in an Apollo 12 granite fragment and age determination using the electron microprobe

    NASA Astrophysics Data System (ADS)

    Seddio, Stephen M.; Jolliff, Bradley L.; Korotev, Randy L.; Carpenter, Paul K.

    2014-06-01

    We present the first quantitative compositional analysis of thorite in a lunar sample. The sample, a granitic assemblage, also contains monazite and yttrobetafite grains, all with concentrations of U, Th, and Pb sufficiently high to determine reliably with the electron microprobe. The assemblage represents the first documented occurrence of these three minerals together and only the second reported occurrence of thorite in a lunar rock. Sample 12023,147-10 is a small, monomict rock fragment recovered from an Apollo 12 regolith sample. It comprises graphic intergrowths of K-feldspar and quartz, and plagioclase and quartz, along with minor or accessory hedenbergite, fayalite, ilmenite, zircon, yttrobetafite, thorite, monazite, and Fe metal. Thorite, ideally ThSiO4, occurs in the assemblage adjacent to quartz and plagioclase, and includes a 12% xenotime ([Y,HREE]PO4) component. From quantitative electron-probe microanalysis (EPMA) of Th, U, and Pb in thorite, assuming that all of the measured Pb is radiogenic, we calculate an age of 3.87 ± 0.03 Ga. Yttrobetafite and monazite, which contain lesser concentrations of U, Th, and Pb than the thorite, yield ages of 3.78 ± 0.06 Ga and 3.9 ± 0.3 Ga, respectively. These dates are consistent with formation of the granitic material around 3.8-3.9 Ga, possibly associated with, or after, the formation of the Imbrium basin. This age falls within a group of younger ages for granitic samples, measured mainly by ion microprobe analysis of zircon, compared to a suite of older ages, ca. 4.20-4.32 Ga, also from zircons (Meyer et al., 1996). A 3.8-3.9 Ga age may reflect an origin following the Imbrium event whereby granitic melt formed as a result of heating and melting, and was mobilized and emplaced along an Imbrium-related ring-fracture system. Silicic volcanic or exposed intrusive materials occur in several circum-Imbrium locations such as the Mairan and Gruithuisen Domes and in ejecta excavated by Aristarchus crater. Perhaps

  2. Origin of late Archean granite: geochemical evidence from the Vermilion Granitic Complex of northern Minnesota

    NASA Astrophysics Data System (ADS)

    Day, Warren C.; Weiblen, P. W.

    1986-07-01

    The 2,700-Ma Vermilion Granitic Complex of northern Minnesota is a granite-migmatite terrane composed of supracrustal metasedimentary rocks, mafic rocks, tonalitic and granodioritic plutonic rocks, and granite. The metasedimentary rocks are predominantly graywacke, which has been regionally metamorphosed to garnet-sillimanite-muscovite-bearing biotite schist, and has locally undergone anatexis. The mafic rocks form early phases within the complex and are of two types: (1) basaltic amphibolite, and (2) monzodiorite and essexite rich in large ion lithophile elements (LILE). The members of the early plutonic suite form small bodies that intrude the metasedimentary rocks and mafic rocks, producing an early migmatite. The granite is of two distinct varieties: (1) white garnet-muscovite-biotite leucogranite ( S-type; Chappell and White 1974) and (2) grayish-pink biotite-magnetite Lac La Croix Granite ( I-type). The leucogranite occurs in the early migmatite and in paragneissic portions of the complex, whereas the Lac La Croix Granite is a late-stage intrusive phase that invades the early migmatite and metasediment (producing a late migmatite) and forms a batholith. This study focuses specifically on the origin of granite in the Vermilion Granitic Complex. Chemical mass-balance calculations suggest that the S-type two-mica leucogranite had a metagraywacke source, and that the I-type Lac La Croix Granite formed via partial fusion of calc-alkaline tonalitic material, which may have been similar to rocks of the early plutonic suite. This model is satisfactory for petrogenesis of similar Late Archean post-kinematic granites throughout the Canadian Shield.

  3. Mineralogy and Geochemistry of Granitic rocks within Lichen Hills, Outback Nunatak, Northern Victoria Land, Antarctica

    NASA Astrophysics Data System (ADS)

    KIM, T.; KIM, Y.; Lee, I.; Lee, J.; Woo, J.

    2015-12-01

    The study areas, Lichen Hills and Outback Nunatak are located in the Northern Victoria Land which is close to Pacific Ocean side of Transantarctic Mountain (TAM), Antarctica. According to the study of Zeller and Dreschoff (1990), the radioactivity values of Lichen hills and Frontier Mt. area in the Victoria Land were very high. To identify the geochemical characteristics of granitic rocks in these areas, 13 samples of Lichen Hills rocks and 4 samples of Outback Nunatak rocks are analyzed. For mineralogical study, samples were observed in macroscale as well as microscale including microscope electron probe analysis. Rock samples of Lichen Hills, Outback Nunatak are mainly leucogranite and granitic pegmatite. These rock samples are composed of quartz, k-feldspar, plagioclase, muscovite, garnet, tourmaline like granite. In SEM-EDS analysis, the observed light colored minerals show relatively high Th, U, Dy, Ce, Nb concentration. This suggests that rock samples may contain minerals such as fergusonite, monazite, thorite, allanite, karnasurtite which are considered to be REE-bearing minerals. Samples of related rocks have been analyzed in terms of major, trace and rare earth element (REE) concentrations using X-ray fluorescence (XRF) spectrometer and Inductively Coupled Plasma Mass Spectrometer (ICP-MS). As concentration of SiO2 increase, Al2O3, TiO2, Fe2O3, MgO, P2O5 concentration decrease and Na2O, K2O, MnO concentration increase. Analyzed trace elements and REE are normalized using CI Chondrite, Primitive mantle. The normalized data show that LREE are enriched compared to HREE. The distinct negative anomalies of Eu, Sr are observed, indicating that rock-forming melts are fairly processed state of fractional crystallization. It means that Th, U, Nb, Ta are much enriched in the melts.

  4. Frictional slip of granite at hydrothermal conditions

    USGS Publications Warehouse

    Blanpied, M.L.; Lockner, D.A.; Byerlee, J.D.

    1995-01-01

    To measure the strength, sliding behavior, and friction constitutive properties of faults at hydrothermal conditions, laboratory granite faults containing a layer of granite powder (simulated gouge) were slid. The mechanical results define two regimes. The first regime includes dry granite up to at least 845?? and wet granite below 250??C. In this regime the coefficient of friction is high (?? = 0.7 to 0.8) and depends only modestly on temperature, slip rate, and PH2O. The second regime includes wet granite above ~350??C. In this regime friction decreases considerably with increasing temperature (temperature weakening) and with decreasing slip rate (velocity strengthening). These regimes correspond well to those identified in sliding tests on ultrafine quartz. The results highlight the importance of fluid-assisted deformation processes active in faults at depth and the need for laboratory studies on the roles of additional factors such as fluid chemistry, large displacements, higher concentrations of phyllosilicates, and time-dependent fault healing. -from Authors

  5. Progress in Understanding Alkali-Alkali Spin Relaxation

    NASA Astrophysics Data System (ADS)

    Erickson, Christopher J.; Happer, William; Chann, Bien; Kadlecek, Stephen; Anderson, L. W.; Walker, Thad G.

    2000-06-01

    In extensive experiments we have shown that a spin interaction with a relatively long correlation time causes much of the spin relaxation in very dense alkali-metal vapors. The spin relaxation is affected by the pressure of the helium or nitrogen buffer gas, although there is little dependence at pressures above one atmosphere. There are substantial differences in the relaxation rates for different isotopes of the same element, for example ^87Rb and ^85Rb. We have completed extensive modeling of how singlet and triplet dimers and doublet trimers of the alkali-metal atoms could cause spin relaxation in dense alkali-metal vapors. In the case of doublet trimers or triplet dimers, we assume the main coupling to the nuclear spins is through the Fermi Contact interaction with the unpaired electrons. Spin loss to the rotation of the molecule is assumed to occur through the electronic spin-rotation and spin-axis (dipole-dipole) interactions for the triplet dimers. For the singlet dimers, we assume that the nuclear spins couple directly to the rotational angular momentum of the molecule through the electric quadrupole interaction. We account for all of the total nuclear spin states that occur for the dimers and trimers. We have also considered the possibility that the collisional breakup and formation rates of the dimers or trimers could saturate with increasing buffer gas pressure. Such saturation occurs in many other unimolecular reactions and is often ascribed to breakup through activated states.

  6. Nature and time of emplacement of a pegmatoidal granite within the Delhi Fold Belt near Bayalan, Rajasthan, India

    NASA Astrophysics Data System (ADS)

    Dasgupta, N.; Sen, J.; Pal, T.; Ghosh, T.

    2009-04-01

    silicate gneisses of the Bhim Group have been deformed by three major phases of folding, namely D1, D2 and D3. Of these the D1 folds defined by transposed compositional layering are intrafolial and isoclinal in nature. The D2 folds are asymmetric with alternate steeply and gently easterly dipping limbs and are defined by compositional banding and schistosity (S1). A good compositional layering parallel to the S2 fabric has been observed within the calc silicate gneisses. The D2 folds are close to tight, gently plunging with a modal plunge of 20o towards 40o; and has an inclined axial plane which has an easterly vergence. This is the most dominant phase of deformation. The D3 folds have developed on the gentle limbs of the D2 folds with a horizontal axis on a vertical axial plane. Interference of the D1 with D2 and D1 with D3 has produced Type III type of interference pattern. The pegmatitic granite body is a coarse grained rock composed of quartz feldspar (dominantly K-feldspar), muscovite, biotite, and tourmaline. A weak foliation has developed within this rock which is parallel to the D3 axial planar structure found within the calc silicate gneisses. Thus from the structural study it is proposed that the pegmatitic granite was emplaced post-D2 and possibly syn D3. The presence of narrow planar zones of hornfelsic rocks parallel to the D3 axial plane within the calc silicate rocks also attests to the above fact. Therefore the D3 axial planes provided the necessary conduits of the granite fluid movement within the calcsilicate rocks. The intrusions have scaled off the calc silicate gneisses into large continuous pieces along the gneissosity plane and got emplaced along the hinges of the D2 and D3 folds. Though disturbed, it has been seen that the orientation of the structural elements within these ripped off blocks of the calc silicate gneisses were quite similar to those found within the ridges, unaffected by the granite. The granites were thus emplaced lit-par-lit in the

  7. Shock effects in plagioclase feldspar from the Mistastin Lake impact structure, Canada

    NASA Astrophysics Data System (ADS)

    Pickersgill, Annemarie E.; Osinski, Gordon R.; Flemming, Roberta L.

    2015-09-01

    Shock metamorphism, caused by hypervelocity impact, is a poorly understood process in feldspar due to the complexity of the crystal structure, the relative ease of weathering, and chemical variations, making optical studies of shocked feldspars challenging. Understanding shock metamorphism in feldspars, and plagioclase in particular, is vital for understanding the history of Earth's moon, Mars, and many other planetary bodies. We present here a comprehensive study of shock effects in andesine and labradorite from the Mistastin Lake impact structure, Labrador, Canada. Samples from a range of different settings were studied, from in situ central uplift materials to clasts from various breccias and impact melt rocks. Evidence of shock metamorphism includes undulose extinction, offset twins, kinked twins, alternate twin deformation, and partial to complete transformation to diaplectic plagioclase glass. In some cases, isotropization of alternating twin lamellae was observed. Planar deformation features (PDFs) are notably absent in the plagioclase, even when present in neighboring quartz grains. It is notable that various microlites, twin planes, and compositionally different lamellae could easily be mistaken for PDFs and so care must be taken. A pseudomorphous zeolite phase (levyne-Ca) was identified as a replacement mineral of diaplectic feldspar glass in some samples, which could, in some instances, also be potentially mistaken for PDFs. We suggest that the lack of PDFs in plagioclase could be due to a combination of structural controls relating to the crystal structure of different feldspars and/or the presence of existing planes of weakness in the form of twin and cleavage planes.

  8. Rock-Forming feldspars of the Khibiny alkaline pluton, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Ivanyuk, G. Yu.; Pakhomovsky, Ya. A.; Konopleva, N. G.; Kalashnikov, A. O.; Korchak, Yu. A.; Selivanova, E. A.; Yakovenchuk, V. N.

    2010-12-01

    This paper describes the structural-compositional zoning of the well-known Khibiny pluton in regard to rock-forming feldspars. The content of K-Na-feldspars increases inward and outward from the Main foidolite ring. The degree of coorientation of tabular K-Na-feldspar crystals sharply increases in the Main ring zone, and microcline-dominant foyaite turns into orthoclase-dominant foyaite. The composition of K-Na-feldspars in the center of the pluton and the Main ring zone is characterized by an enrichment in Al. This shift is compensated by a substitution of some K and Na with Ba (the Main ring zone) or by an addition of K and Na cations to the initially cation-deficient microcline (the central part of the pluton). Feldspars of volcanosedimentary rocks occurring as xenoliths in foyaite primarily corresponded to plagioclase An15-40, but high-temperature fenitization and formation of hornfels in the Main ring zone gave rise to the crystallization of anorthoclase subsequently transformed into orthoclase and albite due to cooling and further fenitization. Such a zoning is the result of filling the Main ring fault zone within the homogeneous foyaite pluton with a foidolite melt, which provided the heating and potassium metasomatism of foyaite and xenoliths of volcanosedimentary rocks therein. The process eventually led to the transformation of foyaite into rischorrite-lyavochorrite, while xenoliths were transformed into aluminum hornfels with anorthoclase, annite, andalusite, topaz, and sekaninaite.

  9. Asbestos contamination in feldspar extraction sites: a failure of prevention? Commentary.

    PubMed

    Cavariani, Fulvio

    2016-01-01

    Fibrous tremolite is a mineral species belonging to the amphibole group. It is present almost everywhere in the world as a natural contaminant of other minerals, like talc and vermiculite. It can be also found as a natural contaminant of the chrysotile form of asbestos. Tremolite asbestos exposures result in respiratory health consequences similar to the other forms of asbestos exposure, including lung cancer and mesothelioma. Although abundantly distributed on the earth's surface, tremolite is only rarely present in significant deposits and it has had little commercial use. Significant presence of amphibole asbestos fibers, characterized as tremolite, was identified in mineral powders coming from the milling of feldspar rocks extracted from a Sardinian mining site (Italy). This evidence raises several problems, in particular the prevention of carcinogenic risks for the workers. Feldspar is widespread all over the world and every year it is produced in large quantities and it is used for several productive processes in many manufacturing industries (over 21 million tons of feldspar mined and marketed every year). Until now the presence of tremolite asbestos in feldspar has not been described, nor has the possibility of such a health hazard for workers involved in mining, milling and handling of rocks from feldspar ores been appreciated. Therefore the need for a wider dissemination of knowledge of these problems among professionals, in particular mineralogists and industrial hygienists, must be emphasized. In fact both disciplines are necessary to plan appropriate environmental controls and adequate protections in order to achieve safe working conditions. PMID:27033611

  10. Oxygen and neodymium isotope evidence for source diversity in Cretaceous anorogenic granites from Namibia and implications for A-type granite genesis

    NASA Astrophysics Data System (ADS)

    Trumbull, A.-type granite genesis R. B.; Harris, C.; Frindt, S.; Wigand, M.

    2004-03-01

    Many of the early Cretaceous intrusive complexes in the Damaraland of west-central Namibia are silicic in composition. Although all have trace element characteristics typical for the so-called A-type granites, major differences in alkali/aluminum ratios and isotopic compositions require diverse magma sources. This paper presents Nd and O isotope data from the five largest silicic complexes (Paresis, Erongo, Brandberg, Cape Cross, Gross Spitzkoppe) that provide new constraints on the nature of crustal and mantle sources involved, and their relative proportions. The Paresis complex has an isotopic signature ( δ18O=+9‰, ɛNd 130 Ma=-21) indicating a crustal component similar to Mesoproterozoic gneisses of the Angola craton. The other complexes have isotope variations ( δ18O from +8.1‰ to +10.7‰ and ɛNd 130 Ma from -1 to -9) that can be explained by a binary mixing model between a mantle and crustal component. More importantly, this same mixing line also fits the Nd-O isotope variations reported from the mafic Okenyenya and Messum complexes, and from rhyodacites in the southern Etendeka volcanic sequence. The uniformity of the crustal component implied by this mixing model suggests lower crustal material, in contrast to the geologic complexity of the Neoproterozoic Damara Belt presently exposed at the surface. This is consistent with the isotopic data, and we interpret the crustal component to be lower crustal metametasediments that were dehydrated and perhaps melt-depleted by generation of the S-type granites, which are widespread in the Damara Belt. The mantle component is interpreted to be dominated by the Tristan mantle plume, but some involvement of depleted mantle material is needed to explain all of the isotope data. The data rule out any significant role for enriched, subcontinental mantle lithosphere. All silicic Damaraland complexes, as well as the Etendeka rhyodacites, classify as A-type granites despite their proven source diversity. This means

  11. Positron-alkali atom scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.; Ward, S. J.

    1990-01-01

    Positron-alkali atom scattering was recently investigated both theoretically and experimentally in the energy range from a few eV up to 100 eV. On the theoretical side calculations of the integrated elastic and excitation cross sections as well as total cross sections for Li, Na and K were based upon either the close-coupling method or the modified Glauber approximation. These theoretical results are in good agreement with experimental measurements of the total cross section for both Na and K. Resonance structures were also found in the L = 0, 1 and 2 partial waves for positron scattering from the alkalis. The structure of these resonances appears to be quite complex and, as expected, they occur in conjunction with the atomic excitation thresholds. Currently both theoretical and experimental work is in progress on positron-Rb scattering in the same energy range.

  12. Pb and O isotopic constraints on the source of granitic rocks from Cape Breton Island, Nova Scotia, Canada

    USGS Publications Warehouse

    Ayuso, R.A.; Barr, S.M.; Longstaffe, F.J.

    1996-01-01

    Pb isotopic compositions of leached feldspars from twenty-three plutons in Cape Breton Island can be divided into two groups: anorthosite, syenite, and granite in the Blair River Complex, which have the least radiogenic compositions on the Island, and granitic rocks from terranes (Aspy, Bras d'Or, and Mira) to the south. Pb isotopic data for the Blair River Complex (206Pb/204Pb = 17.399-18.107; 207Pb/204Pb = 15.505-15.560; 208Pb/204Pb = 36.689-37.733) are consistent with an old source region ultimately derived from the mantle and contaminated by sialic crust. Oxygen isotopic compositions of syenite in the Blair River Complex (??18O = +8.0 to +8.5 permil) are slightly higher than anorthosite (+7.0 to +8.3 permil); a Silurian granite in the Blair River Complex has ??18O = +7.5 permil. Cambrian to Devonian plutons in the Aspy, Bras d'Or, and Mira terranes are more radiogenic (206Pb/204Pb = 18.192-18.981; 207Pb/204Pb = 15.574-15.712; 208Pb/ 204Pb =37.815-38.936) than the Blair River Complex and were generated from source regions having a predominant crustal Pb signature (high ??). The ??18O values of granites and granodiorites in the Aspy terrane (+7.5 to +9.2 permil; avg = +8.6 permil) and Bras d'Or (+3.7 to +11.3 permil; avg = +9.4 permil) are also consistent with involvement of sialic crust. Many Late Proterozoic granites from the Mira terrane have anomalously low ??18O values (+0.2 to +5.9 permil), perhaps produced from protoliths that had undergone hydrothermal alteration prior to melting. Paleozoic granitic rocks from the Aspy, Bras d'Or, and Mira terranes cannot be uniquely distinguished on the basis of their Pb and O isotopic compositions. The granitic rocks could have been generated during terrane amalgamation from combinations of unradiogenic (Grenville-like) and more radiogenic (Avalon-like) sources.

  13. Paleomagnetism of the Middle Proterozoic Laramie anorthsite complex and Sherman Granite, southern Laramie Range, Wyoming and Colorado

    NASA Astrophysics Data System (ADS)

    Harlan, Steve S.; Snee, Lawrence W.; Geissman, John W.; Brearley, Adrian J.

    1994-09-01

    We present the results of a combined paleomagnetic and Ar-40/Ar-39 geochronologic investigation of the Middle Proterozoic Laramie anorthosite complex and Sherman Granite in the southern Laramie Range of Wyoming and Colorado. Anorthosites and monzosyenites of the Laramie anorthosite complex yield a well-defined characteristic magnetization of northeast declination (D) and moderate negative inclination (I), although antipodal normal and reverse polarity magnetizations are present at three sites. A grand mean direction from 29 of 35 sites in the complex is D = 44.6 deg, I = -48.7 (k = 77.4, alpha(sub 95) = 3.1). Alternating field (AF) and thermal demagnetization behavior and rock magnetic experiments indicate that magnetization is carried by low-Ti titanomagnetite of single or pseudo-single domain character that occurs as elongate to rod-shaped inclusions in plaglioclase and potassium feldspar. The Sherman Granite contains a dual polarity magnetization that is less well defined than that of the Laramie anorthosite complex but similar in declination and inclination (D = 53.1 deg, I = -48.1, k = 46.5, alpha(sub 95) = 7.6, n = 8/14 sites); rock magnetic data indicate the primary carrier of remanence in Sherman Granite is magnetite. The Ar-40/Ar-39 geochronologic data from Sherman Granite hornblende, biotite, and microline indicate that subsolidus cooling was moderate to relatively rapid through the range of temperatures over which magnetization was blocked and that the age of remanence is about 1415 Ma. Microline data indicate that the Laramie anorthosite complex and Sherman Granite have probably not been thermally remagnetized. Paleomagnetic poles from the Laramie anothosite complex and Sherman Granite are indistinguish- able at the 95% confidence level, and individual virtual geomegnetic poles (VGPs) from both units are combined to provide a mean pole at 215.0 deg E, 6.7 deg S (K = 46.9, Alpha(sub 95) = 3.5 deg, N = 37 VGPs) The location of this pole is similar to

  14. Alkali metal/sulfur battery

    DOEpatents

    Anand, Joginder N.

    1978-01-01

    Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

  15. Superconductivity in alkali metal fullerides

    NASA Astrophysics Data System (ADS)

    Murphy, D. W.; Rosseinsky, M. J.; Haddon, R. C.; Ramirez, A. P.; Hebard, A. F.; Tycko, R.; Fleming, R. M.; Dabbagh, G.

    1991-12-01

    The recent synthesis of macroscopic quantities of spherical molecular carbon compounds, commonly called fullerenes, has stimulated a wide variety of studies of the chemical and physical properties of this novel class of compounds. We discovered that the smallest of the known fullerenes, C 60, could be made conducting and superconducting by reaction with alkali metals. In this paper, an overview of the motivation for these discoveries and some recent results are presented.

  16. Geology of the Silsilah ring complex, and associated tin mineralization, Kingdom of Saudi Arabia - a synopsis.

    USGS Publications Warehouse

    du Bray, E.A.

    1985-01-01

    A tin greisen deposit is associated with an alkali-feldspar granite that forms part of a ring complex at Jabal as Silsilah. The petrological and geochemical characteristics of the Fawwarah alkali-feldspar granite resemble those of granites located elsewhere that are also associated with deposits of Sn, W and rare metals. The alkali-feldspar granite is peraluminous, incompatible trace-element-enriched, and is characterized by a flat chondrite-normalized REE pattern that includes a very large, negative Eu anomaly. The distinctive mineralogy of the alkali-feldspar granite includes zinnwaldite and topaz. Differentiation and mineral fractionation controlled magma evolution while components of the ring complex were sequentially emplaced. Evolution of the ring complex and its associated tin deposit concluded with local, intense alteration of the Fawwarah alkali-feldspar granite to a cassiterite-bearing greisen. Samples of greisens suggest that the locus of economic tin deposits is not restricted to the two known, strongly mineralized greisens.-J.A.Z.

  17. Geochemical evolution of the metaluminous and peraluminous granites of Ganawuri Younger Granite Complex, northern Nigeria

    NASA Astrophysics Data System (ADS)

    Imeokparia, Ebo. Gab.

    The Ganawuri Complex is one of the numerous high level composite granitoid bodies occurring in the central plateau sector of the Nigerian Younger Granite province. Lithologically the Complex is composed of a hastingsite-fayalite granite, hastingsite-biotite granite and biotite granite. Although the major element chemistry of the constituent rock types shows only subtle variation typical of granites with minimum melt composition, the trace elements data and variation indicate that the granites in the Complex formed essentially by fractional crystallization. Geochemically the late-stage rock types are characterized by anomalously high contents of F, Li, Y, Th, Ga, Rb, Sn and Nb and by unusually low contents of Ba, Sr and Zr. These geochemical peculiarities are interpreted to be due to extreme fractionation. The ultimate product of fractional crystallization was a water-saturated melt, enriched in incompatible elements whose crystallization resulted in tin mineralization. The chemistry of the rocks can be compared with A-type granites which are considered typical of anorogenic extensional environments and/or Continental rifts.

  18. Radionuclide transport in fractured granite interface zones

    NASA Astrophysics Data System (ADS)

    Hu, Q. H.; Möri, A.

    In situ radionuclide migration experiments, followed by excavation and sample characterization, were conducted in a water-conducting shear zone at the Grimsel Test Site (GTS) in Switzerland to study migration paths of radionuclides in fractured granite. In this work, a micro-scale mapping technique was applied by interfacing laser ablation sampling with inductively coupled plasma-mass spectrometry (LA-ICP-MS) to detect the small scale (micron-range) distribution of actinides in the interface zones between fractures and the granitic rock matrix. Long-lived 234U, 235U, and 237Np were detected in flow channels, as well as in the diffusion accessible rock matrix, using the sensitive, feature-based mapping of the LA-ICP-MS technique. The retarded actinides are mainly located at the fracture walls and in the fine grained fracture filling material as well as within the immediately adjacent wallrock. The water-conducting fracture studied in this work is bounded on one side by mylonite and the other by granitic matrix regions. Actinides studied in this work did not penetrate into the mylonite side as much as into the granite matrix, most likely due to the lower porosity, the enhanced sorption capacity and the disturbed diffusion paths of the mylonite region itself. Overall, the maximum penetration depth detected with this technique for 237Np and uranium isotopes over the field experimental time scale of about 60 days was about 10 mm in the granitic matrix, illustrating the importance of matrix diffusion in retarding radionuclide transport from the advective fractures. Laboratory tests and numerical modelling of radionuclide diffusion into granitic matrix was conducted to complement and help interpret the field results.

  19. Alkali metal sources for OLED devices

    NASA Astrophysics Data System (ADS)

    Cattaneo, Lorena; Longoni, Giorgio; Bonucci, Antonio; Tominetti, Stefano

    2005-07-01

    In OLED organic layers electron injection is improved by using alkali metals as cathodes, to lower work function or, as dopants of organic layer at cathode interface. The creation of an alkali metal layer can be accomplished through conventional physical vapor deposition from a heated dispenser. However alkali metals are very reactive and must be handled in inert atmosphere all through the entire process. If a contamination takes place, it reduces the lithium deposition rate and also the lithium total yield in a not controlled way. An innovative alkali metal dispensing technology has been developed to overcome these problems and ensure OLED alkali metal cathode reliability. The alkali Metal dispenser, called Alkamax, will be able to release up to a few grams of alkali metals (in particular Li and Cs) throughout the adoption of a very stable form of the alkali metal. Lithium, for example, can be evaporated "on demand": the evaporation could be stopped and re-activated without losing alkali metal yield because the metal not yet consumed remains in its stable form. A full characterization of dispensing material, dispenser configuration and dispensing process has been carried out in order to optimize the evaporation and deposition dynamics of alkali metals layers. The study has been performed applying also inside developed simulations tools.

  20. Raman Spectroscopic Characterization of the Feldspars: Implications for Surface Mineral Characterization in Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Freeman, J. J.; Wang, Alian; Kuebler, K. E.; Haskin, L. A.

    2003-01-01

    The availability in the last decade of improved Raman instrumentation using small, stable, intense lasers, sensitive CCD array detectors, and advanced fast grating systems enabled us to develop the Mars Microbeam Raman Spectrometer (MMRS), a field-portable Raman spectrometer with precision and accuracy capable of identifying minerals and their different compositions. For example, we can determine Mg cation ratios in pyroxenes and olivines to +/-0.1 on the basis of Raman peak positions. Feldspar is another major mineral formed in igneous systems whose characterization is important for determining rock petrogenesis and alteration. From their Raman spectral pattern, feldspars can be readily distinguished from ortho- and chain-silicates and from other tecto-silicates such as quartz and zeolites. We show here how well Raman spectral analysis can distinguish among members within the feldspar group.

  1. OVERALL VIEW OF QUARRY, FACING NORTH, WITH UNQUARRIED GRANITE OUTCROP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERALL VIEW OF QUARRY, FACING NORTH, WITH UN-QUARRIED GRANITE OUTCROP IN BACKGROUND - Granite Hill Plantation, Quarry No. 3, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  2. Contact metamorphism, partial melting and fluid flow in the granitic footwall of the South Kawishiwi Intrusion, Duluth Complex, USA

    NASA Astrophysics Data System (ADS)

    Benko, Z.; Mogessie, A.; Molnar, F.; Severson, M.; Hauck, S.; Lechler, P.; Arehart, G.

    2012-04-01

    The footwall of the South Kawishiwi Intrusion (SKI) a part of the Mesoproterozoic (1.1 Ga) Duluth Complex consists of Archean granite-gneiss, diorite, granodiorite (Giant Range Batholith), thin condensed sequences of Paleoproterozoic shale (Virginia Fm.), as well as banded iron formation (Biwabik Iron Fm). Detailed (re)logging and petrographic analysis of granitic footwall rocks in the NM-57 drillhole from the Dunka Pit area has been performed to understand metamorphic processes, partial melting, deformation and geochemical characteristics of de-volatilization or influx of fluids. In the studied drillhole the footwall consists of foliated metagranite that is intersected by mafic (dioritic) dykes of older age than the SKI. In the proximal contact zones, in the mafic dykes, the orthopyroxene+clinopyroxene+plagioclase+quartz+Fe-Ti-oxide+hornblende±biotite porphyroblasts embedded in a plagioclase+K-feldspar+orthopyroxene+apatite matrix indicate pyroxene-hornfels facies conditions. Migmatitization is revealed by the euhedral crystal faces of plagioclase and pyroxene against anhedral quartz crystals in the in-situ leucosome and by the presence of abundant in-source plagioclase±biotite leucosome veinlets. Amphibole in the melanosome of mafic dykes was formed with breakdown of biotite and implies addition of H2O to the system during partial melting. Towards the deeper zones, the partially melted metatexite-granite can be characterized by K-feldspar+plagioclase+quartz+ortho/clinopyroxene+biotite+Fe-Ti-oxide+apatite mineral assemblage. The felsic veins with either pegmatitic or aplititic textures display sharp contact both to the granite and the mafic veins. They are characterized by K-feldspar+quartz±plagioclase±muscovite mineral assemblage. Sporadic occurrence of muscovite suggest local fluid saturated conditions. Emplacement of gabbroic rocks of the SKI generated intense shear in some zones of the granitic footwall resulting in formation of biotite-rich mylonites with

  3. Petrogenesis of middle Ordovician peraluminous granites in the Baoshan block: Implications for the early Paleozoic tectonic evolution along East Gondwana

    NASA Astrophysics Data System (ADS)

    Li, Gong-Jian; Wang, Qing-Fei; Huang, Yu-Han; Gao, Lei; Yu, Li

    2016-02-01

    Peraluminous granitic magmatism in the Baoshan block is long-lasting roughly from 500 Ma to 450 Ma. The petrogenesis and geodynamics for this long-lived magmatism remain controversial. To address this controversy, this study reports the zircon U-Pb age and Hf-isotope, and bulk-rock major and trace element data of the granites from the Shuangmaidi and Mengmao areas in the Baoshan block. LA-ICPMS zircon U-Pb dating reveals that the granitic rocks from the two areas were emplaced between 470 and 459 Ma. These rocks are high silicic and strongly peraluminous, with SiO2 = 73.6-77.6 wt.%, A/CNK ratios of 1.0-1.6, and CIPW normative corundum contents of 0.7-5.3 wt.%. They are enriched in LREEs, LILEs (e.g., Rb, Th, U, and K) and Pb, and depleted in HFSEs (e.g., Nb, Ta, P, Zr, and Ti), Eu, Sr, and Ba. The εHf(t) values for co-magmatic zircons of the Shuangmaidi coarse- and fine-grained porphyritic granites show wide ranges from - 11.6 to + 5.2 and from - 8.1 to + 7.0, concentrating in - 7.1 to + 0.5 and - 8.1 to + 0.7, respectively; and those of the Mengmao granites concentrate between - 4.6 and - 0.5. The primary magmas of these granites can be mainly attributed to the partial melting of ancient metasedimentary rocks, while small amounts of mantle-derived components were introduced into the magma sources for the Shuangmaidi granites. The primary magma of the Shuangmaidi granites experienced biotite-dominant mineral fractionation, and that of the Mengmao granite mainly fractionated K-feldspar and plagioclase. Combining our data with the regional sedimentary unconformity, multi-type magmatism, and high-pressure metamorphism in the Baoshan and its periphery blocks, we propose that these ca. 470-460 Ma peraluminous granites were formed in the tectonic setting of the thickened lithospheric delamination following the final amalgamation of outboard Asian microcontinents onto the East Gondwana margin at ca. 490-475 Ma. Our study favors that the long-lasted (ca. 500-450 Ma

  4. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  5. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  6. 7. Photocopied August 1971 from Photo 13729, Granite Station Special ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopied August 1971 from Photo 13729, Granite Station Special Folder, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. GRANITE HYDRO-ELECTRIC PLANT (1500KW) STATION. PENSTOCK AND SPILWAY, NOVEMBER 1914. - Utah Power Company, Granite Hydroelectric Plant, Holladay, Salt Lake County, UT

  7. 9. Photocopied August 1971 from Photo 13730, Granite Folder #1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopied August 1971 from Photo 13730, Granite Folder #1, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. GRANITE STATION: WESTINGHOUSE 750 K.V.A., 2- PHASE GENERATORS AND SWITCHBOARD, MAY 24, 1915. - Utah Power Company, Granite Hydroelectric Plant, Holladay, Salt Lake County, UT

  8. 8. Photocopied August 1971 from Photo 11479, Granite Station Special ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopied August 1971 from Photo 11479, Granite Station Special Folder, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. GRANITE HYDRO-ELECTRIC PLANT (1500 KW) STATION. PENSTOCK AND SPILWAY, NOVEMBER 1914. - Utah Power Company, Granite Hydroelectric Plant, Holladay, Salt Lake County, UT

  9. Granite emplacement during contemporary shortening and normal faulting: structural and magnetic study of the Veiga Massif (NW Spain)

    NASA Astrophysics Data System (ADS)

    Roman-Berdiel, T.; Pueyo-Morer, E. L.; Casas-Sainz, A. M.

    1995-12-01

    The Veiga Massif belongs to the calc-alkaline series of Hercynian granitic rocks of the Ibero-Armorican arc The Veiga granodiorite intruded during the Upper Carboniferous into the core of the WNW-ESE N-verging 'Ollo de Sapo' antiform, formed by Precambrian and Palaeozoic metasediments. Internal fabrics show that magma intrusion was contemporary with shortening. Measurements of feldspars orientations and anisotropy of magnetic susceptibility (AMS) throughout the granite are consistent and indicate a foliation striking WNW-ESE (parallel-to-folding), with a constant dip of 75-85 °N. The zonation of bulk low-field susceptibility is related to mineral content and indicates a more basic composition at the southern and western borders. The difference in elevation between outcrops (more than 600 m) allows us to infer the three-dimensional attitude of granite fabrics throughout the Massif. Syn-magmatic fabric folds are preserved in the inner part of the igneous body. The highest degree of magnetic anisotropy is observed in areas located near the bottom and top of the intrusion. At the scale of the Massif, foliation is convergent toward the bottom of the intrusion, along a line located at its northern border, where the magma source is interpreted to be located. In the western border of the Massif, the presence of C and S structures indicates that magma cooling was coeval with movement of the Chandoiro fault, a N-S striking normal fault with a N290E hanging wall displacement direction. These results indicate that emplacement of the Veiga granite is coeval with NNE-SSW shortening and with an WNW-ESE extension direction, parallel to the trend of the late folds.

  10. The global age distribution of granitic pegmatites

    USGS Publications Warehouse

    McCauley, Andrew; Bradley, Dwight C.

    2014-01-01

    An updated global compilation of 377 new and previously published ages indicates that granitic pegmatites range in age from Mesoarchean to Neogene and have a semi-periodic age distribution. Undivided granitic pegmatites show twelve age maxima: 2913, 2687, 2501, 1853, 1379, 1174, 988, 525, 483, 391, 319, and 72 Ma. These peaks correspond broadly with various proxy records of supercontinent assembly, including the age distributions of granites, detrital zircon grains, and passive margins. Lithium-cesium-tantalum (LCT) pegmatites have a similar age distribution to the undivided granitic pegmatites, with maxima at 2638, 1800, 962, 529, 485, 371, 309, and 274 Ma. Lithium and Ta resources in LCT pegmatites are concentrated in the Archean and Phanerozoic. While there are some Li resources from the Proterozoic, the dominantly bimodal distribution of resources is particularly evident for Ta. This distribution is similar to that of orogenic gold deposits, and has been interpreted to reflect the preservation potential of the orogenic belts where these deposits are formed. Niobium-yttrium-fluorine (NYF) pegmatites show similar age distributions to LCT pegmatites, but with a strong maximum at ca. 1000 Ma.

  11. The origin of granites and related rocks

    USGS Publications Warehouse

    Brown, Michael, (Edited By); Piccoli, Philip M.

    1995-01-01

    This Circular is a compilation of abstracts for posters and oral presentations given at the third Hutton symposium on the Origin of granites and related rocks. The symposium was co-sponsored by the Department of Geology, University of Maryland at College Park; the U.S. Geological Survey, Reston, Virginia; and the Department of Terrestrial Magnetism and Geophysical Laboratory, Carnegie Institution of Washington.

  12. Granite School District First Grade Reading Study.

    ERIC Educational Resources Information Center

    Castner, Myra H.; And Others

    A comparative study of first-grade reading instructional methods was undertaken with the support of the Granite School District Exemplary Center for Reading Instruction. This study was conducted in 19 schools of the district and involved approximately 1,295 students. Nine hypotheses concerning the various approaches used in reading instruction…

  13. The Early Jurassic Bokan Mountain peralkaline granitic complex (southeastern Alaska): geochemistry, petrogenesis and rare-metal mineralization

    USGS Publications Warehouse

    Dostal, Jaroslav; Kontak, Daniel J.; Karl, Susan M.

    2014-01-01

    The Early Jurassic (ca. 177 Ma) Bokan Mountain granitic complex, located on southern Prince of Wales Island, southernmost Alaska, cross-cuts Paleozoic igneous and metasedimentary rocks of the Alexander terrane of the North American Cordillera and was emplaced during a rifting event. The complex is a circular body (~3 km in diameter) of peralkaline granitic composition that has a core of arfvedsonite granite surrounded by aegirine granite. All the rock-forming minerals typically record a two-stage growth history and aegirine and arfvedsonite were the last major phases to crystalize from the magma. The Bokan granites and related dikes have SiO2 from 72 to 78 wt. %, high iron (FeO (tot) ~3-4.5 wt. %) and alkali (8-10 wt.%) concentrations with high FeO(tot)/(FeO(tot)+MgO) ratios (typically >0.95) and the molar Al2O3/(Na2O+K2O) ratio Nd values which are indicative of a mantle signature. The parent magma is inferred to be derived from an earlier metasomatized lithospheric mantle by low degrees of partial melting and generated the Bokan granitic melt through extensive fractional crystallization. The Bokan complex hosts significant rare-metal (REE, Y, U, Th, Nb) mineralization that is related to the late-stage crystallization history of the complex which involved the overlap of emplacement of felsic dikes, including pegmatite bodies, and generation of orthomagmatic fluids. The abundances of REE, HFSE, U and Th as well as Pb and Nd isotopic values of the pluton and dikes were modified by orthomagmatic hydrothermal fluids highly enriched in the strongly incompatible trace elements, which also escaped along zones of structural weakness to generate rare-metal mineralization. The latter was deposited in two stages: the first relates to the latest stage of magma emplacement and is associated with felsic dikes that intruded along the faults and shear deformations, whereas the second stage involved ingress of hydrothermal fluids that both remobilized and enriched the initial

  14. Fractal patterns of fractures in granites

    NASA Astrophysics Data System (ADS)

    Velde, B.; Dubois, J.; Moore, D.; Touchard, G.

    1991-05-01

    Fractal measurements using the Cantor's dust method in a linear one-dimensional analysis mode were made on the fracture patterns revealed on two-dimensional, planar surfaces in four granites. This method allows one to conclude that: (1) The fracture systems seen on two-dimensional surfaces in granites are consistent with the part of fractal theory that predicts a repetition of patterns on different scales of observation, self similarity. Fractal analysis gives essentially the same values of D on the scale of kilometres, metres and centimetres (five orders of magnitude) using mapped, surface fracture patterns in a Sierra Nevada granite batholith (Mt. Abbot quadrangle, Calif.). (2) Fractures show the same fractal values at different depths in a given batholith. Mapped fractures (main stage ore veins) at three mining levels (over a 700 m depth interval) of the Boulder batholith, Butte, Mont. show the same fractal values although the fracture disposition appears to be different at different levels. (3) Different sets of fracture planes in a granite batholith, Central France, and in experimental deformation can have different fractal values. In these examples shear and tension modes have the same fractal values while compressional fractures follow a different fractal mode of failure. The composite fracture patterns are also fractal but with a different, median, fractal value compared to the individual values for the fracture plane sets. These observations indicate that the fractal method can possibly be used to distinguish fractures of different origins in a complex system. It is concluded that granites fracture in a fractal manner which can be followed at many scales. It appears that fracture planes of different origins can be characterized using linear fractal analysis.

  15. Fractal patterns of fractures in granites

    USGS Publications Warehouse

    Velde, B.; Dubois, J.; Moore, D.; Touchard, G.

    1991-01-01

    Fractal measurements using the Cantor's dust method in a linear one-dimensional analysis mode were made on the fracture patterns revealed on two-dimensional, planar surfaces in four granites. This method allows one to conclude that: 1. (1)|The fracture systems seen on two-dimensional surfaces in granites are consistent with the part of fractal theory that predicts a repetition of patterns on different scales of observation, self similarity. Fractal analysis gives essentially the same values of D on the scale of kilometres, metres and centimetres (five orders of magnitude) using mapped, surface fracture patterns in a Sierra Nevada granite batholith (Mt. Abbot quadrangle, Calif.). 2. (2)|Fractures show the same fractal values at different depths in a given batholith. Mapped fractures (main stage ore veins) at three mining levels (over a 700 m depth interval) of the Boulder batholith, Butte, Mont. show the same fractal values although the fracture disposition appears to be different at different levels. 3. (3)|Different sets of fracture planes in a granite batholith, Central France, and in experimental deformation can have different fractal values. In these examples shear and tension modes have the same fractal values while compressional fractures follow a different fractal mode of failure. The composite fracture patterns are also fractal but with a different, median, fractal value compared to the individual values for the fracture plane sets. These observations indicate that the fractal method can possibly be used to distinguish fractures of different origins in a complex system. It is concluded that granites fracture in a fractal manner which can be followed at many scales. It appears that fracture planes of different origins can be characterized using linear fractal analysis. ?? 1991.

  16. K-Ca Dating of Alkali-Rich Fragments in the Y-74442 and Bhola LL-Chondritic Breccias

    NASA Technical Reports Server (NTRS)

    Yokoyama, T; Misawa, K.; Okano, O; Shih, C. -Y.; Nyquist, L. E.; Simon, J. I.; Tappa, M. J.; Yoneda, S.

    2013-01-01

    Alkali-rich igneous fragments in the brecciated LL-chondrites, Krahenberg (LL5) [1], Bhola (LL3-6) [2], Siena (LL5) [3] and Yamato (Y)-74442 (LL4) [4-6], show characteristic fractionation patterns of alkali and alkaline elements [7]. The alkali-rich fragments in Krahenberg, Bhola and Y-74442 are very similar in mineralogy and petrography, suggesting that they could have come from related precursor materials [6]. Recently we reported Rb-Sr isotopic systematics of alkali-rich igneous rock fragments in Y-74442: nine fragments from Y-74442 yield the Rb-Sr age of 4429 plus or minus 54 Ma (2 sigma) for lambda(Rb-87) = 0.01402 Ga(exp -1) [8] with the initial ratio of Sr-87/Sr-86 = 0.7144 plus or minus 0.0094 (2 sigma) [9]. The Rb-Sr age of the alkali-rich fragments of Y-74442 is younger than the primary Rb-Sr age of 4541 plus or minus 14 Ma for LL-chondrite whole-rock samples [10], implying that they formed after accumulation of LL-chondrite parental bodies, although enrichment may have happened earlier. Marshall and DePaolo [11,12] demonstrated that the K-40 - Ca-40 decay system could be an important chronometer as well as a useful radiogenic tracer for studies of terrestrial rocks. Shih et al. [13,14] and more recently Simon et al. [15] determined K-Ca ages of lunar granitic rocks, and showed the application of the K-Ca chronometer for K-rich planetary materials. Since alkali-rich fragments in the LL-chondritic breccias are highly enriched in K, we can expect enhancements of radiogenic Ca-40. Here, we report preliminary results of K-Ca isotopic systematics of alkali-rich fragments in the LL-chondritic breccias, Y-74442 and Bhola.

  17. Alkali-Metal Spin Maser.

    PubMed

    Chalupczak, W; Josephs-Franks, P

    2015-07-17

    Quantum measurement is a combination of a read-out and a perturbation of the quantum system. We explore the nonlinear spin dynamics generated by a linearly polarized probe beam in a continuous measurement of the collective spin state in a thermal alkali-metal atomic sample. We demonstrate that the probe-beam-driven perturbation leads, in the presence of indirect pumping, to complete polarization of the sample and macroscopic coherent spin oscillations. As a consequence of the former we report observation of spectral profiles free from collisional broadening. Nonlinear dynamics is studied through exploring its effect on radio frequency as well as spin noise spectra. PMID:26230788

  18. Late Cretaceous Middle Fork caldera and its resurgent granite porphyry intrusion, east-central Alaska

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Dusel-Bacon, C.; Aleinikoff, J. N.; Slack, J. F.

    2012-12-01

    Named for the Middle Fork of the North Fork of the Fortymile River, the Middle Fork caldera encompasses a 10 x 20 km area of rhyolite welded tuff and granite porphyry ~100 km west of the Yukon border. Intracaldera tuff has ≤4 mm quartz and feldspar phenocrysts and cm-sized fiamme; its maximum exposed thickness is 850 m. Less densely welded tuff near the caldera margins locally contains 1-2 cm K-feldspar megacrysts and pumice clasts to 6 cm. Zircon from intracaldera tuff yields a SHRIMP-RG U-Pb age of 68.7 ± 1.1 Ma (all ages 95% confidence). Granite porphyry occupies much of an 8 x 12 km area having 650 m of relief within the western part of the caldera fill. Zircon from the porphyry gives a SHRIMP-RG U-Pb age of 68.4 ± 1.0 Ma. These ages agree with a previous 40Ar/39Ar biotite age of 69.1 ± 0.5 Ma for proximal outflow tuff. The crystal-rich intracaldera tuff contains embayed quartz, plagioclase>K-feldspar, biotite, and Fe-Ti oxide phenocrysts in a very fine-grained crystalline groundmass. The porphyry carries 40-50% of larger phenocrysts of the same phases (skeletal quartz to 1 cm; K-feldspar to 2 cm, rarely to 4 cm) in a fine-grained groundmass characterized by abundant 50-100 μm quartz. Compositions of 3 tuff and 3 porphyry samples overlap, form a limited differentiation series at 69-72% SiO2, have arc geochemical signatures, and yield subparallel chondrite-normalized rare earth element patterns with light REE enrichment, concave-upward heavy REE, and small negative Eu anomalies. Although their phenocrysts differ in size (owing to fragmentation of crystals in the tuff) and abundance, the similar mineralogy, composition (in spite of crystal concentration in the tuff), and indistinguishable ages of the tuff and porphyry indicate that the magmas were closely related. A rare magmatic enclave (54% SiO2, arc geochemical signature) in the porphyry may be similar to parental magma and provides evidence of mafic magma and thermal input. The porphyry is interpreted

  19. Preferential cataclastic grain size reduction of feldspar in deformation bands in poorly consolidated arkosic sands

    NASA Astrophysics Data System (ADS)

    Exner, Ulrike; Tschegg, Cornelius

    2012-10-01

    This study presents microstructural as well as bulk and mineral chemical investigations of deformation bands in uncemented, friable arkosic sands of Miocene age (Vienna Basin, Austria). Our microstructural study indicates grain size reduction by grain flaking in deformation bands with small offsets (0.5-8 cm), and dominant intragranular fracturing and cataclasis of altered feldspar grains at larger displacements (up to 60 cm). Relative to quartz, the sericitized feldspar grains are preferably fractured and abraded, which additionally leads to an enrichment of mainly phyllosilicates by mechanical expulsion from feldspar. Both cataclasis of quartz and feldspar grains and enrichment of phyllosilicates result in grain size reduction within the deformation bands. The measured reduction in porosity of up to 20% is in some cases associated with a permeability reduction, reflected in the retention of iron-oxide rich fluids along deformation bands. These deformation bands formed at very shallow burial depths in unconsolidated sediments indicate that fault sealing may occur in the absence of chemical alteration of the deformation bands and lead to a compartmentalization of a groundwater or hydrocarbon reservoir.

  20. SCR neon and argon in Kapoeta feldspar: Evidence for an active ancient Sun

    NASA Technical Reports Server (NTRS)

    Rao, M. N.; Garrison, D. H.; Bogard, D. D.

    1993-01-01

    From etched feldspar size-fractions of Kapoeta, we determine a significant excess of cosmogenic Ne-21 and Ar-38 over that produced by galactic cosmic rays. This excess component is attributed to early production by energetic solar protons and suggest that the energetic proton flux from the ancient Sun was several hundred times more intense than that of the contemporary Sun.

  1. Re-Examination of Anomalous I-Xe Ages: Orgueil and Murchison Magnetites and Allegan Feldspar

    NASA Technical Reports Server (NTRS)

    Hohenberg, Charles M.; Pravdivtseva, Olga V.; Meshik, Alex P.

    2000-01-01

    Old I-Xe age for Orgueil (and Murchison) magnetite is not confirmed. New results show closure 2.8 Ma after Shallowater/Bjurbole standard, 10.3 Ma later than previously reported. The anomalously old I-Xe age of Allegan feldspar is attributed to shock.

  2. Preferential cataclastic grain size reduction of feldspar in deformation bands in poorly consolidated arkosic sands

    PubMed Central

    Exner, Ulrike; Tschegg, Cornelius

    2012-01-01

    This study presents microstructural as well as bulk and mineral chemical investigations of deformation bands in uncemented, friable arkosic sands of Miocene age (Vienna Basin, Austria). Our microstructural study indicates grain size reduction by grain flaking in deformation bands with small offsets (0.5–8 cm), and dominant intragranular fracturing and cataclasis of altered feldspar grains at larger displacements (up to 60 cm). Relative to quartz, the sericitized feldspar grains are preferably fractured and abraded, which additionally leads to an enrichment of mainly phyllosilicates by mechanical expulsion from feldspar. Both cataclasis of quartz and feldspar grains and enrichment of phyllosilicates result in grain size reduction within the deformation bands. The measured reduction in porosity of up to 20% is in some cases associated with a permeability reduction, reflected in the retention of iron-oxide rich fluids along deformation bands. These deformation bands formed at very shallow burial depths in unconsolidated sediments indicate that fault sealing may occur in the absence of chemical alteration of the deformation bands and lead to a compartmentalization of a groundwater or hydrocarbon reservoir. PMID:26523078

  3. I-Xe Record of Cooling in K-Feldspar Inclusion from the Colomera (IIE) Iron

    NASA Technical Reports Server (NTRS)

    Pravdivtseva, Olga; Meshik, Alex; Hohenberg, Charles M.; Wasserburg, Gerald J.

    2000-01-01

    Individual mineral grains from a silicate inclusion of the Colomera IIE iron meteorite were studied by laser extraction to find suitable host phases for I-Xe dating. K-feldspar separate yields an I-Xe age of 4.552 Ga and a cooling rate of 4-16 C/Ma.

  4. Ragnar Granit 100 years--memories and reflections.

    PubMed

    Kernell, D

    2000-12-01

    The Swedish-Finnish Nobel laureate Ragnar Granit, born 100 years ago, is commemorated in a brief article by one of his former PhD students and collaborators. After a short account of Granit's life and scientific career, special attention is given to Granit's role as a teacher in research training and his published thoughts on this matter, partly reflecting Granit's own experience as a "postdoc" in the laboratory of Sherrington (Oxford). The article includes personal recollections of how it was to work together with Granit in his laboratory. PMID:11232369

  5. [Energy related studies utilizing K-feldspar thermochronology]. Progress report, 1991--1992

    SciTech Connect

    Not Available

    1992-03-01

    In our second year of current funding cycle, we have investigated the Ar diffusion properties and microstructures of K-feldspars and the application of domain theory to natural K-feldspars. We completed a combined TEM and argon diffusion study of the effect of laboratory heat treatment on the microstructure and kinetic properties of K-feldspar. We conclude in companion papers that, with one minor exception, no observable change in the diffusion behavior occurs during laboratory extraction procedures until significant fusion occurs at about 1100{degrees}C. The effect that is observed involves a correlation between the homogenization of cryptoperthite lamelle and the apparent increase in retentivity of about 5% of the argon in the K-feldspar under study. We can explain this effect of both as an artifact of the experiment or the loss of a diffusion boundary. Experiments are being considered to resolve this question. Refinements have been made to our experimental protocol that appears that greatly enhance the retrieval of multi-activation energies from K-feldspars. We have applied the multi-domain model to a variety of natural environments (Valles Caldera, Red River fault, Appalachian basin) with some surprising results. Detailed {sup 40}Ar/{sup 39} Ar coverage of the Red River shear zone, thought to be responsible for the accommodation of a significant fraction of the Indo-Asian convergence, strongly suggests that our technique can precisely date both the termination of ductile strike-slip motion and the initiation of normal faulting. Work has continued on improving our numerical codes for calculating thermal histories and the development of computer based graphing tools has significantly increased our productivity.

  6. CO2 Sequestration in Feldspar-Rich Sandstone: The Importance of Saturation State and Fluid Composition

    NASA Astrophysics Data System (ADS)

    Tutolo, B. M.; Luhmann, A. J.; Kong, X. Z.; Seyfried, W. E., Jr.; Saar, M. O.

    2014-12-01

    To investigate CO2 Capture, Utilization, and Storage (CCUS) in sandstones, we performed 150°C flow-through experiments on K-feldspar rich cores from the Eau Claire Formation. We observed mass transfer processes operating on a range of scales by measuring sample porosity, permeability, and surface area and fluid and solid chemistry. The close agreement between our measured K-feldspar dissolution rates and literature values demonstrate that feldspar-fluid interaction can be confidently modeled using our chosen rate parameters and characterization methods, but other hydrogeochemical processes evolve somewhat less predictably. Specifically, a sandstone core through which CO2-rich deionized water was recycled for 52 days decreased in porosity and permeability and increased in surface area while an Al hydroxide mineral, such as boehmite, precipitated within its pore space. However, two samples subjected to ~3 day single-pass experiments run with CO2-rich NaCl brines generally increased in porosity and surface area and decreased in permeability as K-feldspar was converted to a phase with kaolinite-like stoichiometry. Notably, boehmite remained two orders of magnitude less supersaturated than kaolinite in all samples from all experiments, and we therefore hypothesize that the identity of the secondary phase is related to the presence of NaCl in solution. Regardless of their identity, long-lived secondary phase supersaturations and low measured Al molalities suggest that Al is precipitated at approximately the same rate at which it is released to solution through feldspar hydrolysis. Finally, we note that, although core permeability measurably decreased in all three experiments, the magnitude of these changes is unlikely to impact CO2 injectivity over a CCUS reservoir's lifetime. The observations produced here are critical to the application of reactive transport models to CCUS systems, yet more work will be required in order to improve model predictions.

  7. Process for the disposal of alkali metals

    DOEpatents

    Lewis, Leroy C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.

  8. The alkali metals: 200 years of surprises.

    PubMed

    Dye, James L

    2015-03-13

    Alkali metal compounds have been known since antiquity. In 1807, Sir Humphry Davy surprised everyone by electrolytically preparing (and naming) potassium and sodium metals. In 1808, he noted their interaction with ammonia, which, 100 years later, was attributed to solvated electrons. After 1960, pulse radiolysis of nearly any solvent produced solvated electrons, which became one of the most studied species in chemistry. In 1968, alkali metal solutions in amines and ethers were shown to contain alkali metal anions in addition to solvated electrons. The advent of crown ethers and cryptands as complexants for alkali cations greatly enhanced alkali metal solubilities. This permitted us to prepare a crystalline salt of Na(-) in 1974, followed by 30 other alkalides with Na(-), K(-), Rb(-) and Cs(-) anions. This firmly established the -1 oxidation state of alkali metals. The synthesis of alkalides led to the crystallization of electrides, with trapped electrons as the anions. Electrides have a variety of electronic and magnetic properties, depending on the geometries and connectivities of the trapping sites. In 2009, the final surprise was the experimental demonstration that alkali metals under high pressure lose their metallic character as the electrons are localized in voids between the alkali cations to become high-pressure electrides! PMID:25666067

  9. Granitoid magmatism of Alarmaut granite-metamorphic dome, West Chukotka, NE Russia

    NASA Astrophysics Data System (ADS)

    Luchitskaya, M. V.; Sokolov, S. D.; Bondarenko, G. E.; Katkov, S. M.

    2009-04-01

    Main tectonic elements of West Chukotka are Alazey-Oloy, South-Anyui and Anyui-Chukotka fold systems, formed as a result of collision between structures of North-Asian continent active margin and Chukotka microcontinent [1-3]. South-Anyui fold system, separating Alazey-Oloy and Anyui-Chukotka systems, is considered as suture zon, formed as a result of oceanic basin closing [4-6]. Continent-microcontinent collision resulted in formation of large orogen with of northern and southern vergent structures, complicated by strike-slip deformations [7, 8]. Within Anyui-Chukotka fold system several rises, where most ancient deposits (crystalline basement and Paleozoic cover of Chukotka microcontinent) are exposed, were distinguished [2, 9-11]. Later they were considered as granite-metamorphic domes [12-14]. Alarmaut dome is located at West Chukotka to the north from Bilibino city and is traced from south to north in more than 120 km. General direction of structure is discordant to prevailing NW extensions of tectonic elements of the region. Paleozoic-Triassic deposits are exposed within the Alarmaut dome: 1) D3-C1 - crystalline schists, quartz-feldspar metasandstones, quartzites, marbles (700 m) [11]; 2) C1 - marblized limestones, quartz-feldspar metasandstones, quartzites, amphibole-pyroxene crystalline schists. Limestones contain corals, indicating Visean age of deposits [11]. Metamorphism reaches amphibolite facies, maximum P-T conditions are 660°С and 5 kbar. Migmatites, indicating in situ partial melting, are observed. Intensity of deformations of Paleozoic rocks increases at the boundary with Triassic deposits [11]; in the western part of dome slices of Pz rocks are separated by blastomylonite horizons [14]. Within Alramaut dome granitoids of Lupveem batholith (central part of dome), Bystrinsky pluton (southeastern part), and small Koyvel' and Kelil'vun plutons were studied. New U-Pb SHRIMP zircon data indicate Early Cretaceous (117-112 m.a.) age of granitoids [15

  10. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  11. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  12. Source regions of granites and their links to tectonic environment: examples from the western United States

    NASA Astrophysics Data System (ADS)

    Anthony, Elizabeth Y.

    2005-03-01

    This review, in honor of Ilmari Haapala's retirement, reflects on lessons learned from studies of three granitic systems in western North America: (1) Mesoproterozoic samples from west Texas and east New Mexico; (2) Laramide granitic systems associated with porphyry-copper deposits in Arizona; and (3) granites of the Colorado Mineral Belt. The studies elucidate relationships amongst tectonic setting, source material, and magma chemistry. Mesoproterozoic basement samples are from two different felsic suites with distinct elemental and isotopic compositions. The first suite, the "plutonic province", is dominantly magnesian, calc-alkalic to alkali-calcic, and metaluminous. It has low K 2O/Na 2O and Rb/Sr, and Nd model ages of 1.56 to 1.40 Ga. The second suite, the "Panhandle igneous complex", is magnesian, metaluminous, alkalic, and is part of the Mesoproterozoic belt of magmatism that extends from Finland to southwestern United States. Samples from the Panhandle igneous complex demonstrate three episodes of magmatism: the first pulse was intrusion of quartz monzonite at 1380 to 1370 Ma; the second was comagmatic epizonal granite and rhyolite at 1360 to 1350 Ma. Both of these rock types are high-K to slightly ultra-high-K. The third pulse at 1338 to 1330 Ma was intrusion of ultra-high-K quartz syenite. Nd model ages (1.94 to 1.52 Ga) are distinct from those of the "plutonic province" and systematically older than crystallization ages, implying a substantial crustal input to the magmas. At the Sierrita porphyry-copper deposit in the Mazatzal Province of southeastern Arizona, trace element, Sr, and Nd isotopic compositions were determined for a suite of andesitic and rhyolitic rocks (67 Ma) intruded by granodiorite and granite. Isotopic composition and chemical evolution are well correlated throughout the suite. Andesite has the least negative initial ɛNd (-4.3) and lowest 87Sr/ 86Sr i (0.7069). It is also the oldest and chemically most primitive, having low

  13. Physics of the granite sphere fountain

    NASA Astrophysics Data System (ADS)

    Snoeijer, Jacco H.; der Weele, Ko van

    2014-11-01

    A striking example of levitation is encountered in the "kugel fountain" where a granite sphere, sometimes weighing over a ton, is kept aloft by a thin film of flowing water. In this paper, we explain the working principle behind this levitation. We show that the fountain can be viewed as a giant ball bearing and thus forms a prime example of lubrication theory. It is demonstrated how the viscosity and flow rate of the fluid determine (i) the remarkably small thickness of the film supporting the sphere and (ii) the surprisingly long time it takes for rotations to damp out. The theoretical results compare well with measurements on a fountain holding a granite sphere of one meter in diameter. We close by discussing several related cases of levitation by lubrication.

  14. GRANITE FIORDS WILDERNESS STUDY AREA, ALASKA.

    USGS Publications Warehouse

    Berg, Henry C.; Pittman, Tom L.

    1984-01-01

    Mineral surveys of the Granite Fiords Wilderness study area revealed areas with probable and substantiated mineral-resource potential. In the northeastern sector, areas of probable and substantiated resource potential for gold, sivler, and base metals in small, locally high grade vein and disseminated deposits occur in recrystallized Mesozoic volcanic, sedimentary, and intrusive rocks. In the central part, areas of probable resource potential for gold, silver, copper, and zinc in disseminated and locally massive sulfide deposits occur in undated pelitic paragneiss roof pendants. A molybdenite-bearing quartz vein has been prospected in western Granite Fiords, and molybdenum also occurs along with other metals in veins in the northeastern sector and in geochemical samples collected from areas where there is probable resource potential for low-grade porphyry molybdenum deposits in several Cenozoic plutons. No energy resource potential was identified in the course of this study.

  15. Authigenic K-feldspar in salt rock (Haselgebirge Formation, Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Leitner, Christoph

    2015-04-01

    The crystallisation of authigenic quartz under low temperature, saline conditions is well known (Grimm, 1962). Also the growth of low temperature authigenic feldspar in sediments is a long known phenomenon (Kastner & Siever, 1979; Sandler et al., 2004). In this study we intend to show that halite (NaCl) is a major catalyser for authigenic mineral growth. During late Permian (c. 255-250 Ma), when the later Eastern Alps were located around north of the equator, the evaporites of the Haselgebirge Formation were deposited (Piller et al., 2004). The Haselgebirge Fm. consists in salt mines of a two-component tectonite of c. 50 % halite and 50 % sedimentary clastic and other evaporite rocks (Spötl 1998). Most of the clastic rocks are mud- to siltstones ("mudrock"). During this study, we investigated rare sandstones embedded in salt rock form four Alpine salt mines. Around 40 polished thin sections were prepared by dry grinding for thin section analysis and scanning electron microscopy. The sandstones consist mainly of quartz, K-feldspar, rock fragments, micas, accessory minerals and halite in the pore space. They are fine grained and well sorted. Mudrock clasts in sandstone were observed locally, and also coal was observed repeatedly. Asymmetric ripples were found only in the dimension of millimeters to centimeters. Euhedral halite crystals in pores indicate an early presence of halite. During early diagenesis, authigenic minerals crystallized in the following chronological order. (1) Where carbonate (mainly magnesite) occurred, it first filled the pore space. Plant remains were impregnated with carbonate. (2) Halite precipitated between the detritic sandstone grains. Carbonate grains can be completely embedded in halite. (3) K-feldspar and quartz grains usually expose a detritic core and a later grown euhedral inclusion free rim. Euhedral rims of K-feldspar often also enclose a halite core. K-feldspar replaced the pre-existing halite along former grain boundaries of

  16. Lead isotopic evidence for deep crustal-scale fluid transport during granite petrogenesis

    NASA Astrophysics Data System (ADS)

    McCulloch, M. T.; Woodhead, J. D.

    1993-02-01

    Lead isotopic compositions are reported for K-feldspars from the Bega and Berridale batholiths in the Paleozoic Lachlan Fold Belt (LFB) of southeastern Australia. In marked contrast to the wide range in initial Nd ( ɛNd = +3 to -9.2), the feldspars exhibit an extremely limited variation in Pb isotopic composition with 206Pb /204Pb of 18.14 to 18.18, 207Pb /204Pb of 15.58 to 15.63 and 208Pb /204Pb of 38.04 to 38.21. This variability is less than that observed in modern intra-oceanic island arcs such as the Marianas. Despite the very limited range of Pb isotopic compositions, there are still good correlations with ɛNd values as well as between single-stage Pb-Pb and TNd model ages. The Pb-Pb model ages, however, have a significantly reduced range from ~330 Ma to 440 Ma, compared to the older TNd model ages which range from 810 Ma to 1770 Ma. The correlation, particularly of 207Pb /204Pb ratios with neodymium isotopic compositions, is attributed to limited late-stage mixing between mantle and crustal components. It is argued that this late-stage crust-mantle interaction was a relatively subtle feature, superimposed upon continental crust with an already homogenous Pb isotopic composition, probably via underplating and intrusion into the crust of mafic, mantle-derived magmas. The homogeneous crustal composition is most evident in the extremely limited range of 206Pb /204Pb ratios in the Bega Batholith, implying long-term variations in U/Pb of the granite source rocks of < ±4%, despite their large range in TNd model ages. Considering the differing geochemical properties of U and Pb, this very restricted range in U/Pb ratios is thought to be an artefact of Pb isotopic homogenisation in the continental crust. The Pb isotopic composition in the granite source rocks was homogenised immediately prior to partial melting, probably as a result of mobility of Pb in deep, crustal-scale fluid advection systems. Lead mobility may be a consequence of the extremely high solubility

  17. Comparison of specularly reflecting mirrors for GRANIT

    NASA Astrophysics Data System (ADS)

    Nesvizhevsky, V. V.; Pignol, G.; Protasov, K. V.; Quemener, G.; Forest, D.; Ganau, P.; Mackowski, J. M.; Michel, Ch.; Montorio, J. L.; Morgado, N.; Pinard, L.; Remillieux, A.

    2007-08-01

    The specularity of ultracold neutron reflection was compared for different "promising" surfaces, including sapphire, silica, silica with carbon (diamond-like), and copper coatings with very small roughness. The probability of total losses of ultracold neutrons (UCN) from a specular trajectory was dominated by diffusive (non-specular) elastic scattering of UCN. In all the cases considered the quality of reflection was sufficiently high for storage of UCN at specular trajectories for the first stage of GRANIT experiment.

  18. Heater test 1, Climax Stock granite, Nevada

    SciTech Connect

    Montan, D.N.; Bradkin, W.E.

    1984-10-01

    We conducted a series of in-situ tests in the Climax Stock, an intrusive granite formation at the Nevada Test Site, to validate the concept of housing a nuclear waste repository in granitic crystalline rock. The thermal properties of the granite were measured with resistance heaters and thermocouple frames that had been emplaced in drilled holes in the floor of a drift 420 m below the surface. Data analysis was performed primarily by comparing the measured and calculated temperature histories, varying conductivity and diffusivity in the calculations until reasonable agreement was achieved. The best-fit value for in-situ conductivity was approximately 3.1 W/m x K, and the deduced value for in-situ diffusivity was approximately 1.2 mm{sup 2}/s. Anisotropic effects in the thermal field were less than 10%. Permeability was determined by sealing off portions of the drilled holes, using inflatable rubber packers and an air-pressurization system. We then compared the resulting decay in pressure with analytic solutions of the pressure loss from a cylindrical source in an infinite isotropic medium, obtaining a permeability of approximately 1 nanodarcy (nD) at about 30{sup 0}C. As the temperature increased, the permeability decreased to about 0.2 nD at about 50{sup 0}C and became too small to measure (<0.02 nD) at higher temperatures. These tests provided new data on the in-situ properties of a granite typical of the Basin and Range province and significantly advanced our understanding of and ability to perform in-situ thermal and permeability measurements. This knowledge will be of considerable value for future spent-fuel tests.

  19. Silicosis in West Country Granite Workers

    PubMed Central

    Hale, L. W.; Sheers, G.

    1963-01-01

    The granite industry in Cornwall and Devon is briefly described, especially the production of dust in dressing the stone. In 1951, 210 granite masons were examined (about 84% of the total at that time) and 37 (17·6%) showed silicosis. These men were followed up for 10 years. No silicosis was seen in men with less than 15 years' exposure, but after this time the risk increased to 11 out of 14 in those with over 35 years' exposure. Nine deaths occurred, two of which were due to silicosis. Radiological progression was observed in 13 of the 28 survivors. It was not necessarily associated with additional exposure but was related to age. More young men progressed. In 1961, 132 of the granite masons (about 93% of the total at that time) were re-examined and nine new cases of silicosis were found to have developed during the 10-year interval. The exposure in the 1961 cases was comparable with that of similar cases in 1951. Thus the risk has not been much reduced over this period. Pulmonary tuberculosis occurred in eight of the 37 cases of silicosis in 1951, and between 1951 and 1961 a further five cases were diagnosed, four being from one locality. This was by far the most frequent and disabling complication. Only one case of progressive massive fibrosis was seen. More extensive use of protective antituberculous chemotherapy is advocated, and also better dust control. Images PMID:14046159

  20. Alkali burns from wet cement.

    PubMed Central

    Peters, W. J.

    1984-01-01

    When water is added to the dry materials of Portland cement calcium hydroxide is formed; the wet cement is caustic (with a pH as high as 12.9) and can produce third-degree alkali burns after 2 hours of contact. Unlike professional cement workers, amateurs are usually not aware of any danger and may stand or kneel in the cement for long periods. As illustrated in a case report, general physicians may recognize neither the seriousness of the injury in its early stages nor the significance of a history of prolonged contact with wet cement. All people working with cement should be warned about its dangers and advised to immediately wash and dry the skin if contact does occur. Images Fig. 1 PMID:6561052

  1. The Early Jurassic Bokan Mountain peralkaline granitic complex (southeastern Alaska): Geochemistry, petrogenesis and rare-metal mineralization

    NASA Astrophysics Data System (ADS)

    Dostal, Jaroslav; Kontak, Daniel J.; Karl, Susan M.

    2014-08-01

    The Early Jurassic (ca. 177 Ma) Bokan Mountain granitic complex, located on southern Prince of Wales Island, southernmost Alaska, cross-cuts Paleozoic igneous and metasedimentary rocks of the Alexander terrane of the North American Cordillera and was emplaced during a rifting event. The complex is a circular body (~ 3 km in diameter) of peralkaline granitic composition that has a core of arfvedsonite granite surrounded by aegirine granite. All the rock-forming minerals typically record a two-stage growth history and aegirine and arfvedsonite were the last major phases to crystallize from the magma. The Bokan granites and related dikes have SiO2 from 72 to 78 wt.%, high iron (FeO (tot) ~ 3-4.5 wt.%) and alkali (8-10 wt.%) concentrations with high FeO(tot)/(FeO(tot) + MgO) ratios (typically > 0.95) and the molar Al2O3/(Na2O + K2O) ratio < 1. The granitic rocks are characterized by elevated contents of rare earth elements (REE), Th, U and high field strength elements (HFSE) and low contents of Ca, Sr, Ba and Eu, typical of peralkaline granites. The granites have high positive εNd values which are indicative of a mantle signature. The parent magma is inferred to be derived from an earlier metasomatized lithospheric mantle by low degrees of partial melting and generated the Bokan granitic melt through extensive fractional crystallization. The Bokan complex hosts significant rare-metal (REE, Y, U, Th, Nb) mineralization that is related to the late-stage crystallization history of the complex which involved the overlap of emplacement of felsic dikes, including pegmatite bodies, and generation of orthomagmatic fluids. The abundances of REE, HFSE, U and Th as well as Pb and Nd isotopic values of the pluton and dikes were modified by orthomagmatic hydrothermal fluids highly enriched in the strongly incompatible trace elements, which also escaped along zones of structural weakness to generate rare-metal mineralization. The latter was deposited in two stages: the first

  2. Asymmetric textural and structural patterns of a granitic body emplaced at shallow levels: The La Chinchilla pluton, northwestern Argentina

    NASA Astrophysics Data System (ADS)

    Macchioli Grande, M.; Alasino, P. H.; Rocher, S.; Larrovere, M. A.; Dahlquist, J. A.

    2015-12-01

    New mapping and a detailed structural study of the La Chinchilla stock, Sierra de Velasco, NW Argentina, suggest an asymmetrical shape of the pluton and provide strong evidence for its shallow emplacement depth. The pluton is a Lower Carboniferous monzogranite composed of K-feldspar, quartz, plagioclase and biotite. It exhibits an internal asymmetric textural zoning, defined by porphyritic granite in the southeastern region to equigranular granite in the northwestern region. The presence of subhorizontal dikes in the northwestern area, where the contacts dip shallowly, and subvertical dikes intruding the host rock nearby steep-dipping intrusive contacts in the southeastern region are compatible with an overall asymmetrical shape and internal structure of this pluton. Considering published crystallization ages, a dominant strain field occurring at around 12 Ma is inferred based on magmatic fabrics in the pluton and its host rock (the Huaco pluton), with a principal shortening direction oriented SW-NE, consistent with the general NW-SE strike of the body. Field evidence supports brittle fracturing and block displacement as the dominant emplacement mechanism, suggesting that magmatic stoping dominated during the late stage of the evolution of the magma chamber.

  3. X-ray crystallography and mineral chemistry of bastnaesite from Kanigiri granite, Prakasam district, Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Singh, Yamuna; Nagendra Babu, G.; Viswanathan, R.; Sai Baba, M.; Rai, A. K.; Parihar, P. S.

    2014-12-01

    The authors report the results of X-ray diffraction (XRD) and geochemical studies on bastnaesites (lanthanum cerium fluoro-carbonate) hosted in alkali Kanigiri Granite of the Prakasam district in Andhra Pradesh, India. The XRD pattern of the investigated bastnaesite displays sharply-defined reflections. The observed d-spacings of the bastnaesite are in very close agreement with those published for bastnaesite standard in International Centre for Diffraction Data (ICDD) Card No. 11-340. The calculated unit cell parameters ( a o ; c o ) and unit cell volume (V) of the studied bastnaesite ( a o 7.1301-7.1413 Å, c o 9.7643-9.7902Å and V 429.8940-432.3875 Å3) are almost equal to values published for bastnaesite standard ( c o 7.1290 Å, c o 9.7744 Å and V 430.19 Å3) in the relevant data card. Geochemical data of bastnaesite reveals high content of Ce (mean 27.22%) followed by La (mean 16.82%), Nd (mean 6.12%) and Pr (mean 1.91%). Compared to light REE (LREE) content (mean 437165 ppm), heavy REE (HREE) content (mean 5867 ppm) is drastically low, with unusually high LREE/HREE ratio (mean 80). The chondrite-normalised plot also exhibits drastic enrichment of LREE relative to HREE with pronounced negative Euanomaly (mean Eu/Eu* = 0.15). High (LREE) N / (HREE) N , (La/Lu) N , (La/Yb) N and (Ce/Yb) N ratios reveal higher fractionation of LREE relative to HREE. The rare earth element (REE) contents of the studied bastnaesite are very close to REE contents of bastnaesite hosted in alkali syenite from Madagascar. The presence of bastnaesite in Kanigiri Granite and soils derived from it enhances the scope of further exploration for bastnaesite in several bodies of alkaline rocks and alkali granitoids present along the eastern margins of the Cuddapah basin, Andhra Pradesh.

  4. X-ray crystallography and mineral chemistry of bastnaesite from Kanigiri granite, Prakasam district, Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Singh, Yamuna; Nagendra Babu, G.; Viswanathan, R.; Sai Baba, M.; Rai, A.; Parihar, P.

    2014-12-01

    The authors report the results of X-ray diffraction (XRD) and geochemical studies on bastnaesites (lanthanum cerium fluoro-carbonate) hosted in alkali Kanigiri Granite of the Prakasam district in Andhra Pradesh, India. The XRD pattern of the investigated bastnaesite displays sharply-defined reflections. The observed d-spacings of the bastnaesite are in very close agreement with those published for bastnaesite standard in International Centre for Diffraction Data (ICDD) Card No. 11-340. The calculated unit cell parameters (a o; c o) and unit cell volume (V) of the studied bastnaesite (a o 7.1301-7.1413 Å, c o 9.7643-9.7902Å and V 429.8940-432.3875 Å3) are almost equal to values published for bastnaesite standard (c o 7.1290 Å, c o 9.7744 Å and V 430.19 Å3) in the relevant data card. Geochemical data of bastnaesite reveals high content of Ce (mean 27.22%) followed by La (mean 16.82%), Nd (mean 6.12%) and Pr (mean 1.91%). Compared to light REE (LREE) content (mean 437165 ppm), heavy REE (HREE) content (mean 5867 ppm) is drastically low, with unusually high LREE/HREE ratio (mean 80). The chondrite-normalised plot also exhibits drastic enrichment of LREE relative to HREE with pronounced negative Euanomaly (mean Eu/Eu* = 0.15). High (LREE)N / (HREE)N, (La/Lu)N, (La/Yb)N and (Ce/Yb)N ratios reveal higher fractionation of LREE relative to HREE. The rare earth element (REE) contents of the studied bastnaesite are very close to REE contents of bastnaesite hosted in alkali syenite from Madagascar. The presence of bastnaesite in Kanigiri Granite and soils derived from it enhances the scope of further exploration for bastnaesite in several bodies of alkaline rocks and alkali granitoids present along the eastern margins of the Cuddapah basin, Andhra Pradesh.

  5. Effects of chemical surface modification on the ice nucleation ability of feldspar and illite

    NASA Astrophysics Data System (ADS)

    Augustin, Stefanie; Wex, Heike; Kanter, Sandra; Ebert, Martin; Niedermeier, Dennis; Stratmann, Frank

    2014-05-01

    Mineral dust is the most abundant ice nuclei (IN) in the atmosphere and thus it is thought to be important for ice nucleation in clouds (Murray et al. [2012]). The clay minerals contribute approximately two thirds of the mineral dust mass (Atkinson et al. [2013]), and illite is the most abundant clay mineral found in the atmosphere [Broadley et al., 2012]. In the past years a lot of the ice nucleation research focused on proxies for clay minerals like Arizona Test Dust (ATD), kaolinite and illite (see reviews by Murray et al. [2012] and Hoose and Möhler. [2012]). In most experiments, these substances acted as IN only at relatively low temperatures (lower than -25°C). Very recently Atkinson et al. (2013) showed that K-feldspar, which is a common crustal material, is the most active mineral dust with freezing temperatures above -20°C. In the present study we compared the immersion freezing behavior of size segregated illite and feldspar particles. We used illite-NX (Arginotec) and a feldspar sample from Minas Gerais, Brazil (consisting to roughly 80% of a K-feldspar with the remainder being a Na-feldspar). Both substances were examined in the framework of the INUIT research project. For the illite-NX particles freezing onset was observed at temperatures around -34°C. The feldspar sample already induced freezing at -23°C. The data obtained was in agreement to those reported in Broadley el al. [2012] and Atkinson et al. [2013]. To simulate chemical aging of the particle surface we coated the particles with sulfuric acid and repeated the measurements. The illite-NX showed a rather small change in the ice nucleation ability, whereas the freezing ability of the feldspar was strongly reduced and became similar to that of illite-NX. It seems that the sulfuric acid destroyed those sites on the particle surface which are responsible for the initiation of freezing. We continue our work in trying to better understand what exactly it is that gives K-feldspar its good IN

  6. Microfluidic Leaching of Soil Minerals: Release of K+ from K Feldspar.

    PubMed

    Ciceri, Davide; Allanore, Antoine

    2015-01-01

    The rate of K+ leaching from soil minerals such as K-feldspar is believed to be too slow to provide agronomic benefit. Currently, theories and methods available to interpret kinetics of mineral processes in soil fail to consider its microfluidic nature. In this study, we measure the leaching rate of K+ ions from a K-feldspar-bearing rock (syenite) in a microfluidic environment, and demonstrate that at the spatial and temporal scales experienced by crop roots, K+ is available at a faster rate than that measured with conventional apparatuses. We present a device to investigate kinetics of mineral leaching at an unprecedented simultaneous resolution of space (~101-102 μm), time (~101-102 min) and fluid volume (~100-101 mL). Results obtained from such a device challenge the notion that silicate minerals cannot be used as alternative fertilizers for tropical soils. PMID:26485160

  7. Microfluidic Leaching of Soil Minerals: Release of K+ from K Feldspar

    PubMed Central

    Ciceri, Davide; Allanore, Antoine

    2015-01-01

    The rate of K+ leaching from soil minerals such as K-feldspar is believed to be too slow to provide agronomic benefit. Currently, theories and methods available to interpret kinetics of mineral processes in soil fail to consider its microfluidic nature. In this study, we measure the leaching rate of K+ ions from a K-feldspar-bearing rock (syenite) in a microfluidic environment, and demonstrate that at the spatial and temporal scales experienced by crop roots, K+ is available at a faster rate than that measured with conventional apparatuses. We present a device to investigate kinetics of mineral leaching at an unprecedented simultaneous resolution of space (~101-102 μm), time (~101-102 min) and fluid volume (~100-101 mL). Results obtained from such a device challenge the notion that silicate minerals cannot be used as alternative fertilizers for tropical soils. PMID:26485160

  8. Quantitative analysis of time-resolved infrared stimulated luminescence in feldspars

    NASA Astrophysics Data System (ADS)

    Pagonis, Vasilis; Ankjærgaard, Christina; Jain, Mayank; Chithambo, Makaiko L.

    2016-09-01

    Time-resolved infrared-stimulated luminescence (TR-IRSL) from feldspar samples is of importance in the field of luminescence dating, since it provides information on the luminescence mechanism in these materials. In this paper we present new analytical equations which can be used to analyze TR-IRSL signals, both during and after short infrared stimulation pulses. The equations are developed using a recently proposed kinetic model, which describes localized electronic recombination via tunneling between trapped electrons and recombination centers in luminescent materials. Recombination is assumed to take place from the excited state of the trapped electron to the nearest-neighbor center within a random distribution of luminescence recombination centers. Different possibilities are examined within the model, depending on the relative importance of electron de-excitation and recombination. The equations are applied to experimental TR-IRSL data of natural feldspars, and good agreement is found between experimental and modeling results.

  9. 40Ar/39Ar ages in deformed potassium feldspar: evidence of microstructural control on Ar isotope systematics

    NASA Astrophysics Data System (ADS)

    Reddy, Steven M.; Potts, Graham J.; Kelley, Simon P.

    2001-05-01

    Detailed field and microstructural studies have been combined with high spatial resolution ultraviolet laser 40Ar/39Ar dating of naturally deformed K-feldspar to investigate the direct relationship between deformation-related microstructure and Ar isotope systematics. The sample studied is a ~1,000 Ma Torridonian arkose from Skye, Scotland, that contains detrital feldspars previously metamorphosed at amphibolite-facies conditions ~1,700 Ma. The sample was subsequently deformed ~430 Ma ago during Caledonian orogenesis. The form and distribution of deformation-induced microstructures within three different feldspar clasts has been mapped using atomic number contrast and orientation contrast imaging, at a range of scales, to identify intragrain variations in composition and lattice orientation. These variations have been related to thin section and regional structural data to provide a well-constrained deformation history for the feldspar clasts. One hundred and forty-three in-situ 40Ar/39Ar analyses measured using ultraviolet laser ablation record a range of apparent ages (317-1030 Ma). The K-feldspar showing the least strain records the greatest range of apparent ages from 420-1,030 Ma, with the oldest apparent ages being found close to the centre of the feldspar away from fractures and the detrital grain boundary. The most deformed K-feldspar yields the youngest apparent ages (317-453 Ma) but there is no spatial relationship between apparent age and the detrital grain boundary. Within this feldspar, the oldest apparent ages are recorded from orientation domain boundaries and fracture surfaces where an excess or trapped 40Ar component resides. Orientation contrast images at a similar scale to the Ar analyses illustrate a significant deformation-related microstructural difference between the feldspars and we conclude that deformation plays a significant role in controlling Ar systematics of feldspars at both the inter- and intragrain scales even at relatively low

  10. Integrating Sphere Alkali-Metal Vapor Cells

    NASA Astrophysics Data System (ADS)

    McGuyer, Bart; Ben-Kish, Amit; Jau, Yuan-Yu; Happer, William

    2010-03-01

    An integrating sphere is an optical multi-pass cavity that uses diffuse reflection to increase the optical path length. Typically applied in photometry and radiometry, integrating spheres have previously been used to detect trace gases and to cool and trap alkali-metal atoms. Here, we investigate the potential for integrating spheres to enhance optical absorption in optically thin alkali-metal vapor cells. In particular, we consider the importance of dielectric effects due to a glass container for the alkali-metal vapor. Potential applications include miniature atomic clocks and magnetometers, where multi-passing could reduce the operating temperature and power consumption.

  11. Alkali Silicate Vehicle Forms Durable, Fireproof Paint

    NASA Technical Reports Server (NTRS)

    Schutt, John B.; Seindenberg, Benjamin

    1964-01-01

    The problem: To develop a paint for use on satellites or space vehicles that exhibits high resistance to cracking, peeling, or flaking when subjected to a wide range of temperatures. Organic coatings will partially meet the required specifications but have the inherent disadvantage of combustibility. Alkali-silicate binders, used in some industrial coatings and adhesives, show evidence of forming a fireproof paint, but the problem of high surface-tension, a characteristic of alkali silicates, has not been resolved. The solution: Use of a suitable non-ionic wetting agent combined with a paint incorporating alkali silicate as the binder.

  12. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  13. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  14. Advancements in flowing diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Pitz, Greg A.; Stalnaker, Donald M.; Guild, Eric M.; Oliker, Benjamin Q.; Moran, Paul J.; Townsend, Steven W.; Hostutler, David A.

    2016-03-01

    Multiple variants of the Diode Pumped Alkali Laser (DPAL) have recently been demonstrated at the Air Force Research Laboratory (AFRL). Highlights of this ongoing research effort include: a) a 571W rubidium (Rb) based Master Oscillator Power Amplifier (MOPA) with a gain (2α) of 0.48 cm-1, b) a rubidium-cesium (Cs) Multi-Alkali Multi-Line (MAML) laser that simultaneously lases at both 795 nm and 895 nm, and c) a 1.5 kW resonantly pumped potassium (K) DPAL with a slope efficiency of 50%. The common factor among these experiments is the use of a flowing alkali test bed.

  15. Biochemical evolution. I. Polymerization on internal, organophilic silica surfaces of dealuminated zeolites and feldspars

    PubMed Central

    Smith, Joseph V.

    1998-01-01

    Catalysis at mineral surfaces might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and photochemical gas reactions. Many ideas are implausible in detail because the proposed mineral surfaces strongly prefer water and other ionic species to organic ones. The molecular sieve silicalite (Union Carbide; = Al-free Mobil ZSM-5 zeolite) has a three-dimensional, 10-ring channel system whose electrically neutral Si-O surface strongly adsorbs organic species over water. Three -O-Si tetrahedral bonds lie in the surface, and the fourth Si-O points inwards. In contrast, the outward Si-OH of simple quartz and feldspar crystals generates their ionic organophobicity. The ZSM-5-type zeolite mutinaite occurs in Antarctica with boggsite and tschernichite (Al-analog of Mobil Beta). Archean mutinaite might have become de-aluminated toward silicalite during hot/cold/wet/dry cycles. Catalytic activity of silicalite increases linearly with Al-OH substitution for Si, and Al atoms tend to avoid each other. Adjacent organophilic and catalytic Al-OH regions in nanometer channels might have scavenged organic species for catalytic assembly into specific polymers protected from prompt photochemical destruction. Polymer migration along weathered silicic surfaces of micrometer-wide channels of feldspars might have led to assembly of replicating catalytic biomolecules and perhaps primitive cellular organisms. Silica-rich volcanic glasses should have been abundant on the early Earth, ready for crystallization into zeolites and feldspars, as in present continental basins. Abundant chert from weakly metamorphosed Archaean rocks might retain microscopic clues to the proposed mineral adsorbent/catalysts. Other framework silicas are possible, including ones with laevo/dextro one-dimensional channels. Organic molecules, transition-metal ions, and P occur inside modern feldspars. PMID:9520372

  16. Gamma activity of stream sediment feldspars as ceramic raw materials and their environmental impact.

    PubMed

    Aboelkhair, Hatem; Ibrahim, Tarek; Saad, Ahmed

    2012-08-01

    In situ gamma spectrometric measurements have been performed to characterise the natural radiation that emitted from the stream sediment feldspars in Wadi El Missikat and Wadi Homret El Gergab, Eastern Desert, Egypt. The measurements of potassium (K, %), equivalent uranium (eU, ppm) and equivalent thorium (eTh, ppm) were converted into specific activities and equivalent dose rate. The average specific activities were 1402 Bq kg(-1) for K, 113 Bq kg(-1) for eU and 108 Bq kg(-1) for eTh in Wadi El Missikat, while they were 1240, 104 and 185 Bq kg(-1) in Wadi Homret El Gergab. The calculated outdoor average effective dose rates was 1.1 mSv y(-1) in wadi El Missikat and 1.3 mSv y(-1) in Wadi Homret El Gergab. The terrestrial-specific activities and effective dose rate levels of the natural radioactivity in the two areas lie within the international recommended limits for occupational feldspar quarry workers. On the other hand, these results indicated that irradiation is higher than the allowable level for members of the public. Therefore, quarrying the feldspar sediments from these locations as ceramic raw materials may yield an undesired impact on the environment, especially through the indoor applications. PMID:22171098

  17. Preparation of ultrafine silica from potash feldspar using sodium carbonate roasting technology

    NASA Astrophysics Data System (ADS)

    Liu, Jia-nan; Shen, Xiao-yi; Wu, Yan; Zhang, Jun; Zhai, Yu-chun

    2016-08-01

    A novel process was developed for the preparation of ultrafine silica from potash feldspar. In the first step, potash feldspar was roasted with Na2CO3 and was followed by leaching using NaOH solution to increase the levels of potassium, sodium, and aluminum in the solid residue. The leaching solution was then carbonated to yield ultrafine silica. The optimized reaction conditions in the roasting process were as follows: an Na2CO3-to-potash feldspar molar ratio of 1.1, a reaction temperature of 875°C, and a reaction time of 1.5 h. Under these conditions, the extraction rate of SiO2 was 98.13%. The optimized carbonation conditions included a final solution pH value of 9.0, a temperature of 40°C, a CO2 flow rate of 6 mL/min, a stirring intensity of 600 r/min, and an ethanol-to-water volume ratio of 1:9. The precipitation rate and granularity of the SiO2 particles were 99.63% and 200 nm, respectively. We confirmed the quality of the obtained ultrafine silica by comparing the recorded indexes with those specified in Chinese National Standard GB 25576―2010.

  18. Isochron dating of sediments using luminescence of K-feldspar grains

    NASA Astrophysics Data System (ADS)

    Li, Bo; Li, Sheng-Hua; Wintle, Ann G.; Zhao, Hui

    2008-06-01

    A new method for dating well-bleached sediments is presented, with results for thirteen samples from China. The method uses an isochron constructed from the measurement of natural radiation doses received by potassium-feldspar grains in a range of grain sizes using the infrared stimulated luminescence (IRSL) signal. The age of deposition of the sediment is calculated from this isochron and from the internal dose rate to the grains from 40K and 87Rb in the crystal lattice. This procedure appears to overcome age underestimation due to anomalous fading, a phenomenon that has precluded conventional luminescence dating of K-feldspars and would be applicable to K-feldspars for which the natural dose is beyond the linear dose response region. Also, since the isochron IRSL method is reliant on only the internal dose rate, it overcomes problems related to (1) changes in past dose rate due to postdepositional migration of radionuclides, (2) changes in water content as water-lain sediments dry out, (3) spatial heterogeneity in the gamma dose rate, and (4) uncertainties in the cosmic ray dose rate during the period of sample burial.

  19. Sorption Mechanisms of Antibiotic Cephapirin onto Quartz and Feldspar by Raman Spectroscopy

    SciTech Connect

    Peterson, Jonathan; Wang, Wei; Gu, Baohua

    2009-01-01

    Raman spectroscopy was used to investigate the sorption mechanisms of cephapirin (CHP), a veterinary antibiotic, onto quartz (SiO2) and feldspar (KAlSi3O8) at different pH values. Depending on the charge and surface properties of the mineral, different reaction mechanisms including electrostatic attraction, monodentate and bidentate complexation were found to be responsible for CHP sorption. The zwitterion (CHPo) adsorbs to a quartz(+) surface by electrostatic attraction of the carboxylate anion group ( COO-) at a low pH, but adsorbs to a quartz(-) surface through electrostatic attraction of the pyridinium cation and possibly COO- bridge complexes at relatively higher pH conditions. CHP- bonds to a quartz(-) surface by bidentate complexation between one oxygen of COO- and oxygen from the carbonyl (C=O) of the acetoxymethyl group. On a feldspar surface of mixed charge, CHPo forms monodentate complexes between C=O as well as COO- bridging complexes or electrostatically attached to localized edge (hydr)oxy-Al surfaces. CHP- adsorbs to feldspar(-) through monodentate C=O complexation, and similar mechanisms may operate for the sorption of other cephalosporins. This research demonstrates, for the first time, that Raman spectroscopic techniques can be effective for evaluating the sorption processes and mechanisms of cephalosporin antibiotics even at relatively low sorbed concentrations (97-120 μmol/kg).

  20. Preface to special issue: Granite magmatism in Brazil

    NASA Astrophysics Data System (ADS)

    Janasi, Valdecir de Assis; de Pinho Guimarães, Ignez; Nardi, Lauro Valentim Stoll

    2016-07-01

    Granites are important both to the geologic evolution and to the economy of Brazil. Deposits of precious and rare metals, such as Au, Sn and many others, are directly or indirectly associated with granites, especially in the geologically under-explored Amazon region. On the opposite eastern side of the country, expanding exploitation of natural granite as dimension stone makes Brazil currently the world's second largest exporter of granite blocks. Granites are a major constituent of the Brazilian Archean-Proterozoic cratonic domains (the Amazon and São Francisco cratons) and their surrounding Neoproterozoic fold belts. The granites are thus fundamental markers of the major events of crustal generation and recycling that shaped the South American Platform. As a result, Brazilian granites have received great attention from the national and international community, and a number of influential meetings focused on the study of granites were held in the country in the last three decades. These meetings include the two International Symposia on Granites and Associated Mineralization (Salvador, January 21-31, 1987, and August 24-29, 1997), the Symposium on Rapakivi Granites and Related Rocks (Belém, August 2-5, 1995) and the Symposium on Magmatism, Crustal Evolution, and Metallogenesis of the Amazonian Craton (Belém, August 2006). Special issues dedicated to contributions presented at these meetings in the Journal of South American Earth Sciences (Sial et al., 1998), Lithos (Stephens et al., 1999), Canadian Mineralogist (Dall'Agnol and Ramo, 2006), Precambrian Research (Ramo et al., 2002) and Anais da Academia Brasileira de Ciências (Dall'Agnol and Bettencourt, 1997; Sial et al., 1999a) are still important references on the knowledge of Brazilian granites and granite petrology in general.

  1. Alkali metal for ultraviolet band-pass filter

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  2. Petrogenetic relationships between pegmatite and granite based on geochemistry of muscovite in pegmatite wall zones, Black Hills, South Dakota, USA

    SciTech Connect

    Jolliff, B.L. ); Papike, J.J.; Shearer, C.K. )

    1992-05-01

    The compositions of large samples of granitic pegmatite wall zones have been determined for a suite of ten pegmatites of diverse geochemical character and degree of compositional evolution in the Keystone area of the Black Hills. Whole-rock compositions are strongly peraluminous, and they deviate substantially from the granite minimum composition in quartz-albite-orthoclase normalized components, showing considerably more scatter than Harney Peak Granite whole rocks. Wall-zone minerals are commonly coarsely segregated, leading to large modal variability among whole rocks. These features make whole-rock samples of wall zones unsuitable for the determination of initial pegmatite bulk compositions. Trace and minor element compositions of muscovite separates from the wall zones were thus determined to eliminate the effects of modal variability on trace element concentrations so that geochemical differences between pegmatites could be modeled. Estimates of initial pegmatite melt trace element concentrations range from 800-4,000 ppm Rb, 100-1,000 ppm Cs, 200-2,000 ppm Li, and 1-50 ppm Ba. Trace element concentrations of muscovite from a given pegmatite generally cluster together, although several show considerable intra-pegmatite scatter, and there are large overlaps among different pegmatites. The geochemical characteristics of samples from the Etta pegmatite indicate mixing with and assimilation of country rocks. Exceptionally low Rb/Cs ratios of muscovite from the Etta pegmatite and similar to those of muscovite from K-feldspar-rich assemblages of other pegmatites where the Rb concentration of melt may have been buffered by crystallizing assemblages that had bulk Rb distribution coefficients close to 1.

  3. Alkali Metal Handling Practices at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Salvail, Patrick G.; Carter, Robert R.

    2002-01-01

    NASA Marshall Space Flight Center (MSFC) is NASA s principle propulsion development center. Research and development is coordinated and carried out on not only the existing transportation systems, but also those that may be flown in the near future. Heat pipe cooled fast fission cores are among several concepts being considered for the Nuclear Systems Initiative. Marshall Space Flight Center has developed a capability to handle high-purity alkali metals for use in heat pipes or liquid metal heat transfer loops. This capability is a low budget prototype of an alkali metal handling system that would allow the production of flight qualified heat pipe modules or alkali metal loops. The processing approach used to introduce pure alkali metal into heat pipe modules and other test articles are described in this paper.

  4. Alkali-metal intercalation in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Béguin, F.; Duclaux, L.; Méténier, K.; Frackowiak, E.; Salvetat, J. P.; Conard, J.; Bonnamy, S.; Lauginie, P.

    1999-09-01

    We report on successful intercalation of multiwall (MWNT) and single wall (SWNT) carbon nanotubes with alkali metals by electrochemical and vapor phase reactions. A LiC10 compound was produced by full electrochemical reduction of MWNT. KC8 and CsC8-MWNT first stage derivatives were synthesized in conditions of alkali vapor saturation. Their identity periods and the 2×2 R 0° alkali superlattice are comparable to their parent graphite compounds. The dysonian shape of KC8 EPR line and the temperature-independent Pauli susceptibility are both characteristic of a metallic behavior, which was confirmed by 13C NMR anisotropic shifts. Exposure of SWNT bundles to alkali vapor led to an increase of the pristine triangular lattice from 1.67 nm to 1.85 nm and 1.87 nm for potassium and rubidium, respectively.

  5. Age and thermochronology of K-feldspars from the Manson Impact Structure

    NASA Technical Reports Server (NTRS)

    Zeitler, P. K.; Kunk, M. J.

    1993-01-01

    As a contribution to the effort to obtain a precise age for the Manson Impact Structure, we are approaching the problem from a thermo chronological perspective, with the goal of extracting an age from Ar-40/Ar-39 age-spectrum analysis of partially overprinted K-feldspars taken from granitoid clasts. We find that shocked feldspars from Manson generally show a strong overprint in their age spectra, with more than 50 percent of each spectrum being reset. The reset portions of the age spectra correspond to gas lost from very small diffusion domains, and a characteristic of the Manson samples is the very large range in apparent diffusion dimensions that they display, with the smallest domains being some 400 times smaller than the largest domains. It is also noteworthy that the small domains comprise a substantial portion of the volume of the feldspars (50 percent or more). These observations are consistent with the extreme shock experienced by these samples. In detail, the spectra we have measured to date are saddle-shaped and show minimum ages of between 67 and 72 Ma, which we interpret to be maximum estimates for the age of the impact. In the case of one sample (M1-678.3; K-feldspar from a large syenite block located well below the apparent melt-matrix breccia in the M1 borehole), isotope correlation analysis suggests the presence of a non-atmospheric trapped Ar component (Ar-40/Ar-36 of 660 plus or minus 40), and an age of about 65.3 plus or minus 0.5 Ma (2 sigma). Our interpretation of our results is that the shock of impact greatly reduced the diffusion-domain sizes of our samples, making them susceptible to significant Ar loss during heating associated with impact. It appears that while our feldspars were partially open to Ar loss, they equilibrated with a non-atmospheric Ar component, probably related to impact-related degassing of old basement around the impact site.

  6. Age and thermochronology of K-feldspars from the Manson Impact Structure

    NASA Astrophysics Data System (ADS)

    Zeitler, P. K.; Kunk, M. J.

    1993-03-01

    As a contribution to the effort to obtain a precise age for the Manson Impact Structure, we are approaching the problem from a thermo chronological perspective, with the goal of extracting an age from Ar-40/Ar-39 age-spectrum analysis of partially overprinted K-feldspars taken from granitoid clasts. We find that shocked feldspars from Manson generally show a strong overprint in their age spectra, with more than 50 percent of each spectrum being reset. The reset portions of the age spectra correspond to gas lost from very small diffusion domains, and a characteristic of the Manson samples is the very large range in apparent diffusion dimensions that they display, with the smallest domains being some 400 times smaller than the largest domains. It is also noteworthy that the small domains comprise a substantial portion of the volume of the feldspars (50 percent or more). These observations are consistent with the extreme shock experienced by these samples. In detail, the spectra we have measured to date are saddle-shaped and show minimum ages of between 67 and 72 Ma, which we interpret to be maximum estimates for the age of the impact. In the case of one sample (M1-678.3; K-feldspar from a large syenite block located well below the apparent melt-matrix breccia in the M1 borehole), isotope correlation analysis suggests the presence of a non-atmospheric trapped Ar component (Ar-40/Ar-36 of 660 plus or minus 40), and an age of about 65.3 plus or minus 0.5 Ma (2 sigma). Our interpretation of our results is that the shock of impact greatly reduced the diffusion-domain sizes of our samples, making them susceptible to significant Ar loss during heating associated with impact. It appears that while our feldspars were partially open to Ar loss, they equilibrated with a non-atmospheric Ar component, probably related to impact-related degassing of old basement around the impact site.

  7. Multivariate analyses of Erzgebirge granite and rhyolite composition: Implications for classification of granites and their genetic relations

    USGS Publications Warehouse

    Forster, H.-J.; Davis, J.C.; Tischendorf, G.; Seltmann, R.

    1999-01-01

    High-precision major, minor and trace element analyses for 44 elements have been made of 329 Late Variscan granitic and rhyolitic rocks from the Erzgebirge metallogenic province of Germany. The intrusive histories of some of these granites are not completely understood and exposures of rock are not adequate to resolve relationships between what apparently are different plutons. Therefore, it is necessary to turn to chemical analyses to decipher the evolution of the plutons and their relationships. A new classification of Erzgebirge plutons into five major groups of granites, based on petrologic interpretations of geochemical and mineralogical relationships (low-F biotite granites; low-F two-mica granites; high-F, high-P2O5 Li-mica granites; high-F, low-P2O5 Li-mica granites; high-F, low-P2O5 biotite granites) was tested by multivariate techniques. Canonical analyses of major elements, minor elements, trace elements and ratio variables all distinguish the groups with differing amounts of success. Univariate ANOVA's, in combination with forward-stepwise and backward-elimination canonical analyses, were used to select ten variables which were most effective in distinguishing groups. In a biplot, groups form distinct clusters roughly arranged along a quadratic path. Within groups, individual plutons tend to be arranged in patterns possibly reflecting granitic evolution. Canonical functions were used to classify samples of rhyolites of unknown association into the five groups. Another canonical analysis was based on ten elements traditionally used in petrology and which were important in the new classification of granites. Their biplot pattern is similar to that from statistically chosen variables but less effective at distinguishing the five groups of granites. This study shows that multivariate statistical techniques can provide significant insight into problems of granitic petrogenesis and may be superior to conventional procedures for petrological interpretation.

  8. Alkali metal intercalates of molybdenum disulfide.

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.

    1973-01-01

    Study of some of the physicochemical properties of compounds obtained by subjecting natural molybdenite and single crystals of molybdenum disulfide grown by chemical vapor transport to intercalation with the alkali group of metals (Li, Na, K, Rb, and Cs) by means of the liquid ammonia technique. Reported data and results include: (1) the intercalation of the entire alkali metal group, (2) stoichiometries and X-ray data on all of the compounds, and (3) superconductivity data for all the intercalation compounds.

  9. Superconductivity in alkali-doped C60

    NASA Astrophysics Data System (ADS)

    Ramirez, Arthur P.

    2015-07-01

    Superconductivity in alkali-doped C60 (A3C60, A = an alkali atom) is well described by an s-wave state produced by phonon mediated pairing. Moderate coupling of electrons to high-frequency shape-changing intra-molecular vibrational modes produces transition temperatures (Tc) up to 33 K in single-phase material. The good understanding of pairing in A3C60 offers a paradigm for the development of new superconducting materials.

  10. Desulfurizing Coal With an Alkali Treatment

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kalvinskas, J. J.

    1987-01-01

    Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.

  11. Rare accessory uraninite in a Sierran granite

    NASA Technical Reports Server (NTRS)

    Snetsinger, K. G.; Polkowski, G.

    1977-01-01

    One grain of uraninite was found in a single thin-section of Sierran granite. Electron and ion microprobe analysis were used to determine the composition. Since the U-Pb age calculated for the uraninite does not differ greatly from the K-Ar age of the unit in which it occurs, it is suggested that the mineral is primary and not reworked from a preexisting rock. No uraninite has been detected in heavy mineral concentrates from other rocks of the local area.

  12. Strain localization during deformation of Westerly granite

    NASA Technical Reports Server (NTRS)

    Brodsky, N. S.; Spetzler, H. A.

    1984-01-01

    A specimen of Westerly granite was cyclically loaded to near failure at 50 MPa confining pressure. Holographic interferometry provided detailed measurements of localized surface deformations during loading and unloading. The data are consistent with deformation occurring primarily elastically at low differential stress; in conjunction with one incipient fault zone between approximately 350 and 520 MPa differential stress; and in conjunction with a second incipient fault zone above 580 MPa and/or during creep. During unloading only one fault zone, that which is active at the intermediate stress levels during loading, is seen to recede.

  13. GRANITE CHIEF WILDERNESS STUDY AREA, CALIFORNIA.

    USGS Publications Warehouse

    Harwood, David S.; Federspiel, Francis E.

    1984-01-01

    The Granite Chief Wilderness study area encompasses 57 sq mi near the crest of the Sierra Nevada 6 mi west of Tahoe City, California. Geologic, geochemical, and mines and prospect studies were carried out to assess the mineral-resource potential of the area. On the basis of the mineral-resource survey, it is concluded that the area has little promise for the occurrence of precious or base metals, oil, gas, coal, or geothermal resources. Sand, gravel, and glacial till suitable for construction materials occur in the area, but inaccessability and remoteness from available markets preclude their being shown on the map as a potential resource.

  14. Petrogenesis of Mesoproterozoic granitic plutons, eastern Llano Uplift, central Texas, USA

    NASA Astrophysics Data System (ADS)

    Smith, R. K.; Gray, Walt; Gibbs, Tyson; Gallegos, M. A.

    2010-08-01

    , 1996), crystallization temperatures and pressures are estimated to range from 750 to 850 °C and 200 to 500 MPa, respectively. The assemblage of titanite + magnetite + quartz suggests crystallization at low fO2 [confirmed by Fe/(Fe + Mg) vs. [4] Al microprobe analyses of calcic amphibole] and a water content of less than 1.5 wt.% (Wones, 1989). Like other Town Mountain-type plutons, the MF, KL, and LG granites display comparable iron contents at similar alkali and silica enrichments. Melting models (Ba vs. Sr) suggest the MF, KL, and LG plutons may have evolved from the partial melting (anatexis) of juvenile, tonalitic, lower crustal rocks, followed by plagioclase and pyroxene dominated fractionation. Nd isotopic data for the MF pluton ( ɛNd = + 3.4 at 1.06 Ga; Patchett and Ruiz, 1989) and whole-rock δ18O values for the MF, KL, and LG plutons (+ 7.0 < δ 18O >+10.1‰; Rangel et al., 2008) suggest that the magmas in the eastern Llano Uplift may contain a significant mantle component, whereas relatively high δ18O values (+ 9.3 to + 9.7‰; Bebout and Carlson, 1986) for other coeval TMG rocks suggest that a significant crustal component is involved. Whole-rock and trace-element chemistry indicate that the MF and KL plutons, along with the coarser grained textures of the LG pluton, are 'A-type' granites. However, with no coeval mafic dikes, syenitic compositions, or volcanic rocks it is clear that the TMG plutons do not represent anorogenic granites. The available evidence is most compatible with emplacement of the TMG plutons in a post-orogenic (Grenville), relaxation and extensional (i.e., slab breakoff) setting.

  15. What classic greywacke (litharenite) can reveal about feldspar diagenesis: An example from Permian Rotliegend sandstone in Hessen, Germany

    NASA Astrophysics Data System (ADS)

    Molenaar, Nicolaas; Felder, Marita; Bär, Kristian; Götz, Annette E.

    2015-08-01

    Rotliegend siliciclastic sediments in southern Hessen (Germany) are a good example of dissolution of detrital feldspars, which is a common feature in many sandstones. Dissolution occurred after mechanical compaction of the lithic-rich sandstone, which experienced framework collapse with pores and pore connections filled and obstructed by deformed ductile lithic grains (pseudomatrix) thereby reducing pore space to microporosity., The advanced degree of compaction and reduced porosity caused low permeability and low hydraulic conductivity of the rock mass. This is further reduced by the presence of wackes and shales that occur intercalated with the sandstones. Feldspar dissolution thus took place in low permeable sediments when large-scale flow of meteoric or acidic fluids is ruled out as a cause of feldspar dissolution. Mineral precipitation (illite, kaolinite, and albite) took place within pseudomatrix and detrital matrix as well as in secondary pores created by feldspar dissolution. Feldspar was the source for the authigenesis. The system was thus closed during burial after framework collapse, and diagenetic reactants in the form of detrital components were already present within the system. The original mass was preserved, but redistributed and diagenetic minerals were the local sinks for the dissolved reactants, precipitating within the system. This also suggests that burial diagenesis in general might be more mass conservative than usually assumed. Rotliegend sandstones thus form a case where, despite of the lack of external exchange of mass by fluid flow, major diagenetic processes did take place and significantly modified the original mineralogy and texture. Feldspar diagenesis can take place from other processes than mere large-scale flushing of open systems as often supposed. It implies that the volumes of rock affected by feldspar diagenesis may be much larger than anticipated based upon the common hold believe that feldspar diagenesis is linked to

  16. Comment on “Systematic variations of argon diffusion in feldspars and implications for thermochronometry” by Cassata and Renne

    NASA Astrophysics Data System (ADS)

    Lovera, Oscar M.; Harrison, T. Mark; Boehnke, Patrick

    2015-02-01

    Cassata and Renne (2013) is a data-rich paper potentially providing opportunities to systematically test long-standing models of argon diffusion behavior in feldspars and we congratulate them on a heroic achievement. That said, several of their interpretations are highly problematic due to misconceptions of both the nature of their sample and diffusion modeling. Evidence of grain-scale diffusion in an exsolved feldspar

  17. Alkali metal crystalline polymer electrolytes.

    PubMed

    Zhang, Chuhong; Gamble, Stephen; Ainsworth, David; Slawin, Alexandra M Z; Andreev, Yuri G; Bruce, Peter G

    2009-07-01

    Polymer electrolytes have been studied extensively because uniquely they combine ionic conductivity with solid yet flexible mechanical properties, rendering them important for all-solid-state devices including batteries, electrochromic displays and smart windows. For some 30 years, ionic conductivity in polymers was considered to occur only in the amorphous state above Tg. Crystalline polymers were believed to be insulators. This changed with the discovery of Li(+) conductivity in crystalline poly(ethylene oxide)(6):LiAsF(6). However, new crystalline polymer electrolytes have proved elusive, questioning whether the 6:1 complex has particular structural features making it a unique exception to the rule that only amorphous polymers conduct. Here, we demonstrate that ionic conductivity in crystalline polymers is not unique to the 6:1 complex by reporting several new crystalline polymer electrolytes containing different alkali metal salts (Na(+), K(+) and Rb(+)), including the best conductor poly(ethylene oxide)(8):NaAsF(6) discovered so far, with a conductivity 1.5 orders of magnitude higher than poly(ethylene oxide)(6):LiAsF(6). These are the first crystalline polymer electrolytes with a different composition and structures to that of the 6:1 Li(+) complex. PMID:19543313

  18. AUthigenic feldspar as an indicator of paleo-rock/water interactions in Permian carbonates of the Northern Calcareous Alps, Austria

    USGS Publications Warehouse

    Spotl, C.; Kralik, M.; Kunk, M.J.

    1996-01-01

    Dolostones interbedded with Upper Permian evaporites at the base of the Northern Calcareous Alps contain abundant authigenic K-feldspar. Two petrographically, structurally, and isotopically distinct generations of K-feldspar can be distinguished: crystals composed of an inclusion-rich core and a clear rim, and optically unzoned, transparent crystals. Both feldspar types have essentially identical K-feldspar end-member compositions with ??? 99.5 mole % Or component. Low oxygen isotope ratios (+16.1??? to +18.1??? SMOW) suggest precipitation from 18O-enriched, saline fluids at temperatures in excess of ??? 140??C. 40Ar/39Ar plateau-age spectra of five samples range from 145 ?? 1 to 144 ?? 1 Ma (Early Berriasian) and suggest that both types of feldspar were formed within an interval that did not exceed ??? 2 m.y. Rb/Sr model ages range from 152 to 140 Ma, assuming that the burial diagenetic regime was buffered with respect to strontium by the associated marine Permian evaporites. Authigenic K-feldspar records two distinct events of hot brine flow, most likely triggered by tectonic movements (detachment) and by an increase in the subsurface temperature in response to thrust loading.

  19. Surface chemistry of labradorite feldspar reacted with aqueous solutions at pH = 2, 3, and 12

    NASA Astrophysics Data System (ADS)

    Casey, William H.; Westrich, Henry R.; Arnold, George W.

    1988-12-01

    The reaction of feldspar with an aqueous solution is examined by complementing dissolution rate measurements with analysis of mineral surface chemistry. Rates of feldspar dissolution were measured in H 2O - HCl and D 2O - DCl solutions. These measurements were combined with elastic recoil detection (ERD) analysis of hydrogen isotope concentration, and Rutherford backscattering analysis (RBS) of silicon, aluminum and calcium concentrations near the surface of the mineral. Dissolution rates of labradorite feldspar in H 2O - HCl solutions ( pH = 1.7) are 33% more rapid than in D 2O - DCl mixtures ( pD = 1.7). The depth of penetration and inventory of hydrogen in the feldspar is a strong function of solution pH, temperature, and reaction time. Hydrogen infiltrates the feldspar more extensively from an acidic solution than from a basic solution, and complete isotopic exchange between the hydration layer and water proceeds in time on the order of hours. The hydrolysis of bridging Si - O - Al bonds by reaction with a strongly acidic solution for several hundreds of hours progresses to depths of several hundreds of Angstroms into the mineral. Calcium is also removed from the mineral to this depth during reaction with an acidic solution. The composition of the reacted surface, however, cannot be explained solely on the basis of ion exchange or depolymerization reactions. The data suggest that the silicon-rich surface of feldspar continually repolymerizes during reaction, and that this repolymerization eliminates hydrogen from the hydration layer.

  20. Experimental deformation of partially molten granite and implications for strain localization

    NASA Astrophysics Data System (ADS)

    Goncalves, L.; Hirth, G.; Alkmim, F.; Pedrosa-Soares, A.; Goncalves, C.

    2011-12-01

    % feldspar, iron oxide and clays, and trace amounts of apatite, zircon and rutile. Our experiments were performed on "as-is" synthetic aggregates or adding ~ 1 wt. % of de-ionized water to samples, to produce a small melt percentage (~ 3-5%, according to previous data). At axial strain rate of 1.5 x 10-6/s, which translates to a shear strain rate of 1.6 to 2.5 x 10-5/s, the maximum strength of nominally melt-free synthetic aggregate is 180 MPa, while samples with 3-7% melt show strength values of ~ 110 to 145 MPa. Our results indicate that the strength of partially molten granitic aggregates is similar to that of quartzite with 0.17 wt.% water added and are significantly weaker than feldspar aggregates with 0.1 wt.% adsorbed water or < 0.22 wt.% water added. Under hydrostatic conditions melt is found in isolated pools and/or confined to triple grain junctions. Deformed samples show more homogeneously distributed melt; melt is observed both in triple junctions and wetting grain boundaries. Wetted boundaries are more common in more highly strained regions. These observations suggest that changes in melt distribution promote shear localization.

  1. Effectiveness of granite cleaning procedures in cultural heritage: A review.

    PubMed

    Pozo-Antonio, J S; Rivas, T; López, A J; Fiorucci, M P; Ramil, A

    2016-11-15

    Most of the Cultural Heritage built in NW Iberian Peninsula is made of granite which exposition to the environment leads to the formation of deposits and coatings, mainly two types: biological colonization and sulphated black crusts. Nowadays, another form of alteration derives from graffiti paints when these are applied as an act of vandalism. A deep revision needs to be addressed considering the severity of these deterioration forms on granite and the different cleaning effectiveness achieved by cleaning procedures used to remove them. The scientific literature about these topics on granite is scarcer than on sedimentary carbonate stones and marbles, but the importance of the granite in NW Iberian Peninsula Cultural Heritage claims this review centred on biological colonization, sulphated black crusts and graffiti on granite and their effectiveness of the common cleaning procedures. Furthermore, this paper carried out a review of the knowledge about those three alteration forms on granite, as well as bringing together all the major studies in the field of the granite cleaning with traditional procedures (chemical and mechanical) and with the recent developed technique based on the laser ablation. Findings concerning the effectiveness evaluation of these cleaning procedures, considering the coating extraction ability and the damage induced on the granite surface, are described. Finally, some futures research lines are pointed out. PMID:27443454

  2. Experimental methods of determining thermal properties of granite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determination of thermal properties of granite using the block method is discussed and compared with other methods. Problems that limit the accuracy of contact method in determining thermal properties of porous media are evaluated. Thermal properties of granite is determined in the laboratory with a...

  3. Detail of south granite pier revealing riveted truss ends and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of south granite pier revealing riveted truss ends and iron footing plates on top of granite cap stones. View north - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  4. Plane shock wave studies of Westerly granite and Nugget sandstone

    SciTech Connect

    Larson, D.B.; Anderson, G.D.

    1980-12-01

    Plane shock wave experiments were performed by using a light-gas gun on dry and water-saturated Westerly granite and dry Nugget sandstone. Changes in the slopes of the shock velocity versus particle velocity curves at 2 to 3 GPa and 1 to 2 GPa for dry granite and for dry sandstone, respectively, are attributed to the onset of pore collapse. However, there is little apparent loss of shear strength in either dry rock over the stress range of the experiments (i.e., 9.3 GPa in Westerly granite and 9.2 GPa in Nugget sandstone). Agreement between the shock wave data and quasistatic, uniaxial strain data for the dry rock implies the absence of rate-dependence in uniaxial strain. The shock data on saturated granite agree well with those for dry granite, thus suggesting there was no loss in shear strength as a result of pore pressure buildup.

  5. IRETHERM: The geothermal energy potential of Irish radiothermal granites

    NASA Astrophysics Data System (ADS)

    Farrell, Thomas; Jones, Alan; Muller, Mark; Feely, Martin; Brock, Andrew; Long, Mike; Waters, Tim

    2014-05-01

    The IRETHERM project is developing a strategic understanding of Ireland's deep geothermal energy potential through integrated modelling of new and existing geophysical and geological data. One aspect of IRETHERM's research focuses on Ireland's radiothermal granites, where increased concentrations of radioelements provide elevated heat-production (HP), surface heat-flow (SHF) and subsurface temperatures. An understanding of the contribution of granites to the thermal field of Ireland is important to assessing the geothermal energy potential of this low-enthalpy setting. This study focuses on the Galway granite in western Ireland, and the Leinster and the buried Kentstown granites in eastern Ireland. Shallow (<250 m) boreholes were drilled into the exposed Caledonian Leinster and Galway granites as part of a 1980's geothermal project. These studies yielded HP = 2-3 μWm-3 and HF = 80 mWm-2 at the Sally Gap borehole in the Northern Units of the Leinster granite, to the SW of Dublin. In the Galway granite batholith, on the west coast of Ireland, the Costelloe-Murvey granite returned HP = 7 μWm-3 and HF = 77 mWm-2, measured at the Rossaveal borehole. The buried Kentstown granite, 35 km NW of Dublin, has an associated negative Bouguer anomaly and was intersected by two mineral exploration boreholes at depths of 660 m and 490 m. Heat production is measured at 2.4 μWm-3 in core samples taken from the weathered top 30 m of the granite. The core of this study consists of a program of magnetotelluric (MT) and audio-magnetotelluric (AMT) data acquisition across the three granite bodies, over three fieldwork seasons. MT and AMT data were collected at 59 locations along two profiles over the Leinster granite. Preliminary results show that the northern units of the Leinster granite (40 km SW of Dublin) extend to depths of 2-5 km. Preliminary results from the southern profile suggest a greater thickness of granite to a depth of 6-9 km beneath the Tullow pluton, 75 km SW of

  6. Solution-precipitation of K-feldspar in deformed granitoids and its relationship to the distribution of water

    NASA Astrophysics Data System (ADS)

    Fukuda, Jun-ichi; Okudaira, Takamoto; Satsukawa, Takako; Michibayashi, Katsuyoshi

    2012-04-01

    We have investigated K-feldspar recrystallisation in granitoid mylonites within a ductile shear zone from the Ryoke metamorphic belt, SW Japan. Fine-grained K-feldspar (20 μm on average) occurs in the matrix and in pull-apart areas within fractured K-feldspar porphyroclasts. These fine grains are elongated and oriented parallel to the main foliation in the matrix, and their grain surfaces, observed with the scanning electron microscope, are not smooth, but rough due to the development of very fine (< 1 μm) round grains of K-feldspar on the surface of each grain. In pull-apart areas, the crystallographic orientation of fine-grained K-feldspar, as measured by electron backscatter diffraction (EBSD), is strongly controlled by that of the host porphyroclast, and shows rotations with shear components parallel to fractures. In the matrix, the crystallographic orientation of fine-grained K-feldspar is not consistent with intracrystalline plasticity, but rather with a growth rate that is slightly controlled by nearby porphyroclasts. All this, together with the growth features on grains, suggests that solution-precipitation of K-feldspar from K-rich aqueous fluid occurred during progressive deformation. Infrared (IR) mapping was performed to evaluate the distribution of water in pull-apart areas and the matrix. Water is heterogeneously distributed within K-feldspar porphyroclasts, which contain 150-2200 ppm H2O. In contrast, the water content is low (150-300 ppm H2O) and homogeneously distributed in fine-grained K-feldspar in the matrix and pull-apart areas, even though included in these analyses are grain boundaries that can generally contain abundant aqueous fluid. The results of EBSD analysis and IR mapping indicate that water is released during solution-precipitation of K-feldspar under mid-crustal conditions. The solution-precipitation process under a water-rich environment in the middle crust results in the formation of fine grains, possibly deforming dominantly by

  7. Oxygen 18/oxygen 16 and D/H studies of plutonic granitic and metamorphic rocks across the Cordilleran Batholiths of southern British Columbia

    NASA Astrophysics Data System (ADS)

    Magaritz, Mordeckai; Taylor, Hugh P., Jr.

    1986-02-01

    Hydrogen and oxygen isotope ratios of 500 samples, mainly from granitic plutons, were measured along a 700-km, E-W traverse across the "accreted terranes" of southern British Columbia (latitudes 49°-52°N). Despite the geological complexity and range of intrusive ages (Late Triassic to Tertiary) and although there are "steps" in the isotopic values at some geologic boundaries (e.g., across the Strait of Georgia), two clear patterns emerge: (1) The 18O/16O and D/H ratios of the waters involved in hydrothermal interactions with the granitic rocks show a regular eastward trend of depletion in D and 18O. Enormous areas were affected by the hydrothermal processes, but the most intense alteration is localized along major north trending lineaments (e.g., Okanagan Lake). (2) Independent of the hydrothermal effects, the primary δ18O values of the granitic rocks also change systematically eastward, from +7.0 to +8.5 in Vancouver Island, reaching a minimum of +5.5 to +7.0 in the western and central Coast Plutonic Complex, then increasing progressively from the eastern Coast Batholith to the Okanagan Batholith, and attaining a maximum of +10.0 to +12.0 in the Nelson Batholith. Two groups of samples are unique in their high δD values. The first group is represented by two geographically isolated batholiths (Guichon and Thuya) that were not affected by the Tertiary meteoric-hydrothermal systems and that have therefore preserved their Early Jurassic to Triassic K/Ar ages. The second group is represented by the Jurassic plutons of Vancouver Island; there, the hydrothermal fluids were both D-rich and 18O-rich (δ18O > 0), as evidenced by the fact that feldspars in the altered granites are enriched in 18O relative to coexisting quartz. Both "anomalies" can be explained if these terranes were located closer to the equator and/or in a maritime environment at the time of intrusive and hydrothermal activity, in agreement with available paleomagnetic data. Excluding these anomalous

  8. Massive Red-Staining and Albitization of Feldspars in Paleozoic Basement Rocks of Western Europe and Their Association with the Triassic Palaeogeography

    NASA Astrophysics Data System (ADS)

    Fabrega, C.; Parcerisa, D.; Franke, C.; Thiry, M.; Yao, K.; Gómez-Gras, D.

    2013-12-01

    Albitization of feldspars is a widespread mineral replacement process of the upper crust. An ubiquitous and pervasive red-staining albitization of feldspars has been observed in the feldspathic rocks of the Variscan basement in the Sudetes, Armorican, Morvan, Roc de Frausa and Montseny-Guilleries Massifs (Western Europe). These crystalline massifs were strongly eroded during Permian and Triassic times and suffered a long-lasting exposition in the Permian-Triassic palaeosurface. The albitized rocks contain minute Fe-oxides hoisted within the microporosity of the secondary albite. The intimate textural relationship between the Fe-oxides and the albite strongly suggest that they are coetaneous with albitization. The microscope, cathodoluminescence, SEM and EMPA analyses reveal that almost all plagioclases and some K-feldspars are albitized in those areas close to the Permian-Triassic palaeosurface. Moving downwards the palaeosurface the albitization of Variscan rocks progressively disappears. Field mapping of the albitized areas points to estimated thickness about 100-200m. In the uppermost parts of the profile almost all plagioclases are totally albitized and the rock shows a strong and pervasive reddening, whereas in the lowermost parts the mineral replacement is restricted to fractures and neighbouring walls and the rock in tinted with a soft pink colour. These observations suggest that albitization is linked to that palaeosurface and constitutes a paleoalteration profile beneath the Permian-Triassic palaeosurface. All these observations suggest that the mineral replacement could have been driven by descending Na+ rich brines related with or coming from the Permian-Triassic palaeosurface. Ricodel et al. (2007) determined a Triassic age for the paleomagnetic signature of the Fe-oxides hoisted within the microporosity of albite in the Morvan Massif. The narrow textural relationship between the Fe-oxides and the albite support the idea that this is the age of

  9. Effect of ageing of K-feldspar on its ice nucleating efficiency in immersion, deposition and contact freezing modes

    NASA Astrophysics Data System (ADS)

    Peckhaus, Andreas; Bachmann, Felix; Hoffmann, Nadine; Koch, Michael; Kiselev, Alexei; Leisner, Thomas

    2015-04-01

    Recently K-feldspar was identified as one of the most active atmospheric ice nucleating particles (INP) of mineral origin [1]. Seeking the explanation to this phenomena we have conducted extensive experimental investigation of the ice nucleating efficiency of K-feldspar in three heterogeneous freezing modes. The immersion freezing of K-feldspar was investigated with the cold stage using arrays of nanoliter-size droplets containing aqueous suspension of polydisperse feldspar particles. For contact freezing, the charged droplets of supercooled water were suspended in the laminar flow of the DMA-selected feldspar-containing particles, allowing for determination of freezing probability on a single particle-droplet contact [2]. The nucleation and growth of ice via vapor deposition on the crystalline surfaces of macroscopic feldspar particles have been investigated in the Environmental Scanning Electron Microscope (ESEM) under humidified nitrogen atmosphere. The ice nucleation experiments were supplemented with measurements of effective surface area of feldspar particles and ion chromatography (IC) analysis of the leached framework cations (K+, Na+, Ca2+, Mg2+). In this contribution we focus on the role of surface chemistry influencing the IN efficiency of K-feldspar, in particular the connection between the degree of surface hydroxylation and its ability to induce local structural ordering in the interfacial layer in water molecules (as suggested by recent modeling efforts). We mimic the natural process of feldspar ageing by suspending it in water or weak aqueous solution of carbonic acid for different time periods, from minutes to months, and present its freezing efficiency as a function of time. Our immersion freezing experiments show that ageing have a nonlinear effect on the freezing behavior of feldspar within the investigated temperature range (-40°C to -10°C). On the other hand, deposition nucleation of ice observed in the ESEM reveals clear different pattern

  10. Authigenic potassium feldspar: a tracer for the timing of palaeofluid flow in carbonate rocks, Northern Calcareous Alps, Austria

    USGS Publications Warehouse

    Spotl, C.; Kunk, M.J.; Ramseyer, K.; Longstaffe, F.J.

    1998-01-01

    This paper is included in the Special Publication entitled 'Dating and duration of fluid flow and fluid-rock interaction', edited by J. Parnell. Feldspar is a common authigenic constituent in Permian carbonate rocks which occur as tectonically isolated blocks within the evaporitic Haselgebirge melange in the Northern Calcareous Alps (NCA). Coexisting with pyrite, anhydrite, (saddle) dolomite, magnesite, fluorite and calcite, K-feldspar and minor albite record an event of regionally extensive interaction of hot brines with carbonate rocks. Detailed petrographic, crystallographic and geochemical studies reveal a variability in crystal size and shape, Al-Si ordering, elemental and stable isotopic compositions of the K-feldspar, which is only partially consistent with the traditional view of authigenic feldspar as a well-ordered, compositionally pure mineral. 40Ar-39Ar step- heating measurements of authigenic potassium feldspar from several localities yield two age populations, an older one of 145-154 Ma, and a younger one of c.90-97 Ma. Most age spectra reflect cooling through the argon retention temperature interval, which was rapid in some localities (as indicated by plateau ages) and slower in others. Rb-Sr isotope data are more difficult to interpret, because in many K-feldspar samples they are controlled largely by Sr-bearing inclusions. The Jurassic 40Ar-39Ar dates are interpreted as minimum ages of feldspar growth and hence imply that fluid-rock interaction is likely to be simultaneous with or to slightly predate melange formation. Deformation associated with the closure and subduction of the Meliata-Hallstatt ocean south of the NCA during the Upper Jurassic is regarded as the principal geodynamic driving force for both enhanced fluid circulation and melange formation. Some localities were reheated beyond the argon retention temperature for microcline during mid-Cretaceous nappe stacking of the NCA, thus obliterating the older signal.

  11. Example of fracture characterization in granitic rock

    SciTech Connect

    Thorpe, R.K.

    1981-03-01

    A detailed study of geologic discontinuities for an underground heater test in highly fractured granitic rock is reported. Several prominent shear fractures were delineated within a 6 x 30 x 15 m rock mass by correlating surface mapping and borehole fracture logs. Oblique-reverse faulting is suspected on at least one of the surfaces, and its inferred borehole intercepts appear to be collinear in the direction of slickensiding observed in the field. Four distinct joint sets were identified, one of which coincides with the shear fractures. Another lies nearly horizontal, and two others are steeply inclined and orthogonal. Fracture lengths and spacings for the four joint sets are represented by lognormal probability distributions.

  12. Permeability reduction in granite under hydrothermal conditions

    USGS Publications Warehouse

    Morrow, C.A.; Moore, Diane E.; Lockner, D.A.

    2001-01-01

    The formation of impermeable fault seals between earthquake events is a feature of many models of earthquake generation, suggesting that earthquake recurrence may depend in part on the rate of permeability reduction of fault zone materials under hydrothermal conditions. In this study, permeability measurements were conducted on intact, fractured, and gouge-bearing Westerly granite at an effective pressure of 50 MPa and at temperatures from 150?? to 500??C, simulating conditions in the earthquake-generating portions of fault zones. Pore fluids were cycled back and forth under a 2 MPa pressure differential for periods of up to 40 days. Permeability of the granite decreased with time t, following the exponential relation k = c(10-rt). For intact samples run between 250?? and 500??C the time constant for permeability decrease r was proportional to temperature and ranged between 0.001 and 0.1 days-1 (i.e., between 0.4 and 40 decades year-1 loss of permeability). Values of r for the lower-temperature experiments differed little from the 250??C runs. In contrast, prefractured samples showed higher rates of permeability decrease at a given temperature. The surfaces of the fractured samples showed evidence of dissolution and mineral growth that increased in abundance with both temperature and time. The experimentally grown mineral assemblages varied with temperature and were consistent with a rock-dominated hydrothermal system. As such mineral deposits progressively seal the fractured samples, their rates of permeability decrease approach the rates for intact rocks at the same temperature. These results place constraints on models of precipitation sealing and suggest that fault rocks may seal at a rate consistent with earthquake recurrence intervals of typical fault zones.

  13. The mechanism of myrmekite formation deduced from steady-diffusion modeling based on petrography: Case study of the Okueyama granitic body, Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Yuguchi, Takashi; Nishiyama, Tadao

    2008-12-01

    Myrmekite is an intergrowth texture consisting of vermicular quartz and albitic plagioclase (Ab 93An 7 in this study), typically occurring between K-feldspar and plagioclase. It occurs ubiquitously in both metamorphic and granitic rocks; however, its genesis has been an enigma. This paper describes myrmekite's petrography and discusses its genesis from the Okueyama granitic body (OKG), which is a young (14 Ma) granite in Southwest Japan with no evidence of deformation after solidification. The genesis of a newly observed texture, the 'reaction rim', will be also discussed in relation to myrmekite. The reaction rim is an albite layer (Ab 95An 5) with no vermicular quartz between K-feldspar and plagioclase, and it occasionally makes a composite texture with myrmekite. Both myrmekite and the reaction rim are accompanied by a diffusive boundary layer (Olg-layer) with a mean composition of oligoclase (Ab 75An 25) in the rim of neighboring plagioclase rim. The overall reactions in an open system for the formation of myrmekite and that for the reaction rim are derived based on the following two models: 1) one based on the assumption of conservation of solid volume with arbitrarily specified closure components, and 2) the other based on the assumption of closure of AlO 3/2 together with an arbitrarily specified volume factor. Steady diffusion modeling in an open system based on the overall reaction thus derived defines the stability field of myrmekite and of the reaction rim in terms of the ratios of phenomenological coefficients ( L-ratios). The steady diffusion models for the above two models have essentially the same features. Myrmekite is stable for large values (> 10) of LAlAl/ LCaCa, for moderate values of LAlAl/ LSiSi, and for only small values (< 1) of LAlAl/ LNaNa. In the case of the reaction rim, the stability field is much wider in a plot of LAlAl/ LCaCa vs. LAlAl/ LNaNa, and its dependence on LAlAl/ LSiSi is stronger than that of myrmekite. The reaction rim is

  14. Alkali metal adsorption on Al(111)

    NASA Astrophysics Data System (ADS)

    Andersen, J. N.; Lundgren, E.; Nyholm, R.; Qvarford, M.

    1993-06-01

    The submonolayer adsorption of Na, K, Rb, and Cs on the Al(111) surface at 100 K and at room temperature is investigated by high resolution core level spectroscopy and low energy electron diffraction. It is found that the first alkali atoms on the surface adsorb at surface defects. At higher coverages, up to approximately one third of the maximum submonolayer coverage, alkali atoms adsorbed at defects coexist with a dispersed phase. At higher coverages island formation is found to occur for the majority of the systems. It is argued that all of the ordered structures formed at room temperature involve a disruption of the Al(111) surface in contrast to the situation at 100 K where the alkali atoms adsorb as adatoms.

  15. SAFE Alkali Metal Heat Pipe Reliability

    NASA Astrophysics Data System (ADS)

    Reid, Robert S.

    2003-01-01

    Alkali metal heat pipes are among the best understood and tested of components for first generation space fission reactors. A flight reactor will require production of a hundred or more heat pipes with assured reliability over a number of years. To date, alkali metal heat pipes have been built mostly in low budget development environments with little formal quality assurance. Despite this, heat pipe test samples suggest that high reliability can be achieved with the care justified for space flight qualification. Fabrication procedures have been established that, if consistently applied, ensure long-term trouble-free heat pipe operation. Alkali metal heat pipes have been successfully flight tested in micro gravity and also have been shown capable of multi-year operation with no evidence of sensitivity to fast neutron fluence up to 1023 n/cm2. This represents 50 times the fluence of the proposed Safe Affordable Fission Engine (SAFE-100) heat pipe reactor core.

  16. Influence of the state of stress on the brittle-ductile transition in granitic rock: Evidence from fault steps in the Sierra Nevada, California

    SciTech Connect

    Buergmann, R.; Pollard, D.D. )

    1992-07-01

    Left-lateral strike-slip faults in the Lake Edison granodiorite (central Sierra Nevada, California) are composed of an echelon segments. Relative displacement across the faults apparently are transferred between segments by ductile shearing at right steps, and by extensional fracturing at left steps. The granodiorite within right steps displays mylonitic foliation, and thin sections show textures in quartz associated with dislocation glide, recovery processes, and dynamic recrystallization, whereas textures in feldspar are related to fracturing. Only centimeters outside the right steps, the rock fabric is approximately isotropic and deformation is accommodated by mineralized opening-mode fractures. The stress field calculated for the right-step geometry, when a boundary element model is used, shows an increase in mean compressive stress of up to 25 MPa within the step relative to that outside. This difference in stress apparently produced the contrasting behaviors of the granitic rock. Experimentally derived power-law flow laws do not predict these behaviors.

  17. Microcracks induced in granite spheres by projectile impact at velocities ranging from 2.3 to 3.6 km/s

    NASA Astrophysics Data System (ADS)

    Kawakami, S.; Kanaori, Y.; Fujiwara, A.

    1990-01-01

    Projectiles were impacted against granite spheres having a diameter of 15 cm at velocities ranging from 2.3 to 3.6 km/s. One target was fractured into a large core fragment and many shell-like fragments. Major cracks which divide the core fragment and many small shell-like fragments were formed along the caustic surface of the reflected shock waves that originated on the target surface. The shape of the caustic surfaces formed in spherical targets is called a cardioid. The other targets suffered impact cratering. They exhibit planar craters with no consicuous raised rim or depression. Microcrack distributions and microscopic effects of impact loading were observed on these targets. The site of extension fractures corresponds to grain boundaries, cleavage planes of biotite and feldspars, and along pre-existing microcracks. Kink bands of biotite were formed at the restricted regions beneath the center of the craters.

  18. Saddle-shaped 40Ar /39Ar age spectra from young, microstructurally complex potassium feldspars

    NASA Astrophysics Data System (ADS)

    Zeitler, Peter K.; Fitz Gerald, John D.

    1986-06-01

    A suite of young potassium feldspars show markedly saddle-shaped 40Ar /39Ar age spectra as a result of incorporating 10 -10 to 10 -9 mol/g of excess 40Ar. The minima of these age spectra record reasonable cooling ages, based on the known thermal history and geology of the samples. Acid etching of one sample indicates that excess 40Ar is concentrated near grain margins. The release of a substantial portion of this excess Ar at high temperatures in the laboratory requires that this component be situated in a more retentive site than radiogenic 40Ar. Anion vacancies have been proposed to act in this role in plagioclase, and we speculate that this is so in K-feldspar as well. Such a mechanism would explain the observation that relative to radiogenic 40Ar, excess 40Ar is incorporated at low temperatures in nature but is released at high temperatures in the laboratory. Oxygen diffusion provides an appropriate analogy for this phenomenon, being relatively fast under natural, hydrothermal conditions, but extremely slow in anhydrous environments such as an Ar-extraction system. TEM observations made on two of the samples confirm that their effective grain sizes for diffusion are likely to be on the order of ten microns, due to the presence of such microstructures as incoherent exsolution lamellae, dislocations, and stepped twins. TEM observations also reveal the presence in one sample of orthoclase enclaves in a microcline host.

  19. Radon exhalation from granites used in Saudi Arabia.

    PubMed

    al-Jarallah, M

    2001-01-01

    Measurements of radon exhalation for a total of 50 selected samples of construction materials used in Saudi Arabia were taken using a radon gas analyzer. These materials included sand, aggregate, cement, gypsum, hydrated lime, ceramics and granite. It was found that the granite samples were the main source of radon emanations. A total of 32 local and imported granite samples were tested. It was found that the radon exhalation rates per unit area from these granite samples varied from not detectable to 10.6 Bq m-2 h-1 with an average of 1.3 Bq m-2 h-1. The linear correlation coefficient between emanated radon and radium content was 0.92. The normalized radon exhalation rates from 2.0 cm thick granite samples varied from not detectable to 0.068 (Bq m-2 h-1)/(Bq kg-1) with an average of 0.030 (Bq m-2 h-1)/(Bq kg-1). The average radon emanation of the granite samples was found to be 21% of the total radium concentration. Therefore, granite can be a source of indoor radon as well as external gamma-radiation from the uranium decay series. PMID:11378931

  20. CO2 sequestration in feldspar-rich sandstone: Coupled evolution of fluid chemistry, mineral reaction rates, and hydrogeochemical properties

    NASA Astrophysics Data System (ADS)

    Tutolo, Benjamin M.; Luhmann, Andrew J.; Kong, Xiang-Zhao; Saar, Martin O.; Seyfried, William E.

    2015-07-01

    To investigate CO2 Capture, Utilization, and Storage (CCUS) in sandstones, we performed three 150 °C flow-through experiments on K-feldspar-rich cores from the Eau Claire formation. By characterizing fluid and solid samples from these experiments using a suite of analytical techniques, we explored the coupled evolution of fluid chemistry, mineral reaction rates, and hydrogeochemical properties during CO2 sequestration in feldspar-rich sandstone. Overall, our results confirm predictions that the heightened acidity resulting from supercritical CO2 injection into feldspar-rich sandstone will dissolve primary feldspars and precipitate secondary aluminum minerals. A core through which CO2-rich deionized water was recycled for 52 days decreased in bulk permeability, exhibited generally low porosity associated with high surface area in post-experiment core sub-samples, and produced an Al hydroxide secondary mineral, such as boehmite. However, two samples subjected to ∼3 day single-pass experiments run with CO2-rich, 0.94 mol/kg NaCl brines decreased in bulk permeability, showed generally elevated porosity associated with elevated surface area in post-experiment core sub-samples, and produced a phase with kaolinite-like stoichiometry. CO2-induced metal mobilization during the experiments was relatively minor and likely related to Ca mineral dissolution. Based on the relatively rapid approach to equilibrium, the relatively slow near-equilibrium reaction rates, and the minor magnitudes of permeability changes in these experiments, we conclude that CCUS systems with projected lifetimes of several decades are geochemically feasible in the feldspar-rich sandstone end-member examined here. Additionally, the observation that K-feldspar dissolution rates calculated from our whole-rock experiments are in good agreement with literature parameterizations suggests that the latter can be utilized to model CCUS in K-feldspar-rich sandstone. Finally, by performing a number of reactive

  1. Geochronology and petrogenesis of the western highlands alkali suite: Radiogenic isotopic evidence from Apollo 14

    NASA Technical Reports Server (NTRS)

    Snyder, Gregory A.; Taylor, Lawrence A.; Halliday, Alex N.

    1993-01-01

    Several rocks of alkalic affinity, from the western highlands of the Moon, have been analyzed for their Nd and Sr isotopic compositions. One sample yields a Sm-Nd mineral isochron of 4110 = 41 Ma. This age, in conjunction with U-Pb zircon ages on two other alkalic rocks from the Apollo 14 landing site suggests a distinct western highlands 'event' which was approximately 100 Ma in duration. Since the last dregs of the lunar magma ocean likely crystallized prior to 4.3 Ga, this alkalic 'event' may have included the re-melting of evolved plutons or the remobilization of urKREEP trapped liquid from upper mantle cumulates. Alkalic lithologies such as granites and felsites have been known from the Moon since the earliest days of the Apollo lunar sample returns. However, not until 1977 were alkali-rich rocks recognized from typical highlands suites such as ferroan anorthosites (FAN) and norites and Mg-suite rocks. In the intervening years, several other alkali suite samples have been discovered and characterized, mostly through labor-intesive breccia pull-apart studies of clasts and analyses of coarse-fine fractions of soils. We will speculate on the origins of this suite of lunar highlands rocks.

  2. Diode pumped alkali lasers (DPALs): an overview

    NASA Astrophysics Data System (ADS)

    Krupke, William F.

    2008-05-01

    The concept of power-scalable, high beam-quality diode pumped alkali lasers was introduced in 2003 [Krupke, US Patent No. 6,643,311; Opt. Letters, 28, 2336 (2003)]. Since then several laboratory DPAL devices have been reported on, confirming many of the spectroscopic, kinetic, and laser characteristics projected from literature data. This talk will present an overview of the DPAL concept, summarize key relevant properties of the cesium, rubidium, and potassium alkali vapor gain media so-far examined, outline power scaling considerations, and highlight results of published DPAL laboratory experiments.

  3. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  4. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  5. Alteration, evaluation and use of extremaduran granite residues

    NASA Astrophysics Data System (ADS)

    Albarrán-Liso, C.; Jordán-Vidal, M. M.; Sanfeliu-Montolio, T.; Liso-Rubio, M. J.

    2006-04-01

    The necessity of eliminating debris from a granite quarry has awakened an interest in applications of by-products, called “marginal arids”, in different fields, like construction and foundations for roadways, restoration, material for the manufacture of artificial rocks, and artesian products etc. Conclusions obtained from the results of tests carried out by X-ray diffraction of granite quarry by-products in Extremadura, Spain, submitted to different treatments, are established. Test pieces from two quarries are analyzed and compared generally and specifically, for commercial use. Finally, conclusions relating to essays in test pieces and mineral dynamics of marginal arid granite are exposed.

  6. Petrogenesis and Tectonic Evolution of Granitic Rocks in The Northern Margin of North China Plate

    NASA Astrophysics Data System (ADS)

    Xu, X.; Zhao, Q.; Zheng, C.; Liu, W.; Xu, B.

    2010-12-01

    The late Paleozoic-early Mesozoic granites in Daqingshan district of the northern margin of north China plate is classified into six types as follows.Aguigou intrusion is consists of gabbro, diorite, quartz diorite, and granodiorite.Its feature is rich in mafic compositions.The formation age is 284.5±2.9Ma or 283.7±3.7Ma for the quartz diorite, and 281.1±3.4Ma for granodiorite. The genesis of the intrusion belongs to I-type granite. Laoyinhada intrusion comprises fine biotite monzonitic granite and porphyritic biotite monzonitic granite. The age is 272±4Ma for the fine biotite monzonitic granite. The genesis of the body is I-type granite.Halaheshao intrusion is a group of medium-coarse biotite-bearing monzonitic granites and large porphyritic-bearing monzonitic granite. The age is 260±0.5Ma for the biotite-bearing monzonitic granite.The tectonic environment belongs to post-orogenic granites.Taolegai intrusion consists of medium-fine granite, medium-coarse granite, porphyritic-bearing granite, and fine granite. The age is 224±3Ma for medium-coarse granite.Its genesis is light color granite co-occurred with muscovite peraluminous granites. The tectonic environment belongs to post-orogenic granites.Gechoushan intrusion is medium-fine monzonitic granite, a kind of typical muscovite granites. Its formation era is late Triassic. The tectonic environment belongs to post-orogenic granite.Shadegai intrusion is mainly composed of biotite granites. The age is 211.2±0.7Ma for medium-coarse biotite granite. The tectonic setting belongs to post-orogenic granites. The different types granites in the area basically reveal all the magmatic events from late Palaeozoic orogeny, to post-orogeny, and to intracontinental orogeny in the north edge of the north China plate. Early Permian Aguigou intrusion is a magmatic arc granite, formed in the continental edge in the early period of the middle Asia ocean plate subduction. Mid-Permian Laoyinhada intrusion is a magmatic arc granite

  7. Salts of alkali metal anions and process of preparing same

    DOEpatents

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  8. Mafic and pelitic xenoliths in the Kinnaur Kailash Granite, Baspa river valley, NW Himalaya: Evidence of pre-Himalayan granulite metamorphism followed by cooling event

    NASA Astrophysics Data System (ADS)

    Thakur, S. S.; Patel, S. C.

    2012-08-01

    Mafic and pelitic xenoliths occurring within the early Palaeozoic Kinnaur Kailash Granite (KKG) in the Baspa river valley, NW Himalaya record pre-Himalayan regional metamorphism at a range of pressure (P)-temperature (T) conditions that span amphibolite to granulite facies. The key evidence of granulite metamorphism is a xenolith of two-pyroxene mafic granulite in which orthopyroxene occurs as both discrete grains and microscopic needles exsolved parallel to prismatic cleavage of the clinopyroxene host. The rock records an average peak metamorphic temperature of 840 °C. Garnetiferous mafic xenoliths display coronae of garnet around plagioclase and clinopyroxene, and of sphene around ilmenite. These coronae were developed by near-isobaric cooling after peak metamorphism at 730 °C and 8 kbar. Pelitic xenoliths have the assemblage biotite-plagioclase-quartz ± garnet ± K-feldspar ± muscovite, and record P-T ranges of 7.0-9.0 kbar and 500-700 °C which indicate lower to middle amphibolite facies metamorphism of these rocks. Quartz, feldspar and mica in the pelitic xenoliths commonly show optical evidences of crystalloplastic deformation which indicate that the rocks were sheared before being engulfed as xenoliths in the KKG. The findings of this study imply that the present day metamorphic assemblages and shear fabrics in HHCS rocks need not be attributed solely to the Himalayan orogeny.

  9. Faraday rotation density measurements of optically thick alkali metal vapors

    NASA Astrophysics Data System (ADS)

    Vliegen, E.; Kadlecek, S.; Anderson, L. W.; Walker, T. G.; Erickson, C. J.; Happer, William

    2001-03-01

    We investigate the measurement of alkali number densities using the Faraday rotation of linearly polarized light. We find that the alkali number density may be reliably extracted even in regimes of very high buffer gas pressure, and very high alkali number density. We have directly verified our results in potassium using absorption spectroscopy on the second resonance (4 2S→5 2P).

  10. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  11. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  12. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  13. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  14. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  15. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  16. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  17. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  18. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  19. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  20. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  1. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  2. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  3. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  4. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  5. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  6. Late Permian appinite-granite complex from northwestern Liaoning, North China Craton: Petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohui; Xue, Fuhong; Yuan, Lingling; Ma, Yuguang; Wilde, Simon A.

    2012-12-01

    The appinite-granite suite commonly occurs within post-subduction regimes during the final stage of an orogeny and thus holds the key to monitoring critical geodynamic and crustal evolutionary processes. The present zircon U-Pb dating and geochemical study documents the Late Permian appinite-granite complex from northwestern Liaoning, North China Craton. The hornblende-rich appinitic rocks have an SiO2 range from 41.8 to 53.4%, moderate to high alkali contents, enrichment in large ion lithophile elements and depletion in high field strength elements, with initial 87Sr/86Sr ratios of 0.7066 to 0.7128, ɛNd(t) of - 8.3 to - 13.3 and zircon ɛHf(t) from - 10.1 to - 18.7. These features suggest that their generation most likely involves metasomatism of mantle peridotites by sediment-derived liquids related to subduction and a later partial melting. The associated monzogranites range in SiO2 from 72.6 to 75.0% and exhibit a high-K calc-alkaline character, with high Sr-Ba abundances and elevated Sr/Y and La/Yb ratios. Such potassic adakitic signatures, plus their evolved isotopic compositions (87Sr/86Sri = 0.7063 to 0.7066, ɛNd(t) = - 15.6 to - 16.3, zircon ɛHf(t) = - 16.5 to - 18.8), are consistent with partial melting of mixed protoliths including newly underplated enriched mafic lower crust and minor old lower crustal materials. Such a mafic and felsic magma association not only attests to a heterogeneously enriched sub-continental lithospheric mantle beneath the northern North China Craton, but also indicates reworking within a post-orogenic transcurrent regime of lithospheric delamination. The temporal coincidence of the present appinite-granite complex with regional transcurrent fault activity leads to the further suggestion that such mafic-felsic magmatic suites could provide spatial markers for monitoring important post-orogenic structural and geodynamic processes.

  7. Tonian granitic magmatism of the Borborema Province, NE Brazil: A review

    NASA Astrophysics Data System (ADS)

    Guimarães, Ignez P.; de Fatima L. de Brito, Maria; de A. Lages, Geysson; da Silva Filho, Adejardo F.; Santos, Lucilene; Brasilino, Roberta G.

    2016-07-01

    Tonian granitoids, today augen-gneisses and migmatites, showing crystallization ages ranging from 870 Ma to 1000 Ma occur in the Borborema Province, NE Brazil. The majority of them have ages within the 925-970 Ma interval. Few intrusions with ages of ∼1.0 Ga and <900 Ma occur in the Transversal and South subprovinces. The Tonian granitoids constitute the most expressive magmatic rocks of the Cariris Velhos event. The studied granitoids (herein CVG -Cariris Velhos granitoids) intrude slightly older bimodal (but mostly felsic) volcanic successions and metasedimentary sequences in the Transversal and South subprovinces. Tonian granitoids are unknown in the North subprovince. The CVG comprise mainly coarse-grained augen-gneisses of granite to granodiorite composition. Fe-rich biotite (annite) is the main mafic mineral phase, constituting up to 15% of the modal composition. Garnet, muscovite and tourmaline occur as accessory phases in many plutons. The CVG augen-gneisses have high SiO2 (>71%) and alkali contents, they vary from slightly peraluminous to slightly metaluminous, and from slightly magnesian to typical ferrroan rocks. In the migmatized orthogneisses the SiO2 contents are usually <70%. Trace element variations in the CVG are extensive, reflecting the migmatization recorded in some plutons and/or distinct sources. They are Ca-, Sr- and Nb-poor, showing variable Ba (100-1260 ppm), Rb (164-400 ppm) and Zr (144-408 ppm) contents, and high abundances of Y (>40 ppm). The chondrite normalized REE patterns are characterized by strong to moderate negative Eu anomalies (Eu/Eu* = 0.23-0.70). In general, the spidergram patterns show deep troughs at Ti, P, Ba and Sr and less pronounced Nb-Ta troughs. These patterns are similar to those reported for anorogenic granites evolved from mixtures of magmas from both crustal and mantle sources. The CVG exhibit TDM model ages ranging from 1.9 to 1.1Ga, with slightly negative to slightly positive ƐNd(t) values, suggesting the

  8. Hydrothermal REE and Zr Ore Forming Processes in Peralkaline Granitic Systems

    NASA Astrophysics Data System (ADS)

    Gysi, A. P.

    2015-12-01

    Anorogenic peralkaline igneous systems display extreme enrichment of REE and Zr with a hydrothermal overprint leading to post-magmatic metal mobilization. Strange Lake in Canada, for example, is a mid-Proterozoic peralkaline granitic intrusion and host to a world-class REE-Zr deposit with >50 Mt ore (>1.5 wt.% REE and >3 wt.% Zr). In contrast to porphyry systems, peralkaline systems are poorly understood and hydrothermal metal mobilization models are only in the early stage of their development. This is partly due to the paucity of thermodynamic data for REE-bearing minerals and aqueous species, and the complexity of the hydrothermal fluids (enrichment of F, P and Cl), which make it difficult to develop thermodynamic models of metal partitioning. This study aims to show the link between alteration stages and metal mobilization using Strange Lake as a natural laboratory and combine these observations with numerical modeling. Four types of alteration were recognized at Strange Lake: i) alkali (i.e. K and Na) metasomatism related to interaction with NaCl-bearing orthomagmatic fluids, ii) acidic alteration by HCl-HF-bearing fluids originating from the pegmatites followed by iii) aegirinization of the border of the pegmatites and surrounding granites and by iv) pervasive Ca-F-metasomatism. The acidic alteration accounts for most of the hydrothermal metal mobilization in and outward from the pegmatites, whereas the Ca-F-metasomatism led to metal deposition and resulted from interaction of an acidic F-rich fluid with a Ca-bearing fluid. Numerical simulations of fluid-rock reactions with saline HCl-HF-bearing fluids at 400 °C to 250 °C indicate that temperature, availability of F/Cl and pH limit the mobility of Zr and REE. Fluids with pH <2 led to the formation of quartz and fluorite in the core of the pegmatites and to an increase in the stability of REE chloride species favorable for REE mobilization. The mobilization of Zr was favored at low temperature with the

  9. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries

    DOE PAGESBeta

    Deng, Zhi; Mo, Yifei; Ong, Shyue Ping

    2016-03-25

    The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that aremore » currently of the most commercial interest.« less

  10. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    DOEpatents

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  11. Terahertz radiation in alkali vapor plasmas

    SciTech Connect

    Sun, Xuan; Zhang, X.-C.

    2014-05-12

    By taking advantage of low ionization potentials of alkali atoms, we demonstrate terahertz wave generation from cesium and rubidium vapor plasmas with an amplitude nearly one order of magnitude larger than that from nitrogen gas at low pressure (0.02–0.5 Torr). The observed phenomena are explained by the numerical modeling based upon electron tunneling ionization.

  12. The Additive Coloration of Alkali Halides

    ERIC Educational Resources Information Center

    Jirgal, G. H.; and others

    1969-01-01

    Describes the construction and use of an inexpensive, vacuum furnace designed to produce F-centers in alkali halide crystals by additive coloration. The method described avoids corrosion or contamination during the coloration process. Examination of the resultant crystals is discussed and several experiments using additively colored crystals are…

  13. Characterization of Quartz and Feldspar Deformation in the Mid-crust: Insights from the Cordillera Blanca Shear Zone, Peru

    NASA Astrophysics Data System (ADS)

    Hughes, C. A.; Jessup, M. J.; Shaw, C. A.

    2014-12-01

    Deformation mechanisms within shear zones from various crustal levels must be characterized to develop accurate models of lithospheric rheology. The Cordillera Blanca Shear Zone (CBSZ) in the central Peruvian Andes records changes in temperature, microstructures, and deformation mechanisms that occurred during exhumation through the brittle-ductile-transition during normal-sense slip over the last ~5 m.y. The 100-500-m-thick mylonitic shear zone occupies the footwall of a 200-km-long normal detachment fault, marking the western boundary of the 8 Ma, leucogranodiorite Cordillera Blanca Batholith. Though local variations do occur, including recrystallized quartz veins and local, decimeter- to meter- scale shear zones, the CBSZ follows a general trend of increasing strain towards the detachment. Structurally lowest positions are weakly deformed and transition to protomylonite, mylonite, and ultramylonite at higher positions, truncating at a cataclasite nearest the detachment. We characterize strain using EBSD analyses of quartz lattice preferred orientations and deformation temperatures using quartz and feldspar textures and two-feldspar thermometry of asymmetric strain-induced myrmekite. At the deepest structural positions, feldspar grains record a complex history characterized by bulging recrystallization, myrmekite formation, and brittle fracture, while quartz exhibits dominant grain-boundary migration recrystallization (T> 500 °C) and prism slip. Intermediate samples exhibit more prevalent strain-induced myrmekite, brittle fracture in feldspar, and reaction-associated recrystallization of K-feldspar to mica; quartz records mainly subgrain-rotation recrystallization (400-500 °C) and dominant prism slip with a rhomb component. Shallower positions preserve fewer, smaller, and more rounded feldspar porphyroclasts with no myrmekite, and dominant bulging recrystallization (280-400 °C) in quartz that records prism , rhomb , and some basal slip.

  14. Effects of Al/Si ordering on feldspar dissolution: Part II. The pH dependence of plagioclases' dissolution rates

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Min, Yujia; Jun, Young-Shin

    2014-02-01

    The rate of mineral dissolution in an aquatic environment is sensitive to the pH of the contacting solution. The pH dependence of mineral dissolution rate has been interpreted by the Transition State Theory-Surface Complexation Model (TST-SCM) formalism in terms of pH-sensitive variability in surface chemistry. In this study, we provide an alternative interpretation for the experimentally observed nonlinear pH dependence of feldspar dissolution rates. The interpretation is based on a new formalism for feldspar dissolution which, while compatible with the TST-SCM formalism, incorporates the effects of both surface chemistry and bulk chemistry on feldspar dissolution into the quantification of dissolution rate. The pH dependence of dissolution rate varies from one feldspar specimen to another because different TOT linkages within one solid matrix can respond differently to the attack of proton. Our results suggest that the pH dependence of feldspar dissolution rate is not a constant in general, and could be affected by pH, substitutional Al/Si ordering, chemical composition of the specimen, and the relative rapidness of linkage hydrolysis according to different mechanisms. The rate law proposed in this study is able to capture the experimentally observed pH dependence of the dissolution rates of a series of plagioclases, including albite, andesine, labradorite, bytownite, and anorthite. The effectiveness of the newly proposed formalism for feldspar dissolution, hence, suggests that dissolution reactions of minerals are combinations of surface renewal and heterogeneous chemical reactions. The currently widely used TST-SCM-based rate laws can be further improved by taking into account the effects of bulk chemistry and surface renewal in the prediction of mineral dissolution rates. An improved formalism for mineral dissolution will be mineral-specific, and will reflect the effects of the temporal decay in the availability of reactive surface sites as well as the

  15. Ar Ar dating of authigenic K-feldspar: Quantitative modelling of radiogenic argon-loss through subgrain boundary networks

    NASA Astrophysics Data System (ADS)

    Mark, D. F.; Kelley, S. P.; Lee, M. R.; Parnell, J.; Sherlock, S. C.; Brown, D. J.

    2008-06-01

    We have analysed two distinct generations of authigenic K-feldspar in Fucoid Bed sandstones from An-t-Sron and Skiag Bridge, NW Highlands, Scotland, which have experienced post-growth heating to levels in excess of the predicted Ar-closure temperature. Authigenic K-feldspars show microtextural similarities to patch perthites; that is subgrains separated by dislocation-rich boundary networks that potentially act as fast diffusion pathways for radiogenic argon. The two generations of authigenic K-feldspar in the Fucoid Bed sandstones can be distinguished by different microtextural zones, bulk mineral compositions, fluid-inclusion populations, and inferred temperatures and chemistries of parent fluids. Ar-Ar age data obtained using high-resolution ultraviolet laser ablation, show that the first cementing generation is Ordovician and the second cementing generation is Silurian. Modelling of Ar diffusion using subgrain size as the effective diffusion dimension and a simplified tectono-thermal thrust model assuming transient heating of the Fucoid Beds is inconsistent with observed data. Removal of heat from the thrust zone through rapid flushing of heated fluids rather than transient heating can be invoked to explain the observed Ar-Ar ages for both generations of cement. Alternatively, Ar-diffusion modelling using overgrowth thickness as the effective diffusion dimension instead of subgrain size also yields models that are consistent with both the Fucoid Bed palaeothermal maxima and determined Ar-Ar age ages for the two generations of K-feldspar cement. Based on this alternate explanation, we propose a theoretical microtextural model that highlights fundamental differences between the microtextures of deuterically formed patch perthites and authigenic K-feldspars, explaining the apparent robustness of authigenic K-feldspar with respect to Ar-retention.

  16. Hyaline membrane disease, alkali, and intraventricular haemorrhage.

    PubMed Central

    Wigglesworth, J S; Keith, I H; Girling, D J; Slade, S A

    1976-01-01

    The relation between intraventricular haemorrhage (IVH) and hyaline membrane disease (HMD) was studied in singletons that came to necropsy at Hammersmith Hospital over the years 1966-73. The incidence of IVH in singleton live births was 3-22/1000 and of HMD 4-44/1000. Although the high figures were partily due to the large number of low birthweight infants born at this hospital, the incidence of IVH in babies weighing 1001-1500 g was three times as great as that reported in the 1658 British Perinatal Mortality Survey. Most IVH deaths were in babies with HMD, but the higher frequency of IVH was not associated with any prolongation of survival time of babies who died with HMD as compared with the 1958 survey. IVH was seen frequently at gestations of up to 36 weeks in babies with HMD but was rare above 30 weeks' gestation in babies without HMD. This indicated that factors associated with HMD must cause most cases of IVH seen at gestations above 30 weeks. Comparison of clinical details in infants with HMD who died with or without IVH (at gestations of 30-37 weeks) showed no significant differences between the groups other than a high incidence of fits and greater use of alkali therapy in the babies with IVH. During the 12 hours when most alkali therapy was given, babies dying with IVD received a mean total alkali dosage of 10-21 mmol/kg and those dying without IVH 6-34 mmol/kg (P less than 0-001).There was no difference in severity of hypoxia or of metabolic acidosis between the 2 groups. Babies who died with HMD and germinal layer haemorrhage (GLH) without IVH had received significantly more alkali than those who died with HMD alone, whereas survivors of severe respiratory distress syndrome had received lower alkali doses than other groups. It is suggested that the greatly increased death rate from IVH in babies with HMD indicates some alteration of management of HMD (since 1958) as a causative factor. Liberal use of hypertonic alkali solutions is the common factor

  17. Granite Monument Plaza Oklahoma City Civic Center, Bounded by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Granite Monument Plaza - Oklahoma City Civic Center, Bounded by N. Shartel Avenue to the West, N. Hudson Avenue to the East, Couch Drive to the North, and Colcord Drive to the South, Oklahoma City, Oklahoma County, OK

  18. 8. July, 1970 DETAIL OF BRICK SIDEWALK AND GRANITE CURB, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. July, 1970 DETAIL OF BRICK SIDEWALK AND GRANITE CURB, LOOKING EAST ON NORTH SIDE OF INDIA STREET FROM DRIVEWAY OF 31 INDIA STREET - India Street Neighborhood Study, 15-45 India Street, Nantucket, Nantucket County, MA

  19. 7. July, 1970 DETAIL OF BRICK SIDEWALK AND GRANITE CURB, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. July, 1970 DETAIL OF BRICK SIDEWALK AND GRANITE CURB, LOOKING EAST ON NORTH SIDE OF INDIA STREET FROM DRIVEWAY OF 31 INDIA STREET - India Street Neighborhood Study, 15-45 India Street, Nantucket, Nantucket County, MA

  20. 10. Lighthouse boathouse and granite wharf, view north northeast, southwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Lighthouse boathouse and granite wharf, view north northeast, southwest and southeast sides of boathouse, west and south sides of dock - Whitehead Light Station, Whitehead Island, East northeast of Tenants Harbor, Spruce Head, Knox County, ME

  1. Detail of track girder, south portal and granite piers at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of track girder, south portal and granite piers at low tide. View Northwest - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  2. 19. OVERVIEW SHOWING REMOVAL OF GRANITE OUTCROP, FOLLOWING DAMAGE TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. OVERVIEW SHOWING REMOVAL OF GRANITE OUTCROP, FOLLOWING DAMAGE TO BRIDGE, LOOKING NORTHEAST - Middle Fork Stanislaus River Bridge, Spans Middle Fork Stanislaus River at State Highway 108, Dardanelle, Tuolumne County, CA

  3. 20. DETAIL VIEW SHOWING REMOVAL OF GRANITE OUTCROP, FOLLOWING DAMAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DETAIL VIEW SHOWING REMOVAL OF GRANITE OUTCROP, FOLLOWING DAMAGE TO BRIDGE, LOOKING NORTHEAST - Middle Fork Stanislaus River Bridge, Spans Middle Fork Stanislaus River at State Highway 108, Dardanelle, Tuolumne County, CA

  4. 6. HISTORIC AMERICAN BUILDINGS SURVEY, INTERIOR SHOWING ORIGINAL GRANITE COLUMNS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. HISTORIC AMERICAN BUILDINGS SURVEY, INTERIOR SHOWING ORIGINAL GRANITE COLUMNS AND COLUMN BRICKFACED AFTER THE GREAT FIRE 1904 - Old U.S. Appraisers Stores, Gay & Lombard Streets, Baltimore, Independent City, MD

  5. 17. SPRINGHOUSE, SOUTHWEST SIDE; NOTE BROKEN GRANITE FOUNDATION FROM SURROUNDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. SPRINGHOUSE, SOUTHWEST SIDE; NOTE BROKEN GRANITE FOUNDATION FROM SURROUNDING HILLSIDES. - Hondius Water Line, 1.6 miles Northwest of Park headquarters building & 1 mile Northwest of Beaver Meadows entrance station, Estes Park, Larimer County, CO

  6. 9. VIEW NORTH, ACROSS DECK AT EAST SIDE SHOWING GRANITE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW NORTH, ACROSS DECK AT EAST SIDE SHOWING GRANITE BLOCK PAVING, EXPANSION JOINT AND NORTH SIDE PIPE RAILING - Route 1 Extension, South Street Viaduct, Spanning Conrail & Wheeler Point Road at South Street, Newark, Essex County, NJ

  7. Lift Off (Granite City C. U. School District 9)

    ERIC Educational Resources Information Center

    Goodall, Robert C.; And Others

    1970-01-01

    Describes and evaluates the ESEA Title I program in Granite City (Illinois) target area schools which provide preschool classes, remedial reading, and supportive health and counseling services. The programs are considered to be efficient. (DM)

  8. Radionuclide Transport in Fracture-Granite Interface Zones

    SciTech Connect

    Hu, Q; Mori, A

    2007-09-12

    In situ radionuclide migration experiments, followed by excavation and sample characterization, were conducted in a water-conducting shear zone at the Grimsel Test Site (GTS) in Switzerland to study diffusion paths of radionuclides in fractured granite. In this work, we employed a micro-scale mapping technique that interfaces laser ablation sampling with inductively coupled plasma-mass spectrometry (LA/ICP-MS) to measure the fine-scale (micron-range) distribution of actinides ({sup 234}U, {sup 235}U, and {sup 237}Np) in the fracture-granite interface zones. Long-lived {sup 234}U, {sup 235}U, and {sup 237}Np were detected in flow channels, as well as in the adjacent rock matrix, using the sensitive, feature-based mapping of the LA/ICP-MS technique. The injected sorbing actinides are mainly located within the advective flowing fractures and the immediately adjacent regions. The water-conducting fracture studied in this work is bounded on one side by mylonite and the other by granitic matrix regions. These actinides did not penetrate into the mylonite side as much as the relatively higher-porosity granite matrix, most likely due to the low porosity, hydraulic conductivity, and diffusivity of the fracture wall (a thickness of about 0.4 mm separates the mylonite region from the fracture) and the mylonite region itself. Overall, the maximum penetration depth detected with this technique for the more diffusive {sup 237}Np over the field experimental time scale of about 60 days was about 10 mm in the granitic matrix, illustrating the importance of matrix diffusion in retarding radionuclide transport from the advective fractures. Laboratory tests and numerical modeling of radionuclide diffusion into granitic matrix was conducted to complement and help interpret the field results. Measured apparent diffusivity of multiple tracers in granite provided consistent predictions for radionuclide transport in the fractured granitic rock.

  9. Mortality experience of Vermont granite workers

    SciTech Connect

    Davis, L.K.; Wegman, D.H.; Monson, R.R.; Froines, J.

    1982-01-01

    A comparison was made between the chief cause of death among 969 deceased white male granite workers in Vermont and the causes of death among other individuals not in that occupation. Tuberculosis deaths were ten times the number predicted, based on the U.S. white male experience. Of the 65 tuberculosis deaths, 48 were silicotuberculosis and 16 were pulmonary tuberculosis. A notable increase was found for deaths due to all respiratory diseases, with 28 deaths due to silicosis. Excluding deaths due to silicosis and tuberculosis left a small excess of emphysema-related deaths. For 25 men in the respiratory disease category whose cause of death was not listed as silicosis, ten had evidence of silicosis in their x-ray records suggesting some misdiagnoses may have occurred. An excess of lung cancer deaths was noted among sawyers and polishers, suggesting possible effects of abrasive exposures. No tuberculosis deaths were noted in men who started work in the post dust control period, after 1950. There was an excess of suicide deaths before 1970.

  10. Sidetracking experiences in hot granitic wellbores

    SciTech Connect

    Pettitt, R.A.; Carden, R.

    1981-01-01

    In the development of the first Hot Dry Rock (HDR) geothermal energy extraction system at Fenton Hill, west of Los Alamos, New Mexico, man-made reservoirs were created by connecting two holes in hot, impermeable crystalline rock with hydraulically-produced fractures. This system consists of two near-vertical, 24.5-cm (9-5/8-in.) diameter holes approximately 3 km (10,000 ft) deep in Precambrian basement rock, at a bottom-hole temperature of 200/sup 0/C (400/sup 0/F). In order to improve the connection between the wellbores, the production hole was sidetracked to intercept the fracture zone at a more favorable depth. Two successful sidetrack operations were accomplished in 1977, utilizing cement plugs, underreaming, Dyna-Drills, and both button and diamond bits. Drilling of the second larger, commercial-sized reservoir system began in 1979 and consists of two boreholes drilled to a depth of 4 km (15,000 ft) at an angle of 35/sup 0/ from the vertical, which will be connected by a series of hydraulic fractures extending across the 400-m-(1200-ft) vertical separation of the two holes. Sidetracking to bypass a stuck bottom-hole assembly was accomplished through the use of a whipstock device, Dyna-Drills, and button bits. This paper is presented as a case history of the efforts involved to achieve successful sidetracking in hot granitic wellbores.

  11. Hydraulic fracturing in granite under geothermal conditions

    USGS Publications Warehouse

    Solberg, P.; Lockner, D.; Byerlee, J.D.

    1980-01-01

    The experimental hydraulic fracturing of granite under geothermal conditions produces tensile fracture at rapid fluid injection rates and shear fracture at slow injection rates and elevated differential stress levels. A sudden burst of acoustic emission activity accompanies tensile fracture formation whereas the acoustic emission rate increases exponentially prior to shear fracture. Temperature does not significantly affect the failure mechanism, and the experimental results have not demonstrated the occurrence of thermal fracturing. A critical result of these experiments is that fluid injection at intermediate rates and elevated differential stress levels increases permeability by more than an order of magnitude without producing macroscopic fractures, and low-level acoustic emission activity occurs simultaneously near the borehole and propagates outward into the specimen with time. Permeability measurements conducted at atmospheric pressure both before and after these experiments show that increased permeability is produced by permanent structural changes in the rock. Although results of this study have not demonstrated the occurrence of thermal fracturing, they suggest that fluid injection at certain rates in situ may markedly increase local permeability. This could prove critical to increasing the efficiency of heat exchange for geothermal energy extraction from hot dry rock. ?? 1980.

  12. Evidence for 26Al in Feldspars from the H4 Chondrite Ste. Marguerite

    NASA Astrophysics Data System (ADS)

    Zinner, E.; Gopel, C.

    1992-07-01

    One of the important questions for the history of the early solar system is whether or not there was enough ^26Al to melt small planetary bodies through the heat released by its decay. Although there is ample evidence for the existence of live ^26Al in refractory inclusions (Wasserburg and Papanastassiou, 1982; Hutcheon, 1982; Podosek et al., 1991), CAIs are special objects with peculiar properties and their Al is not necessarily representative of that of their host meteorites nor the early solar systems. Furthermore, some inclusions do not show any evidence for ^26Al (Wasserburg and Papanastassiou, 1982; Ireland, 1990; Virag et al., 1991), raising the possibility of ^26Al heterogeneity. The only previous observation of ^26Mg excesses attributed to the decay of ^26Al outside of CAIs was in an igneous clast from Semarkona (Hutcheon and Hutchison, 1989) leading to the conclusion that ^26Al indeed could have been a heat source for planetary melting. We have measured Al-Mg in plagioclase grains from the H4 chondrite Ste. Marguerite by ion microprobe mass spectrometry. Feldspars from H4 chondrites are good samples for addressing the problem of ^26Al as heat source because most Al resides in this phase and some H4s experienced fast cooling (Pellas and Storzer, 1981); in fact, the possibility of live ^26Al in feldspars from H4 chondrites that cooled fast has been predicted by Pellas and Storzer (1981). Furthermore, extremely precise absolute Pb/Pb ages exist for these meteorites (Gopel et al., 1991). Figure 1 shows the measurements on five feldspar crystals. All show ^26Mg excesses. A fit through the data points and the normal ^26Mg/^24Mg ratio of 0.13962 obtained from Lake County plagioclase measured under the same instrumental conditions as the Ste. Marguerite samples yields a (^26Al/^27Al)(sub)0 ratio of (2.0 +- 0.6) x 10^-7. If interpreted chronologically this ratio dates the retention of radiogenic ^26Mg in Ste. Marguerite feldspar to 5.6 +- 0.4 Ma after the

  13. Laboratory measurements of upwelled radiance and reflectance spectra of Calvert, Ball, Jordan, and Feldspar soil sediments

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Usry, J. W.; Witte, W. G.; Gurganus, E. A.

    1977-01-01

    An effort to investigate the potential of remote sensing for monitoring nonpoint source pollution was conducted. Spectral reflectance characteristics for four types of soil sediments were measured for mixture concentrations between 4 and 173 ppm. For measurements at a spectral resolution of 32 mm, the spectral reflectances of Calvert, Ball, Jordan, and Feldspar soil sediments were distinctly different over the wavelength range from 400 to 980 nm at each concentration tested. At high concentrations, spectral differences between the various sediments could be detected by measurements with a spectral resolution of 160 nm. At a low concentration, only small differences were observed between the various sediments when measurements were made with 160 nm spectral resolution. Radiance levels generally varied in a nonlinear manner with sediment concentration; linearity occurred in special cases, depending on sediment type, concentration range, and wavelength.

  14. Elemental content of feldspar from Eastern Desert, Egypt, determined by INAA and XRF.

    PubMed

    El-Taher, A

    2010-06-01

    Instrumental neutron activation analysis (INAA) and HPGe detector gamma-spectroscopy were used to determine a total of 16 elements qualitatively and quantitatively for the first time from feldspar rock samples collected from Gabel El Dubb, Eastern desert, Egypt. The elements determined are (Na, Mg, K, Sc, Ga, Cr, Fe, Co, Zn, Nb, Ba, Ce, Eu, Hf, Th and U). The samples were properly prepared together with their standard reference material and simultaneously irradiated by thermal neutrons at the TRIGA Mainz research reactor at a neutron flux of 7x10(11)n/cm(2)s. XRF was also used. Comparison of the results obtained by both techniques showed good agreement for such elements as K, Na, Fe, Mg, Ba and Cr. PMID:20185321

  15. Physics and chemistry of alkali-silica reactions

    SciTech Connect

    Diamond, S.; Barneyback, R.S. Jr.; Struble, L.J.

    1981-01-01

    The philosophy underlying recent research on alkali-silica reactions is reviewed and illustrations of recent results are provided. It has been possible to follow the kinetics of the chemical reaction between dissolved alkalis and opal in mortars by monitoring the rate at which alkalis are removed from the pore solutions of reacting mortars. Studies of the expansion behavior of synthetic alkali silica gels under controlled conditions were carried out and show no obvious correlation to chemical composition. The alkali reaction in mortars was found to produce changes in the appearance of opal grains documentable by the use of a scanning electron microscope.

  16. Calcium-Alkali Syndrome in the Modern Era

    PubMed Central

    Patel, Ami M.; Adeseun, Gbemisola A.; Goldfarb, Stanley

    2013-01-01

    The ingestion of calcium, along with alkali, results in a well-described triad of hypercalcemia, metabolic alkalosis, and renal insufficiency. Over time, the epidemiology and root cause of the syndrome have shifted, such that the disorder, originally called the milk-alkali syndrome, is now better described as the calcium-alkali syndrome. The calcium-alkali syndrome is an important cause of morbidity that may be on the rise, an unintended consequence of shifts in calcium and vitamin D intake in segments of the population. We review the pathophysiology of the calcium-alkali syndrome. PMID:24288027

  17. An investigation of cathodoluminescence in albite from the A-type Georgeville granite, Nova Scotia

    SciTech Connect

    Dalby, Kim N.; Anderson, Alan J.; Mariano, Anthony N.; Gordon, Robert A.; Mayanovic, Robert A.; Wirth, Richard

    2009-12-15

    Cathodoluminescence (CL) reveals red and blue colors within single, non-turbid albite (Ab{sub 98-99}) grains from the Georgeville granite, Nova Scotia. A 720 nm X-ray excited optical luminescence (XEOL) peak characterizes red CL regions, while a 280 nm XEOL feature dominates blue CL regions. Synchrotron X-ray fluorescence results indicate that red CL and the 720 nm XEOL peak intensities relate to total Fe concentrations. The relationship between red CL and Fe content is confirmed by electron microprobe (EMPA) and laser ablation-inductively coupled mass spectrometry (LA-ICP-MS). The XEOL technique is used to exclude the Fe K-edge as the cause of red CL. X-ray absorption spectroscopy results indicate that Fe in both the red and blue CL regions is Fe{sup 3+}, and that red CL activation may relate to the Si-Al order of the feldspar and to the distribution of Fe on tetrahedral sites. The CL textures, combined with EMPA and LA-ICPMS analyses, indicate that blue CL albite (Ab98) regions contain higher concentrations of Ca, Ti, Pb and rare earth elements, and were replaced, in part, by a more Fe-rich, trace element depleted albite (Ab99) which displays red CL. Complex diffraction contrasts and amorphous deposits identified in transmission electron microscope images suggest that aqueous fluids have reacted with both red and blue CL regions. Fluid inclusion homogenization temperatures of up to 430 C provide a lower estimate of the fluid temperature.

  18. Cathodoluminescence microscopy and petrographic image analysis of aggregates in concrete pavements affected by alkali-silica reaction

    SciTech Connect

    Stastna, A.; Sachlova, S.; Pertold, Z.; Prikryl, R.; Leichmann, J.

    2012-03-15

    Various microscopic techniques (cathodoluminescence, polarizing and electron microscopy) were combined with image analysis with the aim to determine a) the modal composition and degradation features within concrete, and b) the petrographic characteristics and the geological types (rocks, and their provenance) of the aggregates. Concrete samples were taken from five different portions of Highway Nos. D1, D11, and D5 (the Czech Republic). Coarse and fine aggregates were found to be primarily composed of volcanic, plutonic, metamorphic and sedimentary rocks, as well as of quartz and feldspar aggregates of variable origins. The alkali-silica reaction was observed to be the main degradation mechanism, based upon the presence of microcracks and alkali-silica gels in the concrete. Use of cathodoluminescence enabled the identification of the source materials of the quartz aggregates, based upon their CL characteristics (i.e., color, intensity, microfractures, deformation, and zoning), which is difficult to distinguish only employing polarizing and electron microscopy. - Highlights: Black-Right-Pointing-Pointer ASR in concrete pavements on the Highways Nos. D1, D5 and D11 (Czech Republic). Black-Right-Pointing-Pointer Cathodoluminescence was combined with various microscopic techniques and image analysis. Black-Right-Pointing-Pointer ASR was attributed to aggregates. Black-Right-Pointing-Pointer Source materials of aggregates were identified based on cathodoluminescence characteristics. Black-Right-Pointing-Pointer Quartz comes from different volcanic, plutonic and metamorphic parent rocks.

  19. Alkali metal recovery from carbonaceous material conversion process

    DOEpatents

    Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  20. Alkali element background reduction in laser ICP-MS

    NASA Astrophysics Data System (ADS)

    Magee, C. W., Jr.; Norris, C. A.

    2014-11-01

    Alkali backgrounds in laser ablation ICP-MS analyses can be enhanced by electron-induced ionization of alkali contamination on the skimmer cone, reducing effective detection limits for these elements. Traditionally, this problem is addressed by isolating analyses of high alkali materials onto a designated cone set, or by operating the ICP-MS in a "soft extraction" mode, which reduces the energy of electrons repelled into the potentially contaminated sampling cone by the extraction field. Here we present a novel approach, where we replace the traditional alkali glass tuning standards with synthetic low-alkali glass reference materials. Using this vitreous tuning solution, we find that this approach reduces the amount of alkali contamination produced, halving backgrounds for the heavy alkali elements without any change to analytical procedures. Using segregated cones is still the most effective method for reducing lithium backgrounds, but since the procedures are complimentary both can easily be applied to the routine operations of an analytical lab.

  1. Alkali element background reduction in laser ICP-MS

    NASA Astrophysics Data System (ADS)

    Magee, C. W., Jr.; Norris, C. A.

    2015-03-01

    Alkali backgrounds in laser ablation ICP-MS analyses can be enhanced by electron-induced ionisation of alkali contamination on the skimmer cone, reducing effective detection limits for these elements. Traditionally, this problem is addressed by isolating analyses of high-alkali materials onto a designated cone set, or by operating the ICP-MS in a "soft extraction" mode, which reduces the energy of electrons repelled into the potentially contaminated sampling cone by the extraction field. Here we present a novel approach, where we replace the traditional alkali glass tuning standards with synthetic low-alkali glass reference materials. Using this vitreous tuning solution, we find that this approach reduces the amount of alkali contamination produced, halving backgrounds for the heavy alkali elements without any change to analytical procedures. Using segregated cones is still the most effective method for reducing lithium backgrounds, but since the procedures are complimentary, both can easily be applied to the routine operations of an analytical lab.

  2. Developments in alkali-metal atomic magnetometry

    NASA Astrophysics Data System (ADS)

    Seltzer, Scott Jeffrey

    Alkali-metal magnetometers use the coherent precession of polarized atomic spins to detect and measure magnetic fields. Recent advances have enabled magnetometers to become competitive with SQUIDs as the most sensitive magnetic field detectors, and they now find use in a variety of areas ranging from medicine and NMR to explosives detection and fundamental physics research. In this thesis we discuss several developments in alkali-metal atomic magnetometry for both practical and fundamental applications. We present a new method of polarizing the alkali atoms by modulating the optical pumping rate at both the linear and quadratic Zeeman resonance frequencies. We demonstrate experimentally that this method enhances the sensitivity of a potassium magnetometer operating in the Earth's field by a factor of 4, and we calculate that it can reduce the orientation-dependent heading error to less than 0.1 nT. We discuss a radio-frequency magnetometer for detection of oscillating magnetic fields with sensitivity better than 0.2 fT/ Hz , which we apply to the observation of nuclear magnetic resonance (NMR) signals from polarized water, as well as nuclear quadrupole resonance (NQR) signals from ammonium nitrate. We demonstrate that a spin-exchange relaxation-free (SERF) magnetometer can measure all three vector components of the magnetic field in an unshielded environment with comparable sensitivity to other devices. We find that octadecyltrichlorosilane (OTS) acts as an anti-relaxation coating for alkali atoms at temperatures below 170°C, allowing them to collide with a glass surface up to 2,000 times before depolarizing, and we present the first demonstration of high-temperature magnetometry with a coated cell. We also describe a reusable alkali vapor cell intended for the study of interactions between alkali atoms and surface coatings. Finally, we explore the use of a cesium-xenon SERF comagnetometer for a proposed measurement of the permanent electric dipole moments (EDMs

  3. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    PubMed

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. PMID:26496216

  4. Determination of Matrix Diffusion Properties of Granite

    SciTech Connect

    Holtta, Pirkko; Siitari-Kauppi, Marja; Huittinen, Nina; Poteri, Antti

    2007-07-01

    Rock-core column experiments were introduced to estimate the diffusion and sorption properties of Kuru Grey granite used in block-scale experiments. The objective was to examine the processes causing retention in solute transport through rock fractures, especially matrix diffusion. The objective was also to estimate the importance of retention processes during transport in different scales and flow conditions. Rock-core columns were constructed from cores drilled into the fracture and were placed inside tubes to form flow channels in the 0.5 mm gap between the cores and the tube walls. Tracer experiments were performed using uranin, HTO, {sup 36}Cl, {sup 131}I, {sup 22}Na and {sup 85}Sr at flow rates of 1-50 {mu}L.min{sup -1}. Rock matrix was characterized using {sup 14}C-PMMA method, scanning electron microscopy (SEM), energy dispersive X-ray micro analysis (EDX) and the B.E.T. method. Solute mass flux through a column was modelled by applying the assumption of a linear velocity profile and molecular diffusion. Coupling of the advection and diffusion processes was based on the model of generalised Taylor dispersion in the linear velocity profile. Experiments could be modelled applying a consistent parameterization and transport processes. The results provide evidence that it is possible to investigate matrix diffusion at the laboratory scale. The effects of matrix diffusion were demonstrated on the slightly-sorbing tracer breakthrough curves. Based on scoping calculations matrix diffusion begins to be clearly observable for non-sorbing tracer when the flow rate is 0.1 {mu}L.min{sup -1}. The experimental results presented here cannot be transferred directly to the spatial and temporal scales that prevail in an underground repository. However, the knowledge and understanding of transport and retention processes gained from this study is transferable to different scales from laboratory to in-situ conditions. (authors)

  5. Fractionation of Stable Si Isotopes During in-situ Dissolution of Feldspars and Formation of Secondary Clay Minerals

    NASA Astrophysics Data System (ADS)

    Georg, R. B.; Reynolds, B. C.; Halliday, A. N.; Zhu, C.

    2005-12-01

    It has been proposed that weathering of igneous silicate minerals may fractionate Si isotopes (Douthitt 1982, de la Rocha et al. 2000). This is supported by the observation that clays yield δ30Si compositions between +0.5‰ and -2.5‰ compared to the igneous range for δ30Si between +0.1‰ and -1‰ respectively (Douthitt 1982). The difference may relate to a discrimination against heavier Si isotopes during clay mineral formation. However, no study has yet shown a direct Si isotope fractionation between coexisting primary igneous and secondary clay mineral phases. We have measured the stable Si isotope fractionation during in-situ feldspar dissolution and formation of secondary clay minerals in the Navajo Sandstone, Black Mesa, Arizona. The Jurassic Navajo Sandstone is composed of about 94% quartz and 2-4% K-feldspar. The K-feldspar grains are covered with kaolinite, and both quartz and feldspars are covered with a mantle of smectite coating. Petrographic studies demonstrate that the clay minerals formed in situ as alteration products of feldspar, and the smectite is of a low-temperature variety (Zhu, 2005). Therefore, the Si isotope fractionation at low temperature (15-35°C) can be evaluated - something that is difficult to replicate in the laboratory. For the Si isotope analyses we used 20-30 mg of 5 separated clay samples, and 0.36 mg of hand picked feldspars. The silicates were fused with an alkaline flux and dissolved in a weak HCl acid. The dissolved Si was then separated by ion-exchange chromatography. The relative Si isotope compositions were measured using a high-resolution MC-ICP-MS (The Nu1700 at ETH Zurich) and are reported in δ notation relative to the international Si standard NBS 28. The bulk rock and separated feldspar fraction have Si isotope compositions are -0.09 ± 0.03‰ and -0.15 ±0.03 ‰ (±2σSEM) δ30Si, respectively. The clay samples have δ30Si values of -0.24 ±0.05‰, -0.16 ±0.03‰, -0.30 ±0.03‰, -0.42 ±0.03‰ and -0

  6. Distribution and textures of K-feldspar grains in the George Ashley Block layered-aplite pegmatite intrusive

    NASA Astrophysics Data System (ADS)

    Kleck, W. D.

    2013-12-01

    Both Johns & Tuttle (1963) and London (2008) note that the distribution of potassium is neither uniform nor symmetrical in some pegmatite bodies. A detailed chemical and mineral analysis of the George Ashley Block (Kleck & Foord 1999) shows that the distribution of K-feldspar over the entire body is generally uniform, but not symmetrical. The amounts of quartz, plagioclase, muscovite, and garnet are neither uniform nor symmetrical. It is noted that layered-aplite, pegmatite intrusives (terminology of Jahns & Tuttle 1963) are intruded horizontally, and it is suggested that these are the pegmatite bodies which have this non-uniform distribution of minerals. These types of pegmatite bodies are distinctly different from other pegmatite bodies in several ways. The core zone in these bodies is not centrally located and typically divides these bodies into a pegmatitic top and an aplitic bottom; the top and bottom appear to be contemporaneous. The features and content of the border- and core-zones are not included in this discussion. The texture of the K-feldspar in the top of these bodies is generally pegmatitic; some of the K-feldspar grains may exist as ultra-large grains which have a teardrop shape or minor-crystal surfaces. In the bottom of these bodies, the K-feldspar is commonly rounded grains approximately 1 mm in diameter; rarely, some K-feldspar grains here are centimeter-grained with crystal surfaces indicating growth. In the George Ashley Block, the concentration and distribution of K-feldspar is inversely symmetrical in the top vs. bottom. In the top it increases toward the core zone; K-feldspar--20 increasing to 60 vol% (all values one significant figure) and K2O--3 increasing to 8 wt%. In the bottom it decreases toward the core zone; K-feldspar--40 decreasing to 0 vol% and K2O--4 decreasing to 0 wt%. The two trends are approximately parallel and the total amounts are approximately constant. The suggested conditions and mechanisms (with the added condition of

  7. Removal of Retired Alkali Metal Test Systems

    SciTech Connect

    BREHM, W.F.

    2003-01-01

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  8. Removal of Retired Alkali Metal Test Systems

    SciTech Connect

    Brehm, W. F.; Church, W. R.; Biglin, J. W.

    2003-02-26

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  9. Geopolymers and Related Alkali-Activated Materials

    NASA Astrophysics Data System (ADS)

    Provis, John L.; Bernal, Susan A.

    2014-07-01

    The development of new, sustainable, low-CO2 construction materials is essential if the global construction industry is to reduce the environmental footprint of its activities, which is incurred particularly through the production of Portland cement. One type of non-Portland cement that is attracting particular attention is based on alkali-aluminosilicate chemistry, including the class of binders that have become known as geopolymers. These materials offer technical properties comparable to those of Portland cement, but with a much lower CO2 footprint and with the potential for performance advantages over traditional cements in certain niche applications. This review discusses the synthesis of alkali-activated binders from blast furnace slag, calcined clay (metakaolin), and fly ash, including analysis of the chemical reaction mechanisms and binder phase assemblages that control the early-age and hardened properties of these materials, in particular initial setting and long-term durability. Perspectives for future research developments are also explored.

  10. Silicified Granites (Bleeding Stone and Ochre Granite) as Global Heritage Stones Resources from Avila (Central of Spain)

    NASA Astrophysics Data System (ADS)

    Garcia-Talegon, Jacinta; Iñigo, Adolfo C.; Vicente-Tavera, Santiago; Molina-Ballesteros, Eloy

    2015-04-01

    Silicified Granites have been widely used to build the main Romanesque monuments in the 12 th century of Avila city that was designated a World Heritage Site by the UNESCO in 1985. The stone was used in the Cathedral (12 th century); churches located interior and exterior of the Walls (e.g. Saint Vincent; Saint Peter). During the Renaissance and Gothic period, 15 th century Silicified Granites have been used mainly to buid ribbed vaults in Avila city (e.g. Royal Palace of the Catholic Monarchs, and Chapel of Mosén Rubí). Silicified Granites are related to an intermediate and upper parts of a complex palaeoweathering mantle developed on the Iberian Hercynian Basement (the greatest part of the western Iberian Peninsula and its oldest geological entity). In the Mesozoic the basement underwent tropical weathering processes. The weathered mantle were truncated by the Alpine tectonic movements during the Tertiary, and Its remnants were unconformably covered by more recent sediments and are located in the west and south part of the Duero Basin and in the north edge of the Ambles Valley graben. For the weathering profiles developed on the Hercynian Basement is possible to define three levels from bottom to top: 1) Lower level (biotitic granodiorite/porphyry and aplite dykes); 2) Intermediate level (ochre granite); 3) Upper level (red/white granite). The lower level has been much used as a source of ornamental stone, Avila Grey granite. The porphyry and applite dykes are mainly used to built the Walls of the City. The intermediate level is called Ochre granite or Caleño and was formed from the previous level through a tropical weathering process that, apart from variations in the petrophysical characteristics of the stone, has been accompanied by important mineralogical changes (2:1 and 1:1 phyllosilicates) and decreases in the contents of the most mobile cations. The upper level has received several names, Bleeding stone, Red and White granite or Silcrete and was formed

  11. Partial melting and fractionation in the Mesa Chivato alkali basalt-trachyte series, Mount Taylor Volcanic Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Schrader, C. M.; Schmidt, M. E.; Crumpler, L. S.; Wolff, J. A.

    2012-12-01

    Mesa Chivato comprises a series of alkaline cones, flows, and domes within the Mount Taylor Volcanic Field (MTVF) in northwest New Mexico. Compositions range from alkali basalt to trachyte. Intermediate magmas are less well represented than mafic and felsic rocks, but benmoreites and transitional benmoreite-trachytes provide a window into the differentiation processes. Major element, trace element, and isotopic data suggest that petrogenesis of benmoreite proceeded by fractional crystallization of mafic liquids and magma mixing with partially melted mafic rocks. Major element mass balance models permit the derivation of transitional benmoreite/trachyte from the benmoreite by 20-25% crystallization of microphenocryst phases (olivine, plagioclase, Ti-magnetite, and apatite) and further fractionation to trachyte by 10-15% crystallization of olivine, plagioclase and alkali feldspar, Fe-Ti oxide, and apatite. These models are supported by SiO2-Sr and -Ba systematics. However, the hawaiite to benmoreite gap cannot be crossed by fractional crystallization alone. While major element models permit the mafic lavas to yield the benmoreite, they require extensive fractionation of clinopyroxene and plagioclase - this is unsupported by petrography (clinopyroxene phenocrysts are rare in the mafic rocks and lacking in the intermediate rocks) and cannot explain the benmoreite's very high Sr contents (>1800 ppm), which would have been depleted by plagioclase fractionation. From LA-ICPMS analysis of plagioclase: 87Sr/86Sr of early alkali basalt (0.70285-0.70300) and late hawaiite (0.70406-0.70421) bracket the 87Sr/86Sr of the benmoreite (0.70361-0.70406). Thus, either could represent the fractionated liquid parental to the benmoreite and the other the partially melted source.

  12. Quantum magnetism of alkali Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Malinovskaya, Svetlana; Liu, Gengyuan

    2016-05-01

    We discuss a method to control dynamics in many-body spin states of 87Rb Rydberg atoms. The method permits excitation of cold gases and form ordered structures of alkali atoms. It makes use of a two-photon excitation scheme with circularly polarized and linearly chirped pulses. The method aims for controlled quantum state preparation in large ensembles. It is actual for experiments studding the spin hopping dynamics and realization of quantum random walks.

  13. Alkali Metal Heat Pipe Life Issues

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.

    2004-01-01

    One approach to space fission power system design is predicated on the use of alkali metal heat pipes, either as radiator elements, thermal management components, or as part of the core primary heat-transfer system. This synopsis characterizes long-life core heat pipes. References are included where more detailed information can be found. Specifics shown here are for demonstrational purposes and do not necessarily reflect current Project Prometheus point designs.

  14. Alkali metal protective garment and composite material

    SciTech Connect

    Ballif, J.L.; Yuan, W.W.

    1980-09-16

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium are described. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  15. Alkali metal protective garment and composite material

    SciTech Connect

    Ballif, III, John L.; Yuan, Wei W.

    1980-01-01

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  16. Peralkaline fluid composition in equilibrium with K-feldspar, muscovite and quartz at 10 kbar and 700°C: Al transport in crustal fluids

    NASA Astrophysics Data System (ADS)

    Wohlers, A.; Manning, C. E.

    2012-04-01

    Aluminum is commonly regarded as one of the least soluble elements during metamorphic and metasomatic processes. However, abundant field evidence suggests that aluminum transport can occur in natural hydrothermal processes. For example, late formed aluminumsilicate-bearing and muscovite-bearing veins are widely observed in high-grade metamorphic rocks, and provide a persuasive argument for considerable mobility of aluminum in aqueous fluid. The present study explores the fluid composition coexisting with K-feldspar (K-fsp), muscovite (ms), corundum (co) and quartz (qz) at deep crustal metamorphic conditions, using a piston cylinder device at 10 kbar and 700°C. Starting materials of natural microcline, quartz, synthetic corundum, reagent Al2O3 and KSi3O6.5 glass was used. Ms and K-fsp dissolve incongruently to co + fluid and ms + fluid, respectively. Fluid composition in equilibrium with co + ms and ms + K-fsp were located in experiments with and without qz. In quartz-absent experiments fluid composition with co+ms (I1) is mAl = 0.11, mK = 0.15, mSi = 0.44, and with K-fsp + ms (I2) mAl = 0.18, mK = 0.28 and mSi = 0.81, where mi is molality of the subscripted element. Fluid compositions with qz are: mAl = 0.08, mK = 0.11 and mSi = 1.18 (co + ms + qtz; II1) and mAl = 0.18, mK = 0.29 and mSi = 1.58 for (K-fsp + ms +qtz; II2). Measured fluid compositions are peralkaline (K/Al < 1.4). Bulk solubility of Al in pure H2O at this P and T is reported to be ~0.3 wt% [1], and increase to ~1.9 wt % Al in the presence of SiO2 [2]. This study shows that Al solubility is further enhanced by the presence of K and Si, increasing from ~4.07 wt% for (I1) to ~ 7.14 wt% at (I2). Presence of quartz enhances the bulk solubility from ~ 7.63 wt% (II1) to ~ 12.05 wt % at (II2). Results indicate that substantial aluminum transfer may occur at deep-crust metamorphic conditions in aqueous solutions equilibrated with common crustal bulk compositions such as metapelites and granites. Such high Al

  17. Origin and evolution of the granitic intrusions in the Brusque Group of the Dom Feliciano Belt, south Brazil: Petrostructural analysis and whole-rock/isotope geochemistry

    NASA Astrophysics Data System (ADS)

    Hueck, Mathias; Basei, Miguel Angelo Stipp; Castro, Neivaldo Araújo de

    2016-08-01

    In the southern Brazilian state of Santa Catarina the Dom Feliciano Belt, formed by the tectonic juxtaposition of different crustal blocks during the Brasiliano-Pan African Orogenic cycle, can be divided into three domains. In the central domain, three granitic suites intrude the metavolcanosedimentary sequence of the Bru