Science.gov

Sample records for alkali feldspar granite

  1. Geology and mineralization of the Jabalat alkali-feldspar granite, northern Asir region, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al Tayyar, Jaffar; Jackson, Norman J.; Al-Yazidi, Saeed

    The Jabalat post-tectonic granite pluton is composed of albite- and oligoclase-bearing, low-calcium, F-, Sn- and Rb-rich subsolvus granites. These granites display evidence of late-magmatic, granitophile- and metallic-element specialization, resulting ultimately in the development of post-magmatic, metalliferous hydrothermal systems characterized by a Mo sbnd Sn sbnd Cu sbnd Pb sbnd Zn sbnd Bi sbnd Ag sbnd F signature. Two main types of mineralization are present within the pluton and its environs: (1) weakly mineralized felsic and aplitic dikes and veins enhanced in Mo, Bi, Ag, Pb and Cu; and (2) pyrite—molybdenite—chalcopyrite-bearing quartz and quartz—feldspar veins rich in Mo, Sn, Bi, Cu, Zn and Ag. A satellite stock, 3 km north of the main intrusion, is composed of fine-grained, miarolitic, muscovite—albite—microcline (microperthite) granite. The flanks of this intrusion and adjacent dioritic rocks are greisenized and highly enriched in Sn, Bi and Ag. Quartz veins which transect the satellite stock contain molybdenite and stannite.

  2. Trace-element partitioning at conditions far from equilibrium: Ba and Cs distributions between alkali feldspar and undercooled hydrous granitic liquid at 200 MPa

    NASA Astrophysics Data System (ADS)

    Morgan, George; London, David

    2002-12-01

    This study examines the effects of increasing supersaturation, attained by single-step liquidus undercooling (ΔT), on the partitioning of barium and cesium between potassic alkali feldspar (Afs) and hydrous granitic liquid at 200 MPa. The investigation is motivated by trace-element distribution patterns in granitic pegmatites which cannot be simulated by fractionation models using "equilibrium" partition coefficients, and thus its purpose is to assess if, how, and why partition coefficients for compatible and incompatible trace elements may vary when crystal growth commences far from the crystal-melt equilibrium boundary. Barium expands the liquidus stability field of potassic feldspar to higher temperatures, such that liquidi for the Ba-rich ( 0.5 wt% BaO) compositions used are 100 °C higher than for Ba-absent analogues. At low degrees of undercooling (ΔT 50 °C), values of DBaAfs/m. ( 10-20) fall within the range of previous investigations, as do values of DCsAfs/m. (<=0.10) from experiments at all temperatures. Progressively greater undercooling is manifested in the run products by increasingly skeletal to cuneiform crystal morphologies, increased compositional zonation of Afs, and the development of compositional boundary layers in glass. Whereas the partitioning behavior of Cs (incompatible) is not measurably affected, strong undercooling apparently causes the partitioning of Ba (highly compatible) to deviate from equilibrium behavior. Feldspars produced by strong undercooling (ΔT>=100 °C) are heterogeneous, such that DBaAfs/m. versus K/K+Na varies linearly between the average value at 850 °C and the equilibrium value appropriate to the temperature of growth. Hence, high supersaturation accompanying undercooling produces feldspar compositions by isothermal growth which record a vestige of the liquid line of descent (i.e., an ontogeny within zoned crystals which approximately tracks the feldspar liquidus from high temperature to the final low temperature

  3. Lunar granites with unique ternary feldspars

    NASA Technical Reports Server (NTRS)

    Ryder, G.; Stoeser, D. B.; Marvin, U. B.; Bower, J. F.

    1975-01-01

    An unusually high concentration of granitic fragments, with textures ranging from holocrystalline to glassy, occurs throughout Boulder 1, a complex breccia of highland rocks from Apollo 17, Station 2. Among the minerals included in the granites are enigmatic K-Ca-rich feldspars that fall in the forbidden region of the ternary diagram. The great variability in chemistry and texture is probably the result of impact degradation and melting of a granitic source-rock. Studies of the breccia matrix suggest that this original granitic source-rock may have contained more pyroxenes and phosphates than most of the present clasts contain. Petrographic observations on Apollo 15 KREEP basalts indicate that granitic liquids may be produced by differentiation without immiscibility, and the association of the granites with KREEP-rich fragments in the boulder suggests that the granites represent a residual liquid from the plutonic fractional crystallization of a KREEP-rich magma. Boulder 1 is unique among Apollo 17 samples in its silica-KREEP-rich composition. We conclude that the boulder represents a source-rock unlike the bedrock of South Massif.

  4. Chemically induced fracturing in alkali feldspar

    NASA Astrophysics Data System (ADS)

    Scheidl, K. S.; Schaeffer, A.-K.; Petrishcheva, E.; Habler, G.; Fischer, F. D.; Schreuer, J.; Abart, R.

    2014-01-01

    Fracturing in alkali feldspar during Na+-K+ cation exchange with a NaCl-KCl salt melt was studied experimentally. Due to a marked composition dependence of the lattice parameters of alkali feldspar, any composition gradient arising from cation exchange causes coherency stress. If this stress exceeds a critical level fracturing occurs. Experiments were performed on potassium-rich gem-quality alkali feldspars with polished (010) and (001) surfaces. When the feldspar was shifted toward more sodium-rich compositions over more than about 10 mole %, a system of parallel cracks with regular crack spacing formed. The cracks have a general (h0l) orientation and do not correspond to any of the feldspar cleavages. The cracks are rather oriented (sub)-perpendicular to the direction of maximum tensile stress. The critical stress needed to initiate fracturing is about 325 MPa. The critical stress intensity factor for the propagation of mode I cracks, K Ic, is estimated as 2.30-2.72 MPa m1/2 (73-86 MPa mm1/2) from a systematic relation between characteristic crack spacing and coherency stress. An orientation mismatch of 18° between the crack normal and the direction of maximum tensile stress is ascribed to the anisotropy of the longitudinal elastic stiffness which has pronounced maxima in the crack plane and a minimum in the direction of the crack normal.

  5. Differential rates of feldspar weathering in granitic regoliths

    USGS Publications Warehouse

    White, A.F.; Bullen, T.D.; Schulz, M.S.; Blum, A.E.; Huntington, T.G.; Peters, N.E.

    2001-01-01

    Differential rates of plagioclase and K-feldspar weathering commonly observed in bedrock and soil environments are examined in terms of chemical kinetic and solubility controls and hydrologic permeability. For the Panola regolith, in the Georgia Piedmont Province of southeastern United States, petrographic observations, coupled with elemental balances and 87Sr/86Sr ratios, indicate that plagioclase is being converted to kaolinite at depths > 6 m in the granitic bedrock. K-feldspar remains pristine in the bedrock but subsequently weathers to kaolinite at the overlying saprolite. In contrast, both plagioclase and K-feldspar remain stable in granitic bedrocks elsewhere in Piedmont Province, such as Davis Run, Virginia, where feldspars weather concurrently in an overlying thick saprolite sequence. Kinetic rate constants, mineral surface areas, and secondary hydraulic conductivities are fitted to feldspar losses with depth in the Panola and Davis Run regoliths using a time-depth computer spreadsheet model. The primary hydraulic conductivities, describing the rates of meteoric water penetration into the pristine granites, are assumed to be equal to the propagation rates of weathering fronts, which, based on cosmogenic isotope dating, are 7 m/106 yr for the Panola regolith and 4 m/106 yr for the Davis Run regolith. Best fits in the calculations indicate that the kinetic rate constants for plagioclase in both regoliths are factors of two to three times faster than K-feldspar, which is in agreement with experimental findings. However, the range for plagioclase and K-feldspar rates (kr = 1.5 x 10-17 to 2.8 x 10-16 mol m-2 s-1) is three to four orders of magnitude lower than for that for experimental feldspar dissolution rates and are among the slowest yet recorded for natural feldspar weathering. Such slow rates are attributed to the relatively old geomorphic ages of the Panola and Davis Run regoliths, implying that mineral surface reactivity decreases significantly with

  6. Cathodoluminescence characterization of experimentally shocked alkali feldspar

    NASA Astrophysics Data System (ADS)

    Kayama, M.; Nishido, H.; Sekine, T.; Ninagawa, K.

    2009-12-01

    Cathodoluminescence (CL) spectroscopy and microscopy provide important information to know the existence and distribution of defects and trace elements in materials. CL features of materials depend on varieties of luminescence centers, host chemical compositions and crystal fields, all of which are closely related to the genetic processes. Advanced investigations on CL of shock-induced silica minerals have been attempted to estimate their shock pressures, although very few studies have been reported for feldspars. In this study, CL and Raman spectra of experimentally shocked alkali feldspar were measured to evaluate the shock metamorphic effect. A single crystal of sanidine (Or81Ab19) from Eifel, Germany was selected as a starting material for shock recovery experiments at peak pressures of about 10, 20, 32 and 40 GPa by a propellant gun. Polished thin sections of recovered samples were used for CL and Raman measurements. CL was collected in the range from 300 to 800 nm by a secondary electron microscopy-cathodoluminescence (SEM-CL) system. CL spectra of unshocked sample consist of two emission bands at around 420 nm in blue region and 720 nm in red-IR region assigned to Al-O--Al defect and Fe3+ impurity center, respectively. There are three features between unshocked and shocked sanidine. (1) The blue emission is absent in the shocked samples. (2) The peak wavelength of the red-IR emission shifts to a short wavelength side with an increase in shock pressure up to 20 GPa, suggesting the alteration of the crystal field related to Fe3+ activator by shock metamorphic effect. The Raman spectrum of the unshocked sample exhibits pronounced peaks at around 180, 205, 290, 490 and 520 cm-1. The intensities of these peaks decrease with an increase in shock pressure. The shocked samples above 32 GPa show only two weak peaks at around 490 and 580 cm-1 which were also observed in maskelynite in Martian meteorites. Shock pressure causes partly breaking of the framework structure

  7. Cryptic microtextures and geological histories of K-rich alkali feldspars revealed by charge contrast imaging

    NASA Astrophysics Data System (ADS)

    Flude, Stephanie; Lee, Martin R.; Sherlock, Sarah C.; Kelley, Simon P.

    2012-06-01

    Charge contrast imaging in the scanning electron microscope can provide new insights into the scale and composition of alkali feldspar microtextures, and such information helps considerably with the interpretation of their geological histories and results of argon isotope thermochronological analyses. The effectiveness of this technique has been illustrated using potassium-rich alkali feldspars from the Dartmoor granite (UK). These feldspars contain strain-controlled lamellar crypto- and microperthites that are cross-cut by strain-free deuteric microperthites. The constituent albite- and orthoclase-rich phases of both microperthite generations can be readily distinguished by atomic number contrast imaging. The charge contrast results additionally show that sub-micrometre-sized albite `platelets' are commonplace between coarser exsolution lamellae and occur together to make cryptoperthites. Furthermore, charge contrast imaging reveals that the orthoclase-rich feldspar is an intergrowth of two phases, one that is featureless with uniform contrast and another that occurs as cross-cutting veins and grains with the {110} adularia habit. Transmission electron microscopy shows that the featureless feldspar is tweed orthoclase, whereas the veins and euhedral grains are composed of irregular microcline that has formed from orthoclase by `unzipping' during deuteric or hydrothermal alteration. The charge contrast imaging results are especially important in demonstrating that deuteric perthites are far more abundant in alkali feldspars than would be concluded from investigations using conventional microscopy techniques. The unexpected presence of such a high volume of replacement products has significant implications for understanding the origins and geological histories of crustal rocks and the use of alkali feldspars in geo- and thermochronology. Whilst the precise properties of feldspars that generate contrast remain unclear, the similarity between charge contrast images

  8. Cathodoluminescence Characterization of Maskelynite and Alkali Feldspar in Shergottite (Dhofar 019)

    SciTech Connect

    Kayama, M.; Nakazato, T.; Nishido, H.; Ninagawa, K.; Gucsik, A.

    2009-08-17

    Dhofar 019 is classified as an olivine-bearing basaltic shergottite and consists of subhedral grains of pyroxene, olivine, feldspar mostly converted to maskelynite and minor alkali feldspar. The CL spectrum of its maskelynite exhibits an emission band at around 380 nm. Similar UV-blue emission has been observed in the plagioclase experimentally shocked at 30 and 40 GPa, but not in terrestrial plagioclase. This UV-blue emission is a notable characteristic of maskelynite. CL spectrum of alkali feldspar in Dhofar 019 has an emission bands at around 420 nm with no red emission. Terrestrial alkali feldspar actually consists of blue and red emission at 420 and 710 nm assigned to Al-O{sup -}-Al and Fe{sup 3+} centers, respectively. Maskelynite shows weak and broad Raman spectral peaks at around 500 and 580 cm{sup -1}. The Raman spectrum of alkali feldspar has a weak peak at 520 cm{sup -1}, whereas terrestrial counterpart shows the emission bands at 280, 400, 470, 520 and 1120 cm{sup -1}. Shock pressure on this meteorite transformed plagioclase and alkali feldspar into maskelynite and almost glass phase, respectively. It eliminates their luminescence centers, responsible for disappearance of yellow and/or red emission in CL of maskelynite and alkali feldspar. The absence of the red emission band in alkali feldspar can also be due to the lack of Fe{sup 3+} in the feldspar as it was reported for some lunar feldspars.

  9. [Study on the fine structure of K-feldspar of Qichun granite].

    PubMed

    Du, Deng-Wen; Hong, Han-Lie; Fan, Kan; Wang, Chao-Wen; Yin, Ke

    2013-03-01

    Fine structure of K-feldspar from the Qichun granite was investigated using X-ray diffraction (XRD), Fourier infrared absorption spectroscopy (FTIR), and inductively coupled plasma mass spectrometry methods to understand the evolution of the granitic magmatism and its correlation to molybdenite mineralization. The XRD results showed that K-feldspar of the potassic alteration veins has higher ordering index and triclinicity and is namely microcline with triclinic symmetry. K-feldspar of the early cretaceous granite has relatively lower ordering index and has widening [131] peak and is locally triclinic ordering. K-feldspar of the late cretaceous granite has lowest ordering index and sharp [131] peak and is honiogeneously monoclinic. The FTIR results showed that the IR spectra of the Qichun K-feldspar are similar to that of orthoclase reported by Farmer (1974). The 640 cm-1 absorption band increases while the 540 cm-' absorption band decreases with increase in K-feldspar ordering index, also, the 1,010 cm-1 absorption band separates into 1,010 and 1,046 cm-1 absorption bands, with a change in the band shape from widening to sharp outline. The ICP-MS results suggested that K-feldspar of the early cretaceous granite has relatively higher metal elements and rare earth elements, and the granite exhibits better mineralization background, K-feldspar of the potassic alteration veins has markedly lower Sr and Ba, indicating that the alteration fluid originated from the granitic magmatism, and hence, potassic alteration is a good indicator for molybdenite exploration.

  10. Igneous phenocrystic origin of K-feldspar megacrysts in granitic rocks from the Sierra Nevada batholith

    USGS Publications Warehouse

    Moore, J.G.; Sisson, T.W.

    2008-01-01

    Study of four K-feldspar megacrystic granitic plutons and related dikes in the Sierra Nevada composite batholith indicates that the megacrysts are phenocrysts that grew in contact with granitic melt. Growth to megacrystic sizes was due to repeated replenishment of the magma bodies by fresh granitic melt that maintained temperatures above the solidus for extended time periods and that provided components necessary for K-feldspar growth. These intrusions cooled 89-83 Ma, are the youngest in the range, and represent the culminating magmatic phase of the Sierra Nevada batholith. They are the granodiorite of Topaz Lake, the Cathedral Peak Granodiorite, the Mono Creek Granite, the Whitney Granodiorite, the Johnson Granite Porphyry, and the Golden Bear Dike. Megacrysts in these igneous bodies attain 4-10 cm in length. All have sawtooth oscillatory zoning marked by varying concentration of BaO ranging generally from 3.5 to 0.5 wt%. Some of the more pronounced zones begin with resorption and channeling of the underlying zone. Layers of mineral inclusions, principally plagioclase, but also biotite, quartz, hornblende, titanite, and accessory minerals, are parallel to the BaO-delineated zones, are sorted by size along the boundaries, and have their long axes preferentially aligned parallel to the boundaries. These features indicate that the K-feldspar megacrysts grew while surrounded by melt, allowing the inclusion minerals to periodically attach themselves to the faces of the growing crystals. The temperature of growth of titanite included within the K-feldspar megacrysts is estimated by use of a Zr-in-titanite geothermometer. Megacryst-hosted titanite grains all yield temperatures typical of felsic magmas, mainly 735-760 ??C. Titanite grains in the granodiorite hosts marginal to the megacrysts range to lower growth temperatures, in some instances into the subsolidus. The limited range and igneous values of growth temperatures for megacryst-hosted titanite grains support the

  11. Thermodynamic assessment of hydrothermal alkali feldspar-mica-aluminosilicate equilibria

    USGS Publications Warehouse

    Sverjensky, D.A.; Hemley, J.J.; d'Angelo, W. M.

    1991-01-01

    The thermodynamic properties of minerals retrieved from consideration of solid-solid and dehydration equilibria with calorimetric reference values, and those of aqueous species derived from studies of electrolytes, are not consistent with experimentally measured high-temperature solubilities in the systems K2O- and Na2O-Al2O3-SiO2-H2O-HCl (e.g., K-fs - Ms - Qtz - K+ - H+). This introduces major inaccuracies into the computation of ionic activity ratios and the acidities of diagenetic, metamorphic, and magmatic hydrothermal fluids buffered by alkali silicate-bearing assemblages. We report a thermodynamic analysis of revised solubility equilibria in these systems that integrates the thermodynamic properties of minerals obtained from phase equilibria studies (Berman, 1988) with the properties of aqueous species calculated from a calibrated equation of state (Shock and Helgeson, 1988). This was achieved in two separate steps. First, new values of the free energies and enthalpies of formation at 25??C and 1 bar for the alkali silicates muscovite and albite were retrieved from the experimental solubility equilibria at 300??C and Psat. Because the latter have stoichiometric reaction coefficients different from those for solid-solid and dehydration equilibria, our procedure preserves exactly the relative thermodynamic properties of the alkali-bearing silicates (Berman, 1988). Only simple arithmetic adjustments of -1,600 and -1,626 (??500) cal/mol to all the K- and Na-bearing silicates, respectively, in Berman (1988) are required. In all cases, the revised values are within ??0.2% of calorimetric values. Similar adjustments were derived for the properties of minerals from Helgeson et al. (1978). Second, new values of the dissociation constant of HCl were retrieved from the solubility equilibria at temperatures and pressures from 300-600??C and 0.5-2.0 kbars using a simple model for aqueous speciation. The results agree well with the conductance-derived dissociation

  12. Alkali-aggregate reaction in concrete containing high-alkali cement and granite aggregate

    SciTech Connect

    Owsiak, Z

    2004-01-01

    The paper discusses results of the research into the influence of high-alkali Portland cement on granite aggregate. The deformation of the concrete structure occurred after 18 months. The research was carried out by means of a scanning electron microscope equipped with a high-energy dispersive X-ray analyzer that allowed observation of unpolished sections of concrete bars exhibiting the cracking pattern typical of the alkali-silica reaction. Both the microscopic observation and the X-ray elemental analysis confirm the presence of alkali-silica gel and secondary ettringite in the cracks.

  13. Experimental alkali feldspar dissolution at 100 degree C by carboxylic acids and their anions

    SciTech Connect

    Stoessell, R.K. ); Pittman, E.D. )

    1990-05-01

    Feldspar dissolution will enhance sandstone porosity if the released aluminum can be transported away in the subsurface waters. Carboxylic acids have been proposed to provide hydrogen ions to promote dissolution and anions to complex aqueous aluminum to keep it in solution. However, the hydrogen ions should react quickly following acid generation in source beds, leaving monocarboxylic anions with lesser amounts of dicarboxylic acids and their anions on feldspar dissolution and the apparent complexing of aluminum in solution. Two-week dissolution experiments of alkali feldspar were run at 100{degree}C and 300 bars in acetic acid, oxalic acid, and sodium salt solutions of chloride, acetate, propionate, oxalate, and malonate. Extrapolation of the results, to reservoir conditions during sandstone diagenesis, implies that concentrations of aluminum-organic complexes are not significant for acetate and propionate and are possibly significant for oxalate and malonate, depending upon fluid compositions. Propionate appeared to inhibit feldspar dissolution and hence might decrease secondary porosity formation. Increases in aluminum concentrations in the presence of oxalic and acetic acid solutions appear to be due to enhanced dissolution kinetics and greater aluminum solubility under low-pH conditions. Such low-pH fluids are generally absent in subsurface reservoirs, making this an unlikely mechanism for enhancing porosity. Furthermore, the observed thermal instability of oxalate and malonate anions explains their general low concentrations in subsurface fluids which limits their aluminum complexing potential in reservoirs during late diagenesis.

  14. Potassium self-diffusion in a K-rich single-crystal alkali feldspar

    NASA Astrophysics Data System (ADS)

    Hergemöller, Fabian; Wegner, Matthias; Deicher, Manfred; Wolf, Herbert; Brenner, Florian; Hutter, Herbert; Abart, Rainer; Stolwijk, Nicolaas A.

    2016-12-01

    The paper reports potassium diffusion measurements performed on gem-quality single-crystal alkali feldspar in the temperature range from 1169 to 1021 K. Natural sanidine from Volkesfeld, Germany was implanted with ^{43}K at the ISOLDE/CERN radioactive ion-beam facility normal to the ( 001) crystallographic plane. Diffusion coefficients are well described by the Arrhenius equation with an activation energy of 2.4 eV and a pre-exponential factor of 5 × 10^{-6} m^2/s, which is more than three orders of magnitude lower than the ^{22}Na diffusivity in the same feldspar and the same crystallographic direction. State-of-the-art considerations including ionic conductivity data on the same crystal and Monte Carlo simulations of diffusion in random binary alloy structures point to a correlated motion of K and Na through the interstitialcy mechanism.

  15. Crystallization kinetics of alkali feldspars in cooling and decompression-induced crystallization experiments in trachytic melt

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Carroll, Michael R.

    2013-10-01

    Cooling and decompression experiments have been carried out on trachytic melts in order to investigate crystallization kinetics of alkali feldspar, the effect of the degree of undercooling ( ΔT = T liquidus - T experimental) and time on nucleation and crystal growth process. This experimental work gives us new data about crystallization kinetics of trachytic melts, and it that will be useful to better understand the natural system of Campi Flegrei volcanoes. Experiments have been conducted using cold seal pressure vessel apparatus, at pressure between 30 and 200 MPa, temperature between 750 and 855 °C, time between 7,200 and 57,600 s and redox condition close to the NNO +0.8 buffer. These conditions are ideal to reproducing pre- and syn-eruptive conditions of the Campi Flegrei volcanoes, where the "conditions" pertain to the complete range of pressures, temperatures and time at which the experiments were performed. Alkali feldspar is the main phase present in this trachyte, and its abundance can strongly vary with small changes in pressure, temperature and water content in the melt, implying appreciable variations in the textures and in the crystallization kinetics. The obtained results show that crystallization kinetics are strictly related to ΔT, time, final pressure, superheating (- ΔT) and water content in the melt. ΔT is the driving force of the crystallization, and it has a strong influence on nucleation and growth processes. In fact, the growth process dominates crystallization at small ΔT, whereas the nucleation dominates crystallization at large ΔT. Time also is an important variable during crystallization process, because long experiment durations involve more nucleation events of alkali feldspar than short experiment durations. This is an important aspect to understand magma evolution in the magma chamber and in the conduit, which in turn has strong effects on magma rheology.

  16. Highly retentive core domains in K-feldspar preserve argon ages from high temperature stages of granite exhumation

    NASA Astrophysics Data System (ADS)

    Forster, Marnie; Lister, Gordon

    2016-04-01

    Retentive core domains are characterized by diffusion parameters that imply K-feldspar should be able to retain argon even at temperatures near or above the granite solidus. In this case it should be possible to date granite emplacement using argon geochronology, and the same answer should be obtained as by using other methods. We present one case study where this is the case, from the elevated Capoas granite stock on Palawan, in the Philippines, and another where it is not, from the South Cyclades Shear Zone, on Ios, Greece. We attempt to determine the factors such as the role of fluid ingress in triggering the in situ recrystallization that can eliminate and/or modify the core domains, leading to relatively youthful ages. Thermochronology is still possible, because less retentive diffusion domains exist, but different methods need to be applied to interpret the data. The work also demonstrates that K-feldspar can be sufficiently retentive as to allow direct dating of processes that reduce the dimensions of diffusion domains, e.g., cataclased and/or recrystallized K-feldspar in fault rock and/or mylonite. These are important developments in the methodology of 40Ar/39Ar geochronology, but to further advance we need to clarify the nature of these highly retentive core domains. In particular, we need better understand how they are modified by microstructural processes during deformation and metamorphism. We need also to assess the role of any crystal structural changes during step-heating in vacuo.

  17. Extreme alkali bicarbonate- and carbonate-rich fluid inclusions in granite pegmatite from the Precambrian Rønne granite, Bornholm Island, Denmark

    NASA Astrophysics Data System (ADS)

    Thomas, Rainer; Davidson, Paul; Schmidt, Christian

    2011-02-01

    Our study of fluid and melt inclusions in quartz and feldspar from granite pegmatite from the Precambrian Rønne granite, Bornholm Island, Denmark revealed extremely alkali bicarbonate- and carbonate-rich inclusions. The solid phases (daughter crystals) are mainly nahcolite [NaHCO3], zabuyelite [Li2CO3], and in rare cases potash [K2CO3] in addition to the volatile phases CO2 and aqueous carbonate/bicarbonate solution. Rare melt inclusions contain nahcolite, dawsonite [NaAl(CO3)(OH)2], and muscovite. In addition to fluid and melt inclusions, there are primary CO2-rich vapor inclusions, which mostly contain small nahcolite crystals. The identification of potash as a naturally occurring mineral would appear to be the first recorded instance. From the appearance of high concentrations of these carbonates and bicarbonates, we suggest that the mineral-forming media were water- and alkali carbonate-rich silicate melts or highly concentrated fluids. The coexistence of silicate melt inclusions with carbonate-rich fluid and nahcolite-rich vapor inclusions indicates a melt-melt-vapor equilibrium during the crystallization of the pegmatite. These results are supported by the results of hydrothermal diamond anvil cell experiments in the pseudoternary system H2O-NaHCO3-SiO2. Additionally, we show that boundary layer effects were insignificant in the Bornholm pegmatites and are not required for the origin of primary textures in compositionally simple pegmatites at least.

  18. Multiple Feldspar replacement in Hercynian granites of the Montseny-Guilleries Massif (Catalan Coastal Ranges, NE Spain)

    NASA Astrophysics Data System (ADS)

    Fàbrega, Carles; Parcerisa, David; Gómez-Gras, David

    2013-04-01

    The core of the Montseny-Guilleries Massif (Catalan Coastal Ranges) is mainly composed by late-Hercynian granitoids (leucogranites and granodiorites) intruded within Cambrian to Carnoniferous metasediments. The granites are unconformably covered by Triassic (Buntsandstein) and Paleocene red beds at the western boundary, preserving a continuous outcrop of the Permo-Triassic unconformity for about 20 km. In the southwestern Montseny-Guilleries Massif the granites are covered by the Buntsandstein red sandstones that overlain a peneplain paleorelief called the Permo-Triassic palaeosurface. Beneath the palaeosurface the granite displays a characteristic pink colouration. This pink alteration is characterized by precipitation of minute heamatite crystals and albitization of pristine plagioclases (mostly labradorite). The secondary albite is pseudomorphic (mono- or polycrystalline), optically continuous, non-luminiscent, contains widespread microporosity and displays compositions about Ab98. These features are typical of low temperature replacive feldspars (Kastner and Siever, 1979). Albitization of plagioclases is almost total close to the Permo-Triassic palaeosurface and progressively decreases towards depth, displaying a 150-200 m thick alteration profile. The formation of this profile was controlled by fluid circulation along macro- and microfractures and crystal boundaries. Inside the plagioclase crystals fluid pathways were microfractures, twinning and cleavage planes and crystalline defects. The secondary albite holds widespread unconnected micron-size porosity often filled by Fe-oxides. The reaction front is sharp and displays an abrupt composicional change (Ab65 to Ab98) at micron scale. Porosity only appears to be connected at this reaction front surface. The geometrical arrangement of this alterations suggest that albitization was a shallow process related with Na-rich descending fluids linked to the Permo-Triassic palaeosurface, in a similar way to

  19. Retention of inherited Ar by alkali feldspar xenocrysts in a magma: Kinetic constraints from Ba zoning profiles

    NASA Astrophysics Data System (ADS)

    Renne, Paul R.; Mulcahy, Sean R.; Cassata, William S.; Morgan, Leah E.; Kelley, Simon P.; Hlusko, Leslea J.; Njau, Jackson K.

    2012-09-01

    40Ar/39Ar dating of volcanic alkali feldspars provides critical age constraints on many geological phenomena. A key assumption is that alkali feldspar phenocrysts in magmas contain no initial radiogenic 40Ar (40Ar∗), and begin to accumulate 40Ar∗ only after eruption. This assumption is shown to fail dramatically in the case of a phonolitic lava from southern Tanzania that contains partially resorbed xenocrystic cores which host inherited 40Ar manifest in 40Ar/39Ar age spectra. Magmatic overgrowths on the xenocrysts display variable oscillatory zoning with episodic pulses of Ba enrichment and intervals of resorption. Ba concentration profiles across contrasting compositional zones are interpreted as diffusion couples. Inferred temperature time histories recorded by these profiles reveal significant variations between phenocrysts. Combined with Ar diffusion kinetics for alkali feldspars and magma temperature inferred from two feldspar thermometry, the results indicate that >1% inherited 40Ar can be retained in such xenocrysts despite immersion in magma at ˜900 °C for tens to >100 years. In cases where the age contrast between inherited and magmatic feldspars is less pronounced, the age biasing effect of incompletely degassed xenocrysts may easily go undetected.

  20. Structure-dependent interactions between alkali feldspars and organic compounds: implications for reactions in geologic carbon sequestration.

    PubMed

    Yang, Yi; Min, Yujia; Jun, Young-Shin

    2013-01-02

    Organic compounds in deep saline aquifers may change supercritical CO(2) (scCO(2))-induced geochemical processes by attacking specific components in a mineral's crystal structure. Here we investigate effects of acetate and oxalate on alkali feldspar-brine interactions in a simulated geologic carbon sequestration (GCS) environment at 100 atm of CO(2) and 90 °C. We show that both organics enhance the net extent of feldspar's dissolution, with oxalate showing a more prominent effect than acetate. Further, we demonstrate that the increased reactivity of Al-O-Si linkages due to the presence of oxalate results in the promotion of both Al and Si release from feldspars. As a consequence, the degree of Al-Si order may affect the effect of oxalate on feldspar dissolution: a promotion of ~500% in terms of cumulative Si concentration was observed after 75 h of dissolution for sanidine (a highly disordered feldspar) owing to oxalate, while the corresponding increase for albite (a highly ordered feldspar) was ~90%. These results provide new insights into the dependence of feldspar dissolution kinetics on the crystallographic properties of the mineral under GCS conditions.

  1. Na/K-interdiffusion in alkali feldspar: new data on diffusion anisotropy and composition dependence

    NASA Astrophysics Data System (ADS)

    Schaeffer, Anne-Kathrin; Petrishcheva, Elena; Habler, Gerlinde; Abart, Rainer; Rhede, Dieter

    2013-04-01

    Exchange experiments between gem-quality alkali feldspar with an initial XOr of 0.85 or 0.72 and Na/K-salt melts have been conducted at temperatures between 800° and 1000° C. The crystals were prepared as crystallographically oriented plates, the polished surfaces corresponding to the (010) or (001) plane of the feldspar. The composition of the melts was varied systematically to induce a controlled shift of the feldspar towards more Na-rich or K-rich compositions (XOr 0.5 to 1). A molar excess of cations by a factor of 40 in the melt ensured constant concentration boundary conditions for cation exchange. Different geometries of diffusion profiles can be observed depending on the direction of the composition shift. For a shift towards more K-rich compositions the diffusion profile exhibits two plateaus corresponding to an exchanged rim in equilibrium with the melt and a completely unexchanged core, respectively. Between these plateaus an exchange front develops with an inflection point that progresses into the crystal with t1-2. The width of this diffusion front varies greatly with the extent of chemical shift and crystallographic direction. The narrowest profiles are always found in the direction normal to (010), i.e. b, marking the slowest direction of interdiffusion. A shift towards more Na-rich composition leads to the development of a crack system due to the composition strain associated with the substitution of the larger K+ion with the smaller Na+ion. The exchange front developing in this case lacks the inflection point observed for shifts towards more K-rich compositions. The observed geometry of the diffusion fronts can be explained by a composition dependence of the interdiffusion coefficient. We used the Boltzmann transformation to calculate the interdiffusion coefficient in dependence of composition from our data in a range between XOr 0.5 and 1 for profiles normal to both (010) and (001) and for different temperatures. As indicated by the different

  2. Experimental Na/K exchange between alkali feldspar and an NaCl-KCl salt melt: chemically induced fracturing and element partitioning

    NASA Astrophysics Data System (ADS)

    Neusser, G.; Abart, R.; Fischer, F. D.; Harlov, D.; Norberg, N.

    2012-08-01

    The exchange of Na+ and K+ between alkali feldspar and a NaCl-KCl salt melt has been investigated experimentally. Run conditions were at ambient pressure and 850 °C as well as 1,000 °C. Cation exchange occurred by interdiffusion of Na+ and K+ on the feldspar sub-lattice, while the Si-Al framework remained unaffected. Due to the compositional dependence of the lattice parameters compositional heterogeneities resulting from Na+/K+ interdiffusion induced coherency stress and associated fracturing. Depending on the sense of chemical shift, different crack patterns developed. For the geometrically most regular case that developed when potassic alkali feldspar was shifted toward more sodium-rich compositions, a prominent set of cracks corresponding to tension cracks opened perpendicular to the direction of maximum tensile stress and did not follow any of the feldspar cleavage planes. The critical stress needed to initiate fracturing in a general direction of the feldspar lattice was estimated at ≤0.35 GPa. Fracturing provided fast pathways for penetration of salt melt or vapor into grain interiors enhancing overall cation exchange. The Na/K partitioning between feldspar and the salt melt attained equilibrium values in the exchanged portions of the grains allowing for extraction of the alkali feldspar mixing properties.

  3. Alkali-granitoids as fragments within the ordinary chondrite Adzhi-Bogdo: Evidence for highly fractionated, alkali-granitic liquids on asteroids

    NASA Technical Reports Server (NTRS)

    Bischoff, A.

    1993-01-01

    Adzhi-Bogdo is an ordinary chondrite regolith breccia (LL3-6) that fell October 30, 1949 in Gobi Altay, Mongolia. The rock consists of submm- to cm-sized fragments embedded in a fine-grained elastic matrix. The breccia contains various types of clasts, some of which must be of foreign heritage. Based on chemical compositions of olivine some components have to be classified as L-type. Components of the breccia include chondrules, impact melts (some are K-rich, similar to those found in other LL-chondrites, highly recrystalized rock fragments ('granulites'), pyroxene-rich fragments with achondritic textures, and alkali-granitoidal fragments that mainly consist of K-feldspar and quartz or tridymite. Probably, this is the first report on granitoids from asteroids. It can be ruled out that these fragments represent huge rock assemblages of the parent body like granites do on Earth. Therefore, to avoid misunderstandings, these rocks will be designated as granitoids. In one thin section four granitoids were observed. The main phases within these clasts are K-feldspar and SiO2-phases. Minor phases include albite, Cl-apatite, whitlockite, ilmenite, zircon, Ca-poor pyroxene, and an unidentified Na,Ti-bearing silicate. Based on chemical composition and on optical properties quartz appears to be the SiO2-phase in two fragments, whereas tridymite seems to occur in the other two. The calculated formula of the unknown Na,Ti-rich silicate is very close to (Na,Ca)2.7(Fe,Mg)6(Ti)1.3(Si)7(O)24. Quartz and K-feldspar can reach sizes of up to 700 microns. Thus, the fragments can be described as coarse-grained (by chondritic standards). This is especially the case considering that quartz and K-feldspar are very rare minerals in ordinary chondrites. Representative analyses of minerals from some granitoidal clasts are given. Based on the mineral compositions and the modal abundances the bulk compositions were calculated. Besides these granitoidal rocks, pyroxene-rich fragments occur that

  4. The igneous charnockite-high-K alkali-calcic I-type granite-incipient charnockite association in Trivandrum Block, southern India

    NASA Astrophysics Data System (ADS)

    Rajesh, H. M.

    The Pan-African (640 Ma) Chengannoor granite intrudes the NW margin of the Neoproterozoic high-grade metamorphic terrain of the Trivandrum Block (TB), southern India, and is spatially associated with the Cardamom hills igneous charnockite massif (CM). Geochemical features characterize the Chengannoor granite as high-K alkali-calcic I-type granite. Within the constraints imposed by the high temperature, anhydrous, K-rich nature of the magmas, comparison with recent experimental studies on various granitoid source compositions, and trace- and rare-earth-element modelling, the distinctive features of the Chengannoor granite reflect a source rock of igneous charnockitic nature. A petrogenetic model is proposed whereby there was a period of basaltic underplating; the partial melting of this basaltic lower crust formed the CM charnockites. The Chengannoor granite was produced by the partial melting of the charnoenderbites from the CM, with subsequent fractionation dominated by feldspars. In a regional context, the Chengannoor I-type granite is considered as a possible heat source for the near-UHT nature of metamorphism in the northern part of the TB. This is different from previous studies, which favoured CM charnockite as the major heat source. The occurrence of incipient charnockites (both large scale as well as small scale) adjacent to the granite as well as pegmatites (which contain CO2, CO2-H2O, F and other volatiles), suggests that the fluids expelled from the alkaline magma upon solidification generated incipient charnockites through fluid-induced lowering of water activity. Thus the granite and associated alkaline pegmatites acted as conduits for the transfer of heat and volatiles in the Achankovil Shear Zone area, causing pervasive as well as patchy charnockite formation. The transport of CO2 by felsic melts through the southern Indian middle crust is suggested to be part of a crustal-scale fluid system that linked mantle heat and CO2 input with upward migration

  5. Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 4. Numerical modeling of kinetic reaction paths

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Lu, Peng; Zheng, Zuoping; Ganor, Jiwchar

    2010-07-01

    This paper explores how dissolution and precipitation reactions are coupled in batch reactor experimental systems at elevated temperatures. This is the fourth paper in our series of "Coupled Alkali Feldspar Dissolution and Secondary Mineral Precipitation in Batch Systems". In our third paper, we demonstrated via speciation-solubility modeling that partial equilibrium between secondary minerals and aqueous solutions was not attained in feldspar hydrolysis batch reactors at 90-300 °C and that a strong coupling between dissolution and precipitation reactions follows as a consequence of the slower precipitation of secondary minerals ( Zhu and Lu, 2009). Here, we develop this concept further by using numerical reaction path models to elucidate how the dissolution and precipitation reactions are coupled. Modeling results show that a quasi-steady state was reached. At the quasi-steady state, dissolution reactions proceeded at rates that are orders of magnitude slower than the rates measured at far from equilibrium. The quasi-steady state is determined by the relative rate constants, and strongly influenced by the function of Gibbs free energy of reaction ( ΔG) in the rate laws. To explore the potential effects of fluid flow rates on the coupling of reactions, we extrapolate a batch system ( Ganor et al., 2007) to open systems and simulated one-dimensional reactive mass transport for oligoclase dissolution and kaolinite precipitation in homogeneous porous media. Different steady states were achieved at different locations along the one-dimensional domain. The time-space distribution and saturation indices (SI) at the steady states were a function of flow rates for a given kinetic model. Regardless of the differences in SI, the ratio between oligoclase dissolution rates and kaolinite precipitation rates remained 1.626, as in the batch system case ( Ganor et al., 2007). Therefore, our simulation results demonstrated coupling among dissolution, precipitation, and flow rates

  6. Effects of magma mingling in the granites of Mount Desert Island, Maine

    SciTech Connect

    Seaman, S.J.; Ramsey, P.C. )

    1992-07-01

    Textures and compositional relationships associated with dark-colored, fine-grained enclaves in the Cadillac Mountain and Somesville granites, Mount Desert Island, Maine, preserve abundant evidence for contamination of host granitic magmas by enclave liquids. Fine-grained enclaves, which apparently represent chilled magmatic droplets, have affected the composition and texture of the host granites by three possible mechanisms: (1) crystallization of feldspar-quartz-hornblende pegmatite pods from fluids of enclave origin in the granite surrounding enclaves, and the disaggregation of the pods and dispersion of crystals into the granite; (2) ionic exchange between enclaves and granitic magmas; (3) the generation around enclaves of rinds consisting of an inner alkali feldspar-quartz zone and an outer zone of hornblende-enriched granite. Thermal calculations suggest that the alkali feldspar-quartz zones of the rinds surrounding enclaves may result from resorption of alkali feldspar and quartz crystals in the granitic magma by heat of cooling and crystallization of enclave material. The interaction between the hot enclave and the alkali feldspar-quartz composition liquid may be analogous to that between a pluton and meteoric water in a hydrothermal system. The segregation of alkali feldspar-quartz and hornblende-rich zones may result from the minimum melt composition fluid migrating toward the enclave, leaving behind unmelted hornblende, as part of a convection circuit set up by the enclave. Alternatively, hornblende-rich zones concentric to and outside of the alkali feldspar-quartz rinds may record limit of movement of a front of hydrous fluid driven from the enclave boundary down a thermal gradient.

  7. Vacancy-related diffusion correlation effects in a simple cubic random alloy and on the Na-K sublattice of alkali feldspar

    NASA Astrophysics Data System (ADS)

    Wilangowski, F.; Stolwijk, N. A.

    2015-07-01

    Motivated by the need to analyse experimental data on ionic conductivity in alkali feldspar, we performed Monte Carlo (MC) simulations of vacancy diffusion in random binary systems. We employed an efficient procedure for the calculation of the vacancy correlation factor ?, which includes the computation of the associated partial correlation factors (PCFs) ? and ?. Test simulations on a simple cubic lattice show the improvements compared to previous MC data and the discrepancies with the Manning model. Vacancy correlation factors on the Na-K sublattice in the monoclinic structure of alkali feldspar proved to be dependent on crystal orientation. For the ?-direction, PCFs related to the four different jump types were calculated. We also examined the percolation behaviour for extreme ratios of the atomic jump frequencies. The results are found to agree with known data for the simple cubic lattice. In the case of feldspar, we provide the first useful estimates for the percolation threshold and the associated critical exponent using a simplified set of jump frequencies.

  8. Matrix diffusion of some alkali- and alkaline earth-metals in granitic rock

    SciTech Connect

    Johansson, H.; Byegaard, J.; Skarnemark, G.; Skaalberg, M.

    1997-12-31

    Static through-diffusion experiments were performed to study the diffusion of alkali- and alkaline earth-metals in fine-grained granite and medium-grained Aespoe-diorite. Tritiated water was used as an inert reference tracer. Radionuclides of the alkali- and alkaline earth-metals (mono- and divalent elements which are not influenced by hydrolysis in the pH-range studied) were used as tracers, i.e., {sup 22}Na{sup +}, {sup 45}Ca{sup 2+} and {sup 85}Sr{sup 2+}. The effective diffusivity and the rock capacity factor were calculated by fitting the breakthrough curve to the one-dimensional solution of the diffusion equation. Sorption coefficients, K{sub d}, that were derived from the rock capacity factor (diffusion experiments) were compared with K{sub d} determined in batch experiments using crushed material of different size fractions. The results show that the tracers were retarded in the same order as was expected from the measured batch K{sub d}. Furthermore, the largest size fraction was the most representative when comparing batch K{sub d} with K{sub d} evaluated from the diffusion experiments. The observed effective diffusivities tended to decrease with increasing cell lengths, indicating that the transport porosity decreases with increasing sample lengths used in the diffusion experiments.

  9. Petrogenesis of A-type granites and origin of vertical zoning in the Katharina pluton, Gebel Mussa (Mt. Moses) area, Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Katzir, Y.; Eyal, M.; Litvinovsky, B. A.; Jahn, B. M.; Zanvilevich, A. N.; Valley, J. W.; Beeri, Y.; Pelly, I.; Shimshilashvili, E.

    2007-05-01

    The central pluton within the Neoproterozoic Katharina Ring Complex (area of Gebel Mussa, traditionally believed to be the biblical Mt. Sinai) shows a vertical compositional zoning: syenogranite makes up the bulk of the pluton and grades upwards to alkali-feldspar granites. The latters form two horizontal subzones, an albite-alkali feldspar (Ab-Afs) granite and an uppermost perthite granite. These two varieties are chemically indistinguishable. Syenogranite, as compared with alkali-feldspar granites, is richer in Ca, Sr, K, Ba and contains less SiO 2, Rb, Y, Nb and U; Eu/Eu* values are 0.22-0.33 for syenogranite and 0.08-0.02 for alkali-feldspar granites. The δ18O (Qtz) is rather homogeneous throughout the pluton, 8.03-8.55‰. The δ18O (Afs) values in the syenogranite are appreciably lower relative to those in the alkali-feldspar granites: 7.59-8.75‰ vs. 8.31-9.12‰. A Rb-Sr isochron ( n = 9) yields an age of 593 ± 16 Ma for the Katharina Ring Complex (granite pluton and ring dikes). The alkali-feldspar granites were generated mainly by fractional crystallization of syenogranite magma. The model for residual melt extraction and accumulation is based on the estimated extent of crystallization (˜ 50 wt.%), which approximates the rigid percolation threshold for silicic melts. The fluid-rich residual melt could be separated efficiently by its upward flow through the rigid clusters of crystal phase. Crystallization of the evolved melt started with formation of hypersolvus granite immediately under the roof. Fluid influx from the inner part of the pluton to its apical zone persisted and caused increase of PH2O in the magma below the perthite granite zone. Owing to the presence of F and Ca in the melt, PH2O of only slightly more than 1 kbar allows crystallization of subsolvus Ab-Afs granite. Abundance of turbid alkali feldspars and their 18O/ 16O enrichment suggest that crystallization of alkali-feldspar granites was followed by subsolvus fluid-rock interaction

  10. Dissolution of Quartz, Albite and K-feldspar Into H2O-Saturated Haplogranitic Melt at 800oC and 200 MPa: Diffusive Transport Properties of Granitic Melts at Crustal Anatectic Temperatures

    NASA Astrophysics Data System (ADS)

    Acosta, A.; London, D.; Dewers, T.; Morgan, G.

    2002-12-01

    With the aim of investigating the diffusive transport properties of granitic melts at crustal anatectic conditions and obtaining some constraints on speciation and coordination in the melt, we conducted albite, K-feldspar and quartz dissolution experiments in H2O-saturated metaluminous haplogranitic glass (nominal composition of the 200 MPa H2O-saturated haplogranite eutectic of Tuttle and Bowen, 1958) at 800oC and 200 MPa. Mineral and glass cylinders were juxtaposed against flat polished surfaces inside platinum or gold capsules, then run for durations in the range 120-960 h. Based on the time dependence of interface retreat dissolution is interface reaction-controlled up to 700 h, and becomes diffusion-controlled afterwards. Upon dissolution of albite, Al and Na entering the melt decouple and Na diffuses away from the interface to maintain a constant Al/Na molar ratio throughout the entire melt column. Potassium from the bulk melt diffuses uphill towards the albite-melt interface to maintain a constant Aluminum Saturation Index (ASI=molar Al2O3/Na2O+K2O) of 1.00 throughout the entire melt column. Dissolution of K-feldspar results in migration of K away from the interface and uphill diffusion of Na from the bulk melt towards the interface, again maintaining constant Al/Na and ASI ratios in the bulk melt. Dissolution of quartz produces enrichment in SiO2 versus dilution of the rest of components in the interface melt. These results indicate that in the five-component H2O-saturated metaluminous haplogranite system, uncoupled diffusion takes place along the following four directions in composition space: SiO2; Na2O; K2O; and a combination of Al2O3 and alkalis such that the Al/Na molar ratio is equal to that in the bulk melt, and the Al2O3/Na2O+K2O molar ratio is equal to the equilibrium ASI of the melt. These observations are in accord with results obtained from corundum and andalusite dissolution experiments in the same system and P-T-X conditions (Acosta-Vigil et

  11. K-feldspar megacrysts growth and their link to the granitic mush: insight from high precision U-Pb dates (ID-TIMS) and trace elements (TIMS-TEA) on zircon

    NASA Astrophysics Data System (ADS)

    Barboni, M.; Schoene, B.

    2012-12-01

    K-feldspar megacrysts are common in granitic to granodioritic rocks though their origin and evolution is still poorly understood. Their occurrence seems to reflect a low nucleation rate relative to growth rate at low degrees of supersaturation. Though K-feldspar has been argued to be one of the last minerals to saturate in felsic magma, crystal mush may still contain 60-70% liquid at the initiation of crystallization. Therefore, abundant liquid might be available for development of large crystals early in the magma cooling process. The recent recognition that many granitoid plutons are built incrementally by many magma injections open new perspectives for K-feldspar megacrysts formation. Repeated replenishment, reheating and reinvigoration of the mush might play a significant role in making and preserving K-feldspar megacrysts. The Miocene Elba island intrusives (Italy) are famous for having some of the largest K-feldspar megacrysts ever found (up to 25 cm.). This young plutonic body emplaced incrementally at shallow crustal level (ca. 3km) and displays extensive evidence of interactions between magmas of contrasting compositions. We have sampled three different families of K-feldspar megacrysts occurring in different host rock and have combined U/Pb high precision dates (ID-TIMS) with trace elements (TIMS-TEA) and Hf isotopes of zircons that are included within the K-feldspar megacrysts and compared them to zircons from the host rock. Ages of zircon included in the megacrysts could document whether the crystals grew early in the magmatic system (inclusions older than the host rock) or late during the cooling history (similar ages within inclusions and host rock). Ti-in zircon thermometer combined with trace-elements signature could record slight differences between megacrysts and host rock zircons, documenting the development of the megacrysts in comparison with the one of the host granite. Strong field evidence support a magmatic/ phenocrystic origin for the Elba

  12. Origin of hydrous alkali feldspar-silica intergrowth in spherulites from intra-plate A2-type rhyolites at the Jabal Shama, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Surour, Adel A.; El-Nisr, Said A.; Bakhsh, Rami A.

    2016-03-01

    Miocene rhyolites (19.2 ± 0.9 Ma) at the Jabal Shama in western Saudi Arabia represent an example of rift-related silicic volcanism that took place during the formation of the Red Sea. They mostly consist of tuffaceous varieties with distinct flow banding, and pea-sized spherulites, obsidian and perlitized rhyolite tuffs. Although they have the geochemical signature of A2-type rhyolites, these silicic rocks are not typically alkaline but alkali-calcic to calc-alkaline. They developed in a within-plate regime and possibly derived from a recycled mafic subducted slab in depleted sub-continental mantle beneath the western Arabian plate. The Jabal Shama rhyolites are younger in age than their Miocene counterparts in Yemen and Ethiopia. The Jabal Shama spherulites consist of hydrous alkali feldspar-silica radial intergrowths with an occasional brown glass nucleus. Carbonate- and glass-free spherulites give up to 4.45 wt% L.O.I. The hydrous nature of these silicates and the absence of magnetite in the spherulites is a strong indication of oxidizing conditions. The spherulites contain hydrous feldspars with up to ∼6 wt% H2O, and they develop by diffusion and devitrification of glass in the rhyolite tuff at ∼800 °C. Owing to higher undercooling due to supersaturation, the radial hydrous phases within spherulites might grow faster and led to coagulation. The polygonal contacts between spherulites and the ∼120° dihedral angle suggest solid-state modification and recrystallization as the process of devitrification proceeds as low as ∼300 °C. The sum of FeO + MgO is positively correlated with total alkalies along with magnetite oxidation in the matrix to Fe-oxyhydroxides, and to the incorporation of OH- into silicates within the spehrulites themselves. Structural H2O in glass of the Jabal Shama perlite (obsidian) is considerable (∼9-12 wt%) with 3.72-5.6 wt% L.O.I. of the whole-rock. The presence of deleterious silica impurities would lower the ore grade due to

  13. Ratamah specialized granite, Midyan region, Kingdom of Saudi Arabia; rock types, geochemistry and rare-metal distribution

    NASA Astrophysics Data System (ADS)

    Douch, Colin J.

    Detailed prospecting at Ratamah (29°07'N, 35°20'E), after reconnaissance prospecting suggested that it was a tin-mineralizing granite, showed that much of the exposed portion of the pluton is albite-bearing alkali-feldspar granite forming a 10 m-thick roof zone above albite-free alkali-feldspar granite. Lenses of albite—amphibole microgranite in marginal contact zones are associated with faults. Albite-bearing granite is enriched in Fe 2O 3, Na 2O, F, La and W compared with albite-free granite. Microgranite is strongly enriched in Al 2O 3, FeO, Na 2O, MnO and Be, La, Nb, Sn, Y, Zr and F. Albitization is thought to have resulted from deuteric and hydrothermal reaction following soda enrichment in residual phases of the crystallizing magma.

  14. Pan-African alkali granites and syenites of Kerala as imprints of taphrogenic magmatism in the South Indian shield

    NASA Technical Reports Server (NTRS)

    Santosh, M.; Drury, S. A.; Iyer, S. S.

    1988-01-01

    Granite and syenite plutons with alkaline affinities ranging in age from 550 to 750 Ma sporadically puncture the Precambrian granulites of the Kerala region. All the bodies are small (20 to 60 sq km), E-W to NW-SE elongated elliptical intrusives with sharp contacts and lie on or close to major late Proterozoic lineaments. Geochemical plots of A-F-M and An-Ab-Or relations show an apparent alkali enrichment trend on the former, but the plutons define relatively distinct fields on the latter. Most of the plutons are adamellitic to granitic by chemistry. The variations of SiO2 with log sub 10 K2O/MgO (1) brings out the distinct alkaline nature of the plutons. Some of the granites are extremely potassic, like the Peralimala pluton, which shows up to 11.8 percent K2O. On a SiO2-Al2O3-Na2O+K2O (mol percent) plot, the plutons vary from peraluminous to peralkaline, but none are nepheline normative. Low MgO, low to moderate CaO and high Fe2O3/FeO values are other common characteristics. Among trace elements, depletion of Ba, Sr and Rb with high K/Ba and K/Rb values are typical. Overall, the plutons show a trend of decreasing K/Rb ratio with increasing K content. Individual plutons show more clearly defined trends similar to those from granitic masses characterized by plagioclase fractionation.

  15. New U Pb SHRIMP zircon age for the Schurwedraai alkali granite: Implications for pre-impact development of the Vredefort Dome and extent of Bushveld magmatism, South Africa

    NASA Astrophysics Data System (ADS)

    Graham, I. T.; De Waal, S. A.; Armstrong, R. A.

    2005-12-01

    The Schurwedraai alkali granite is one of a number of prominent ultramafic-mafic and felsic intrusions in the Neoarchaean to Palaeoproterozoic sub-vertical supracrustal collar rocks of the Vredefort Dome, South Africa. The alkali granite intruded the Neoarchaean Witwatersrand Supergroup and has a peralkaline to peraluminous composition. A new zircon SHRIMP crystallization age of 2052 ± 14 Ma for the Schurwedraai alkali granite places it statistically before the Vredefort impact event at 2023 ± 4 Ma and within the accepted emplacement interval of 2050-2060 Ma of the Bushveld magmatic event. The presence of the alkali granite and associated small ultramafic-mafic intrusions in the Vredefort collar rocks extends the southern extremity of Bushveld-related intrusions to some 120 km south of Johannesburg and about 150 km south of the current outcrop area of the Bushveld Complex. The combined effect of these ultramafic-mafic and felsic bodies may have contributed to a pronouncedly steep pre-impact geothermal gradient in the Vredefort area, and to the amphibolite-grade metamorphism observed in the supracrustal collar rocks of the Vredefort Dome.

  16. Petrogenesis of pegmatites and granites in southwestern Maine

    SciTech Connect

    Tomascak, P.B.; Walker, R.J.; Krogstad, E.J. . Dept. of Geology)

    1993-03-01

    Granitic pegmatites occurring near the town of Topsham in southwestern Maine are mineralogically diverse, featuring abundant dikes and contain rare earth element minerals as well as one pegmatite that contains Li minerals. The pegmatite series crops out near the Brunswick granite, a texturally diverse granitic pluton, and lies 13 km southeast of the Mississippian age Sebago batholith. Areas intruded by pegmatites that possess such different mineral assemblages are globally rare. The origins of these mixed'' pegmatite series have not been comprehensively investigated. There is no known pattern of regional zonation (mineral/chemical) among Topsham series pegmatites, hence simple fractionation processes are probably not responsible for the compositional variations. The authors are attempting to clarify pegmatite petrogenesis using common Pb isotopic ratios of feldspars and Sm-Nd isotopic data from whole rocks and minerals. Pb isotopic ratios from leached feldspars reflect the Pb ratios of the source from which they were derived. The range of Pb isotopic compositions of alkali feldspars from 7 granitic pegmatites is as follows: [sup 206]Pb/[sup 204]Pb = 18.5-19.1; [sup 207]Pb/[sup 204]Pb = 15.53-15.69; [sup 208]Pb/[sup 204]Pb = 38.3-38.6. The Brunswick granite has K-feldspars with [sup 206]Pb/[sup 204]Pb = 18.40-18.47, [sup 207]/[sup 204]Pb = 15.64-15.66 and [sup 208]Pb/[sup 204]Pb = 38.29-38.39. The Pb isotopic compositions of both pegmatites and granites are significantly more radiogenic than existing data for the Sebago granite and argue against the consanguinity of Topsham pegmatites and the Sebago batholith. These data instead support a genetic link between the pegmatites and the Brunswick granite, which ranges from a fine-grained two-mica granite to a garnet-bearing pegmatitic leucogranite.

  17. The geochemical characteristics of Haiyang A-type granite complex in Shandong, eastern China

    NASA Astrophysics Data System (ADS)

    Li, He; Ling, Ming-xing; Ding, Xing; Zhang, Hong; Li, Cong-ying; Liu, Dun-yi; Sun, Wei-dong

    2014-07-01

    Haiyang granite complex consists of K-feldspar granite and syenite, with a total exposure area of ~ 600 km2. The K-feldspar granite is metaluminous (A/CNK = 0.70 to 0.99) and the syenite is slightly peraluminous (A/CNK = 1.01 to 1.10), both of which have typical characteristics of A-type granite with high total alkali contents and FeOT/(FeOT + MgO) ratios. Zircon U-Pb age are 116.8 ± 1.7 Ma and 115.8 ± 2.2 Ma, for the K-feldspar granite and the syenite, respectively. This is consistent with field observation that the syenite intruded into the K-feldspar granite. Varied zircon O isotope (5.65-7.78‰ for K-feldspar granite and 4.68-7.08‰ for syenite) with peak values that are marginally higher than those of mantle zircon reflects important mantle contributions. These together with large variation of zircon εHf(t) values of K-feldspar granite (- 22.4 to - 15.6) and syenite (- 24.6 to - 13.5), can best be explained by the involvement of at least two components, e.g., enriched lithospheric mantle +/- subducted materials, and upwelling asthenosphere. Apatite has right decline REE pattern. The apatite from K-feldspar granite has higher Cl contents than those of syenite, implying more influence from a subduction released fluid in K-feldspar granite source. This distinction is supported by the systematically higher oxygen fugacity of K-feldspar granite as indicated by zircon Ce4 +/Ce3 + ratios. In the Yb/Ta-Y/Nb, Ce/Nb-Y/Nb diagrams, both K-feldspar granite and syenite plot in A1-type, with K-feldspar granite plotting closer to A2. In the Nb-Y-3Ga and Nb-Y-Ce charts, syenite plots near the boundary between A1 and A2, whereas some K-feldspar granite samples plot in A2 field, indicating a tendency of transition originally from A2 to A1. In general A1 granites form in intraplate settings, whereas A2 granite forms in post-collision. It is likely that mantle components metasomatized by subduction released fluids are easier to be partially melted, forming K-feldspar granite

  18. Geology of the Andover Granite and surrounding rocks, Massachusetts

    USGS Publications Warehouse

    Castle, Robert O.

    1964-01-01

    the Peabody Granite, in their phase composition and texture. Unlike the Peabody, the Andover Granite is thought to have been thoroughly recrystallized through the unmixing of initially homogeneous phases with the concomitant development of extremely intricate, allotriomorphic textures. Textural relationships between potassium and plagioclase feldspars and among quartz and the two feldspars, suggest that the Andover Granite has evolved through exsolution of a single hypersolvus feldspar (or two coexisting subsolvus feldspars of only slightly disparate compositions) into discrete grains of plagioclase and potassium feldspar, much along the lines proposed by Tuttle (1952). A hypothesis is proposed for the origin of myrmekite whereby it is evolved indirectly through exsolution of a homogeneous, hypersolvus, calcalkali feldspar in the presence of a silica reservoir. Where the An 'molecule' is contained in the primary mix crystal, exsolution into potassium and plagioclase feldspar phases normally requires a paired exchange between Ca-Al and K-Si. Should the silicon requirements of the developing potassium feldspar be met by the matrix silica reservoir, the concomitantly evolving plagioclase may become stoichiometrically enriched in silicon and ultimately develop into myrmekite. Discrete unmixing of pure alkali feldspar proceeds through simple alkali ion exchange; ternary compostions high in An are more apt to fall initially in the two-feldspar field, thereby reducing the unmixing potential. General restriction of myrmekite to plagioclase of calcic albite to oligoclase composition is explained accordingly.

  19. Biochemical evolution II: origin of life in tubular microstructures on weathered feldspar surfaces.

    PubMed

    Parsons, I; Lee, M R; Smith, J V

    1998-12-22

    Mineral surfaces were important during the emergence of life on Earth because the assembly of the necessary complex biomolecules by random collisions in dilute aqueous solutions is implausible. Most silicate mineral surfaces are hydrophilic and organophobic and unsuitable for catalytic reactions, but some silica-rich surfaces of partly dealuminated feldspars and zeolites are organophilic and potentially catalytic. Weathered alkali feldspar crystals from granitic rocks at Shap, north west England, contain abundant tubular etch pits, typically 0.4-0.6 microm wide, forming an orthogonal honeycomb network in a surface zone 50 microm thick, with 2-3 x 10(6) intersections per mm2 of crystal surface. Surviving metamorphic rocks demonstrate that granites and acidic surface water were present on the Earth's surface by approximately 3.8 Ga. By analogy with Shap granite, honeycombed feldspar has considerable potential as a natural catalytic surface for the start of biochemical evolution. Biomolecules should have become available by catalysis of amino acids, etc. The honeycomb would have provided access to various mineral inclusions in the feldspar, particularly apatite and oxides, which contain phosphorus and transition metals necessary for energetic life. The organized environment would have protected complex molecules from dispersion into dilute solutions, from hydrolysis, and from UV radiation. Sub-micrometer tubes in the honeycomb might have acted as rudimentary cell walls for proto-organisms, which ultimately evolved a lipid lid giving further shelter from the hostile outside environment. A lid would finally have become a complete cell wall permitting detachment and flotation in primordial "soup." Etch features on weathered alkali feldspar from Shap match the shape of overlying soil bacteria.

  20. Magnetic Properties of Hydrothermalized A-type Red Granites

    NASA Astrophysics Data System (ADS)

    Trindade, R. I. F.; Nédélec, A.; Peschler, A.; Archanjo, C. J.; Poitrasson, F.; Bouchez, J. L.

    Hydrothermalized A-type granites are commonly identified by their pink to red-brick colour attributed to tiny flakes of hematite in the alkali feldspars. These inclusions can be of interest in magnetic studies, but their timing and process of formation are still unclear. Formation of chlorite after biotite is the commonest effect of hydrother- malization and may occur quite early after crystallization due to late-magmatic or externally-derived fluids. The reddish colour appears at a later stage. Five cases of A-type granites were investigated for their magnetic mineralogy and properties. The selected cases range from nearly unmodified granites (Panafrican stratoid granites of Madagascar) to strongly hydrothermalized ones (Meruoca, Brazil; Tana, Corsica); in- termediate cases are : Mount Scott (Oklahoma), Bushveld (granitic core kindly pro- vided by R.G. Cawthorn) and. Hydrothermal alteration is often associated to a de- crease of the magnetic susceptibility magnitude (K) and of the anisotropy degree (P). It also strongly affects the rockt's bulk coercivity parameters, since alteration changes the relative amounts of coarse-grained primary magnetite, fine-grained PSD to SD sec- ondary magnetite, and hematite. Correspondingly, most samples plot away from the magnetite trend in the Dayt's diagram, but the different groups identified after coer- civity parameters do not directly correlate with whole-rock colour. In addition, IRM- acquisition curves and thermal demagnetization of tri-axial IRM show that hematite occurs in almost all analysed samples despite their colour. Various hematite coercivity ranges are also evidenced. In fact, hematite can be formed either in feldspar crys- tals or after magnetite. Tiny hematite within feldspars can appear either by exsolu- tion process or, more likely, by precipitation from a fluid phase. For these reasons, hematite inclusions may carry a remanence acquired shortly after granite crystalliza- tion or, conversely, a recent

  1. Remnants of Melt Pools and Melt Films Associated with Dewatering of Nominally Anhydrous Minerals in Lower Crustal Granite

    NASA Astrophysics Data System (ADS)

    Seaman, S. J.; Williams, M. L.

    2013-12-01

    Water locked in structural sites and in fluid inclusions in nominally anhydrous minerals in lower crustal granitoids may act as a flux for partial melting of these source rocks. Microtextural study of the 2.6 Ga Stevenson granite of the Athabasca Granulite Terrane of northern Saskatchewan shows that increasing intensity of deformation of the granite correlates with migration of water from within crystals to grain boundaries. Dark, ultrafine-grained, water-richer matrix material consisting of quartz, plagioclase, alkali feldspar and fine iron oxides are interpreted to be former melt films that resulted, at least in part, from fluxing by NAM-derived water. Melt films on the grain boundaries of plagioclase, potassium feldspar and quartz are approximately 20 microns wide. Melt pools are up to 100+ microns in diameter. Water in nominally anhydrous minerals has the potential to lower the solidus significantly enough to initiate partial melting in lower crustal granitoids at high ambient temperatures. 3000 ppm water in minerals that make up large volumes of crustal rocks (alkali feldspar, plagioclase feldspar, quartz) would lower the dry solidus of granite by 273oC at 1 GPa, for initiation of partial melting. Generation of small volumes of partial melt on grain boundaries may lead to further rock weakening and localization of further deformation.

  2. A-type granite and the Red Sea opening

    NASA Astrophysics Data System (ADS)

    Coleman, Robert G.; DeBari, Susan; Peterman, Zell

    1992-03-01

    Miocene-Oligocene A-type granite intrudes the eastern side of the Red Sea margin within the zone of extension from Jiddah, Saudi Arabia south to Yemen. The intrusions developed in the early stages of continental extension as Arabia began to move slowly away from Africa (around 30-20 Ma). Within the narrow zone of extension silicic magmas formed dikes, sills, small plutons and extrusive equivalents. In the Jabal Tirf area of Saudi Arabia these rocks occur in an elongate zone consisting of late Precambrian basement to the east, which is gradually invaded by mafic dikes. The number of dikes increases westward until an igneous complex is produced parallel to the present Red Sea axis. The Jabal Tirf igneous complex consists of diabase and rhyolite-granophyre sills (20-24 Ma). Although these are intrusine intrusive rocks their textures indicate shallow depths of intrusion (< 1 km). To the south, in the Yemen, contemporaneous with alkali basaltic eruptions (26-30 Ma) and later silicic eruptions, small plutons, dikes, and stocks of alkali granite invaded thick (1500 m) volcanic series, at various levels and times. Erosion within the uplifted margin of Yemen suggests that the maximum depth of intrusion was less than 1-2 km. Granophyric intrusions (20-30 Ma) within mafic dike swarms similar to the Jabal Tirf complex are present along the western edge of the Yemen volcanic plateau, marking a north-south zone of continental extension. The alkali granites of Yemen consist primarily of perthitic feldspar and quartz with some minor alkali amphiboles and acmite. These granites represent water-poor, hypersolvus magmas generated from parent alkali basalt magmas. The granophyric, two-feldspar granites associated with the mafic dike swarms and layered gabbros formed by fractional crystallization from tholeiitic basalt parent developed in the early stages of extension. Initial 87Sr/ 86Sr ratios of these rocks and their bulk chemistry indicate that production of peralkaline and

  3. A-type granite and the Red Sea opening

    USGS Publications Warehouse

    Coleman, R.G.; DeBari, S.; Peterman, Z.

    1992-01-01

    Miocene-Oligocene A-type granite intrudes the eastern side of the Red Sea margin within the zone of extension from Jiddah, Saudi Arabia south to Yemen. The intrusions developed in the early stages of continental extension as Arabia began to move slowly away from Africa (around 30-20 Ma). Within the narrow zone of extension silicic magmas formed dikes, sills, small plutons and extrusive equivalents. In the Jabal Tirf area of Saudi Arabia these rocks occur in an elongate zone consisting of late Precambrian basement to the east, which is gradually invaded by mafic dikes. The number of dikes increases westward until an igneous complex is produced parallel to the present Red Sea axis. The Jabal Tirf igneous complex consists of diabase and rhyolite-granophyre sills (20-24 Ma). Although these are intrusine intrusive rocks their textures indicate shallow depths of intrusion (< 1 km). To the south, in the Yemen, contemporaneous with alkali basaltic eruptions (26-30 Ma) and later silicic eruptions, small plutons, dikes, and stocks of alkali granite invaded thick (1500 m) volcanic series, at various levels and times. Erosion within the uplifted margin of Yemen suggests that the maximum depth of intrusion was less than 1-2 km. Granophyric intrusions (20-30 Ma) within mafic dike swarms similar to the Jabal Tirf complex are present along the western edge of the Yemen volcanic plateau, marking a north-south zone of continental extension. The alkali granites of Yemen consist primarily of perthitic feldspar and quartz with some minor alkali amphiboles and acmite. These granites represent water-poor, hypersolvus magmas generated from parent alkali basalt magmas. The granophyric, two-feldspar granites associated with the mafic dike swarms and layered gabbros formed by fractional crystallization from tholeiitic basalt parent developed in the early stages of extension. Initial 87Sr/86Sr ratios of these rocks and their bulk chemistry indicate that production of peralkaline and

  4. Evaluation of laboratory test method for determining the potential alkali contribution from aggregate and the ASR safety of the Three-Gorges dam concrete

    SciTech Connect

    Lu Duyou . E-mail: duyoulu@njut.edu.cn; Zhou, Xiaoling; Xu Zhongzi; Lan Xianghui; Tang Mingshu; Fournier, Benoit

    2006-06-15

    The releasable alkali from granite, which was used in the Three-Gorges concrete dam project in China, and from gneiss and feldspar was estimated by extraction in distilled water and super-saturated Ca(OH){sub 2} solution. Results show that: i) the finer the particles and the higher the temperature, the greater and faster the release of alkali; ii) compared with extraction by distilled water, super-saturated Ca(OH){sub 2} solution had a stronger activation on feldspar than on granite and gneiss; iii) for the three rocks tested, thermal activation had the largest effect on gneiss and a lower and similar effect on granite and feldspar. For very fine particles, temperature had a similar effect on the release of alkali by all three rocks. Because the aggregate used in the Three-Gorges dam concrete is non-reactive and a low calcium fly ash was used in the concrete, ASR would not be an issue for the dam, despite the release of alkali from the aggregate into the concrete.

  5. Li- and F-bearing alkali amphibole from granitic pegmatite at Hurricane Mountain, Carroll County, New Hampshire

    USGS Publications Warehouse

    Foord, E.E.; Erd, Richard C.; Robie, S.B.; Lichte, F.E.; King, V.T.

    1996-01-01

    At Hurricane Mountain, Carroll County, New Hampshire, bodies of granitic pegmatite in riebeckite granite contain large (up to 10 cm long and 2 cm across) primary crystals of Li-bearing fluor-arfvedsonite in miarolitic cavities, grading to euhedral Li- and F-poor arfvedsonite. Fine-grained, fibrous, light blue-gray riebeckite occurs as a late-stage hydrothermal filling in the miarolitic cavities. The early, Li-rich, fluor-arfvedsonite has: a 9.836(5), b 17.997(7), c 5.316(4) A??, ?? 103.735(4)??, V 914.20(6) A??3; Z = 2, Dmeas. 3.34 g/cm3, Dcalc. 3.353 g/cm3; biaxial (-), 2Vmeas. 44(1)??, 2Vcalc. 46??; ?? 1.681(2), ?? 1.692(2), ?? 1.694(2), inclined dispersion, r > v; X ??? c -7??, Y = b, Z ??? a +7??; X dark blue, Y lavender gray, Z pale yellowish brown; X > Y > Z; X is opaque at 0.03 mm thickness. A structural formula, on the basis of 24 (O,OH,F) atoms is: (Na0.86K0.25)Na2(Fe2+2.54Fe3+1.485Mn0.10Zn 0.02Li0.49Ti0.07)(Si7.71Al 0.07)O22(F1.34OH0.63). Arfvedsonite within the miarolitic cavities contains less Li and F than that of the earlier generation, and the still later riebeckite contains only 0.09 wt.% Li2O and 0.3 wt.% F. The Fe3+:Fe2+ ratio of the early Li-bearing fluor-arfvedsonite and that of the euhedral arfvedsonite crystals within miarolitic cavities is 0.58. The late, fibrous, cavity-filling riebeckite has an Fe3+:Fe2+ ratio of 0.99. The total iron content of the three amphiboles increases with continued crystallization. These amphiboles are products of peralkaline pegmatites locally derived from peralkaline granite.

  6. Not all feldspars are equal: a survey of ice nucleating properties across the feldspar group of minerals

    NASA Astrophysics Data System (ADS)

    Harrison, Alexander D.; Whale, Thomas F.; Carpenter, Michael A.; Holden, Mark A.; Neve, Lesley; O'Sullivan, Daniel; Vergara Temprado, Jesus; Murray, Benjamin J.

    2016-09-01

    Mineral dust particles from wind-blown soils are known to act as effective ice nucleating particles in the atmosphere and are thought to play an important role in the glaciation of mixed phase clouds. Recent work suggests that feldspars are the most efficient nucleators of the minerals commonly present in atmospheric mineral dust. However, the feldspar group of minerals is complex, encompassing a range of chemical compositions and crystal structures. To further investigate the ice-nucleating properties of the feldspar group we measured the ice nucleation activities of 15 characterized feldspar samples. We show that alkali feldspars, in particular the potassium feldspars, generally nucleate ice more efficiently than feldspars in the plagioclase series which contain significant amounts of calcium. We also find that there is variability in ice nucleating ability within these groups. While five out of six potassium-rich feldspars have a similar ice nucleating ability, one potassium rich feldspar sample and one sodium-rich feldspar sample were significantly more active. The hyper-active Na-feldspar was found to lose activity with time suspended in water with a decrease in mean freezing temperature of about 16 °C over 16 months; the mean freezing temperature of the hyper-active K-feldspar decreased by 2 °C over 16 months, whereas the "standard" K-feldspar did not change activity within the uncertainty of the experiment. These results, in combination with a review of the available literature data, are consistent with the previous findings that potassium feldspars are important components of arid or fertile soil dusts for ice nucleation. However, we also show that there is the possibility that some alkali feldspars may have enhanced ice nucleating abilities, which could have implications for prediction of ice nucleating particle concentrations in the atmosphere.

  7. Middle Devonian hornblende granite of the Imjingang Belt in South Korea: SHRIMP U-Pb zircon age and its implication on the depositional age of the Imjingang Belt

    NASA Astrophysics Data System (ADS)

    Kim, Hyeoncheol; Horie, Kenji; Kim, Yoonsup; Kee, Weon-Seo; Williams, Ian S.; Hidaka, Hiroshi

    2013-04-01

    The Yeoncheon Group, comprising the major part of the Imjingang belt in central Korean peninsula, is composed mainly of stratigraphically the lower Misan Formation, consisting of calc-silicates rocks alternating with pelitic schists, quartzite, marble and amphibolite, and the upper Daegwangri Formation, consisting of metapelites with rare intercalation of hornblende-bearing siliceous layers. The hornblende granite locally intrudes the lower part of the calc-silicate rocks. Pegmatite veins intrude both calc-silicate rocks and hornblende granite. All these rocks are strongly deformed during the Triassic collision orogeny to have the same geometry of structural elements. The granite is highly strained mylonite with isoclinal and sheath folds, and mineral stretching lineation parallel to the fold axis. On the other hand, competent pegmatite veins are deformed to have lens-shaped boudin structure. Shear criteria in mylonitized granite indicate the top-to-the-east sense of movement. Alkali-feldspar porphyroclasts (

  8. A detailed study of ice nucleation by feldspar minerals

    NASA Astrophysics Data System (ADS)

    Whale, T. F.; Murray, B. J.; Wilson, T. W.; Carpenter, M. A.; Harrison, A.; Holden, M. A.; Vergara Temprado, J.; Morris, J.; O'Sullivan, D.

    2015-12-01

    Immersion mode heterogeneous ice nucleation plays a crucial role in controlling the composition of mixed phase clouds, which contain both supercooled liquid water and ice particles. The amount of ice in mixed phase clouds can affect cloud particle size, lifetime and extent and so affects radiative properties and precipitation. Feldspar minerals are probably the most important minerals for ice nucleation in mixed phase clouds because they nucleate ice more efficiently than other components of atmospheric mineral dust (Atkinson et al. 2013). The feldspar class of minerals is complex, containing numerous chemical compositions, several crystal polymorphs and wide variations in microscopic structure. Here we present the results of a study into ice nucleation by a wide range of different feldspars. We found that, in general, alkali feldspars nucleate ice more efficiently than plagioclase feldspars. However, we also found that particular alkali feldspars nucleate ice relatively inefficiently, suggesting that chemical composition is not the only important factor that dictates the ice nucleation efficiency of feldspar minerals. Ice nucleation by feldspar is described well by the singular model and is probably site specific in nature. The alkali feldspars that do not nucleate ice efficiently possess relatively homogenous structure on the micrometre scale suggesting that the important sites for nucleation are related to surface topography. Ice nucleation active site densities for the majority of tested alkali feldspars are similar to those found by Atkinson et al (2013), meaning that the validity of global aerosol modelling conducted in that study is not affected. Additionally, we have found that ice nucleation by feldspars is strongly influenced, both positively and negatively, by the solute content of droplets. Most other nucleants we have tested are unaffected by solutes. This provides insight into the mechanism of ice nucleation by feldspars and could be of importance

  9. Residence times of alkali feldspar phenocrysts from magma feeding the Agnano-Monte Spina Eruption (4.7 ka), Campi Flegrei caldera (Napoli, southern Italy) based on Ba-zonation modelling

    NASA Astrophysics Data System (ADS)

    Iovine, Raffaella Silvia; Wörner, Gerhard; Carmine Mazzeo, Fabio; Arienzo, Ilenia; Fedele, Lorenzo; Civetta, Lucia; D'Antonio, Massimo; Orsi, Giovanni

    2016-04-01

    Timescales governing the development of crustal magma reservoirs are a key for understanding magmatic processes such as ascent, storage and mixing event. An estimate of these timescales can provide important constraints for volcanic hazard assessment of active volcanoes. We studied the Agnano-Monte Spina eruption (A-MS; 4.7 ka; VEI = 4; 0.85 km3 D.R.E. of magma erupted) of the Campi Flegrei caldera, one of the most dangerous volcanic areas on Earth. The A-MS eruption has been fed by magmas varying from more to less evolved trachyte whose variable 87Sr/86Sr and trace elements features suggest magma mixing between two end-members. Ba zonation profiles of alkali feldspar phenocrysts have been determined through combined energy-dispersive and wavelength-dispersive electron microprobe analyses (EDS-WDS-EMPA). We focused on distinct compositional breaks near the rim of the crystals that likely represent the last mixing event prior to eruption. We always chose the steepest gradients close to the crystal rims, taking into account that any effects related to cutting angles or crystal orientation should give longer apparent diffusion times. Two different approaches were undertaken: (1) a quantitative Ba compositional profiles were measured by point analyses along a short transect crossing growth discontinuities and (2) grey-scale profiles were taken parallel to the acquired point profiles. Assuming that Ba dominates the backscattered electron intensities in sanidines, greyscale gradients can be used as a diffusive tracer. BSE images were processed using the ImageJ® software, in order to extract a numerical greyscale profile. In both cases, each profile was interpolated through a non-linear Boltzmann fit curve with the Mathematica® software. A few traverses done at angles smaller than 90° to the compositional boundary interface were corrected by multiplying the distance values by the sinus of the traverse angle relative to the vertical on the interface. Our preliminary

  10. Neon diffusion kinetics in olivine, pyroxene and feldspar: Retentivity of cosmogenic and nucleogenic neon

    NASA Astrophysics Data System (ADS)

    Gourbet, Loraine; Shuster, David L.; Balco, Greg; Cassata, William S.; Renne, Paul R.; Rood, Dylan

    2012-06-01

    We performed stepwise degassing experiments by heating single crystals of neutron- or proton-irradiated olivine, pyroxene and feldspar to study diffusion kinetics of neon. This is important in evaluating the utility of these minerals for cosmogenic 21Ne measurements and, potentially, for Ne thermochronometry. Degassing patterns are only partially explained by simple Arrhenius relationships; most samples do not exhibit a precisely-determined activation energy in an individual diffusion domain. Regardless, we find clear differences in diffusion kinetics among these minerals. Based on sub-selected data, our estimates for neon diffusion kinetics (activation energy Ea and pre-exponential factor Do, assuming the analyzed fragments approximate the diffusion domain) in each mineral are as follows: for the feldspars, Ea ranges from ∼65 to 115 kJ/mol and Do from 3.9 × 10-3 to 7.1 × 102 cm2s-1; for the pyroxenes, Ea ranges from ∼292 to 480 kJ/mol and Do from 1.6 × 102 to 2.9 × 1011 cm2s-1; for the olivines, Ea ranges from ∼360 to 370 kJ/mol and Do from 1.5 × 106 to 5.0 × 106 cm2s-1. Differences in these parameters are broadly consistent with the expected effect of structural differences between feldspar, and olivine and pyroxene. These results indicate that cosmogenic 21Ne will be quantitatively retained within olivine and pyroxene at Earth surface temperatures over geological timescales. The diffusion kinetics for feldspars, on the other hand, predicts that 21Ne retention at Earth surface temperatures will vary significantly with domain size, crystal microtexture, surface temperature, and exposure duration. Quantitative retention is expected only in favorable conditions. This conclusion is reinforced by additional measurements of cosmogenic 21Ne in coexisting quartz and feldspar from naturally irradiated surface samples; sanidine from a variety of rhyolitic ignimbrites exhibits quantitative retention, whereas alkali-feldspar from several granites does not.

  11. Principles of Thermal Expansion in Feldspars

    NASA Astrophysics Data System (ADS)

    Hovis, Guy; Medford, Aaron; Conlon, Maricate; Tether, Allison; Romanoski, Anthony

    2010-05-01

    Following the recent thermal expansion work of Hovis et al. (1) on AlSi3 feldspars, we have investigated the thermal expansion of plagioclase, Ba-K, and Ca-K feldspar crystalline solutions. X-ray powder diffraction data were collected between room temperature and 925 °C on six natural plagioclase specimens ranging in composition from anorthite to oligoclase, the K-exchanged equivalents of these plagioclase specimens, and five synthetic Ba-K feldspars with compositions ranging from 25 to 99 mol % BaAl2Si2O8. The resulting thermal expansion coefficients (α) for volume have been combined with earlier results for end-member Na- and K-feldspars (2,3). Unlike AlSi3 feldspars, Al2Si2 feldspars, including anorthite and celsian from the present study plus Sr- and Pb-feldspar from other workers (4,5), show essentially constant and very limited thermal expansion, regardless of divalent cation size. In the context of structures where the Lowenstein rule (6) requires Al and Si to alternate among tetrahedra, the proximity of bridging Al-O-Si oxygen ions to divalent neighbors (ranging from 0 to 2) produces short Ca-O (or Ba-O) bonds (7,8) that apparently are the result of local charge-balance requirements (9). Gibbs et al. (10) suggest that short bonds such as these have a partially covalent character. This in turn stiffens the structure. Thus, for feldspar series with coupled substitution the change away from a purely divalent M-site occupant gives the substituting (less strongly bonded) monovalent cations increasingly greater influence on thermal expansion. Overall, then, thermal expansion in the feldspar system is well represented on a plot of α against room-temperature volume, where one sees a quadrilateral bounded by data for (A) AlSi3 feldspars whose expansion behavior is controlled largely by the size of the monovalent alkali-site occupant, (B) Al2Si2 feldspars whose expansion is uniformly limited by partially-covalent bonds between divalent M-site occupants and

  12. SilMush: A procedure for modeling of the geochemical evolution of silicic magmas and granitic rocks

    NASA Astrophysics Data System (ADS)

    Hertogen, Jan; Mareels, Joyce

    2016-07-01

    A boundary layer crystallization modeling program is presented that specifically addresses the chemical fractionation in silicic magma systems and the solidification of plutonic bodies. The model is a Langmuir (1989) type approach and does not invoke crystal settling in high-viscosity silicic melts. The primary aim is to model a granitic rock as a congealed crystal-liquid mush, and to integrate major element and trace element modeling. The procedure allows for some exploratory investigation of the exsolution of H2O-fluids and of the fluid/melt partitioning of trace elements. The procedure is implemented as a collection of subroutines for the MS Excel spreadsheet environment and is coded in the Visual Basic for Applications (VBA) language. To increase the flexibility of the modeling, the procedure is based on discrete numeric process simulation rather than on solution of continuous differential equations. The program is applied to a study of the geochemical variation within and among three granitic units (Senones, Natzwiller, Kagenfels) from the Variscan Northern Vosges Massif, France. The three units cover the compositional range from monzogranite, over syenogranite to alkali-feldspar granite. An extensive set of new major element and trace element data is presented. Special attention is paid to the essential role of accessory minerals in the fractionation of the Rare Earth Elements. The crystallization model is able to reproduce the essential major and trace element variation trends in the data sets of the three separate granitic plutons. The Kagenfels alkali-feldspar leucogranite couples very limited variation in major element composition to a considerable and complex variation of trace elements. The modeling results can serve as a guide for the reconstruction of the emplacement sequence of petrographically distinct units. Although the modeling procedure essentially deals with geochemical fractionation within a single pluton, the modeling results bring up a

  13. Deep drilling at the Siljan Ring impact structure: oxygen-isotope geochemistry of granite

    USGS Publications Warehouse

    Komor, S.C.; Valley, J.W.

    1990-01-01

    The Siljan Ring is a 362-Ma-old impact structure formed in 1700-Ma-old I-type granites. A 6.8-km-deep borehole provides a vertical profile through granites and isolated horizontal diabase sills. Fluid-inclusion thermometry, and oxygen-isotope compositions of vein quartz, granite, diabase, impact melt, and pseudotachylite, reveal a complex history of fluid activity in the Siljan Ring, much of which can be related to the meteorite impact. In granites from the deep borehole, ??18O values of matrix quartz increase with depth from near 8.0 at the surface to 9.5??? at 5760 m depth. In contrast, feldspar ??18O values decrease with depth from near 10 at the surface to 7.1??? at 5760 m, forming a pattern opposite to the one defined by quartz isotopic compositions. Values of ??18O for surface granites outside the impact structure are distinct from those in near-surface samples from the deep borehole. In the deep borehole, feldspar coloration varies from brick-red at the surface to white at 5760 m, and the abundances of crack-healing calcite and other secondary minerals decrease over the same interval. Superimposed on the overall decrease in alteration intensity with depth are localized fracture zones at 4662, 5415, and 6044 m depth that contain altered granites, and which provided pathways for deep penetration of surface water. The antithetic variation of quartz and feldspar ??18O values, which can be correlated with mineralogical evidence of alteration, provides evidence for interaction between rocks and impact-heated fluids (100-300?? C) in the upper 2 km of the pluton. Penetration of water to depths below 2 km was restricted by a general decrease in impact-fracturing with depth, and by a 60-m-thick diabase sill at 1500 m depth that may have been an aquitard. At depths below 4 km in the pluton, where water/rock ratios were low, oxygen isotopic compositions preserve evidence for limited high-temperature (>500?? C) exchange between alkali feldspar and fluids. The high

  14. A-type and I-type granitoids and mylonitic granites of Hassan Salaran area of SE Saqqez, Kurdistan, Iran

    NASA Astrophysics Data System (ADS)

    Abdullah, Fakhraddin Mohammad; Saeed Ahmad, Sheler

    2014-05-01

    The Hassan Salarn area is located 20km to southeast of Saqqez city in Kurdistan Province, western Iran. In this area there are two distinct granitic rock suites consisting A-type and I-type granites and also mylonitic granites. These A-type and I-type granites have various petrological and geochemical characteristics. They also have different origins and petrogenesis. A-type granitoids comprise alkali feldspar granite, syenogranite and quartz alkali feldspar syenite, whereas I-type granitoids are composed of monzogranite, granodiorite and tonalite. Geochemically, A-type granitoids are peralkaline and acmite-normative but I-type granitoids are subalkaline (calc-alkaline), metaluminous and diopside-normative. A-type granitoids are also ferroan alkali and ferroan alkali-calcic whereas I-type granitoids are magnesian and calcic. A-type granitoids resemble to within plate granites and post-orogenic granites whereas I-type granitoids resemble to volcanic arc granites. A-type granitoids contain higher concentrations of alkalies, Zr, Rb, Nb, Y, Th, Ce, high FeO/MgO ratios and lower concentrations of Mg, Ca and Sr, resembling post-orogenic A-type granites. It is possible that heat from a mantle-derived magma which intruded into the lower crust, and/or rapid crustal extension have been essential generation of approriate melts producing A-type granitoids. Thus we can conclude that A-type granitoids were generated from a mixed mantle-crust source. Negative Nb anomalies and low contents of Ti and P probably indicate a subduction-related origin for protolith of I-type granitoids. Negative Nb anomalies and enrichment in Ce relative to its adjacent elements can be related to involvement of continental crust in magmatic processes. I-type granitoids are also enriched in Rb, Ba, K, Th, Ce and depleted in Nb, Zr and Y, indicating that they have had interacted with crust. I-type granitoids may result from contamination of mantle-derived magmas by continental crust during a subduction

  15. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups

    NASA Astrophysics Data System (ADS)

    Hulsbosch, Niels; Hertogen, Jan; Dewaele, Stijn; André, Luc; Muchez, Philippe

    2014-05-01

    This study presents a general model for the evaluation of Rayleigh fractional crystallisation as the principal differentiation mechanism in the formation of regionally zoned common and rare-element pegmatites. The magmatic evolution of these systems from a granitic source is reconstructed by means of alkali element and rare earth element (REE) analyses of rock-forming minerals (feldspars, micas and tourmaline), which represent a whole sequence of regional pegmatite zonation. The Gatumba pegmatite field (Rwanda, Central Africa) is chosen as case study area because of its well-developed regional zonation sequence. The pegmatites are spatially and temporally related to peraluminous G4-granites (986 ± 10 Ma). The regional zonation is developed around a G4-granite and the proximal pegmatites grade outwardly into biotite, two-mica and muscovite pegmatites. Rare-element (Nb-Ta-Sn) pegmatites occur most distal from the granite.

  16. H2 generation in wet grinding of granite and single-crystal powders and implications for H2 concentration on active faults

    NASA Astrophysics Data System (ADS)

    Kameda, Jun; Saruwatari, Kazuko; Tanaka, Hidemi

    2003-10-01

    Granite and single crystals of quartz, alkali feldspar, biotite and muscovite are ground in pH-controlled and pure water solutions using a ball mill at ambient condition to examine the production of H2. The amount of H2 generated by grinding is linearly related with the surface area of ground samples. The slope of the straight line indicates H2 productivity of each mineral: 3.9 × 10-3 μmol/m2 (quartz); 1.0 × 10-3 μmol/m2 (alkali feldspar); 3.6 × 10-2 μmol/m2 (biotite); 2.2 × 10-2 μmol/m2 (muscovite); 4.5 × 10-3 μmol/m2 (granite). High productivity of biotite and muscovite is probably related to the existence of hydroxyls in their crystal structures. Interestingly, H2 production did not depend on the pH of the solution in the case of biotite and granite, while comparisons between fluid acidity and H2 concentration on several active faults suggest that anomalously high H2 is commonly observed at relatively acidic water springs. This correlation may be explained by locally high abundance of phyllosilicates.

  17. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles

    PubMed Central

    2015-01-01

    Mineral dusts originating from Earth’s crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. K-feldspar showed by far the highest ice nucleation activity. Finally, we give a potential explanation of this effect, finding alkali-metal ions having different hydration shells and thus an influence on the ice nucleation activity of feldspar surfaces. PMID:25584435

  18. Charnockites and granites of the western Adirondacks, New York, USA: a differentiated A-type suite

    USGS Publications Warehouse

    Whitney, P.R.

    1992-01-01

    Granitic rocks in the west-central Adirondack Highlands of New York State include both relatively homogeneous charnockitic and hornblende granitic gneisses (CG), that occur in thick stratiform bodies and elliptical domes, and heterogeneous leucogneisses (LG), that commonly are interlayered with metasedimentary rocks. Major- and trace-element geochemical analyses were obtained for 115 samples, including both types of granitoids. Data for CG fail to show the presence of more than one distinct group based on composition. Most of the variance within the CG sample population is consistent with magmatic differentiation combined with incomplete separation of early crystals of alkali feldspar, plagioclase, and pyroxenes or amphibole from the residual liquid. Ti, Fe, Mg, Ca, P, Sr, Ba, and Zr decrease with increasing silica, while Rb and K increase. Within CG, the distinction between charnockitic (orthopyroxene-bearing) and granitic gneisses is correlated with bulk chemistry. The charnockites are consistently more mafic than the hornblende granitic gneisses, although forming a continuum with them. The leucogneisses, while generally more felsic than the charnockites and granitic gneisses, are otherwise geochemically similar to them. The data are consistent with the LG suite being an evolved extrusive equivalent of the intrusive CG suite. Both CG and LG suites are metaluminous to mildly peraluminous and display an A-type geochemical signature, enriched in Fe, K, Ce, Y, Nb, Zr, and Ga and depleted in Ca, Mg, and Sr relative to I- and S-type granites. Rare earth element patterns show moderate LREE enrichment and a negative Eu anomaly throughout the suite. The geochemical data suggest an origin by partial melting of biotite- and plagioclase-rich crustal rocks. Emplacement occurred in an anorogenic or post-collisional tectonic setting, probably at relatively shallow depths. Deformation and granulite-facies metamorphism with some partial melting followed during the Ottawan phase

  19. A plutonic view of explosive volcanism: the shatter zone of the Cadillac Mountain granite, Maine

    NASA Astrophysics Data System (ADS)

    Wiebe, R.

    2013-12-01

    The Silurian Cadillac Mountain granite (CMG) is about 15 km in diameter. It is underlain on its deeper western margin by layered gabbro-diorite (GD) up to 3 km thick and on its eastern and southern margins by an intrusive breccia (the 'shatter zone' (SZ)), up to 1 km wide. Coeval rhyolite tuffs, ignimbrites and lavas occur near the southern margin of the granite. The more shallow eastern part of the SZ can be divided into three zones: (SZA) An outer zone against country rock (CR) consists of strongly broken up, deformed sedimentary rocks and angular blocks of diabase invaded by thin irregular veins of aphanitic felsite. All CR fragments are tightly packed with less than ~ 15% matrix, which coarsens inward to vfg quartz, feldspar and biotite. (SZB) A central zone contains abundant sedimentary and scarce rhyolite blocks (typically < 1 m) and larger diabase blocks (from < 1 m to 10s of meters). This zone has 20 to 60% fg to mg matrix with quartz, two feldspars, biotite and abundant pieces of CR down to a few mm. It typically has a strong flow fabric around CR blocks. (SZC) The inner zone has only large (10-80 m) blocks of sedimentary rock, diabase and rhyolite (flows and ignimbrite). The mg granitic matrix (>60%) has blocky hypersolvus feldspar, interstitial to equant quartz, Fe-cpx, Fe-hornblende, two oxides and scarce fayalite. Feldspar in this zone consistently has a sequence of zones consisting of: (1) a homogeneous core of ~ An10Ab80Or10, (2) a transition up to 1 mm wide with 10-15 Or-Ab oscillations (e.g. from Or10 to Or30), each from 20 to 100 microns in width, and (3) a nearly homogeneous rim of variable width averaging about An3Ab70Or27. The occurrence of crystals with such distinctive zoning over such a great distance (18 km) suggests that the zoning was produced by an intensive parameter and not by magma mixing. Because the crystals are restricted to the SZ matrix, processes that produced the shatter zone probably also influenced feldspar zoning. Analysis

  20. Can cathodoluminescence of feldspar be used as provenance indicator?

    NASA Astrophysics Data System (ADS)

    Scholonek, Christiane; Augustsson, Carita

    2016-05-01

    We have studied feldspar from crystalline rocks for its textural and spectral cathodoluminescence (CL) characteristics with the aim to reveal their provenance potential. We analyzed ca. 60 rock samples of plutonic, volcanic, metamorphic, and pegmatitic origin from different continents and of 16 Ma to 2 Ga age for their feldspar CL textures and ca. 1200 feldspar crystals from these rocks for their CL color spectra. Among the analyzed rocks, igneous feldspar is most commonly zoned, whereby oscillatory zoning can be confirmed to be typical for volcanic plagioclase. The volcanic plagioclase also less commonly contains twin lamellae that are visible in CL light than crystals from other rock types. Alkali feldspar, particularly from igneous and pegmatitic rocks, was noted to be most affected by alteration features, visible as dark spots, lines and irregular areas. The size of all textural features of up to ca. 150 μm, in combination with possible alteration in both the source area and the sedimentary system, makes the CL textures of feldspar possible to use for qualitative provenance research only. We observed alkali feldspar mostly to luminesce in a bluish color and sometimes in red, and plagioclase in green to yellow. The corresponding CL spectra are dominated by three apparent intensity peaks at 440-520 nm (mainly blue), 540-620 nm (mainly green) and 680-740 nm (red to infrared). A dominance of the peak in the green wavelength interval over the blue one for plagioclase makes CL particularly useful for the differentiation of plagioclase from alkali feldspar. An apparent peak position in red to infrared at < 710 nm for plagioclase mainly is present in mafic rocks. Present-day coastal sand from Peru containing feldspar with the red to infrared peak position mainly exceeding 725 nm for northern Peruvian sand and a larger variety for sand from southern Peru illustrates a discriminative effect of different source areas. We conclude that the provenance application

  1. Elasticity of plagioclase feldspars

    NASA Astrophysics Data System (ADS)

    Brown, J. Michael; Angel, Ross J.; Ross, Nancy L.

    2016-02-01

    Elastic properties are reported for eight plagioclase feldspars that span compositions from albite (NaSi3AlO8) to anorthite (CaSi2Al2O8). Surface acoustic wave velocities measured using Impulsive Stimulated Light Scattering and compliance sums from high-pressure X-ray compression studies accurately determine all 21 components of the elasticity tensor for these triclinic minerals. The overall pattern of elasticity and the changes in individual elastic components with composition can be rationalized on the basis of the evolution of crystal structures and chemistry across this solid-solution join. All plagioclase feldspars have high elastic anisotropy; a* (the direction perpendicular to the b and c axes) is the softest direction by a factor of 3 in albite. From albite to anorthite the stiffness of this direction undergoes the greatest change, increasing twofold. Small discontinuities in the elastic components, inferred to occur between the three plagioclase phases with distinct symmetry (C1>¯, I1>¯, and P1>¯), appear consistent with the nature of the underlying conformation of the framework-linked tetrahedra and the associated structural changes. Measured body wave velocities of plagioclase-rich rocks, reported over the last five decades, are consistent with calculated Hill-averaged velocities using the current moduli. This confirms long-standing speculation that previously reported elastic moduli for plagioclase feldspars are systematically in error. The current results provide greater assurance that the seismic structure of the middle and lower crusts can be accurately estimated on the basis of specified mineral modes, chemistry, and fabric.

  2. Thermal infrared spectroscopy on feldspars — Successes, limitations and their implications for remote sensing

    NASA Astrophysics Data System (ADS)

    Hecker, Christoph; der Meijde, Mark van; van der Meer, Freek D.

    2010-11-01

    Minerals of the feldspar group are the most common on earth. Feldspars are economically important in two ways: either as industrial minerals or as a vector-to-ore for mineral deposits. In order to use feldspars for classifying rock compositions or metasomatic conditions during rock alteration events, there is a need for analytical methods to identify and classify feldspars. Traditionally, feldspar composition and structure have been investigated using methods such as optical microscopy, electron microprobe analysis (EMPA), cathodoluminescence and X-ray diffraction (XRD) analysis. In this paper infrared techniques (0.7-25 μm)) are reviewed in detail and investigated in how far some of the traditional analytical methods can be replaced by infrared spectroscopy. Successes as well as limitations of infrared approaches are highlighted and existing work is scrutinized in terms of its applicability to remote sensing techniques. Even though numerous studies on mid-infrared (MIR) spectroscopy of feldspars exist, their results often cannot be directly related to remote sensing applications. Examples are the effects of feldspar twinning, exsolution textures and structural state on infrared spectra. The applicability of the results to emission remote sensing requires further research. It has been shown that linear unmixing of laboratory infrared spectra of rocks works fairly well. Detection limits for feldspar are around 5% and plagioclase composition can be determined within error margins of ± 4% anorthite component. Infrared spectroscopy can, however, not detect compositional zonation or different generations of feldspars. Infrared spectra represent the current average plagioclase and average alkali feldspar composition in the sample. With several new airborne instruments under development, it is opportune to focus upcoming research efforts on developing standardized processing techniques and spectral feldspar indices for thermal infrared imagery. Commercially interesting

  3. Trace Elements in Igneous Quartz: a new Petrogenetic Tool for the Study of Granite Pegmatite Genesis

    NASA Astrophysics Data System (ADS)

    Larsen, R. B.; Larsen, R. B.; Flem, B.; Henderson, I.; Ihlen, P. M.; Ihlen, P. M.; Lahaye, Y.; Malvik, T.; Prestvik, T.

    2001-12-01

    The trace-element chemistry of quartz is rarely, if ever, considered when evaluating the origin and evolution of silica over-saturated igneous rocks. Analytical obstacles have efficiently prevented in-depth studies of the trace-element chemistry of quartz because the most interesting elements are present at the sub-ppm level and because mineral separation of quartz for traditional solution analysis is a time-consuming process. Also, igneous quartz may contain both fluid and solid inclusions that are difficult to identify during handpicking and may influence the analytical results significantly. However, in the present study we utilised in situ Laser Ablation of quartz specimens with direct introduction of the ablated material in to a double focusing sector field, ICP-MS instrument, and we developed a method that is fine-tuned for the analysis of trace elements in quartz (Flem et al., Chemical Geology, in press). Among the elements covered by the method we have focussed on substitutional trace-elements replacing Si4+ (e.g. Ti, Ge, Al, Fe and P) or elements that represent charge compensators that are accommodated in lattice vacancies or in structural channels (e.g. Li, B, K, Ca, Be). Elements analysed at low, medium and high resolutions include Li, B, Be, Al, Mn, Ge, Rb, Sr, Ba, Pb, Th, Mg, P, Ti, Ca, Cr, Fe and K. 29Si or 30Si, were used as internal standards. In the present study we evaluate the chemical evolution of quartz by comparing with the chemistry of co-existing alkali-feldspar, for which the compositional changes during igneous evolution is well known from the literature. The study includes 75 strongly zoned gadolinite-type REE-Nb-Ta rich chamber pegmatites from two major Neoproterozoic pegmatite fields in SE-Norway. Analysis of alkali-feldspar for major and accessory elements including the REE shows that the pegmatites were formed from progressively more evolved liquids through extreme fractionation of primitive granitic melts. The total concentration of

  4. Riftogenic A-type granites of the Polar Urals, Russia

    NASA Astrophysics Data System (ADS)

    Udoratina, Oksana; Kulikova, Ksenia; Shuysky, Alexander

    2016-04-01

    secondary gneiss-likeness and cataclastic, metamorphic or metasomatic fabric (2, 3). Petrographic features of the granitoid vary widely: 1) alkali granites with developed alkali amphibole or pyroxene, 2) subalkaline granites with developed postcataclase metasomatic facies and metasomatic alkaline pyroxene in albitites and quartz-feldspar metasomatites, 3) subalkaline granites with biotite-muscovite parageneses with amphibole (actinolite, tremolite). With 2 type of granites associated ore complex (Nb-Ta, Y and HREE, Zr, rarely Be) deposit, although we consider it is incorrect to regard granites with a wide display of metasomatic facies, because all the characteristic data in them are increased due to the high content of ore components. The studied granites of the Polar Urals are small magmatic intrusions of cutting or layered melt intrusion, as well as metasomatically transformed bodies (metasomatic facies, developing on older granitoids). Granites high alkalinity, potassium, potassium-sodium series with intraplate characteristics. Formation of granitoids occurred in the period 515 (510) -490 (480) Ma.

  5. Generation of Late Mesozoic Qianlishan A2-type granite in Nanling Range, South China: Implications for Shizhuyuan W-Sn mineralization and tectonic evolution

    NASA Astrophysics Data System (ADS)

    Chen, Yuxiao; Li, He; Sun, Weidong; Ireland, Trevor; Tian, Xufeng; Hu, Yongbin; Yang, Wubin; Chen, Chen; Xu, Deru

    2016-12-01

    The Late Mesozoic Qianlishan granitic complex in the western Nanling Range, South China is associated with the Shizhuyuan giant W-Sn-Mo-Bi polymetallic deposit. It mainly consists of three phases of intrusions, P-1 porphyritic biotite granite, P-2 equigranular biotite granite and P-3 granite porphyry. All three phases of granite contain quartz, plagioclase, K-feldspar and Fe-rich biotite. They have geochemical affinities of A-type granites, e.g., high FeOT/(FeOT + MgO) ratios (0.84-0.99), total alkali (Na2O + K2O, 7.50-9.04 wt.%), high Ga/Al ratios (10,000*Ga/Al > 2.6) and high Zr + Nb + Y + Ce concentrations (> 350 ppm). High Y/Nb ratios (> 1.2) suggest that the Qianlishan complex belongs to A2-type granite. Zircon U-Pb ages indicate a short age interval decreasing from 158-157 Ma, to 158-155 Ma and to 154 Ma for the P-1, P-2 and P-3 granites, respectively. These ages are similar to the mineralization age of the Shizhuyuan tungsten polymetallic deposit, within error. The Qianlishan granites were generated at low oxygen fugacity conditions based on the low values of zircon Ce4 +/Ce3 + ratios (1.53-198) and significantly negative Eu anomalies (EuN/EuN*, 0.03-0.13) in apatite. New zircon εHf(t) values for the P-3 granite range from - 13.0 to - 4.4, similar to those previously obtained for the P-1 and P-2 granites. Both the granite and apatite grains therein are characterized by high F but low Cl concentrations, suggesting the influx of a high F/Cl component. The P-2 granites especially contain higher F contents (1840-8690 ppm) and W (7-158 ppm) and Sn (6-51 ppm) concentrations and with stronger evolution features. Positive trends between F and W and Sn of Qianlishan complex indicate that high F source is crucial for mineralization of W and Sn. We consider that the lithospheric mantle source may have been metasomatized by subduction fluids in the far end of subduction zones to produce the A2 feature of the Qianlishan granite and the fluorine was introduced through

  6. "Gris Quintana": a Spanish granite from the Past into the Future.

    NASA Astrophysics Data System (ADS)

    José Tejado, Juan; Mota, M. Isabel; Pereira, Dolores

    2014-05-01

    "Gris Quintana" is a medium-grained, biotite and amphibole granodiorite extracted in the Pluton of Quintana de la Serena (Extremadura, Spain). It is a constant light grey granite from the Hercynian geologic with excellent physicomechanical and physicochemical properties. The granodiorite is composed of plagioclase, biotite, quartz and alkali feldspar, with accessory allanite, titanite, apatite, zircon and ilmenite, mostly as inclusions within the biotite crystals. This commercial variety is extracted from many quarries in the late Hercynian plutons located in the Iberian Massif in Spain period (transition between Central Iberian and Ossa-Moren Zones), having large reserves of granite. Many of the quarries have their own transformation factory (high production zone), with which the sector is offered an endless variety of finishes and constructive rock typologies. A wide range of solutions to architects and designers are offered. Gris Quintana granite is one of the materials with highest technological benefits that are used in arquitecture. "Gris Quintana" granite has been used since ancient times, not only at a regional, but also at national and international level: paving, building (structural, exterior façadas, interior uses), urban decoration and funeral art. It can be found in monuments and more recently, in buildings of different styles and uses, that stand out in beauty and splendor, lasting in time. Some singular works in "Gris Quintana" granite all over the world: extension to the "Congreso de Diputados" (Parliament) in Madrid, "Puerta de San Vicente" in Madrid, Andalucia Parliament columns in Sevilla, New Senate Buiding in Madird, "Gran Vía" pavement in Madrid, "Teatro Real façade" in Madrid… "Gris Quintana" granite accomplishes all the requirements for its nomination as Global Heritage Stone Resource, for both its use in construction and for artistic purposes.

  7. The Pikes Peak batholith, Colorado front range, and a model for the origin of the gabbro-anorthosite-syenite-potassic granite suite

    USGS Publications Warehouse

    Barker, F.; Wones, D.R.; Sharp, W.N.; Desborough, G.A.

    1975-01-01

    This study of the Pikes Peak batholith includes the mineralogy and petrology of quartz syenite at West Creek and of fayalite-bearing and fayalite-free biotite granite near Mount Rosa; major element chemistry of the batholith; comparisons with similar postorogenic, intracratonic, sodic to potassic intrusives; and genesis of the batholith. The batholith is elongate in plan, 50 by 100 km, composite, and generally subalkalic. It was emplaced at shallow depth 1,040 m. y. ago, sharply transects its walls and may have breached its roof. Biotite granite and biotite-hornblende granite are predominant; quartz syenite, fayalite granite and riebeckite granite are present in minor amounts. Fayalite-bearing and fayalite-free quartz syenite, fayalite-biotite granite and riebeckite granite show a well-defined sodic differentiation trend; the less sodic fayalite-free granites exhibit a broader compositional range and no sharp trends. Crystallization was largely at PH2O < Ptotal; PH2O approached Ptotal only at late stages. Aplite residual to fayalite-free biotite granite in the north formed at about 1,500 bars, or 5 km depth. Feldspar assemblages indicate late stages of crystallization at about 720??C. In the south ilmenite and manganian fayalite indicate fO2 of 10-17 or 10-18 bars. Biotite and fayalite compositions and the 'granite minimum' imply completion of crystallization at about 700??C and 1,500 bars. Nearby fayalite-free biotite granite crystallized at higher water fugacity. All types of syenite and granite contain 5-6% K2O through a range of SiO2 of 63-76%. Average Na2O percentages in quartz syenite are 6.2, fayalite granite 4.2, and fayalite-free granite 3.3 MgO contents are low, 0.03-0.4%; FeO averages 1.9-2.5%. FeO/Fe2O3 ratios are high. Fluorine ranges from 0.3 to 0.6%. The Pikes Peak intrusives are similar in mode of emplacement, composition, and probably genesis to rapakivi intrusives of Finland, the Younger Granites of Nigeria, Cape Ann Granite and Beverly Syenite

  8. Quartz and feldspar glasses produced by natural and experimental shock.

    NASA Technical Reports Server (NTRS)

    Stoeffler, D.; Hornemann, U.

    1972-01-01

    Refractive index, density, and infrared absorption studies of naturally and experimentally shocked-produced glasses formed from quartz, plagioclase, and alkali-feldspar confirm the existence of two main groups of amorphous forms of the framework silicates: solid-state and liquid-state glasses. These were apparently formed as metastable release products of high-pressure-phases above and below the glass transition temperatures. Solid-state glasses exhibit a series of structural states with increasing disorder caused by increasing shock pressures and temperatures. They gradually merge into the structural state of fused minerals similar to that of synthetic glasses quenched from a melt. Shock-fused alkali feldspars can, however, be distinguished from their laboratory-fused counterparts by infrared absorption and by higher density.

  9. The Late Cretaceous I- and A-type granite association of southeast China: Implications for the origin and evolution of post-collisional extensional magmatism

    NASA Astrophysics Data System (ADS)

    Zhao, Jiao-Long; Qiu, Jian-Sheng; Liu, Liang; Wang, Rui-Qiang

    2016-01-01

    We present new geochronological, mineralogical, and geochemical data for granitic plutons that crop out within the Zhoushan archipelago, northeastern coastal Zhejiang Province, in order to constrain their origin, and the genetic relationship between the I- and A-type granites. These granites can be divided into two groups: (1) the northern I-type Putuoshan (PTS) and Dadong'ao (DDA) plutons; and (2) the southern A-type Daqingshan (DQS), Taohuadao (THD), and Xiazhidao (XZD) plutons. Zircon LA-ICP-MS U-Pb dating yielded ages of 98-96 Ma for the northern I-type plutons and 89-86 Ma for the southern A-type plutons. All of these granites are highly siliceous, K-rich, and have similar total alkali and total rare earth element (REE) abundances. However, there are also geochemical differences between the I-type and the A-type granites. The northern I-type alkali-feldspar granites are high-K calc-alkaline, metaluminous to mildly peraluminous, contain low concentrations of the high field strength elements (HFSE; e.g., Nb, Ta, Zr, and Hf), and have low Ga/Al ratios (2.04-2.44). In contrast, the southern A-type granites are peralkaline and F-rich, and have lower CaO and Al2O3 concentrations, and higher Fe2O3T and HFSE concentrations and Ga/Al ratios (3.25-3.86). Meanwhile, they have slightly higher heavy REE (HREE) concentrations, and are more depleted in Ba, Sr, P, Ti, and Eu than the northern I-type granites. Both the I- and A-type granites have homogeneous whole-rock Nd and highly variable zircon Hf isotopic compositions. Of note, the southern peralkaline A-type granites appear to have more radiogenic Nd and Hf isotope compositions than the northern I-type granites. The present data, together with the results of a previous study on mafic enclaves within the PTS pluton, suggest that the northern I-type alkali-feldspar granites were generated by mixing of mantle-derived material with crustal-derived magmas that formed by dehydration melting of mica-bearing basaltic rocks

  10. Progressive deformation of feldspar recording low-barometry impact processes, Tenoumer impact structure, Mauritania

    NASA Astrophysics Data System (ADS)

    Jaret, Steven J.; Kah, Linda C.; Harris, R. Scott

    2014-06-01

    The Tenoumer impact structure is a small, well-preserved crater within Archean to Paleoproterozoic amphibolite, gneiss, and granite of the Reguibat Shield, north-central Mauritania. The structure is surrounded by a thin ejecta blanket of crystalline blocks (granitic gneiss, granite, and amphibolite) and impact-melt rocks. Evidence of shock metamorphism of quartz, most notably planar deformation features (PDFs), occurs exclusively in granitic clasts entrained within small bodies of polymict, glass-rich breccia. Impact-related deformation features in oligoclase and microcline grains, on the other hand, occur both within clasts in melt-breccia deposits, where they co-occur with quartz PDFs, and also within melt-free crystalline ejecta, in the absence of co-occurring quartz PDFs. Feldspar deformation features include multiple orientations of PDFs, enhanced optical relief of grain components, selective disordering of alternate twins, inclined lamellae within alternate twins, and combinations of these individual textures. The distribution of shock features in quartz and feldspar suggests that deformation textures within feldspar can record a wide range of average pressures, starting below that required for shock deformation of quartz. We suggest that experimental analysis of feldspar behavior, combined with detailed mapping of shock metamorphism of feldspar in natural systems, may provide critical data to constrain energy dissipation within impact regimes that experienced low average shock pressures.

  11. Water Content of Lunar Alkali Fedlspar

    NASA Technical Reports Server (NTRS)

    Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

    2016-01-01

    Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of < 1 ppm in urKREEP. Using these data, predict that the bulk water content of the magma ocean would have <10 ppm. In contrast, estimate water contents of 320 ppm for the bulk Moon and 1.4 wt % for urKREEP from plagioclase in ferroan anorthosites. Results and interpretation: NanoSIMS data from granitic clasts from Apollo sample 15405,78 show that alkali feldspar, a common mineral in K-enriched rocks, can have approx. 20 ppm of water, which implies magmatic water contents of approx. 1 wt % in the high-silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was

  12. Abundance and distribution of boron in the Hauzenberg (Bavaria) granite complex

    SciTech Connect

    Sauerer, A.; Troll, G. )

    1990-01-01

    Hercynian S-type granites from the Hauzenberg igneous complex show a range of boron concentration from 1 to 12 ppm. The whole-rock boron data are not significantly correlated with concentrations of other trace elements (Zr, Rb, Ba, Sr, Ni, V, Co, Cu, Zn, F); neither is boron correlated with the major elements (except with sodium) or with the differentiation index (DI). The boron budget in the rock-forming minerals (plagioclase, alkali feldspar, quartz, biotite, muscovite) of the tourmaline-free granites reveals that the highest concentrations of boron occur in muscovite, whereas the greatest amount of boron is incorporated in plagioclase (57-69%) due to its high modal amount. Boron in plagioclase increases with the extent of of sericitization (obtained by X-ray diffractometry). Muscovite in a pegmatite contains more than 50% of the total boron. The areal distribution of boron within the complex is neither uniform nor random; an increase of boron concentrations from granodioritic to granitic rocks is indicated, whereas the late differentiates are depleted in boron.

  13. Petrography and physicomechanical properties of rocks from the Ambela granitic complex, NW Pakistan.

    PubMed

    Arif, Mohammad; Bukhari, S Wajid Hanif; Muhammad, Noor; Sajid, Muhammad

    2013-01-01

    Petrography and physicomechanical properties of alkali granites, alkali quartz syenite, and nepheline syenite from Ambela, NW Pakistan, have been investigated. Whereas the alkali quartz syenite and most of the alkali granites are megaporphyritic, the nepheline syenite and some of the alkali granites are microporphyritic. Their phenocryst shape and size and abundance of groundmass are also different. The values of unconfined compressive strength (UCS) are the lowest and highest for megaporphyritic alkali granite and alkali quartz syenite, respectively. However, all the four rock types are moderately strong. Correspondingly, their specific gravity and water absorption values are within the permissible range for use as construction material. The UCS for the alkali quartz syenite is the highest, most probably because (i) it has roughly equal amounts of phenocryst and groundmass, (ii) it displays maximum size contrast between phenocryst and groundmass, (iii) its phenocrysts are highly irregular, and (iv) it contains substantial amounts of quartz.

  14. Petrography and Physicomechanical Properties of Rocks from the Ambela Granitic Complex, NW Pakistan

    PubMed Central

    Arif, Mohammad; Bukhari, S. Wajid Hanif; Muhammad, Noor; Sajid, Muhammad

    2013-01-01

    Petrography and physicomechanical properties of alkali granites, alkali quartz syenite, and nepheline syenite from Ambela, NW Pakistan, have been investigated. Whereas the alkali quartz syenite and most of the alkali granites are megaporphyritic, the nepheline syenite and some of the alkali granites are microporphyritic. Their phenocryst shape and size and abundance of groundmass are also different. The values of unconfined compressive strength (UCS) are the lowest and highest for megaporphyritic alkali granite and alkali quartz syenite, respectively. However, all the four rock types are moderately strong. Correspondingly, their specific gravity and water absorption values are within the permissible range for use as construction material. The UCS for the alkali quartz syenite is the highest, most probably because (i) it has roughly equal amounts of phenocryst and groundmass, (ii) it displays maximum size contrast between phenocryst and groundmass, (iii) its phenocrysts are highly irregular, and (iv) it contains substantial amounts of quartz. PMID:23861654

  15. Modeling H, Na, and K diffusion in plagioclase feldspar by relating point defect parameters to bulk properties

    NASA Astrophysics Data System (ADS)

    Zhang, Baohua; Shan, Shuangming; Wu, Xiaoping

    2016-02-01

    Hydrogen and alkali ion diffusion in plagioclase feldspars is important to study the evolution of the crust and the kinetics of exsolution and ion-exchange reactions in feldspars. Using the available PVT equation of state of feldspars, we show that the diffusivities of H and alkali in plagioclase feldspars as a function of temperature can be successfully reproduced in terms of the bulk elastic and expansivity data through a thermodynamic model that interconnects point defect parameters with bulk properties. Our calculated diffusion coefficients of H, Na, and K well agree with experimental ones when uncertainties are considered. Additional point defect parameters such as activation enthalpy, activation entropy, and activation volume are also predicted. Furthermore, the electrical conductivity of feldspars inferred from our predicted diffusivities of H, Na, and K through the Nernst-Einstein equation is compared with previous experimental data.

  16. Mantle hydrous-fluid interaction with Archaean granite.

    NASA Astrophysics Data System (ADS)

    Słaby, E.; Martin, H.; Hamada, M.; Śmigielski, M.; Domonik, A.; Götze, J.; Hoefs, J.; Hałas, S.; Simon, K.; Devidal, J.-L.; Moyen, J.-F.; Jayananda, M.

    2012-04-01

    Water content/species in alkali feldspars from late Archaean Closepet igneous bodies as well as growth and re-growth textures, trace element and oxygen isotope composition have been studied (Słaby et al., 2011). Both processes growth and re-growth are deterministic, however they differ showing increasing persistency in element behaviour during interaction with fluids. The re-growth process fertilized domains and didn't change their oxygen-isotope signature. Water speciation showed persistent behaviour during heating at least up to 600oC. Carbonate crystals with mantle isotope signature are associated with the recrystallized feldspar domains. Fluid-affected domains in apatite provide evidence of halide exchange. The data testify that the observed recrystallization was a high-temperature reaction with fertilized, halide-rich H2O-CO2 mantle-derived fluids of high water activity. A wet mantle being able to generate hydrous plumes, which appear to be hotter during the Archean in comparison to the present time is supposed by Shimizu et al. (2001). Usually hot fluids, which can be strongly carbonic, precede asthenospheric mantle upwelling. They are supposed to be parental to most recognized compositions, which can be derived by their immiscible separation into saline aqueous-silicic and carbonatitic members (Klein-BenDavid et al., 2007). The aqueous fractions are halogen-rich with a significant proportion of CO2. Both admixed fractions are supposed to be fertile. The Closepet granite emplaced in a major shear zone that delimitates two different terrains. Generally such shear zones, at many places, are supposed to be rooted deep into the mantle. The drain, that favoured and controlled magma ascent and emplacement, seemed to remain efficient after granite crystallization. In the southern part of the Closepet batholiths an evidence of intensive interaction of a lower crust fluid (of high CO2 activity) is provided by the extensive charnockitization of amphibolite facies (St

  17. The Thermal Expansion Of Feldspars

    NASA Astrophysics Data System (ADS)

    Hovis, G. L.; Medford, A.; Conlon, M.

    2009-12-01

    Hovis and others (1) investigated the thermal expansion of natural and synthetic AlSi3 feldspars and demonstrated that the coefficient of thermal expansion (α) decreases significantly, and linearly, with increasing room-temperature volume (VRT). In all such feldspars, therefore, chemical expansion limits thermal expansion. The scope of this work now has been broadened to include plagioclase and Ba-K feldspar crystalline solutions. X-ray powder diffraction data have been collected between room temperature and 925 °C on six plagioclase specimens ranging in composition from anorthite to oligoclase. When combined with thermal expansion data for albite (2,3,4) a steep linear trend of α as a function of VRT emerges, reflecting how small changes in composition dramatically affect expansion behavior. The thermal expansion data for five synthetic Ba-K feldspars ranging in composition from 20 to 100 mole percent celsian, combined with data for pure K-feldspar (3,4), show α-VRT relationships similar in nature to the plagioclase series, but with a slope and intercept different from the latter. Taken as a group all Al2Si2 feldspars, including anorthite and celsian from the present study along with Sr- (5) and Pb-feldspar (6) from other workers, show very limited thermal expansion that, unlike AlSi3 feldspars, has little dependence on the divalent-ion (or M-) site occupant. This apparently is due to the necessitated alternation of Al and Si in the tetrahedral sites of these minerals (7), which in turn locks the tetrahedral framework and makes the M-site occupant nearly irrelevant to expansion behavior. Indeed, in feldspar series with coupled chemical substitution it is the change away from a 1:1 Al:Si ratio that gives feldspars greater freedom to expand. Overall, the relationships among α, chemical composition, and room-temperature volume provide useful predictive tools for estimating feldspar thermal expansion and give insight into the controls of expansion behavior in

  18. Two Late Cretaceous A-type granites related to the Yingwuling W-Sn polymetallic mineralization in Guangdong province, South China: Implications for petrogenesis, geodynamic setting, and mineralization

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Mao, Jingwen; Zhao, Haijie; Zhao, Caisheng; Yu, Xiaofei

    2017-03-01

    Major and trace elements, whole rock Sr-Nd-Pb isotopes, LA-ICP-MS U-Pb zircon dating, zircon trace elements and Hf isotope data are reported for a suite of A-type granites from Yingwuling pluton in western Guangdong province, South China. Zircon U-Pb ages obtained by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) show that biotite granite and alkali feldspar granite were emplaced in 81.3 ± 0.6 Ma and 80.6 ± 0.5 Ma, respectively. Both of the two suites have the petrographic and geochemical characteristics of A-type granite. These granitic rocks are metaluminous to weakly peraluminous and have pronounced contents of total alkalis (Na2O + K2O = 7.80-8.84%), Fe2O3T/MgO and Ga/Al ratios. They exhibit low MgO, CaO and TiO2 contents, enrichment in some LILEs and HFSEs (except for Zr, Eu and Y), depletion in Ba, Sr, P and Ti. They show A2 subtype affinity and were probably formed a temperature of 800 °C. The Yingwuling biotite granite has relatively high (87Sr/86Sr)i ratios of 0.70655 to 0.70928, low εNd(t) values of - 5.8 to - 4.2 and zircon εHf(t) values (- 5.70-1.37). Whole-rock Nd isotopic and zircon Hf isotopic two-stages model ages mostly vary from 1057 to 1506 Ma. The alkali feldspar granite display bulk rock εNd(t) values and (87Sr/86Sr)i ratios in the range of - 6.6 to - 6.1 and 0.70640 to 0.71077, respectively, and zircon εHf(t) values from - 5.44 to 0.54, with Mesoproterozoic T2DM for both Nd and Hf isotopes. Geochemical and isotopic data indicate the Yingwuling A-type granitic magmas were drived from mantle-crust interaction. Zircon grains of Yingwuling granites have relatively low Eu/Eu* and Ce4 +/Ce3 + ratios, indicating low oxygen fugacity. The visible tetrad effect in the Yingwuling granites indicates that it experienced strong fractionation and is close relationship to the W-Sn mineralization. Our new data together with previous published data indicate that Late Mesozoic A-type granitiods or alkaline intrusive rocks in South

  19. Grusification of granite (scheme based on the study of granites from Sudety Mts., SW Poland)

    NASA Astrophysics Data System (ADS)

    Kajdas, Bartlomiej; Michalik, Marek

    2014-05-01

    Gruses that are developed on the Karkonosze granite (three outcrops) and the Izera granite (one outcrop) were investigated using optical microscope, scanning electron microscope equipped with EDS and electron microprobe, X-ray diffraction, IR spectrometry, chemical analysis (ICP-AES and ICP-MS), hydrogen and oxygen isotopic ratio determination and K-Ar dating. Three groups of samples were distinguished according to the degree of grusification (group I - compact granite; group II - friable granite; group III - granitic grus). The results of the examination allowed to present the simplified scheme of the grusification: 1. Development of microcracks (caused by tectonic stress, mechanical upload or magma cooling processes) promote circulation of hydrothermal fluids in granites; 2. The presence of the microcracks in granite facilitate the circulation of low-temperature fluids (low-temperature hydrothermal or weathering fluids). Fluids cause hydration and expansion of primary biotite (vermiculitization), what leads to development of secondary cracks in a rock. Fluids can also induce advanced alteration of plagioclases into clay minerals (mainly smectite or vermiculite). Expansion of biotite during vermiculitization is the most important factor in grusification. Other processes of alteration also contribute to grusification. Hydrothermal fluids in granite contribute the increase of alteration degree of primary minerals (e.g. sericitization and albitization of feldspar, chloritization or muscovitization of biotite, decomposition of monazite-(Ce) and formation of secondary REE phosphates). If primary biotite is subjected to muscovitization or chloritization, complete grusification of granite does not occur because of lack of vermiculitation.

  20. Mineral resource of the month: feldspar

    USGS Publications Warehouse

    Potter, Michael J.

    2004-01-01

    The United States is the third leading producer of feldspar worldwide, after Italy and Turkey, according to data published by the U.S. Geological Survey. Foreign analysts indicate that China is also a leading feldspar producer, but official production data are not available. Feldspars are aluminum silicate minerals that contain varying proportions of calcium, potassium and sodium. Usually occurring in igneous rocks, feldspars are estimated to constitute 60 percent of Earth’s crust.

  1. Geology and tin-greisen mineralization of the Akash granite, northern Arabian Shield

    NASA Astrophysics Data System (ADS)

    Kellogg, Karl S.; Smith, Charles W.

    The western margin of the postorogenic Akash granite, 30 km E of Ha'il in the northern Arabian Shield, is greisenized and contains anomalous concentrations of Sn. The pluton intrudes metamorphic and intrusive rocks, and crops out as a 10 by 15 km elliptical body with its long axis oriented N. It consists predominantly of metaluminous alkali-feldspar granite or syenogranite, with accessory biotite and muscovite, and traces of fluorite. Greisenization extends discontinuously in a zone at least 3 km long parallel to the western contact, and along E-trending hematitic quartz veins for more than 2 km from the contact. The veins occupy fractures that were probably conduits for ascending mineralizing fluids. Within about 20 m of the contact, they are enclosed in quartz—white mica greisen containing hematite, fluorite, and locally, topaz and cassiterite. Composite chip samples from the greisenized zone have an average Sn content of 710 ppm, and a maximum of 1600 ppm. Anomalous values for Zn, Fe, Mn, Mo, Bi and Cu also occur, but none of the samples contain detectable W. Three samples of hematitic quartz averaged 126 ppm Sn, and one contained 200 ppm W.

  2. Geology and tin-greisen mineralization of the Akash granite, northern Arabian Shield

    USGS Publications Warehouse

    Kellogg, K.S.; Smith, C.W.

    1986-01-01

    The western margin of the postorogenic Akash granite, 30 km E of Ha'il in the northern Arabian Shield, is greisenized and contains anomalous concentrations of Sn. The pluton intrudes metamorphic and intrusive rocks, and crops out as a 10 by 15 km elliptical body with its long axis oriented N. It consists predominantly of metaluminous alkali-feldspar granite or syenogranite, with accessory biotite and muscovite, and traces of fluorite. Greisenization extends discontinuously in a zone at least 3 km long parallel to the western contact, and along E-trending hematitic quartz veins for more than 2 km from the contact. The veins occupy fractures that were probably conduits for ascending mineralizing fluids. Within about 20 m of the contact, they are enclosed in quartz-white mica greisen containing hematite, fluorite, and locally, topaz and cassiterite. Composite chip samples from the greisenized zone have an average Sn content of 710 ppm, and a maximum of 1600 ppm. Anomalous values for Zn, Fe, Mn, Mo, Bi and Cu also occur, but none of the samples contain detectable W. Three samples of hematitic quartz averaged 126 ppm Sn, and one contained 200 ppm W. ?? 1986.

  3. Mechanisms of myrmekite formation: case study from the Weinsberg granite, Moldanubian zone, Upper Austria

    NASA Astrophysics Data System (ADS)

    Abart, Rainer; Heuser, David; Habler, Gerlinde

    2014-11-01

    Myrmekites have attracted the attention of petrographers over more than a century, and several genetic models have been proposed. We report on myrmekites from the Weinsberg granite of the Moldanubian zone of Upper Austria. Based on petrographic evidence, fluid-mediated replacement of alkali feldspar by myrmekite during the sub-solidus evolution of the granite is inferred. The replacement was metasomatic on the scale of the myrmekite domains requiring addition of sodium and calcium and removal of potassium from the reaction site. In contrast, silica and aluminum were conserved across the reaction front. Myrmekite formation appears to have been synchronous with and related to the hydration of orthopyroxene and concomitant replacement of primary magmatic plagioclase by biotite at around 500 °C. The evolution of the myrmekite microstructure and a peculiar composition zoning of the plagioclase constituting the myrmekite matrix is qualitatively explained by a model for discontinuous precipitation, which accounts for chemical segregation by diffusion within the reaction front and the propagation of the reaction front with finite mobility as potentially rate limiting processes. Constraints on the underlying reaction rates are derived from the preserved microstructure and chemical pattern. Crystal orientation imaging by electron backscatter diffraction reveals grain-internal deformation, which is primarily concentrated in the quartz and less pronounced in the plagioclase matrix of the myrmekite. This is interpreted as a growth feature related to different transformation strain at the segments of the myrmekite reaction front, where quartz and plagioclase are formed.

  4. Assessment of radiological hazard of commercial granites from Extremadura (Spain).

    PubMed

    Guillén, J; Tejado, J J; Baeza, A; Corbacho, J A; Muñoz, J G

    2014-06-01

    The term "commercial granite" comprises different natural stones with different mineralogical components. In Extremadura, western Spain, "commercial granites" can be classified in three types: granite s.s. (sensus stricti), granodiorite, and diorite. The content of naturally occurring radionuclides depended of the mineralogy. Thus, the (40)K content increased as the relative content of alkaline feldspar increased but decreased as the plagioclase content increased. The radioactive content decreased in the following order: granite s.s. > granodiorite > diorite. In this work, the radiological hazard of these granites as building material was analyzed in terms of external irradiation and radon exposure. External irradiation was estimated based on the "I" index, ranged between 0.073 and 1.36. Therefore, these granites can be use as superficial building materials with no restriction. Radon exposure was estimated using the surface exhalation rates in polished granites. The exhalation rate in granites depends of their superficial finishes (different roughness). For distinct mechanical finishes of granite (polish, diamond sawed, bush-hammered and flamed), the surface exhalation rate increased with the roughness of the finishes. Thermal finish presented the highest exhalation rate, because the high temperatures applied to the granite may increase the number of fissures within it. The exhalation rates in polished granites varied from 0.013 to 10.4 Bq m(-2) h(-1).

  5. Chemistry of potassium feldspars from three zoned pegmatites, Black Hills, South Dakota: Implications concerning pegmatite evolution

    NASA Astrophysics Data System (ADS)

    Shearer, C. K.; Papike, J. J.; Laul, J. C.

    1985-03-01

    An initial phase of an extensive geochemical study of pegmatites from the Black Hills, South Dakota, indicates potassium feldspar composition is useful in interpreting petrogenetic relationships among pegmatites and among pegmatite zones within a single pegmatite. The K/Rb and Rb/Sr ratios and Li and Cs contents of the feldspars within each zoned pegmatite, to a first approximation, are consistent with the simple fractional crystallization of the potassium feldspar from a silicate melt from the wall zone to the core of the pegmatites. Some trace element characteristics ( i.e. Cs) have been modified by subsolidus reequilibration of the feldspars with late-stage residual fluid. K/Rb ratios of the potassium feldspar appear to be diagnostic of the pegmatite mineral assemblage. The relationship between K/Rb and mineralogy is as follows: Harney Peak Granite (barren pegmatites) > 180; Li-Fe-Mn phosphate-bearing pegmatites = 90-50; spodumene-bearing pegmatites = 60-40; pollucitebearing pegmatites < 30. Although the K/Rb ratios suggest that the pegmatites studied are genetically related by fractional crystallization to each other and the Harney Peak Granite, overlapping Rb/Sr ratios and the general increase in Sr and Ba with decreasing K/Rb indicate the genetic relationship is much more complex and may also be dependent upon slight variations in source (chemistry and mineralogy) material composition and degrees of partial melting.

  6. The petrogenesis of the Early Permian Variscan granites of the Cornubian Batholith: Lower plate post-collisional peraluminous magmatism in the Rhenohercynian Zone of SW England

    NASA Astrophysics Data System (ADS)

    Simons, B.; Shail, Robin K.; Andersen, Jens C. Ø.

    2016-09-01

    The Early Permian Cornubian Batholith was generated during an extensional regime following Variscan convergence within the Rhenohercynian Zone of SW England. Its component granites can be classified, using mineralogical, textural and geochemical criteria, into five main types, all of which are peraluminous (A/CNK > 1.1): G1 (two-mica), G2 (muscovite), G3 (biotite), G4 (tourmaline) and G5 (topaz). G1 granites formed through up to 20% muscovite and minor biotite dehydration melting of a metagreywacke source at moderate temperatures and pressures (731-806 °C, > 5 kbar). Younger G3 granites formed through higher temperature, lower pressure (768-847 °C, < 4 kbar) biotite-dominated melting of a similar source. Partial melting was strongly influenced by the progressive lower-mid crustal emplacement of mafic igneous rocks during post-Variscan extension and a minor (< 5%-10%) mantle-derived component in the granites is possible. Two distinct fractionation series, G1-G2 and G3-G4, are defined using whole-rock geochemical and mineral chemical data. Variations in the major elements, Ba, Sr and Rb indicate that G1 and G3 granites underwent 15%-30% fractionation of an assemblage dominated by plagioclase, alkali feldspar and biotite to form more evolved G2 and G4 granites, respectively. Decreasing whole-rock abundances of Zr, Th and REE support the fractionation of zircon, monazite, apatite and allanite. Subsolidus alteration in G2 and G4 granites is indicated by non-primary muscovite and tourmaline and modification of major and trace element trends for G3-G4 granites, particularly for P2O5 and Rb. Topaz (G5) granites show low Zr, REE and extreme enrichment in Rb (up to 1530 ppm) and Nb (79 ppm) that cannot be related in a straightforward manner to continued differentiation of the G1-G2 or G3-G4 series. Instead, they are considered to represent partial melting, mediated by granulite facies fluids, of a biotite-rich restite following extraction of G1 and/or G3 magmas; they do

  7. The geology and petrogenesis of the southern closepet granite

    NASA Technical Reports Server (NTRS)

    Jayananda, M.; Mahabaleswar, B.; Oak, K. A.; Friend, C. R. L.

    1988-01-01

    The Archaean Closepet Granite is a polyphase body intruding the Peninsular Gneiss Complex and the associated supracrustal rocks. The granite out-crop runs for nearly 500 km with an approximate width of 20 to 25 km and cut across the regional metamorphic structure passing from granulite facies in the South and green schist facies in the north. In the amphibolite-granulite facies transition zone the granite is intimately mixed with migmatites and charnockite. Field observations suggests that anatexis of Peninsular gneisses led to the formation of granite melt, and there is a space relationship between migmatite formation, charnockite development and production and emplacement of granite magma. Based on texture and cross cutting relationships four major granite phases are recognized: (1) Pyroxene bearing dark grey granite; (2) Porphyritec granite; (3) Equigranular grey granite; and (4) Equigranular pink granite. The granite is medium to coarse grained and exhibit hypidiomorphic granular to porphyritic texture. The modal composition varies from granite granodiorite to quartz monzonite. Geochemical variation of the granite suite is consistent with either fractional crystallization or partial melting, but in both the cases biotite plus feldspar must be involved as fractionating or residual phases during melting to account trace element chemistry. The trace element data has been plotted on discriminant diagrams, where majority of samples plot in volcanic arc and within plate, tectonic environments. The granite show distinct REE patterns with variable total REE content. The REE patterns and overall abundances suggests that the granite suite represents a product of partial melting of crustal source in which fractional crystallization operated in a limited number of cases.

  8. Mineral chemistry and geochemistry of the Late Neoproterozoic Gabal Abu Diab granitoids, Central Eastern Dessert, Egypt: Implications for the origin of rare metal post-orogenic A-type granites

    NASA Astrophysics Data System (ADS)

    Sami, Mabrouk; Ntaflos, Theodoros; Farahat, Esam S.; Ahmed, Awaad F.; Mohamed, Haroun A.

    2015-04-01

    within A-type granite worldwide. According to Zhang et al., 2012, the garnet crystallized at the expense of biotite from the MnO-rich evolved melt after fractionation of biotite, plagioclase, K-feldspar, zircon, apatite, and ilmenite. The granitoids are alkali feldspar granites showing distinct geochemical features and most likely, belong to the post-orogenic younger Egyptian granitoids. They are peraluminous A-type alkaline rocks but they have lower Fe2O3, MgO, MnO, CaO, TiO2, P2O5, Sr, Ba, V, and higher SiO2, Na2O, K2O, Nb, Ta, U, Zr, Th, Ga/Al and Rb than the typical rocks of this type. The positive correlation between Ba and Sr, and the negative correlation between Rb and K/Rb reveal fractional crystallization of alkali feldspar. The similarity in most geochemical characteristics suggests that Abu Diab granitoids are genetically related to each other and extremely enrichment in incompatible elements such as Nb and Ta, indicating that they crystallized from extremely differentiated magmas. References: Zhang, J., Ma, C. and She, Z., 2012. An Early Cretaceous garnet-bearing metaluminous A-type granite intrusion in the East Qinling Orogen, central China: Petrological, mineralogical and geochemical constraints. Geoscience Frontiers 3 (5), 635-646.

  9. Energy related studies utilizing K-feldspar thermochronology

    SciTech Connect

    Not Available

    1993-01-01

    Two distinct sources of information are available from a [sup 40]Ar/[sup 39]Ar step-heating experiment: the age spectrum and Arrhenius plot. Model ages are calculated from the flux of radiogenic argon ([sup 40]Ar*) (assuming trapped argon of atmospheric composition) relative to the reactor produced [sup 39]Ar evolved during discrete laboratory heating steps. With the additional assumption that the [sup 39]Ar is uniformly distributed within the sample, we can infer the spatial distribution of the daughter product. ne associated Arrhenius plot, derived by plotting the diffusion coefficient (obtained from the inversion of the 39[sup Ar] release function assuming a single domain) against the inverse temperature of laboratory heating, are a convolution of the parameters which characterize the individual diffusion domains (whether these be dictated by varying length scale, energetics, etc.). However, many and perhaps Most [sup 40]Ar/[sup 39]Ar age spectra for slowly cooled alkali feldspars are significantly different from model age spectra calculated assuming a single diffusion-domain size. In addition, Arrhenius plots calculated from the measured loss of [sup 39]Ar during the step heating experiment show departures from linearity that are inconsistent with diffusion from domains of equal size. By extending the single diffusion-domain closure model (Dodsontype) to apply to minerals with a discrete distribution of domain sizes, we obtained an internally consistent explanation for the commonly observed features of alkali feldspar age spectra and their associated Arrhenius plots.

  10. Exchange of Na+ and K+ between water vapor and feldspar phases at high temperature and low vapor pressure

    USGS Publications Warehouse

    Fournier, R.O.

    1976-01-01

    In order to determine whether gas (steam) containing a small amount of dissolved alkali chloride is effective in promoting base exchange of Na+ and K+ among alkali feldspars and coexisting brine or brine plus solid salt, experiments were carried out at 400-700??C and steam densities ranging down to less than 0.05. For bulk compositions rich in potassium, the low pressure results are close to previous high-pressure results in composition of the fluid and coexisting solid phase. However, when the bulk composition is more sodic, alkali feldspars are relatively richer in potassium at low pressure than at high pressure. This behaviour corresponds to enrichment of potassium in the gas phase relative to coexisting brine and precipitation of solid NaCl when the brine plus gas composition becomes moderately sodic. The gas phase is very effective in promoting base exchange between coexisting alkali feldspars at high temperature and low water pressure. This suggests that those igneous rocks which contain coexisting alkali feldspars out of chemical equilibrium either remained very dry during the high-temperature part of their cooling history or that the pore fluid was a gas containing very little potassium relative to sodium. ?? 1976.

  11. Argon Diffusion in Shocked Pyroxene, Feldspar, and Olivine

    NASA Astrophysics Data System (ADS)

    Weirich, J.; Isachsen, C. E.; Johnson, J. R.; Swindle, T.

    2010-12-01

    low activation energy, somewhat similar to that of unshocked alkali feldspar, despite remaining a high temperature mineral due to a much lower frequency factor. References: [1]Jessberger E. K. and Ostertag R. (1982). GCA 46:1465-1471. [2]Stephan T. and Jessberger E. K. (1992). GCA 56:1591-1605.

  12. Rb-Sr isotopic composition of granites in the Western Krušné hory/Erzgebirge pluton, Central Europe: record of variations in source lithologies, mafic magma input and postmagmatic hydrothermal events

    NASA Astrophysics Data System (ADS)

    Dolejš, David; Bendl, Jiří; Štemprok, Miroslav

    2016-10-01

    The late Variscan (327-318 Ma) Western Krušné hory/Erzgebirge pluton (Czech Republic and Germany) represents a multiply emplaced intrusive sequence ranging from low-F biotite monzogranites (with rare minor bodies of gabbrodiorites and granodiorites) to high-F topaz-zinnwaldite alkali-feldspar granites. This granite suite is characterized by progressively increasing concentrations of incompatible elements (Li, Rb, F), monotonous decrease in mafic components and compatible elements (FeOtot, MgO, TiO2, CaO, Sr) with increasing silica. Consequently, this leads to extreme variations in the Rb/Sr ratios (0.52 to 59), which impose highly variable 87Rb/86Sr and 87Sr/86Sr signatures. The low-F biotite monzogranites represent isotopically heterogeneous mixture with (87Sr/86Sr)323 = 0.707-0.709 between partial melts from the Saxothuringian metasediments and mantle-derived mafic precursors. The medium-F two-mica microgranites show variable (87Sr/86Sr)323 = 0.708-0.714, indicating involvement of multiple precursors and more mature crustal protoliths. The evolved high-F topaz-zinnwaldite alkali-feldspar granites were derived from a precursor with (87Sr/86Sr)320 = 0.707-0.708 at 324-317 Ma by differentiation, which produced the extreme Rb/Sr enrichment and variations. The Li/Rb ratios remain nearly constant (~0.5), thus insensitive to the degree of geochemical differentiation. In comparison to terrestrial variations, the high Li/Rb values indicate derivation of granitic magmas from predominantly sedimentary precursors, in accord with 7Li-6Li and 143Nd-144Nd isotope composition reported previously. The Rb-Sr element variations in each granite unit are sligthly different and indicate ascent and emplacement of separate magma batches, which do not form a single liquid line of descent. We consider the enrichment of granites in incompatible elements (Li, Rb, F) and compatible depletion of ferromagnesian components, CaO and Sr as a combined effect of multiple precursors, changes in

  13. Mineral resource of the month: feldspar

    USGS Publications Warehouse

    ,

    2011-01-01

    The article focuses on feldspar, a mineral that composes of potassium, sodium, or a fusion of the two, and its various applications. According to estimates by scientists, the mineral is present at 60 percent of the crust of Earth, wherein it is commonly used for making glass and ceramics. Global mining of feldspar was about 20 million metric tons in 2010, wherein Italy, Turkey, and China mine 55 percent of the feldspar worldwide.

  14. Highly fractionated S-type granites from the giant Dahutang tungsten deposit in Jiangnan Orogen, Southeast China: geochronology, petrogenesis and their relationship with W-mineralization

    NASA Astrophysics Data System (ADS)

    Huang, Lan-Chun; Jiang, Shao-Yong

    2014-08-01

    The Dahutang deposit is a newly discovered tungsten deposit, which is within the largest ones in the world with an estimated WO3 reserve of 2 million tones. W-mineralization is considered to be related with the Late Mesozoic granites in the district. However, the precise emplacement ages, sources of these granites, and their relationship with mineralization are not well understood. In this study, four mineralization-related granite bodies (G1 to G4) were identified in the Dahutang mining area, including the porphyritic-like two-mica granite (G1) (the size of its phenocrysts is from 0.2 × 0.2 cm2 to 0.7 × 0.3 cm2), middle- to fine-grained muscovite granite (G2), porphyritic two-mica granite (G3) (the size of its phenocrysts is from 0.3 × 0.2 cm2 to 0.9 × 0.6 cm2), and fine-grained two-mica granite (G4). LA-ICP-MS U-Pb dating of zircon grains from these four granite bodies yields emplacement ages of 144.0 ± 0.6 Ma, 133.7 ± 0.5 Ma, 130.3 ± 1.1 Ma and 130.7 ± 1.1 Ma, respectively. Granites contain quartz, K-feldspar and plagioclase as the principal phases, accompanied by muscovite, minor biotite and accessory minerals. Geochemically, the granites are strongly peraluminous, have high contents of alkalis, high Ga/Al ratios, enrichment in LILEs (such as Rb) and depletion in HFSEs (such as Zr, Nb, Ti). The granites formed at relatively low temperatures (679 °C to 760 °C) according to zircon saturation temperatures. Geochemical fractionation trends recorded by whole rocks and minerals permit to distinguish and model the two fractional crystallization series G1 and G2-G4. Fractional crystallization of orthoclase and albite in G1 and G4, and orthoclase and oligoclase in G2 and G3 was the principal process of magmatic differentiation that controlled Rb, Sr and Ba concentrations, whereas rare earth elements were fractionated by accessory minerals, such as apatite, zircon and monazite. The geochemical data suggest that the rocks are highly fractionated S-type granites

  15. Mineralogical and chemical evolution of a rare-element granite-pegmatite system: Harney Peak Granite, Black Hills, South Dakota

    NASA Astrophysics Data System (ADS)

    Shearer, C. K.; Papike, J. J.; Laul, J. C.

    1987-03-01

    The Harney Peak Granite (1.7 b.y.) in the Black Hills, South Dakota, is a well-exposed granite complex surrounded by a rare-element pegmatite field (barren to Nb-, Ta-, Be, Li-enriched pegmatites). It consists of a multitude of large and small sills and dikes, which exhibit great variation in texture, mineralogy and geochemistry. This granite is moderately to strongly peraluminous with the following mineralogy: plagioclase (An 0-An 21) + potassium feldspar (Or 70-96) + quartz + muscovite ± apatite ± biotite ± garnet ± tourmaline. The granitic intrusions in the interior of the complex have similar K/Rb ratios (> 190), whereas this ratio decreases and is more variable for intrusions which are structurally higher or along the perimeter of the complex. Substitutions of (Fe, Mn)Mg -1 in the ferromagnesian minerals, NaCa -1 in plagioclase and RbK -1 in muscovite and potassium feldspar increase in the perimeter granites and vary systematically with K/Rb. These more evolved intrusions are commonly enriched in incompatible elements such as Nb, Li, Cs, Be, and B and depleted in Ba, Ca, and Sr relative to the interior, primitive granites. Biotite-bearing assemblages are common in the interior granites but are replaced by tourmaline-bearing granites in the more evolved intrusions. A series of discontinuous reactions may explain this assemblage transition. Observations and trace element modeling suggest that: (1) within individual units volatile transfer mechanisms have resulted in mineral and chemical segregation; (2) 75-80% fractional crystallization of a primitive biotite-muscovite granite was the dominant mechanism in producing the more evolved tourmaline-bearing granites; and (3) extreme fractional crystallization aided by high volatile activity produced the associated rare-element pegmatites.

  16. Feldspar dissolution rates in the Topopah Spring Tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Bryan, C.R.; Helean, K.B.; Marshall, B.D.; Brady, P.V.

    2009-01-01

    Two different field-based methods are used here to calculate feldspar dissolution rates in the Topopah Spring Tuff, the host rock for the proposed nuclear waste repository at Yucca Mountain, Nevada. The center of the tuff is a high silica rhyolite, consisting largely of alkali feldspar (???60 wt%) and quartz polymorphs (???35 wt%) that formed by devitrification of rhyolitic glass as the tuff cooled. First, the abundance of secondary aluminosilicates is used to estimate the cumulative amount of feldspar dissolution over the history of the tuff, and an ambient dissolution rate is calculated by using the estimated thermal history. Second, the feldspar dissolution rate is calculated by using measured Sr isotope compositions for the pore water and rock. Pore waters display systematic changes in Sr isotopic composition with depth that are caused by feldspar dissolution. The range in dissolution rates determined from secondary mineral abundances varies from 10-16 to 10-17 mol s-1 kg tuff-1 with the largest uncertainty being the effect of the early thermal history of the tuff. Dissolution rates based on pore water Sr isotopic data were calculated by treating percolation flux parametrically, and vary from 10-15 to 10-16 mol s-1 kg tuff-1 for percolation fluxes of 15 mm a-1 and 1 mm a-1, respectively. Reconciling the rates from the two methods requires that percolation fluxes at the sampled locations be a few mm a-1 or less. The calculated feldspar dissolution rates are low relative to other measured field-based feldspar dissolution rates, possibly due to the age (12.8 Ma) of the unsaturated system at Yucca Mountain; because oxidizing and organic-poor conditions limit biological activity; and/or because elevated silica concentrations in the pore waters (???50 mg L-1) may inhibit feldspar dissolution. ?? 2009 Elsevier Ltd. All rights reserved.

  17. Origin and tectonic implications of the ∼200 Ma, collision-related Jerai pluton of the Western Granite Belt, Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Jamil, Azmiah; Ghani, Azman A.; Zaw, Khin; Osman, Syamir; Quek, Long Xiang

    2016-09-01

    Triassic granitoids (∼200-225 Ma) are widespread in the Western Belt of Peninsular Malaysia. The Main Range granite is the biggest batholith in the Western Belt composed of peraluminous to metaluminous granite and granodiorite and displays typical ilmenite-series characteristics. Jerai granitic pluton occurs at the northwestern part of the Main Range granite batholith. The Jerai granite can be divided into three facies: (i) biotite-muscovite granite; (ii) tourmaline granite; and (iii) pegmatite and aplopegmatite. Biotite-muscovite granite accounts for 90% of the Jerai pluton, and the rest is tourmaline granite. Geochemical data reveal that pegmatite and tourmaline granite are more differentiated than biotite-muscovite granite. Both pegmatite and tourmaline granite have a higher SiO2 content (70.95-83.94% versus 69.45-73.35%) and a more pronounced peraluminous character. The U-Pb zircon geochronology of the Jerai granite gave an age ranging from 204 ± 4.3 Ma, 205 ± 4 Ma and 205 ± 2 Ma for pegmatite biotite-muscovite granite and tourmaline granite, respectively. The biotite-muscovite Jerai granites are similar to S-type Main Range granite, but the tourmaline granite has a signature of late-stage hydrothermal fluid interaction such as tourmaline quartz pods, the accumulation of large pegmatitic K-feldspar, pronounced peraluminous character, higher SiO2 content. Age evidence of these two granitic facies suggest that they are from the same magma.

  18. Secondary porosity revisited: The chemistry of feldspar dissolution by carboxylic acids and anions

    SciTech Connect

    Stoessell, R.K. ); Pittman, E.D. )

    1990-12-01

    Carboxylic acids in subsurface waters have been proposed as agents for dissolving feldspars and complexing aluminum to create secondary porosity in sandstones. Previously published experimental work indicated high aluminum mobility in the presence of carboxylic acid solutions. In order to further evaluate aluminum mobility, alkali feldspar dissolution experiments were run at 100C and 300 bars in the presence of mono- and dicarboxylic acids and their anions. Experimental results imply that under reservoir conditions, aluminum-organic anion complexes are insignificant for acetate and propionate and possibly significant for oxalate and malonate. Propionate appeared to inhibit alkali feldspar dissolution and, hence, may retard aluminum mobility. Dissolution of feldspar in the presence of oxalic and acetic acid can be explained by enhanced dissolution kinetics and greater aluminum mobility under low-pH conditions. The general absence of such low-pH fluids in subsurface reservoirs makes this an unlikely mechanism for creating secondary porosity. Also, the thermal instability of oxalate and malonate limits their aluminum-complexing potential in reservoirs at temperatures above 100C.

  19. Systematic variations of argon diffusion in feldspars and implications for thermochronometry

    NASA Astrophysics Data System (ADS)

    Cassata, William S.; Renne, Paul R.

    2013-07-01

    Coupled information about the time-dependent production and temperature-dependent diffusion of radiogenic argon in feldspars can be used to constrain the thermal evolution attending a host of Earth and planetary processes. To better assess the accuracy of thermal models, an understanding of the mechanisms and pathways by which argon diffuses in feldspars is desirable. Here we present step-heating Ar diffusion experiments conducted on feldspars with diverse compositions, structural states, and microstructural characteristics. The experiments reveal systematic variations in diffusive behavior that appear closely related to these variables, with apparent closure temperatures for 0.1-1 mm grains of ˜200-400 °C (assuming a 10 °C/Ma cooling rate). Given such variability, there is no broadly applicable set of diffusion parameters that can be utilized in feldspar thermal modeling; sample-specific data are required. Diffusion experiments conducted on oriented cleavage flakes do not reveal directionally-dependent diffusive anisotropy to within the resolution limits of our approach (approximately a factor of 2). Additional experiments aimed at constraining the physical significance of the diffusion domain are presented and indicate that unaltered feldspar crystals with or without coherent exsolution lamellae diffuse at the grain-scale, whereas feldspars containing hydrothermal alteration and/or incoherent sub-grain intergrowths do not. Arrhenius plots for argon diffusion in plagioclase and alkali feldspars appear to reflect a confluence of intrinsic diffusion kinetics and structural transitions that occur during incremental heating experiments. These structural transitions, along with sub-grain domain size variations, cause deviations from linearity (i.e., upward and downward curvature) on Arrhenius plots. An atomistic model for Arrhenius behavior is proposed that incorporates the variable lattice deformations of different feldspars in response to heating and compression

  20. Systematic variations of argon diffusion in feldspars and implications for thermochronometry

    DOE PAGES

    Cassata, William S.; Renne, Paul R.

    2013-03-07

    Coupled information about the time-dependent production and temperature-dependent diffusion of radiogenic argon in feldspars can be used to constrain the thermal evolution attending a host of Earth and planetary processes. To better assess the accuracy of thermal models, an understanding of the mechanisms and pathways by which argon diffuses in feldspars is desirable. Here we present step-heating Ar diffusion experiments conducted on feldspars with diverse compositions, structural states, and microstructural characteristics. The experiments reveal systematic variations in diffusive behavior that appear closely related to these variables, with apparent closure temperatures for 0.1–1 mm grains of ~200–400 °C (assuming a 10more » °C/Ma cooling rate). Given such variability, there is no broadly applicable set of diffusion parameters that can be utilized in feldspar thermal modeling; sample-specific data are required. Diffusion experiments conducted on oriented cleavage flakes do not reveal directionally-dependent diffusive anisotropy to within the resolution limits of our approach (approximately a factor of 2). Additional experiments aimed at constraining the physical significance of the diffusion domain are presented and indicate that unaltered feldspar crystals with or without coherent exsolution lamellae diffuse at the grain-scale, whereas feldspars containing hydrothermal alteration and/or incoherent sub-grain intergrowths do not. Arrhenius plots for argon diffusion in plagioclase and alkali feldspars appear to reflect a confluence of intrinsic diffusion kinetics and structural transitions that occur during incremental heating experiments. These structural transitions, along with sub-grain domain size variations, cause deviations from linearity (i.e., upward and downward curvature) on Arrhenius plots. An atomistic model for Arrhenius behavior is proposed that incorporates the variable lattice deformations of different feldspars in response to heating and

  1. Systematic variations of argon diffusion in feldspars and implications for thermochronometry

    SciTech Connect

    Cassata, William S.; Renne, Paul R.

    2013-03-07

    Coupled information about the time-dependent production and temperature-dependent diffusion of radiogenic argon in feldspars can be used to constrain the thermal evolution attending a host of Earth and planetary processes. To better assess the accuracy of thermal models, an understanding of the mechanisms and pathways by which argon diffuses in feldspars is desirable. Here we present step-heating Ar diffusion experiments conducted on feldspars with diverse compositions, structural states, and microstructural characteristics. The experiments reveal systematic variations in diffusive behavior that appear closely related to these variables, with apparent closure temperatures for 0.1–1 mm grains of ~200–400 °C (assuming a 10 °C/Ma cooling rate). Given such variability, there is no broadly applicable set of diffusion parameters that can be utilized in feldspar thermal modeling; sample-specific data are required. Diffusion experiments conducted on oriented cleavage flakes do not reveal directionally-dependent diffusive anisotropy to within the resolution limits of our approach (approximately a factor of 2). Additional experiments aimed at constraining the physical significance of the diffusion domain are presented and indicate that unaltered feldspar crystals with or without coherent exsolution lamellae diffuse at the grain-scale, whereas feldspars containing hydrothermal alteration and/or incoherent sub-grain intergrowths do not. Arrhenius plots for argon diffusion in plagioclase and alkali feldspars appear to reflect a confluence of intrinsic diffusion kinetics and structural transitions that occur during incremental heating experiments. These structural transitions, along with sub-grain domain size variations, cause deviations from linearity (i.e., upward and downward curvature) on Arrhenius plots. An atomistic model for Arrhenius behavior is proposed that incorporates the variable lattice deformations of different feldspars in response to heating and

  2. MDD Analysis of Microtexturally Characterized K-Feldspar Fragments

    NASA Astrophysics Data System (ADS)

    Short, C. H.; Heizler, M. T.; Parsons, I.; Heizler, L.

    2011-12-01

    Multiple diffusion domain (MDD) analysis of K-feldspar 40Ar/39Ar age spectra is a powerful thermochronological tool dating back 25 years, but continued validation of the basic assumptions of the model can be afforded by microanalysis of K-feldspar crystal fragments. MDD theory assumes that diffusion of Ar in K-feldspars is controlled by domains of varying size bounded by infinitely fast diffusion pathways. However, the physical character of these domain boundaries is not fully understood and this issue remains a point of criticism of the MDD model. We have evaluated the relationship between texture, age, and thermal history via step heating and modeling of texturally characterized K-feldspar crystal fragments (250-500 μm). K-feldspar phenocrysts from the Shap granite, chosen for their well-studied and relatively simple microtextures, contain large areas of homogenous regular strain-controlled film perthite with periodicities on the order of ~1 μm and abundant misfit dislocations, as well as areas of much coarser, irregular, slightly turbid, patch and vein perthite. Total gas ages (TGA) for all Shap fragments, regardless of texture, show less than 2% variation, but the shape of the age spectra varies with microtexture. Film perthites produce flat spectra whereas patch/vein perthite spectra have initial steps 5 - 25% older than the age of the emplacement with younger plateau or gently rising steps afterward. Patch/vein perthites have substantial microporosity and their spectral shapes may be a consequence of trapped 40Ar* that has diffused into micropores or other defects that have no continuity with the crystal boundaries. Correlations between spectral shape and heating schedule suggest that initial old ages are produced by the early release of trapped 40Ar* separated from the K parent rather than degassing of excess 40Ar*. The MH-42 K-feldspar from the Chain of Ponds Pluton has two primary microtextures: a coarse patch/vein perthite with lamellae 1-20 μm in

  3. Yingmailai Granitic Intrusion in the Southern Tianshan:Magnetite-series or Ilmenite-series?

    NASA Astrophysics Data System (ADS)

    Ma, L.; Zhang, Z.

    2015-12-01

    The Yingmailai granitic intrusion is located in the middle part of the southern Tianshan. It consists predominantly of biotite K-feldspar granite with minor two-mica K-feldspar granite. They have similar whole-rock geochemical characteristics, but distinct mineralogy. Opaque minerals in biotite K-feldspar granite are ilmenite, whereas they are magnetite in two-mica K-feldspar granite. Primary muscovite has been recognized in two-mica K-feldspar granite, which is characterized by high Mg/Fe in biotite, An contents of plagioclase and Ab contents of perthite. According to Ishihara's classification(1977), biotite K-feldspar granite can undoubtedly be classified to ilmenite-series. For instance, opaque oxide minerals are less than 1 vol%, in which ilmenite is unique recognized; Fe-rich biotite (high FeO+Fe2O3) and low MgO, high FeO+Fe2O3/ FeO+Fe2O3+MgO ratio (0.957~0.980), low Mg numbers (<0.6), mostly Fe2+>1.1, and low Fe3+/(Fe3++Fe2+). Although some characteristics, e.g., presence of magnetite and Mg-rich biotite, suggest magnetite-series, it should be noted that the magnetite in two-mica K-feldspar granite is formed by post magmatism. In combination with low Fe3+/(Fe3++Fe2+)ratio and presence of indicating mineral—muscovite, it can be inferred that it also belongs to ilmenite-series. The factors which control the appearance of secondary magnetite are sudden change of fO2, pressure, temperature during magma emplacement rather than their source. In addition, Yingmailai granitic intrusion's characteristics, such as mineralogy, CaO(wt%)<3.7, w(Na2O)/w(K2O)<1, high SiO2 and (87Sr/86Sr)t, low temperature during the process of forming, indicate S type granitoids, suggesting that ilmenite-series defined by Ishihara (1977) correspond to S-type granite in the south Tienshan. This research also suggests that the south Tianshan had not experienced within plate during early Permian.

  4. Retention of Anionic Species on Granite: Influence of Granite Composition - 12129

    SciTech Connect

    Videnska, Katerina; Havlova, Vaclava

    2012-07-01

    Technetium (Tc-99, T{sub 1/2} = 2.1.10{sup 5} yrs) and selenium (Se-79, T{sub 1/2} = 6.5.10{sup 4} yrs) belong among fission products, being produced by fission of nuclear fuel. Both elements can significantly contribute to risk due to their complicated chemistry, long life times, high mobility and prevailing anionic character. Therefore, knowledge of migration behaviour under different conditions can significantly improve input into performance and safety assessment models. Granite is considered as a potential host rock for deep geological disposal of radioactive waste in many countries. Granitic rocks consist usually of quartz, feldspar, plagioclase (main components), mica, chlorite, kaolinite (minor components). The main feature of the rock is advection governed transport in fractures, complemented with diffusion process from fracture towards undisturbed rock matrix. The presented work is focused on interaction of anionic species (TcO{sub 4}{sup -}, SeO{sub 4}{sup 2-}, SeO{sub 3}{sup 2-}) with granitic rock. Furthermore, the importance of mineral composition on sorption of anionic species was also studied. The batch sorption experiments were conducted on the crushed granite from Bohemian Massive. Five fractions with defined grain size were used for static batch method. Mineral composition of each granitic fraction was evaluated using X-ray diffraction. The results showed differences in composition of granitic fractions, even though originating from one homogenized material. Sorption experiments showed influence of granite composition on adsorption of both TcO4{sup -} and SeO3{sup 2-} on granitic rock. Generally, Se(IV) showed higher retention than Tc(VII). Se(VI) was not almost sorbed at all. Fe containing minerals are pronounced as a selective Se and Tc sorbent, being reduced on their surface. As micas in granite are usually enriched in Fe, increased sorption of anionic species onto mica enriched fractions can be explained by this reason. On the other hand

  5. Geochemical study of granites from Chinmen (Quemoy) and Hong Kong, southeastern China

    NASA Astrophysics Data System (ADS)

    Sun, Li-Min; Chen, Ju-Chin

    Eighteen granite samples from Chinmen and 31 granite samples from Hong Kong were chemically analyzed. All granite specimens contain essentially quartz, potash-feldspar and albite with a minor amount of biotite. Chinmen granites are chemically similar to Hong Kong granites and both show the characteristics of S-type granite defined by Chappell and White (1974), indicating that Chinmen and Hong Kong granites originated from continental crustal material. Negative europium anomalies observed in Chinmen and Hong Kong granites suggest that both Chinmen and Hong Kong granites have evolved through magmatic differentiation with Ca-rich plagioclase being separated out in the early stage of the differentiation. It is inferred that the parental magmas of Chinmen and Hong Kong granites were derived from partially melted SiO 2, Na 2O, K 2O-enriched material during the Yenshan orogeny in southeastern China in Late Mesozoic, associated with the rapid spreading of the Pacific plate. The Chinmen granites are relatively higher in Al, Ca, Na, Ni and Sc but lower in Fe, K, Ba, Hf, Y and Ce when compared with Hong Kong granites, indicating that there might be slight differences in the parental crustal material and/or differentiation process.

  6. Using Neutron Diffraction to Determine the Low-Temperature Behavior of Pb2+ in Lead Feldspar

    NASA Astrophysics Data System (ADS)

    Kolbus, L. M.; Anovitz, L. M.; Chakoumackos, B. C.; Wesolowski, D. J.

    2014-12-01

    Feldspar minerals comprise 60% of the Earth's crust, so it imperative that the properties of feldspar be well understood for seismic modeling. The structure of feldspar consists of a three-dimensional framework of strongly-bonded TO4 tetrahedra formed by the sharing of oxygen atoms between tetrahedra. The main solid solution series found in natural feldspars are alkali NaAlSi3O8 -KAlSi3O8 and plagioclase CaAl2Si2O8-NaAlSi3O8. Recently, efforts have been made to systematically quantify feldspars structural change at non-ambient temperatures by considering only the relative tilts of the tetrahedral framework [1]. This serves as a tool to predict various behaviors of the structure such as the relative anisotropy of unit cell parameters and volume evolution with composition and temperature. Monoclinic feldspars are well predicted by the model [1], but discrepancies still remain between the model predictions and real structures with respect to absolute values of the unit cell parameters. To improve the existing model, a modification must be made to account for the M-cation interaction with its surrounding oxygen atoms. We have, therefore, chosen to study the structure of Pb-feldspar (PbAl2Si2O8), which provides the opportunity to characterize a monoclinic Al2Si2 feldspar containing a large M-site divalent cation using neutron diffraction. Neutron diffraction allows for the characterization of the M-site cation interaction between the oxygen atoms in the polyhedral cage by providing information to accurately determine the atomic displacement parameters.. Lead feldspar was synthesized for this study using the method described in [2], and confirmed to have a monoclinic C2/m space group. In this talk we will present structural determinations and atomic displacement parameters of Pb-feldspar from 10 - 300K generated from Neutron diffraction at the POWGEN beamline at the Spallation Neutron Source at Oak Ridge National lab, and compare our results to those predicted by the

  7. Age of K-feldspar authigenesis in Lower Paleozoic and uppermost Precambrian rocks of the Mississippi Valley area

    SciTech Connect

    Hay, R.L.; Liu, J. . Dept. of Geology); Deino, A. . Geochronology Center); Kyser, T.K. . Dept. of Geology)

    1992-01-01

    Published K-Ar dates (n = 12) of authigenic K-feldspar in Cambrian and Ordovician rocks of the Mississippi Valley area range from 448 to 375 Ma (Late Ordovician to Middle Devonian), suggesting a lengthy episode of K-feldspar authigenesis. Here the authors report an age span of 465--400 Ma (Middle Ordovician to Early Devonian) for authigenic K-feldspar of two samples from the alteration profile widely developed over Precambrian rocks at the unconformity with Cambrian deposits. This dating was done on 42 to 48 mesh grains of K-feldspar by the laser incremental-heating Ar-40/Ar-39 method. One sample, from west-central Wisconsin, is from a vein formed along a fracture in kaolinitic altered granite. Three grains nearest the fracture yielded plateau ages with a range of 9 Ma and an average of 430 Ma. Three grains distant from the fracture yielded a similar range of 10 Ma but with an average age of 397 Ma. Thus the grains grew over an extended period from at least 430 to 400 Ma. The other sample, from the St. Francois Mts. of Missouri, is of diabase replaced by K-feldspar. Three grains yielded plateau ages ranging over 20 Ma and apparently recording an extended history of K-feldspar growth. The average age of these grains is 454 Ma, compared to a K-Ar date of 444 [+-] 9 Ma obtained from a split of the same sample. The period(s) of K-feldspar authigenesis does not support its linkage with orogenic activity. Oxygen-isotope values of authigenic K-feldspar from lower Paleozoic and uppermost Precambrian rocks range from +19.8 to +23.0 [per thousand] and average 21.4 [per thousand] (N = 11). These values are compatible with formation of the K-feldspar from similar fluids and comparable temperatures.

  8. Petrology and geochemistry of alkali gabbronorites from Lunar Breccia 67975

    NASA Astrophysics Data System (ADS)

    James, Odette B.; Lindstrom, Marilyn M.; Flohr, Marta K.

    Clasts of an unusual type of lunar highlands igneous rock, alkali gabbronorite, have been found in Apollo 16 breccia 67975. The alkali gabbronorites form two distinct subgroups, magnesian and ferroan. Modes and bulk compositions are highly varied. The magnesian alkali gabbronorites are composed of bytownitic plagioclase (Or2-5An82-89), hypersthene (Wo3-5En49-62), augite (Wo39-42En36-44), a silica mineral, and trace Ba-rich K-feldspar. The ferroan alkali gabbronorites are composed of ternary plagioclase (Or11-22An65-74), pigeonite (Wo6-9En35-47), augite (Wo38-40En29-35), Ba-rich K-feldspar, and a silica mineral. Trace minerals in both subgroups are apatite, REE-rich whitlockite, and zircon. The magnesian and ferroan alkali gabbronorites appear to have formed by progressive differentiation of the same, or closely related, parent magmas; the compositional data indicate that these magmas were REE-rich. The ternary plagioclase is probably a high-temperature metastable phase formed during crystallization. In composition and mineralogy, the 67975 alkali gabbronorites show many similarities to Apollo 12 and 14 alkali norites, alkali gabbronorites, and alkali anorthosites, and all these rocks together constitute a distinctive alkali suite. In addition, the alkali gabbronorites show some similarities to KREEP basalts, Mg-norites, and some felsites. These data suggest genetic links between some or all of these types of pristine rocks. Two types of relationships are possible. The first is that alkali-suite rocks crystallized in plutons of KREEP basalt magma, and KREEP basalts are their extrusive equivalents. The second is that the alkali-suite rocks and some felsites all crystallized in plutons of Mg-norite parent magmas, and KREEP basalt magmas formed by remelting of these plutons. Additional studies are needed to resolve which of these hypotheses is correct.

  9. Petrology and geochemistry of alkali gabbronorites from lunar breccia 67975

    NASA Astrophysics Data System (ADS)

    James, Odette B.; Lindstrom, Marilyn M.; Flohr, Marta K.

    1987-09-01

    Clasts of an unusual type of lunar highlands igneous rock, alkali gabbronorite, have been found in Apollo 16 breccia 67975. The alkali gabbronorites form two distinct subgroups, magnesian and ferroan. Modes and bulk compositions are highly varied. The magnesian alkali gabbronorites are composed of bytownitic plagioclase (Or2-5An82-89), hypersthene (Wo3-5En49-62), augite (Wo39-42En36-44), a silica mineral, and trace Ba-rich K-feldspar. The ferroan alkali gabbronorites are composed of ternary plagioclase (Or11-22An65-74), pigeonite (Wo6-9En35-47), augite (Wo38-40En29-35), Ba-rich K-feldspar, and a silica mineral. Trace minerals in both subgroups are apatite, REE-rich whitlockite, and zircon. The magnesian and ferroan alkali gabbronorites appear to have formed by progressive differentiation of the same, or closely related, parent magmas; the compositional data indicate that these magmas were REE-rich. The ternary plagioclase is probably a high-temperature metastable phase formed during crystallization. In composition and mineralogy, the 67975 alkali gabbronorites show many similarities to Appllo 12 and 14 alkali norites, alkali gabbronorites, and alkali anorthosites, and all these rocks together constitute a distinctive alkali suite. In addition, the alkali gabbronorites, show some similarities to KREEP basalts, Mg-norites, and some felsites. These data suggest genetic links between some or all of these types of pristine rocks. Two types of relationships are possible. The first is that alkali-suite rocks crystallized in plutons of KREEP basalt magma, and KREEP basalts are their extrusive equivalents. The second is that the alkali-suite rocks and some felsites all crystallized in plutons of Mg-norite parent magmas, and KREEP basalt magmas formed by remelting of these plutons. Additional studies are needed to resolve which of these hypotheses is correct.

  10. Oxygen isotope compositions of selected laramide-tertiary granitoid stocks in the Colorado Mineral Belt and their bearing on the origin of climax-type granite-molybdenum systems

    USGS Publications Warehouse

    Hannah, J.L.; Stein, H.J.

    1986-01-01

    Quartz phenocrysts from 31 granitoid stocks in the Colorado Mineral Belt yield ??18O values less than 10.4???, with most values between 9.3 and 10.4???. An average magmatic value of about 8.5??? is suggested. The stocks resemble A-type granites; these data support magma genesis by partial melting of previously depleted, fluorine-enriched, lower crustal granulites, followed by extreme differentiation and volatile evolution in the upper crust. Subsolidus interaction of isotopically light water with stocks has reduced most feldspar and whole rock ??18O values. Unaltered samples from Climax-type molybdenumbearing granites, however, show no greater isotopic disturbance than samples from unmineralized stocks. Although meteoric water certainly played a role in post-mineralization alteration, particularly in feldspars, it is not required during high-temperature mineralization processes. We suggest that slightly low ??18O values in some vein and replacement minerals associated with molybdenum mineralization may have resulted from equilibration with isotopically light magmatic water and/or heavy isotope depletion of the ore fluid by precipitation of earlier phases. Accumulation of sufficient quantities of isotopically light magmatic water to produce measured depletions of 18O requires extreme chemical stratification in a large magma reservoir. Upward migration of a highly fractionated, volatile-rich magma into a small apical Climax-type diapir, including large scale transport of silica, alkalis, molybdenum, and other vapor soluble elements, may occur with depression of the solidus temperature and reduction of magma viscosity by fluorine. Climax-type granites may provide examples of 18O depletion in magmatic systems without meteoric water influx. ?? 1986 Springer-Verlag.

  11. Oxygen isotope compositions of selected laramide-tertiary granitoid stocks in the Colorado Mineral Belt and their bearing on the origin of climax-type granite-molybdenum systems

    NASA Astrophysics Data System (ADS)

    Hannah, Judith L.; Stein, Holly J.

    1986-07-01

    Quartz phenocrysts from 31 granitoid stocks in the Colorado Mineral Belt yield δ 18O values less than 10.4‰, with most values between 9.3 and 10.4‰. An average magmatic value of about 8.5‰ is suggested. The stocks resemble A-type granites; these data support magma genesis by partial melting of previously depleted, fluorine-enriched, lower crustal granulites, followed by extreme differentiation and volatile evolution in the upper crust. Subsolidus interaction of isotopically light water with stocks has reduced most feldspar and whole rock δ 18O values. Unaltered samples from Climax-type molybdenumbearing granites, however, show no greater isotopic disturbance than samples from unmineralized stocks. Although meteoric water certainly played a role in post-mineralization alteration, particularly in feldspars, it is not required during high-temperature mineralization processes. We suggest that slightly low δ 18O values in some vein and replacement minerals associated with molybdenum mineralization may have resulted from equilibration with isotopically light magmatic water and/or heavy isotope depletion of the ore fluid by precipitation of earlier phases. Accumulation of sufficient quantities of isotopically light magmatic water to produce measured depletions of 18O requires extreme chemical stratification in a large magma reservoir. Upward migration of a highly fractionated, volatile-rich magma into a small apical Climax-type diapir, including large scale transport of silica, alkalis, molybdenum, and other vapor soluble elements, may occur with depression of the solidus temperature and reduction of magma viscosity by fluorine. Climax-type granites may provide examples of 18O depletion in magmatic systems without meteoric water influx.

  12. Geological setting and petrogenesis of symmetrically zoned, miarolitic granitic pegmatites at Stak Nala, Nanga Parbat - Haramosh Massif, northern Pakistan

    USGS Publications Warehouse

    Laurs, B.M.; Dilles, J.H.; Wairrach, Y.; Kausar, A.B.; Snee, L.W.

    1998-01-01

    Miarolitic granitic pegmatites in the Stak valley in the northeast part of the Nanga Parbat - Haramosh Massif, in northern Pakistan, locally contain economic quantities of bi- and tricolored tourmaline. The pegmatites form flat-lying sills that range from less than 1 m to more than 3 m thick and show symmetrical internal zonation. A narrow outer or border zone of medium-to coarse-grained oligoclase - K-feldspar - quartz grades inward to a very coarse-grained wall zone characterized by K-feldspar - oligoclase - quartz - schorl tourmaline. Radiating sprays of schorl and flaring megacrysts of K-feldspar (intermediate microcline) point inward, indicating progressive crystallization toward the core. The core zone consists of variable mixtures of blocky K-feldspar (intermediate microcline), oligoclase, quartz, and sparse schorl or elbaite, with local bodies of sodic aplite and miarolitic cavities or "pockets". Minor spessartine-almandine garnet and lo??llingite are disseminated throughout the pegmatite, but were not observed in the pockets. The pockets contain well-formed crystals of albite, quartz, K-feldspar (maximum microcline ?? orthoclase overgrowths), schorl-elbaite tourmaline, muscovite or lepidolite, topaz, and small amounts of other minerals. Elbaite is color-zoned from core to rim: green (Fe2+- and Mn2+-bearing), colorless (Mn2+-bearing), and light pink (trace Mn3+). Within ???10 cm of the pegmatites, the granitic gneiss wallrock is bleached owing to conversion of biotite to muscovite, with local quartz and albite added. Schorl is disseminated through the altered gneiss, and veins of schorl with bleached selvages locally traverse the wallrock up to 1 m from the pegmatite contact. The schorl veins can be traced into the outer part of the wall zone, which suggests that they formed from aqueous fluids derived during early saturation of the pegmatite-forming leucogranitic magma rich in H2O, F, B, and Li. Progressive crystallization resulted in a late-stage sodic

  13. Nb-Ta-Ti oxides fractionation in rare-metal granites: Krásno-Horní Slavkov ore district, Czech Republic

    NASA Astrophysics Data System (ADS)

    René, Miloš; Škoda, Radek

    2011-11-01

    Nb-Ta-Ti-bearing oxide minerals (Nb-Ta-bearing rutile, columbite-group minerals) represent the most common Nb-Ta host in topaz-albite granites and related rocks from the Krásno-Horní Slavkov ore district. Tungsten-bearing columbite-(Fe), W-bearing ixiolite, wodginite and tapiolite-(Fe) are extremely rare in these rocks. Rutile contains significant levels of Ta (up to 37 wt.% Ta2O5) and Nb (up to 24 wt.% Nb2O5), with Ta/(Ta + Nb) ratio ranging from 0.04 to 0.61. Columbite-group minerals are represented mostly by columbite-(Fe) and rarely by columbite-(Mn), with Mn/(Mn + Fe) ratio ranging from 0.23 to 0.94. The exceptionally rare Fe-rich, W-bearing ixiolite occurs only as inclusions in Nb-Ta-bearing rutile from quartz-free alkali-feldspar syenites (Vysoký Kámen stock). Wodginite was found only in the topaz-albite microgranite of gneissic breccia matrix that occurs in the upper most part of the Hub topaz-albite granite stock. In wodginite, the Mn/(Mn + Fe) ratio is 0.42-0.51, whereas the coexisting tapiolite-(Fe) has a distinctly lower Mn/(Mn + Fe) ratio close to 0.06.

  14. The origin and nature of thermal evolution during Granite emplacement and differentiation and its influence on upper crustal dynamics.

    NASA Astrophysics Data System (ADS)

    Buchwaldt, R.; Toulkeridis, T.; Todt, W.

    2014-12-01

    Structural geological, geochemical and geochronological data were compiled with the purpose to exercise models for the construction of upper crustal batholith. Models for pulsed intrusion of small magma batches over long timescales versus transfer of larger magma bodies on a shorter time scales are able to predict a different thermal, metamorphic, and rheological state of the crust. For this purpose we have applied the chronostratigraphic framework for magma differentiation on three granite complexes namely the St. Francois Mountain granite pluton (Precambrian), the Galway granite (Cambrian), and the Sithonia Plutonic Complex (Eocene). These plutons have similar sizes and range in composition from quartz diorites through granodiorites and granites to alkali granites, indicating multiple intrusive episodes. Thermobarometric calculations imply an upper crustal emplacement. Geochemical, isotopic and petrological data indicate a variety of pulses from each pluton allowing to be related through their liquid line of decent, which is supported by fractional crystallization of predominantly plagioclase, K-feldspar, biotite, hornblende and some minor accessory mineral phases, magma mingling and mixing as well as crustal contamination. To obtain the temporal relationship we carried out high-precision CA-TIMS zircon geochronology on selected samples along the liquid line of decent. The obtained data indicate a wide range of rates: such as different pulses evolved on timescales of about only 10-30ka, although, the construction time of the different complexes ranges from millions of years with prolonged tectonically inactive phases to relatively short lived time ranges of about ~300 ka. For a better understanding how these new data were used and evaluated in order to reconstruct constraints on the dynamics of the magmatic plumbing system, we integrated the short-lived, elevated heat production, due to latent heat of crystallization, into a 2D numerical model of the thermal

  15. Natural radioactivity and rare earth elements in feldspar samples, Central Eastern desert, Egypt.

    PubMed

    Walley El-Dine, Nadia; El-Shershaby, Amal; Afifi, Sofia; Sroor, Amany; Samir, Eman

    2011-05-01

    The pegmatite bodies of the Eastern Desert of Egypt are widely distributed especially along the Marsa-Alam-Idfu road. The Abu Dob area covers about 150km(2) of the Arabian Nubian shield at the central part of the Eastern Desert of Egypt. Most of the pegmatite is zoned; the zonation starts with milky quartz at the core followed by alkali feldspar at the margins. The feldspars vary in color from rose to milky and in composition from K-feldspar to Na-feldspar, sometimes interactions of both types are encountered. Thirteen feldspar samples were collected from different locations in the Abu Dob area for measuring the natural radioactivity of (238)U, (232)Th and (40)K using an HPGe detector. The variation in concentration of radionuclides for the area under investigation can be classified into regions of high, medium and low natural radioactivity. The average concentration in BqKg(-1) has been observed to be from 9.5 to 183675.7BqKg(-1) for (238)U, between 6.1 and 94,314.2BqKg(-1) for (232)Th and from 0 to 7894.6BqKg(-1) for (40)K. Radium equivalent activities (Ra(eq)), dose rate (D(R)) and external hazard (H(ex)) have also been determined. In the present work, the concentration of rare earth elements are measured for two feldspar samples using two techniques, Environmental Scanning Electron microscope XIL 30 ESEM, Philips, and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The existence of rare earth elements in this area are very high and can be used in different important industries.

  16. Lead isotopic evidence for mixed sources of Proterozoic granites and pegmatites, Black Hills, South Dakota, USA

    NASA Astrophysics Data System (ADS)

    Krogstad, Eirik J.; Walker, Richard J.; Nabelek, Peter I.; Russ-Nabelek, Carol

    1993-10-01

    The lead isotopic compositions of K-feldspars separated from the ca. 1700 Ma Harney Peak Granite complex and spatially associated granitic pegmatites indicate that these rocks were derived from at least two sources. It has been reported previously that the core of the Harney Peak Granite complex is dominated by relatively lower/ gd18O (avg. 11.5 %.) granites, whereas higher / gd18O (avg. 13.2%.) granites occur around the periphery of the complex. The higher δ 18O granites and one simple pegmatite have low values of 207Pb /204Pb for their 206Pb /204Pb Thus, they likely were derived from a source with a short crustal residence time. This source may have been the pelitic schists into which the Harney Peak Granite complex and pegmatites were intruded. Feldspars from granites with lower / gd18O values have significantly higher 207Pb /204Pb for their 206Pb /204Pb . The data define a linear array with a slope equivalent to an age of ca. 2.6 Ga with t 2 defined to be 1.7 Ga. Such a slope could represent a mixing array or a secondary isochron for the source. These low δ18O granites could have been derived from a source with a high U/ Pb and with a crustal residence beginning before the Proterozoic. The source (s) of these granites may have been a sediment derived from late Archean continental crust. The highly evolved Tin Mountain pegmatite has lead isotopic systematics intermediate between those of the two granite groups, suggesting either a mixed source or contamination. Two late Archean granites, the Little Elk Granite and the Bear Mountain Granite, had precursors with high U/Pb and low Th/U histories. The Th/U history of the Bear Mountain Granite is too low for this rock to have been an important component of the source of the Proterozoic granites. However, crustal rocks with lead isotopic compositions similar to those of the Little Elk Granite were an important source of lead for some of the Proterozoic granitic rocks.

  17. Magnetic Properties of the Precambrian Granitic Rocks in Minnesota

    NASA Astrophysics Data System (ADS)

    Mochizuki, N.; Jackson, M.; Kogiso, T.; Sato, M.; Seita, K.; Tsunakawa, H.

    2008-12-01

    It has been known that granitic rocks have stable components of natural remanent magnetization (NRM) as well as unstable NRM. It is noted that remanent magnetization of plagioclase crystals in granitic and basaltic rocks can yield reliable paleomagnetic data (e.g. Wu et al., 1974; Geissman et al., 1988; Tarduno et al., 2001; Wakabayashi et al., 2006). The acquisition process of thermoremanent magnetization (TRM) of granitic rocks is not well-understood because the size of magnetic grains varies from less than a few μm to hundreds of μm and parts of them are included in each crystal of granitic rocks. Thus we have made rock-magnetic studies and microscopic observations on granitic rocks and their separated crystals. Samples used in this study are collected from multiple sites of the Sacred Heart Granite (2.6 Ga U-Pb zircon ages) and the St. Cloud Granite and Granodiorite (1.8 Ga U-Pb zircon age) in Minnesota. For most of the bulk samples from granitic rocks, the Verwey transition at 120 K is clearly recognized. Susceptibility- temperature (χ-T) curves show an abrupt drop at about 580°C. Hysteresis parameters of bulk samples are distributed along a mixing line between the multi-domain (MD) and pseudo-single-domain (PSD) areas on the Day plot. Saturation isothermal remanence (SIRM) cooling and warming curves indicate that low-temperature memories range in a few to several tens % of the initial SIRM. These results indicate the MD magnetite grains dominate the magnetic properties but more or less PSD (or single-domain (SD)) magnetite grains are present in the granitic rocks. The separated crystals of feldspar and quartz show the Verwey transition at 120 K and the Curie temperature of about 580°C. Hysteresis properties of them are similar to those of bulk samples. These suggest that the MD and PSD (or SD) magnetite are included in both feldspar and quartz, suggesting that those magnetite grains primarily formed during the initial formation of the granitic rocks. We

  18. Vertical structure of a caldera-filling pyroclastics and post-caldera granitic sill: the Middle Miocene Kumano Acidic Rocks emplaced in the Paleogene Shimanto accretionary complex, Japan

    NASA Astrophysics Data System (ADS)

    Nakajima, T.; Geshi, N.; Oikawa, T.; Shinjoe, H.; Miura, D.; Koizumi, N.

    2009-04-01

    A 600m all-core drilling penetrated a volcano-plutonic complex associated with middle Miocene Kumano caldera, Kii Peninsula, Southwest Japan. It shows us the vertical cross section of the caldera-filling pyroclastic deposit and granitic sill intruded inside the caldera. The drilling site is located in the southern rim of the north body of Kumano igneous complex. The drilling core consists of the granite porphyry intrusion (Kumano Granite Porphyry) in the upper part (from surface to 464.3 m depth) and the welded tuff (Owase-Shirahama Pyroclastic Rocks) beneath them (464.3 and 600 m depth), which are associated with the caldera formation. The welded tuff in the core sample consists mainly of well-sorted coarse-grained volcanic ash of crystal fragments and lithic fragments. Subordinate amount of pumice fragment more than 10 cm across are scattered. Though most part of the welded tuff in the core sample is massive as observed in the surface outcrops, some parts show remarkable bedding structure. These structural characters suggest that the welded tuff is a pile of many flow units with several 10s meters thick each, which consists of basal pumice-concentrated bed, main massive tuff, and upper bedding part. The lower intrusion boundary of the Kumano Granite Porphyry is exposed at 464.3 m deep, where the granite porphyry intrudes into the host welded tuff with about 10 m thick chilled margin, in which the granite porphyry has very-fine groundmass. The groundmass texture of the granite porphyry shows systematic variation with the distance from the intrusion contact. Within about 20 m from the contact, the groundmass consists of very-fine crystals and entirely shows volcanic rock texture. For 150 m above them, the groundmass consists mainly of quartz and plagioclase and shows equigranular texture. In the upper part (less than 300m deep), the groundmass shows graphic texture with quartz and alkali feldspar. The vertical variation of the groundmass texture indicates upward

  19. Zircon U-Pb ages and geochemistry of Devonian A-type granites in the Iraqi Zagros Suture Zone (Damamna area): New evidence for magmatic activity related to the Hercynian orogeny

    NASA Astrophysics Data System (ADS)

    Abdulzahra, Imad Kadhim; Hadi, Ayten; Asahara, Yoshihiro; Azizi, Hossein; Yamamoto, Koshi

    2016-11-01

    The Damamna granite (DG) is located in the Shalair Valley area in northeast Iraq within the Sanandaj Sirjan Zone (SSZ). The zircon U-Pb ages for the DG rocks are 364-372 Ma, indicating crystallization of the granitic body. The DG rocks are A-type granites, hypersolvus and peraluminous. They are enriched in SiO2, alkalis, Ga/Al, Ga, Zr and Rb/Sr and depleted in CaO, MgO, Sr, P, and Ti. These rocks show steep REE patterns, with LREE enrichment relative to HREE ((La/Yb)N = 5.7-42.5) and pronounced negative Eu anomalies reflecting feldspar fractionation. The geochemical characteristics and relationships suggest that the DG rocks are anorogenic and were emplaced in an extensional tectonic regime having an OIB-like magma affinity. The DG rocks are characterized by low Y/Nb ratios (0.2-1.5) and positive εNd (371 Ma) values (+ 1.6 to + 4.2), which indicate a mantle origin. In the Y/Nb-Yb/Ta diagram, the DG rocks plot in the A1-type granite field, with slightly higher Y/Nb values and a tendency of transitioning from A1 to the nearby A2 field, which possibly indicates a slight crustal contamination effect. The isotopic and geochemical data suggest that a combination of enriched mantle source magma with crustal contamination and fractional crystallization contributed to the generation of the magma for the DG. The geochemical and geochronological results for the DG rocks in the SSZ suggest an extensional zone that probably represents an early stage of Neo-Tethys opening during the Late Devonian or earlier, and this was associated with the Hercynian orogeny and tectono-magmatic activity in northern Arabia and northwestern Iran.

  20. Age of authigenic K-feldspar in Lower Paleozoic and uppermost Precambrian rocks of the Mississippi Valley area

    SciTech Connect

    Hay, R.L.; Liu, J. . Dept. of Geology); Deino, A. . Geochronology Center); Kyser, T.K. . Dept. of Geology)

    1993-03-01

    Published K-Ar dates of authigenic K-feldspar in Cambrian and Ordovician rocks of the Mississippi Valley area range from 448 to 375 Ma (Late Ordovician to Middle Devonian), suggesting a lengthy episode of K-feldspar authigenesis. Here the authors report an age span of [approximately]464--400 Ma (Middle Ordovician to Early Devonian) for authigenic K-feldspar of two samples from the alteration profile widely developed over Precambrian rocks at the unconformity with Cambrian deposits. This dating was done on 42 to 48 mesh grains of K-feldspar by the laser incremental-heating [sup 40]Ar/[sup 39]Ar method. One sample, from west-central Wisconsin, is from an 8-mm-thick vein formed along a fracture in kaolinitic altered granite. Three grains nearest the fracture yielded plateau ages with a range of [approximately]9 Ma and an average of 430 Ma. Three grains distant from the fracture yielded a similar range of 10 Ma but with an average age of 397 Ma. Thus the grains grew over an extended period from at least [approximately]430 to 400 Ma. A K-Ar date of 411 Ma was obtained from a sample representing the entire thickness of the vein. The other sample, from the St. Francois Mts. of Missouri, is of diabase replaced by K-feldspar. Three grains yielded plateau ages ranging from [approximately]444 to 464 Ma. Oxygen-isotope values of authigenic K-feldspar from lower Paleozoic and uppermost Precambrian rocks range from +19.8 to +22.2[per thousand] and average 21.4[per thousand] (n = 11). These values are compatible with formation of the K-feldspar from similar fluids and comparable temperatures.

  1. Two-feldspar geothermometry: a review and revision for slowly cooled rocks

    NASA Astrophysics Data System (ADS)

    Kroll, Herbert; Evangelakakis, Christos; Voll, Gerhard

    1993-09-01

    Recent improvements in the experimental and thermodynamic basis of two-feldspar geothermometry allow one to recover temperatures of coexistence more reliably. Some problems, however, persist: (1) the experimental solvi by Seck (1971a) and Elkins and Grove (1990) differ from each other; (2) it is not known to what extent Na-K-Ca exchange equilibrium is approached; (3) both solvi are probably metastable with regard to Al, Si order; (4) it is difficult to judge how closely high-temperature natural feldspars compare to this situation; (5) the thermodynamic treatment neglects phase transformations; (6) the temperature dependence of the Margules parameters used to model non-ideal mixing behaviour may not be linear; (7) it is not clear which expressions should be used to describe ideal activities. With these caveats in mind we treat the problem of retrograde resetting in high-grade metamorphic rocks that were slowly cooled under essentially dry conditions. Coexisting feldspars from such rocks commonly do not plot on a common isotherm. Thus temperatures derived from such pairs using any of the proposed two-feldspar geothermometers will necessarily be in error. We suggest that the non-equilibrium compositions result from retrograde intercrystalline K-Na exchange. This exchange continues after the plagioclase and alkali feldspar have already become essentially closed systems with respect to Al-Si exchange, which is a prerequisite for (Na,K)-Ca exchange. We use a modified version of the Fuhrman and Lindsley (1988) programme to reverse the K-Na exchange and derive concordant temperatures.

  2. Characterization and Thermodynamics Studies of Feldspar and Feldspathoid Minerals

    NASA Astrophysics Data System (ADS)

    Rudow, M.; Lilova, K.

    2015-12-01

    The application of thermal analysis and calorimetry for the studies of minerals has a history as long as the existence of the thermal methods themselves. New advanced calorimetric techniques have been developed for more accurate characterization of both bulk and nano materials thus impacting their design, processing, and applications. TG-DTA and TG-DSC are used to characterize the composition of complex minerals (e.g. [KxNa1-x(AlSi3)O8]) based on the weight changes and phase transformations observed with temperature increase. Additionally, those techniques allow to determine the quantity of the different types of water contained in natural feldspars and feldspathoids (absorbed, interlayer, structural). The results for several clays will be discussed. The geochemical properties and thermal stability of another class of minerals - aluminosilicate frameworks (alkali sodalities, natrolites, etc.) as related to high-level nuclear waste treatment facilities, radioactive waste storage and management were studied. The natural sodalite Na8[Al6Si6O24]Cl2 and similar frameworks with different anions are part of sodium-aluminosilicate (NAS) low activity radioactive waste produced during steam reforming process treatment. The enthalpies and entropies of formation and the hydration enthalpies of the above-mentioned feltspathoids are obtained and the effect of the different cations and anions on the thermodynamic stability was studied. The results will allow to predict the long term behavior of the compounds in the environment under different conditions.

  3. The Wuluma granite, Arunta Block, central Australia: An example of in situ, near-isochemical granite formation in a granulite-facies terrane

    NASA Astrophysics Data System (ADS)

    Collins, W. J.; Flood, R. H.; Vernon, R. H.; Shaw, S. E.

    1989-06-01

    The Wuluma granite is a small, elongate, relatively undeformed pluton in the Proterozoic Strangways Metamorphic Complex, central Australia. The complex constitutes a supracrustal assemblage that underwent granulite-facies metamorphism 1800 Ma ago. Metamorphism was associated with at least three phases of folding that ultimately produced upright, regional, doubly plunging F 3 folds and isobaric cooling ensued. Generation of the Wuluma granite occurred at ˜ 1750 Ma, based on RbSr isotopic data, during syn-D 3 regional retrogression and rehydration of the terrane. Contacts between the granite and gneisses are invariably gradational. At the pluton margin, banded gneisses grade along strike into granite containing abundant biotite schlieren that parallel regional structures. Granite and pegmatite dykes cut these rocks. Inwards from the contact, the granite is more homogeneous, containing diffuse parallel schlieren and small aligned rectangular feldspar crystals, indicating flow of magma. Rafts of unmelted granofels form a ghost layering; they mimic macroscopic F 3 folds and show only minor retrogressive metamorphic effects. At the pluton core, the granite is homogeneous and structurally isotropic, containing some subrounded granofelsic inclusions, very diffuse schlieren and disaggregated pegmatite dykes. Thus, it appears that an isoclinally folded, vertical body of quartzofeldspathic gneiss was melted "in situ" to form the pluton, which did not break away from the source. The body resembles a tapered diapir and we term this type of pluton a regional migmatite terrane granite. Geochemical data are consistent with the granite forming by anatexis of quartzofeldspathic migmatitic gneisses with appropriate composition. The chemical similarity of both rock types implies derivation of the granite by either partial melting and retention of residual material in the magma or more complete melting, followed by solidification virtually in situ. The latter interpretation is

  4. An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer

    NASA Astrophysics Data System (ADS)

    Mutch, E. J. F.; Blundy, J. D.; Tattitch, B. C.; Cooper, F. J.; Brooker, R. A.

    2016-10-01

    We report new experimental data on the composition of magmatic amphiboles synthesised from a variety of granite (sensu lato) bulk compositions at near-solidus temperatures and pressures of 0.8-10 kbar. The total aluminium content (Altot) of the synthetic calcic amphiboles varies systematically with pressure ( P), although the relationship is nonlinear at low pressures (<2.5 kbar). At higher pressures, the relationship resembles that of other experimental studies, which suggests of a general relationship between Altot and P that is relatively insensitive to bulk composition. We have developed a new Al-in-hornblende geobarometer that is applicable to granitic rocks with the low-variance mineral assemblage: amphibole + plagioclase (An15-80) + biotite + quartz + alkali feldspar + ilmenite/titanite + magnetite + apatite. Amphibole analyses should be taken from the rims of grains, in contact with plagioclase and in apparent textural equilibrium with the rest of the mineral assemblage at temperatures close to the haplogranite solidus (725 ± 75 °C), as determined from amphibole-plagioclase thermometry. Mean amphibole rim compositions that meet these criteria can then be used to calculate P (in kbar) from Altot (in atoms per formula unit, apfu) according to the expression: {it{P }}( {{kbar}} ) = 0.5 + 0.331( 8 ) × {{Al}}^{{tot}} + 0.995( 4 ) × ( {{{Al}}^{{tot}} } )2 This expression recovers equilibration pressures of our calibrant dataset, comprising both new and published experimental and natural data, to within ±16 % relative uncertainty. An uncertainty of 10 % relative for a typical Altot value of 1.5 apfu translates to an uncertainty in pressure estimate of 0.5 kbar, or 15 % relative. Thus the accuracy of the barometer expression is comparable to the precision with which near-solidus amphibole rim composition can be characterised.

  5. Sintering behaviour of feldspar and influence of electric charge effects

    NASA Astrophysics Data System (ADS)

    Gallala, W.; Gaied, M. E.

    2011-04-01

    The characterization of feldspar for electric porcelain and the behaviour of these materials after heating at 1230°C were studied. X-ray diffraction (XRD) and scanning electronic microscopy (SEM) were used to identify the present phases and the densification level. Feldspar sand was treated by flotation. The floated feldspar is constituted by microcline, quartz, and minor amounts of albite. The microstructure of sintered feldspar at 1230°C is essentially vitreous with open microporosities. The dielectrical properties of composites were characterized by using the induced courant method (ICM), which indicates that the charge trapping capacity depends on the mineralogical and chemical composition of feldspar.

  6. Geochemistry and origin of granitic rocks, Scourian Complex, NW Scotland

    NASA Astrophysics Data System (ADS)

    Pride, C.; Muecke, G. K.

    1982-11-01

    Concordant granite sheets from the granulite facies Scourian Complex, N.W. Scotland exhibit the following features: 1) a common planar fabric with their host pyroxene granulites; 2) the presence of an exsolved ternary feldspar phase; 3) a low-pressure, water-saturated minimum composition; 4) K/Rb ratios (450 1,350) distinctly higher than most upper crustal granites but similar to the surrounding granulites; 5) low absolute concentrations of the rare earth elements (REEs), light REE enrichment, and large positive Eu anomalies. It is proposed that the granite sheets have originated by anatexis of gneisses undergoing granulite facies metamorphism — gneisses that were already essentially dry and depleted in incompatible elements. Their unusual trace element chemistry may be explained by either disequilibrium melting and/or sub-solidus reequilibration of the granite sheets with the surrounding gneisses. Isotopic and trace element data suggest that cross-cutting, potash-rich pegmatites represent reworking of the granite sheets during a later amphibolitization.

  7. Transpressional granite-emplacement model: Structural and magnetic study of the Pan-African Bandja granitic pluton (West Cameroon)

    NASA Astrophysics Data System (ADS)

    Sandjo, A. F. Yakeu; Njanko, T.; Njonfang, E.; Errami, E.; Rochette, P.; Fozing, E.

    2016-02-01

    The Pan-African NE-SW elongated Bandja granitic pluton, located at the western part of the Pan-African belt in Cameroon, is a K-feldspar megacryst granite. It is emplaced in banded gneiss and its NW border underwent mylonitization. The magmatic foliation shows NE-SW and NNE-SSW strike directions with moderate to strong dip respectively in its northern and central parts. This mostly, ferromagnetic granite displays magnetic fabrics carried by magnetite and characterized by (i) magnetic foliation with best poles at 295/34, 283/33 and 35/59 respectively in its northern, central and southern parts and (ii) a subhorizontal magnetic lineation with best line at 37/8, 191/9 and 267/22 respectively in the northern, central and southern parts. Magnetic lineation shows an `S' shape trend that allows to (1) consider the complete emplacement and deformation of the pluton during the Pan-African D 2 and D 3 events which occurred in the Pan-African belt in Cameroon and (2) reorganize Pan-African ages from Nguiessi Tchakam et al. (1997) compared with those of the other granitic plutons in the belt as: 686 ±17 Ma (Rb/Sr) for D 1 age of metamorphism recorded in gneiss; and the period between 604-557 Ma for D 2-D 3 emplacement and deformation age of the granitic pluton in a dextral ENE-WSW shear movement.

  8. Energy related studies utilizing K-feldspar thermochronology. Progress performance report, 1990--1993

    SciTech Connect

    Not Available

    1993-05-01

    Two distinct sources of information are available from a {sup 40}Ar/{sup 39}Ar step-heating experiment: the age spectrum and Arrhenius plot. Model ages are calculated from the flux of radiogenic argon ({sup 40}Ar*) (assuming trapped argon of atmospheric composition) relative to the reactor produced {sup 39}Ar evolved during discrete laboratory heating steps. With the additional assumption that the {sup 39}Ar is uniformly distributed within the sample, we can infer the spatial distribution of the daughter product. ne associated Arrhenius plot, derived by plotting the diffusion coefficient (obtained from the inversion of the 39{sup Ar} release function assuming a single domain) against the inverse temperature of laboratory heating, are a convolution of the parameters which characterize the individual diffusion domains (whether these be dictated by varying length scale, energetics, etc.). However, many and perhaps Most {sup 40}Ar/{sup 39}Ar age spectra for slowly cooled alkali feldspars are significantly different from model age spectra calculated assuming a single diffusion-domain size. In addition, Arrhenius plots calculated from the measured loss of {sup 39}Ar during the step heating experiment show departures from linearity that are inconsistent with diffusion from domains of equal size. By extending the single diffusion-domain closure model (Dodsontype) to apply to minerals with a discrete distribution of domain sizes, we obtained an internally consistent explanation for the commonly observed features of alkali feldspar age spectra and their associated Arrhenius plots.

  9. Feldspar minerals as efficient deposition ice nuclei

    NASA Astrophysics Data System (ADS)

    Yakobi-Hancock, J. D.; Ladino, L. A.; Abbatt, J. P. D.

    2013-11-01

    Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically relevant mineral samples have been studied, using a continuous flow diffusion chamber at -40.0 ± 0.3 °C and particles size-selected at 200 nm. By focussing on using the same experimental procedure for all experiments, a relative ranking of the ice nucleating abilities of the samples was achieved. In addition, the ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD) and Mojave Desert Dust (MDD), and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN), requiring a critical relative humidity with respect to ice (RHi) of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RHi) 126.3 ± 3.4%) and ATD (RHi 129.5 ± 5.1%) have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz), and feldspar minerals (orthoclase, plagioclase) present in the atmospheric dusts, it was found that the feldspar minerals (particularly orthoclase) and some clays (particularly kaolinite) were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase) may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals.

  10. Feldspar minerals as efficient deposition ice nuclei

    NASA Astrophysics Data System (ADS)

    Yakobi-Hancock, J. D.; Ladino, L. A.; Abbatt, J. P. D.

    2013-06-01

    Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically-relevant mineral samples have been studied, using a continuous flow diffusion chamber at -40.0 ± 0.3 °C. The same particle size (200 nm) and particle preparation procedure were used throughout. The ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD) and Mojave Desert Dust (MDD), and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN), requiring a critical relative humidity with respect to ice (RHi) of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RHi 126.3 ± 3.4%) and ATD (RHi 129.5 ± 5.1%) have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz), and feldspar minerals (orthoclase, plagioclase) present in the atmospheric dusts it was found that the feldspar minerals (particularly orthoclase), and not the clays, were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase) may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals.

  11. Petrology and chemistry of two 'large' granite clasts from the moon

    NASA Technical Reports Server (NTRS)

    Warren, P. H.; Taylor, G. J.; Keil, K.; Shirley, D. N.; Wasson, J. T.

    1983-01-01

    Pristine granite clasts in Apollo-14 breccias 14321 and 14303 have estimated masses of 1.8 and 0.17 g, respectively. The 14321 clast is about 60 percent K-feldspar and 40 percent quartz, with traces of extremely Mg-poor mafic silicates and ilmenite. The 14303 clast is roughly 33 percent plagioclase, 32 percent K-feldspar, 23 percent quartz, 11 percent pyroxene, and 1 percent ilmenite; pyroxene and ilmenite are moderately Mg-rich; plagioclase and pyroxene are strongly zoned. Both clasts are severely brecciated, but monomict (pristine). Both have abundant graphic integrowths of K-feldspar with quartz. Unlike the majority of similar earth rocks, both clasts are devoid of hydrous phases. The bulk composition of the 14321 clast is similar to those of several other lunar granitic samples, but the 14303 clast is unique: it bears as close a resemblance to KREEP as it does to other lunar granites. Silicate liquid immiscibility may explain why the granites are low in REE relative to KREEP.

  12. Determination of Granites' Mineral Specific Porosities by PMMA Method and FESEM/EDAX

    SciTech Connect

    Leskinen, A.; Penttinen, L.; Siitari-Kauppi, M.; Alanso, U.; Garcia-Gutierrez, M.; Missana, T.; Patelli, Alessandro

    2007-07-01

    Over extended periods, long-lived radionuclides (RN) or activation products within geologic disposal sites may be released from the fuel and migrate to the geo/biosphere. In the bedrock, contaminants will be transported along fractures by advection and retarded by sorption on mineral surfaces and by molecular diffusion into stagnant pore water in the matrix along a connected system of pores and micro-fissures. The objective of this paper was to determine the connective porosity and mineral-specific porosities for three granite samples by {sup 14}C methyl-methacrylate ({sup 14}C-PMMA) autoradiography. Scanning electron microscopy and energy-dispersive X-ray analyses (FESEM/EDAX) were performed in order to study the pore apertures of porous regions in greater detail and to identify the corresponding minerals. Finally, the porosity results were used to evaluate the diffusion coefficients of RNs from previous experiments which determined apparent diffusion coefficients for the main minerals in three granite samples by the Rutherford Backscattering technique. The total porosity of the Grimsel granite (0.75%) was significantly higher than the porosities of the El Berrocal and Los Ratones granites (0.3%). The porosities of the Grimsel granite feldspars were two to three times higher than the porosities of the El Berrocal and Los Ratones granites feldspars. However, there was no significant difference between the porosities of the dark minerals. A clear difference was found between the various quartz grains. Quartz crystals were non-porous in the El Berrocal and Los Ratones granites when measured by the PMMA method, but the quartz crystals in the Grimsel granite showed 0.5% intra granular porosity. The apparent diffusion coefficients calculated for uranium diffusion within Grimsel granite on different minerals were very similar (2.10{sup -13} {+-} 0.5 m{sup 2}/s), but differences within both Spanish granites were found from one mineral to another (9 {+-} 1.10{sup -14} m

  13. Characterization of Climax granite ground water

    SciTech Connect

    Isherwood, D.; Harrar, J.; Raber, E.

    1982-08-01

    The Climax ground water fails to match the commonly held views regarding the nature of deep granitic ground waters. It is neither dilute nor in equilibrium with the granite. Ground-water samples were taken for chemical analysis from five sites in the fractured Climax granite at the Nevada Test Site. The waters are high in total dissolved solids (1200 to 2160 mg/L) and rich in sodium (56 to 250 mg/L), calcium (114 to 283 mg/L) and sulfate (325 to 1060 mg/L). Two of the samples contained relatively high amounts of uranium (1.8 and 18.5 mg/L), whereas the other three contained uranium below the level of detection (< 0.1 mg/L). The pH is in the neutral range (7.3 to 8.2). The differences in composition between samples (as seen in the wide range of values for the major constituents and total dissolved solids) suggest the samples came from different, independent fracture systems. However, the apparent trend of increasing sodium with depth at the expense of calcium and magnesium suggests a common evolutionary chemical process, if not an interconnected system. The waters appear to be less oxidizing with depth (+ 410 mV at 420 m below the surface vs + 86 mV at 565 m). However, with Eh measurements on only two samples, this correlation is questionable. Isotopic analyses show that the waters are of meteoric origin and that the source of the sulfate is probably the pyrite in the fracture-fill material. Analysis of the measured water characteristics using the chemical equilibrium computer program EQ3 indicates that the waters are not in equilibrium with the local mineral assemblage. The solutions appear to be supersaturated with respect to the mineral calcite, quartz, kaolinite, muscovite, k-feldspar, and many others.

  14. Sequence of mineral assemblages in differentiated granitic pegmatites.

    USGS Publications Warehouse

    Norton, J.J.

    1983-01-01

    The sequence of mineral assemblages in internally zoned granitic pegmatites recognized by Cameron et al. (1949) is modified here to account for an observed vertical component, especially in feldspar compositions, in addition to the recognized outer contact-to-inner core differentiation process, and the importance of primary lithium minerals other than spodumene, such as petalite. The zonal patterns of 11 well-known granitic pegmatites are consistent with this revised sequence, with additional explanations for the repeated monomineralic zones of quartz or pollucite, etc. The crystallization history of zoned pegmatites is described in general terms, beginning with the magmatic crystallization which produces the outer zones. Aqueous fluid is exsolved continuously from the magma as relatively anhydrous phases precipitate, and plays an important role in the formation of the inner zones; its evolution is thought to be a major cause of pegmatite differentiation.-J.E.S.

  15. Petrology and geochemistry of alkali gabbronorites from lunar breccia 67975

    NASA Technical Reports Server (NTRS)

    James, Odette B.; Flohr, Marta K.; Lindstrom, Marilyn M.

    1987-01-01

    Detailed results of petrologic and compositional studies of three clasts found in thin sections of the Apollo 16 lunar breccia 67975 and of four clasts extracted from the breccia (for instrumental neutron activation analysis) prior to thin sectioning are reported. The alkali gabbronorites of the breccia form two distinct subgroups, magnesian and ferroan. The magnesian gabbronorites are composed of bytownitic plagioclase, hypersthene, augite, a silica mineral, and trace Ba-rich K-feldspar. The ferroan gabbronorites are composed of ternary plagioclase, pigeonite, augite, Ba-rich K-feldspar, and a silica mineral. Trace minerals in both subgroups are apatite, REE-rich whitlockite, and zircon. The magnesian and ferroan alkali gabbronorites appear to have formed by progressive differentiation of the same, or closely related, parent REE-rich magmas.

  16. Lithological strength but chemical weakness controls granitic tor formation

    NASA Astrophysics Data System (ADS)

    Stroeven, A. P.; Goodfellow, B. W.; Skelton, A.; Jansson, K. N.; Hättestrand, C.

    2010-12-01

    The origins of tors have long inspired wonder and are usually attributed to differential weathering according to variations in bedrock joint spacing and/or initial regolith depths. In this study, we investigate the origins of granitic tors in the Cairngorm Mountains, NE Scotland. Specifically, we examine whether: (i) joint spacing correlates with bedrock chemistry, mineralogy, or texture, and (ii) tor size correlates with any of these lithological attributes and/or topographic parameters such as slope, surface curvature, and tor position. Presently, our results indicate that: (i) bedrock joint spacing increases with feldspar crystal size, (ii) tor dimensions increase with joint spacing, particularly along the axis perpendicular to the regional foliation, and (iii) there is a strong positive correlation between joint spacing and tor volume. In addition, the largest tors occur where granite contains comparatively moderate quantities of biotite. If more biotite is present, then grusification, largely driven by the oxidation of Fe in biotite, proceeds too rapidly for large tors to form. Conversely, in granites containing lower quantities of biotite, it appears that the potential for differential weathering between exposed and regolith-covered bedrock is insufficient to produce large tors. Both lithological strength and chemical weakness therefore contribute to granitic tor formation.

  17. Synthesis of feldspar bicrystals by direct bonding

    NASA Astrophysics Data System (ADS)

    Heinemann, S.; Wirth, R.; Dresen, G.

    We have produced synthetic feldspar bicrystals using a direct bonding technique. A gem-quality orthoclase crystal from Itrongay, Madagascar, was used for the bonding experiments. Microprobe analysis shows only minor concentrations of iron and sodium. Orthoclase single crystal plates oriented parallel (0 0 1) were cut and chemomechanically polished with silica slurry. From interferometry, final roughness of the square crystal plates was about 0.34 nm. Specimens were wet-chemically cleaned using deionised water. The bonding procedure produced an orthoclase bicrystal with an optically straight grain boundary-oriented parallel (0 0 1), which was investigated by HREM. Along the interface no amorphous layer was observed between lattice fringes of both crystals. We suggest that the bicrystals formed by initial hydrogen bonding and subsequent water loss and polymerisation of silanol and aluminol groups at elevated temperatures.

  18. Crystallization Response of Hydrous Granitic Liquids

    NASA Astrophysics Data System (ADS)

    London, D.; Morgan, G. B.; Evensen, J. M.

    2006-05-01

    Preconditioning of hydrous haplogranite liquid (200 MPa eutectic composition Ab38Or28Qz34) at 100° C above the liquidus temperature for 72 hr is sufficient to eliminate any vestiges of the initial structural states of vitreous or crystalline starting materials. Experimental crystallization of this composition in the presence of aqueous vapor begins by nucleation in the vapor space, following which crystal growth advances into supercooled melt. The minimum in nucleation delay (~ 200 hrs) and maximum in nucleation density and growth rate occur at liquidus undercooling (ΔT) of 200° C. Crystallization does not exceed 10% in experiments up to 600 hrs at any value of ΔT, and no crystallization occurs within 50° C of the liquidus up to 700 hrs. Though the melt composition is invariant (eutectic), and no compositional gradients are discernable by EMPA in quenched glasses, the crystallization response is sequential: at ΔT = 200° C, coarsely skeletal K-feldspar nucleates and grows first, followed by graphic to spherulitic quartz-sodic alkali feldspar intergrowths, and lastly in some experiments, monophase quartz blebs. Once formed, crystals or clusters tend not to grow larger, but rather, new centers of nucleation and growth appear. The result is a sequential history of uniform crystal texture (size and habit). At comparable ΔT, the nucleation delay decreases as the bulk composition is displaced (by choosing a composition) farther from the eutectic. At comparable ΔT, fluxes (P, F) serve to increase the nucleation delay and decrease the nucleation density but do not notably change either growth rates or crystal habits. Diffusion of alkalis through melt is rapid, such that any gradients in alkalis that should result from non-eutectic crystallization are erased in minutes or hours over distances of 5 mm and down to ΔT = 350° C, in the field of glass. These relations of undercooling (ΔT) to time (t) apply only to H2O-oversaturated systems. We do not have data for the

  19. Peculiar Feldspar And Quartz Inclusions Within Zircons From Anorthosites, North Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Eliwa, H. A.; Dawoud, M. I.; Khalaf, I. M.; Negendank, J. F.; Itaya, T.

    2004-12-01

    Zircons from three anorthosite outcrops along Wadi Dib area, north Eastern Desert of Egypt contain abundant and conspicuous inclusions of quartz, feldspar, amphibole and apatite. These anorthosites, as (50-100m thick) layers, represent the top of mafic-ultramafic intrusions exhibiting rhythmic layering visible by reputation of melanocratic and leucocratic layers. Field and microscopic studies exhibit that these anorthosites were affected by the action of residual magmatic solutions associated with the late stage crystallization of the younger granites, which modified their mineralogical composition. They are composed totally of plagioclase with subordinate amount of clinoenstatite, augite, amphibole, biotite, K-feldspar, and quartz. Accessories are magnetite, ilmenite, apatite and zircon. The abundance and the mode of occurrence of K-feldspar, quartz, and biotite with apatite and zircon among the megacrysts suggest their formation is ascribed to the interaction with the residual solutions. The microprobe data exhibit difference between feldspar and amphiboles contained herein zircons and those as anorthosite mineral constituents. The genetic relationship between zircons and their inclusions suggests later growth of zircons than inclusions and most probably at the final stage of rock modification. Zircons are magmatic and found in the interstitial feldspar and quartz among plagioclase megacrysts in aggregates or as individual grains. The microscopic and SEM images investigation exhibit that most zircons are subhedral to euhedral equant and prismatic crystals. Most zircons have same range of crystal morphologies and internal growth structures with predominance of prism /{100/} and pyramid /{101/} and occasionally prism /{110/} and pyramid /{111/}. No evidences for poly-faceted grains, inherited cores or later overgrowths were detected. CL images distinguished zircons with visible core-rim structures and others with regular and continuous growth zones contained herein

  20. Two-mica andalusite-bearing granite with no primary muscovite: constraints on the origin of post-magmatic muscovite in two-mica granites

    NASA Astrophysics Data System (ADS)

    Puziewicz, Jacek; Pietranik, Anna

    2016-12-01

    The two-mica granite from Gęsiniec (Strzelin Granitic Massif, SW Poland) consists of quartz, K-feldspar, normally zoned plagioclase (30 ± 7 % An), subordinate biotite and muscovite and magmatic andalusite. Andalusite crystallised before the outer parts of plagioclase grains were formed. Biotite has constant Fe/(Fe + Mg) ratio of approximately 0.81. Five textural types of muscovite occur in the granite: (1) muscovite replacing andalusite, (2) embayed interstitial muscovite, (3) muscovite forming aggregates with biotite, (4) muscovite accompanying biotite and chlorite in microfissures and (5) fine muscovite forming fringes at the contact between larger muscovite plates and K-feldspar. They are commonly associated with albite. Crystallisation of muscovite started significantly below the granite solidus, mostly by the replacement of andalusite. Formation of muscovite continued during cooling of host rock. The growth of individual plates was initiated at different undercoolings and the plates whose crystallisation was frozen at different stages of growth occur. Those that were formed earlier are richer in titanium and iron relative to the later ones. As the rock contains no Ti and Fe saturating phases, the content of Ti and Mg in muscovite depends on their local availability. The homogeneous Fe/(Fe + Mg) ratio of biotite indicates that it was re-equilibrated at the post-magmatic stage.

  1. Genesis of a zoned granite stock, Seward Peninsula, Alaska

    USGS Publications Warehouse

    Hudson, Travis

    1977-01-01

    A composite epizonal stock of biotite granite has intruded a diverse assemblage of metamorphic rocks in the Serpentine Hot Springs area of north-central Seward Peninsula, Alaska. The metamorphic rocks include amphibolite-facies orthogneiss and paragneiss, greenschist-facies fine-grained siliceous and graphitic metasediments, and a variety of carbonate rocks. Lithologic units within the metamorphic terrane trend generally north-northeast and dip moderately toward the southeast. Thrust faults locally juxtapose lithologic units in the metamorphic assemblage, and normal faults displace both the metamorphic rocks and some parts of the granite stock. The gneisses and graphitic metasediments are believed to be late Precambrian in age, but the carbonate rocks are in part Paleozoic. Dating by the potassium-argon method indicates that the granite stock is Late Cretaceous. The stock has sharp discordant contacts, beyond which is a well-developed thermal aureole with rocks of hornblende hornfels facies. The average mode of the granite is 29 percent plagioclase, 31 percent quartz, 36 percent K-feldspar, and 4 percent biotite. Accessory minerals include apatite, magnetite, sphene, allanite, and zircon. Late-stage or deuteric minerals include muscovite, fluorite, tourmaline, quartz, and albite. The stock is a zoned complex containing rocks with several textural facies that are present in four partly concentric zones. Zone 1 is a discontinuous border unit, containing fine- to coarse-grained biotite granite, that grades inward into zone 2. Zone 2 consists of porphyritic biotite granite with oriented phenocrysts of pinkish-gray microcline in a coarse-grained equigranular groundmass of plagioclase, quartz, and biotite. It is in sharp, concordant to discordant contact with rocks of zone 3. Zone 3 consists of seriate-textured biotite granite that has been intruded by bodies of porphyritic biotite granite containing phenocrysts of plagioclase, K-feldspar, quartz, and biotite in an

  2. Nanosecond dynamics of destruction of an inhomogeneous solid (granite) induced by an impact on its surface

    NASA Astrophysics Data System (ADS)

    Vettegren', V. I.; Shcherbakov, I. P.; Mamalimov, R. I.

    2016-11-01

    Dynamics of microcrack formation and deformation of a granite-sample surface after a striker impact have been studied with a time resolution of 2 ns. The impact excites the sample's natural vibrations that lead to formation of clusters of microcracks with linear dimensions of 2 to 10 μm in feldspar grains. The formation of microcracks, in turn, excites natural vibrations of the grains.

  3. Deformation microstructures of Barre granite: An optical, Sem and Tem study

    USGS Publications Warehouse

    Schedl, A.; Kronenberg, A.K.; Tullis, J.

    1986-01-01

    New scanning electron microscope techniques have been developed for characterizing ductile deformation microstructures in felsic rocks. In addition, the thermomechanical history of the macroscopically undeformed Barre granite (Vermont, U.S.A.) has been reconstructed based on examination of deformation microstructures using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The microstructures reveal three distinct events: 1. (1) a low-stress, high-temperature event that produced subgrains in feldspars, and subgrains and recrystallized grains in quartz; 2. (2) a high-stress, low-temperature event that produced a high dislocation density in quartz and feldspars; and 3. (3) a lowest-temperature event that produced cracks, oriented primarily along cleavage planes in feldspars, and parallel to the macroscopic rift in quartz. The first two events are believed to reflect various stages in the intrusion and cooling history of the pluton, and the last may be related to the last stages of cooling, or to later tectonism. ?? 1986.

  4. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  5. Near-liquidus growth of feldspar spherulites in trachytic melts: 3D morphologies and implications in crystallization mechanisms

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Mancini, Lucia; Voltolini, Marco; Cicconi, Maria Rita; Mohammadi, Sara; Giuli, Gabriele; Mainprice, David; Paris, Eleonora; Barou, Fabrice; Carroll, Michael R.

    2015-02-01

    The nucleation and growth processes of spherulitic alkali feldspar have been investigated in this study through X-ray microtomography and electron backscatter diffraction (EBSD) data. Here we present the first data on Shape Preferred Orientation (SPO) and Crystal Preferred Orientation (CPO) of alkali feldspar within spherulites. The analysis of synchrotron X-ray microtomography and EBSD datasets allowed us to study the morphometric characteristics of spherulites in trachytic melts in quantitative fashion, highlighting the three-dimensional shape, preferred orientation, branching of lamellae and crystal twinning, providing insights about the nucleation mechanism involved in the crystallization of the spherulites. The nucleation starts with a heterogeneous nucleus (pre-existing crystal or bubble) and subsequently it evolves forming "bow tie" morphologies, reaching radially spherulitic shapes in few hours. Since each lamella within spherulite is also twinned, these synthetic spherulites cannot be considered as single nuclei but crystal aggregates originated by heterogeneous nucleation. A twin boundary may have a lower energy than general crystal-crystal boundaries and many of the twinned grains show evidence of strong local bending which, combined with twin plane, creates local sites for heterogeneous nucleation. This study shows that the growth rates of the lamellae (10- 6-10- 7 cm/s) in spherulites are either similar or slightly higher than that for single crystals by up to one order of magnitude. Furthermore, the highest volumetric growth rates (10- 11-10- 12 cm3/s) show that the alkali feldspar within spherulites can grow fast reaching a volumetric size of ~ 10 μm3 in 1 s.

  6. Feldspar Variability in Northwest Africa 7034

    NASA Technical Reports Server (NTRS)

    Santos, A. R.; Lewis, J. A.; Agee, C. B.; Humayun, M.; McCubbin, F. M.; Shearer, C. K.

    2017-01-01

    The martian meteorite Northwest Africa 7034 (and pairings) is a breccia that provides important information about the rocks and processes of the martian crust (e.g., 1-3). Additional information can be gleaned from the components of the breccia. These components, specifically those designated as clasts, record the history of their parent rock (i.e., the rock that has been physically broken down to produce the clasts). In order to study these parent rocks, we must first determine which clasts within the breccia are de-rived from the same parent. Previous studies have be-gun this process (e.g., 4), but the search for genetic linkages between clasts has not integrated clasts with different grain sizes. We begin to take this approach here, incorporating igneous-textured clasts with both fine and coarse mineral grains. In NWA 7034, almost all materials (clasts and breccia matrix) are composed of the same mineral assemblages (feldspar, pyroxene, Fe-Ti oxides, apatite) with largely the same mineral compositions [1, 4-6]. Bulk breccia Sm-Nd systematics define a single isochron [7]. These observations are consistent with a majority of the components within NWA 7034 originating from the same geochemical source and crystallizing at roughly the same time.

  7. Milk-alkali syndrome

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000332.htm Milk-alkali syndrome To use the sharing features on this page, please enable JavaScript. Milk-alkali syndrome is a condition in which there ...

  8. Black and red granites in the Egyptian Antiquity Museum of Turin. A minero-petrographic and provenance study.

    NASA Astrophysics Data System (ADS)

    Serra, M.; Borghi, A.; Vaggelli, G.; D'Amicone, E.; Vigna, L.

    2009-04-01

    materials used for two of the best known masterpieces of Egyptian art. As regards to red granites, it has been observed that most of the exposed sculptures were made of rocks closely akin to Aswan granite. Just in one case, the Ram headed sphinx (cat. 836), macroscopic differences in colour index, grain size and isoorientation of feldspar phenocrysts, suggested a different provenance of the source material and determined the choice of picking up a small fragment for minero-petrographic analysis. The sample collected from the sarcophagus of Nefertari (suppl. 5153) during the recent restoration of the sculpture, was analysed in order to test the accuracy of the results, as the provenance of the material used for its realization was already certain. Petrographic observations and chemical analysis were undertaken by a scanning electron microscope equipped with an energy-dispersive spectrometer. Minero-petrographic data primarily showed that all samples vary in composition from granite (red granites) to granodiorite and tonalite (black granites). The main sialic phases are represented by plagioclase (albite to oligoclase), alkali-feldspar (microcline) and quartz, while femic phases are amphibole (green horneblende) and biotite (Fe- to Mg-biotite), always coexisting in variable relative percentages. Minor amount of apatite (≈ 1 wt.%), magnetite, ilmenite, often associated to sphene, zircon, pyrite and allanite also occur. The identification of some compositional markers in all samples suggested a common provenance for all the rocks used for the sculptures. Thus, it was supposed that they could all have been quarried in the famous district of Aswan, well known at least since Dynastic period. This provenance hypothesis was confirmed by geological literature and archeological evidences, considering the relative proximity of Aswan quarries to Nile river and to the key centres of power in the New Kingdom. Therefore, several geological samples were collected in Aswan area, in order

  9. The GRANIT spectrometer

    SciTech Connect

    Baessler, Stefan; Beau, M; Kreuz, Michael; Nesvizhevsky, V.; Kurlov, V; Pignol, G; Protasov, K.; Vezzu, Francis; Voronin, Vladimir

    2011-01-01

    The existence of quantum states of matter in a gravitational field was demonstrated recently in the Institut Laue-Langevin (ILL), Grenoble, in a series of experiments with ultra cold neutrons (UCN). UCN in low quantum states is an excellent probe for fundamental physics, in particular for constraining extra short-range forces; as well as a tool in quantum optics and surface physics. The GRANIT is a follow-up project based on a second-generation spectrometer with ultra-high energy resolution, permanently installed in ILL. It has been constructed in framework of an ANR grant; and will become operational in 2011.

  10. Early Permian East-Ujimqin mafic-ultramafic and granitic rocks from the Xing'an-Mongolian Orogenic Belt, North China: Origin, chronology, and tectonic implications

    NASA Astrophysics Data System (ADS)

    Cheng, Yinhang; Teng, Xuejian; Li, Yanfeng; Li, Min; Zhang, Tianfu

    2014-12-01

    The East-Ujimqin complex, located north of the Erenhot-Hegenshan fault, North China, is composed of mafic-ultramafic and granitic rocks including peridotite, gabbro, alkali granite, and syenite. We investigated the tectonic setting, age, and anorogenic characteristics of the Xing'an-Mongolian Orogenic Belt (XMOB) through field investigation and microscopic and geochemical analyses of samples from the East-Ujimqin complex and LA-MC-ICP-MS zircon U-Pb dating of gabbro and alkali granite. Petrographic and geochemical studies of the complex indicate that this multiphase plutonic suite developed through a combination of fractional crystallization, assimilation processes, and magma mixing. The mafic-ultramafic rocks are alkaline and have within-plate geochemical characteristics, indicating anorogenic magmatism in an extensional setting and derivation from a mantle source. The mafic-ultramafic magmas triggered partial melting of the crust and generated the granitic rocks. The granitic rocks are alkali and metaluminous and have high Fe/(Fe + Mg) characteristics, all of which are common features of within-plate plutons. Zircon U-Pb geochronological dating of two samples of gabbro and alkali granite yielded ages of 280.8 ± 1.5 and 276.4 ± 0.7 Ma, placing them within the Early Permian. The zircon Hf isotopic data give inhomogeneous εHf(t) values of 8.2-14.7 for gabbroic zircons and extraordinary high εHf(t) values (8.9-12.5) for the alkali granite in magmatic zircons. Thus, we consider the East-Ujimqin mafic-ultramafic and granitic rocks to have been formed in an extensional tectonic setting caused by asthenospheric upwelling and lithospheric thinning. The sources of mafic-ultramafic and granitic rocks could be depleted garnet lherzolite mantle and juvenile continental lower crust, respectively. All the above indicate that an anorogenic magma event may have occurred in part of the XMOB during 280-276 Ma.

  11. APPLICATIONS OF CATHODOLUMINESCENCE OF QUARTZ AND FELDSPAR TO SEDIMENTARY PETROLOGY.

    USGS Publications Warehouse

    Ruppert, Leslie F.

    1987-01-01

    Cathodoluminescence (CL), the emission of visible light during electron bombardment, was first used in sandstone petrology in the mid-1960's. CL techniques are especially useful for determining the origin and source of quartz and feldspar, two of the most common constituents in clastic rocks. CL properties of both minerals are dependent on their temperature of crystallization, duration of cooling, and/or history of deformation. Detrital quartz and feldspar are typically derived from igneous and metamorphic sources and luminesce in the visible range whereas authigenic quartz and feldspar form at low temperatures and do not luminesce. Quantification of luminescent and non-luminescent quartz and feldspar with the scanning electron microscope, electron microprobe, or a commercial CL device can allow for the determination of origin, diagenesis, and source of clastic rocks when used in conjunction with field and other petrographic analyses.

  12. Preliminary report on a glass burial experiment in granite

    SciTech Connect

    Clark, D.E.; Zhu, B.F.; Robinson, R.S.; Wicks, G.G.

    1983-01-01

    Preliminary results of a two-year burial experiment in granite are discussed. Three compositions of simulated alkali borosilicate waste glasses were placed in boreholes approximately 350 meters deep. The glass sample configurations include mini-cans (stainless steel rings into which glass has been cast) and pineapple slices (thin sections from cylindrical blocks). Assemblies of these glass samples were prepared by stacking them together with granite, compacted bentonite and metal rings to provide several types of interfaces that are expected to occur in the repository. The assemblies were maintained at either ambient mine temperature (8 to 10/sup 0/C) or 90/sup 0/C. The glasses were analyzed before burial and after one month storage at 90/sup 0/C. The most extensive surface degradation occurred on the glasses interfaced with bentonite. In general, very little attack was observed on glass surfaces in contact with the other materials. The limited field and laboratory data are compared.

  13. Investigation of Potassium Feldspar Reactivity in Wet Supercritical CO2 by In Situ Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Thompson, C.; Widener, C.; Schaef, T.; Loring, J.; McGrail, B. P.

    2014-12-01

    Capture and subsequent storage of CO2 in deep geologic reservoirs is progressively being considered as a viable approach to reduce anthropogenic greenhouse gas emissions. In the long term, injected CO2 may become permanently entrapped as silicate minerals react with CO2 enriched fluids to form stable carbonate minerals. Potassium feldspars are highly abundant in the earth's crust and are present in the caprocks and storage formations of many target reservoirs. While the dissolution kinetics and carbonation reactions of feldspars have been well studied in the aqueous phase, comparatively little work has focused on K-feldspar reactivity in the CO2-rich fluid. In this study, we used in situ infrared spectroscopy to investigate the carbonation reactions of natural microcline samples. Experiments were carried out at 50 °C and 91 bar by circulating dry or wet supercritical CO2 (scCO2) past a thin film of powdered sample. Water concentrations ranged from 0% to 125% relative to saturation, and transmission-mode absorbance spectra were recorded as a function of time for 48 hours. No discernible reaction was detected when the samples were exposed to anhydrous scCO2. However, in fully water-saturated scCO2, a thin film of liquid-like water was observed on the samples' surfaces, and up to 0.6% of the microcline was converted to a carbonate phase. Potassium carbonate is the most likely reaction product, but minor amounts of sodium carbonate and siderite may also have formed from minor sample impurities. The extent of reaction appears to be related to the thickness of the water film and is likely a consequence of the film's ability to solvate and transport ions in the vicinity of the mineral surface. Other features observed in the spectra correspond to microcline dissolution and precipitation of amorphous silica. Implications about the role of water in these reactions and the relative effectiveness of alkali feldspars for mineral trapping of CO2 will be discussed.

  14. In situ 40K-40Ca ‘double-plus’ SIMS dating resolves Klokken feldspar 40K-40Ar paradox

    NASA Astrophysics Data System (ADS)

    Harrison, T. Mark; Heizler, Matthew T.; McKeegan, Kevin D.; Schmitt, Axel K.

    2010-11-01

    The 40K- 40Ca decay system has not been widely utilized as a geochronometer because quantification of radiogenic daughter is difficult except in old, extremely high K/Ca domains. Even these environments have not heretofore been exploited by ion microprobe analysis due to the very high mass resolving power (MRP) of 25,000 required to separate 40K + from 40Ca +. We introduce a method that utilizes doubly-charged K and Ca species which permits isotopic measurements to be made at relatively low MRP (~ 5000). We used this K-Ca 'double-plus' approach to address an enduring controversy in 40Ar/ 39Ar thermochronology revolving around exsolved alkali feldspars from the 1166 Ma Klokken syenite (southern Greenland). Ion microprobe 40K- 40Ca analysis of Klokken samples reveal both isochron and pseudoisochron behaviors that reflect episodic isotopic and chemical exchange of coarsely exsolved perthites and a near end-member K-feldspar until ≤ 719 Ma, and perhaps as late at ~ 400 Ma. Feldspar microtextures in the Klokken syenite evolved over a protracted interval by non-thermal processes (fluid-assisted recrystallization) and thus this sample makes a poor model from which to address the general validity of 40Ar/ 39Ar thermochronological methodologies.

  15. Carbonate diagenesis and feldspar alteration in fracture-related bleaching zones (Buntsandstein, central Germany): possible link to CO2-influenced fluid-mineral reactions

    NASA Astrophysics Data System (ADS)

    Wendler, Jens; Köster, Jens; Götze, Jens; Kasch, Norbert; Zisser, Norbert; Kley, Jonas; Pudlo, Dieter; Nover, Georg; Gaupp, Reinhard

    2012-01-01

    Fracture-related bleaching of Lower Triassic Buntsandstein red beds of central Germany was related to significant carbonate diagenesis and feldspar alteration caused by CO2-rich fluids. Using cathodoluminescence microscopy and spectroscopy combined with electron microprobe analysis and stable carbon isotope study, two major fluid-mineral interactions were detected: (1) zoned, joint-filling calcites and zoned pore-filling calcite cements, the latter replacing an earlier dolomite, were formed during bleaching. During the calcite formation and dolomite-calcite transformation, iron was incorporated into the calcite cement crystal cores due to Fe availability from the coeval bleaching. The dedolomitisation was ultimately associated with a volume increase. The related permeability decrease implies a certain degree of sealing and increasing retention of CO2, and the volume increase offers a minor CO2 sink. Carbonate-rich sandstone, therefore, can provide advantages for underground CO2 storage especially when situated in the fringes of the reservoir. (2) Alkali-feldspar alteration due to the bleaching fluids is reflected in cathodoluminescence spectra predominantly by the modulation of a brown luminescence emission peak (~620 nm). This peak represents a newly discovered effect related to alkali-feldspar alteration not solely associated with bleaching. Its modulation by the bleaching is interpreted to be due to Na depletion or a lattice defect in the Si-O bonds of the SiO4-tetrahedron. Alteration reflected by this luminescence feature has a destructive effect on the feldspars implying the possibility of diminished rock integrity due to bleaching and, hence, CO2-rich fluids. Two further CL spectral changes related to bleaching occur, (a) decreased intensity between around 570 nm assigned to Mn-depletion, and (b) increased amplitude and wavelength shift of the red (~680 nm) band. Converging evidence from carbonate and feldspar diagenesis, stable carbon isotope data and

  16. Mineralogical Control on Microbial Diversity in a Weathered Granite?

    NASA Astrophysics Data System (ADS)

    Gleeson, D.; Clipson, N.; McDermott, F.

    2003-12-01

    Mineral transformation reactions and the behaviour of metals in rock and soils are affected not only by physicochemical parameters but also by biological factors, particularly by microbial activity. Microbes inhabit a wide range of niches in surface and subsurface environments, with mineral-microbe interactions being generally poorly understood. The focus of this study is to elucidate the role of microbial activity in the weathering of common silicate minerals in granitic rocks. A site in the Wicklow Mountains (Ireland) has been identified that consists of an outcrop surface of Caledonian (ca. 400 million years old) pegmatitic granite from which large intact crystals of variably weathered muscovite, plagioclase, K-feldspar and quartz were sampled, together with whole-rock granite. Culture-based microbial approaches have been widely used to profile microbial communities, particularly from copiotrophic environments, but it is now well established that for oligotrophic environments such as those that would be expected on weathering faces, perhaps less than 1% of microbial diversity can be profiled by cultural means. A number of culture-independent molecular based approaches have been developed to profile microbial diversity and community structure. These rely on successfully isolating environmental DNA from a given environment, followed by the use of the polymerase chain reaction (PCR) to amplify the typically small quantities of extracted DNA. Amplified DNA can then be analysed using cloning based approaches as well as community fingerprinting systems such as denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (TRFLP) and ribosomal intergenic spacer analysis (RISA). Community DNA was extracted and the intergenic spacer region (ITS) between small (16S) and large (23S) bacterial subunit rRNA genes was amplified. RISA fragments were then electrophoresed on a non-denaturing polyacrylamide gel. Banding patterns suggest that

  17. New observations on the quartz monzodiorite-granite suite

    NASA Astrophysics Data System (ADS)

    Marvin, U. B.; Holmberg, B. B.; Lindstrom, M. M.; Martinez, R. R.

    Five new fragments of quartz monzodiorite (QMD) were identified in particles from soil 15403, which was collected from the boulder sampled as rock 15405, an impact-melt breccia containing clasts of KREEP basalt, QMD, granite, and a more primitive alkali norite. Petrographic and geochemical studies of the fragments show considerable variation in modal proportions and bulk composition. This heterogeneity is due to unrepresentative sampling in small fragments of coarse-grained rocks. Variations in the proportions of accessory minerals have marked effects on incompatible-trace-element concentrations and ratios. Semiquantitative calculations support the derivation of QMD from 60-percent fractional crystallization of a KREEP basalt magma as suggested by Hess (1989). Apollo 15 KREEP basalt cannot be the actual parent magma because the evolved rocks predate volcanic KREEP basalts. It is suggested that ancient KREEP basalt magmas have crystallized as plutons, with alkali norite clasts offering the only direct evidence of this precursor.

  18. Immiscible separation of metalliferous Fe/ Ti-oxide melts from fractionating alkali basalt: P-T-fO2 conditions and two-liquid elemental partitioning

    NASA Astrophysics Data System (ADS)

    Hurai, Vratislav; Simon, Klaus; Wiechert, Uwe; Hoefs, Jochen; Konečný, Patrik; Huraiová, Monika; Pironon, Jacques; Lipka, Jozef

    Globules of iron-dominated (59-69 wt% FeOtot) and titanium-dominated (43.5 wt% TiO2) oxide melts have been detected in igneous xenoliths from Pliocene-to-Pleistocene alkali basalts of the Western Carpathians. Fluid inclusion and mineral composition data indicate immiscible separation of the high-iron-oxide melt (HIM) at magmatic temperatures. The HIM separation occurred during clinopyroxene (augite) accumulation in an alkali trachybasalt and continued during crystallization of amphibole (kaersutite) and K-feldspar (anorthoclase), the latter coexisting with trachyte and alkalic rhyolite residual melts. Some HIM was also expelled from sub-alkalic rhyolite (70-77% SiO2), coexisting with An27-45 plagioclase and quartz in granitic (tonalite-trondhjemite) xenoliths. Oxygen fugacities during HIM separation range from -1.4to +0.6log units around the QFM buffer. A close genetic relationship between HIM-hosted xenoliths and mantle-derived basaltic magma is documented by mineral 18O values ranging from 4.9 to 5.9‰ V-SMOW. δD values of gabbroic kaersutite between -61 and -86‰ V-SMOW are in agreement with a presumed primary magmatic water source. Most trace elements, except Li, Rb and Cs, have preferentially partitioned into the HIM. The HIM/Si-melt partition coefficients for transition elements (Sc, V, Cr, Co, Ni) and base metals (Zn, Cu, Mo) are between 2-160, resulting in extreme enrichment in the HIM. La and Ce also concentrate in the silicic melt, whereas Tb-Tm in the HIM. Hence, the immiscible separation causes REE fractionation and produces residual silicic melt enriched in LREE and depleted in HREE. The weak fractionation among Tb-Tm and Yb, Lu can be attributed to recurrent extraction of the HIM from the magmatic system, while flat HREE chondrite-normalized patterns are interpreted to indicate no or little loss of the HIM.

  19. Climax granite test results

    SciTech Connect

    Ramspott, L.D.

    1980-01-15

    The Lawrence Livermore Laboratory (LLL), as part of the Nevada Nuclear Waste Storage Investigations (NNWSI) program, is carrying out in situ rock mechanics testing in the Climax granitic stock at the Nevada Test Site (NTS). This summary addresses only those field data taken to date that address thermomechanical modeling for a hard-rock repository. The results to be discussed include thermal measurements in a heater test that was conducted from October 1977 through July 1978, and stress and displacement measurements made during and after excavation of the canister storage drift for the Spent Fuel Test (SFT) in the Climax granite. Associated laboratory and field measurements are summarized. The rock temperature for a given applied heat load at a point in time and space can be adequately modeled with simple analytic calculations involving superposition and integration of numerous point source solutions. The input, for locations beyond about a meter from the source, can be a constant thermal conductivity and diffusivity. The value of thermal conductivity required to match the field data is as much as 25% different from laboratory-measured values. Therefore, unless we come to understand the mechanisms for this difference, a simple in situ test will be required to obtain a value for final repository design. Some sensitivity calculations have shown that the temperature field is about ten times more sensitive to conductivity than to diffusivity under the test conditions. The orthogonal array was designed to detect anisotropy. After considering all error sources, anisotropic efforts in the thermal field were less than 5 to 10%.

  20. Calorimetric investigation of the excess entropy of mixing in analbite-sanidine solid solutions: lack of evidence for Na,K short- range order and implications for two-feldspar thermometry.

    USGS Publications Warehouse

    Haselton, H.T.; Hovis, G.L.; Hemingway, B.S.; Robie, R.A.

    1983-01-01

    Heat capacities (5-380 K) have been measured by adiabatic calorimetry for five highly disordered alkali feldspars (Ab99Or1, Ab85Or15, Ab55Or45, Ab25Or75 and Ab1Or99). The thermodynamic and mineralogical implications of the results are discussed. The new data are also combined with recent data for plagioclases in order to derive a revised expression for the two-feldspar thermometer. T calculated from the revised expression tend to be higher than previous calculations.-J.A.Z.

  1. The Age of the Tres Piedras Granite, New Mexico, USA: A Case of Large Scale Isotopic Homogenization.

    NASA Astrophysics Data System (ADS)

    Das, R.; Holm, C.; Odom, L.

    2004-12-01

    The Tres Piedras Granite, exposed in the Tusas Mountain within the crystalline province of Eastern Rio Arriba Country, New Mexico, USA, is a granitic gneiss, which exhibits relict igneous textural features. The present study has obtained U-Pb zircon ages and Rb-Sr whole rock ages for the Tres Piedras Granite. The zircons removed from the Tres Piedras Granite delineate a chord that represents concordia at 1654 Ma and 98 Ma with a concordant point at 1654 Ma. Although there is no dated activity for this region at approximately 98 Ma, the episodic Pb loss is preferred because 1650 Ma diffusion analysis will not fit the data points. Rb - Sr whole rock data points obtained from the Tres Piedras Granite yields a distinct isochron for each outcrop sampled. The age and apparent initial Sr 87/ Sr86 ratios of the Tres Piedras Granite outcrops (approximately 50 square meters of collecting area at each exposure) are as follows: Tres Piedras Granite Type Locality: 1493 +/- 21 Ma and 0.7183 +/- 0.0006; Tres Piedras Granite - Tusas River Canyon: 1501 +/- 44Ma and 0.7145 +/- 0.0013; and Tres Piedras Granite - Tusas Mountain: 1661 +/- 17 Ma and 0.7102 +/- 0.0071. If the concordant zircon point at 1654 Ma indicated the time of crystallization, then some type of disturbance must have occurred in the Rb-Sr isotopic system of the Tres Piedras Granite to cause the Type locality and Tusas River Canyon isochron ages to differ from the zircon discordia intercept age. This difference is explained by large-scale isotope homogenization (during metamorphism) of Sr on the scale of kilometers. The metamorphic effect is also evident in thin section of the granites from the Type Locality and Tusas River Canyon. The feldspars are altered to mica and some of the quartz have been recrystallized to finer grains where as those from the Tusas Mountain are unaltered and have large grains of quartz and feldspars. Finally Lanzirotti and Hanson (1997) have dated the age of regional metamorphism from the

  2. The Age of the Tres Piedras Granite, New Mexico, USA: A Case of Large Scale Isotopic Homogenization

    NASA Astrophysics Data System (ADS)

    Das, R.; Holm, C.; Odom, L.

    2003-04-01

    The Tres Piedras Granite, exposed in the Tusas Mountain within the crystalline province of Eastern Rio Arriba Country, New Mexico, USA, is a granitic gneiss, which exhibits relict igneous textural features. The present study has obtained U-Pb zircon ages and Rb-Sr whole rock ages for the Tres Piedras Granite. The zircons removed from the Tres Piedras Granite delineate a chord that represents concordia at 1654 Ma and 98 Ma with a concordant point at 1654 Ma. Although there is no dated activity for this region at approximately 98 Ma, the episodic Pb loss is preferred because 1650 Ma diffusion analysis will not fit the data points. Rb-Sr whole rock data points obtained from the Tres Piedras Granite yields a distinct isochron for each outcrop sampled. The age and apparent initial Sr87/Sr86 ratios of the Tres Piedras Granite outcrops (approximately 50 square meters of collecting area at each exposure) are as follows: Tres Piedras Granite Type Locality: 1493 +/- 21 Ma and 0.7183 +/- 0.0006; Tres Piedras Granite -- Tusas River Canyon: 1501 +/- 44 Ma and 0.7145 +/- 0.0013; and Tres Piedras Granite -- Tusas Mountain: 1661 +/- 17 Ma and 0.7102 +/- 0.0071. If the concordant zircon point at 1654 Ma indicated the time of crystallization, then some type of disturbance must have occurred in the Rb-Sr isotopic system of the Tres Piedras Granite to cause the Type locality and Tusas River Canyon isochron ages to differ from the zircon discordia intercept age. This difference is explained by large-scale isotope homogenization (during metamorphism) of Sr on the scale of kilometers. The metamorphic effect is also evident in thin section of the granites from the Type Locality and Tusas River Canyon. The feldspars are altered to mica and some of the quartz have been recrystallized to finer grains where as those from the Tusas Mountain are unaltered and have large grains of quartz and feldspars. Finally Lanzirotti and Hanson (1997) have dated the age of regional metamorphism from the

  3. Late-Archaean Potassic Granite from the Bundelkhand Craton, Central India

    NASA Astrophysics Data System (ADS)

    Sarkar, Saheli; Saha, Lopamudra; Nasipuri, Pritam; Pati, Jayanta Kumar; Patole, Vishal

    2014-05-01

    Late-Archaean granitoids, show wide range of compositional variation: (i) TTG like granitoids with strongly fractionated REE patterns, which can be both Na-rich and K-Mg-rich (Sanukitoids) (ii) K-rich, Mg-poor biotite granites with less fractionated REE patterns and showing negative Eu-anomalies (type area, the Closepet Granite, Eastern Dharwar Craton, India). Amongst them Late-Archaean Sanukitoid or K-rich Closepet-type granitoids are most widely reported from the Archaean Cratons world-wide: Superior Province, Canada, Pilbara Craton, Yilgarn Craton, Antarctica, Limpopo Belt, Dharwar Craton. Several models proposed so far for the origin of these granitoids mostly include partial melting of hydrated basalts, reaction of slab melts with mantle wedge peridotites, re-melting of an enriched mantle and then mixing of the resulting melt with the anatectic melt generated during the melting of continental crust in subduction zone settings. The Closepet-type potassic biotite-rich granites were mostly produced by re-melting of TTG-like continental basements most likely in a subduction zone setting. Most of the proposed models suggest such partial melting to have taken place in garnet-stability field and some in orthopyroxene-stability field. In this study we report late-Archaean (~2.61-2.5 Ga) potassic granite from the Bundelkhand Craton in central India. The Late-Archaean granitoids recorded from the craton are intrusive into the high-grade supracrustal rocks of the craton. They are classified as coarse grained grey, pink porphyritic granite, medium granied pink granite, granite porphyry and fine-grained pink granite. The supracrustal rocks of the craton have been metamorphosed at ~2.78 Ga under high-pressure conditions (~17-18 kbar)- medium temperature (600ºC) in a subduction zone setting. The intrusions of the granitoids at ~2.6-2.5 Ga mark the stability of the craton. The pink-porphyritic granite studied here preserves plagioclase-potash feldspar

  4. A tin-mineralized topaz rhyolite dike with coeval topaz granite enclaves at Qiguling in the Qitianling tin district, southern China

    NASA Astrophysics Data System (ADS)

    Xie, Lei; Wang, Rucheng; Chen, Jun; Zhu, Jinchu; Zhang, Wenlan; Lu, Jianjun; Zhang, Rongqing

    2013-06-01

    The Qiguling topaz rhyolite is present as a dike within the Qitianling biotite granite batholith of the Nanling Range of southern China. Here, the rhyolitic dike, 4.5 m wide and 500 m long, contains enclaves of topaz granite. These rhyolites contain up to 72 wt.% SiO2, have alumina saturation index (ASI) > 1.1, and have groundmasses with estimated fluorine contents of approximately 1.5 wt.%. Textural relationships provide evidence of a quenched silicate melt that contains quartz, K-feldspar, albite, and zinnwaldite phenocrysts in a groundmass containing abundant topaz. The rhyolites in the study area are also strongly enriched in tin (90-2700 ppm), and generally have a close association between cassiterite and zinnwaldite, although cassiterite is also present as sponge-textured fills between rock-forming minerals. Granite enclaves and their hosted rhyolite have similar major geochemical compositions and mineralogies to each other. Zircon U-Pb dating indicates that the topaz rhyolite (147-150 Ma) and topaz granite enclaves (154 Ma) were formed contemporaneously, with ages that overlap within analytical uncertainty. In addition, the major and trace element compositions of the rhyolite and their granite enclaves are dissimilar to those of the hosting Qitianling biotite granite. This discovery of granite enclaves within rhyolite dikes suggests the presence of a topaz-bearing granite body at depth that may host tin mineralization. The expected hidden tin granite may be of great interest in the further exploration.

  5. Experimental melts from crustal rocks: A lithochemical constraint on granite petrogenesis

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Zheng, Yong-Fei; Zhao, Zi-Fu

    2016-12-01

    alkali-rich granitic melts from intermediate magnesian tonalite or granodiorite, it is also possible for ferroan, alkali-rich and fluorine-rich granitic melts to be produced by dehydration melting of moderately magnesian mica-bearing materials at T ≤ 900 °C. Nevertheless, the low-T melts are more peraluminous than the high-T ones. Therefore, the composition of source rocks exerts the first-order control on the composition of granitic melts in closed systems. In addition, the dehydration melting of crustal rocks under different conditions is also responsible for variations in the composition of granites.

  6. Early to late Yanshanian I-type granites in Fujian Province, SE China: Implications for the tectonic setting and Mo mineralization

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Long; Ni, Pei; Yan, Jun; Wu, Chang-Zhi; Dai, Bao-Zhang; Xu, Ying-Feng

    2017-04-01

    The Cathaysia Block is the southeastern part of the South China Block in Southeast (SE) China, and it hosts voluminous late Mesozoic I-, S-, and A-type granitoids, as well as minor highly fractionated granites. We present here zircon U-Pb age data and Nd-Hf isotopic data for the Dayang and Juzhou granites, together with new petrological and geochemical analyses. The Dayang pluton consists of fine-grained two-mica monzonitic granites in which the plagioclases exhibit zoning and poikilitic textures. In contrast, the Juzhou pluton consists of medium- to coarse-grained biotite K-feldspar granites that lack zoning and poikilitic textures. The emplacement ages are 143 ± 2.3 Ma for the Dayang pluton and 133 ± 2.1 Ma for the Juzhou pluton according to zircon U-Pb isotope analyses. The Dayang and Juzhou granites are both metaluminous and belong to the shoshonitic series. The Dayang granite exhibits very flat REE patterns, showing the tetrad effect, and the spidergrams show striking negative Ba, Sr, Nb, and Ti anomalies and a positive Ta anomaly. In contrast, the Juzhou granite has sloping REE patterns, but like the Dayang granite it also has striking negative Ba, Sr, Nb, Ta, and Ti anomalies. Petrographic and geochemical evidence indicates that the Dayang granite is a highly fractionated I-type granite and that the Juzhou granite is a typical I-type granite. The tetrad effect in the Dayang granite can be interpreted in terms of melt-rock interactions at a late stage of magma evolution, whereas the main mechanism during the evolution of the Juzhou magma was fractionation of plagioclase, biotite, hornblende, apatite, zircon, and allanite. Nd-Hf isotope data suggest that the Dayang and Juzhou granites were both formed partial melting of Paleoproterozoic basement rock and juvenile material (underplating basalts or Mayuan Group amphibolites), with the Juzhou granite having a greater contribution from juvenile material than the Dayang granite. Our new data, together with

  7. Are cumulate granites characteristic of migmatitic gneiss domes? An example from the Fosdick Mountains of Marie Byrd Land, West Antarctica

    NASA Astrophysics Data System (ADS)

    Brown, Caitlin R.; Yakymchuk, Chris; Brown, Michael; Fanning, C. Mark; Korhonen, Fawna J.; Piccoli, Philip M.; Siddoway, Christine S.

    2014-05-01

    In the Fosdick migmatite-granite complex, Cretaceous granites yield U-Pb zircon crystallization ages of 117-102 Ma, corresponding to the timing of doming during a regional transition from transpression to transtension that facilitated exhumation of the complex. The results of P-T phase equilibria modeling and occurrence of leucosome-bearing normal-sense shear zones are consistent with suprasolidus conditions during the early stages of exhumation. Commonly, leucosomes in normal-sense shear zones and sub-horizontal sheeted granites within the complex have coarse blocky plagioclase or K-feldspar grains with interstitial quartz, suggesting a cumulate origin. The Cretaceous granites have whole rock Sr and Nd and zircon Hf and O isotope compositions consistent with derivation from regionally-associated source materials comprising a Devonian-Carboniferous calc-alkaline granodiorite suite (dominant component) and a Cambrian metaturbidite sequence (minor component). However, the major and trace element chemistry of these granites is highly variable and inconsistent with melt compositions expected from simple anatexis of such source materials. Furthermore, major element compositions are inconsistent with those of cotectic granites and more variable than those reported from melt inclusions. The granites typically have large positive Eu anomalies and the overall geochemistry is consistent with the early accumulation of feldspar and quartz, and drainage of fractionated melt. These granites are interpreted to record the collapse of sub-horizontal partially-crystallized layers of magma by filter pressing during vertical shortening associated with dome exhumation, leaving behind cumulate-rich residues. Consequently, the extracted melt is expected to be more evolved and variable than compositions of experimental melts and melt inclusions in peritectic minerals. A potential sink for melt complementary to the cumulate granites is represented by the Cretaceous Byrd Coast Granite suite

  8. Immersion Freezing of Potassium-feldspar and related Natural Samples

    NASA Astrophysics Data System (ADS)

    Zolles, Tobias; Burkart, Julia; Grothe, Hinrich

    2014-05-01

    Ice nucleation activities of mineral dust particles were investigated. The experiments were carried out using cryo-microscopy which is an oil-emulsion based method. The immersion freezing mode was addressed with this experimental setup. The studied samples were common inorganic atmospheric aerosols. Single minerals and natural samples were tested [1]. Mineral dust particles are active ice nuclei in the immersion freezing mode up to 256 K. Only recently potassium-feldspar has been identified as the by far most active ice nucleus followed by other silicates [2, 3]. Natural samples which contain more than 5% K-feldspar are also active. The activity of K-feldspar can be attributed to its surface structure and the presence of potassium ions in the surface. Ice nucleation on mineral dust particles takes place at certain nucleation sites. These sites are domains of molecular sites where water is stabilized in an ice-like structure. To form a good ice nucleation site, the site density of molecular sites needs to be high. More molecular sites are able to form larger domains on the surface, leading to better nucleation sites. This suggests further that the nucleation temperature of mineral dust particles scales with the surface area. The exact configuration of a molecular site is material specific and influenced by the local chemistry and structure of the dust particle surface. A favourable arrangement of the functional groups like surface hydroxyl and oxygen is proposed for the K-feldspar. Potassium ions seem to have a positive or neutral effect on the ice nucleation property of a silicate surface while cations with a higher charge density like calcium and sodium have a negative influence. K-feldspar is abundant in the environment and actually is the most important dust ice nucleus in the atmosphere. The nucleation temperatures of the K-feldspar particles are sufficient to enable further meteorological glaciation processes in high altitude clouds. References [1] Zolles, T

  9. Dirty or Tidy ? Contrasting peraluminous granites in a collapsing Orogen: Examples from the French Massif Central

    NASA Astrophysics Data System (ADS)

    Villaros, Arnaud; Pichavant, Michel; Moyen, Jean-François; Cuney, Michel; Deveaud, Sarah; Gloaguen, Eric; Melleton, Jérémie

    2013-04-01

    Post collisional collapse commonly enhances crustal melting. Such melting typically produces peraluminous granitic magmas. In the French Massif Central, a mid-crustal segment of the western Variscan belt, two large granitic bodies were produced during the collapse of the Variscan Belt. The St Sylvestre Leucogranitic Complex (SSyL) in the western part of the Massif Central and the Velay Migmatitic Complex (VMC) in the Eastern part. Although these two complexes are formed in similar geodynamic context they present meaningful petrological and geochemical differences. The VMC (~305 Ma) is clearly intrusive in migmatitic terranes. The migmatitic host recorded two successive melting events M3 (720 °C and 5kb) dated between 335 and 315 Ma and M4 (850°C and 4 kb) dated at 305 Ma. The compositions of the VMC are strictly H2O-undersaturated and ranges from leucogranitic to granodioritic. Three main successive granite types have been distinguished (1) A heterogeneous banded biotite granite, (2) A main biotite-cordierite granite, where cordierite can be prismatic, as cockade or pseudomorphic (3) a late magmatic with large K-feldspar phenocryst and prismatic cordierite. The compositions of the VMC granites are quite similar to typical Australian S-type granites in the sense that they also show a positive correlation between ferromagnesian abundance and aluminosity. The SSyL (~320 Ma) is intrusive in upper greenschist facies to upper amphibolite migmatitic metasediment and orthogneiss (~3kb). The compositional variety observed in the SSyL suggests a continuous trend from a moderately mafic, peraluminous magma (cd- and sill- granite) to a H2O saturated granite ("two-mica" granite) facies and finally to an extremely felsic, H2O-saturated magma. Three granitic units have been recognized in the SSyL: (1) the western "Brame Unit" composed of the less evolved cd- and sill- granite facies (2) the central "St Sylvestre Unit", composed mainly by U-rich two-mica granite, intruded by two

  10. Intensive low-temperature tectono-hydrothermal overprint of peraluminous rare-metal granite: a case study from the Dlhá dolina valley (Gemericum, Slovakia)

    NASA Astrophysics Data System (ADS)

    Breiter, Karel; Broska, Igor; Uher, Pavel

    2015-02-01

    A unique case of low-temperature metamorphic (hydrothermal) overprint of peraluminous, highly evolved rare-metal S-type granite is described. The hidden Dlhá dolina granite pluton of Permian age (Western Carpathians, eastern Slovakia) is composed of barren biotite granite, mineralized Li-mica granite and albitite. Based on whole-rock chemical data and evaluation of compositional variations of rock-forming and accessory minerals (Rb-P-enriched K-feldspar and albite; biotite, zinnwaldite and di-octahedral micas; Hf-(Sc)-rich zircon, fluorapatite, topaz, schorlitic tourmaline), the following evolutionary scenario is proposed: (1) Intrusion of evolved peraluminous melt enriched in Li, B, P, F, Sn, Nb, Ta, and W took place followed by intrusion of a large body of biotite granites into Paleozoic metapelites and metarhyolite tuffs; (2) The highly evolved melt differentiated in situ forming tourmaline-bearing Li-biotite granite at the bottom, topaz-zinnwaldite granite in the middle, and quartz albitite to albitite at the top of the cupola. The main part of the Sn, Nb, and Ta crystallized from the melt as disseminated cassiterite and Nb-Ta oxide minerals within the albitite, while disseminated wolframite appears mainly within the topaz-zinnwaldite granite. The fluid separated from the last portion of crystallized magma caused small scale greisenization of the albitite; (3) Alpine (Cretaceous) thrusting strongly tectonized and mylonitized the upper part of the pluton. Hydrothermal low-temperature fluids enriched in Ca, Mg, and CO2 unfiltered mechanically damaged granite. This fluid-driven overprint caused formation of carbonate veinlets, alteration and release of phosphorus from crystal lattice of feldspars and Li from micas, precipitating secondary Sr-enriched apatite and Mg-rich micas. Consequently, all bulk-rock and mineral markers were reset and now represent the P-T conditions of the Alpine overprint.

  11. Thermoluminescence signal in K-feldspar grains: Revisited.

    PubMed

    Gong, Gelian; Sun, Weidong; Xu, Hongyun

    2015-11-01

    Recent work has shown that infrared stimulated luminescence (IRSL) signals in sedimentary coarse-grain K-feldspars are derived mainly from high temperature thermoluminescence (TL) peaks around 400°C, and the fading components of the IRSL signal can be preferentially removed by prior IR stimulation at relatively low temperature. Considering the complexity of TL signal for very old samples, we may choose non-fading components from K-feldspar TL signals using the combination of optical and thermal activation methods. This paper examines a protocol of post-IR isothermal TL (i.e. pIRITL) signal for sedimentary coarse-grain K-feldspars, which results from isothermal TL measurements following elevated temperature IR bleaching. We show that a sum of two exponential decay functions can fit well to the pIRITL decay curves, and both the holding temperature for isothermal TL measurements and the prior elevated temperature IR bleaching can affect greatly the fast components of pIRITL signal. The dose response ranges of pIRITL signal are wider than those of post-IR IRSL signals, but the relative high residual pIRITL signal means that it is not appropriate for dating young samples. It is expected that one isothermal TL signal for K-feldspar measured at ~400°C following IR bleaching at 290°C (i.e. pIRITL400) is useful for dating very old samples.

  12. Zarzalejo granite (Spain). A nomination for 'Global Heritage Stone Resource'

    NASA Astrophysics Data System (ADS)

    Freire Lista, David Martin; Fort, Rafael; José Varas-Muriel, María

    2015-04-01

    Zarzalejo granite is quarried in the Sierra de Guadarrama (Spanish Central System) foothills, in and around Zarzalejo village, in the province of Madrid, Spain. It is an inequigranular monzogranite medium-to-coarse grained, with a slight porphyritic texture (feldspar phenocrysts) and mafic micro-grained enclaves. In this abstract the candidacy of Zarzalejo granite as a "Global Heritage Resource Stone" (GHSR) is presented. This stone ideally fits the newly proposed designation as it has been used in many heritage buildings and its good petrophysical properties and durability have allowed well preserved constructions such as a Roman road, San Pedro Church in Zarzalejo (1492), Descalzas Reales Monastery in Madrid (1559-1564) and the San Lorenzo del Escorial Royal Monastery (1563-1584), to be declared a World Heritage Site by UNESCO. This level of construction has been a landmark in the extraction and proliferation of historic quarries created due to the high demand that such colossal monuments and buildings with granite, have required for their construction. In the mid-20th century, More, Zarzalejo granite has also been used in restoration works including the Royal Palace and the Reina Sofía Museum (2001-2005), both buildings in Madrid, Spain. Extraction of granite ashlars from tors has been a very frequent activity in the Zarzalejo neighbourhood until mid-twentieth century. So there is also a need to preserve these historic quarries. This type of stone has created a landscape that has been preserved as an open-air museum today where you can see the marks left in the granite due to historic quarry operations. The granite industry has been one of the main pillars of the Zarzalejo regional economy. For centuries, the local community have been engaged in quarrying and have created a cultural landscape based on its building stone. A quarryman monument has been erected in Zarzalejo in honor of this traditional craft as well as an architecture museum at San Lorenzo del

  13. Sources of granite magmatism in the Embu Terrane (Ribeira Belt, Brazil): Neoproterozoic crust recycling constrained by elemental and isotope (Sr-Nd-Pb) geochemistry

    NASA Astrophysics Data System (ADS)

    Alves, Adriana; Janasi, Valdecir de Assis; Campos Neto, Mario da Costa

    2016-07-01

    Whole rock elemental and Sr-Nd isotope geochemistry and in situ K-feldspar Pb isotope geochemistry were used to identify the sources involved in the genesis of Neoproterozoic granites from the Embu Terrane, Ribeira Belt, SE Brazil. Granite magmatism spanned over 200 Ma (810-580 Ma), and is dominated by crust-derived relatively low-T (850-750 °C, zircon saturation) biotite granites to biotite-muscovite granites. Two Cryogenian plutons show the least negative εNdt (-8 to -10) and highest mg# (30-40) of the whole set. Their compositions are strongly contrasted, implying distinct sources for the peraluminous (ASI ∼ 1.2) ∼660 Ma Serra do Quebra-Cangalha batholith (metasedimentary rocks from relatively young upper crust with high Rb/Sr and low Th/U) and the metaluminous (ASI = 0.96-1.00) ∼ 630 Ma Santa Catarina Granite. Although not typical, the geochemical signature of these granites may reflect a continental margin arc environment, and they could be products of a prolonged period of oceanic plate consumption started at ∼810 Ma. The predominant Ediacaran (595-580 Ma) plutons have a spread of compositions from biotite granites with SiO2 as low as ∼65% (e.g., Itapeti, Mauá, Sabaúna and Lagoinha granites) to fractionated muscovite granites (Mogi das Cruzes, Santa Branca and Guacuri granites; up to ∼75% SiO2). εNdT are characteristically negative (-12 to -18), with corresponding Nd TDM indicating sources with Paleoproterozoic mean crustal ages (2.0-2.5 Ga). The Guacuri and Santa Branca muscovite granites have the more negative εNdt, highest 87Sr/86Srt (0.714-0.717) and lowest 208Pb/206Pb and 207Pb/206Pb, consistent with an old metasedimentary source with low time-integrated Rb/Sr. However, a positive Nd-Sr isotope correlation is suggested by data from the other granites, and would be consistent with mixing between an older source predominant in the Mauá granite and a younger, high Rb/Sr source that is more abundant in the Lagoinha granite sample. The

  14. Shocked Feldspar Distributions From Global Thermal Emission Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Johnson, J. R.; Staid, M. I.; Byrnes, J. M.

    2006-12-01

    Laboratory spectra of experimentally shocked feldspars (anorthosite and albitite rocks) were included in spectral deconvolutions of thermal infrared data acquired from the Thermal Emission Spectrometer (TES) on Mars Global Surveyor. This work expands on previous investigations in Cimmeria Terra in which model results suggested that exposures of shocked feldspars were not necessarily restricted to regions near morphologically fresh impact craters (Johnson et al., Icarus, 180, 60-74, 2006). We used a multiple endmember spectral mixing algorithm (MESMA) to model global TES emissivity data sets at 1 pixel/degree (ppd) resolution (Bandfield, JGR, 107, 2001JE001510, 2002). TES data were restricted to surface temperatures >250 K, atmospheric dust opacities < 0.30, water ice opacities < 0.15, and emission angles < 30 degrees. Data marked with anomalies (e.g., phase inversions) were not used. The emissivity data were further constrained to exclude pixels with TES bolometric albedo values > 0.24 (a proxy for regions with abundant dust cover). MESMA deconvolutions using spectral endmember libraries containing typical minerals and glasses plus atmospheric endmembers (CO2, dust, water ice) were supplemented by separate model runs that incorporated intermediate and highly shocked feldspar spectra (27 GPa, 56 GPa). In the latter models, final results were constrained by selecting only those pixels modeled with > 33% combined surface minerals (i.e., < 67% modeled atmospheric contribution to the TES signal), as well as > 10% shocked feldspar abundances. Models also were constrained to exhibit model root-mean-square errors < 0.0045 that also improved upon inclusion of shocked feldspar spectra. Preliminary results suggest that spatially contiguous regions of shocked feldspars are found in four main regions: Solis Planum, Acidalia Planitia, Syrtis Major Planum, and northern Utopia Planitia. Subsequent work will involve detailed analyses of these regions using higher resolution TES

  15. Compositions of micas in peraluminous granitoids of the eastern Arabian shield - Implications for petrogenesis and tectonic setting of highly evolved, rare-metal enriched granites

    USGS Publications Warehouse

    du Bray, E.A.

    1994-01-01

    Compositions and pleochroism of micas in fourteen peraluminous alkali-feldspar granites in the eastern part of the Late Proterozoic Arabian Shield are unlike those of micas (principally biotite) in most calc-alkaline granitoid rocks. Compositions of these micas are distinguished by elevated abundances of Li2O, F, and numerous cations and by low MgO abundances. These micas, constituents of highly evolved rare-metal enriched granitoids, represent an iron-lithium substitution series that ranges from lithium-poor siderophyllite to lithium-rich ferroan lepidolite. The eastern Arabian Shield also hosts six epizonal granitoids that contain colorless micas. Compositions of these micas, mostly muscovite, and their host granitoids are distinct from those of the iron-lithium micas and their host granitoids. Compositions of the analyzed micas have a number of petrogenetic implications. The twenty granitoids containing these micas form three compositional groups that reflect genesis in particular tectonic regimes; mica compositions define the same three groups. The presence of magmatic muscovite in six of these shallowly crystallized granitoids conflicts with experimental data indicating muscovite stability at pressures greater than 3 kbar. Muscovite in the Arabian granitoids probably results from its non-ideal composition; the presence of muscovite cannot be used as a pressure indicator. Finally, mineral/matrix partition coefficients are significantly greater than 1.0 for a number of cations, the rare-earth elements in particular, in many of the analyzed iron-lithium micas. Involvement of these types of micas in partial melting or fractionation processes can have a major influence on silicate liquid compositions. ?? 1994 Springer-Verlag.

  16. (Energy related studies utilizing K-feldspar thermochronology)

    SciTech Connect

    Not Available

    1992-01-01

    In our second year of current funding cycle, we have investigated the Ar diffusion properties and microstructures of K-feldspars and the application of domain theory to natural K-feldspars. We completed a combined TEM and argon diffusion study of the effect of laboratory heat treatment on the microstructure and kinetic properties of K-feldspar. We conclude in companion papers that, with one minor exception, no observable change in the diffusion behavior occurs during laboratory extraction procedures until significant fusion occurs at about 1100{degrees}C. The effect that is observed involves a correlation between the homogenization of cryptoperthite lamelle and the apparent increase in retentivity of about 5% of the argon in the K-feldspar under study. We can explain this effect of both as an artifact of the experiment or the loss of a diffusion boundary. Experiments are being considered to resolve this question. Refinements have been made to our experimental protocol that appears that greatly enhance the retrieval of multi-activation energies from K-feldspars. We have applied the multi-domain model to a variety of natural environments (Valles Caldera, Red River fault, Appalachian basin) with some surprising results. Detailed {sup 40}Ar/{sup 39} Ar coverage of the Red River shear zone, thought to be responsible for the accommodation of a significant fraction of the Indo-Asian convergence, strongly suggests that our technique can precisely date both the termination of ductile strike-slip motion and the initiation of normal faulting. Work has continued on improving our numerical codes for calculating thermal histories and the development of computer based graphing tools has significantly increased our productivity.

  17. Feldspars as a source of nutrients for microorganisms

    USGS Publications Warehouse

    Rogers, J.R.; Bennett, P.C.; Choi, W.J.

    1998-01-01

    Phosphorus and nitrogen are essential macronutrients necessary for the survival of virtually all living organisms. In groundwater systems, these nutrients can be quite scarce and can represent limiting elements for growth of subsurface microorganisms. In this study we examined silicate sources of these elements by characterizing the colonization and weathering of feldspars in situ using field microcosms. We found that in carbon-rich anoxic groundwaters where P and N are scarce, feldspars that contain inclusions of P-minerals such as apatite are preferentially colonized over similar feldspars without P. A microcline from S. Dakota, which contains 0.24% P2O5 but ,1 mmol/ g NH , was heavily colonized 1 4 and deeply weathered. A similar microcline from Ontario, which has no detectable P or NH , was barren of attached organisms and completely unweathered after one year. An- 1 4 orthoclase (0.28% P2O5, ;1 mmol/g NH ) was very heavily colonized and weathered, 1 4 whereas plagioclase specimens (,0.01% P, ,1 mmmol/g NH ) were uncolonized and 1 4 unweathered. In addition, the observed weathering rates are faster than expected based on laboratory rates. We propose that this system is particularly sensitive to the availability of P, and the native subsurface microorganisms have developed biochemical strategies to aggressively scavenge P (or some other essential nutrient such as Fe31 ) from resistant feldspars. The result of this interaction is that only minerals containing P will be signifi- cantly colonized, and these feldspars will be preferentially destroyed, as the subsurface microbial community scavenges a limiting nutrient.

  18. Evidence for the compaction of feldspar-rich cumulates in the Pleasant Bay layered intrusion, coastal Maine

    SciTech Connect

    Horrigan, E.K. )

    1993-03-01

    The Pleasant Bay intrusion is roughly 12 km by 20 km. It consists of prominent rhythmic layers, up to 100 m thick, that grade from chilled gabbro on the base, to coarse-grained gabbroic, dioritic, or granitic rocks on the top. These layers were formed by multiple injections of basalt into a large chamber of silicic magma. The focus of this study is on one layer that is about 100 m thick, and is overlain by another basally chilled gabbroic layer at least 50 m thick. Silicic pipes and veins extend upward into the overlying gabbroic chill. The lower part of the layer has dominant calcic plagioclase, An60, augite, and olivine, with subordinate hornblende and biotite. The uppermost part has dominant sodic plagioclase, An20, and two pyroxenes with subordinate quartz, K-feldspar and hornblende. SiO[sub 2] and MgO vary from 49% and 5% at the base to 58% and 1% at the top, respectively. The top 7 m of this layer are characterized by variably deformed minerals. The deformation grades from bent biotite and plagioclase near the bottom to sutured plagioclase at the top. Pockets of undeformed quartz and K-feldspar in the uppermost rocks demonstrate that interstitial liquid was present during a after compaction. The pipes and veins probably represent trapped liquid and some crystals that were expelled into the overlying gabbroic chill.

  19. Bluish granites from Extremadura (Spain): a radiological evaluation.

    NASA Astrophysics Data System (ADS)

    Pereira, Dolores; Neves, Luís.; Peinado, Mercedes; Pereira, Alcides; Rodríguez, Leticia; António Blanco, José

    2010-05-01

    We have found in the area of Trujillo (Extremadura, Spain) a variety of striking bluish granites, outcropping within the Plasenzuela pluton. They are all quarried under different names and are characterized by leucocratic minerals such as quartz, feldspar (both potassium and plagioclase), sometimes giving a fenocrystic texture and muscovite, with some biotite. As accessory phases, idiomorphic tourmaline is found. Recently a bluish phosphate distributed in the whole rock was detected, included within most mineral phases and fillings from stressed structures that are cutting the rock. We attribute the bluish color of the granites to this phosphate. Although biotite is almost always transformed to chlorite, the rock gives an excellent response to be polished. Physico-mechanical properties make this bluish granite a perfect option for most applications. Absorption coefficient is rather low and alteration by thermal changes has not been observed. A secondary facies with yellow colour also occurs, spatially close to the topographic surface, and probably represents an alteration product of the original granite. This facies is also commercialized as ornamental stone. A radiological survey was carried out in the field, using a gamma ray spectrometer. The radiological background is quite homogeneous in the pluton, without significant differences between gamma ray fluxes of both facies (altered and non altered). The average contents of U, Th and K2O determined in situ with the spectrometer are 7.4 ppm, 0.8 ppm and 3.67%, respectively (n=15). Using U as a Ra proxy, the I index of the EU technical document 112 can be determined, and results in a value of 0.64 for the referred composition. This implies that the rock can be used without any restrictions for building purposes. However, a marked difference was observed in radon exhalation tests carried out in laboratorial facilities. The dominant blue variety shows radon exhalation rates comprised between 0.02 and 0.04 Bq.kg-1.h-1

  20. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  1. Age of granites of Wrangel Island metamorphic complex

    NASA Astrophysics Data System (ADS)

    Luchitskaya, Marina; Sergeev, Sergey; Sokolov, Sergey; Tuchkova, Marianna

    2014-05-01

    Within huge arctic shelf of Eastern-Siberian and Chukchi seas the metamorphic basement (Wrangel complex, Berri Formation) is exposed only on the Wrangel Island. There are different points of views on the age of metamorphic rocks of Wrangel complex (Berri Formation): (1) Neoproterozoic (Kameneva, 1970; Ageev, 1979; Kos'ko et al., 1993, 2003), (2) Devonian (Til'man et al., 1964, 1970; Ganelin, 1989). Metamorphic basement is represented by stratified complex, composed of dislocated metavolcanic, metavolcaniclastic and metasedimentary rocks (schists, metasandstones, metaconglomerated) with single lenses and layers of carbonate rocks (Wrangel Island…, 2003). Among basement rocks in the central part of Wrangel Island there are felsic intrusive bodies. They form small tabular bodies from tens centimeters to 70-80 meters in thickness, rarely dikes and small stocks (up to 20 x 30 m) and are composed of granite-porphyres, rarely muscovite porphyr-like granites and granosyenites (Wrangel Island…, 2003). The age of intrusions allow to determine the age of basement formation. Earlier the age of intrusions was determined by different methods and correlated to the boundary between Neoproterozoic and Paleozoic: K-Ar 570-603 Ma, Pb-Pb 590±50 Ma (S.M. Pavlov, Institute of Precambrian Geology and Geochronology, USSR Academy of Sciences), Rb-Sr 475±31 Ma (I.M.Vasil'eva, Institute of Precambrian Geology and Geochronology, USSR Academy of Sciences), U-Pb 609, 633, 677 Ma (Geological Survey of Canada) (Wrangel Island…, 2003; Kos'ko et al., 1993; Cecile et al., 1991). In the lower part of metamorphic rocks of Wrangel complex there are conformable tabular bodies of gneissosed and foliated granitoides. The latter are meramorphosed and transformed in biotite-muscovite-feldspar-quartz-sericite and muscovite-feldspar-quartz-sericite gneisses and schists, where relics of primary minerals (quartz, plagioclase, potassium feldspar, rarely biotite and muscovite) and equigranular granitic

  2. Vermont granite workers' mortality study.

    PubMed

    Costello, J; Graham, W G

    1988-01-01

    A cohort mortality study was carried out in Vermont granite workers who had been employed between the years 1950 and 1982. The cohort included men who had been exposed to high levels of granite dust prior to 1938-1940 (average cutters to 40 million parts/cubic foot), and those employed at dust levels after 1940, which on average were less than 10 million parts/cubic foot. Deaths were coded by a qualified nosologist and standardized mortality ratios were calculated. The results confirm previous studies that show that death rates from silicosis and tuberculosis, the major health threats in the years before 1940, were essentially eliminated after dust controls. However, we found excessive mortality rates from lung cancer in stone shed workers who had been employed prior to 1930, and hence had been exposed to high levels of granite dust. When information was available, 100% of those dying from lung cancer had been smokers.

  3. Geochemical characteristics and origin of the Lebowa Granite Suite, Bushveld Complex

    USGS Publications Warehouse

    Hill, M.; Barker, F.; Hunter, D.; Knight, R.

    1996-01-01

    The ??? 2052-Ma Lebowa Granite Suite (LGS) represents the culminating phase of an Early Proterozoic magmatic cycle in the Central Transvaal area of the Kaapvaal Province. Following extrusion of at least 200,000 km3 of intermediate to acid volcanics (Rooiberg Felsite), mafic and ultramafic magmas intruded at 2065 Ma to form the Rustenburg Layered Suite (RLS). The LGS includes the Nebo, Makhutso, Bobbejaankop, Lease, and Klipkloof granites. The Nebo Granite intruded the Rooiberg Felsite as sheets up to 4 km thick above the RLS. Smaller stocks of the other granites crosscut the Nebo. We determined major- and trace-element compositions and oxygen, Rb-Sr, and Sm-Nd isotope ratios for samples of: Nebo Granite; Rooiberg Felsite; granophyre and granophyric granite; Makhutso, Bobbejaankop, and Lease granites; and feldspar porphyry from areas throughout the exposed area of the LGS (Dennilton, Verena Balmoral, Enkeldoorn, Sekhukhune Plateau, Zaaiplaats-Potgeitersrus, and Western Transvaal). Coherent floor-to-roof geochemical trends exist in some areas, although it is not possible to model them convincingly. Regional variations in geochemistry exist and likely are related to source variations in the estimated 200,000 km3 of the Nebo Granite sheets. ??18O for the LGS range from +5.9??? to +9.5???; if these are approximate primary magmatic values, pelitic sediments cannot have been an important source for the LGS. The Rb-Sr isotope system has been altered, a finding consistent with previous studies. A mineral isochron for Nebo Granite near Dennilton yields a York regression age of 1995 ?? 99 Ma, with initial 143Nd/144Nd = 0.50978??8 and ???CHUR=-5.12. Samples from the Sekhukhune Plateau have higher 143Nd/144Nd ratios than do Dennilton-area samples, suggesting that the former originated from older or less LREE-enriched sources. We suggest that intrusion of mafic to ultramafic magmas at depth in the continental crust triggered melting of Archean quartzofeldspathic crystalline

  4. New methodical developments for GRANIT

    SciTech Connect

    Baessler, Stefan; Nesvizhevsky, V.; Toperverg, B; Zhernenkov, K.; Gagarski, A; Lychagin, E; Muzychka, A; Strelkov, A; Mietke, A

    2011-01-01

    New methodical developments for the GRANIT spectrometer address further improvements of the critical parameters of this experimental installation, as well as its applications to new fields of research. Keeping in mind an extremely small fraction of ultra cold neutrons (UCN) that could be bound in gravitational quantum states, we look for methods to increase statistics due to: developing UCN sources with maximum phase-space density, counting simultaneously a large fraction of neutrons using position-sensitive detectors, and decreasing detector backgrounds. Also we explore an eventual application of the GRANIT spectrometer beyond the scope of its initial goals, for instance, for reflectometry with UCN.

  5. Status of LLNL granite projects

    SciTech Connect

    Ramspott, L.D.

    1980-12-31

    The status of LLNL Projects dealing with nuclear waste disposal in granitic rocks is reviewed. This review covers work done subsequent to the June 1979 Workshop on Thermomechanical Modeling for a Hardrock Waste Repository and is prepared for the July 1980 Workshop on Thermomechanical-Hydrochemical Modeling for a Hardrock Waste Repository. Topics reviewed include laboratory determination of thermal, mechanical, and transport properties of rocks at conditions simulating a deep geologic repository, and field testing at the Climax granitic stock at the USDOE Nevada Test Site.

  6. Protomylonite evolution potentially revealed by the 3D depiction and fractal analysis of chemical data from a feldspar

    NASA Astrophysics Data System (ADS)

    Słaby, Ewa; Domonik, Andrzej; Śmigielski, Michał; Majzner, Katarzyna; Motuza, Gediminas; Götze, Jens; Simon, Klaus; Moszumańska, Izabela; Kruszewski, Łukasz; Rydelek, Paweł

    2014-04-01

    An alkali feldspar megacryst from a protomylonite has been studied using laser ablation-ICP-mass spectrometry combined with cathodoluminescence imaging, Raman spectroscopy, and electron probe microanalysis. The aim was to determine the original (magmatic) geochemical pattern of the crystal and the changes introduced by protomylonitization. Digital concentration-distribution models, derivative gradient models, and fractal statistics, e.g., Hurst-exponent values are used in a novel way to reveal subtle changes in the trace-element composition of the feldspar. Formation of the crystal is reflected in a slightly chaotic trace-element (Ba, Sr, and Rb) distribution pattern that is more or less characterized by continuous development from a fairly homogeneous environment. Derivative gradient models demonstrate a microdomain pattern. Fractal statistics show that element behavior was changeable, with Ba and Sr always more persistent (continuing) and Rb always less persistent, with the latter showing a tendency to migrate. The variations in the Hurst exponent are, however, too large to be explained by magmatic differentiation alone. The observed element behavior may be explained by structural changes revealed by Raman spectroscopy and CL. In high-strain domains, T-O-T modes become stronger for Si-O-Al than Al-O-Al linkages. Increasing amounts of Al-O--Al defects are demonstrated by cathodoluminescence. Both may result from small-distance diffusion creep, making the crystal geochemical pattern slightly patchy. In turn, the marginal part of the megacryst has a mosaic of randomly orientated, newly crystallized K-feldspars. The re-growth is confirmed by trace-element distribution patterns and fractal statistics which identify an abrupt change in the transformation environment. The novel set of tools used in this study reveals a complicated history of megacryst formation and transformation that otherwise would be difficult to unravel and decipher.

  7. Phosphate and feldspar mineralogy of equilibrated L chondrites: The record of metasomatism during metamorphism in ordinary chondrite parent bodies

    NASA Astrophysics Data System (ADS)

    Lewis, Jonathan A.; Jones, Rhian H.

    2016-10-01

    In ordinary chondrites (OCs), phosphates and feldspar are secondary minerals known to be the products of parent-body metamorphism. Both minerals provide evidence that metasomatic fluids played a role during metamorphism. We studied the petrology and chemistry of phosphates and feldspar in petrologic type 4-6 L chondrites, to examine the role of metasomatic fluids, and to compare metamorphic conditions across all three OC groups. Apatite in L chondrites is Cl-rich, similar to H chondrites, whereas apatite in LL chondrites has lower Cl/F ratios. Merrillite has similar compositions among the three chondrite groups. Feldspar in L chondrites shows a similar equilibration trend to LL chondrites, from a wide range of plagioclase compositions in petrologic type 4 to a homogeneous albitic composition in type 6. This contrasts with H chondrites which have homogeneous albitic plagioclase in petrologic types 4-6. Alkali- and halogen-rich and likely hydrous metasomatic fluids acted during prograde metamorphism on OC parent bodies, resulting in albitization reactions and development of phosphate minerals. Fluid compositions transitioned to a more anhydrous, Cl-rich composition after the asteroid began to cool. Differences in secondary minerals between H and L, LL chondrites can be explained by differences in fluid abundance, duration, or timing of fluid release. Phosphate minerals in the regolith breccia, Kendleton, show lithology-dependent apatite compositions. Bulk Cl/F ratios for OCs inferred from apatite compositions are higher than measured bulk chondrite values, suggesting that bulk F abundances are overestimated and that bulk Cl/F ratios in OCs are similar to CI.

  8. Sr and Pb isotopic geochemistry of feldspars and implications for the growth of megacrysts in plutonic settings.

    NASA Astrophysics Data System (ADS)

    Munnikhuis, J.; Glazner, A. F.; Coleman, D. S.; Mills, R. D.

    2015-12-01

    Why megacrystic textures develop in silicic igneous rocks is still unknown. One hypothesis is that these crystals nucleate early in a magma chamber with a high liquid content. A supportive observation of this hypothesis is areas in plutons with high concentrations of megacrysts suggesting flow sorting. Another group of hypotheses suggest megacrystic textures form during protracted late-stage coarsening in a low-melt, interlocked matrix due to either thermal oscillations from incremental pluton emplacement, or Ostwald ripening. Isotopic analyses of large, euhedral K-feldspar megacrysts from the Cretaceous intrusive suites of the Sierra Nevada batholith (SNB) provide new insight into their origin. Megacrysts from the SNB reach the decimeter scale, are Or rich (85-90%), are perthitic, and host mineral inclusions of nearly all phases in the host rock. In-situ micro-drilling of transects, from core to rim, of the alkali feldspars provides material for Sr and Pb isotopic analyses by thermal ionization mass spectrometry (TIMS). Preliminary 87Sr/86Sr(i) isotopic data from samples from the Cathedral Peak Granodiorite, of the Tuolumne Intrusive Suite range from 0.706337 to 0.706452 (~1.6ɛSr) near the cores, whereas a sawtooth pattern with larger variability, 0.706179 to 0.706533 (~5ɛSr), occurs nears the rims. We interpret these preliminary data to indicate that the late portion of growth (i.e. crystal rim) was dominated by either cannibalism of small K-feldspar crystals with isotopic variability, or by addition of isotopically diverse late components to the magma. By comparing the Sr and Pb isotopic stratigraphy of megacrysts from a variety of rock matrices and different granitoids in the SNB isotopic trends can be evaluated to determine if crystals sizes are dependent on disequilibrium processes or grow at a steady state.

  9. Particle size and X-ray analysis of Feldspar, Calvert, Ball, and Jordan soils

    NASA Technical Reports Server (NTRS)

    Chapman, R. S.

    1977-01-01

    Pipette analysis and X-ray diffraction techniques were employed to characterize the particle size distribution and clay mineral content of the feldspar, calvert, ball, and jordan soils. In general, the ball, calvert, and jordan soils were primarily clay size particles composed of kaolinite and illite whereas the feldspar soil was primarily silt-size particles composed of quartz and feldspar minerals.

  10. Visible/near-infrared spectra of experimentally shocked plagioclase feldspars

    USGS Publications Warehouse

    Johnson, J. R.; Horz, F.

    2003-01-01

    High shock pressures cause structural changes in plagioclase feldspars such as mechanical fracturing and disaggregation of the crystal lattice at submicron scales, the formation of diaplectic glass (maskelynite), and genuine melting. Past studies of visible/ near-infrared spectra of shocked feldspars demonstrated few spectral variations with pressure except for a decrease in the depth of the absorption feature near 1250-1300 nm and an overall decrease in reflectance. New visible/near-infrared spectra (400-2500 nm) of experimentally shocked (17-56 GPa) albite- and anorthite-rich rock powders demonstrate similar trends, including the loss of minor hydrated mineral bands near 1410, 1930, 2250, and 2350 nm. However, the most interesting new observations are increases in reflectance at intermediate pressures, followed by subsequent decreases in reflectance at higher pressures. The amount of internal scattering and overall sample reflectance is controlled by the relative proportions of micro-fractures, submicron grains, diaplectic glass, and melts formed during shock metamorphism. We interpret the observed reflectance increases at intermediate pressures to result from progressively larger proportions of submicron feldspar grains and diaplectic glass. The ensuing decreases in reflectance occur after diaplectic glass formation is complete and the proportion of genuine melt inclusions increases. The pressure regimes over which these reflectance variations occur differ between albite and anorthite, consistent with thermal infrared spectra of these samples and previous studies of shocked feldspars. These types of spectral variations associated with different peak shock pressures should be considered during interpretation and modeling of visible/near-infrared remotely sensed spectra of planetary and asteroidal surfaces.

  11. OSL-thermochronometry of feldspar from the KTB borehole, Germany

    NASA Astrophysics Data System (ADS)

    Guralnik, Benny; Jain, Mayank; Herman, Frédéric; Ankjærgaard, Christina; Murray, Andrew S.; Valla, Pierre G.; Preusser, Frank; King, Georgina E.; Chen, Reuven; Lowick, Sally E.; Kook, Myungho; Rhodes, Edward J.

    2015-08-01

    The reconstruction of thermal histories of rocks (thermochronometry) is a fundamental tool both in Earth science and in geological exploration. However, few methods are currently capable of resolving the low-temperature thermal evolution of the upper ∼2 km of the Earth's crust. Here we introduce a new thermochronometer based on the infrared stimulated luminescence (IRSL) from feldspar, and validate the extrapolation of its response to artificial radiation and heat in the laboratory to natural environmental conditions. Specifically, we present a new detailed Na-feldspar IRSL thermochronology from a well-documented thermally-stable crustal environment at the German Continental Deep Drilling Program (KTB). There, the natural luminescence of Na-feldspar extracted from twelve borehole samples (0.1-2.3 km depth, corresponding to 10-70 °C) can be either (i) predicted within uncertainties from the current geothermal gradient, or (ii) inverted into a geothermal palaeogradient of 29 ± 2 °C km-1, integrating natural thermal conditions over the last ∼65 ka. The demonstrated ability to invert a depth-luminescence dataset into a meaningful geothermal palaeogradient opens new venues for reconstructing recent ambient temperatures of the shallow crust (<0.3 Ma, 40-70 °C range), or for studying equally recent and rapid transient cooling in active orogens (<0.3 Ma, >200 °C Ma-1 range). Although Na-feldspar IRSL is prone to field saturation in colder or slower environments, the method's primary relevance appears to be for borehole and tunnel studies, where it may offer remarkably recent (<0.3 Ma) information on the thermal structure and history of hydrothermal fields, nuclear waste repositories and hydrocarbon reservoirs.

  12. Europium anomaly in plagioclase feldspar - Experimental results and semiquantitative model.

    NASA Technical Reports Server (NTRS)

    Weill, D. F.; Drake, M. J.

    1973-01-01

    The partition of europium between plagioclase feldspar and magmatic liquid is considered in terms of the distribution coefficients for divalent and trivalent europium. A model equation is derived giving the europium anomaly in plagioclase as a function of temperature and oxygen fugacity. The model explains europium anomalies in plagioclase synthesized under controlled laboratory conditions as well as the variations of the anomaly observed in natural terrestrial and extraterrestrial igneous rocks.

  13. Hydrothermal modification of host rock geochemistry within Mo-Cu porphyry deposits in the Galway Granite, western Ireland

    NASA Astrophysics Data System (ADS)

    Tolometti, Gavin; McCarthy, Will

    2016-04-01

    Hydrothermal alteration of host rock is a process inherent to the formation of porphyry deposits and the required geochemical modification of these rocks is regularly used to indicate proximity to an economic target. The study involves examining the changes in major, minor and trace elements to understand how the quartz vein structures have influenced the chemistry within the Murvey Granite that forms part of the 380-425Ma Galway Granite Complex in western Ireland. Molybdenite mineralisation within the Galway Granite Complex occurred in close association with protracted magmatism at 423Ma, 410Ma, 407Ma, 397Ma and 383Ma and this continues to be of interest to active exploration. The aim of the project is to characterize hydrothermal alteration associated with Mo-Cu mineralisation and identify geochemical indicators that can guide future exploration work. The Murvey Granite intrudes metagabbros and gneiss that form part of the Connemara Metamorphic complex. The intrusion is composed of albite-rich pink granite, garnetiferous granite and phenocrytic orthoclase granite. Minor doleritic dykes post-date the Murvey Granite, found commonly along its margins. Field mapping shows that the granite is truncated to the east by a regional NW-SE fault and that several small subparallel structures host Mo-Cu bearing quartz veins. Petrographic observations show heavily sericitized feldspars and plagioclase and biotite which have undergone kaolinization and chloritisation. Chalcopyrite minerals are fine grained, heavily fractured found crystallized along the margins of the feldspars and 2mm pyrite crystals. Molybdenite are also seen along the margins of the feldspars, crystallized whilst the Murvey Granite cooled. Field and petrographic observations indicate that mineralisation is structurally controlled by NW-SE faults from the selected mineralization zones and conjugate NE-SW cross cutting the Murvey Granite. Both fault orientations exhibit quartz and disseminated molybdenite

  14. Mesoscale Approach to Feldspar Dissolution: Quantification of Dissolution Incongruency Based on Al/Si Ordering State

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Min, Y.; Jun, Y.

    2012-12-01

    Dissolution mechanism of aluminosilicates is important for understanding natural and anthropogenic carbon cycles. The total mass of atmospheric CO2 is regulated by the weathering of silicate minerals, and the fate of geologically sequestered CO2 is affected by the interactions between brine, sandstone, caprock, and CO2, which is initiated by mineral dissolution. It has been shown through both experimental and ab initio studies that the dissolution/weathering reactivities of Al and Si in the matrix of an aluminosilicate can be different under many conditions. A subsequent observation is that the release rates of Al and Si, both from the same mineral, may not be stoichiometric when compared to the bulk chemistry of the mineral. For a very long time, the relationship between mineral dissolution incongruency and mineral crystallographic properties remain largely qualitative and descriptive. Here we study the dissolution incongruency of feldspars, the most abundant aluminosilicate on earth. Mineral dissolution experiments for a series of alkali feldspars (albite, anorthoclase, sanidine, and microcline) and plagioclases (oligoclase, andesine, labradorite, bytownite, and anorthite) were conducted at pH 1.68 under ambient conditions. Synchrotron-based X-ray diffraction (HR-XRD), Fourier transform infrared spectroscopy (FTIR), and water chemistry analysis (ICP-MS) are combined to examine the effect of Al/Si ordering on mineral dissolution. Our analysis based on a C1 structure model shows that the incongruency, stemming from the different reactivities of Al-O-Si and Si-O-Si linkages in feldspar's framework, is quantifiable and closely related to the Al/Si ordering state of a feldspar. Our results also suggest that the more random the Al/Si distribution of a mineral, the greater the dissolution incongruency. Our results have significant implications for understanding water-rock interactions. First, when studying the effect of water chemistry on water-rock interaction, smaller

  15. Geophysical and Chemical Weathering Signatures Across the Deep Weathered-Unweathered Granite Boundary of the Calhoun Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Richter, D., Jr.; Bacon, A. R.; Brantley, S. L.; Holbrook, W. S.

    2015-12-01

    To understand the relationship between geophysical measurements and chemical weathering at Earth's surface, we combine comprehensive chemical and physical analyses of a 70-m granite weathering profile in the Southern Piedmont in the southeastern United States. The research site is in the uplands of the Calhoun Critical Zone Observatory and is similar to many geomorphically stable, ancient, and highly-weathered Ultisol soils of the region. Surface and downhole geophysical analyses suggest significant physical changes to depths of about 40 m, where geophysical properties are consistent with competent and unweathered granite. At this depth, surface refraction velocities increase to >4.5 km/s; variations in downhole sonic velocities decrease by more than two-fold; and deviations in the downhole caliper log sharply decrease as well. Forty meters depth is also the depth of initiation of plagioclase feldspar weathering, as inferred from bulk geochemical measurement of the full 70-m deep core. Specifically, element-depth profiles, cast as mass transfer coefficient profiles using Ti and Zr as immobile elements, document inferred loss of plagioclase in the depth interval between 15 and 40-m depth. Plagioclase feldspar is the most abundant of the highly reactive minerals in the granite. Such a wide reaction front is characteristic of weathering granites. Some loss of K is observed at these depths but most K loss, as well as Mg loss, occurs at shallower depths. Nearby geophysical profiles and 3D stress models have been interpreted as showing that seismic velocities decrease at 40 m depth due to opening of fractures as rock is exhumed toward the surface. Given our interpretations of both the geochemical and geophysical data, we infer that the onset of chemical weathering of feldspar coincides with the opening of these fractures. The data highlight the ability of geochemistry and geophysics to complement each other and enrich our understanding of Earth's Critical Zone.

  16. Chemical and isotopic studies of granitic Archean rocks, Owl Creek Mountains, Wyoming: Geochronology of an Archean granite, Owl Creek Mountains, Wyoming

    SciTech Connect

    Hedge, C.E.; Simmons, K.R.; Stuckless, J.S.

    1986-01-01

    Rubidium-strontium analyses of whole-rock samples of an Archean granite from the Owl Creek Mountains, Wyo., indicate an intrusive age of 2640 {plus minus} 125 Ma. Muscovite-bearing samples give results suggesting that these samples were altered about 2300 Ma. This event may have caused extensive strontium loss from the rocks as potassium feldspar was altered to muscovite. Alteration was highly localized in nature as evidence by unaffected rubidium-strontium mineral ages in the Owl Creek Mountains area. Furthermore, the event probably involved a small volume of fluid relative to the volume of rock because whole-rock {delta}{sup 18}O values of altered rocks are not distinct from those of unaltered rocks. In contrast to the rubidium-strontium whole-rock system, zircons from the granite have been so severely affected by the alteration event, and possibly by a late-Precambrian uplift event, that the zircon system yields little usable age information. The average initial {sup 87}Sr/{sup 86}Sr (0.7033 {plus minus} 0.0042) calculated from the isochron intercept varies significantly. Calculated initial {sup 87}Sr/{sup 86}Sr ratios for nine apparently unaltered samples yield a range of 0.7025 to 0.7047. These calculated initial ratios correlate positively with whole-rock {delta}{sup 18}O values; and, therefore, the granite was probably derived from an isotopically heterogeneous source. The highest initial {sup 87}Sr/{sup 86}Sr ratio is lower than the lowest reported for the metamorphic rocks intruded by the granite as it would have existed at 2640 Ma. Thus, the metamorphic sequence, at its current level of exposure, can represent no more than a part of the protolith for the granite.

  17. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  18. Two stage mantle-derived granitic rocks and the onset of the Brasiliano orogeny: Evidence from Sr, Nd, and O isotopes

    NASA Astrophysics Data System (ADS)

    Silva, Thyego R.; Ferreira, Valderez P.; Lima, Mariucha Maria C.; Sial, Alcides N.

    2016-11-01

    The elongate Monteirópolis batholith (270 km2) is composed of alkali feldspar granite to granodiorite, it is part of the Águas Belas-Canindé composite batholith and it intruded rocks of the Pernambuco-Alagoas Domain, northeastern Brazil. This batholith is bounded by the NNE-SSW-trending Jacaré dos Homens transpressional shear zone on its southwestern margin, and displays low-angle foliation, coeval to the development of a regional flat-lying foliation. Microgranular dioritic enclaves and amphibole-rich clots are abundant. The mineralogy of this pluton comprises biotite and amphibole as major accessory phases, and titanite and magmatic epidote as trace minerals. Major and trace element chemistry shows high SiO2, total alkalis, Ba and Sr, low Fe# and Nb contents, all of these conferring a high-K calc-alkaline character. The rocks are enriched in LREE and LILE and depleted in HFSE, and show fractionated chondrite-normalized REE patterns with Eu/Eu* = 0.67 to 1.25. Chondrite-normalized spidergrams show marked negative Nb-Ta and Ti anomalies, typical of subduction-related magmas. U-Pb SHRIMP zircon data yielded a crystallization age of 626 ± 4 Ma. Regional structures and U-Pb geochronological data for the Jacaré dos Homens transpressional shear zone suggest that shearing was initiated at ca. 640 Ma. Dilatational movements along this shear zone opened space for magma emplacement. The rocks in this batholith are characterized by slightly negative to slightly positive εNd values (- 0.78 to + 1.06), average Nd-model age of 1.0 Ga, low initial 87Sr/86Sr(626 Ma) values of 0.7050 to 0.7052, and low δ18O values (zircon) of + 5.00 to + 5.94‰ V-SMOW. A possible protolith, Tonian mantle-derived rocks in the lower continental crust, could have been partially melted by underplating of mantle-derived mafic magma during collision of the São Francisco Craton and the Pernambuco-Alagoas Domain during onset of the Brasiliano orogeny.

  19. Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: Electron microscopic characterization

    USGS Publications Warehouse

    Zhu, Chen; Veblen, D.R.; Blum, A.E.; Chipera, S.J.

    2006-01-01

    Naturally weathered feldspar surfaces in the Jurassic Navajo Sandstone at Black Mesa, Arizona, was characterized with high-resolution transmission and analytical electron microscope (HRTEM-AEM) and field emission gun scanning electron microscope (FEG-SEM). Here, we report the first HRTEM observation of a 10-nm thick amorphous layer on naturally weathered K-feldspar in currently slightly alkaline groundwater. The amorphous layer is probably deficient in K and enriched in Si. In addition to the amorphous layer, the feldspar surfaces are also partially coated with tightly adhered kaolin platelets. Outside of the kaolin coatings, feldspar grains are covered with a continuous 3-5 ??m thick layer of authigenic smectite, which also coats quartz and other sediment grains. Authigenic K-feldspar overgrowth and etch pits were also found on feldspar grains. These characteristics of the aged feldspar surfaces accentuate the differences in reactivity between the freshly ground feldspar powders used in laboratory experiments and feldspar grains in natural systems, and may partially contribute to the commonly observed apparent laboratory-field dissolution rate discrepancy. At Black Mesa, feldspars in the Navajo Sandstone are dissolving at ???105 times slower than laboratory rate at comparable temperature and pH under far from equilibrium condition. The tightly adhered kaolin platelets reduce the feldspar reactive surface area, and the authigenic K-feldspar overgrowth reduces the feldspar reactivity. However, the continuous smectite coating layer does not appear to constitute a diffusion barrier. The exact role of the amorphous layer on feldspar dissolution kinetics depends on the origin of the layer (leached layer versus re-precipitated silica), which is uncertain at present. However, the nanometer thin layer can be detected only with HRTEM, and thus our study raises the possibility of its wide occurrence in geological systems. Rate laws and proposed mechanisms should consider the

  20. Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: Electron microscopic characterization

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Veblen, David R.; Blum, Alex E.; Chipera, Stephen J.

    2006-09-01

    Naturally weathered feldspar surfaces in the Jurassic Navajo Sandstone at Black Mesa, Arizona, was characterized with high-resolution transmission and analytical electron microscope (HRTEM-AEM) and field emission gun scanning electron microscope (FEG-SEM). Here, we report the first HRTEM observation of a 10-nm thick amorphous layer on naturally weathered K-feldspar in currently slightly alkaline groundwater. The amorphous layer is probably deficient in K and enriched in Si. In addition to the amorphous layer, the feldspar surfaces are also partially coated with tightly adhered kaolin platelets. Outside of the kaolin coatings, feldspar grains are covered with a continuous 3-5 μm thick layer of authigenic smectite, which also coats quartz and other sediment grains. Authigenic K-feldspar overgrowth and etch pits were also found on feldspar grains. These characteristics of the aged feldspar surfaces accentuate the differences in reactivity between the freshly ground feldspar powders used in laboratory experiments and feldspar grains in natural systems, and may partially contribute to the commonly observed apparent laboratory-field dissolution rate discrepancy. At Black Mesa, feldspars in the Navajo Sandstone are dissolving at ˜10 5 times slower than laboratory rate at comparable temperature and pH under far from equilibrium condition. The tightly adhered kaolin platelets reduce the feldspar reactive surface area, and the authigenic K-feldspar overgrowth reduces the feldspar reactivity. However, the continuous smectite coating layer does not appear to constitute a diffusion barrier. The exact role of the amorphous layer on feldspar dissolution kinetics depends on the origin of the layer (leached layer versus re-precipitated silica), which is uncertain at present. However, the nanometer thin layer can be detected only with HRTEM, and thus our study raises the possibility of its wide occurrence in geological systems. Rate laws and proposed mechanisms should consider the

  1. The role of external fluid in the Shanggusi dynamic granitic magma system, East Qinling, China: Quantitative integration of textural and chemical data

    NASA Astrophysics Data System (ADS)

    Yang, Zong-Feng; Luo, Zhao-Hua; Lu, Xin-Xiang; Huang, Fan; Chen, Bi-He; Zhou, Jiu-Long; Cheng, Li-Lu

    2014-11-01

    It is well recognized that various degrees of mantle-derived materials are incorporated in the formation of granite, and mantle-derived mafic melts are generally considered to mix with crustal felsic melt. Here, however, we provide an example of the Shanggusi leucocratic granite where external mantle-derived hydrous fluid, rather than mafic melt, might be incorporated into a nearly pure crustal granitic melt system. Field observations suggest that the Shanggusi granite consists of granite porphyry, granite dyke and granitic pegmatite and they have consistent zircon U-Pb ages and molybdenite Re-Os ages. The marginal pegmatite, interconnected miarolitic cavities, heterogeneous molybdenite mineralization and significant variation of micro-texture of the Shanggusi granite physically indicate that strong fluid activities occurred in the granitic system. Accumulation of quartz and K-feldspar and bulk-rock major element data imply that fractional crystallization played an important role in the evolution of the granitic system which, however, cannot reasonably explain the significant trace elements fractionation, non-CHARAC trace elements behavior and simultaneous concave and convex REE tetrad effect of the Shanggusi granite, but which can be best explained by the influence of external fluorine-rich hydrous fluid. Importantly, the chemical fractionation, including bulk-rock trace elements and isotopes, is closely correlated with quantitative textural parameter Lmax (the average length of the four largest quartz crystals in each sample), indicating that the vast majority of physical and chemical characteristics of the granitic system were most likely controlled by the wholesale fluid flow. The Shanggusi granite is highly siliceous (SiO2 = 74.91-79.50 wt.%, except granitic pegmatite with SiO2 = 67.41 wt.%), extremely poor in mafic minerals, and with relative homogeneous bulk-rock major element chemistry and mineralogy, which approximate experimentally pure crustal melt that

  2. Alkali metal ion battery with bimetallic electrode

    DOEpatents

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  3. Ideas about Acids and Alkalis.

    ERIC Educational Resources Information Center

    Toplis, Rob

    1998-01-01

    Investigates students' ideas, conceptions, and misconceptions about acids and alkalis before and after a teaching sequence in a small-scale research project. Concludes that student understanding of acids and alkalis is lacking. (DDR)

  4. The isotopic composition of lead in potassium feldspars from some 1.0-b.y. old North American igneous rocks

    USGS Publications Warehouse

    Zartman, R.E.; Wasserburg, G.J.

    1969-01-01

    The isotopic composition of lead and the uranium, thorium and lead concentrations in potassium feldspars are determined for more than 30 1.0-b.y. old North American igneous rocks. Samples representing a broad spectrum in petrographic type and mode of occurrence were chosen; an effort was made to include only rocks having well-documented ages from 950 to 1140 m.y. and showing minimal evidence of subsequent metamorphism. Most samples, including those from extensive terranes of contemporaneous age, have limited lead isotope variations ( Pb206 Pb204 = 16.74-17.38; Pb207 Pb204 = 15.39-15.59; Pb208 Pb204 = 36.38-37.10), which yield model ages close to the radiometric ages. Granite, pegmatite, and rhyolite from within the Grenville province of Canada and age-equivalent rocks of New York, Virginia, Texas, and Colorado and granophyric units associated with the Duluth Gabbro Complex of Minnesota are among the materials yielding this main isotopic spectrum. Several samples were encountered which had isotopic compositions very different from the above group. Lead showing a marked deficiency in radiogenic isotopes was found in two granitic bodies associated with older Labrador Trough rocks from Quebec, in a rapakivi granite from southern Nevada, and in a small granite stock from Mellen, Wisconsin. These occurrences all involve small intrusions of granite which lie near considerably older areas of basement rock. Model ages calculated from the Pb206 Pb204 ratio are older than the age of the intrusions and approach the age of the host basement rock. Several possible interpretations are offered to explain the isotopic behavior encountered in this study. In particular, a "vertically differentiated crust" model is proposed which will account for both the main spectrum and the anomalous lead. The significance of lead isotopic studies in understanding crustal structure in continental regions is discussed. ?? 1969.

  5. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  6. Emanation of radon from household granite.

    PubMed

    Kitto, Michael E; Haines, Douglas K; Arauzo, Hernando Diaz

    2009-04-01

    Emanation of radon (222Rn) from granite used for countertops and mantels was measured with continuous and integrating radon monitors. Each of the 24 granite samples emitted a measurable amount of radon. Of the two analytical methods that utilized electret-based detectors, one measured the flux of radon from the granite surfaces, and the other one measured radon levels in a glass jar containing granite cores. Additional methods that were applied utilized alpha-scintillation cells and a continuous radon monitor. Measured radon flux from the granites ranged from 2 to 310 mBq m-2 s-1, with most granites emitting <20 mBq m-2 s-1. Emanation of radon from granites encapsulated in airtight containers produced equilibrium concentrations ranging from <0.01 to 11 Bq kg-1 when alpha-scintillation cells were used, and from <0.01 to 4.0 Bq kg-1 when the continuous radon monitor was used.

  7. Geochemistry of alkali syenites from the Budun massif and their petrogenetic properties (Ol'khon Island)

    NASA Astrophysics Data System (ADS)

    Makrygina, V. A.; Suvorova, L. F.; Zarubina, O. V.; Bryanskii, N. V.

    2016-07-01

    The first data on the geochemistry of the alkali syenite massif in Cape Budun of Ol'khon Island, where it makes contact in the south with the Khuzir gabbroid massif, are presented. Syenites occur among granite gneisses of the Sharanur dome and, like its granites, are enriched with Zr and REEs, but depleted in other trace elements. They contain anorthoclase, corundum, rare nepheline, zircon, and hercynite and are accompanied by desilicified pegmatites. Their unusual geochemical properties allow the assumption that alkaline magmas resulted from the interaction between basic and granitoid melts.

  8. A re-examination of the role of hydrogen in Al-Si interdiffusion in feldspars

    NASA Astrophysics Data System (ADS)

    Graham, Colin M.; Elphick, Stephen C.

    1990-07-01

    Recent experimental studies have shown that the rates of Al-Si order-disorder and interdiffusion in alkali feldspars at high pressures under dry conditions increase dramatically in the approximate pressure range 7 14 kb, depending on temperature and feldspar composition (Goldsmith 1987, 1988). Enhancement of Al-Si interdiffusion rates is ascribed to the involvement of hydrogen, but the species of hydrogen involved is undetermined. A simple kinetic analysis of the data of Goldsmith (1987) on disordering of dry albite at 800° 950° C and 6 24 kb in the solid media press is consistent with the NaCl pressure cell acting as a proton donor by enhancing dissociation of water in the pressure medium, generating a higha_{H^ + } in the experimental environment. The rate constant for disordering of albite is found to increase linearly with the estimated experimentala_{H^ + } and with the density of aqueous salt solution, implicating H+ as the rate-enhancing species. Further experimental studies confirm the importance ofa_{H^ + } . At 16 kb and 850° C, dry albite in sealed Pt capsules in a NaCl cell containing tantalum powder (which reduces H2O to H2) remains highly ordered over the same time that complete disordering would occur in the absence of Ta. H2 cannot therefore be the rate-enhancing species. At 1 kb and 850° C, the extent of Al-Si disorder in albite in direct contact with various NaCl-H2O solutions increases from partially disordered for pure H2O to completely disordered for saturated aqueous NaCl solution, giving strong support to the proton model. SIMS scanning ion imaging of albite run products demonstrates conclusively that solution-reprecipitation is not responsible for enhanced disordering rates. Results of disordering experiments in the solid media apparatus cannot be duplicated in Ar gas media internally-heated pressure vessels, even with the same experimental configuration around the albite-bearing capsules, due to the different proton-buffering capacities

  9. Mechanical amorphization during experimental shearing of synthetic granite gouge

    NASA Astrophysics Data System (ADS)

    White, J. C.; Hadizadeh, J.; Tullis, T. E.; Goldsby, D. L.

    2009-04-01

    Frictional sliding experiments performed in a rotary shear machine at 25 MPa normal stress on 2-mm thick layers of simulated Westerly granite gouge (initial particle size 1-85 µm) have produced heterogeneous microstructures comprising comminuted material with internal layering. In SEM/BSE individual layers comprise grains of rounded and sub-rounded quartz and feldspar particles that vary in size from 20nm on one side to about 300nm on the other. Characterization of the gouge ultrastructure has been undertaken by analytical scanning transmission electron microscopy (STEM). Areas were selected from high-magnification SEM images and thinned in a focused ion beam instrument (FIB). This sampling procedure produces material of even electron transparency with perfect spatial registration to the optical and SEM microstructures. The sub-micrometre-scale laminar variation of grain size and porosity is confirmed by STEM. Shards of both feldspar and quartz are progressively comminuted to form the texture in which larger grains are surrounded by finer-comminuted matrix material. Grains of both of the latter primary mineral constituents are routinely less than 100 nm in size. Most significantly, the finest grained, least porous zones comprise small grain fragments embedded within an amorphous silicate matrix. By extension, one can infer that observation of these zones throughout the gouge is consistent with extensive amorphization during the shearing. The internal layering of the brecciated fragments, with asymmetric particle size and porosity grading, indicates that Y-slip surfaces localize displacement until particles that line the slip surface are reduced to a critical size that enables mechanically induced amorphization. Fluctuations in friction recorded during formation of this microstructure can be reasonably related to cyclic softening-hardening related to porosity loss and amorphization, with subsequent brecciation of the gouge during slip on multiple Y-slip surfaces.

  10. Chlor-Alkali Technology.

    ERIC Educational Resources Information Center

    Venkatesh, S.; Tilak, B. V.

    1983-01-01

    Chlor-alkali technology is one of the largest electrochemical industries in the world, the main products being chlorine and caustic soda (sodium hydroxide) generated simultaneously by the electrolysis of sodium chloride. This technology is reviewed in terms of electrochemical principles and manufacturing processes involved. (Author/JN)

  11. Evolved granitic systems as a source of rare-element deposits: The Ponte Segade case (Galicia, NW Spain)

    NASA Astrophysics Data System (ADS)

    Canosa, Francisco; Martin-Izard, Agustín; Fuertes-Fuente, Mercedes

    2012-11-01

    In the Ponte Segade area (Galicia, NW Spain) strongly differentiated granites, often associated with rare-element mineralization (Sn-Ta-Nb-Li-Be-Cs) that could be of economic interest, have recently been discovered. These granites appear in the northern sector of the Ollo de Sapo Antiform (Central Iberian Zone, Variscan Orogen). Three different muscovite-rich synkinematic and peraluminous types of leucogranite (leucogranites s.s., albite-rich leucogranites I and albite-rich leucogranites II) and two pegmatite types associated with the albite-rich leucogranites (zoned and banded) have been identified in the studied area. The geochemistry of whole rock leucogranites indicates an enrichment in incompatible elements (lithium, rubidium, beryllium, cesium and hafnium), Al2O3 and Na2O, and an impoverishment in barium, strontium, zirconium, cerium, yttrium and SiO2. Geochemical studies of zircon, muscovite, K-feldspar and tourmaline in the different types of granites and pegmatites indicate the grade of evolution of the granitic system. With differentiation of the system, the zircon is enriched in hafnium and uranium and is impoverished in zirconium. In muscovite and K-feldspar there is an increase in cesium and rubidium. The opposite behavior is observed with regards to the Mg, Fe and Ti contents. In the case of tourmaline, the increase in Li is the best indicator of the grade of evolution. By contrast, Fe and Mg decrease. The sequence of evolution of the granitic system obtained from the geochemical studies indicates that the leucogranites s.s. are the least differentiated, evolving gradually, in accordance with field relationships, to albite-rich leucogranites I. The albite-rich leucogranites II are the most evolved, but no direct relationship between them and leucogranites s.s. has been found. The banded pegmatites associated with the albite-rich leucogranites II are more differentiated than the zoned pegmatites associated with the albite-rich leucogranites I, but are

  12. Thermomechanical properties of Stripa granite

    NASA Astrophysics Data System (ADS)

    Myer, L.

    1982-09-01

    The Stripa material properties testing program was initiated to study, by laboratory testing, the thermomechanical behavior of the Stripa rock mass and to provide material properties for input into numerical programs for simulation of the in situ heater experiments at Stripa. Measurement of elastic moduli and coefficients of thermal expansion of dry, intact samples of Stripa granite was completed in fiscal year 1980. A summary of the most significant findings resulting from tests on six samples are presented.

  13. Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars

    USGS Publications Warehouse

    Johnson, J. R.; Horz, F.; Staid, M.I.

    2003-01-01

    Thermal infrared emission and reflectance spectra (250-1400 cm-1; ???7???40 ??m) of experimentally shocked albite- and anorthite-rich rocks (17-56 GPa) demonstrate that plagioclase feldspars exhibit characteristic degradations in spectral features with increasing pressure. New measurements of albite (Ab98) presented here display major spectral absorptions between 1000-1250 cm-1 (8-10 ??m) (due to Si-O antisymmetric stretch motions of the silica tetrahedra) and weaker absorptions between 350-700 cm-1 (14-29 ??m) (due to Si-O-Si octahedral bending vibrations). Many of these features persist to higher pressures compared to similar features in measurements of shocked anorthite, consistent with previous thermal infrared absorption studies of shocked feldspars. A transparency feature at 855 cm-1 (11.7 ??m) observed in powdered albite spectra also degrades with increasing pressure, similar to the 830 cm-1 (12.0 ??m) transparency feature in spectra of powders of shocked anorthite. Linear deconvolution models demonstrate that combinations of common mineral and glass spectra can replicate the spectra of shocked anorthite relatively well until shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation. Albite deconvolutions exhibit higher errors overall but do not change significantly with pressure, likely because certain clay minerals selected by the model exhibit absorption features similar to those in highly shocked albite. The implication for deconvolution of thermal infrared spectra of planetary surfaces (or laboratory spectra of samples) is that the use of highly shocked anorthite spectra in end-member libraries could be helpful in identifying highly shocked calcic plagioclase feldspars.

  14. Differentiating pedogenesis from diagenesis in early terrestrial paleoweathering surfaces formed on granitic composition parent materials

    USGS Publications Warehouse

    Driese, S.G.; Medaris, L.G.; Ren, M.; Runkel, Anthony C.; Langford, R.P.

    2007-01-01

    K-feldspars with reaction rims in weathered basement. The sub-Cambrian paleoweathering profiles formed on granite are remarkably similar to modern weathering profiles formed on granite, in spite of overprinting by potassium diagenesis. ?? 2007 by The University of Chicago. All rights reserved.

  15. A petrologic assessment of internal zonation in granitic pegmatites

    NASA Astrophysics Data System (ADS)

    London, David

    2014-01-01

    Cameron et al. (1949) devised the nomenclature and delineated the patterns of internal zonation within granitic pegmatites that are in use today. Zonation in pegmatites is manifested both in mineralogy and in fabric (mineral habits and rock texture). Although internal zonation is a conspicuous and distinctive attribute of pegmatites, there has been no thorough effort to explain that mineralogical and textural evolution in relation to the zoning sequence presented by Cameron et al. (1949), or in terms of the comprehensive petrogenesis of pegmatite bodies (pressure, temperature, and whole-rock composition). This overview of internal zonation within granitic pegmatites consists of four principal parts: (1) a historic review of the subject, (2) a summary of the current understanding of the pegmatite-forming environment, (3) the processes that determine mineralogical and textural zonation in pegmatites, and (4) the applications of those processes to each of the major zones of pegmatites. Based on the concepts presented in London (2008), the fundamental determinates of the internal evolution of pegmatite zones are: (1) the bulk composition of melt, (2) the magnitude of liquidus undercooling prior to the onset of crystallization, (3) subsolidus isothermal fractional crystallization, by which eutectic or minimum melts fractionate by sequential, non-eutectic crystallization, (4) constitutional zone refining via the creation of a boundary layer liquid, chemically distinct from but continuous with the bulk melt at the crystallization front, and (5) far-field chemical diffusion, the long-range and coordinated diffusion of ions, particularly of alkalis and alkaline earths, through melt.

  16. Alkali basalts and enclosed ultramafic xenoliths near Ushuaia, Tierra Del Fuego, Argentina.

    PubMed

    Acevedo, Rogelio Daniel

    2016-01-01

    At the southernmost part of Tierra del Fuego a few outcrops and erratic boulders of alkali basaltic rocks with ultramafic enclaves have been studied. Alkali basalt plugs or pipes hitherto identified are scarce, and host rocks are constituted by slates that belong to Mesozoic deposition. The petrography, texture and composition of the basalt and xenoliths were investigated by petrographic microscope and electron microprobe analysis. Xenocrysts of amphibole and alkali feldspar, phenocrysts of nepheline, olivine, spinel, phlogopite and Fe-Ti minerals (10 %) and a diversity of xenoliths, mainly lherzolitic, pyroxenite and wehrlitic nodules (15 %), but also from metamorphic rocks provenance, are contained in the basalt groundmass (75 %). This finer-grained material is made up of laths or needles of plagioclase, pyroxene, opaque minerals, apatite and glass, with intersertal, hyalopilitic and pilotaxitic. Locally, rock has an even granoblastic texture. Former amygdules are filled by analcite, zeolites, sodalite and calcite. The normative classification, based on nepheline content, conclude that this rock is an alkali basalt. The chemical classification, considering immobile elements as Zr/TiO2 versus Nb/Y indicate an alkali basalt too and plots over the TAS diagram fall in the foidite (Na-rich or nephelinite) and basanite fields. The REE patterns are fractionated (La/Yb primitive mantle normalized is approximately 30). The K-Ar isotopic technique on individual macrocrysts gave ages of 146 ± 5 Ma (amphibole) and 127 ± 4 Ma (alkali feldspar); and K-Ar whole rock datum reported 8.3 ± 0.3 Ma. Nevertheless, fertile samples show geochemical features typical of deep derived material thus, based on the position in the actual tectonic setting, indicate that the basalt is older than its isotopic age.

  17. Some alkali and titania analyses of tektites before and after G-1 precision monitoring

    USGS Publications Warehouse

    Tatlock, D.B.

    1966-01-01

    A comparison of 55 older analyses of Australasian tektites with 110 modern precisely monitored analyses suggests that more than half of the older alkali and titania determinations are decidedly inaccurate and misleading. Deviations of the older analyses from the restricted values of the modern analyses are comparable to the imprecisions shown by early analyses of G-1 granite and W-1 diabase. This suggests that a high percentage of older alkali and titania analyses, such as those of Washington's tables, are of questionable quality. ?? 1966.

  18. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  19. Geochronology, petrogenesis and tectonic settings of pre- and syn-ore granites from the W-Mo deposits (East Kounrad, Zhanet and Akshatau), Central Kazakhstan

    NASA Astrophysics Data System (ADS)

    Li, GuangMing; Cao, MingJian; Qin, KeZhang; Evans, Noreen J.; Hollings, Pete; Seitmuratova, Eleonora Yusupovha

    2016-05-01

    There is significant debate regarding the mineralization ages of the East Kounrad, Zhanet and Akshatau W-Mo deposits of Central Kazakhstan, and the petrogenesis and tectono-magmatic evolution of the granites associated with these deposits. To address these issues, we present molybdenite Re-Os dating, zircon U-Pb dating, whole rock geochemistry as well as Sr-Nd-Pb and zircon O-Hf isotopic analyses on the pre-mineralization and ore-forming granites. U-Pb dating of zircons from pre-mineralization granitic rocks yield Late Carboniferous ages of 320-309 Ma, whereas ore-forming granites have Early Permian ages of 298-285 Ma. Molybdenite Re-Os isotopic data indicate a mineralization age of ~ 296 Ma at East Kounrad, ~ 294 Ma at Akshatau and ~ 285 Ma at Zhanet. The pre-ore and ore-forming granites are high-K calc-alkaline, metaluminous to slightly peraluminous I-type granites. The pre-mineralization granites are relatively unfractionated, whereas the ore-forming granites are highly fractionated. The fractionating mineral phases are probably K-feldspar, apatite, Ti-bearing phases and minor plagioclase. The pre-mineralization and ore-forming rocks are characterized by similar Sr-Nd-Pb-Hf-O isotopic compositions ((87Sr/86Sr)i = 0.70308-0.70501, εNd (t) = - 0.5 to + 2.8, 207Pb/204Pb = 15.60-15.82, zircon εHf (t) = + 1.2 to + 15.6 and δ18O = + 4.6 to + 10.3‰), whole rock TDMC (Nd) (840-1120 Ma) and zircon TDMC (Hf) (320-1240 Ma). The isotopic characteristics are consistent with a hybrid magma source caused by 10-30% assimilation of ancient crust by juvenile lower crust. The geochronology and geochemistry of these granites show that the Late Carboniferous pre-mineralization granitic rocks formed during subduction, whereas the Early Permian ore-forming, highly fractionated granite probably underwent significant fractionation with a restite assemblage of K-feldspar, apatite, Ti-bearing phases and minor plagioclase and developed during collision between the Yili and Kazakhstan

  20. Geology and mineralogy of the Alakha spodumene granite porphyry deposit, Gorny Altai, Russia

    NASA Astrophysics Data System (ADS)

    Annikova, I. Yu.; Vladimirov, A. G.; Smirnov, S. Z.; Gavryushkina, O. A.

    2016-09-01

    The Alakha lithium-tantalum deposit in the southern Altai, Russia, is represented by a stock of spodumene-bearing granite porphyry localized in the Kalba-Narym-Koktogai lithium-tantalum rare-metal granitic belt, unique in extent (more than 1000 km). This belt is a part of the Altai accretionary-collisional system. Judging from forecasting, the Alakha deposit can be regarded as an uneroded proxy of a pegmatite body both in dimensions and mean Li2O and Ta2O5 contents (0.98 wt % and 114 ppm, respectively); however, the oregenerating potential of this deposit remains insufficiently studied and had not yet been claimed. In this paper, we attempt to fill this gap with a detailed mineralogical study, which allows us to provide insights into the crystallization of Li-bearing high-silicic magma and redistribution of components during magmatic and postmagmatic processes. Accessory mineral assemblages in muscovite-spodumene-K-feldspar granite porphyry and muscovite albitite—the main petrographic rock varieties of the Alakha stock—turned out to be almost identical. A significant similarity in the chemistry of major rock-forming minerals is established for spodumene granite porphyry of the Alakha stock and spodumene pegmatites from large deposits, which makes it possible to suggest that they are close in the petrogenetic mechanism of their formation. The mineral assemblages of muscovite albitite in the apical portion of the Alakha stock are connected by gradual transition with those of spodumene granite porphyry. Such a transition is caused by postmagmatic metasomatic alteration of the latter.

  1. Chemical Zoning of Feldspars in Lunar Granitoids: Implications for the Origins of Lunar Silicic Magmas

    NASA Technical Reports Server (NTRS)

    Mills, R. D; Simon, J. I.; Alexander, C.M. O'D.; Wang, J.; Christoffersen, R.; Rahman, Z..

    2014-01-01

    Fine-scale chemical and textural measurements of alkali and plagioclase feldspars in the Apollo granitoids (ex. Fig. 1) can be used to address their petrologic origin(s). Recent findings suggest that these granitoids may hold clues of global importance, rather than of only local significance for small-scale fractionation. Observations of morphological features that resemble silicic domes on the unsampled portion of the Moon suggest that local, sizable net-works of high-silica melt (>65 wt % SiO2) were present during crust-formation. Remote sensing data from these regions suggest high concentrations of Si and heat-producing elements (K, U, and Th). To help under-stand the role of high-silica melts in the chemical differentiation of the Moon, three questions must be answered: (1) when were these magmas generated?, (2) what was the source material?, and (3) were these magmas produced from internal differentiation. or impact melting and crystallization? Here we focus on #3. It is difficult to produce high-silica melts solely by fractional crystallization. Partial melting of preexisting crust may therefore also have been important and pos-sibly the primary mechanism that produced the silicic magmas on the Moon. Experimental studies demonstrate that partial melting of gabbroic rock under mildly hydrated conditions can produce high-silica compositions and it has been suggested by that partial melting by basaltic underplating is the mechanism by which high-silica melts were produced on the Moon. TEM and SIMS analyses, coordinated with isotopic dating and tracer studies, can help test whether the minerals in the Apollo granitoids formed in a plutonic setting or were the result of impact-induced partial melting. We analyzed granitoid clasts from 3 Apollo samples: polymict breccia 12013,141, crystalline-matrix breccia 14303,353, and breccia 15405,78

  2. Alkalis in alternative biofuels

    SciTech Connect

    Miles, T.R.; Miles, T.R. Jr.; Bryers, R.W.; Baxter, L.L.; Jenkins, B.M.; Oden, L.L.

    1994-12-31

    The alkali content and behavior of inorganic material of annually produced biofuels severely limits their use for generating electrical power in conventional furnaces. A recent eighteen-month investigation of the chemistry and firing characteristics of 26 different biofuels has been conducted. Firing conditions were simulated in the laboratory for eleven biofuels. This paper describes some results from the investigation including fuel properties, deposits, deposition mechanisms, and implications for biomass boiler design, fuel sampling and characterizations. Urban wood fuel, agricultural residues, energy crops, and other potential alternate fuels are included in the study. Conventional methods for establishing fuel alkali content and determining ash sticky temperatures were deceptive. The crux of the problem was found to be the high concentration of potassium in biofuels and its reactions with other fuel constituents which lower the ``sticky temperature`` of the ash to the 650 C to 760 C (1,200 F-1,400 F).

  3. Thermodynamic modeling of non-ideal mineral-fluid equilibria in the system Si-Al-Fe-Mg-Ca-Na-K-H-O-Cl at elevated temperatures and pressures: Implications for hydrothermal mass transfer in granitic rocks

    NASA Astrophysics Data System (ADS)

    Dolejš, David; Wagner, Thomas

    2008-01-01

    alteration commencing with alkali-feldspar breakdown and leading to potassic, phyllic and argillic assemblages; this is associated with reduction and iron metasomatism as observed in nature and (3) interaction with a multicomponent fluid at 600 °C produces sodic-calcic metasomatism. Na, Ca and Fe are the most mobile elements whereas immobility of Al is limited by f/r ∼ 400. All simulations predict a volume decrease by 3.4-5.4%, i.e., porosity formation at f/r < 30. At higher fluid/rock ratios simulation (2) produces a substantial volume increase (59%) due to mineral precipitation, whereas simulation (3) predicts a volume decrease by 49% at the advanced albitization-desilication stage. Volume changes closely correlate with mass changes of SiO2 and are related to silica solubility in fluids. The combined effects of oxygen fugacity, fluid acidity and pH for breakdown of aqueous metal complexes and precipitation of ore minerals were evaluated by means of reduced activity products. Sharp increases in saturation indexes for oxidative breakdown occur at each alteration zone whereas reductive breakdown or involvement of other chloride complexes favor precipitation at high fluid/rock ratios only. Calculations of multicomponent aqueous-solid equilibria at high temperatures and pressures are able to accurately predict rock mineralogy and fluid chemistry and are applicable to diverse reactive flow processes in the Earth's crust.

  4. Alkali-vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.; Krupke, W. F.

    2010-02-01

    We report on the results from several of our alkali laser systems. We show highly efficient performance from an alexandrite-pumped rubidium laser. Using a laser diode stack as a pump source, we demonstrate up to 145 W of average power from a CW system. We present a design for a transversely pumped demonstration system that will show all of the required laser physics for a high power system.

  5. GRANITE PEAK ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    Huber, Donald F.; Thurber, Horace K.

    1984-01-01

    The Granite Peak Roadless Area occupies an area of about 5 sq mi in the southern part of the Trinity Alps of the Klamath Mountains, about 12 mi north-northeast of Weaverville, California. Rock and stream-sediment samples were analyzed. All streams draining the roadless area were sampled and representative samples of the rock types in the area were collected. Background values were established for each element and anomalous values were examined within their geologic settings and evaluated for their significance. On the basis of mineral surveys there seems little likelihood for the occurrence of mineral or energy resources.

  6. Quantifying elemental compositions of primary minerals from granitic rocks and saprolite within the Santa Catalina Mountain Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Lybrand, R. A.; Rasmussen, C.

    2011-12-01

    Granitic terrain comprises a significant area of the earth's land surface (>15%). Quantifying weathering processes involved in the transformation of granitic rock to saprolite and soil is central to understanding landscape evolution in these systems. The quantification of primary mineral composition is important for assessing subsequent mineral transformations and soil production. This study focuses on coupling detailed analysis of primary mineral composition to soil development across an array of field sites sampled from the Santa Catalina Mountain Critical Zone observatory (SCM-CZO) environmental gradient. The gradient spans substantial climate-driven shifts in vegetation, ranging from desert scrub to mixed conifer forests. The parent material is a combination of Precambrian and Tertiary aged granites and quartz diorite. Primary mineral type and composition are known to vary among the various aged granitic materials and this variability is hypothesized to manifest as significant variation in regolith forming processes across the SCM-CZO. To address this variability, the mineral composition and mineral formulae of rock and saprolite samples were determined by electron microprobe chemical analyses. The rocks were pre-dominantly quartz, biotite, muscovite, orthoclase and calcium/sodium-rich plagioclase feldspars. Trace minerals observed in the samples included sphene, rutile, zircon, garnet, ilmenite, and apatite. Mineral formulae from electron microprobe analyses were combined with quantitative x-ray diffraction (QXRD) and x-ray fluorescence (XRF) data to quantify both primary and secondary mineralogical components in soil profiles from each of the field sites. Further, electron microprobe analyses of <2mm mixed conifer saprolite revealed weathered plagioclase grains coated with clay-sized particles enriched in silica and aluminum (~25% and 15%, respectively), suggesting kaolin as the secondary phase. The coatings were interspersed within each plagioclase grain, a

  7. Petrology and mineral chemistry of peraluminous Marziyan granites, Sanandaj-Sirjan metamorphic belt (NW Iran)

    NASA Astrophysics Data System (ADS)

    Darvishi, Esmaiel; Khalili, Mahmoud; Beavers, Roy; Sayari, Mohammad

    2015-10-01

    The Marziyan granites are located in the north of Azna and crop out in the Sanandaj-Sirjan metamorphic belt. These rocks contain minerals such as quartz, K-feldspars, plagioclase, biotite, muscovite, garnet, tourmaline and minor sillimanite. The mineral chemistry of biotite indicates Fe-rich (siderophyllite), low TiO2, high Al2O3, and low MgO nature, suggesting considerable Al concentration in the source magma. These biotites crystallized from peraluminous S-type granite magma belonging to the ilmenite series. The white mica is rich in alumina and has muscovite composition. The peraluminous nature of these rocks is manifested by their remarkably high SiO2, Al2O3 and high molar A/CNK (> 1.1) ratio. The latter feature is reflected by the presence of garnet and muscovite. All field observations, petrography, mineral chemistry and petrology evidence indicate a peraluminous, S-type nature of the Marziyan granitic rocks that formed by partial melting of metapelite rocks in the mid to upper crust possibly under vapour-absent conditions. These rocks display geochemical characteristics that span the medium to high-K and calc-alkaline nature and profound chemical features typical of syn-collisional magmatism during collision of the Afro-Arabian continental plate and the Central Iranian microplate.

  8. Laser cleaning of graffiti in Rosa Porriño granite

    NASA Astrophysics Data System (ADS)

    Fiorucci, M. P.; Lamas, J.; López, A. J.; Rivas, T.; Ramil, A.

    2011-05-01

    This paper presents preliminary results in determining the optimum parameters for graffiti removal in a ornamental granite, Rosa Porriño, by means of Nd:YVO4 laser at the wavelength of 355 nm and different fluences. The spray-paints (black, blue, red and silver) tested in this work were chemically characterized by means of elemental analysis, XRF, SEM/EDX and FTIR. The assessment of cleaning and characterization of the stone substrate before and after irradiation was performed by means of optical microscopy, SEM-EDX, and confocal microscopy. The analysis of the irradiated samples showed in some cases, damage in the granite substrate associated to thermal effects. The severity and kind of damage, depends on the laser fluence delivered, the constituent mineral irradiated, and the color used to paint the stone. So, at the highest levels of fluence the laser beam is able to scratch the surface, being the depth of the grooves in the stone measured by confocal microscopy. Moreover, SEM images show the differential damage caused in mineral constituents of granite i.e., quartz, feldspars, and biotite, the latter providing to be the most affected mineral, reaching melting even at low levels of fluence. It was appreciated that the color of the spray-paint affects the results of cleaning, and observed differences could be attributed to different organic constituents in the paints or the presence of metallic particles in its composition, as occurs with silver paint.

  9. Weathering profiles in granites, Sierra Norte (Córdoba, Argentina)

    NASA Astrophysics Data System (ADS)

    Kirschbaum, Alicia; Martínez, Estela; Pettinari, Gisela; Herrero, Silvana

    2005-09-01

    Two weathering profiles evolved on peneplain-related granites in Sierra Norte, Córdoba province, were examined. Several weathering levels, of no more than 2 m thickness, were studied in these profiles. They had developed from similar parent rock, which had been exposed to hydrothermal processes of varying intensity. Fracturing is the most notable feature produced by weathering; iron oxides and silica subsequently filled these fractures, conferring a breccia-like character to the rock. The clay minerals are predominantly illitic, reflecting the mineral composition of the protolith. Smaller amounts of interstratified I/S RO type are also present, as well as scarce caolinite+chlorite that originated from the weathering of feldspar and biotite, respectively. The geochemical parameters define the weathering as incipient, in contrast to the geomorphological characteristics of Sierra Norte, which point to a long weathering history. This apparent incompatibility could be due to the probable erosion of the more weathered levels of the ancient peneplains, of which only a few relicts remain. Similar processes have been described at different sites in the Sierras Pampeanas. Reconstruction and dating of the paleosurfaces will make it possible to set time boundaries on the weathering processes studied and adjust the paleographic and paleoclimatic interpretations of this great South American region.

  10. Origin of miarolitic pegmatites in the Königshain granite/Lusatia

    NASA Astrophysics Data System (ADS)

    Thomas, Rainer; Davidson, Paul

    2016-09-01

    In this study we examine an interesting occurrence of miarolitic pegmatites in the Königshain granite of the Lusatia region of the Bohemian Massif. This granite is characterized by the extensive development of micro-sized miarolitic pegmatites (typically with diameters of 5 to 15 mm) irregularly distributed through its upper levels, and larger miarolitic pegmatites (up to 1 m) in the uppermost levels. This granite also shows evidence of varied forms of transport of extremely volatile rich residual melts/fluids, in the form of more or less discrete inter-granular melt bodies, and associated magmatic quartz veins formed in tectonic fissures. Together, these provide evidence for the origin of miarolitic pegmatites, both in the specific case of Königshain, and more generally. Our evidence suggests that miarolitic pegmatites form from volatile- and alkali-rich residual melts, ranging from 10 to 50% H2O, far more than typical granitic melts, but far more silicate components than aqueous fluids or vapor suggested by some authors. Using melt inclusions in quartz from the aplitic and graphic granite zones in miarolitic pegmatites in the Königshain granite, we show that two different inclusion populations are present. We provide evidence that the first inclusion population are those related to the primary granite at the level of intrusion, and the second were trapped during the re-crystallization of the granite wall rocks by silicate-rich supercritical fluids moving through the solid crystal framework with a porosity < 25 and a permeability > 0 (see Clarke et al., 2013). Our results show that a significant volume fraction of the miarolitic pegmatites was not created by a pegmatite-forming fluid, but formed in-situ by re-crystallization of wall-rocks, triggered by highly reactive volatiles exsolved from the pegmatite-forming melts. Evidence is also presented which suggests the nature and speed of emplacement of the Königshain granite. This evidence may explain the unusual

  11. Fluid-rock interactions in CO2-saturated, granite-hosted geothermal systems: Implications for natural and engineered systems from geochemical experiments and models

    NASA Astrophysics Data System (ADS)

    Lo Ré, Caroline; Kaszuba, John P.; Moore, Joseph N.; McPherson, Brian J.

    2014-09-01

    Hydrothermal experiments were conducted and geochemical models constructed to evaluate the geochemical and mineralogical response of fractured granite and granite + epidote in contact with thermal water, with and without supercritical CO2, at 250 °C and 25-45 MPa. Illite ± smectite ± zeolite(?) precipitate as secondary minerals at the expense of K-feldspar, oligoclase, and epidote. Illite precipitates in experiments reacting granite and granite + epidote with water; metastable smectite forms in the experiments injected with supercritical CO2. Waters are supersaturated with respect to quartz and saturated with respect to chalcedony in CO2-charged experiments, but neither mineral formed. Carbonate formation is predicted for experiments injected with supercritical CO2, but carbonate only formed during cooling and degassing of the granite + epidote + CO2 experiment. Experimental results provide insight into the buffering capacity of granites as well as the drivers of clay formation. Metastable smectite in the experiments is attributed to high water-rock ratios, high silica activities, and high CO2 and magnesium-iron concentrations. Smectite precipitation in supercritical CO2-bearing geothermal systems may affect reservoir permeability. Silicate formation may create or thicken caps within or on the edges of geothermal reservoirs. Carbonate formation, as desired for carbon sequestration projects coinciding with geothermal systems, may require extended periods of time; cooling and degassing of CO2-saturated waters leads to carbonate precipitation, potentially plugging near-surface production pathways.

  12. U-Pb-Nd-Hf isotope geochemistry of the Mesoproterozoic A-type granites in Mannefallknausane, western Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Ramo, O. T.; Kurhila, M.; Luttinen, A. V.; Andersen, T.

    2009-12-01

    The bedrock of western Dronning Maud Land, Antarctica records several stages of anorogenic magmatism. The Grenvillean-age metamorphic basement gneisses of Heimefrontfjella and Mannefallknausane were intruded by mafic dikes (Bauer et al., 2003) and A-type granite plutons (Jacobs, 1991) at circa 1 Ga. A 590 Ma suite of mafic dikes manifests a subsequent episode of Proterozoic anorogenic magmatism (Bauer et al., 2003). Jurassic (180 Ma) continental flood basalts (CFBs), their intrusive equivalents, and associated alkaline mafic rocks represent the third and youngest episode of anorogenic magmatism (Luttinen et al., 1998; Romu and Luttinen, 2007). The crystalline bedrock in western Dronning Maud Land is composed of the Archean Grunehogna craton and the Mesoproterozoic Maud mobile belt. About 100 km south of Archean-Proterozoic transition, in the Proterozoic realm, nunataks of Mannefallknausane (74.5oS, 15oW) are dominated by Precambrian granitoid rocks and rare paragneisses. Three principal granites can be identified: a white, garnet-bearing K-feldspar-megacrystic biotite granite; a red biotite-hornblende±clinopyroxene granite with or without plagioclase-mantled K-feldspar-megacrysts (rapakivi texture); and a dark green porphyritic charnockite with orthopyroxene and hornblende. The presence of rapakivi texture, the mode of occurrence, and geochemical composition of the granites of Mannefallknausane imply A typology. For two varieties of the red granite (wiborgite and pyterlite), our new U-Pb data imply crystallization ages of 1073 ± 6 Ma and 1084 ± 8 Ma, respectively. These are compatible with a U-Pb zircon upper intercept age of 1073 ± 8 Ma of the charnockite (Arndt et al., 1991). The initial Nd isotope composition of these rocks is relatively radiogenic [epsilon-Nd (1075 Ma) value of the biotite granite -0.5; red granite +0.3, +0.5; charnockite +1.4], as is that of a country-rock gneiss from the surrounding bedrock (+1.0). Initial zircon epsilon-Hf values of the

  13. Contributions of Fe-K subalkaline granites for the geodynamic evolution of the Iberian Massif (Northern Portugal)

    NASA Astrophysics Data System (ADS)

    Simões, P. P.; Martins, H. C. B.; Dias, G.

    2012-04-01

    In the Iberian Massif large volumes of granitic rocks were emplaced during the Variscan orogeny, mainly during the last ductile deformation phase D3. After that, an extensional tectonic regime controls the emplacement of several Fe-K subalkaline post-D3 plutons. Geochemical and isotopic results of post-D3 biotite granites in northern Portugal (Peneda-Gerês, Vila Pouca de Aguiar, Monção-Porriño and Águas Frias plutons) are presented and their contributions to the geodynamic evolution of the Iberian Variscides. They are porphyritic to coarse-medium grained biotite granites with potassium feldspar megacrysts, with rare mafic microgranular enclaves and some are associated to minor bodies of intermediate rocks and/or two mica granites. Accessory minerals include zircon, apatite, allanite, xenotime, ilmenite and sphene. Amphibole is present only in the Peneda-Gerês and Monção-Porriño plutons. Emplacement ages based on U-Pb zircon analyses indicate a value of 290-299 Ma. They are meta- to peraluminous granitoids, having evolved chemical compositions, with high SiO2. Isotopic studies reveals initial 87Sr/86Sr ratios of 0.7033 to 0.7079 and ɛNd of -1.5 to -2.6 while rare hectometric intermediate rock bodies outcrop in the Monção-Porriño shows initial 87Sr/86Sr ratios of 0.7054 to 0.7061 and ɛNdi of 0.4 to -0.7. The isotopic composition of these post-D3 biotite granites is clearly less evolved than that of the synorogenic granites in the region, indicating that the mantle sources were distinct, and shows an important change in magma composition associated to the extensional regime. An origin by mantle input followed by mantle-crust interaction is proposed, implying the contribution of a less enriched mantle component than that involved in the genesis of synorogenic granites in northern Portugal (hybrid Mg-K subalkaline granites and calc-alkaline to aluminopotassic granites) This study permits to envisage that the extensional tectonics triggered the ascension of

  14. FROGS (Friends of Granites) report

    NASA Astrophysics Data System (ADS)

    Miller, Calvin

    This VGP News, which is devoted to petrology, is a good one for noting the existence of FROGS. FROGS is, as the name suggests, an informal organization of people whose research relates in one way or another to granitic rocks. Its purpose has been to promote communication among geoscientists with different perspectives and concerns about felsic plutonism. Initially, a major focus was experimental petrology and integration of field-oriented and lab-oriented viewpoints; now that there is the opportunity to communicate with the Eos readership, an obvious additional goal will be to bring together volcanic and plutonic views of felsic magmatism.FROGS first gathered in late 1982 under the guidance of E-an Zen and Pete Toulmin (both at U.S. Geological Survey (USGS), Reston, Va.), who saw a need for greater interaction among those interested in granites and for renewed, focused experimental investigations. They produced two newsletters (which were sent out by direct mail) and organized an informal meeting at the Geological Society of America meeting at Indianapolis, Ind., and then turned over the FROG reins to Sue Kieffer (USGS, Flagstaff, Ariz.) and John Clemens (Arizona State University, Tempe). They generated another newsletter, which was directly mailed to a readership that had grown beyond 200.

  15. Pb isotopes in Ascension Island rocks: oceanic origin for the gabbroic to granitic plutonic xenoliths

    NASA Astrophysics Data System (ADS)

    Weis, D.

    1983-02-01

    The Pb isotopic compositions and U and Pb concentrations of the lava series (alkali basalt to comendite) and of their plutonic xenoliths (gabbro to alkaline granite) of Ascension Island are reported. The data are used to evaluate the source of the xenoliths which formed two differentiation suites: the acidic and intermediate xenoliths together with most of the lavas on the one hand, and the gabbroic xenoliths and a basaltic tuff on the other hand. The Pb isotopic compositions imply a mantle origin for the source magmas of the xenoliths and confirm the possibility of generating granitic rocks in an oceanic environment by fractional crystallization of a mantle-derived magma whose geochemical and isotopic characteristics are comparable to the source magmas of oceanic island basalts.

  16. 6. Photocopied August 1971 from Photo 13731, Granite Folder #1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopied August 1971 from Photo 13731, Granite Folder #1, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. GRANITE STATION, MAY 24, 1915. - Utah Power Company, Granite Hydroelectric Plant, Holladay, Salt Lake County, UT

  17. Sillimanite-potash feldspar assemblages in graphitic pelites, Strontian area, Scotland

    NASA Astrophysics Data System (ADS)

    Tyler, I. M.; Ashworth, J. R.

    1982-11-01

    Graphitic pelites of the western Moinian were metamorphosed at the time of emplacement of the Strontian Granodiorite intrusion, at a late stage of the Caledonian Orogeny, producing a metamorphic zonation. The Sillimanite Zone (in which K feldspar does not occur with sillimanite) is succeeded by the Muscovite-Sillimanite-K feldspar Zone, Sillimanite-K feldspar Zone (without primary muscovite) and Cordierite-K feldspar Zone. Secondary muscovite from retrograde hydration of sillimanite+K feldspar is distinguished texturally from primary muscovite, but is compositionally similar. Primary porphyroblastic muscovite, inherited from the regional metamorphic textural evolution of the rocks, disappears abruptly at the “muscovite-out” isograd. Migmatites of earlier regional origin, with recrystallized textures, are distinguished from those associated with the late Caledonian metamorphism, which are confined to the Sillimanite-K feldspar and Cordierite-K feldspar Zones. Muscovite compositions are inferred to be very low in Fe3+. There are no marked changes in muscovite composition at the entry of sillimanite+K feldspar. Higher Na contents than in some other muscovites coexisting with sillimanite+K feldspar are interpreted in terms of relatively low P in the Strontian area. Andalusite is found at two localities. From cordierite-garnet-sillimanite-biotite-K feldspar-quartz assemblages, a P estimate of 4.1±0.4 kbar is obtained, with the aqueous fluid having x_{{text{H}}_{text{2}} {text{O}}} ≈ 0.5, and the T at the cordierite-K feldspar isograd is estimated as 690° C. T at the muscovite-out isograd is inferred to the maximum for muscovite-quartz-sillimanite-K feldspar equilibrium with graphite at P≈4.1 kbar: T≈ 645° C, with x_{{text{H}}_{text{2}} {text{O}}} ≈ 0.84. The well-defined lower boundary of the Muscovite-Sillimanite-K feldspar Zone is attributed to regionally rather homogeneous fluid composition at x_{{text{H}}_{text{2}} {text{O}}} ≈ 0.7. The low P

  18. Feldspars Detected by ChemCam in Gale Crater with Implications for Future Martian Exploration

    NASA Astrophysics Data System (ADS)

    Gasda, P. J.; Carlson, E.; Wiens, R. C.; Bridges, J.; Sautter, V.; Cousin, A.; Maurice, S.; Gasnault, O.; Clegg, S. M.

    2015-12-01

    Feldspar is a common igneous mineral that can shed light on parent magma temperatures, pressures, and compositions. During the first 801 sols of the NASA Mars Science Laboratory mission, we have detected 125 possible feldspar grains using the ChemCam LIBS instrument. We analyzed spectra from successive laser shots at the same location and approximate whole rock compositions for each target. Feldspar-containing targets range from tephrite-basanite to trachyandesite. The most common feldspar type is andesine; no targets are >An60. Over 30% are anorthoclase, and ~10% have potassium contents up to Or60. Individual shot measurements in a single spot suggest some feldspars are zoned. Most of these rocks are either float or incorporated into conglomerates, and thus we do not know their provenance. Many of the samples may originate from the Gale crater walls, indicative of Southern Highland ancient crust. Some may also be flung from further away (e.g., emplaced by impact processes). Hence, these rocks may give us a general clue to the variety of evolved igneous materials on Mars. The ubiquity of feldspars at Gale suggests that they have been significantly underestimated for the Southern Highlands, if not for the whole of Mars. For example, significant abundance of andesitic feldspars in both the southern highland and northern lowlands of Mars would imply that Martian volcanism has produced a greater extent of evolved igneous materials to a greater degree than previously thought. Remote sensing instruments are insensitive to plagioclase due to dust cover, lack of exposures, or low feldspar FeO content. However, the Mars 2020 rover will be equipped with 3 new instruments, the arm-mounted SHERLOC Raman, PIXL μXRF, and the mast-mounted SuperCam combined Raman-LIBS instruments, which should help characterize Martian feldspars. Additionally, the SuperCam instrument plans to include three feldspars in its suite of 20+ onboard standards to improve feldspar chemical analysis.

  19. Petrographic and geochemical comparisons between the lower crystalline basement-derived section and the granite megablock and amphibolite megablock of the Eyreville B core, Chesapeake Bay impact structure, USA

    USGS Publications Warehouse

    Townsend, G.N.; Gibson, R.L.; Horton, J.W.; Reimold, W.U.; Schmitt, R.T.; Bartosova, K.

    2009-01-01

    The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ?? fibrolite ?? garnet ?? tourmaline ?? pyrite ?? rutile ?? pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite- K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase- quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ?? biotite ?? garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ?? muscovite ?? pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ?? epidote ?? amphibole. The lower basement-derived section and both megablocks exhibit similar middleto upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafi c source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites. ?? 2009 The Geological Society of America.

  20. Petrographic and geochemical comparisons between the lower crystalline basement-derived section and the granite megablock and amphibolite megablock of the Eyreville-B core, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Townsend, Gabrielle N.; Gibson, Roger L.; Horton, J. Wright; Reimold, Wolf Uwe; Schmitt, Ralf T.; Bartosova, Katerina

    2009-01-01

    The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ± fibrolite ± garnet ± tourmaline ± pyrite ± rutile ± pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite-K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase-quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ± biotite ± garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ± muscovite ± pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ± epidote ± amphibole. The lower basement-derived section and both megablocks exhibit similar middle- to upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafic source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites.

  1. Lower Carboniferous post-orogenic granites in central-eastern Sierra de Velasco, Sierras Pampeanas, Argentina: U-Pb monazite geochronology, geochemistry and Sr-Nd isotopes

    NASA Astrophysics Data System (ADS)

    Grosse, Pablo; Söllner, Frank; Báez, Miguel A.; Toselli, Alejandro J.; Rossi, Juana N.; de La Rosa, Jesus D.

    2009-07-01

    The central-eastern part of the Sierra de Velasco (Sierras Pampeanas, NW Argentina) is formed by the large Huaco (40 × 30 km) and Sanagasta (25 × 15 km) granite massifs and the small La Chinchilla stock (2 × 2 km). The larger granites intrude into Ordovician metagranitoids and crosscut Devonian (?) mylonitic shear zones, whereas the small stock sharply intrudes into the Huaco granite. The two voluminous granites are biotitic-muscovitic and biotitic porphyritic syeno- to monzogranites. They contain small and rounded tonalitic and quartz-dioritic mafic microgranular enclaves. The small stock is an equigranular, zinnwaldite- and fluorite-bearing monzogranite. The studied granites are silica-rich (SiO2 >70%), potassium-rich (K2O >4%), ferroan, alkali-calcic to slightly calk-alkalic, and moderately to weakly peraluminous (A/CNK: 1.06-1.18 Huaco granite, 1.01-1.09 Sanagasta granite, 1.05-1.06 La Chinchilla stock). They have moderate to strong enrichments in several LIL (Li, Rb, Cs) and HFS (Nb, Ta, Y, Th, U) elements, and low Sr, Ba and Eu contents. U-Pb monazite age determinations indicate Lower Carboniferous crystallization ages: 350-358 Ma for the Huaco granite, 352.7 ± 1.4 Ma for the Sanagasta granite and 344.5 ± 1.4 Ma for the La Chinchilla stock. The larger granites have similar ɛNd values between -2.1 and -4.3, whereas the younger stock has higher ɛNd of -0.6 to -1.4, roughly comparable to the values obtained for the Carboniferous San Blas granite (-1.4 to -1.7), located in the north of the sierra. The Huaco and Sanagasta granites have a mainly crustal source, but with some participation of a more primitive, possibly mantle-derived, component. The main crustal component can be attributed to Ordovician peraluminous metagranitoids. The La Chinchilla stock derives from a more primitive source, suggesting an increase with time in the participation of the primitive component during magma genesis. The studied granites were generated during a post-orogenic period

  2. New observations on the quartz monzodiorite-granite suite. [in lunar soil

    NASA Technical Reports Server (NTRS)

    Marvin, U. B.; Holmberg, B. B.; Lindstrom, M. M.; Martinez, R. R.

    1991-01-01

    Five new fragments of quartz monzodiorite (QMD) were identified in particles from soil 15403, which was collected from the boulder sampled as rock 15405, an impact-melt breccia containing clasts of KREEP basalt, QMD, granite, and a more primitive alkali norite. Petrographic and geochemical studies of the fragments show considerable variation in modal proportions and bulk composition. This heterogeneity is due to unrepresentative sampling in small fragments of coarse-grained rocks. Variations in the proportions of accessory minerals have marked effects on incompatible-trace-element concentrations and ratios. Semiquantitative calculations support the derivation of QMD from 60-percent fractional crystallization of a KREEP basalt magma as suggested by Hess (1989). Apollo 15 KREEP basalt cannot be the actual parent magma because the evolved rocks predate volcanic KREEP basalts. It is suggested that ancient KREEP basalt magmas have crystallized as plutons, with alkali norite clasts offering the only direct evidence of this precursor.

  3. Boron-bearing potassium feldspar of authigenic origin in closed-basin deposits

    USGS Publications Warehouse

    Sheppard, Richard A.; Gude, Arthur J.

    1973-01-01

    Silicic vitric tuffs in saline, alkaline lacustrine deposits are commonly altered to a variety of zeolites and potassium feldspar. The tuffs generally show a lateral gradation, in a basinward direction, of fresh glass to zeolites and then to potassium feldspar. Zeolites were formed early in diagenesis by reaction of the glass with the interstitial water. The feldspar, however, was formed later by reaction of the zeolites with interstitial water, and its formation can be correlated with water of relatively high salinity and alkalinity. Semiquantitative spectrographic analyses for boron in the zeolites and potassium feldspar show that most of the boron resides in the relatively late feldspar. The boron content of the zeolites is commonly less than 100 ppm, whereas the boron content of the potassium feldspar is commonly greater than 1,000 ppm. Boron apparently substitutes for aluminum in the feldspar structure and causes distortion of the monoclinic unit cell such that the b and c dimensions are shortened. These boron-bearing potassium feldspars having anomalous cell parameters seem unique to saline,alkaline lacustrine deposits and could serve as a prospecting aid for locating buried saline minerals.

  4. Microscopic analysis of alkali-aggregate reaction products in a 50-year-old concrete

    SciTech Connect

    Fernandes, Isabel . E-mail: ifernand@fc.up.pt; Noronha, Fernando . E-mail: fmnoronh@fc.up.pt; Teles, Madalena . E-mail: mteles@fe.up.pt

    2004-11-15

    Fifty-year-old concrete from a large dam was examined in the scope of an investigation program concerning the properties of granite as aggregate material for concrete. Site inspection, which was developed in order to detect possible signs of deterioration of the concrete, revealed the existence of efflorescence and exudations. Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) analyses were attempted to identify the composition of these materials and their morphology. From the analyses, it was concluded that some of the exudations were composed by alkali-silica gel. In these samples, an interesting behavior was observed in different moments after a 3-month interval. It was noticed that the initially noncrystalline alkali-silica gel transformed into sodium-rich needles and tablets after a few months kept in a desiccator in the laboratory. Therefore, it was concluded that the materials identified corresponded to different stages of evolution of an alkali-aggregate reaction product.

  5. Sn-polymetallic greisen-type deposits associated with late-stage rapakivi granites, Brazil: fluid inclusion and stable isotope characteristics

    NASA Astrophysics Data System (ADS)

    Bettencourt, Jorge S.; Leite, Washington B.; Goraieb, Claudio L.; Sparrenberger, Irena; Bello, Rosa M. S.; Payolla, Bruno L.

    2005-03-01

    Tin-polymetallic greisen-type deposits in the Itu Rapakivi Province and Rondônia Tin Province, Brazil are associated with late-stage rapakivi fluorine-rich peraluminous alkali-feldspar granites. These granites contain topaz and/or muscovite or zinnwaldite and have geochemical characteristics comparable to the low-P sub-type topaz-bearing granites. Stockworks and veins are common in Oriente Novo (Rondônia Tin Province) and Correas (Itu Rapakivi Province) deposits, but in the Santa Bárbara deposit (Rondônia Tin Province) a preserved cupola with associated bed-like greisen is predominant. The contrasting mineralization styles reflect different depths of formation, spatial relationship to tin granites, and different wall rock/fluid proportions. The deposits contain a similar rare-metal suite that includes Sn (±W, ±Ta, ±Nb), and base-metal suite (Zn-Cu-Pb) is present only in Correas deposit. The early fluid inclusions of the Correas and Oriente Novo deposits are (1) low to moderate-salinity (0-19 wt.% NaCl eq.) CO 2-bearing aqueous fluids homogenizing at 245-450 °C, and (2) aqueous solutions with low CO 2, low to moderate salinity (0-14 wt.% NaCl eq.), which homogenize between 100 and 340 °C. In the Santa Bárbara deposit, the early inclusions are represented by (1) low-salinity (5-12 wt.% NaCl eq.) aqueous fluids with variable CO 2 contents, homogenizing at 340 to 390 °C, and (2) low-salinity (0-3 wt.% NaCl eq.) aqueous fluid inclusions, which homogenize at 320-380 °C. Cassiterite, wolframite, columbite-tantalite, scheelite, and sulfide assemblages accompany these fluids. The late fluid in the Oriente Novo and Correas deposit was a low-salinity (0-6 wt.% NaCl eq.) CO 2-free aqueous solution, which homogenizes at (100-260 °C) and characterizes the sulfide-fluorite-sericite association in the Correas deposit. The late fluid in the Santa Bárbara deposit has lower salinity (0-3 wt.% NaCl eq.) and characterizes the late-barren-quartz, muscovite and kaolinite

  6. Zircon dating and mineralogy of the Mokong Pan-African magmatic epidote-bearing granite (North Cameroon)

    NASA Astrophysics Data System (ADS)

    Tchameni, R.; Sun, F.; Dawaï, D.; Danra, G.; Tékoum, L.; Nomo Negue, E.; Vanderhaeghe, O.; Nzolang, C.; Dagwaï, Nguihdama

    2016-09-01

    We present the mineralogy and age of the magmatic epidote-bearing granite composing most of the Mokong pluton, in the Central Africa orogenic belt (North Cameroon). This pluton intrudes Neoproterozoic (~830 to 700 Ma) low- to high-grade schists and gneisses (Poli-Maroua group), and is crosscut or interleaved with bodies of biotite granite of various sizes. The pluton is weakly deformed in its interior, but solid-state deformation increases toward its margins marked by narrow mylonitic bands trending NNE-SSW. The magmatic epidote granitic rocks are classified as quartz monzodiorite, granodiorite, monzogranite, and syenogranite. They are medium- to coarse-grained and composed of K-feldspar + plagioclase + biotite + amphibole + epidote + magnetite + titanite + zircon + apatite. In these granites, the pistacite component [atomic Fe+3/(Fe3+ + Al)] in epidote ranges from 16 to 29 %. High oxygen fugacity (log ƒO2 - 14 to -11) and the preservation of epidote suggest that the magma was oxidized. Al-in hornblende barometry and hornblende-plagioclase thermometry indicate hornblende crystallization between 0.53 and 0.78 GPa at a temperature ranging from 633 to 779 °C. Zircon saturation thermometry gives temperature estimates ranging from 504 to 916 °C, the latter being obtained on samples containing inherited zircons. U/Pb geochronology by LA-ICP-MS on zircon grains characterized by magmatic zoning yields a concordia age of 668 ± 11 Ma (2 σ). The Mokong granite is the only known occurrence magmatic epidote in Cameroon, and is an important milestone for the comparison of the Central Africa orogenic belt with the Brasiliano Fold Belt, where such granites are much more abundant.

  7. Radioelement distributions in the Proterozoic granites and associated pegmatites of Gabal El Fereyid area, Southeastern Desert, Egypt.

    PubMed

    Abd El-Naby, H H; Saleh, G M

    2003-10-01

    Lithologically, the rock types in the Gabal El Fereyid area are dominantly granites with minor amounts of pegmatites. The granites range in composition from tonalite to granite-adamallite with minor acidic dikes, quartz and pegmatite veins. The granite-adamallite is peraluminous and formed as a result of partial melting of amphibole-bearing rocks at depths of approximately 24-30 km and at temperatures of 800-950 degrees C. Among the different rock types, the muscovite-rich pegmatites had the highest U and Th contents (66 and 38 ppm on average, respectively). The high level of radioactivity in pegmatites is attributed to the presence of the radioactive minerals thorianite, uranophane and allanite as confirmed by XRD analysis. Binary relations of Zr/U, Zr/Th, Ce/U and Ce/Th against either U or Th in the granite-adamellite exhibit significant negative correlations indicating that both elements are not preferentially hosted in the accessory minerals phases such as zircon and monazite, but could be associated with major forming minerals such as biotite, muscovite, plagioclase and quartz, or U is situated within labile sites within granite. The uranium and thorium enrichment in the pegmatites is a two-stage process. The primary stage is magmatic whereas the secondary enrichment is from hydrothermal concentration. The magmatic U and Th are indicated by the presence of thorianite and allanite, whereas evidence of hydrothermal mineralization is the alteration of rock-forming minerals such as feldspar and the formation of secondary minerals such as uranophane and pyrite.

  8. Preparation of alkali metal dispersions

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Landel, R. F. (Inventor)

    1968-01-01

    A method is described for producing alkali metal dispersions of high purity. The dispersions are prepared by varying the equilibrium solubility of the alkali metal in a suitable organic solvent in the presence of aromatic hydrocarbons. The equilibrium variation is produced by temperature change. The size of the particles is controlled by controlling the rate of temperature change.

  9. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  10. [Study on crystal chemistry and spectra of feldspar from Zhoukoudian granodiorite].

    PubMed

    Zhang, Yong-wang; Zeng, Jian-hui; Liu, Yan; Guo, Jian-yu

    2009-09-01

    The chemical composition and spectra characteristic of feldspar from Zhoukoudian granodiorite were systematically analyzed. Based on the field work, some feldspar samples were selected for crystal chemistry and structure analysis through EMPA, IR, LRM and XRD. The compositions of the feldspar range between Ab (85.21) Or (0.18) An (9.11) and Ab (90.06) Or (3.00) An (13.27) by electronic microscope probe analysis. According to the XRD peak and its diffraction intensity, the mineral species was found the unit cell parameters were calculated. The absorption bands and peaks of infrared and Raman spectra were also assigned and the results show that the characteristics of its infrared and Raman spectra are in accordance with the ideal atlas of albite. The infrared spectra show that all the analyzed feldspar grains contain structural hydrogen, which occur as OH-. On the basis of the above analyses, the crystal chemistry and structure characteristics of feldspar were summarized.

  11. Fracture process zone in granite

    USGS Publications Warehouse

    Zang, A.; Wagner, F.C.; Stanchits, S.; Janssen, C.; Dresen, G.

    2000-01-01

    In uniaxial compression tests performed on Aue granite cores (diameter 50 mm, length 100 mm), a steel loading plate was used to induce the formation of a discrete shear fracture. A zone of distributed microcracks surrounds the tip of the propagating fracture. This process zone is imaged by locating acoustic emission events using 12 piezoceramic sensors attached to the samples. Propagation velocity of the process zone is varied by using the rate of acoustic emissions to control the applied axial force. The resulting velocities range from 2 mm/s in displacement-controlled tests to 2 ??m/s in tests controlled by acoustic emission rate. Wave velocities and amplitudes are monitored during fault formation. P waves transmitted through the approaching process zone show a drop in amplitude of 26 dB, and ultrasonic velocities are reduced by 10%. The width of the process zone is ???9 times the grain diameter inferred from acoustic data but is only 2 times the grain size from optical crack inspection. The process zone of fast propagating fractures is wider than for slow ones. The density of microcracks and acoustic emissions increases approaching the main fracture. Shear displacement scales linearly with fracture length. Fault plane solutions from acoustic events show similar orientation of nodal planes on both sides of the shear fracture. The ratio of the process zone width to the fault length in Aue granite ranges from 0.01 to 0.1 inferred from crack data and acoustic emissions, respectively. The fracture surface energy is estimated from microstructure analysis to be ???2 J. A lower bound estimate for the energy dissipated by acoustic events is 0.1 J. Copyright 2000 by the American Geophysical Union.

  12. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  13. Cambro-Ordovician post-collisional granites of the Ribeira belt, SE-Brazil: A case of terminal magmatism of a hot orogen

    NASA Astrophysics Data System (ADS)

    Valeriano, Claudio de Morisson; Mendes, Julio Cezar; Tupinambá, Miguel; Bongiolo, Everton; Heilbron, Monica; Junho, Maria do Carmo Bustamante

    2016-07-01

    This work presents an overview of the geology and chemical composition of the Cambrian-Ordovician post-collisional (COPC) granites and associated rocks of Ribeira belt, SE-Brazil. These COPC granites make up some of the most picturesque and highest (>2000 m) rocky peaks and cliffs of Rio de Janeiro state, an accessible case of post-orogenic granitic magmatism associated with the terminal stages of a hot Ediacaran-Cambrian (Brasiliano-Panafrican) orogen. The COPC magmatism intruded tonalitic to granitic orthogneisses of the Rio Negro arc (∼790-600 Ma) and associated paragneisses of the São Fidelis Group. Post-collisional magmatism started ∼10 m.y. after the latest collisional event, the Buzios Orogeny, lasting discontinuously from ∼510 Ma until ∼470 Ma. The 15 largest intrusive bodies in Rio de Janeiro State are referred to in the literature as the Parati/Mangaratiba, Vila Dois Rios, Pedra Branca, Suruí, Silva Jardim, Favela, Andorinha, Teresópolis, Frade, Nova Friburgo, Conselheiro Paulino, São José do Ribeirão, Sana and Itaoca granites. They crop out as rounded/elliptical stocks or gently-dipping sheets, always with sharp contacts with the country rocks, along with pegmatite and aplitic veins and dykes. COPC granites are grey and pink undeformed medium-grained biotite monzogranites with (K-feldspar) porphyritic, mega-crystic, equigranular and serial textures. Magmatic flow foliation is frequently observed. Peripheric xenolith zones are common as well as isolated xenoliths from the country rocks. In a compilation of more than 100 chemical compositions, SiO2 contents display a major mode at 71wt%. The COPC magmatism generated high-K calc-alkaline granites and quartz monzonites with predominantly metaluminous granites. Meso to melanocratic gabbroic and dioritic enclaves also have calc-alkaline affinity and likely represent more resistant mafic xenoliths from the Rio Negro Arc.

  14. Frictional Properties of Feldspar and Quartz at the Temperatures of Seismogenic Zone

    NASA Astrophysics Data System (ADS)

    Arai, T.; Masuda, K.; Takahashi, M.; Fujimoto, K.; Shigematsu, N.; Sumii, T.; Okuyama, Y.

    2003-12-01

    Most of earthquakes in the crust occurred at the depth of 5 to 20km, and temperatures of 100 to 350° C. The physical properties of rocks at around these temperatures were determined by many frictional experiments. These results indicated the velocity dependence of steady state friction (a-b) was switched from velocity weakening ( seismic slip ) to velocity strengthening ( aseismic slip ) at around 350° C in the wet condition. In these experimental studies, granites were generally used. On the other hand, it is important to evaluate and to compare the physical properties of each mineral which composed of crustal rocks, for example feldspar and quartz, in order to understand the source processes of earthquakes in detail. In this study, we conducted frictional experiments by using albite, anorthite, and quartz gouges ( about 3μ m diameter ) under high pressure and high temperature in a triaxial apparatus, and compared frictional behaviors of three minerals with elevated temperature under the wet and dry conditions. These experiments were conducted by the velocity-stepping test. Temperature varied from room temperature to 600° C. In the dry conditions, experiments were conducted under the confining pressure of 150MPa. In the wet conditions, pore water pressure was applied up to 50MPa under the confining pressure of 200MPa. Sample was put between upper and lower sawcut alumina cylinders ( 20mm diameter x 40mm long ). The sawcut was oriented at 30° to the loading axis. These were jacketed with thin sleeves of annealed Cu. The values for a-b of quartz and albite were positive under the dry condition from room temperature to 600° C. On the other hand, those values of albite and quartz were negative at the temperature of 200° C and 300° C under the wet condition respectively. Those values of quartz decreased as the temperature increased from 100° C to 300° C and increased as the temperature increased from 300° C to 600° C. Those values of albite were switched

  15. CO2 laser cutting of natural granite

    NASA Astrophysics Data System (ADS)

    Riveiro, A.; Mejías, A.; Soto, R.; Quintero, F.; del Val, J.; Boutinguiza, M.; Lusquiños, F.; Pardo, J.; Pou, J.

    2016-01-01

    Commercial black granite boards (trade name: "Zimbabwe black granite") 10 mm thick, were successfully cut by a 3.5 kW CO2 laser source. Cutting quality, in terms of kerf width and roughness of the cut wall, was assessed by means of statistically planned experiments. No chemical modification of the material in the cutting walls was detected by the laser beam action. Costs associated to the process were calculated, and the main factors affecting them were identified. Results reported here demonstrate that cutting granite boards could be a new application of CO2 laser cutting machines provided a supersonic nozzle is used.

  16. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  17. K-Ca and Rb-Sr Dating of Lunar Granite 14321 Revisited

    NASA Technical Reports Server (NTRS)

    Simon, Justin I.; Shih, C.-Y.; Nyquist, L. E.

    2011-01-01

    K-Ca and Rb-Sr age determinations were made for a bulk feldspar-rich portion of an Apollo rock fragment of the pristine lunar granite clast (14321,1062), an acid-leached split of the sample, and the leachate. K-Ca and Rb-Sr data were also obtained for a whole rock sample of Apollo ferroan anorthosite (FAN, 15415). The recent detection [1] of widespread intermediate composition plagioclase indicates that the generation of a diversity of evolved lunar magmas maybe more common and therefore more important to our understanding of crust formation than previously believed. Our new data strengthen the K-Ca and Rb-Sr internal isochrons of the well-studied Apollo sample 14321 [2], which along with a renewed effort to study evolved lunar magmas will provide an improved understanding of the petrogenetic history of evolved rocks on the Moon.

  18. Petrology and Li-Be-B geochemistry of muscovite-biotite granite and associated pegmatite near Yellowknife, Canada

    NASA Astrophysics Data System (ADS)

    Kretz, R.; Loop, J.; Hartree, R.

    1989-06-01

    Prosperous granite (Rb-Sr 2520±25 Ma) occurs as several plutons (1 380 km2 outcrop area) in a thick succession of metamorphosed greywacke-mudstone of the Yellowknife Supergroup. The average mineral content of the Sparrow pluton (in vol.%) is quartz (32), plagioclase (31), K-feldspar (24), muscovite (9), biotite (3), and apatite (<1). Average trace-element concentrations (in ppm) are Li (140), Be (4), B (28), Zn (47), Rb (250), Sr (76), Zr (75) and Ba (360). The central portion of the pluton is slightly richer in K, Sr, and Ba than the margin. Li is concentrated in mica (Li in biotite/Li in muscovite=4.7), and Be and B in muscovite and plagioclase. Countless pegmatite dikes occur in the Sparrow pluton and in schist-hornfels to the east; the outer limit is marked by the cordierite isograd, 9 km from the granite contact. Dikes vary greatly in size (1 km to a few cm in length), in mineral content (quartz, albite, K-feldspar, muscovite, tourmaline, beryl, spodumene), in major element composition (especially the Na∶K ratio), and in trace-element content (Li 18 5000 ppm, Be 5 260 ppm, B 20 150 ppm). Compared with Prosperous granite, the pegmatite bodies are richer in P and Rb, and poorer in Ti, Fe, Mg, Zr, and Ba. Dikes rich in tourmaline, beryl, and spodumene occur in overlapping zones situated progressively farther from the centre of the Sparrow pluton. The composition of tourmaline is related to host rock; the highest concentrations of Fe and Zn occur in crystals from pegmetite and the highest concentrations of Mg and V occur in crystals from tourmalinized schist, while those from granite and quartz veins occupy on intermediate position. Complex compositional zoning is present in some tourmaline crystals in pegmatite. Estimates of temperature (500° 600° C) and pressure (2 4 kb) of granite emplacement, based on the distribution of andalusite and sillimanite in the contact rocks, suggest that the final stage of granite emplacement occurred at sub-solidus conditions

  19. Potassium-argon dating of the cape granite and a granitized xenolith at sea point.

    PubMed

    Schreiner, G D; Basson, H H; Verbeek, A A

    1968-11-01

    Ages obtained by potassium-argon dating are reported for the total rock, light mineral fraction and heavy mineral fractions of the Cape Granite, and of a granitized xenolith derived from the Malmesbury sediments. These ages lie between 430 and 554 million years. The heavy mineral fractions from each rock type show the oldest age, 540 (granite) and 554 (xenolith) million years. These ages are interpreted as lower limits, and the granite age confirms the age of 553 million years found by rubidium-strontium dating. The coincidence of the ages of the different fractions of the granite and xenolith samples is discussed in the light of the different suggestions about the age of the Malmesbury sediments. The conclusion is reached that all pre-granitization history has been eliminated. The possibility of the use of argon retention as a measure of metamorphic activity is suggested.

  20. Geological, fluid inclusion and stable isotope studies of Mo mineralization, Galway Granite, Ireland

    NASA Astrophysics Data System (ADS)

    Gallagher, V.; Feely, M.; Högelsberger, H.; Jenkin, G. R. T.; Fallick, A. E.

    1992-09-01

    Mo mineralization within the Galway Granite at Mace Head and Murvey, Connemara, western Ireland, has many features of classic porphyry Mo deposits including a chemically evolved I-type granite host, associated K- and Si-rich alteration, quartz vein(Mace Head) and granite-hosted (Murvey) molybdenite, chalcopyrite, pyrite and magnetite mineralization and a gangue assemblage which includes quartz, muscovite and K-feldspar. Most fluid inclusions in quartz veins homogenize in the range 100 350°C and have a salinity of 1 13 eq. wt.% NaCl. They display Th-salinity covariation consistent with a hypothesis of dilution of magmatic water by influx of meteoric water. CO2-bearing inclusions in an intensely mineralized vein at Mace Head provide an estimated minimum trapping temperature and pressure for the mineralizing fluid of 355°C and 1.2 kb and are interpreted to represent a H2O-CO2 fluid, weakly enriched in Mo, produced in a magma chamber by decompression-activated unmixing from a dense Mo-bearing NaCl-H2O-CO2 fluid. δ34S values of most sulphides range from c. 0‰ at Murvey to 3 4‰ at Mace Head and are consistent with a magmatic origin. Most quartz vein samples have δ18O of 9 10.3‰ and were precipitated from a hydrothermal fluid with δ18O of 4.6 6.7‰. Some have δ18O of 6 7‰ and reflect introduction of meteoric water along vein margins. Quartz-muscovite oxygen isotope geothermometry combined with fluid inclusion data indicate precipitation of mineralized veins in the temperature range 360 450°C and between 1 and 2 kb. Whole rock granite samples display a clear δ18O-δD trend towards the composition of Connemara meteoric waters. The mineralization is interpreted as having been produced by highlyfractionated granite magma; meteoric water interaction postdates the main mineralizing event. The differences between the Mace Head and Murvey mineralizations reflect trapping of migrating mineralizing fluid in structural traps at Mace Head and precipitation of

  1. Formation of halloysite from feldspar: Low temperature, artificial weathering versus natural weathering

    USGS Publications Warehouse

    Parham, W.E.

    1969-01-01

    Weathering products formed on surfaces of both potassium and plagioclase feldspar (An70), which were continuously leached in a Soxhlet extraction apparatus for 140 days with 7.21 of distilled water per day at a temperature of approximately 78 ??C, are morphologically identical to natural products developed on potassium feldspars weathered under conditions of good drainage in the humid tropics. The new products, which first appear as tiny bumps on the feldspar surface, start to develop mainly at exposed edges but also at apparently random sites on flat cleavage surfaces. As weathering continues, the bumps grow outward from the feldspar surface to form tapered projections, which then develop into wide-based thin films or sheets. The thin sheets of many projections merge laterally to form one continuous flame-shaped sheet. The sheets formed on potassium feldspars may then roll to form tubes that are inclined at a high angle to the feldspar surface. Etch pits of triangular outline on the artificially weathered potassium feldspars serve as sites for development of continuous, non-rolled, hollow tubes. It is inferred from its morphology that this weathering product is halloysite or its primitive form. The product of naturally weathered potassium feldspars is halloysite . 4H2O. The flame-shaped films or sheets formed on artificially weathered plagioclase feldspar do not develop into hollow tubes, but instead give rise to a platy mineral that is most probably boehmite. These plates form within the flame-shaped films, and with continued weathering are released as the film deteriorates. There is no indication from this experiment that platy pseudohexagonal kaolinite forms from any of these minerals under the initial stage of weathering. ?? 1969.

  2. AMS studies in Portuguese variscan granites

    NASA Astrophysics Data System (ADS)

    Sant'Ovaia, Helena; Martins, Helena; Noronha, Fernando

    2014-05-01

    A large volume of Variscan granitic rocks outcrop in Central Iberian Zone which are well documented concerning geological mapping, petrography and geochemistry but whose magnetic characteristics and fabric remain unknown. In this study we summarize the available AMS data from approximately 644 sampling stations (5152 samples) on different massifs of Variscan Portuguese granites. Despite their different geological, petrographic and geochemical characteristics, magnetic susceptibility (K) values obtained for the majority of the studied granites range from 15 to 300 × 10-6 SI. The dominant paramagnetic behaviour of the granite bodies reflects the presence of ilmenite as the main iron oxide. This feature indicates the reduced conditions involved in the granite melt formation during the Variscan orogeny. The two-mica granites show K values ranging between 15 to 70 × 10-6 SI which are lower than values displayed by the biotite-rich facies scattered within the interval of 70 and 300 × 10-6 SI. The magnetite-bearing granites are scarce but represented in Lavadores, Gerês and Manteigas. Even so, only the Lavadores body could be considered as a true magnetite-type granite (K >3.0 × 10-3 SI) in face of its K, comprised between 1550 and 19303 × 10-6 SI. Magnetic anisotropy can be used as a "marker" for the deformation experienced by granite mushes during their crustal emplacement and further cooling. Magnetic anisotropy can thus be correlated with the finite deformation of a rock, as record by mineral fabrics. Post-tectonic granites, such as those from Vila Pouca de Aguiar, Pedras Salgadas, Caria, Vila da Ponte, Chaves and Lamas de Olo, have a magnetic anisotropy <2.5% which corresponds to a deformation hardly visible to the naked eye. Nevertheless, at microscopic scale, these granites display almost ubiquitous magmatic to submagmatic microstructures (rare wavy extinction in quartz, erratic subgrain boundaries in quartz and, eventually, folded or kinked biotites). For

  3. Granite Exfoliation, Cosumnes River Watershed, Somerset, California

    NASA Astrophysics Data System (ADS)

    Crockett, I. Q.; Neiss-Cortez, M.

    2015-12-01

    In the Sierra Nevada foothills of California there are many exposed granite plutons within the greater Sierra Nevada batholith. As with most exposed parts of the batholith, these granite slabs exfoliate. It is important to understand exfoliation for issues of public safety as it can cause rock slides near homes, roads, and recreation areas. Through observation, measuring, and mapping we characterize exfoliation in our Cosumnes River watershed community.

  4. Neutrons and Granite: Transport and Activation

    SciTech Connect

    Bedrossian, P J

    2004-04-13

    In typical ground materials, both energy deposition and radionuclide production by energetic neutrons vary with the incident particle energy in a non-monotonic way. We describe the overall balance of nuclear reactions involving neutrons impinging on granite to demonstrate these energy-dependencies. While granite is a useful surrogate for a broad range of soil and rock types, the incorporation of small amounts of water (hydrogen) does alter the balance of nuclear reactions.

  5. Plagioclase feldspars - Visible and near infrared diffuse reflectance spectra as applied to remote sensing

    NASA Technical Reports Server (NTRS)

    Adams, J. B.; Goullaud, L. H.

    1978-01-01

    Visible and near IR diffuse reflectance spectra of plagioclase feldspars are characterized by absorption features caused by minor amounts of Fe(2+) that occur bound in the crystal structure. It is found that identification of terrestrial feldspars by remote sensing appears to be feasible for the compositional range An50 to An80, providing that other minerals do not mask the feldspar signatures. Determination of plagioclase composition using the wavelength of the Fe(2+) band may be possible for lunar samples, where the plagioclase can be assumed to be more calcic than An65.

  6. Feldspar diagenesis in the Frio Formation, Brazoria County, Texas Gulf Coast

    NASA Astrophysics Data System (ADS)

    Land, Lynton S.; Milliken, Kitty L.

    1981-07-01

    Tremendous quantities of detrital feldspar have been dissolved or albitized below about 14,000 ft (4,267 m) in the Frio Formation (Oligocene), Chocolate Bayou Field, Brazoria County, Texas. Some sandstones no longer contain any unmodified detrital feldspar grains. Material transfer involved in these reactions is immense, affecting at least 15% of the rock volume. Thus, albitization has important implications for several other diagenetic processes that involve feldspars or their components. These processes include formation of secondary porosity, precipitation of quartz and carbonate cements, and the evolution of Na-Ca-Cl formation water.

  7. Schlieren-bound Magmatic Structures Formed by the Unmixing of Granitic Magmas: A Case Study from Pothole Dome, Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Ardill, K. E.; Paterson, S. R.; Memeti, V.

    2015-12-01

    There is ongoing debate regarding the mobility of crystal mush zones in granitic magmas and their ability to mix and interact with intrusive batches to form compositional heterogeneity in plutons. Magmatic structures, localized zones of compositional diversity, enable evaluation of the significance of magmatic flow and convection vs. chemical diffusion in magmatic systems by determining their mode of formation. With further study, magmatic structures are potentially powerful tools recording syn-emplacement tectonic activity. Pothole Dome, in the Cathedral Peak Granodiorite of the Tuolumne Intrusive Complex is an ideal location to investigate magmatic structures since a variety of plumes, pipes, mafic ellipsoids, and schlieren troughs are densely clustered. Previous workers have established patterns in the orientations of different Pothole Dome magmatic structures that are indicative of a broad pattern of movement and younging directions at the kilometer scale. Preliminary whole-rock geochemical and isotopic data compare variations between the normal Cathedral magmas and a plume, trough, tube, potassium feldspar cluster and granitic dyke to investigate plausible mechanisms for the formation of the distinct compositional diversity formed in the structures. Schlieren, abundant in biotite, hornblende, apatite, sphene and zircon show relatively high levels of titanium, calcium and magnesium relative to the feldspar cluster and dyke. Schlieren are also enriched in minor elements including Zr, Y, Sr and Ce relative to the felsic structures. Both elemental and isotopic data for schlieren defining the plumes and troughs and the late leucogranitic dikes and k-feldspar clusters all plot outside the typical mixing line for Cathedral Peak Granodiorite compositions. We postulate that this may be a result of an unmixing process during physical flow of previously mixed populations of chemically distinct crystals in the Cathedral Peak.

  8. Radiological implications of granite of northern Pakistan.

    PubMed

    Asghar, M; Tufail, M; Sabiha-Javied; Abid, A; Waqas, M

    2008-09-01

    Granite is an igneous rock that contains natural radioactivity of primordial radionuclides. In Pakistan, granite is distributed in a vast area called the Ambela Granitic Complex (AGC) in North West Frontier Province (NWFP). Granite is a hard rock that exists in different colours and is used to decorate floors, kitchen counter tops, etc. The use of granite in a building as a decor material is a potential source of radiation dose; therefore, natural radioactivity has been measured in 20 granite samples of the AGC with an HPGe (high purity germanium) based gamma ray spectrometer. The average specific activities and their range (given in parentheses) for primordial radionuclides (40)K, (226)Ra and (232)Th were 1218 (899-1927), 659 (46-6120) and 598 (92-3214) Bq kg(-1), respectively. The measured activity concentrations were used for the assessment of hazard indices and radiation dose which were evaluated based on the permissible limits defined for these parameters. The measured specific activities and the derived quantities, hazard indices and radiation dose, have been compared with those given in the literature for these parameters.

  9. Effects of aqueous cations on the dissolution of labradorite feldspar

    SciTech Connect

    Muir, I.J.; Nesbitt, H.W. )

    1991-11-01

    Specimens of labradorite feldspar (An {approx} 54) were dissolved in mildly acidic solutions containing the cations Al, Ca, and Mg at 9.3 {times} 10{sup {minus}3}, 1.9 {times} 10{sup {minus}2}, and 3.7 {times} 10{sup {minus}2} mmol {center dot} L{sup {minus}1} for 72 days at 21 {plus minus} 2C and atmospheric pressure. Depth profiles by secondary ion mass spectrometry (SIMS) show that the extent to which altered layers form on dissolving labradorite can be influenced by the cation concentration of the leachant solutions. Silicon-enriched altered layers {approx} 1,500 {angstrom} thick form on labradorite surfaces ((001) cleavage faces) during dissolution in aqueous HCl (pH 4). Addition of dissolved Al, Ca, and Mg to the leachant solution reduces the thickness of the altered layers. The formation of thinner altered layers may result from competition between cations and H ions for active surface sites such that the supply of H ions to the labradorite surface is reduced. Dissolved Al in the leachant solutions also alters the release rates of Ca and Al relative to one another. On the other hand, the same is not observed for labradorite specimens dissolved in solutions containing Ca{sub (aq)}. The results from these experiments also support a diffusion-limited processes for the release of Al from fresh labradorite to solutions containing Al{sub (aq)}. Previous attention has been focused on the effects of organic ligands; however, the results demonstrate the important role dissolved cations play in the dissolution of aluminosilicates.

  10. Formation of a Granite Bodies in Depleted Granulite Terranes: the Wuluma Granite, Central Australia

    NASA Astrophysics Data System (ADS)

    Lavaure, S.; Sawyer, E. W.

    2009-05-01

    The Wuluma Granite (ca.17 km2) is hosted by Palaeoproterozoic, granulite facies metasedimentary and metaigneous rocks. It is believed to have formed by in situ partial melting of quartzo-feldspathic gneisses at 1728±3 Ma due to the influx of an externally derived aqueous fluid after the granulite facies metamorphism. We have reinvestigated the Wuluma Granite and find that most contacts between the granite and the host granulites are intrusive, not gradational. Granite occurs as thin (<1m) subconcordant sheets and dykes in country rocks that contain fresh orthopyroxene and cordierite without much replacement by hydrous minerals. Screens of country rock are common within the granite, and many contain metapelitic rocks that have leucosome and melanosome structures similar those found in the country rocks. Although some of the migmatite structures in the screens still contain garnet, cordierite and orthopyroxene, in most these minerals are replaced by biotite. Biotite is the only ferromagnesian mineral in the thinnest screens of country rock. All the screens contain subconcordant sheets and dykes of granite; typically a narrow selvedge is developed between the intrusive granite and the rocks of the screen; selvedges are either rich in biotite or in quartz depending on the host rock type. Schlieren are common throughout the granite and represent the last vestiges of the country rocks in the granite; there is much morphological and mineralogical variation among the schlieren. The Wuluma granite consists of innumerable thin (less than a metre) subparallel sheets and cross-cutting dykes, that are distinguished by variations in grain size, microstructure and the proportion of minerals present. The earliest phase to be porphyritic and rich in biotite, whereas the last is leucocratic, coarse grained and locally forms dykes up to 20m wide. The centre of the granite contains large (1 cm) crystals of garnet and, more rarely, cordierite. However, in many places these have been

  11. Upgrading platform using alkali metals

    DOEpatents

    Gordon, John Howard

    2017-01-17

    A method for removing sulfur, nitrogen or metals from an oil feedstock. The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  12. Upgrading platform using alkali metals

    SciTech Connect

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  13. Temporal evolution of granitic magmas in the Luanchuan metallogenic belt, east Qinling Orogen, central China: Implications for Mo metallogenesis

    NASA Astrophysics Data System (ADS)

    Li, Dong; Han, Jiangwei; Zhang, Shouting; Yan, Changhai; Cao, Huawen; Song, Yaowu

    2015-11-01

    The Luanchuan metallogenic belt, located within the eastern part of the Qinling Orogen, central China, hosts a number of world-class Mo deposits that are closely related to small late Mesozoic granitic plutons. Zircon U-Pb dating of distinct plutons in the Luanchuan metallogenic belt has yielded ages of 153 ± 1, 154 ± 2, 152 ± 2, and 148 ± 1 Ma. Molybdenite Re-Os isotopic compositions of Yuku ore district in the southern part of Luanchuan metallogenic belt has yielded an isochron age of 146 ± 1 Ma, which is consistent with the large-scale mineralization ages in the northern part of the Luanchuan metallogenic belt. A combination of previous studies and new geochronological and isotopic data show a concordant temporal and genetic link between granitic magmatism and Mo mineralization in the Luanchuan metallogenic belt, suggesting that this mineralization episode formed the most extensive Mo mineralization belt in the east Qinling Orogen. Zircon grains from Mo-related granitic plutons show similar trace element distributions. High-precision Multi Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS) Pb isotope analysis of K-feldspar megacrysts from mineralization-related granites suggest that they were derived from the lower crust. Similarly, the Pb isotopic compositions of pyrite coprecipitated with molybdenite also suggest that the metals were derived form the lower crust, with probably minor mantle contribution. A continuum mineralization model that describes the sourcing of Mo from an evolving granitic magma over successive differentiation events, possibly in separate but connected magma chambers, could explain the remarkable Mo enrichment in the Luanchuan metallogenic belt. The volatile- and Mo-bearing granitic magmas ascended as diapirs from the deep crust, and were emplaced as dikes in the upper crust. Lithological differences between these Mo-bearing granites may relate to different stages in the evolution of individual magmas. Finally, ore

  14. Correlation between magnetic fabrics, strain and biotite microstructure with increasing mylonitisation in the pretectonic Wyangala Granite, Australia

    NASA Astrophysics Data System (ADS)

    Lennox, P. G.; de Wall, H.; Durney, D. W.

    2016-04-01

    The Wyangala Granite is a foliated, porphyritic Silurian granite from the Palaeozoic Circum-Pacific type Eastern Lachlan Orogen (ELO) of Australia. It is a paramagnetic ilmenite-bearing, S/marginal I type two-mica- to mainly biotite-granite with different biotite contents and local chlorite alteration. Very highly strained quartz-epidote bands are present. In this contribution, anisotropy of magnetic susceptibility (AMS) is compared with independently measured intensity and 3D style of strain, biotite microstructure and degree of mylonitisation for low-strain granites with weak S-foliations, through medium-strain protomylonitic granites with moderate S- and C-foliations to a high-strain altered granite with a strong single foliation. The samples are further analysed for possible contributions from sample heterogeneity, magmatic flow and 'sub-magmatic' deformation. A good correlation, P‧AMS ~ 1.02 + 0.04 ln P‧(e)Qtz, is obtained between site-average degree of AMS (P‧AMS) in the granite and degree of finite-strain anisotropy (P‧(e)Qtz) from aspect ratios of quartz aggregates in S-foliations in hand specimen and outcrop (P‧AMS 1.03-1.14, P‧(e)Qtz 1.4-19). The magnetic fabric ellipsoids agree with a kinematic regime between neutral and pure oblate predicted by the March model. The observed quartz strains, however, exceed the AMS March strains and are near neutral, plano-linear character. The geological factors that may have contributed to these differences include intra- and inter-crystalline deformation of biotite and bimodality in S and C. Magmatic fabric is not clearly evident in either the AMS or the biotite data. New data for synkinematic oligoclase, low-titanium biotite and low-sodium K-feldspar show that conditions during deformation were approximately transitional greenschist-amphibolite facies: i.e., well below solidus. This agrees with published age data that put the granite emplacement in an extensional, back-arc setting in already deformed

  15. Raman Study of Shock Effects in Plagioclase Feldspar from the Mistastin Lake Impact Structure, Canada

    NASA Astrophysics Data System (ADS)

    Xie, T. X.; Shieh, S. R. S.; Osinski, G. R. O.

    2016-08-01

    This study mainly uses Raman spectroscopy with a 514 nm laser to study anorthosite from Mistastin Lake Impact Crater, Canada, which mainly contains plagioclase with composition of An 28-55, to better understand shock processes in plagioclase feldspar.

  16. Authigenic potassium feldspar in Cambrian carbonates: Evidence of Alleghanian brine migration

    USGS Publications Warehouse

    Hearn, P.P.; Sutter, J.F.

    1985-01-01

    The shallow-water limestones and dolostones of the Conococheague Limestone (Upper Cambrian) of western Maryland contain large amounts of authigenic potassium feldspar. The presence of halite daughter crystals in breached fluid inclusions, low whole-rock ratios of chlorine to bromine, and thermochemical data suggest that the potassium feldspar formed at low temperature by the reaction of connate brines with intercalated siliciclastic debris. Analyses of argon age spectra indicate that the authigenic feldspar probably formed during Late Pennsylvanian to Early Permian time. These results may indicate mobilization and migration of connate brines brought about by Alleghanian folding. The widespread occurrence of authigenic potassium feldspar in Cambrian and Ordovician carbonate rocks throughout the Appalachians suggests that this may have occurred throughout the entire basin.

  17. Natural radionuclide concentrations in granite rocks in Aswan and Central-Southern Eastern Desert, Egypt and their radiological implications.

    PubMed

    Issa, Shams A M; Uosif, M A M; Abd el-Salam, L M

    2012-07-01

    Different types of granites, used extensively in local construction, were collected from five localities in Egypt, namely: Abu Ziran (Central Eastern Desert), Gabal El Maesala (Aswan) and three areas from Wadi Allaqi, (Gabal Abu Marw, Gabal Haumor and Gabal um Shalman), in the South Eastern Desert. Granite samples were studied radiologically, petrographically and geochemically. The contents of natural radionuclides ((226)Ra, (232)Th and (40)K) were measured in investigated samples by using gamma spectrometry [NaI (Tl) 3'×3']. The activity concentrations of (226)Ra, (232)Th and (40)K in the selected granite samples ranged from 9±0.5 to 111±7, 8±1 to 75±4 and 100±6 to 790±40 Bq kg(-1), respectively. The external hazard index (H(ex)), absorbed dose and annual effective dose rate were evaluated to assess the radiation hazard for people living in dwellings made of the materials studied. The calculated radium equivalents were lower than the values recommended for construction materials (370 Bq kg(-1)). The excess lifetime cancer risks were also calculated. Petrographically, the granites studied are varied in the form of potash-feldspar, quartz, plagioclase, mica and hornblende. The accessory minerals are zircon, apatite and allanite. Geochemically, the chemical composition of the granite is studied especially for major oxides. They are characterized to have SiO(2), K(2)O, Na(2)O and Al(2)O(3) with depletion in CaO, MgO, TiO(2) and P(2)O(5).

  18. Hydrothermal fluids responsible for the formation of precious minerals in the Nigerian Younger Granite Province

    NASA Astrophysics Data System (ADS)

    Abaa, S. I.

    1991-04-01

    Preliminary investigations in the Younger Granite Province of Nigeria have revealed that precious and semi-precious minerals like rubies, sapphires, emeralds, aquamarine, zircon and fluorite can be found in the region. The gem minerals are shown to have been produced either by direct deposition along fissures, veins and greisens by hydrothermal fluids or as a result of hydrothermal fluids reacting with wall-rocks. These wall rocks are either biotite granites from which the hydrothermal fluids originated or basement rocks or any other rocks which the biotite granites intrude and their residual hydrothermal fluids have invaded. The hydrothermal fluids appear to have been rich in alkalis (Na+, K+, etc.), rare elements (Be, Zr, F, REE, etc.) and siliceous. As these fluids rose through fractures and channel ways through the rocks, they either deposited the gem minerals in the fractures at the appropriate stability conditions or reacted with the wall-rocks producing the gem minerals at the expense of elements like Ca and A1 in the minerals of these rocks.

  19. Late Permian to Early Oligocene granitic magmatism of the Phan Si Pan uplift area, NW Vietnam: their relationship to Phanerozoic crustal evolution of Southwest China

    NASA Astrophysics Data System (ADS)

    Pham, T. T.; Shellnutt, G.

    2015-12-01

    The Phan Si Pan uplift area of NW Vietnam is a part of the Archean to Paleoproterozoic Yangtze Block, Southwest China. This area is of particular interest because it experienced a number of Phanerozoic crustal building events including the Emeishan Large Igneous Province, the India-Eurasia collision and Ailaoshan - Red River Fault displacement. In the Phan Si Pan uplift area, there are at least three different geochronological complexes, including: (1) Late Permian, (2) Eocene and (3) Early Oligocene. (1) The Late Permian silicic rocks are alkali ferroan A1-type granitic rocks with U/Pb ages of 251 ± 3 to 254 ± 3 Ma. The Late Permian silicic rocks of Phan Si Pan uplift area intrude the upper to middle crust and are considered to be part of the ELIP that was displaced during the India-Eurasian collision along the Ailaoshan-Red River Fault shear zone and adjacent structures (i.e. Song Da zone). Previous studies suggest the Late Permian granitic rocks were derived by fractional crystallization of high - Ti basaltic magma. (2) The Eocene rocks are alkali ferroan A1-type granites (U/Pb ages 49 ± 0.9 Ma) and are spatially associated with the Late Permian granitic rocks. The trace element ratios of this granite are similar to the Late Permian rocks (Th/Nb=0.2, Th/Ta = 2.5, Nb/U = 24, Nb/La =1.2, Sr/Y=1). The origin of the Eocene granite is uncertain but it is possible that it formed by fractional crystallization of a mafic magma during a period of extension within the Yangtze Block around the time of the India-Eurasia collision. (3) The Early Oligocene granite is characterized as a peraluminous within-plate granite with U/Pb ages of 31.3 ± 0.4 to 34 ± 1 Ma. The Early Oligocene granite has trace element ratios (Th/Nb = 2.1, Th/Ta = 22.6, Nb/U = 4.4, Nb/La = 0.4, Sr/Y = 60.4) similar to crust melts. The high Sr/Y ratio (Sr/Y = 20 - 205) indicates a lower crust source that was garnet-bearing. The Phan Si Pan uplift was neither a subduction zone nor an arc environment

  20. Origin of late Archean granite: geochemical evidence from the Vermilion Granitic Complex of northern Minnesota

    USGS Publications Warehouse

    Day, W.C.; Weiblen, P.W.

    1986-01-01

    The 2,700-Ma Vermilion Granitic Complex of northern Minnesota is a granite-migmatite terrane composed of supracrustal metasedimentary rocks, mafic rocks, tonalitic and granodioritic plutonic rocks, and granite. The metasedimentary rocks are predominantly graywacke, which has been regionally metamorphosed to garnet-sillimanite-muscovite-bearing biotite schist, and has locally undergone anatexis. The mafic rocks form early phases within the complex and are of two types: (1) basaltic amphibolite, and (2) monzodiorite and essexite rich in large ion lithophile elements (LILE). The members of the early plutonic suite form small bodies that intrude the metasedimentary rocks and mafic rocks, producing an early migmatite. The granite is of two distinct varieties: (1) white garnet-muscovite-biotite leucogranite (S-type; Chappell and White 1974) and (2) grayish-pink biotite-magnetite Lac La Croix Granite (I-type). The leucogranite occurs in the early migmatite and in paragneissic portions of the complex, whereas the Lac La Croix Granite is a late-stage intrusive phase that invades the early migmatite and metasediment (producing a late migmatite) and forms a batholith. This study focuses specifically on the origin of granite in the Vermilion Granitic Complex. Chemical mass-balance calculations suggest that the S-type two-mica leucogranite had a metagraywacke source, and that the I-type Lac La Croix Granite formed via partial fusion of calc-alkaline tonalitic material, which may have been similar to rocks of the early plutonic suite. This model is satisfactory for petrogenesis of similar Late Archean post-kinematic granites throughout the Canadian Shield. ?? 1986 Springer-Verlag.

  1. Origin of late Archean granite: geochemical evidence from the Vermilion Granitic Complex of northern Minnesota

    NASA Astrophysics Data System (ADS)

    Day, Warren C.; Weiblen, P. W.

    1986-07-01

    The 2,700-Ma Vermilion Granitic Complex of northern Minnesota is a granite-migmatite terrane composed of supracrustal metasedimentary rocks, mafic rocks, tonalitic and granodioritic plutonic rocks, and granite. The metasedimentary rocks are predominantly graywacke, which has been regionally metamorphosed to garnet-sillimanite-muscovite-bearing biotite schist, and has locally undergone anatexis. The mafic rocks form early phases within the complex and are of two types: (1) basaltic amphibolite, and (2) monzodiorite and essexite rich in large ion lithophile elements (LILE). The members of the early plutonic suite form small bodies that intrude the metasedimentary rocks and mafic rocks, producing an early migmatite. The granite is of two distinct varieties: (1) white garnet-muscovite-biotite leucogranite ( S-type; Chappell and White 1974) and (2) grayish-pink biotite-magnetite Lac La Croix Granite ( I-type). The leucogranite occurs in the early migmatite and in paragneissic portions of the complex, whereas the Lac La Croix Granite is a late-stage intrusive phase that invades the early migmatite and metasediment (producing a late migmatite) and forms a batholith. This study focuses specifically on the origin of granite in the Vermilion Granitic Complex. Chemical mass-balance calculations suggest that the S-type two-mica leucogranite had a metagraywacke source, and that the I-type Lac La Croix Granite formed via partial fusion of calc-alkaline tonalitic material, which may have been similar to rocks of the early plutonic suite. This model is satisfactory for petrogenesis of similar Late Archean post-kinematic granites throughout the Canadian Shield.

  2. Origin of peralkaline granites of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Radain, A. A. M.; Fyfe, W. S.; Kerrich, R.

    1982-01-01

    Small volumes of peralkaline granites were generated as the final phase of a Pan African calc-alkaline igneous event which built the Arabian Peninsula. The peralkaline granites are closely associated with trends or sutures related to ophiolites. Peralkaline rocks are chemically heterogeneous, with anomalous abundances of Zr (average 2,150 ppm±2,600 1σ), Y (200±190), and Nb (105±100), representing up to ten-fold enrichments of these elements relative to abundances in calc alkaline granite counterparts. Large enrichments of some rare earth elements and fluorine are also present. The peralkaline granites have scattered whole rock 18O values, averaging 8.7±0.6% in the Hadb Aldyaheen Complex and 10.7±1% in the Jabal Sayid Complex. Quartz-albite fractionations of 0.5 to 1.5% signify that the heavier whole rock δ-values probably represent the oxygen isotope composition of the peralkaline magma. Small variable enrichments of 18O, in conjunction with slightly elevated 87Sr/86Sr initial ratios relative to broadly contemporaneous calc alkaline granites, are both suggestive of a small degree of involvement of crustal, or crustal derived material in the peralkaline magmas. It is proposed that the peculiar magma genesis is associated with a relaxation event which followed continental collision and underthrusting of salt rich sediments.

  3. Thorite in an Apollo 12 granite fragment and age determination using the electron microprobe

    NASA Astrophysics Data System (ADS)

    Seddio, Stephen M.; Jolliff, Bradley L.; Korotev, Randy L.; Carpenter, Paul K.

    2014-06-01

    We present the first quantitative compositional analysis of thorite in a lunar sample. The sample, a granitic assemblage, also contains monazite and yttrobetafite grains, all with concentrations of U, Th, and Pb sufficiently high to determine reliably with the electron microprobe. The assemblage represents the first documented occurrence of these three minerals together and only the second reported occurrence of thorite in a lunar rock. Sample 12023,147-10 is a small, monomict rock fragment recovered from an Apollo 12 regolith sample. It comprises graphic intergrowths of K-feldspar and quartz, and plagioclase and quartz, along with minor or accessory hedenbergite, fayalite, ilmenite, zircon, yttrobetafite, thorite, monazite, and Fe metal. Thorite, ideally ThSiO4, occurs in the assemblage adjacent to quartz and plagioclase, and includes a 12% xenotime ([Y,HREE]PO4) component. From quantitative electron-probe microanalysis (EPMA) of Th, U, and Pb in thorite, assuming that all of the measured Pb is radiogenic, we calculate an age of 3.87 ± 0.03 Ga. Yttrobetafite and monazite, which contain lesser concentrations of U, Th, and Pb than the thorite, yield ages of 3.78 ± 0.06 Ga and 3.9 ± 0.3 Ga, respectively. These dates are consistent with formation of the granitic material around 3.8-3.9 Ga, possibly associated with, or after, the formation of the Imbrium basin. This age falls within a group of younger ages for granitic samples, measured mainly by ion microprobe analysis of zircon, compared to a suite of older ages, ca. 4.20-4.32 Ga, also from zircons (Meyer et al., 1996). A 3.8-3.9 Ga age may reflect an origin following the Imbrium event whereby granitic melt formed as a result of heating and melting, and was mobilized and emplaced along an Imbrium-related ring-fracture system. Silicic volcanic or exposed intrusive materials occur in several circum-Imbrium locations such as the Mairan and Gruithuisen Domes and in ejecta excavated by Aristarchus crater. Perhaps

  4. "Petit Granit": a Belgian limestone used in heritage, construction and sculpture.

    NASA Astrophysics Data System (ADS)

    Pereira, Dolores; Touneur, Francis; Bernáldez, Lorenzo; García Blázguez, Ana

    2014-05-01

    "Petit Granit" is a Lower Carboniferous (Tournaisian) grey-bluish crinoidal limestone that becomes shiny black when polished. The rock is known under several other names like Pierre Bleue (Blue Stone), but at the same time it should not be confused with other natural stones having a similar commercial name (e.g. Chinese Bluestone or Irish Bluestone) which are superficially similar limestones. It consists of around 96% microcrystalline calcite and a high proportion of fossils, mainly crinoids. In addition some dolomite, quartz, pyrite, marcasite and fluorite are present. Around fifteen quarries are active these days, employing almost one thousand people and thus is an important part of the natural stone economy in Belgium. "Petit Granit" has an Appellation d'Origine Locale (Local Appellation of Origin) designation since 1999. It has been extracted in several regions of South Belgium since the Middle Ages. In a sense the name is misleading because it is not an igneous rock and therefore not a true granite, but it derives from the profusion of numerous white fossil fragments in a dark carbonaceous matrix which look similar to feldspar crystals in a granitic background. The stone characterizes many façades of the urban architecture of Brussels and other Belgian cities, and since the second half of the 19th century it has been used in various countries in Europe and overseas. Its high density and uniformity mean that it takes an excellent polish and thus has versatile use as a dimension stone. "Petit Granit" has also been used widely in sculpture and architecture by several well known artists (e.g. Mateo Hernández, Michel Smolders, Tom Blatt, Elise Delbrassinne, Benoît Luyckx, Santiago Calatrava, among others). However, deterioration has been observed when it has been used for exterior purposes, and appropriate measures need to be taken to prevent this. This stone can be considered as Global Heritage Stone Resource in Europe, for both its use in construction and for

  5. Mineralogy and Geochemistry of Granitic rocks within Lichen Hills, Outback Nunatak, Northern Victoria Land, Antarctica

    NASA Astrophysics Data System (ADS)

    KIM, T.; KIM, Y.; Lee, I.; Lee, J.; Woo, J.

    2015-12-01

    The study areas, Lichen Hills and Outback Nunatak are located in the Northern Victoria Land which is close to Pacific Ocean side of Transantarctic Mountain (TAM), Antarctica. According to the study of Zeller and Dreschoff (1990), the radioactivity values of Lichen hills and Frontier Mt. area in the Victoria Land were very high. To identify the geochemical characteristics of granitic rocks in these areas, 13 samples of Lichen Hills rocks and 4 samples of Outback Nunatak rocks are analyzed. For mineralogical study, samples were observed in macroscale as well as microscale including microscope electron probe analysis. Rock samples of Lichen Hills, Outback Nunatak are mainly leucogranite and granitic pegmatite. These rock samples are composed of quartz, k-feldspar, plagioclase, muscovite, garnet, tourmaline like granite. In SEM-EDS analysis, the observed light colored minerals show relatively high Th, U, Dy, Ce, Nb concentration. This suggests that rock samples may contain minerals such as fergusonite, monazite, thorite, allanite, karnasurtite which are considered to be REE-bearing minerals. Samples of related rocks have been analyzed in terms of major, trace and rare earth element (REE) concentrations using X-ray fluorescence (XRF) spectrometer and Inductively Coupled Plasma Mass Spectrometer (ICP-MS). As concentration of SiO2 increase, Al2O3, TiO2, Fe2O3, MgO, P2O5 concentration decrease and Na2O, K2O, MnO concentration increase. Analyzed trace elements and REE are normalized using CI Chondrite, Primitive mantle. The normalized data show that LREE are enriched compared to HREE. The distinct negative anomalies of Eu, Sr are observed, indicating that rock-forming melts are fairly processed state of fractional crystallization. It means that Th, U, Nb, Ta are much enriched in the melts.

  6. Alkalis in Coal and Coal Cleaning Products / Alkalia W Węglu I Productach Jego Wzbogacania

    NASA Astrophysics Data System (ADS)

    Bytnar, Krzysztof; Burmistrz, Piotr

    2013-09-01

    In the coking process, the prevailing part of the alkalis contained in the coal charge goes to coke. The content of alkalis in coal (and also in coke) is determined mainly by the content of two elements: sodium and potasium. The presence of these elements in coal is connected with their occurrence in the mineral matter and moisture of coal. In the mineral matter and moisture of the coals used for the coke production determinable the content of sodium is 26.6 up to 62. per cent, whereas that of potassium is 37.1 up to 73.4 per cent of the total content of alkalis. Major carriers of alkalis are clay minerals. Occasionally alkalis are found in micas and feldspars. The fraction of alkalis contained in the moisture of the coal used for the production of coke in the total amount of alkalis contained there is 17.8 up to 62.0 per cent. The presence of sodium and potassium in the coal moisture is strictly connected with the presence of the chloride ions. The analysis of the water drained during process of the water-extracting from the flotoconcentrate showed that the Na to K mass ratio in the coal moisture is 20:1. Increased amount of the alkalis in the coal blends results in increased content of the alkalis in coke. This leads to the increase of the reactivity (CRI index), and to the decrease of strength (CSR index) determined with the Nippon Steel Co. method. W procesie koksowania przeważająca część zawartych we wsadzie węglowym alkaliów przechodzi do koksu. Zawartość alkaliów w węglu, a co za tym idzie i w koksie determinowana jest głównie zawartością dwóch pierwiastków: sodu i potasu. Obecność tych pierwiastków w węglu wiąże się z występowaniem ich w substancji mineralnej i wilgoci węgla. W substancji mineralnej oraz wilgoci węgli stosowanych do produkcji koksu, oznaczona zawartość sodu wynosi od 26.6 do 62.9%, a zawartość potasu od 37.1 do 73.4% alkaliów ogółem. Głównymi nośnikami alkaliów w substancji mineralnej są minera

  7. Experimental studies of alunite: II. Rates of alunite-water alkali and isotope exchange

    USGS Publications Warehouse

    Stoffregen, R.E.; Rye, R.O.; Wasserman, M.D.

    1994-01-01

    Rates of alkali exchange between alunite and water have been measured in hydrothermal experiments of 1 hour to 259 days duration at 150 to 400??C. Examination of run products by scanning electron microscope indicates that the reaction takes place by dissolution-reprecipitation. This exchange is modeled with an empirical rate equation which assumes a linear decrease in mineral surface area with percent exchange (f) and a linear dependence of the rate on the square root of the affinity for the alkali exchange reaction. This equation provides a good fit of the experimental data for f = 17% to 90% and yields log rate constants which range from -6.25 moles alkali m-2s-1 at 400??C to - 11.7 moles alkali m-2s-1 at 200??C. The variation in these rates with temperature is given by the equation log k* = -8.17(1000/T(K)) + 5.54 (r2 = 0.987) which yields an activation energy of 37.4 ?? 1.5 kcal/mol. For comparison, data from O'Neil and Taylor (1967) and Merigoux (1968) modeled with a pseudo-second-order rate expression give an activation energy of 36.1 ?? 2.9 kcal/mol for alkali-feldspar water Na-K exchange. In the absence of coupled alkali exchange, oxygen isotope exchange between alunite and water also occurs by dissolution-reprecipitation but rates are one to three orders of magnitude lower than those for alkali exchange. In fine-grained alunites, significant D-H exchange occurs by hydrogen diffusion at temperatures as low as 100??C. Computed hydrogen diffusion coefficients range from -15.7 to -17.3 cm2s-1 and suggest that the activation energy for hydrogen diffusion may be as low as 6 kcal/mol. These experiments indicate that rates of alkali exchange in the relatively coarse-grained alunites typical of hydrothermal ore deposits are insignificant, and support the reliability of K-Ar age data from such samples. However, the fine-grained alunites typical of low temperature settings may be susceptible to limited alkali exchange at surficial conditions which could cause

  8. Nature and time of emplacement of a pegmatoidal granite within the Delhi Fold Belt near Bayalan, Rajasthan, India

    NASA Astrophysics Data System (ADS)

    Dasgupta, N.; Sen, J.; Pal, T.; Ghosh, T.

    2009-04-01

    silicate gneisses of the Bhim Group have been deformed by three major phases of folding, namely D1, D2 and D3. Of these the D1 folds defined by transposed compositional layering are intrafolial and isoclinal in nature. The D2 folds are asymmetric with alternate steeply and gently easterly dipping limbs and are defined by compositional banding and schistosity (S1). A good compositional layering parallel to the S2 fabric has been observed within the calc silicate gneisses. The D2 folds are close to tight, gently plunging with a modal plunge of 20o towards 40o; and has an inclined axial plane which has an easterly vergence. This is the most dominant phase of deformation. The D3 folds have developed on the gentle limbs of the D2 folds with a horizontal axis on a vertical axial plane. Interference of the D1 with D2 and D1 with D3 has produced Type III type of interference pattern. The pegmatitic granite body is a coarse grained rock composed of quartz feldspar (dominantly K-feldspar), muscovite, biotite, and tourmaline. A weak foliation has developed within this rock which is parallel to the D3 axial planar structure found within the calc silicate gneisses. Thus from the structural study it is proposed that the pegmatitic granite was emplaced post-D2 and possibly syn D3. The presence of narrow planar zones of hornfelsic rocks parallel to the D3 axial plane within the calc silicate rocks also attests to the above fact. Therefore the D3 axial planes provided the necessary conduits of the granite fluid movement within the calcsilicate rocks. The intrusions have scaled off the calc silicate gneisses into large continuous pieces along the gneissosity plane and got emplaced along the hinges of the D2 and D3 folds. Though disturbed, it has been seen that the orientation of the structural elements within these ripped off blocks of the calc silicate gneisses were quite similar to those found within the ridges, unaffected by the granite. The granites were thus emplaced lit-par-lit in the

  9. The Neocene Magmatism in South Gangdese, Tibet and its tectonic significance: Evidences from Namuru Granitic Complex

    NASA Astrophysics Data System (ADS)

    Dong, G.; Mo, X.

    2011-12-01

    There are lots of granitic intrusions in the western Gangdese, Tibet. Namuru granite complex is one of the typical intrusions with various gabbro inclusions and mafic micro-granular enclaves (shortly MME). Field investigation has found the gradually transitional relationship between the gabbro inclusions and granite with abundant MMEs. It is lithologically biotite granite and few granodiorite for Namuru complex. The chemical analyses show that the SiO2 varies from 65-76%, average 73% for the granite and 48.5-55.6%, average 51%. The total alkali contents are high in both the granite (K2O+Na2O= 5.50%~8.71%) and mafic rocks (4.42~6.7%). The REE pattern is flat and slightly declining with no clearly Eu anomaly with the total content from up to 284.75ppm and lowest of 105.35ppm in the granite and up to 120.38ppm, and lowest 72.48×10-6 in the gabbro rocks. The normalized trace element spider is quite similar in the both with K element enriched and Nb, Ti depleted. Zircon LA-ICP-MS U-Pb dating for 4 samples both granite and gabbro inclusions gave the age of 46.11±0.78Ma, 45.47±0.4Ma, 46.7±2.9Ma and 45.4±1.4Ma respectively, falling into a range of 45.4-46.7Ma of crystalling age. All the characters indicated that magma mixing had happened between granite and mafic magma during the Neocene (45.4-46.7Ma), forming the vast granitic and gabbro rocks as an important magmatic event in western Gangdese. It happens to be consistent with the duration (40.0-52.5Ma) for the known magma mixing and underplating in eastern to middle Gangdese, such as Quxu and Xigarze. It probably represents the giant magma event with magma mixing and underplating in Gangdese during early Neocene. Therefore it was inferred, on the basis of magmatic rocks, that the collision between India-Eurasian continents are acting simultaneously in both eastern and western Gangdese in Eocene, resulting in basaltic magma underplating below and then magma mixing along whole Gangdese belt and formation of the

  10. Hydrothermal alkali metal catalyst recovery process

    DOEpatents

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  11. Nature and origin of authigenic K-feldspar in Precambrian basement rocks of the North American midcontinent

    SciTech Connect

    Duffin, M.E. )

    1989-08-01

    Authigenic K-feldspar occurs in alteration profiles in uppermost Precambrian igneous and metamorphic basement rocks of the midcontinent. The K-feldspar is widespread and has been identified in six states. The profiles occur directly below the Cambrian-Precambrian unconformity and range from about <1 to 8 m in thickness. Authigenic K-feldspar occurs throughout the profile. The K-feldspar is monoclinic or triclinic by X-ray diffraction, of end-member composition, and may compose 63% of rock volume. Much of the K-feldspar formed by replacement of primary feldspar. A sample of wholly authigenic K-feldspar from altered basement in southern Illinois gives a K/Ar data of 549 {plus minus} 18 Ma (Early Cambrian). This data is in agreement with Early Cambrian Rb/Sr dates for potassic alteration of uppermost Precambrian basement in Ohio. Dated authigenic K-feldspars from both Ohio and Illinois give identical {delta}{sup 18}O values of 17.5, suggesting formation from a very similar fluid. Concordancy of both dates and {delta}{sup 18}O values suggests that the K-feldspar formed during an episode of potassic alteration during Early Cambrian time that affected much of midcontinent North America. The dates and {delta}{sup 18}O values for K-feldspar, when considered together, do not fit any of the hypotheses presented here.

  12. Thermometers and thermobarometers in granitic systems

    USGS Publications Warehouse

    Anderson, J.L.; Barth, A.P.; Wooden, J.L.; Mazdab, F.; ,

    2008-01-01

    The ability to determine the thermal and barometric history during crystallization and emplacement of granitic plutons has been enhanced by several new calibrations applicable to granitic mineral assemblages. Other existing calibrations for granitic plutons have continued to be popular and fairly robust. Recent advances include the trace element thermometers Ti-in-quartz, Ti-in-zircon, and Zr-in-sphene (titanite), which need to be further evaluated on the roles of reduced activities due to lack of a saturating phase, the effect of pressure dependence (particularly for the Ti-in-zircon thermometer), and how resistive these thermometers are to subsolidus reequilibration. As zircon and sphene are also hosts to radiogenic isotopes, these minerals potentially also provide new insights into the temperature - time history of magmas. When used in conjunction with pressure-sensitive mineral equilibria in the same rocks, a complete assessment of the P-T-t (pressure-temperature-time) path is possible given that the mineralogy of plutons can reflect crystallization over a range of pressure and temperature during ascent and emplacement and that many intrusions are now seen as forming over several millions of years during the protracted history of batholith construction. Accessory mineral saturation thermometers, such as those for zircon, apatite, and allanite, provide a different and powerful perspective, specifically that of the temperature of the onset of crystallization of these minerals, which can allow an estimate of the range of temperature between the liquidus and solidus of a given pluton. In assessment of the depth of crystallization and emplacement of granitic plutons, the Al-in-hornblende remains popular for metaluminous granites when appropriately corrected for temperature. For peraluminous granites, potential new calibrations exist for the assemblages bearing garnet, biotite, plagioclase, muscovite, and quartz. Other thermometers, based on oxygen abundance, and

  13. Pb and O isotopic constraints on the source of granitic rocks from Cape Breton Island, Nova Scotia, Canada

    USGS Publications Warehouse

    Ayuso, R.A.; Barr, S.M.; Longstaffe, F.J.

    1996-01-01

    Pb isotopic compositions of leached feldspars from twenty-three plutons in Cape Breton Island can be divided into two groups: anorthosite, syenite, and granite in the Blair River Complex, which have the least radiogenic compositions on the Island, and granitic rocks from terranes (Aspy, Bras d'Or, and Mira) to the south. Pb isotopic data for the Blair River Complex (206Pb/204Pb = 17.399-18.107; 207Pb/204Pb = 15.505-15.560; 208Pb/204Pb = 36.689-37.733) are consistent with an old source region ultimately derived from the mantle and contaminated by sialic crust. Oxygen isotopic compositions of syenite in the Blair River Complex (??18O = +8.0 to +8.5 permil) are slightly higher than anorthosite (+7.0 to +8.3 permil); a Silurian granite in the Blair River Complex has ??18O = +7.5 permil. Cambrian to Devonian plutons in the Aspy, Bras d'Or, and Mira terranes are more radiogenic (206Pb/204Pb = 18.192-18.981; 207Pb/204Pb = 15.574-15.712; 208Pb/ 204Pb =37.815-38.936) than the Blair River Complex and were generated from source regions having a predominant crustal Pb signature (high ??). The ??18O values of granites and granodiorites in the Aspy terrane (+7.5 to +9.2 permil; avg = +8.6 permil) and Bras d'Or (+3.7 to +11.3 permil; avg = +9.4 permil) are also consistent with involvement of sialic crust. Many Late Proterozoic granites from the Mira terrane have anomalously low ??18O values (+0.2 to +5.9 permil), perhaps produced from protoliths that had undergone hydrothermal alteration prior to melting. Paleozoic granitic rocks from the Aspy, Bras d'Or, and Mira terranes cannot be uniquely distinguished on the basis of their Pb and O isotopic compositions. The granitic rocks could have been generated during terrane amalgamation from combinations of unradiogenic (Grenville-like) and more radiogenic (Avalon-like) sources.

  14. Alkali Metal Cluster Theory.

    NASA Astrophysics Data System (ADS)

    Chen, Jian

    Available from UMI in association with The British Library. Requires signed TDF. In this thesis, we apply the tight-binding Hubbard model to alkali metal clusters with Hartree-Fock self-consistent methods and perturbation methods for the numerical calculations. We have studied the relation between the equilibrium structures and the range of the hopping matrix elements in the Hubbard Hamiltonian. The results show that the structures are not sensitive to the interaction range but are determined by the number of valence electrons each atom has. Inertia tensors are used to analyse the symmetries of the clusters. The principal axes of the clusters are determined and they are the axes of rotational symmetries of clusters if the clusters have any. The eigenvalues of inertia tensors which are the indication of the deformation of clusters are compared between our model and the ellipsoidal jellium model. The agreement is good for large clusters. At a finite temperature, the thermal motion fluctuates the structures. We defined a fluctuation function with the distance matrix of a cluster. The fluctuation has been studied with the Monte-Carlo simulation method. Our studies show that the clusters remain in the solid state when temperature is low. The small values of fluctuation functions indicates the thermal vibration of atoms around their equilibrium positions. If the temperature is high, the atoms are delocalized. The cluster melts and enters the liquid region. The cluster melting is simulated by the Monte-Carlo simulation with the fluctuation function we defined. Energy levels of clusters are calculated from the Hubbard model. Ionization potentials and magic numbers are also obtained from these energy levels. The results confirm that the Hubbard model is a good approximation for a small cluster. The excitation energy is presented by the difference between the original level and excited level, and the electron-hole interactions. We also have studied cooling of clusters

  15. OVERALL VIEW OF QUARRY, FACING NORTH, WITH UNQUARRIED GRANITE OUTCROP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERALL VIEW OF QUARRY, FACING NORTH, WITH UN-QUARRIED GRANITE OUTCROP IN BACKGROUND - Granite Hill Plantation, Quarry No. 3, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  16. Asbestos contamination in feldspar extraction sites: a failure of prevention? Commentary.

    PubMed

    Cavariani, Fulvio

    2016-01-01

    Fibrous tremolite is a mineral species belonging to the amphibole group. It is present almost everywhere in the world as a natural contaminant of other minerals, like talc and vermiculite. It can be also found as a natural contaminant of the chrysotile form of asbestos. Tremolite asbestos exposures result in respiratory health consequences similar to the other forms of asbestos exposure, including lung cancer and mesothelioma. Although abundantly distributed on the earth's surface, tremolite is only rarely present in significant deposits and it has had little commercial use. Significant presence of amphibole asbestos fibers, characterized as tremolite, was identified in mineral powders coming from the milling of feldspar rocks extracted from a Sardinian mining site (Italy). This evidence raises several problems, in particular the prevention of carcinogenic risks for the workers. Feldspar is widespread all over the world and every year it is produced in large quantities and it is used for several productive processes in many manufacturing industries (over 21 million tons of feldspar mined and marketed every year). Until now the presence of tremolite asbestos in feldspar has not been described, nor has the possibility of such a health hazard for workers involved in mining, milling and handling of rocks from feldspar ores been appreciated. Therefore the need for a wider dissemination of knowledge of these problems among professionals, in particular mineralogists and industrial hygienists, must be emphasized. In fact both disciplines are necessary to plan appropriate environmental controls and adequate protections in order to achieve safe working conditions.

  17. Shock effects in plagioclase feldspar from the Mistastin Lake impact structure, Canada

    NASA Astrophysics Data System (ADS)

    Pickersgill, Annemarie E.; Osinski, Gordon R.; Flemming, Roberta L.

    2015-09-01

    Shock metamorphism, caused by hypervelocity impact, is a poorly understood process in feldspar due to the complexity of the crystal structure, the relative ease of weathering, and chemical variations, making optical studies of shocked feldspars challenging. Understanding shock metamorphism in feldspars, and plagioclase in particular, is vital for understanding the history of Earth's moon, Mars, and many other planetary bodies. We present here a comprehensive study of shock effects in andesine and labradorite from the Mistastin Lake impact structure, Labrador, Canada. Samples from a range of different settings were studied, from in situ central uplift materials to clasts from various breccias and impact melt rocks. Evidence of shock metamorphism includes undulose extinction, offset twins, kinked twins, alternate twin deformation, and partial to complete transformation to diaplectic plagioclase glass. In some cases, isotropization of alternating twin lamellae was observed. Planar deformation features (PDFs) are notably absent in the plagioclase, even when present in neighboring quartz grains. It is notable that various microlites, twin planes, and compositionally different lamellae could easily be mistaken for PDFs and so care must be taken. A pseudomorphous zeolite phase (levyne-Ca) was identified as a replacement mineral of diaplectic feldspar glass in some samples, which could, in some instances, also be potentially mistaken for PDFs. We suggest that the lack of PDFs in plagioclase could be due to a combination of structural controls relating to the crystal structure of different feldspars and/or the presence of existing planes of weakness in the form of twin and cleavage planes.

  18. Hydrothermally grown buddingtonite, an anhydrous ammonium feldspar (NH4AlSi3O8)

    NASA Astrophysics Data System (ADS)

    Voncken, J. H. L.; Konings, R. J. M.; Jansen, J. B. H.; Woensdregt, C. F.

    1988-03-01

    Ammonium feldspar was grown hydrothermally from a gel, having a stöchiometric Al2O3·6SiO2 composition. As a source for NH{4/+}, a 25 percent NH3 solution was used. Internal Cr/CrN and graphite/methane buffers fixed the fugacity of NH3 during the experiments. Unit cell parameters of the synthetic ammonium feldspar are a: 0.8824 (5) nm, b: 1.3077 (8) nm, c: 0.7186 (4) nm, β: 116.068 (12)°, V: 0.7448 (34) nm3. the X-ray power diffraction pattern is measured and indexed in accordance to the space group C2/m. Infrared and thermal gravimetric analyses provide no evidence for the presence of structurally bound water molecules in the crystal structure of synthetic ammonium feldspar. Hydrothermally grown anhydrous ammonium feldspar is shown to be identical to the mineral buddingtonite by the similarity of the data between the synthetic and natural materials. There may be justification for considering natural buddingtonite as an anhydrous feldspar with the ideal formula NH4Si3O8. Reexamination of natural specimens is desirable.

  19. Rock-Forming feldspars of the Khibiny alkaline pluton, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Ivanyuk, G. Yu.; Pakhomovsky, Ya. A.; Konopleva, N. G.; Kalashnikov, A. O.; Korchak, Yu. A.; Selivanova, E. A.; Yakovenchuk, V. N.

    2010-12-01

    This paper describes the structural-compositional zoning of the well-known Khibiny pluton in regard to rock-forming feldspars. The content of K-Na-feldspars increases inward and outward from the Main foidolite ring. The degree of coorientation of tabular K-Na-feldspar crystals sharply increases in the Main ring zone, and microcline-dominant foyaite turns into orthoclase-dominant foyaite. The composition of K-Na-feldspars in the center of the pluton and the Main ring zone is characterized by an enrichment in Al. This shift is compensated by a substitution of some K and Na with Ba (the Main ring zone) or by an addition of K and Na cations to the initially cation-deficient microcline (the central part of the pluton). Feldspars of volcanosedimentary rocks occurring as xenoliths in foyaite primarily corresponded to plagioclase An15-40, but high-temperature fenitization and formation of hornfels in the Main ring zone gave rise to the crystallization of anorthoclase subsequently transformed into orthoclase and albite due to cooling and further fenitization. Such a zoning is the result of filling the Main ring fault zone within the homogeneous foyaite pluton with a foidolite melt, which provided the heating and potassium metasomatism of foyaite and xenoliths of volcanosedimentary rocks therein. The process eventually led to the transformation of foyaite into rischorrite-lyavochorrite, while xenoliths were transformed into aluminum hornfels with anorthoclase, annite, andalusite, topaz, and sekaninaite.

  20. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    DOEpatents

    Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  1. Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides

    DOEpatents

    Gordon, John Howard; Alvare, Javier

    2016-10-25

    Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte solution and may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.

  2. 7. Photocopied August 1971 from Photo 13729, Granite Station Special ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopied August 1971 from Photo 13729, Granite Station Special Folder, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. GRANITE HYDRO-ELECTRIC PLANT (1500KW) STATION. PENSTOCK AND SPILWAY, NOVEMBER 1914. - Utah Power Company, Granite Hydroelectric Plant, Holladay, Salt Lake County, UT

  3. 9. Photocopied August 1971 from Photo 13730, Granite Folder #1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopied August 1971 from Photo 13730, Granite Folder #1, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. GRANITE STATION: WESTINGHOUSE 750 K.V.A., 2- PHASE GENERATORS AND SWITCHBOARD, MAY 24, 1915. - Utah Power Company, Granite Hydroelectric Plant, Holladay, Salt Lake County, UT

  4. 8. Photocopied August 1971 from Photo 11479, Granite Station Special ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopied August 1971 from Photo 11479, Granite Station Special Folder, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. GRANITE HYDRO-ELECTRIC PLANT (1500 KW) STATION. PENSTOCK AND SPILWAY, NOVEMBER 1914. - Utah Power Company, Granite Hydroelectric Plant, Holladay, Salt Lake County, UT

  5. The origin of granites and related rocks

    USGS Publications Warehouse

    Brown, Michael; Piccoli, Philip M.

    1995-01-01

    This Circular is a compilation of abstracts for posters and oral presentations given at the third Hutton symposium on the Origin of granites and related rocks. The symposium was co-sponsored by the Department of Geology, University of Maryland at College Park; the U.S. Geological Survey, Reston, Virginia; and the Department of Terrestrial Magnetism and Geophysical Laboratory, Carnegie Institution of Washington.

  6. The global age distribution of granitic pegmatites

    USGS Publications Warehouse

    McCauley, Andrew; Bradley, Dwight C.

    2014-01-01

    An updated global compilation of 377 new and previously published ages indicates that granitic pegmatites range in age from Mesoarchean to Neogene and have a semi-periodic age distribution. Undivided granitic pegmatites show twelve age maxima: 2913, 2687, 2501, 1853, 1379, 1174, 988, 525, 483, 391, 319, and 72 Ma. These peaks correspond broadly with various proxy records of supercontinent assembly, including the age distributions of granites, detrital zircon grains, and passive margins. Lithium-cesium-tantalum (LCT) pegmatites have a similar age distribution to the undivided granitic pegmatites, with maxima at 2638, 1800, 962, 529, 485, 371, 309, and 274 Ma. Lithium and Ta resources in LCT pegmatites are concentrated in the Archean and Phanerozoic. While there are some Li resources from the Proterozoic, the dominantly bimodal distribution of resources is particularly evident for Ta. This distribution is similar to that of orogenic gold deposits, and has been interpreted to reflect the preservation potential of the orogenic belts where these deposits are formed. Niobium-yttrium-fluorine (NYF) pegmatites show similar age distributions to LCT pegmatites, but with a strong maximum at ca. 1000 Ma.

  7. Granite School District First Grade Reading Study.

    ERIC Educational Resources Information Center

    Castner, Myra H.; And Others

    A comparative study of first-grade reading instructional methods was undertaken with the support of the Granite School District Exemplary Center for Reading Instruction. This study was conducted in 19 schools of the district and involved approximately 1,295 students. Nine hypotheses concerning the various approaches used in reading instruction…

  8. Voluminous granitic magmas from common basaltic sources

    USGS Publications Warehouse

    Sisson, T.W.; Ratajeski, K.; Hankins, W.B.; Glazner, A.F.

    2005-01-01

    Granitic-rhyolitic liquids were produced experimentally from moderately hydrous (1.7-2.3 wt% H2O) medium-to-high K basaltic compositions at 700 MPa and f O2 controlled from Ni-NiO -1.3 to +4. Amount and composition of evolved liquids and coexisting mineral assemblages vary with fO2 and temperature, with melt being more evolved at higher fO2s, where coexisting mineral assemblages are more plagioclase- and Fe-Ti oxide-rich and amphibole-poor. At fO2 of Ni-NiO +1, typical for many silicic magmas, the samples produce 12-25 wt% granitic-rhyolitic liquid, amounts varying with bulk composition. Medium-to-high K basalts are common in subduction-related magmatic arcs, and near-solidus true granite or rhyolite liquids can form widely, and in geologically significant quantities, by advanced crystallization-differentiation or by low-degree partial remelting of mantle-derived basaltic sources. Previously differentiated or weathered materials may be involved in generating specific felsic magmas, but are not required for such magmas to be voluminous or to have the K-rich granitic compositions typical of the upper continental crust. ?? Springer-Verlag 2005.

  9. Petrogenesis of middle Ordovician peraluminous granites in the Baoshan block: Implications for the early Paleozoic tectonic evolution along East Gondwana

    NASA Astrophysics Data System (ADS)

    Li, Gong-Jian; Wang, Qing-Fei; Huang, Yu-Han; Gao, Lei; Yu, Li

    2016-02-01

    Peraluminous granitic magmatism in the Baoshan block is long-lasting roughly from 500 Ma to 450 Ma. The petrogenesis and geodynamics for this long-lived magmatism remain controversial. To address this controversy, this study reports the zircon U-Pb age and Hf-isotope, and bulk-rock major and trace element data of the granites from the Shuangmaidi and Mengmao areas in the Baoshan block. LA-ICPMS zircon U-Pb dating reveals that the granitic rocks from the two areas were emplaced between 470 and 459 Ma. These rocks are high silicic and strongly peraluminous, with SiO2 = 73.6-77.6 wt.%, A/CNK ratios of 1.0-1.6, and CIPW normative corundum contents of 0.7-5.3 wt.%. They are enriched in LREEs, LILEs (e.g., Rb, Th, U, and K) and Pb, and depleted in HFSEs (e.g., Nb, Ta, P, Zr, and Ti), Eu, Sr, and Ba. The εHf(t) values for co-magmatic zircons of the Shuangmaidi coarse- and fine-grained porphyritic granites show wide ranges from - 11.6 to + 5.2 and from - 8.1 to + 7.0, concentrating in - 7.1 to + 0.5 and - 8.1 to + 0.7, respectively; and those of the Mengmao granites concentrate between - 4.6 and - 0.5. The primary magmas of these granites can be mainly attributed to the partial melting of ancient metasedimentary rocks, while small amounts of mantle-derived components were introduced into the magma sources for the Shuangmaidi granites. The primary magma of the Shuangmaidi granites experienced biotite-dominant mineral fractionation, and that of the Mengmao granite mainly fractionated K-feldspar and plagioclase. Combining our data with the regional sedimentary unconformity, multi-type magmatism, and high-pressure metamorphism in the Baoshan and its periphery blocks, we propose that these ca. 470-460 Ma peraluminous granites were formed in the tectonic setting of the thickened lithospheric delamination following the final amalgamation of outboard Asian microcontinents onto the East Gondwana margin at ca. 490-475 Ma. Our study favors that the long-lasted (ca. 500-450 Ma

  10. Electrical Resistivity of Alkali Elements.

    DTIC Science & Technology

    1976-01-01

    rubidium, cesium, and francium ) and contains recommended reference values (or provisional or typical values). The compiled data include all the...and information on the electrical resistivity of alkali elements (lithium, sodium, potassium, rubidium, cesium, and francium ) and contains...107Ic. Magnetic Flux Density Dependence o.. .. ... .... 112 4.6. Francium ..........................115j a. Temperature Dependence

  11. Fractal patterns of fractures in granites

    USGS Publications Warehouse

    Velde, B.; Dubois, J.; Moore, D.; Touchard, G.

    1991-01-01

    Fractal measurements using the Cantor's dust method in a linear one-dimensional analysis mode were made on the fracture patterns revealed on two-dimensional, planar surfaces in four granites. This method allows one to conclude that: 1. (1)|The fracture systems seen on two-dimensional surfaces in granites are consistent with the part of fractal theory that predicts a repetition of patterns on different scales of observation, self similarity. Fractal analysis gives essentially the same values of D on the scale of kilometres, metres and centimetres (five orders of magnitude) using mapped, surface fracture patterns in a Sierra Nevada granite batholith (Mt. Abbot quadrangle, Calif.). 2. (2)|Fractures show the same fractal values at different depths in a given batholith. Mapped fractures (main stage ore veins) at three mining levels (over a 700 m depth interval) of the Boulder batholith, Butte, Mont. show the same fractal values although the fracture disposition appears to be different at different levels. 3. (3)|Different sets of fracture planes in a granite batholith, Central France, and in experimental deformation can have different fractal values. In these examples shear and tension modes have the same fractal values while compressional fractures follow a different fractal mode of failure. The composite fracture patterns are also fractal but with a different, median, fractal value compared to the individual values for the fracture plane sets. These observations indicate that the fractal method can possibly be used to distinguish fractures of different origins in a complex system. It is concluded that granites fracture in a fractal manner which can be followed at many scales. It appears that fracture planes of different origins can be characterized using linear fractal analysis. ?? 1991.

  12. Raman Spectroscopic Characterization of the Feldspars: Implications for Surface Mineral Characterization in Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Freeman, J. J.; Wang, Alian; Kuebler, K. E.; Haskin, L. A.

    2003-01-01

    The availability in the last decade of improved Raman instrumentation using small, stable, intense lasers, sensitive CCD array detectors, and advanced fast grating systems enabled us to develop the Mars Microbeam Raman Spectrometer (MMRS), a field-portable Raman spectrometer with precision and accuracy capable of identifying minerals and their different compositions. For example, we can determine Mg cation ratios in pyroxenes and olivines to +/-0.1 on the basis of Raman peak positions. Feldspar is another major mineral formed in igneous systems whose characterization is important for determining rock petrogenesis and alteration. From their Raman spectral pattern, feldspars can be readily distinguished from ortho- and chain-silicates and from other tecto-silicates such as quartz and zeolites. We show here how well Raman spectral analysis can distinguish among members within the feldspar group.

  13. Active sites in heterogeneous ice nucleation—the example of K-rich feldspars

    NASA Astrophysics Data System (ADS)

    Kiselev, Alexei; Bachmann, Felix; Pedevilla, Philipp; Cox, Stephen J.; Michaelides, Angelos; Gerthsen, Dagmar; Leisner, Thomas

    2017-01-01

    Ice formation on aerosol particles is a process of crucial importance to Earth’s climate and the environmental sciences, but it is not understood at the molecular level. This is partly because the nature of active sites, local surface features where ice growth commences, is still unclear. Here we report direct electron-microscopic observations of deposition growth of aligned ice crystals on feldspar, an atmospherically important component of mineral dust. Our molecular-scale computer simulations indicate that this alignment arises from the preferential nucleation of prismatic crystal planes of ice on high-energy (100) surface planes of feldspar. The microscopic patches of (100) surface, exposed at surface defects such as steps, cracks, and cavities, are thought to be responsible for the high ice nucleation efficacy of potassium (K)–feldspar particles.

  14. Iron removal on feldspar by using Averrhoa bilimbii as bioleaching agent

    NASA Astrophysics Data System (ADS)

    Amin, Muhammad; Aji, Bramantyo B.; Supriyatna, Yayat Iman; Bahfie, Fathan

    2017-01-01

    Investigation of Averrhoa bilimbii as bioleaching agent was carried out. Parameters of leaching duration, acid concentration, and temperature were performed in iron removal process. Feldspar with sized 149 µm was diluted in 30 ml acid solution in order to reduce its iron content. The experimental results showed a good technical feasibility of the process which iron oxide content of feldspar was decreased from 2.24% to 0.29%. The lowest iron concentration remained was obtained after 5 hours of leaching treatment at 60 °C, and concentrated (100 vol%) Averrhoa bilimbii extract as bioleaching agent. SEM characterizations were carried out on the feldspar before and after the leaching treatment. The result shows that there were no significant effect of leaching process on the ore morphology.

  15. Geology of the Silsilah ring complex, and associated tin mineralization, Kingdom of Saudi Arabia - a synopsis.

    USGS Publications Warehouse

    du Bray, E.A.

    1985-01-01

    A tin greisen deposit is associated with an alkali-feldspar granite that forms part of a ring complex at Jabal as Silsilah. The petrological and geochemical characteristics of the Fawwarah alkali-feldspar granite resemble those of granites located elsewhere that are also associated with deposits of Sn, W and rare metals. The alkali-feldspar granite is peraluminous, incompatible trace-element-enriched, and is characterized by a flat chondrite-normalized REE pattern that includes a very large, negative Eu anomaly. The distinctive mineralogy of the alkali-feldspar granite includes zinnwaldite and topaz. Differentiation and mineral fractionation controlled magma evolution while components of the ring complex were sequentially emplaced. Evolution of the ring complex and its associated tin deposit concluded with local, intense alteration of the Fawwarah alkali-feldspar granite to a cassiterite-bearing greisen. Samples of greisens suggest that the locus of economic tin deposits is not restricted to the two known, strongly mineralized greisens.-J.A.Z.

  16. The Early Jurassic Bokan Mountain peralkaline granitic complex (southeastern Alaska): geochemistry, petrogenesis and rare-metal mineralization

    USGS Publications Warehouse

    Dostal, Jaroslav; Kontak, Daniel J.; Karl, Susan M.

    2014-01-01

    The Early Jurassic (ca. 177 Ma) Bokan Mountain granitic complex, located on southern Prince of Wales Island, southernmost Alaska, cross-cuts Paleozoic igneous and metasedimentary rocks of the Alexander terrane of the North American Cordillera and was emplaced during a rifting event. The complex is a circular body (~3 km in diameter) of peralkaline granitic composition that has a core of arfvedsonite granite surrounded by aegirine granite. All the rock-forming minerals typically record a two-stage growth history and aegirine and arfvedsonite were the last major phases to crystalize from the magma. The Bokan granites and related dikes have SiO2 from 72 to 78 wt. %, high iron (FeO (tot) ~3-4.5 wt. %) and alkali (8-10 wt.%) concentrations with high FeO(tot)/(FeO(tot)+MgO) ratios (typically >0.95) and the molar Al2O3/(Na2O+K2O) ratio Nd values which are indicative of a mantle signature. The parent magma is inferred to be derived from an earlier metasomatized lithospheric mantle by low degrees of partial melting and generated the Bokan granitic melt through extensive fractional crystallization. The Bokan complex hosts significant rare-metal (REE, Y, U, Th, Nb) mineralization that is related to the late-stage crystallization history of the complex which involved the overlap of emplacement of felsic dikes, including pegmatite bodies, and generation of orthomagmatic fluids. The abundances of REE, HFSE, U and Th as well as Pb and Nd isotopic values of the pluton and dikes were modified by orthomagmatic hydrothermal fluids highly enriched in the strongly incompatible trace elements, which also escaped along zones of structural weakness to generate rare-metal mineralization. The latter was deposited in two stages: the first relates to the latest stage of magma emplacement and is associated with felsic dikes that intruded along the faults and shear deformations, whereas the second stage involved ingress of hydrothermal fluids that both remobilized and enriched the initial

  17. Hydrogen and oxygen isotope geochemistry of Ascension Island lavas and granites: variation with crystal fractionation and interaction with sea water

    NASA Astrophysics Data System (ADS)

    Sheppard, Simon M. F.; Harris, Chris

    1985-09-01

    Lavas and pyroclastics on Ascension Island contain plutonic blocks that include fluid-inclusion-bearing peralkaline-granite. 18O/16O ratios, F and Cl have been analysed on whole rocks and/or minerals for lavas and granites, and D/H ratios and H2O+ for comenditic obsidians and granites. Whole rock 18O/16O ratios of fresh alkali-basalt, hawaiite, trachyandesite, trachyte and comendite range from 6.0 to 6.9‰ with 18O tending to increase with increase in SiO2. The δ 18O values of the granites are from 0.0 to 0.3‰ depleted in 18O relative to the comendites. Comenditic obsidians have δD= -80±4‰ and H2O+ ˜0.3 wt.% while amphiboles from the granites have δD= -56±2‰ The O-isotope trend of the lavas is consistent with a crystal fractionation model. Fresh igneous rocks with δ 18O values greater than 7‰ involve processes in addition to crystal fractionation of a basaltic magma. The D/H ratios and Cl contents (˜ 3,000 ppm) of the H2O-poor comenditic obsidians represent undegassed primary magmatic values. The H-isotope compositions and low H2O and Cl (167 ppm) contents of the granites are consistent with the major degassing (loss of >90% of initial H2O) of an H2Osaturated magma derived from the interaction of sea (or possibly meteoric) water with the H2O-undersaturated comenditic melt. It is proposed that, associated with caldera subsidence and stoping, water was sucked in around the residual magma before the system had time to be sealed up. The H2O-undersaturated magma consumed this H2O with possibly some minor partial dehydration and dewatering of the hydrated volcanic roof blocks, at a pressure of about 1.5 kb. The granites are the plutonic equivalents of rhyolitic pyroclastics and not directly of the comendites. Granites from oceanic islands may, in general, be a result of generating an H2O-saturated acid melt by such direct or indirect crustal water-magma interaction processes.

  18. Red-IR stimulated luminescence in K-feldspar: Single or multiple trap origin?

    NASA Astrophysics Data System (ADS)

    Thalbitzer Andersen, Martin; Jain, Mayank; Tidemand-Lichtenberg, Peter

    2012-08-01

    We investigate on the origins of the infra-red stimulated luminescence (IRSL) signals in 3 potassium feldspars based on IR-red spectroscopy (˜700-1050 nm) using a fiber-coupled tunable Ti:Sapphire laser, in combination with different thermal and optical (pre)treatments of the samples. We also measure dose-response curves with different wavelengths and at different stimulation temperatures so as to be able to distinguish between traps based on their electron trapping cross-sections. Our data suggest that the dosimetric signals, IRSL, and the post IR-IRSL in K-feldspars arise from a single electron trapping centre.

  19. Identification of granite varieties from colour spectrum data.

    PubMed

    Araújo, María; Martínez, Javier; Ordóñez, Celestino; Vilán, José Antonio

    2010-01-01

    The granite processing sector of the northwest of Spain handles many varieties of granite with specific technical and aesthetic properties that command different prices in the natural stone market. Hence, correct granite identification and classification from the outset of processing to the end-product stage optimizes the management and control of stocks of granite slabs and tiles and facilitates the operation of traceability systems. We describe a methodology for automatically identifying granite varieties by processing spectral information captured by a spectrophotometer at various stages of processing using functional machine learning techniques.

  20. Preferential cataclastic grain size reduction of feldspar in deformation bands in poorly consolidated arkosic sands

    PubMed Central

    Exner, Ulrike; Tschegg, Cornelius

    2012-01-01

    This study presents microstructural as well as bulk and mineral chemical investigations of deformation bands in uncemented, friable arkosic sands of Miocene age (Vienna Basin, Austria). Our microstructural study indicates grain size reduction by grain flaking in deformation bands with small offsets (0.5–8 cm), and dominant intragranular fracturing and cataclasis of altered feldspar grains at larger displacements (up to 60 cm). Relative to quartz, the sericitized feldspar grains are preferably fractured and abraded, which additionally leads to an enrichment of mainly phyllosilicates by mechanical expulsion from feldspar. Both cataclasis of quartz and feldspar grains and enrichment of phyllosilicates result in grain size reduction within the deformation bands. The measured reduction in porosity of up to 20% is in some cases associated with a permeability reduction, reflected in the retention of iron-oxide rich fluids along deformation bands. These deformation bands formed at very shallow burial depths in unconsolidated sediments indicate that fault sealing may occur in the absence of chemical alteration of the deformation bands and lead to a compartmentalization of a groundwater or hydrocarbon reservoir. PMID:26523078

  1. Preferential cataclastic grain size reduction of feldspar in deformation bands in poorly consolidated arkosic sands

    NASA Astrophysics Data System (ADS)

    Exner, Ulrike; Tschegg, Cornelius

    2012-10-01

    This study presents microstructural as well as bulk and mineral chemical investigations of deformation bands in uncemented, friable arkosic sands of Miocene age (Vienna Basin, Austria). Our microstructural study indicates grain size reduction by grain flaking in deformation bands with small offsets (0.5-8 cm), and dominant intragranular fracturing and cataclasis of altered feldspar grains at larger displacements (up to 60 cm). Relative to quartz, the sericitized feldspar grains are preferably fractured and abraded, which additionally leads to an enrichment of mainly phyllosilicates by mechanical expulsion from feldspar. Both cataclasis of quartz and feldspar grains and enrichment of phyllosilicates result in grain size reduction within the deformation bands. The measured reduction in porosity of up to 20% is in some cases associated with a permeability reduction, reflected in the retention of iron-oxide rich fluids along deformation bands. These deformation bands formed at very shallow burial depths in unconsolidated sediments indicate that fault sealing may occur in the absence of chemical alteration of the deformation bands and lead to a compartmentalization of a groundwater or hydrocarbon reservoir.

  2. Preferential cataclastic grain size reduction of feldspar in deformation bands in poorly consolidated arkosic sands.

    PubMed

    Exner, Ulrike; Tschegg, Cornelius

    2012-10-01

    This study presents microstructural as well as bulk and mineral chemical investigations of deformation bands in uncemented, friable arkosic sands of Miocene age (Vienna Basin, Austria). Our microstructural study indicates grain size reduction by grain flaking in deformation bands with small offsets (0.5-8 cm), and dominant intragranular fracturing and cataclasis of altered feldspar grains at larger displacements (up to 60 cm). Relative to quartz, the sericitized feldspar grains are preferably fractured and abraded, which additionally leads to an enrichment of mainly phyllosilicates by mechanical expulsion from feldspar. Both cataclasis of quartz and feldspar grains and enrichment of phyllosilicates result in grain size reduction within the deformation bands. The measured reduction in porosity of up to 20% is in some cases associated with a permeability reduction, reflected in the retention of iron-oxide rich fluids along deformation bands. These deformation bands formed at very shallow burial depths in unconsolidated sediments indicate that fault sealing may occur in the absence of chemical alteration of the deformation bands and lead to a compartmentalization of a groundwater or hydrocarbon reservoir.

  3. SCR neon and argon in Kapoeta feldspar: Evidence for an active ancient Sun

    NASA Technical Reports Server (NTRS)

    Rao, M. N.; Garrison, D. H.; Bogard, D. D.

    1993-01-01

    From etched feldspar size-fractions of Kapoeta, we determine a significant excess of cosmogenic Ne-21 and Ar-38 over that produced by galactic cosmic rays. This excess component is attributed to early production by energetic solar protons and suggest that the energetic proton flux from the ancient Sun was several hundred times more intense than that of the contemporary Sun.

  4. Positron-alkali atom scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.; Ward, S. J.

    1990-01-01

    Positron-alkali atom scattering was recently investigated both theoretically and experimentally in the energy range from a few eV up to 100 eV. On the theoretical side calculations of the integrated elastic and excitation cross sections as well as total cross sections for Li, Na and K were based upon either the close-coupling method or the modified Glauber approximation. These theoretical results are in good agreement with experimental measurements of the total cross section for both Na and K. Resonance structures were also found in the L = 0, 1 and 2 partial waves for positron scattering from the alkalis. The structure of these resonances appears to be quite complex and, as expected, they occur in conjunction with the atomic excitation thresholds. Currently both theoretical and experimental work is in progress on positron-Rb scattering in the same energy range.

  5. Alkali metal/sulfur battery

    DOEpatents

    Anand, Joginder N.

    1978-01-01

    Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

  6. Silicosis in West Country Granite Workers

    PubMed Central

    Hale, L. W.; Sheers, G.

    1963-01-01

    The granite industry in Cornwall and Devon is briefly described, especially the production of dust in dressing the stone. In 1951, 210 granite masons were examined (about 84% of the total at that time) and 37 (17·6%) showed silicosis. These men were followed up for 10 years. No silicosis was seen in men with less than 15 years' exposure, but after this time the risk increased to 11 out of 14 in those with over 35 years' exposure. Nine deaths occurred, two of which were due to silicosis. Radiological progression was observed in 13 of the 28 survivors. It was not necessarily associated with additional exposure but was related to age. More young men progressed. In 1961, 132 of the granite masons (about 93% of the total at that time) were re-examined and nine new cases of silicosis were found to have developed during the 10-year interval. The exposure in the 1961 cases was comparable with that of similar cases in 1951. Thus the risk has not been much reduced over this period. Pulmonary tuberculosis occurred in eight of the 37 cases of silicosis in 1951, and between 1951 and 1961 a further five cases were diagnosed, four being from one locality. This was by far the most frequent and disabling complication. Only one case of progressive massive fibrosis was seen. More extensive use of protective antituberculous chemotherapy is advocated, and also better dust control. Images PMID:14046159

  7. [Energy related studies utilizing K-feldspar thermochronology]. Progress report, 1991--1992

    SciTech Connect

    Not Available

    1992-03-01

    In our second year of current funding cycle, we have investigated the Ar diffusion properties and microstructures of K-feldspars and the application of domain theory to natural K-feldspars. We completed a combined TEM and argon diffusion study of the effect of laboratory heat treatment on the microstructure and kinetic properties of K-feldspar. We conclude in companion papers that, with one minor exception, no observable change in the diffusion behavior occurs during laboratory extraction procedures until significant fusion occurs at about 1100{degrees}C. The effect that is observed involves a correlation between the homogenization of cryptoperthite lamelle and the apparent increase in retentivity of about 5% of the argon in the K-feldspar under study. We can explain this effect of both as an artifact of the experiment or the loss of a diffusion boundary. Experiments are being considered to resolve this question. Refinements have been made to our experimental protocol that appears that greatly enhance the retrieval of multi-activation energies from K-feldspars. We have applied the multi-domain model to a variety of natural environments (Valles Caldera, Red River fault, Appalachian basin) with some surprising results. Detailed {sup 40}Ar/{sup 39} Ar coverage of the Red River shear zone, thought to be responsible for the accommodation of a significant fraction of the Indo-Asian convergence, strongly suggests that our technique can precisely date both the termination of ductile strike-slip motion and the initiation of normal faulting. Work has continued on improving our numerical codes for calculating thermal histories and the development of computer based graphing tools has significantly increased our productivity.

  8. Beryl pegmatite at Jabal Tarban, southern Najd region, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Jackson, Norman J.

    Beryl pegmatite near Jabal Tarban forms a carapace on a small stock of alkali-feldspar microgranite. Geological, petrographic and geochemical features indicate a genetic relationship between pegmatite and microgranite. Crystallization of quartz and alkali feldspar from a low-Ca granitic magma resulted in formation of a residuum enriched in rare elements. Silica separated from this residuum to form a pegmatitic carapace over the stock; the remainder crystallized as the fine-grained albite-rich groundmass of the microgranite.

  9. Martabah gabbro—monzonite complex, Hijaz region, Kingdom of Saudi Arabia; petrography and structure

    NASA Astrophysics Data System (ADS)

    Douch, Colin J.; Al-Hazmi, Hassan; Aidrous, Abdullah

    The Martabah complex consists of an almost circular gabbroic rim, the outer portion of which is intruded by ring dikes of alkali-feldspar granite, and a core of (quartz) monzonite intruded by arcuate lenses and dikes of (quartz) syenite. A central lens of kaolinized, porphyritic quartz alkali-feldspar syenite is possibly derived from monzonitic rocks. There is an intense aeromagnetic anomaly over the gabbro and a low-intensity radiometric anomaly over the core.

  10. K-Ca Dating of Alkali-Rich Fragments in the Y-74442 and Bhola LL-Chondritic Breccias

    NASA Technical Reports Server (NTRS)

    Yokoyama, T; Misawa, K.; Okano, O; Shih, C. -Y.; Nyquist, L. E.; Simon, J. I.; Tappa, M. J.; Yoneda, S.

    2013-01-01

    Alkali-rich igneous fragments in the brecciated LL-chondrites, Krahenberg (LL5) [1], Bhola (LL3-6) [2], Siena (LL5) [3] and Yamato (Y)-74442 (LL4) [4-6], show characteristic fractionation patterns of alkali and alkaline elements [7]. The alkali-rich fragments in Krahenberg, Bhola and Y-74442 are very similar in mineralogy and petrography, suggesting that they could have come from related precursor materials [6]. Recently we reported Rb-Sr isotopic systematics of alkali-rich igneous rock fragments in Y-74442: nine fragments from Y-74442 yield the Rb-Sr age of 4429 plus or minus 54 Ma (2 sigma) for lambda(Rb-87) = 0.01402 Ga(exp -1) [8] with the initial ratio of Sr-87/Sr-86 = 0.7144 plus or minus 0.0094 (2 sigma) [9]. The Rb-Sr age of the alkali-rich fragments of Y-74442 is younger than the primary Rb-Sr age of 4541 plus or minus 14 Ma for LL-chondrite whole-rock samples [10], implying that they formed after accumulation of LL-chondrite parental bodies, although enrichment may have happened earlier. Marshall and DePaolo [11,12] demonstrated that the K-40 - Ca-40 decay system could be an important chronometer as well as a useful radiogenic tracer for studies of terrestrial rocks. Shih et al. [13,14] and more recently Simon et al. [15] determined K-Ca ages of lunar granitic rocks, and showed the application of the K-Ca chronometer for K-rich planetary materials. Since alkali-rich fragments in the LL-chondritic breccias are highly enriched in K, we can expect enhancements of radiogenic Ca-40. Here, we report preliminary results of K-Ca isotopic systematics of alkali-rich fragments in the LL-chondritic breccias, Y-74442 and Bhola.

  11. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  12. Regenerable activated bauxite adsorbent alkali monitor probe

    SciTech Connect

    Lee, S.H.D.

    1991-01-22

    This invention relates to a regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor 5 concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC 10 exhaust gases.

  13. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  14. Authigenic K-feldspar in salt rock (Haselgebirge Formation, Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Leitner, Christoph

    2015-04-01

    The crystallisation of authigenic quartz under low temperature, saline conditions is well known (Grimm, 1962). Also the growth of low temperature authigenic feldspar in sediments is a long known phenomenon (Kastner & Siever, 1979; Sandler et al., 2004). In this study we intend to show that halite (NaCl) is a major catalyser for authigenic mineral growth. During late Permian (c. 255-250 Ma), when the later Eastern Alps were located around north of the equator, the evaporites of the Haselgebirge Formation were deposited (Piller et al., 2004). The Haselgebirge Fm. consists in salt mines of a two-component tectonite of c. 50 % halite and 50 % sedimentary clastic and other evaporite rocks (Spötl 1998). Most of the clastic rocks are mud- to siltstones ("mudrock"). During this study, we investigated rare sandstones embedded in salt rock form four Alpine salt mines. Around 40 polished thin sections were prepared by dry grinding for thin section analysis and scanning electron microscopy. The sandstones consist mainly of quartz, K-feldspar, rock fragments, micas, accessory minerals and halite in the pore space. They are fine grained and well sorted. Mudrock clasts in sandstone were observed locally, and also coal was observed repeatedly. Asymmetric ripples were found only in the dimension of millimeters to centimeters. Euhedral halite crystals in pores indicate an early presence of halite. During early diagenesis, authigenic minerals crystallized in the following chronological order. (1) Where carbonate (mainly magnesite) occurred, it first filled the pore space. Plant remains were impregnated with carbonate. (2) Halite precipitated between the detritic sandstone grains. Carbonate grains can be completely embedded in halite. (3) K-feldspar and quartz grains usually expose a detritic core and a later grown euhedral inclusion free rim. Euhedral rims of K-feldspar often also enclose a halite core. K-feldspar replaced the pre-existing halite along former grain boundaries of

  15. Natural radioactivity of granites used as building materials.

    PubMed

    Pavlidou, S; Koroneos, A; Papastefanou, C; Christofides, G; Stoulos, S; Vavelides, M

    2006-01-01

    Sixteen kinds of different granites, used as building materials, imported to Greece mainly from Spain and Brazil, were sampled and their natural radioactivity was measured by gamma-ray spectrometry. The activity concentrations of (238)U, (226)Ra, (232)Th and (40)K of granites are presented and compared to those of other building materials as well as other granite types used all over the world. In order to assess the radiological impact from the granites investigated, the absorbed and the effective doses were determined. Although the annual effective dose is higher than the limit of 1mSvy(-1) for some studied granites, they could be used safely as building materials, considering that their contribution in most of the house constructions is very low. An attempt to correlate the relatively high level of natural radioactivity, shown by some of the granites, with their constituent radioactive minerals and their chemical composition, was also made.

  16. Effective crustal permeability controls fault evolution: An integrated structural, mineralogical and isotopic study in granitic gneiss, Monte Rosa, northern Italy

    NASA Astrophysics Data System (ADS)

    Lawther, Susan E. M.; Dempster, Tim J.; Shipton, Zoe K.; Boyce, Adrian J.

    2016-10-01

    Two dextral faults within granitic gneiss in the Monte Rosa nappe, northern Italy reveal key differences in their evolution controlled by evolving permeability and water/rock reactions. The comparison reveals that identical host rock lithologies develop radically different mineralogies within the fault zones, resulting in fundamentally different deformation histories. Oxygen and hydrogen isotope analyses coupled to microstructural characterisation show that infiltration of meteoric water occurred into both fault zones. The smaller Virgin Fault shows evidence of periodic closed system behaviour, which promoted the growth of hydrothermal K-feldspar, whilst the more open system behaviour of the adjacent Ciao Ciao Fault generated a weaker muscovite-rich fault core, which promoted a step change in fault evolution. Effective crustal permeability is a vital control on fault evolution and, coupled to the temperature (i.e. depth) at which key mineral transformations occur, is probably a more significant factor than host rock strength in controlling fault development. The study suggests that whether a fault in granitic basement grows into a large structure may be largely controlled by the initial hydrological properties of the host rocks. Small faults exposed at the surface may therefore be evolutionary "dead-ends" that typically do not represent the early stages in the development of larger faults.

  17. Asymmetric textural and structural patterns of a granitic body emplaced at shallow levels: The La Chinchilla pluton, northwestern Argentina

    NASA Astrophysics Data System (ADS)

    Macchioli Grande, M.; Alasino, P. H.; Rocher, S.; Larrovere, M. A.; Dahlquist, J. A.

    2015-12-01

    New mapping and a detailed structural study of the La Chinchilla stock, Sierra de Velasco, NW Argentina, suggest an asymmetrical shape of the pluton and provide strong evidence for its shallow emplacement depth. The pluton is a Lower Carboniferous monzogranite composed of K-feldspar, quartz, plagioclase and biotite. It exhibits an internal asymmetric textural zoning, defined by porphyritic granite in the southeastern region to equigranular granite in the northwestern region. The presence of subhorizontal dikes in the northwestern area, where the contacts dip shallowly, and subvertical dikes intruding the host rock nearby steep-dipping intrusive contacts in the southeastern region are compatible with an overall asymmetrical shape and internal structure of this pluton. Considering published crystallization ages, a dominant strain field occurring at around 12 Ma is inferred based on magmatic fabrics in the pluton and its host rock (the Huaco pluton), with a principal shortening direction oriented SW-NE, consistent with the general NW-SE strike of the body. Field evidence supports brittle fracturing and block displacement as the dominant emplacement mechanism, suggesting that magmatic stoping dominated during the late stage of the evolution of the magma chamber.

  18. Preface to special issue: Granite magmatism in Brazil

    NASA Astrophysics Data System (ADS)

    Janasi, Valdecir de Assis; de Pinho Guimarães, Ignez; Nardi, Lauro Valentim Stoll

    2016-07-01

    Granites are important both to the geologic evolution and to the economy of Brazil. Deposits of precious and rare metals, such as Au, Sn and many others, are directly or indirectly associated with granites, especially in the geologically under-explored Amazon region. On the opposite eastern side of the country, expanding exploitation of natural granite as dimension stone makes Brazil currently the world's second largest exporter of granite blocks. Granites are a major constituent of the Brazilian Archean-Proterozoic cratonic domains (the Amazon and São Francisco cratons) and their surrounding Neoproterozoic fold belts. The granites are thus fundamental markers of the major events of crustal generation and recycling that shaped the South American Platform. As a result, Brazilian granites have received great attention from the national and international community, and a number of influential meetings focused on the study of granites were held in the country in the last three decades. These meetings include the two International Symposia on Granites and Associated Mineralization (Salvador, January 21-31, 1987, and August 24-29, 1997), the Symposium on Rapakivi Granites and Related Rocks (Belém, August 2-5, 1995) and the Symposium on Magmatism, Crustal Evolution, and Metallogenesis of the Amazonian Craton (Belém, August 2006). Special issues dedicated to contributions presented at these meetings in the Journal of South American Earth Sciences (Sial et al., 1998), Lithos (Stephens et al., 1999), Canadian Mineralogist (Dall'Agnol and Ramo, 2006), Precambrian Research (Ramo et al., 2002) and Anais da Academia Brasileira de Ciências (Dall'Agnol and Bettencourt, 1997; Sial et al., 1999a) are still important references on the knowledge of Brazilian granites and granite petrology in general.

  19. X-ray crystallography and mineral chemistry of bastnaesite from Kanigiri granite, Prakasam district, Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Singh, Yamuna; Nagendra Babu, G.; Viswanathan, R.; Sai Baba, M.; Rai, A.; Parihar, P.

    2014-12-01

    The authors report the results of X-ray diffraction (XRD) and geochemical studies on bastnaesites (lanthanum cerium fluoro-carbonate) hosted in alkali Kanigiri Granite of the Prakasam district in Andhra Pradesh, India. The XRD pattern of the investigated bastnaesite displays sharply-defined reflections. The observed d-spacings of the bastnaesite are in very close agreement with those published for bastnaesite standard in International Centre for Diffraction Data (ICDD) Card No. 11-340. The calculated unit cell parameters (a o; c o) and unit cell volume (V) of the studied bastnaesite (a o 7.1301-7.1413 Å, c o 9.7643-9.7902Å and V 429.8940-432.3875 Å3) are almost equal to values published for bastnaesite standard (c o 7.1290 Å, c o 9.7744 Å and V 430.19 Å3) in the relevant data card. Geochemical data of bastnaesite reveals high content of Ce (mean 27.22%) followed by La (mean 16.82%), Nd (mean 6.12%) and Pr (mean 1.91%). Compared to light REE (LREE) content (mean 437165 ppm), heavy REE (HREE) content (mean 5867 ppm) is drastically low, with unusually high LREE/HREE ratio (mean 80). The chondrite-normalised plot also exhibits drastic enrichment of LREE relative to HREE with pronounced negative Euanomaly (mean Eu/Eu* = 0.15). High (LREE)N / (HREE)N, (La/Lu)N, (La/Yb)N and (Ce/Yb)N ratios reveal higher fractionation of LREE relative to HREE. The rare earth element (REE) contents of the studied bastnaesite are very close to REE contents of bastnaesite hosted in alkali syenite from Madagascar. The presence of bastnaesite in Kanigiri Granite and soils derived from it enhances the scope of further exploration for bastnaesite in several bodies of alkaline rocks and alkali granitoids present along the eastern margins of the Cuddapah basin, Andhra Pradesh.

  20. X-ray crystallography and mineral chemistry of bastnaesite from Kanigiri granite, Prakasam district, Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Singh, Yamuna; Nagendra Babu, G.; Viswanathan, R.; Sai Baba, M.; Rai, A. K.; Parihar, P. S.

    2014-12-01

    The authors report the results of X-ray diffraction (XRD) and geochemical studies on bastnaesites (lanthanum cerium fluoro-carbonate) hosted in alkali Kanigiri Granite of the Prakasam district in Andhra Pradesh, India. The XRD pattern of the investigated bastnaesite displays sharply-defined reflections. The observed d-spacings of the bastnaesite are in very close agreement with those published for bastnaesite standard in International Centre for Diffraction Data (ICDD) Card No. 11-340. The calculated unit cell parameters ( a o ; c o ) and unit cell volume (V) of the studied bastnaesite ( a o 7.1301-7.1413 Å, c o 9.7643-9.7902Å and V 429.8940-432.3875 Å3) are almost equal to values published for bastnaesite standard ( c o 7.1290 Å, c o 9.7744 Å and V 430.19 Å3) in the relevant data card. Geochemical data of bastnaesite reveals high content of Ce (mean 27.22%) followed by La (mean 16.82%), Nd (mean 6.12%) and Pr (mean 1.91%). Compared to light REE (LREE) content (mean 437165 ppm), heavy REE (HREE) content (mean 5867 ppm) is drastically low, with unusually high LREE/HREE ratio (mean 80). The chondrite-normalised plot also exhibits drastic enrichment of LREE relative to HREE with pronounced negative Euanomaly (mean Eu/Eu* = 0.15). High (LREE) N / (HREE) N , (La/Lu) N , (La/Yb) N and (Ce/Yb) N ratios reveal higher fractionation of LREE relative to HREE. The rare earth element (REE) contents of the studied bastnaesite are very close to REE contents of bastnaesite hosted in alkali syenite from Madagascar. The presence of bastnaesite in Kanigiri Granite and soils derived from it enhances the scope of further exploration for bastnaesite in several bodies of alkaline rocks and alkali granitoids present along the eastern margins of the Cuddapah basin, Andhra Pradesh.

  1. Phonon spectra of alkali metals

    NASA Astrophysics Data System (ADS)

    Zeković, S.; Vukajlović, F.; Veljković, V.

    1982-10-01

    In this work we used a simple local model pseudopotential which includes screening for the phonon spectra calculations of alkali metals. The results obtained are in very good agreement with experimental data. In some branches of phonon spectra the differences between theoretical and experimental results are within 1-2%, while the maximum error is about 6%. The suggested form of the pseudopotential allows us to describe the phonon spectra of Na, K and Rb with only one, and, at the same time, a unique, parameter. In this case, the maximum disagreements from experiment are 9% for Na, 8% for K and 7% for Rb.

  2. Strain localization during deformation of Westerly granite

    NASA Technical Reports Server (NTRS)

    Brodsky, N. S.; Spetzler, H. A.

    1984-01-01

    A specimen of Westerly granite was cyclically loaded to near failure at 50 MPa confining pressure. Holographic interferometry provided detailed measurements of localized surface deformations during loading and unloading. The data are consistent with deformation occurring primarily elastically at low differential stress; in conjunction with one incipient fault zone between approximately 350 and 520 MPa differential stress; and in conjunction with a second incipient fault zone above 580 MPa and/or during creep. During unloading only one fault zone, that which is active at the intermediate stress levels during loading, is seen to recede.

  3. GRANITE CHIEF WILDERNESS STUDY AREA, CALIFORNIA.

    USGS Publications Warehouse

    Harwood, David S.; Federspiel, Francis E.

    1984-01-01

    The Granite Chief Wilderness study area encompasses 57 sq mi near the crest of the Sierra Nevada 6 mi west of Tahoe City, California. Geologic, geochemical, and mines and prospect studies were carried out to assess the mineral-resource potential of the area. On the basis of the mineral-resource survey, it is concluded that the area has little promise for the occurrence of precious or base metals, oil, gas, coal, or geothermal resources. Sand, gravel, and glacial till suitable for construction materials occur in the area, but inaccessability and remoteness from available markets preclude their being shown on the map as a potential resource.

  4. SIMFUEL dissolution studies in granitic groundwater

    NASA Astrophysics Data System (ADS)

    Ollila, K.

    1992-08-01

    The dissolution behaviour of an unirradiated chemical analogue of spent nuclear fuel, SIMFUEL, has been studied in synthetic, granitic groundwater under anoxic conditions. The release of U and the minor components Mo, Ru, Sr, Ba, La, Zr, Ce, Y, Rh, Pd and Nd was monitored during static (batch) leaching experiments. For molybdenum, ruthenium, strontium and barium, the leaching results (the total experimental time of 300 days) show a trend to congruent dissolution with the UO 2 matrix. The release rates of lanthanum, zirconium and cerium are higher relative to uranium. Sorption, colloidal and/or precipitation phenomena appear to play an important role under these experimental conditions.

  5. Rare accessory uraninite in a Sierran granite

    NASA Technical Reports Server (NTRS)

    Snetsinger, K. G.; Polkowski, G.

    1977-01-01

    One grain of uraninite was found in a single thin-section of Sierran granite. Electron and ion microprobe analysis were used to determine the composition. Since the U-Pb age calculated for the uraninite does not differ greatly from the K-Ar age of the unit in which it occurs, it is suggested that the mineral is primary and not reworked from a preexisting rock. No uraninite has been detected in heavy mineral concentrates from other rocks of the local area.

  6. Oxygen isotope evidence for crustal assimilation and magma mixing in the Granite Harbour Intrusives, Northern Victoria Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Dallai, L.; Ghezzo, C.; Sharp, Z. D.

    2003-03-01

    The stable isotope composition (O,H) of whole-rock and mineral separates of Cambrian-Ordovician gabbros, diorites, granodiorites and granites forming the Mt. Abbott composite intrusions (Northern Victoria Land, Antarctica) was measured to constrain the origin and evolution of the magmas postdating the Ross Orogen. The δ18O values of olivine gabbros plot in the field of slightly evolved mantle-derived melts ( δ18O WR=6.8-7.4‰). The O-isotope character of the mantle source inferred from the δ18O values of cumulous olivine in gabbros (5.7-6.8‰) is enriched in 18O compared to modern arc-related magmas. Geochemical data and concurrent high δ18O values, and initial strontium ( 87Sr/ 86Sr=0.7060) and neodymium ( 143Nd/ 144Nd=0.5122) isotope ratios indicate that the olivine gabbros formed by crustal contamination of a primary calc-alkaline basaltic melt. The diorites have high δ18O values, among the highest ever measured for dioritic rocks (8.7-10.3‰), and Sr-isotope ratios that partially overlap with the adjacent and mingled felsic lithologies (0.708-0.710). The diorites have pyroxene with high, nearly constant δ18O values (8.2-8.6‰) that are independent from the silica content of the rocks; thus, they did not increase in response of the chemical evolution of the rocks. The diorites originated from the same primary calc-alkaline basalt experiencing different amounts of crustal contamination, and underwent different degrees of mixing with the adjacent granites, producing granodioritic facies and quartz/feldspar xenocrystic diorites. The δ18O, 87Sr/ 86Sr and 143Nd/ 144Nd compositions of the granites and granodiorites overlap (10.8-12.1‰, 0.7096-0.7108, 0.5119-0.5120). They are distinct from the values of the mafic rocks and indicate that gabbros and granites were not cogenetic. The granites are a separate melt component likely derived from nonmodal partial melting of fertile meta-igneous protoliths.

  7. Multivariate analyses of Erzgebirge granite and rhyolite composition: implications for classification of granites and their genetic relations

    NASA Astrophysics Data System (ADS)

    Förster, Hans-Jürgen; Davis, John C.; Tischendorf, Gerhard; Seltmann, Reimar

    1999-06-01

    High-precision major, minor and trace element analyses for 44 elements have been made of 329 Late Variscan granitic and rhyolitic rocks from the Erzgebirge metallogenic province of Germany. The intrusive histories of some of these granites are not completely understood and exposures of rock are not adequate to resolve relationships between what apparently are different plutons. Therefore, it is necessary to turn to chemical analyses to decipher the evolution of the plutons and their relationships. A new classification of Erzgebirge plutons into five major groups of granites, based on petrologic interpretations of geochemical and mineralogical relationships (low-F biotite granites; low-F two-mica granites; high-F, high-P 2O 5 Li-mica granites; high-F, low-P 2O 5 Li-mica granites; high-F, low-P 2O 5 biotite granites) was tested by multivariate techniques. Canonical analyses of major elements, minor elements, trace elements and ratio variables all distinguish the groups with differing amounts of success. Univariate ANOVA's, in combination with forward-stepwise and backward-elimination canonical analyses, were used to select ten variables which were most effective in distinguishing groups. In a biplot, groups form distinct clusters roughly arranged along a quadratic path. Within groups, individual plutons tend to be arranged in patterns possibly reflecting granitic evolution. Canonical functions were used to classify samples of rhyolites of unknown association into the five groups. Another canonical analysis was based on ten elements traditionally used in petrology and which were important in the new classification of granites. Their biplot pattern is similar to that from statistically chosen variables but less effective at distinguishing the five groups of granites. This study shows that multivariate statistical techniques can provide significant insight into problems of granitic petrogenesis and may be superior to conventional procedures for petrological

  8. Multivariate analyses of Erzgebirge granite and rhyolite composition: Implications for classification of granites and their genetic relations

    USGS Publications Warehouse

    Forster, H.-J.; Davis, J.C.; Tischendorf, G.; Seltmann, R.

    1999-01-01

    High-precision major, minor and trace element analyses for 44 elements have been made of 329 Late Variscan granitic and rhyolitic rocks from the Erzgebirge metallogenic province of Germany. The intrusive histories of some of these granites are not completely understood and exposures of rock are not adequate to resolve relationships between what apparently are different plutons. Therefore, it is necessary to turn to chemical analyses to decipher the evolution of the plutons and their relationships. A new classification of Erzgebirge plutons into five major groups of granites, based on petrologic interpretations of geochemical and mineralogical relationships (low-F biotite granites; low-F two-mica granites; high-F, high-P2O5 Li-mica granites; high-F, low-P2O5 Li-mica granites; high-F, low-P2O5 biotite granites) was tested by multivariate techniques. Canonical analyses of major elements, minor elements, trace elements and ratio variables all distinguish the groups with differing amounts of success. Univariate ANOVA's, in combination with forward-stepwise and backward-elimination canonical analyses, were used to select ten variables which were most effective in distinguishing groups. In a biplot, groups form distinct clusters roughly arranged along a quadratic path. Within groups, individual plutons tend to be arranged in patterns possibly reflecting granitic evolution. Canonical functions were used to classify samples of rhyolites of unknown association into the five groups. Another canonical analysis was based on ten elements traditionally used in petrology and which were important in the new classification of granites. Their biplot pattern is similar to that from statistically chosen variables but less effective at distinguishing the five groups of granites. This study shows that multivariate statistical techniques can provide significant insight into problems of granitic petrogenesis and may be superior to conventional procedures for petrological interpretation.

  9. Experimental insights into the geochemistry and mineralogy of a granite-hosted geothermal system injected with supercritical CO2

    NASA Astrophysics Data System (ADS)

    Lo Re, C.; Kaszuba, J. P.; Moore, J.; McPherson, B. J.

    2011-12-01

    Supercritical CO2 may be a viable working fluid in enhanced geothermal systems (EGS) due to its large expansivity, low viscosity, and reduced reactivity with rock as compared to water. Hydrothermal experiments are underway to evaluate the geochemical impact of using supercritical CO2 as a working fluid in granite-hosted geothermal systems. Synthetic aqueous fluid and a model granite are reacted at 250 °C and 250 bars in a rocking autoclave and Au-Ti reaction cell for a minimum of 28 days (water:rock ratio of approximately 20:1). Subsequent injection of supercritical CO2 increases pressure, which decays over time as the CO2 dissolves into the aqueous fluid. Initial experiments decreased to a steady state pressure of 450 bars approximately 14 hours after injection of supercritical CO2. Post-injection reaction is allowed to continue for at least an additional 28 days. Excess CO2 is injected to produce a separate supercritical fluid phase (between 1.7 and 3.1 molal), ensuring aqueous CO2 saturation for the duration of each experiment. The granite was created using mineral separates and consists of ground (75 wt%, <45 microns) and chipped (25 wt%, 0.5-1.0 cm), sub-equal portions of quartz, perthitic potassium feldspar (~ 25 wt% albite and 75 wt% potassium feldspar), oligoclase, and a minor (4 wt%) component of Fe-rich biotite. The synthetic saline water (I = 0.12 m) contains molal quantities of Na, Cl, and HCO3 and millimolal quantities of K, SiO2, SO4, Ca, Al, and Mg, in order of decreasing molality. Aqueous fluids are sampled approximately 10 times over the course of each experiment and analyzed for total dissolved carbon and sulfide by coulometric titration, anions by ion chromatography, and major, minor, and trace cations by ICP-OES and -MS. Bench pH measurements are paired with aqueous analyses to calculate in-situ pH. Solid reactants are evaluated by SEM-EDS, XRD, and/or bulk chemical analysis before and after each experiment. Analytical data are reviewed

  10. Microfluidic Leaching of Soil Minerals: Release of K+ from K Feldspar.

    PubMed

    Ciceri, Davide; Allanore, Antoine

    2015-01-01

    The rate of K+ leaching from soil minerals such as K-feldspar is believed to be too slow to provide agronomic benefit. Currently, theories and methods available to interpret kinetics of mineral processes in soil fail to consider its microfluidic nature. In this study, we measure the leaching rate of K+ ions from a K-feldspar-bearing rock (syenite) in a microfluidic environment, and demonstrate that at the spatial and temporal scales experienced by crop roots, K+ is available at a faster rate than that measured with conventional apparatuses. We present a device to investigate kinetics of mineral leaching at an unprecedented simultaneous resolution of space (~101-102 μm), time (~101-102 min) and fluid volume (~100-101 mL). Results obtained from such a device challenge the notion that silicate minerals cannot be used as alternative fertilizers for tropical soils.

  11. Microfluidic Leaching of Soil Minerals: Release of K+ from K Feldspar

    PubMed Central

    Ciceri, Davide; Allanore, Antoine

    2015-01-01

    The rate of K+ leaching from soil minerals such as K-feldspar is believed to be too slow to provide agronomic benefit. Currently, theories and methods available to interpret kinetics of mineral processes in soil fail to consider its microfluidic nature. In this study, we measure the leaching rate of K+ ions from a K-feldspar-bearing rock (syenite) in a microfluidic environment, and demonstrate that at the spatial and temporal scales experienced by crop roots, K+ is available at a faster rate than that measured with conventional apparatuses. We present a device to investigate kinetics of mineral leaching at an unprecedented simultaneous resolution of space (~101-102 μm), time (~101-102 min) and fluid volume (~100-101 mL). Results obtained from such a device challenge the notion that silicate minerals cannot be used as alternative fertilizers for tropical soils. PMID:26485160

  12. Effects of chemical surface modification on the ice nucleation ability of feldspar and illite

    NASA Astrophysics Data System (ADS)

    Augustin, Stefanie; Wex, Heike; Kanter, Sandra; Ebert, Martin; Niedermeier, Dennis; Stratmann, Frank

    2014-05-01

    Mineral dust is the most abundant ice nuclei (IN) in the atmosphere and thus it is thought to be important for ice nucleation in clouds (Murray et al. [2012]). The clay minerals contribute approximately two thirds of the mineral dust mass (Atkinson et al. [2013]), and illite is the most abundant clay mineral found in the atmosphere [Broadley et al., 2012]. In the past years a lot of the ice nucleation research focused on proxies for clay minerals like Arizona Test Dust (ATD), kaolinite and illite (see reviews by Murray et al. [2012] and Hoose and Möhler. [2012]). In most experiments, these substances acted as IN only at relatively low temperatures (lower than -25°C). Very recently Atkinson et al. (2013) showed that K-feldspar, which is a common crustal material, is the most active mineral dust with freezing temperatures above -20°C. In the present study we compared the immersion freezing behavior of size segregated illite and feldspar particles. We used illite-NX (Arginotec) and a feldspar sample from Minas Gerais, Brazil (consisting to roughly 80% of a K-feldspar with the remainder being a Na-feldspar). Both substances were examined in the framework of the INUIT research project. For the illite-NX particles freezing onset was observed at temperatures around -34°C. The feldspar sample already induced freezing at -23°C. The data obtained was in agreement to those reported in Broadley el al. [2012] and Atkinson et al. [2013]. To simulate chemical aging of the particle surface we coated the particles with sulfuric acid and repeated the measurements. The illite-NX showed a rather small change in the ice nucleation ability, whereas the freezing ability of the feldspar was strongly reduced and became similar to that of illite-NX. It seems that the sulfuric acid destroyed those sites on the particle surface which are responsible for the initiation of freezing. We continue our work in trying to better understand what exactly it is that gives K-feldspar its good IN

  13. Petrogenetic relationships between pegmatite and granite based on geochemistry of muscovite in pegmatite wall zones, Black Hills, South Dakota, USA

    SciTech Connect

    Jolliff, B.L. ); Papike, J.J.; Shearer, C.K. )

    1992-05-01

    The compositions of large samples of granitic pegmatite wall zones have been determined for a suite of ten pegmatites of diverse geochemical character and degree of compositional evolution in the Keystone area of the Black Hills. Whole-rock compositions are strongly peraluminous, and they deviate substantially from the granite minimum composition in quartz-albite-orthoclase normalized components, showing considerably more scatter than Harney Peak Granite whole rocks. Wall-zone minerals are commonly coarsely segregated, leading to large modal variability among whole rocks. These features make whole-rock samples of wall zones unsuitable for the determination of initial pegmatite bulk compositions. Trace and minor element compositions of muscovite separates from the wall zones were thus determined to eliminate the effects of modal variability on trace element concentrations so that geochemical differences between pegmatites could be modeled. Estimates of initial pegmatite melt trace element concentrations range from 800-4,000 ppm Rb, 100-1,000 ppm Cs, 200-2,000 ppm Li, and 1-50 ppm Ba. Trace element concentrations of muscovite from a given pegmatite generally cluster together, although several show considerable intra-pegmatite scatter, and there are large overlaps among different pegmatites. The geochemical characteristics of samples from the Etta pegmatite indicate mixing with and assimilation of country rocks. Exceptionally low Rb/Cs ratios of muscovite from the Etta pegmatite and similar to those of muscovite from K-feldspar-rich assemblages of other pegmatites where the Rb concentration of melt may have been buffered by crystallizing assemblages that had bulk Rb distribution coefficients close to 1.

  14. Stress-induced crack path in Aji granite under tensile stress

    NASA Astrophysics Data System (ADS)

    Kudo, Yozo; Sano, Osam; Murashige, Naokuni; Mizuta, Yoshiaki; Nakagawa, Koji

    1992-12-01

    The double-torsion test using Aji granite was carried out to investigate the interaction between stress-induced crack path and mineral grains. Crack velocities were controlled at range 10-7 m/s to 10-1 m/s. After the stressed specimens were dyed, we checked the crack path by thin section analysis, using an optical microscope. The stress-induced crack path was divided into two types, transgranular and intergranular cracks, and each path was subdivided with respect to mineral grains. In spite of the extensive range of crack velocities, the ratios between the transgranular and intergranular crack lengths did not change. The crack paths were all jagged, and often showed detour around the grain boundary when faced with obstacles like hard grains or preexisting cracks. That is to say, quartz grain played an important role as an obstacle. Feldspar grain could change the crack path because of its cleavage plane. Biolite grain had a serious effect on the path even if its constitution ratio is very small. Fractal dimensions of the crack paths were calculated by three methods, as indicators of surface roughness. The fractal dimensions were shown in a slight trend with the change of crack velocity. This trend can be explained from the point of limited cracking rate in stress corrosion.

  15. Partitioning of Eu and Sr between coexisting plagioclase and K-feldspar.

    NASA Technical Reports Server (NTRS)

    Nagasawa, H.

    1971-01-01

    Minerals were separated by an EM approach and with the aid of liquids of great density. An analysis of K, Rb, Ca, Sr, Ha, and rare earth elements was conducted by means of a mass spectrometer isotope dilution technique. The behavior of the divalent europium ions during the partition process was found to be very similar to that of divalent strontium ions, taking into consideration data of the partition coefficients between coexisting feldspars in acidic rocks.

  16. Biochemical evolution. I. Polymerization on internal, organophilic silica surfaces of dealuminated zeolites and feldspars

    PubMed Central

    Smith, Joseph V.

    1998-01-01

    Catalysis at mineral surfaces might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and photochemical gas reactions. Many ideas are implausible in detail because the proposed mineral surfaces strongly prefer water and other ionic species to organic ones. The molecular sieve silicalite (Union Carbide; = Al-free Mobil ZSM-5 zeolite) has a three-dimensional, 10-ring channel system whose electrically neutral Si-O surface strongly adsorbs organic species over water. Three -O-Si tetrahedral bonds lie in the surface, and the fourth Si-O points inwards. In contrast, the outward Si-OH of simple quartz and feldspar crystals generates their ionic organophobicity. The ZSM-5-type zeolite mutinaite occurs in Antarctica with boggsite and tschernichite (Al-analog of Mobil Beta). Archean mutinaite might have become de-aluminated toward silicalite during hot/cold/wet/dry cycles. Catalytic activity of silicalite increases linearly with Al-OH substitution for Si, and Al atoms tend to avoid each other. Adjacent organophilic and catalytic Al-OH regions in nanometer channels might have scavenged organic species for catalytic assembly into specific polymers protected from prompt photochemical destruction. Polymer migration along weathered silicic surfaces of micrometer-wide channels of feldspars might have led to assembly of replicating catalytic biomolecules and perhaps primitive cellular organisms. Silica-rich volcanic glasses should have been abundant on the early Earth, ready for crystallization into zeolites and feldspars, as in present continental basins. Abundant chert from weakly metamorphosed Archaean rocks might retain microscopic clues to the proposed mineral adsorbent/catalysts. Other framework silicas are possible, including ones with laevo/dextro one-dimensional channels. Organic molecules, transition-metal ions, and P occur inside modern feldspars. PMID:9520372

  17. 40Ar/39Ar ages in deformed potassium feldspar: evidence of microstructural control on Ar isotope systematics

    NASA Astrophysics Data System (ADS)

    Reddy, Steven M.; Potts, Graham J.; Kelley, Simon P.

    2001-05-01

    Detailed field and microstructural studies have been combined with high spatial resolution ultraviolet laser 40Ar/39Ar dating of naturally deformed K-feldspar to investigate the direct relationship between deformation-related microstructure and Ar isotope systematics. The sample studied is a ~1,000 Ma Torridonian arkose from Skye, Scotland, that contains detrital feldspars previously metamorphosed at amphibolite-facies conditions ~1,700 Ma. The sample was subsequently deformed ~430 Ma ago during Caledonian orogenesis. The form and distribution of deformation-induced microstructures within three different feldspar clasts has been mapped using atomic number contrast and orientation contrast imaging, at a range of scales, to identify intragrain variations in composition and lattice orientation. These variations have been related to thin section and regional structural data to provide a well-constrained deformation history for the feldspar clasts. One hundred and forty-three in-situ 40Ar/39Ar analyses measured using ultraviolet laser ablation record a range of apparent ages (317-1030 Ma). The K-feldspar showing the least strain records the greatest range of apparent ages from 420-1,030 Ma, with the oldest apparent ages being found close to the centre of the feldspar away from fractures and the detrital grain boundary. The most deformed K-feldspar yields the youngest apparent ages (317-453 Ma) but there is no spatial relationship between apparent age and the detrital grain boundary. Within this feldspar, the oldest apparent ages are recorded from orientation domain boundaries and fracture surfaces where an excess or trapped 40Ar component resides. Orientation contrast images at a similar scale to the Ar analyses illustrate a significant deformation-related microstructural difference between the feldspars and we conclude that deformation plays a significant role in controlling Ar systematics of feldspars at both the inter- and intragrain scales even at relatively low

  18. Petrogenesis of Mesoproterozoic granitic plutons, eastern Llano Uplift, central Texas, USA

    NASA Astrophysics Data System (ADS)

    Smith, R. K.; Gray, Walt; Gibbs, Tyson; Gallegos, M. A.

    2010-08-01

    , 1996), crystallization temperatures and pressures are estimated to range from 750 to 850 °C and 200 to 500 MPa, respectively. The assemblage of titanite + magnetite + quartz suggests crystallization at low fO2 [confirmed by Fe/(Fe + Mg) vs. [4] Al microprobe analyses of calcic amphibole] and a water content of less than 1.5 wt.% (Wones, 1989). Like other Town Mountain-type plutons, the MF, KL, and LG granites display comparable iron contents at similar alkali and silica enrichments. Melting models (Ba vs. Sr) suggest the MF, KL, and LG plutons may have evolved from the partial melting (anatexis) of juvenile, tonalitic, lower crustal rocks, followed by plagioclase and pyroxene dominated fractionation. Nd isotopic data for the MF pluton ( ɛNd = + 3.4 at 1.06 Ga; Patchett and Ruiz, 1989) and whole-rock δ18O values for the MF, KL, and LG plutons (+ 7.0 < δ 18O >+10.1‰; Rangel et al., 2008) suggest that the magmas in the eastern Llano Uplift may contain a significant mantle component, whereas relatively high δ18O values (+ 9.3 to + 9.7‰; Bebout and Carlson, 1986) for other coeval TMG rocks suggest that a significant crustal component is involved. Whole-rock and trace-element chemistry indicate that the MF and KL plutons, along with the coarser grained textures of the LG pluton, are 'A-type' granites. However, with no coeval mafic dikes, syenitic compositions, or volcanic rocks it is clear that the TMG plutons do not represent anorogenic granites. The available evidence is most compatible with emplacement of the TMG plutons in a post-orogenic (Grenville), relaxation and extensional (i.e., slab breakoff) setting.

  19. Late Paleozoic vertical crustal growth of Western Junggar, Xinjiang in China: evidence from petrology and Nd isotope in charnockites and alkaline granites

    NASA Astrophysics Data System (ADS)

    Xian, W. S.; Sun, M.; Zhang, L. F.; Zhao, G. C.; Malpas, J.

    2003-04-01

    This abstract reports our new petrographic, mineralogical, geochemical and Nd isotope studies on the charnockites and alkaline granites in the western Junggar of Xinjiang, China. During the 1997 field excursion, we for the first time discovered charnockites in the Miaergou alkaline granite batholith, one of the six largest intrusive A-type bodies in the western Junggar of Xinjiang, Northwest China. The batholith is located in the southwestern part of the East-Central Asian Orogenic Belt, which is characterized by the presence of voluminous Paleozoic to Mesozoic granitoids with positive ɛNd(t) values. In spatial distribution, the batholith occurs as a ring-like igneous complex, which intrudes the early-Carboniferous volcanic sedimentary rocks of low-grade metamorphism. It is mainly composed of charnockite, quartz diorite, alkaline granite, potash feldspar granite, syenite and rare tourmaline-bearing intermediate-mafic dykes. Charnockites occur only within the diorite. A large amount of gabbroic, dioritic and leucogranitic enclaves are found in a zone between the alkaline granite and diorite. Petrographic and mineralogical studies indicate that the charnockites were derived from partial melting of the lower crust and crystallized under P-T conditions of 5.44˜5.63 ± 1.0 kbar and 700˜800^oC. Zircons from a charnockite sample and an alkaline granite sample yielded concordant U-Pb TIMS ages of 305.3 ± 1. 1 Ma and 274.1 ± 2.9 Ma, respectively, interpreted as the age of the emplacement of the charnockites and alkaline granites. Two-pyroxene granulites, biotite-spinel-cordierite gneisses and sillimanlite-biotite gneisses occur as enclaves within the charnockites. The two-pyroxene granulite enclaves are considered to be restites of partial melting of the previous lower crust at ˜845^oC, whereas the xenoliths of biotite-spinel-cordierite and sillimanlite-biotite gneisses were metamorphosed at low-pressure amphibolite- to granulite-facies, which were related to the

  20. Granitoid magmatism of Alarmaut granite-metamorphic dome, West Chukotka, NE Russia

    NASA Astrophysics Data System (ADS)

    Luchitskaya, M. V.; Sokolov, S. D.; Bondarenko, G. E.; Katkov, S. M.

    2009-04-01

    Main tectonic elements of West Chukotka are Alazey-Oloy, South-Anyui and Anyui-Chukotka fold systems, formed as a result of collision between structures of North-Asian continent active margin and Chukotka microcontinent [1-3]. South-Anyui fold system, separating Alazey-Oloy and Anyui-Chukotka systems, is considered as suture zon, formed as a result of oceanic basin closing [4-6]. Continent-microcontinent collision resulted in formation of large orogen with of northern and southern vergent structures, complicated by strike-slip deformations [7, 8]. Within Anyui-Chukotka fold system several rises, where most ancient deposits (crystalline basement and Paleozoic cover of Chukotka microcontinent) are exposed, were distinguished [2, 9-11]. Later they were considered as granite-metamorphic domes [12-14]. Alarmaut dome is located at West Chukotka to the north from Bilibino city and is traced from south to north in more than 120 km. General direction of structure is discordant to prevailing NW extensions of tectonic elements of the region. Paleozoic-Triassic deposits are exposed within the Alarmaut dome: 1) D3-C1 - crystalline schists, quartz-feldspar metasandstones, quartzites, marbles (700 m) [11]; 2) C1 - marblized limestones, quartz-feldspar metasandstones, quartzites, amphibole-pyroxene crystalline schists. Limestones contain corals, indicating Visean age of deposits [11]. Metamorphism reaches amphibolite facies, maximum P-T conditions are 660°С and 5 kbar. Migmatites, indicating in situ partial melting, are observed. Intensity of deformations of Paleozoic rocks increases at the boundary with Triassic deposits [11]; in the western part of dome slices of Pz rocks are separated by blastomylonite horizons [14]. Within Alramaut dome granitoids of Lupveem batholith (central part of dome), Bystrinsky pluton (southeastern part), and small Koyvel' and Kelil'vun plutons were studied. New U-Pb SHRIMP zircon data indicate Early Cretaceous (117-112 m.a.) age of granitoids [15

  1. Preparation of ultrafine silica from potash feldspar using sodium carbonate roasting technology

    NASA Astrophysics Data System (ADS)

    Liu, Jia-nan; Shen, Xiao-yi; Wu, Yan; Zhang, Jun; Zhai, Yu-chun

    2016-08-01

    A novel process was developed for the preparation of ultrafine silica from potash feldspar. In the first step, potash feldspar was roasted with Na2CO3 and was followed by leaching using NaOH solution to increase the levels of potassium, sodium, and aluminum in the solid residue. The leaching solution was then carbonated to yield ultrafine silica. The optimized reaction conditions in the roasting process were as follows: an Na2CO3-to-potash feldspar molar ratio of 1.1, a reaction temperature of 875°C, and a reaction time of 1.5 h. Under these conditions, the extraction rate of SiO2 was 98.13%. The optimized carbonation conditions included a final solution pH value of 9.0, a temperature of 40°C, a CO2 flow rate of 6 mL/min, a stirring intensity of 600 r/min, and an ethanol-to-water volume ratio of 1:9. The precipitation rate and granularity of the SiO2 particles were 99.63% and 200 nm, respectively. We confirmed the quality of the obtained ultrafine silica by comparing the recorded indexes with those specified in Chinese National Standard GB 25576―2010.

  2. Gamma activity of stream sediment feldspars as ceramic raw materials and their environmental impact.

    PubMed

    Aboelkhair, Hatem; Ibrahim, Tarek; Saad, Ahmed

    2012-08-01

    In situ gamma spectrometric measurements have been performed to characterise the natural radiation that emitted from the stream sediment feldspars in Wadi El Missikat and Wadi Homret El Gergab, Eastern Desert, Egypt. The measurements of potassium (K, %), equivalent uranium (eU, ppm) and equivalent thorium (eTh, ppm) were converted into specific activities and equivalent dose rate. The average specific activities were 1402 Bq kg(-1) for K, 113 Bq kg(-1) for eU and 108 Bq kg(-1) for eTh in Wadi El Missikat, while they were 1240, 104 and 185 Bq kg(-1) in Wadi Homret El Gergab. The calculated outdoor average effective dose rates was 1.1 mSv y(-1) in wadi El Missikat and 1.3 mSv y(-1) in Wadi Homret El Gergab. The terrestrial-specific activities and effective dose rate levels of the natural radioactivity in the two areas lie within the international recommended limits for occupational feldspar quarry workers. On the other hand, these results indicated that irradiation is higher than the allowable level for members of the public. Therefore, quarrying the feldspar sediments from these locations as ceramic raw materials may yield an undesired impact on the environment, especially through the indoor applications.

  3. Sorption Mechanisms of Antibiotic Cephapirin onto Quartz and Feldspar by Raman Spectroscopy

    SciTech Connect

    Peterson, Jonathan; Wang, Wei; Gu, Baohua

    2009-01-01

    Raman spectroscopy was used to investigate the sorption mechanisms of cephapirin (CHP), a veterinary antibiotic, onto quartz (SiO2) and feldspar (KAlSi3O8) at different pH values. Depending on the charge and surface properties of the mineral, different reaction mechanisms including electrostatic attraction, monodentate and bidentate complexation were found to be responsible for CHP sorption. The zwitterion (CHPo) adsorbs to a quartz(+) surface by electrostatic attraction of the carboxylate anion group ( COO-) at a low pH, but adsorbs to a quartz(-) surface through electrostatic attraction of the pyridinium cation and possibly COO- bridge complexes at relatively higher pH conditions. CHP- bonds to a quartz(-) surface by bidentate complexation between one oxygen of COO- and oxygen from the carbonyl (C=O) of the acetoxymethyl group. On a feldspar surface of mixed charge, CHPo forms monodentate complexes between C=O as well as COO- bridging complexes or electrostatically attached to localized edge (hydr)oxy-Al surfaces. CHP- adsorbs to feldspar(-) through monodentate C=O complexation, and similar mechanisms may operate for the sorption of other cephalosporins. This research demonstrates, for the first time, that Raman spectroscopic techniques can be effective for evaluating the sorption processes and mechanisms of cephalosporin antibiotics even at relatively low sorbed concentrations (97-120 μmol/kg).

  4. Process for the disposal of alkali metals

    DOEpatents

    Lewis, Leroy C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.

  5. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  6. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  7. Age and thermochronology of K-feldspars from the Manson Impact Structure

    NASA Technical Reports Server (NTRS)

    Zeitler, P. K.; Kunk, M. J.

    1993-01-01

    As a contribution to the effort to obtain a precise age for the Manson Impact Structure, we are approaching the problem from a thermo chronological perspective, with the goal of extracting an age from Ar-40/Ar-39 age-spectrum analysis of partially overprinted K-feldspars taken from granitoid clasts. We find that shocked feldspars from Manson generally show a strong overprint in their age spectra, with more than 50 percent of each spectrum being reset. The reset portions of the age spectra correspond to gas lost from very small diffusion domains, and a characteristic of the Manson samples is the very large range in apparent diffusion dimensions that they display, with the smallest domains being some 400 times smaller than the largest domains. It is also noteworthy that the small domains comprise a substantial portion of the volume of the feldspars (50 percent or more). These observations are consistent with the extreme shock experienced by these samples. In detail, the spectra we have measured to date are saddle-shaped and show minimum ages of between 67 and 72 Ma, which we interpret to be maximum estimates for the age of the impact. In the case of one sample (M1-678.3; K-feldspar from a large syenite block located well below the apparent melt-matrix breccia in the M1 borehole), isotope correlation analysis suggests the presence of a non-atmospheric trapped Ar component (Ar-40/Ar-36 of 660 plus or minus 40), and an age of about 65.3 plus or minus 0.5 Ma (2 sigma). Our interpretation of our results is that the shock of impact greatly reduced the diffusion-domain sizes of our samples, making them susceptible to significant Ar loss during heating associated with impact. It appears that while our feldspars were partially open to Ar loss, they equilibrated with a non-atmospheric Ar component, probably related to impact-related degassing of old basement around the impact site.

  8. Effectiveness of granite cleaning procedures in cultural heritage: A review.

    PubMed

    Pozo-Antonio, J S; Rivas, T; López, A J; Fiorucci, M P; Ramil, A

    2016-11-15

    Most of the Cultural Heritage built in NW Iberian Peninsula is made of granite which exposition to the environment leads to the formation of deposits and coatings, mainly two types: biological colonization and sulphated black crusts. Nowadays, another form of alteration derives from graffiti paints when these are applied as an act of vandalism. A deep revision needs to be addressed considering the severity of these deterioration forms on granite and the different cleaning effectiveness achieved by cleaning procedures used to remove them. The scientific literature about these topics on granite is scarcer than on sedimentary carbonate stones and marbles, but the importance of the granite in NW Iberian Peninsula Cultural Heritage claims this review centred on biological colonization, sulphated black crusts and graffiti on granite and their effectiveness of the common cleaning procedures. Furthermore, this paper carried out a review of the knowledge about those three alteration forms on granite, as well as bringing together all the major studies in the field of the granite cleaning with traditional procedures (chemical and mechanical) and with the recent developed technique based on the laser ablation. Findings concerning the effectiveness evaluation of these cleaning procedures, considering the coating extraction ability and the damage induced on the granite surface, are described. Finally, some futures research lines are pointed out.

  9. Detail of south granite pier revealing riveted truss ends and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of south granite pier revealing riveted truss ends and iron footing plates on top of granite cap stones. View north - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  10. Experimental methods of determining thermal properties of granite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determination of thermal properties of granite using the block method is discussed and compared with other methods. Problems that limit the accuracy of contact method in determining thermal properties of porous media are evaluated. Thermal properties of granite is determined in the laboratory with a...

  11. Experimental deformation of partially molten granite and implications for strain localization

    NASA Astrophysics Data System (ADS)

    Goncalves, L.; Hirth, G.; Alkmim, F.; Pedrosa-Soares, A.; Goncalves, C.

    2011-12-01

    % feldspar, iron oxide and clays, and trace amounts of apatite, zircon and rutile. Our experiments were performed on "as-is" synthetic aggregates or adding ~ 1 wt. % of de-ionized water to samples, to produce a small melt percentage (~ 3-5%, according to previous data). At axial strain rate of 1.5 x 10-6/s, which translates to a shear strain rate of 1.6 to 2.5 x 10-5/s, the maximum strength of nominally melt-free synthetic aggregate is 180 MPa, while samples with 3-7% melt show strength values of ~ 110 to 145 MPa. Our results indicate that the strength of partially molten granitic aggregates is similar to that of quartzite with 0.17 wt.% water added and are significantly weaker than feldspar aggregates with 0.1 wt.% adsorbed water or < 0.22 wt.% water added. Under hydrostatic conditions melt is found in isolated pools and/or confined to triple grain junctions. Deformed samples show more homogeneously distributed melt; melt is observed both in triple junctions and wetting grain boundaries. Wetted boundaries are more common in more highly strained regions. These observations suggest that changes in melt distribution promote shear localization.

  12. Magmatic-hydrothermal fluid interaction and mineralization in alkali-syenite nodules from the Breccia Museo pyroclastic deposit, Naples, Italy: Chapter 7 in Volcanism in the Campania Plain — Vesuvius, Campi Flegrei and Ignimbrites

    USGS Publications Warehouse

    Fedele, Luca; Tarzia, Maurizio; Belkin, Harvey E.; De Vivo, Benedetto; Lima, Annamaria; Lowenstern, Jacob

    2007-01-01

    The Breccia Museo, a pyroclastic flow that crops out in the Campi Flegrei volcanic complex (Naples, Italy), contains alkali-syenite (trachyte) nodules with enrichment in Cl and incompatible elements (e.g., U, Zr, Th, and rare-earth elements). Zircon was dated at ≈52 ka, by U-Th isotope systematics using a SHRIMP. Scanning electron microscope and electron microprobe analysis of the constituent phases have documented the mineralogical and textural evolution of the nodules of feldspar and mafic accumulations on the magma chamber margins. Detailed electron microprobe data are given for alkali and plagioclase feldspar, salite to ferrosalite clinopyroxene, pargasite, ferrogargasite, magnesio-hastingsite hornblende amphibole, biotite mica, Cl-rich scapolite, and a member (probable davyne-type) of the cancrinite group. Detailed whole rock, major and minor element data are also presented for selected nodules. A wide variety of common and uncommon accessory minerals were identified such as zircon, baddeleyite, zirconolite, pollucite, sodalite, titanite, monazite, cheralite, apatite, titanomagnetite and its alteration products, scheelite, ferberite, uraninite/thorianite, uranpyrochlore, thorite, pyrite, chalcopyrite, and galena. Scanning electron microscope analysis of opened fluid inclusions identified halite, sylvite, anhydrite, tungstates, carbonates, silicates, sulfides, and phosphates; most are probably daughter minerals. Microthermometric determinations on secondary fluid inclusions hosted by alkali feldspar define a temperature regime dominated by hypersaline aqueous fluids. Fluid-inclusion temperature data and mineral-pair geothermometers for coexisting feldspars and hornblende and plagioclase were used to construct a pressure-temperature scenario for the development and evolution of the nodules. We have compared the environment of porphyry copper formation and the petrogenetic environment constructed for the studied nodules. The suite of ore minerals observed in

  13. IRETHERM: The geothermal energy potential of Irish radiothermal granites

    NASA Astrophysics Data System (ADS)

    Farrell, Thomas; Jones, Alan; Muller, Mark; Feely, Martin; Brock, Andrew; Long, Mike; Waters, Tim

    2014-05-01

    The IRETHERM project is developing a strategic understanding of Ireland's deep geothermal energy potential through integrated modelling of new and existing geophysical and geological data. One aspect of IRETHERM's research focuses on Ireland's radiothermal granites, where increased concentrations of radioelements provide elevated heat-production (HP), surface heat-flow (SHF) and subsurface temperatures. An understanding of the contribution of granites to the thermal field of Ireland is important to assessing the geothermal energy potential of this low-enthalpy setting. This study focuses on the Galway granite in western Ireland, and the Leinster and the buried Kentstown granites in eastern Ireland. Shallow (<250 m) boreholes were drilled into the exposed Caledonian Leinster and Galway granites as part of a 1980's geothermal project. These studies yielded HP = 2-3 μWm-3 and HF = 80 mWm-2 at the Sally Gap borehole in the Northern Units of the Leinster granite, to the SW of Dublin. In the Galway granite batholith, on the west coast of Ireland, the Costelloe-Murvey granite returned HP = 7 μWm-3 and HF = 77 mWm-2, measured at the Rossaveal borehole. The buried Kentstown granite, 35 km NW of Dublin, has an associated negative Bouguer anomaly and was intersected by two mineral exploration boreholes at depths of 660 m and 490 m. Heat production is measured at 2.4 μWm-3 in core samples taken from the weathered top 30 m of the granite. The core of this study consists of a program of magnetotelluric (MT) and audio-magnetotelluric (AMT) data acquisition across the three granite bodies, over three fieldwork seasons. MT and AMT data were collected at 59 locations along two profiles over the Leinster granite. Preliminary results show that the northern units of the Leinster granite (40 km SW of Dublin) extend to depths of 2-5 km. Preliminary results from the southern profile suggest a greater thickness of granite to a depth of 6-9 km beneath the Tullow pluton, 75 km SW of

  14. What classic greywacke (litharenite) can reveal about feldspar diagenesis: An example from Permian Rotliegend sandstone in Hessen, Germany

    NASA Astrophysics Data System (ADS)

    Molenaar, Nicolaas; Felder, Marita; Bär, Kristian; Götz, Annette E.

    2015-08-01

    Rotliegend siliciclastic sediments in southern Hessen (Germany) are a good example of dissolution of detrital feldspars, which is a common feature in many sandstones. Dissolution occurred after mechanical compaction of the lithic-rich sandstone, which experienced framework collapse with pores and pore connections filled and obstructed by deformed ductile lithic grains (pseudomatrix) thereby reducing pore space to microporosity., The advanced degree of compaction and reduced porosity caused low permeability and low hydraulic conductivity of the rock mass. This is further reduced by the presence of wackes and shales that occur intercalated with the sandstones. Feldspar dissolution thus took place in low permeable sediments when large-scale flow of meteoric or acidic fluids is ruled out as a cause of feldspar dissolution. Mineral precipitation (illite, kaolinite, and albite) took place within pseudomatrix and detrital matrix as well as in secondary pores created by feldspar dissolution. Feldspar was the source for the authigenesis. The system was thus closed during burial after framework collapse, and diagenetic reactants in the form of detrital components were already present within the system. The original mass was preserved, but redistributed and diagenetic minerals were the local sinks for the dissolved reactants, precipitating within the system. This also suggests that burial diagenesis in general might be more mass conservative than usually assumed. Rotliegend sandstones thus form a case where, despite of the lack of external exchange of mass by fluid flow, major diagenetic processes did take place and significantly modified the original mineralogy and texture. Feldspar diagenesis can take place from other processes than mere large-scale flushing of open systems as often supposed. It implies that the volumes of rock affected by feldspar diagenesis may be much larger than anticipated based upon the common hold believe that feldspar diagenesis is linked to

  15. Comment on “Systematic variations of argon diffusion in feldspars and implications for thermochronometry” by Cassata and Renne

    NASA Astrophysics Data System (ADS)

    Lovera, Oscar M.; Harrison, T. Mark; Boehnke, Patrick

    2015-02-01

    Cassata and Renne (2013) is a data-rich paper potentially providing opportunities to systematically test long-standing models of argon diffusion behavior in feldspars and we congratulate them on a heroic achievement. That said, several of their interpretations are highly problematic due to misconceptions of both the nature of their sample and diffusion modeling. Evidence of grain-scale diffusion in an exsolved feldspar

  16. AUthigenic feldspar as an indicator of paleo-rock/water interactions in Permian carbonates of the Northern Calcareous Alps, Austria

    USGS Publications Warehouse

    Spotl, C.; Kralik, M.; Kunk, M.J.

    1996-01-01

    Dolostones interbedded with Upper Permian evaporites at the base of the Northern Calcareous Alps contain abundant authigenic K-feldspar. Two petrographically, structurally, and isotopically distinct generations of K-feldspar can be distinguished: crystals composed of an inclusion-rich core and a clear rim, and optically unzoned, transparent crystals. Both feldspar types have essentially identical K-feldspar end-member compositions with ??? 99.5 mole % Or component. Low oxygen isotope ratios (+16.1??? to +18.1??? SMOW) suggest precipitation from 18O-enriched, saline fluids at temperatures in excess of ??? 140??C. 40Ar/39Ar plateau-age spectra of five samples range from 145 ?? 1 to 144 ?? 1 Ma (Early Berriasian) and suggest that both types of feldspar were formed within an interval that did not exceed ??? 2 m.y. Rb/Sr model ages range from 152 to 140 Ma, assuming that the burial diagenetic regime was buffered with respect to strontium by the associated marine Permian evaporites. Authigenic K-feldspar records two distinct events of hot brine flow, most likely triggered by tectonic movements (detachment) and by an increase in the subsurface temperature in response to thrust loading.

  17. Authigenic feldspar as an indicator of paleo-rock/water interactions in Permian carbonates of the Northern Calcareous Alps, Austria

    SciTech Connect

    Spoetl, C.; Kralik, M.; Kunk, M.J.

    1996-01-01

    Dolostones interbedded with Upper Permian evaporites at the base of the Northern Calcareous alps contain abundant authigenic K-feldspar. Two petrographically, structurally, and isotopically distinct generations of K-feldspar can be distinguished: crystals composed of an inclusion-rich core and a clear rim, and optically unzoned, transparent crystals. Both feldspar types have essentially identical K-feldspar end-member compositions with {ge} 99.5 mole % Or component. Low oxygen isotope ratios (+16.1{per_thousand} to + 18.1{per_thousand} SMOW) suggest precipitation from {sup 18}O-enriched, saline fluids at temperatures in excess of {approximately} 140 C. {sup 40}Ar/{sup 39}Ar plateau-age spectra of five samples range from 145 {+-} 1 to 144 {+-} 1 Ma (Early Berriasian) and suggest that both types of feldspar were formed within an interval that did not exceed {approximately} 2 m.y. Rb/Sr model ages range from 152 to 140 Ma, assuming that the burial diagenetic regime was buffered with respect to strontium by the associated marine Permian evaporites. Authigenic K-feldspar records two distinct events of hot brine flow, most likely triggered by tectonic movements (detachment) and by an increase in the subsurface temperature in response to thrust loading.

  18. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Schmalzer, D.K.; Steindler, M.J.; Lee, S.H.D.; Swift, W.M.

    1992-12-01

    This project supports the DOE/METC Fossil Energy Program for the development of Pressurized fluidized bed combustion (PFBC) technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an alternative to the on-line alkali analyzer for field application. RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no high temperature/high pressure (HTHP) sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-reaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial-grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6{und M}-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed in the following.

  19. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Schmalzer, D.K.; Steindler, M.J.; Lee, S.H.D.; Swift, W.M.

    1992-01-01

    This project supports the DOE/METC Fossil Energy Program for the development of Pressurized fluidized bed combustion (PFBC) technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an alternative to the on-line alkali analyzer for field application. RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no high temperature/high pressure (HTHP) sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-reaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial-grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6[und M]-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed in the following.

  20. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1992-01-01

    This project supports the DOE/METC Fossil Energy Program for the development of PFBC technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an altemative to the on-line alkali analyzer for field application. As shown in Fig. 1, the RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no HTHP sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-leaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6M-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite [8]. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed.

  1. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1992-11-01

    This project supports the DOE/METC Fossil Energy Program for the development of PFBC technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an altemative to the on-line alkali analyzer for field application. As shown in Fig. 1, the RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no HTHP sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-leaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6M-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite [8]. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed.

  2. Enigmatic reticulated filaments in subsurface granite.

    PubMed

    Miller, A Z; Hernández-Mariné, M; Jurado, V; Dionísio, A; Barquinha, P; Fortunato, E; Afonso, M J; Chaminé, H I; Saiz-Jimenez, C

    2012-12-01

    In the last few years, geomicrobiologists have focused their researches on the nature and origin of enigmatic reticulated filaments reported in modern and fossil samples from limestone caves and basalt lava tubes. Researchers have posed questions on these filaments concerning their nature, origin, chemistry, morphology, mode of formation and growth. A tentative microbial origin has been elusive since these filaments are found as hollow tubular sheaths and could not be affiliated to any known microorganism. We describe the presence of similar structures in a 16th century granite tunnel in Porto, Northwest Portugal. The reticulated filaments we identify exhibit fine geometry surface ornamentation formed by cross-linked Mn-rich nanofibres, surrounded by a large amount of extracellular polymeric substances. Within these Mn-rich filaments we report for the first time the occurrence of microbial cells.

  3. Permeability reduction in granite under hydrothermal conditions

    USGS Publications Warehouse

    Morrow, C.A.; Moore, Diane E.; Lockner, D.A.

    2001-01-01

    The formation of impermeable fault seals between earthquake events is a feature of many models of earthquake generation, suggesting that earthquake recurrence may depend in part on the rate of permeability reduction of fault zone materials under hydrothermal conditions. In this study, permeability measurements were conducted on intact, fractured, and gouge-bearing Westerly granite at an effective pressure of 50 MPa and at temperatures from 150?? to 500??C, simulating conditions in the earthquake-generating portions of fault zones. Pore fluids were cycled back and forth under a 2 MPa pressure differential for periods of up to 40 days. Permeability of the granite decreased with time t, following the exponential relation k = c(10-rt). For intact samples run between 250?? and 500??C the time constant for permeability decrease r was proportional to temperature and ranged between 0.001 and 0.1 days-1 (i.e., between 0.4 and 40 decades year-1 loss of permeability). Values of r for the lower-temperature experiments differed little from the 250??C runs. In contrast, prefractured samples showed higher rates of permeability decrease at a given temperature. The surfaces of the fractured samples showed evidence of dissolution and mineral growth that increased in abundance with both temperature and time. The experimentally grown mineral assemblages varied with temperature and were consistent with a rock-dominated hydrothermal system. As such mineral deposits progressively seal the fractured samples, their rates of permeability decrease approach the rates for intact rocks at the same temperature. These results place constraints on models of precipitation sealing and suggest that fault rocks may seal at a rate consistent with earthquake recurrence intervals of typical fault zones.

  4. Uranium-lead isotope systematics and apparent ages of zircons and other minerals in precambrian granitic rocks, Granite Mountains, Wyoming

    USGS Publications Warehouse

    Ludwig, K. R.; Stuckless, J.S.

    1978-01-01

    Zircon suites from the two main types of granite in the Granite Mountains, Wyoming, yielded concordia-intercept ages of 2,640??20 m.y. for a red, foliated granite (granite of Long Creek Mountain) and 2,595??40 m.y. for the much larger mass of the granite of Lankin Dome. These ages are statistically distinct (40??20 m.y. difference) and are consistent with observed chemical and textural differences. The lower intercepts of the zircon chords of 50??40 and 100+ 75 m.y. for the granite of Long Creek Mountain and granite of Lankin Dome, respectively, are not consistent with reasonable continuous diffusion lead-loss curves but do correspond well with the known (Laramide) time of uplift of the rocks. Epidote, zircon, and apatite from silicified and epidotized zones in the granites all record at least one postcrystallization disturbance in addition to the Laramide event and do not define a unique age of silicification and epidotization. The lower limit of ???2,500 m.y. provided by the least disturbed epidote, however, suggests that these rocks were probably formed by deuteric processes shortly after emplacement of the granite of the Lankin Dome. The earlier of the two disturbances that affected the minerals of the silicified-epidotized rock can be bracketed between 1,350 and 2,240 m.y. ago and is probably the same event that lowered mineral K-Ar and ages in the region. Zircon suites from both types of granite show well-defined linear correlations among U content, common-Pb content, and degree of discordance. One of the zircon suites has an extremely high common-Pb content (up to 180 ppm) and exhibits a component of radiogenic-Pb loss that is apparently unrelated to radiation damage. ?? 1978 Springer-Verlag.

  5. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  6. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  7. Advancements in flowing diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Pitz, Greg A.; Stalnaker, Donald M.; Guild, Eric M.; Oliker, Benjamin Q.; Moran, Paul J.; Townsend, Steven W.; Hostutler, David A.

    2016-03-01

    Multiple variants of the Diode Pumped Alkali Laser (DPAL) have recently been demonstrated at the Air Force Research Laboratory (AFRL). Highlights of this ongoing research effort include: a) a 571W rubidium (Rb) based Master Oscillator Power Amplifier (MOPA) with a gain (2α) of 0.48 cm-1, b) a rubidium-cesium (Cs) Multi-Alkali Multi-Line (MAML) laser that simultaneously lases at both 795 nm and 895 nm, and c) a 1.5 kW resonantly pumped potassium (K) DPAL with a slope efficiency of 50%. The common factor among these experiments is the use of a flowing alkali test bed.

  8. Alkali metal for ultraviolet band-pass filter

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  9. Radon exhalation from granites used in Saudi Arabia.

    PubMed

    al-Jarallah, M

    2001-01-01

    Measurements of radon exhalation for a total of 50 selected samples of construction materials used in Saudi Arabia were taken using a radon gas analyzer. These materials included sand, aggregate, cement, gypsum, hydrated lime, ceramics and granite. It was found that the granite samples were the main source of radon emanations. A total of 32 local and imported granite samples were tested. It was found that the radon exhalation rates per unit area from these granite samples varied from not detectable to 10.6 Bq m-2 h-1 with an average of 1.3 Bq m-2 h-1. The linear correlation coefficient between emanated radon and radium content was 0.92. The normalized radon exhalation rates from 2.0 cm thick granite samples varied from not detectable to 0.068 (Bq m-2 h-1)/(Bq kg-1) with an average of 0.030 (Bq m-2 h-1)/(Bq kg-1). The average radon emanation of the granite samples was found to be 21% of the total radium concentration. Therefore, granite can be a source of indoor radon as well as external gamma-radiation from the uranium decay series.

  10. Investigating K-feldspar Luminescence Thermochronometry for Application in the Mont Blanc Massif

    NASA Astrophysics Data System (ADS)

    Lambert, R.; King, G. E.; Herman, F.; Valla, P.

    2015-12-01

    Luminescence dating has the potential to quantify the recent exhumation history of mountain ranges as a low-temperature thermochronometer. During rock exhumation, electrons get trapped through exposure to ionizing radiation whilst elevated temperatures cause thermally stimulated detrapping. The resulting luminescence signals measured in the laboratory can be used to constrain rock thermal histories through modelling of the kinetic parameters of electron trapping and detrapping. Here, we investigate and model laboratory kinetic processes of the luminescence of K-feldspar and assess their extrapolation over geological timescales. Samples were taken from the actively eroding Mont Blanc massif in the European Alps, along a 12 km long tunnel with ambient temperatures of 10-35 °C. In this setting rapid exhumation rates have been found during the last 2 million years (up to ~2 km/Myr), however, we intend to increase the temporal resolution to sub-Quaternary timescales using luminescence thermochronometry. Infra-red stimulated luminescence signals at 50 °C (IR50) and at 225 °C (post-IR IRSL225) of K-feldspar extracted from Mont Blanc tunnel samples were measured and our first results reveal a thermal signature from which rock cooling rates can be derived. Isothermal decay experiments show non-exponential decay, but interestingly, experiments with a range of regenerative doses reveal first-order kinetics. The observed thermal decay pattern is well-described by a model based on a physically plausible distribution of the density of states. Ultimately, we intend to use the IR50 and post-IR IRSL225 signals of K-feldspar as dual thermochronometers to determine the late-Quaternary cooling history of the Mont Blanc massif. Moreover, the luminescence signals may give insights into local thermal field evolution, before the influence of postglacial hydrothermal flow.

  11. The Efficiency of 24 Minerals as Deposition Ice Nuclei: Focus on Feldspars, Clays and Metals

    NASA Astrophysics Data System (ADS)

    Yakobi-Hancock, J.; Ladino Moreno, L.; Abbatt, J.

    2013-12-01

    While the ice nucleating abilities of clay minerals have been extensively studied, those of the more minor mineralogical components of mineral dust have not been as widely examined. As a result, the deposition ice nucleating abilities of 24 atmospherically-relevant mineral samples were investigated using the University of Toronto continuous flow diffusion chamber at -40.0 × 0.3oC, using the same particle size (200nm) and preparation procedure throughout. The pure minerals' ice nucleating efficiencies were compared to those of complex mixtures (Arizona Test Dust and Mojave Desert Dust) and to that of lead iodide, which in the past was a prospective cloud seeding agent. Requiring a relative humidity with respect to ice (RHi) of 122.0 × 2.0% to activate 0.1% of the particles, lead iodide was the most efficient ice nucleus (IN) considered. Mojave Desert Dust (RHi 126.3 × 3.4%) and Arizona Test Dust (RHi 129.5 × 5.1%) exhibited lower but comparable activities. Through the analysis of a series of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz, and other metal-containing species), and feldspar minerals (orthoclase, plagioclase) it was found that the feldspar minerals (particularly orthoclase), and not the clays, were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 × 6.3% and 136.2 × 1.3%, respectively. The presence of feldspars (most notably orthoclase) may play a large role in the deposition IN efficiencies of mineral dusts in spite of their lower percentage in composition relative to clay minerals. By contrast, most metal oxides, sulfide and sulfates were poor ice nuclei.

  12. Massive Red-Staining and Albitization of Feldspars in Paleozoic Basement Rocks of Western Europe and Their Association with the Triassic Palaeogeography

    NASA Astrophysics Data System (ADS)

    Fabrega, C.; Parcerisa, D.; Franke, C.; Thiry, M.; Yao, K.; Gómez-Gras, D.

    2013-12-01

    Albitization of feldspars is a widespread mineral replacement process of the upper crust. An ubiquitous and pervasive red-staining albitization of feldspars has been observed in the feldspathic rocks of the Variscan basement in the Sudetes, Armorican, Morvan, Roc de Frausa and Montseny-Guilleries Massifs (Western Europe). These crystalline massifs were strongly eroded during Permian and Triassic times and suffered a long-lasting exposition in the Permian-Triassic palaeosurface. The albitized rocks contain minute Fe-oxides hoisted within the microporosity of the secondary albite. The intimate textural relationship between the Fe-oxides and the albite strongly suggest that they are coetaneous with albitization. The microscope, cathodoluminescence, SEM and EMPA analyses reveal that almost all plagioclases and some K-feldspars are albitized in those areas close to the Permian-Triassic palaeosurface. Moving downwards the palaeosurface the albitization of Variscan rocks progressively disappears. Field mapping of the albitized areas points to estimated thickness about 100-200m. In the uppermost parts of the profile almost all plagioclases are totally albitized and the rock shows a strong and pervasive reddening, whereas in the lowermost parts the mineral replacement is restricted to fractures and neighbouring walls and the rock in tinted with a soft pink colour. These observations suggest that albitization is linked to that palaeosurface and constitutes a paleoalteration profile beneath the Permian-Triassic palaeosurface. All these observations suggest that the mineral replacement could have been driven by descending Na+ rich brines related with or coming from the Permian-Triassic palaeosurface. Ricodel et al. (2007) determined a Triassic age for the paleomagnetic signature of the Fe-oxides hoisted within the microporosity of albite in the Morvan Massif. The narrow textural relationship between the Fe-oxides and the albite support the idea that this is the age of

  13. Geology of Nicholson's point granite, Natal Metamorphic Province, South Africa: the chemistry of charnockitic alteration and origin of the granite

    NASA Astrophysics Data System (ADS)

    Grantham, G. H.; Allen, A. R.; Cornell, D. H.; Harris, C.

    1996-10-01

    In the Port Edward area of southern Kwa-Zulu Natal, South Africa, charnockitic aureoles up to ˜4 m in width are developed adjacent to contacts with Port Edward enderbite and pegmatites intruded into the normally garnetiferous Nicholson's Point granite. Other mineralogical differences between the aureoles and the granite include increased myrmekite and significantly less biotite in the former and the replacement of pyrite by pyrrhotite in the charnockitic rocks. No significant differences in major element chemistry between the garnet-biotite Nicholson's Point granite and charnockitic Nicholson's Point granite are seen, except possibly for higher CaO and TiO 2 in the charnockite. Higher Rb, Th, Nb and Y contents in the garnet-biotite granite suggest that these elements have been locally depleted from garnet-biotite granite during char nockitisation. This depletion is considered to be related to the reduction in biotite. Strontium and Ba contents are significantly higher in the charnockite. Generally higher S contents in the charnockite suggest S metasomatism, with S possibly being added from the enderbite. No differences in δ18O isotope data are seen between the garnetiferous and hypersthene bearing granite. In the charnockite the LREEs are weakly depleted whereas the HREEs show greater depletion compared to the garnetiferous granite. The depletions in REEs are thought to be related to the breakdown of garnet. Europium is marginally enriched or unchanged in the charnockite relative to the garnetiferous granite. Two-pyroxene thermometry on the Port Edward enderbite suggests that it was intruded at temperatures of ˜1000-1100°C. The replacement of pyrite by pyrrhotite is also consistent with a thermal auroele. Consequently the charnockitic zones developed around the intrusions of Port Edward enderbite may result from the thermally driven dehydration of biotite. The aureoles developed adjacent to pegmatites are not considered to have resulted from heat but probably

  14. Jabal Hamra REE-mineralized silexite, Hijaz region, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Jackson, Norman J.; Douch, Colin J.

    The Jabal Hamra silexite, a crescent-shaped stock 300 m long by 100 m wide, averages over 6000 ppm combined REE and is the Kingdom's highest-grade resource of these elements. It is anomalously radioactive (total-count gamma radiation 1000-3000 cps), has high average contents of U (75 ppm) and Th (263 ppm) and is also enriched in Nb, Zr, Y, Sn and Ta. The silexite crystallized as a pressure-quenched rock resembling aplite, and was subsequently pervasively cataclased. It was derived by differentiation of a quartz alkali-feldspar syenite magma. Petrologic continuity can be demonstrated from quartz alkali-feldspar syenite through leucocratic and amphibole-bearing alkali-feldspar granite to silexite. Although the geochemical signature of the mineralization resembles that of mineralized Arabian alkali granites, the nature of the associated rocks and therefore the genesis of the deposit are significantly different.

  15. Effect of ageing of K-feldspar on its ice nucleating efficiency in immersion, deposition and contact freezing modes

    NASA Astrophysics Data System (ADS)

    Peckhaus, Andreas; Bachmann, Felix; Hoffmann, Nadine; Koch, Michael; Kiselev, Alexei; Leisner, Thomas

    2015-04-01

    Recently K-feldspar was identified as one of the most active atmospheric ice nucleating particles (INP) of mineral origin [1]. Seeking the explanation to this phenomena we have conducted extensive experimental investigation of the ice nucleating efficiency of K-feldspar in three heterogeneous freezing modes. The immersion freezing of K-feldspar was investigated with the cold stage using arrays of nanoliter-size droplets containing aqueous suspension of polydisperse feldspar particles. For contact freezing, the charged droplets of supercooled water were suspended in the laminar flow of the DMA-selected feldspar-containing particles, allowing for determination of freezing probability on a single particle-droplet contact [2]. The nucleation and growth of ice via vapor deposition on the crystalline surfaces of macroscopic feldspar particles have been investigated in the Environmental Scanning Electron Microscope (ESEM) under humidified nitrogen atmosphere. The ice nucleation experiments were supplemented with measurements of effective surface area of feldspar particles and ion chromatography (IC) analysis of the leached framework cations (K+, Na+, Ca2+, Mg2+). In this contribution we focus on the role of surface chemistry influencing the IN efficiency of K-feldspar, in particular the connection between the degree of surface hydroxylation and its ability to induce local structural ordering in the interfacial layer in water molecules (as suggested by recent modeling efforts). We mimic the natural process of feldspar ageing by suspending it in water or weak aqueous solution of carbonic acid for different time periods, from minutes to months, and present its freezing efficiency as a function of time. Our immersion freezing experiments show that ageing have a nonlinear effect on the freezing behavior of feldspar within the investigated temperature range (-40°C to -10°C). On the other hand, deposition nucleation of ice observed in the ESEM reveals clear different pattern

  16. Improved alkali-metal/silicate binders

    NASA Technical Reports Server (NTRS)

    Schutt, J.

    1978-01-01

    Family of inorganic binders utilizes potassium or sodium oxide/silicate dispersion and employs high mole ratio of silicon dioxide to alkali-metal binder. Binders are stable, inexpensive, extremely water resistant, and easy to apply.

  17. Alkali Metal Handling Practices at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Salvail, Patrick G.; Carter, Robert R.

    2002-01-01

    NASA Marshall Space Flight Center (MSFC) is NASA s principle propulsion development center. Research and development is coordinated and carried out on not only the existing transportation systems, but also those that may be flown in the near future. Heat pipe cooled fast fission cores are among several concepts being considered for the Nuclear Systems Initiative. Marshall Space Flight Center has developed a capability to handle high-purity alkali metals for use in heat pipes or liquid metal heat transfer loops. This capability is a low budget prototype of an alkali metal handling system that would allow the production of flight qualified heat pipe modules or alkali metal loops. The processing approach used to introduce pure alkali metal into heat pipe modules and other test articles are described in this paper.

  18. Alkali metal propellants for MPD thrusters

    NASA Technical Reports Server (NTRS)

    Polk, J. E.; Pivirotto, T. J.

    1991-01-01

    Experiments performed in the United States in the 1960s and early 1970s and in the Soviet Union with alkali metal-fuelled MPD thrusters indicate performance levels substantially better than those achieved with gaseous propellants. Cathode wear appears to be less in engines with alkali metal propellants also. A critical review of the available data indicates that the data are consistent and reliable. An analysis of testing and systems-level considerations shows that pumping requirements for testing are substantially decreased and reductions in tankage fraction can be expected. In addition, while care must be exercised in handling the alkali metals, it is not prohibitively difficult or hazardous. The greatest disadvantage seems to be the potential for spacecraft contamination, but there appear to be viable strategies for minimizing the impact of propellant deposition on spacecraft surfaces. Renewed examination of alkali metal-fuelled MPD thrusters for ambitious SEI missions is recommended.

  19. Authigenic potassium feldspar: a tracer for the timing of palaeofluid flow in carbonate rocks, Northern Calcareous Alps, Austria

    USGS Publications Warehouse

    Spotl, C.; Kunk, M.J.; Ramseyer, K.; Longstaffe, F.J.

    1998-01-01

    This paper is included in the Special Publication entitled 'Dating and duration of fluid flow and fluid-rock interaction', edited by J. Parnell. Feldspar is a common authigenic constituent in Permian carbonate rocks which occur as tectonically isolated blocks within the evaporitic Haselgebirge melange in the Northern Calcareous Alps (NCA). Coexisting with pyrite, anhydrite, (saddle) dolomite, magnesite, fluorite and calcite, K-feldspar and minor albite record an event of regionally extensive interaction of hot brines with carbonate rocks. Detailed petrographic, crystallographic and geochemical studies reveal a variability in crystal size and shape, Al-Si ordering, elemental and stable isotopic compositions of the K-feldspar, which is only partially consistent with the traditional view of authigenic feldspar as a well-ordered, compositionally pure mineral. 40Ar-39Ar step- heating measurements of authigenic potassium feldspar from several localities yield two age populations, an older one of 145-154 Ma, and a younger one of c.90-97 Ma. Most age spectra reflect cooling through the argon retention temperature interval, which was rapid in some localities (as indicated by plateau ages) and slower in others. Rb-Sr isotope data are more difficult to interpret, because in many K-feldspar samples they are controlled largely by Sr-bearing inclusions. The Jurassic 40Ar-39Ar dates are interpreted as minimum ages of feldspar growth and hence imply that fluid-rock interaction is likely to be simultaneous with or to slightly predate melange formation. Deformation associated with the closure and subduction of the Meliata-Hallstatt ocean south of the NCA during the Upper Jurassic is regarded as the principal geodynamic driving force for both enhanced fluid circulation and melange formation. Some localities were reheated beyond the argon retention temperature for microcline during mid-Cretaceous nappe stacking of the NCA, thus obliterating the older signal.

  20. Desulfurizing Coal With an Alkali Treatment

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kalvinskas, J. J.

    1987-01-01

    Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.

  1. Influence of the state of stress on the brittle-ductile transition in granitic rock: Evidence from fault steps in the Sierra Nevada, California

    SciTech Connect

    Buergmann, R.; Pollard, D.D. )

    1992-07-01

    Left-lateral strike-slip faults in the Lake Edison granodiorite (central Sierra Nevada, California) are composed of an echelon segments. Relative displacement across the faults apparently are transferred between segments by ductile shearing at right steps, and by extensional fracturing at left steps. The granodiorite within right steps displays mylonitic foliation, and thin sections show textures in quartz associated with dislocation glide, recovery processes, and dynamic recrystallization, whereas textures in feldspar are related to fracturing. Only centimeters outside the right steps, the rock fabric is approximately isotropic and deformation is accommodated by mineralized opening-mode fractures. The stress field calculated for the right-step geometry, when a boundary element model is used, shows an increase in mean compressive stress of up to 25 MPa within the step relative to that outside. This difference in stress apparently produced the contrasting behaviors of the granitic rock. Experimentally derived power-law flow laws do not predict these behaviors.

  2. Ternary feldspar thermometry of Paleoproterozoic granulites from In-Ouzzal terrane (Western Hoggar, southern Algeria)

    NASA Astrophysics Data System (ADS)

    Benbatta, A.; Bendaoud, A.; Cenki-Tok, B.; Adjerid, Z.; Lacène, K.; Ouzegane, K.

    2017-03-01

    The In Ouzzal terrane in western Hoggar (Southern Algeria) preserves evidence of ultrahigh temperature (UHT) crustal metamorphism. It consists in Archean crustal units, composed of orthogneissic domes and greenstone belts, strongly remobilized during the Paleoproterozoic orogeny which was recognized as an UHT event (peak T > 1000 °C and P ≈ 9-12 kbar). This metamorphism was essentially defined locally in Al-Mg granulites, Al-Fe granulites and quartzites outcropping in the Northern part of the In Ouzzal terrane (IOT). In order to test and verify the regional spread of the UHT metamorphism in this terrane, ternary feldspar thermometry on varied rock types (Metanorite, Granulite Al-Mg and Orthogneiss) and samples that crop out in different zones of the In Ouzzal terrane. These rocks contain either perthitic, antiperthitic or mesoperthitic parageneses. Ternary feldspars used in this study have clearly a metamorphic origin. The obtained results combined with previous works show that this UHT metamorphism (>900 °C) affected the whole In Ouzzal crustal block. This is of major importance as for future discussion on the geodynamic context responsible for this regional UHT metamorphism.

  3. Alteration of alkali reactive aggregates autoclaved in different alkali solutions and application to alkali-aggregate reaction in concrete

    SciTech Connect

    Lu Duyou; Xu Zhongzi; Tang Mingshu; Fournier, Benoit

    2006-06-15

    Surface alteration of typical aggregates with alkali-silica reactivity and alkali-carbonate reactivity, i.e. Spratt limestone (SL) and Pittsburg dolomitic limestone (PL), were studied by XRD and SEM/EDS after autoclaving in KOH, NaOH and LiOH solutions at 150 deg. C for 150 h. The results indicate that: (1) NaOH shows the strongest attack on both ASR and ACR aggregates, the weakest attack is with LiOH. For both aggregates autoclaved in different alkali media, the crystalline degree, morphology and distribution of products are quite different. More crystalline products are formed on rock surfaces in KOH than that in NaOH solution, while almost no amorphous product is formed in LiOH solution; (2) in addition to dedolomitization of PL in KOH, NaOH and LiOH solutions, cryptocrystalline quartz in PL involves in reaction with alkaline solution and forms typical alkali-silica product in NaOH and KOH solutions, but forms lithium silicate (Li{sub 2}SiO{sub 3}) in LiOH solution; (3) in addition to massive alkali-silica product formed in SL autoclaved in different alkaline solutions, a small amount of dolomite existing in SL may simultaneously dedolomitize and possibly contribute to expansion; (4) it is promising to use the duplex effect of LiOH on ASR and ACR to distinguish the alkali-silica reactivity and alkali-carbonate reactivity of aggregate when both ASR and ACR might coexist.

  4. CO2 sequestration in feldspar-rich sandstone: Coupled evolution of fluid chemistry, mineral reaction rates, and hydrogeochemical properties

    NASA Astrophysics Data System (ADS)

    Tutolo, Benjamin M.; Luhmann, Andrew J.; Kong, Xiang-Zhao; Saar, Martin O.; Seyfried, William E.

    2015-07-01

    To investigate CO2 Capture, Utilization, and Storage (CCUS) in sandstones, we performed three 150 °C flow-through experiments on K-feldspar-rich cores from the Eau Claire formation. By characterizing fluid and solid samples from these experiments using a suite of analytical techniques, we explored the coupled evolution of fluid chemistry, mineral reaction rates, and hydrogeochemical properties during CO2 sequestration in feldspar-rich sandstone. Overall, our results confirm predictions that the heightened acidity resulting from supercritical CO2 injection into feldspar-rich sandstone will dissolve primary feldspars and precipitate secondary aluminum minerals. A core through which CO2-rich deionized water was recycled for 52 days decreased in bulk permeability, exhibited generally low porosity associated with high surface area in post-experiment core sub-samples, and produced an Al hydroxide secondary mineral, such as boehmite. However, two samples subjected to ∼3 day single-pass experiments run with CO2-rich, 0.94 mol/kg NaCl brines decreased in bulk permeability, showed generally elevated porosity associated with elevated surface area in post-experiment core sub-samples, and produced a phase with kaolinite-like stoichiometry. CO2-induced metal mobilization during the experiments was relatively minor and likely related to Ca mineral dissolution. Based on the relatively rapid approach to equilibrium, the relatively slow near-equilibrium reaction rates, and the minor magnitudes of permeability changes in these experiments, we conclude that CCUS systems with projected lifetimes of several decades are geochemically feasible in the feldspar-rich sandstone end-member examined here. Additionally, the observation that K-feldspar dissolution rates calculated from our whole-rock experiments are in good agreement with literature parameterizations suggests that the latter can be utilized to model CCUS in K-feldspar-rich sandstone. Finally, by performing a number of reactive

  5. 9. VIEW NORTH, ACROSS DECK AT EAST SIDE SHOWING GRANITE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW NORTH, ACROSS DECK AT EAST SIDE SHOWING GRANITE BLOCK PAVING, EXPANSION JOINT AND NORTH SIDE PIPE RAILING - Route 1 Extension, South Street Viaduct, Spanning Conrail & Wheeler Point Road at South Street, Newark, Essex County, NJ

  6. 6. HISTORIC AMERICAN BUILDINGS SURVEY, INTERIOR SHOWING ORIGINAL GRANITE COLUMNS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. HISTORIC AMERICAN BUILDINGS SURVEY, INTERIOR SHOWING ORIGINAL GRANITE COLUMNS AND COLUMN BRICKFACED AFTER THE GREAT FIRE 1904 - Old U.S. Appraisers Stores, Gay & Lombard Streets, Baltimore, Independent City, MD

  7. 10. Lighthouse boathouse and granite wharf, view north northeast, southwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Lighthouse boathouse and granite wharf, view north northeast, southwest and southeast sides of boathouse, west and south sides of dock - Whitehead Light Station, Whitehead Island, East northeast of Tenants Harbor, Spruce Head, Knox County, ME

  8. 8. July, 1970 DETAIL OF BRICK SIDEWALK AND GRANITE CURB, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. July, 1970 DETAIL OF BRICK SIDEWALK AND GRANITE CURB, LOOKING EAST ON NORTH SIDE OF INDIA STREET FROM DRIVEWAY OF 31 INDIA STREET - India Street Neighborhood Study, 15-45 India Street, Nantucket, Nantucket County, MA

  9. 7. July, 1970 DETAIL OF BRICK SIDEWALK AND GRANITE CURB, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. July, 1970 DETAIL OF BRICK SIDEWALK AND GRANITE CURB, LOOKING EAST ON NORTH SIDE OF INDIA STREET FROM DRIVEWAY OF 31 INDIA STREET - India Street Neighborhood Study, 15-45 India Street, Nantucket, Nantucket County, MA

  10. Lift Off (Granite City C. U. School District 9)

    ERIC Educational Resources Information Center

    Goodall, Robert C.; And Others

    1970-01-01

    Describes and evaluates the ESEA Title I program in Granite City (Illinois) target area schools which provide preschool classes, remedial reading, and supportive health and counseling services. The programs are considered to be efficient. (DM)

  11. Detail of track girder, south portal and granite piers at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of track girder, south portal and granite piers at low tide. View Northwest - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  12. Hydrothermal REE and Zr Ore Forming Processes in Peralkaline Granitic Systems

    NASA Astrophysics Data System (ADS)

    Gysi, A. P.

    2015-12-01

    Anorogenic peralkaline igneous systems display extreme enrichment of REE and Zr with a hydrothermal overprint leading to post-magmatic metal mobilization. Strange Lake in Canada, for example, is a mid-Proterozoic peralkaline granitic intrusion and host to a world-class REE-Zr deposit with >50 Mt ore (>1.5 wt.% REE and >3 wt.% Zr). In contrast to porphyry systems, peralkaline systems are poorly understood and hydrothermal metal mobilization models are only in the early stage of their development. This is partly due to the paucity of thermodynamic data for REE-bearing minerals and aqueous species, and the complexity of the hydrothermal fluids (enrichment of F, P and Cl), which make it difficult to develop thermodynamic models of metal partitioning. This study aims to show the link between alteration stages and metal mobilization using Strange Lake as a natural laboratory and combine these observations with numerical modeling. Four types of alteration were recognized at Strange Lake: i) alkali (i.e. K and Na) metasomatism related to interaction with NaCl-bearing orthomagmatic fluids, ii) acidic alteration by HCl-HF-bearing fluids originating from the pegmatites followed by iii) aegirinization of the border of the pegmatites and surrounding granites and by iv) pervasive Ca-F-metasomatism. The acidic alteration accounts for most of the hydrothermal metal mobilization in and outward from the pegmatites, whereas the Ca-F-metasomatism led to metal deposition and resulted from interaction of an acidic F-rich fluid with a Ca-bearing fluid. Numerical simulations of fluid-rock reactions with saline HCl-HF-bearing fluids at 400 °C to 250 °C indicate that temperature, availability of F/Cl and pH limit the mobility of Zr and REE. Fluids with pH <2 led to the formation of quartz and fluorite in the core of the pegmatites and to an increase in the stability of REE chloride species favorable for REE mobilization. The mobilization of Zr was favored at low temperature with the

  13. Tonian granitic magmatism of the Borborema Province, NE Brazil: A review

    NASA Astrophysics Data System (ADS)

    Guimarães, Ignez P.; de Fatima L. de Brito, Maria; de A. Lages, Geysson; da Silva Filho, Adejardo F.; Santos, Lucilene; Brasilino, Roberta G.

    2016-07-01

    Tonian granitoids, today augen-gneisses and migmatites, showing crystallization ages ranging from 870 Ma to 1000 Ma occur in the Borborema Province, NE Brazil. The majority of them have ages within the 925-970 Ma interval. Few intrusions with ages of ∼1.0 Ga and <900 Ma occur in the Transversal and South subprovinces. The Tonian granitoids constitute the most expressive magmatic rocks of the Cariris Velhos event. The studied granitoids (herein CVG -Cariris Velhos granitoids) intrude slightly older bimodal (but mostly felsic) volcanic successions and metasedimentary sequences in the Transversal and South subprovinces. Tonian granitoids are unknown in the North subprovince. The CVG comprise mainly coarse-grained augen-gneisses of granite to granodiorite composition. Fe-rich biotite (annite) is the main mafic mineral phase, constituting up to 15% of the modal composition. Garnet, muscovite and tourmaline occur as accessory phases in many plutons. The CVG augen-gneisses have high SiO2 (>71%) and alkali contents, they vary from slightly peraluminous to slightly metaluminous, and from slightly magnesian to typical ferrroan rocks. In the migmatized orthogneisses the SiO2 contents are usually <70%. Trace element variations in the CVG are extensive, reflecting the migmatization recorded in some plutons and/or distinct sources. They are Ca-, Sr- and Nb-poor, showing variable Ba (100-1260 ppm), Rb (164-400 ppm) and Zr (144-408 ppm) contents, and high abundances of Y (>40 ppm). The chondrite normalized REE patterns are characterized by strong to moderate negative Eu anomalies (Eu/Eu* = 0.23-0.70). In general, the spidergram patterns show deep troughs at Ti, P, Ba and Sr and less pronounced Nb-Ta troughs. These patterns are similar to those reported for anorogenic granites evolved from mixtures of magmas from both crustal and mantle sources. The CVG exhibit TDM model ages ranging from 1.9 to 1.1Ga, with slightly negative to slightly positive ƐNd(t) values, suggesting the

  14. Lithium Isotopes; a Potential aid to Understanding Granite Petrogenesis

    NASA Astrophysics Data System (ADS)

    Bryant, C.; Chappell, B.; Bennett, V.

    2002-12-01

    Significant enrichment in 6Li occurs during the weathering of continental crustal materials to clays, contributing to depleted δ7Li in the resultant sedimentary rocks. As such Li isotopes potentially provide a unique perspective on the nature of crustal components involved granite genesis. Carboniferous-Permian granites of the New England Batholith (NEB), Australia, emplaced in a Devonian-Triassic arc setting, are subdivided into 5 major supersuites1. Bundarra and Hillgrove are both S-types, interpreted to be derived from strongly weathered arc rocks1, and immature greywackes2, respectively. Moonbi, Uralla and Clarence River represent three distinct I-type supersuites. Moonbi granites are high-K and strongly oxidised. Uralla granites are medium-high-K, and more reduced. Clarence River are low-K, isotopically primitive granites, equivalent to arc magmas. Li isotopes were evaluated using MC-ICP-MS analysis under conditions of reduced RF power. This 'cool' plasma technique yields precision equivalent to TIMS (2\\sigma SD; 0.5‰ , 680W; 0.7‰ , 800W)3. Overall variations of ~10‰ δ 7Li are observed, greater than the differences observed in arc lavas worldwide (δ 7Li = ~2 to 7‰ ). Clarence River granites typically have δ7Li > 4‰ , similar to lavas from sediment poor island arcs (e.g. Izu-Bonin and Kuriles). Bundarra granites have low δ7Li, consistent with involvement of more strongly weathered source components. The higher δ7Li (< 4.9‰ ) observed for Hillgrove supports the inferred derivation from immature arc sediments2. Moonbi and Uralla overlap with the lighter values observed for arc lavas. The slightly heavier values for Uralla granites are consistent with the greater involvement of sedimentary components in the latter. Although no simple delineation exists between NEB S- and I-type granites, Li isotopes provide important insights into the nature of the crustal components involved in granite magma-genesis. 1Shaw, S.E. and Flood, R.H. 1981. JGR, 86

  15. Can Ice-Like Structures Form on Non-Ice-Like Substrates? The Example of the K-feldspar Microcline

    PubMed Central

    2016-01-01

    Feldspar minerals are the most common rock formers in Earth’s crust. As such they play an important role in subjects ranging from geology to climate science. An atomistic understanding of the feldspar structure and its interaction with water is therefore desirable, not least because feldspar has been shown to dominate ice nucleation by mineral dusts in Earth’s atmosphere. The complexity of the ice/feldspar interface arising from the numerous chemical motifs expressed on the surface makes it a challenging system. Here we report a comprehensive study of this challenging system with ab initio density functional theory calculations. We show that the distribution of Al atoms, which is crucial for the dissolution kinetics of tectosilicate minerals, differs significantly between the bulk environment and on the surface. Furthermore, we demonstrate that water does not form ice-like overlayers in the contact layer on the most easily cleaved (001) surface of K-feldspar. We do, however, identify contact layer structures of water that induce ice-like ordering in the second overlayer. This suggests that even substrates without an apparent match with the ice structure may still act as excellent ice nucleating agents. PMID:27917255

  16. Activity concentrations and dose rates from decorative granite countertops.

    PubMed

    Llope, W J

    2011-06-01

    The gamma radiation emitted from a variety of commercial decorative granites available for use in U.S. homes has been measured with portable survey meters as well as an NaI(Th) gamma spectrometer. The (40)K, U-nat, and (232)Th activity concentrations were determined using a full-spectrum analysis. The dose rates that would result from two different arrangements of decorative granite slabs as countertops were explored in simulations involving an adult anthropomorphic phantom.

  17. Natural radioactivity content of granite tiles used in Greece.

    PubMed

    Papaefthymiou, H

    2008-01-01

    Measurements of (226)Ra, (232)Th and (40)K activity concentrations in commercial granite tiles imported in Greece were performed using gamma-ray spectrometry. The activity concentration of (226)Ra, (232)Th and (40)K ranged from 1 to 434, 2 to 239 and 71 to 1576 Bq kg(-1), respectively. The calculated activity concentration index (I) values for all granite samples examined were found to be within the EC limit values for superficial and other materials with restricted use.

  18. Radionuclide Transport in Fracture-Granite Interface Zones

    SciTech Connect

    Hu, Q; Mori, A

    2007-09-12

    In situ radionuclide migration experiments, followed by excavation and sample characterization, were conducted in a water-conducting shear zone at the Grimsel Test Site (GTS) in Switzerland to study diffusion paths of radionuclides in fractured granite. In this work, we employed a micro-scale mapping technique that interfaces laser ablation sampling with inductively coupled plasma-mass spectrometry (LA/ICP-MS) to measure the fine-scale (micron-range) distribution of actinides ({sup 234}U, {sup 235}U, and {sup 237}Np) in the fracture-granite interface zones. Long-lived {sup 234}U, {sup 235}U, and {sup 237}Np were detected in flow channels, as well as in the adjacent rock matrix, using the sensitive, feature-based mapping of the LA/ICP-MS technique. The injected sorbing actinides are mainly located within the advective flowing fractures and the immediately adjacent regions. The water-conducting fracture studied in this work is bounded on one side by mylonite and the other by granitic matrix regions. These actinides did not penetrate into the mylonite side as much as the relatively higher-porosity granite matrix, most likely due to the low porosity, hydraulic conductivity, and diffusivity of the fracture wall (a thickness of about 0.4 mm separates the mylonite region from the fracture) and the mylonite region itself. Overall, the maximum penetration depth detected with this technique for the more diffusive {sup 237}Np over the field experimental time scale of about 60 days was about 10 mm in the granitic matrix, illustrating the importance of matrix diffusion in retarding radionuclide transport from the advective fractures. Laboratory tests and numerical modeling of radionuclide diffusion into granitic matrix was conducted to complement and help interpret the field results. Measured apparent diffusivity of multiple tracers in granite provided consistent predictions for radionuclide transport in the fractured granitic rock.

  19. Hydraulic fracturing in granite under geothermal conditions

    USGS Publications Warehouse

    Solberg, P.; Lockner, D.; Byerlee, J.D.

    1980-01-01

    The experimental hydraulic fracturing of granite under geothermal conditions produces tensile fracture at rapid fluid injection rates and shear fracture at slow injection rates and elevated differential stress levels. A sudden burst of acoustic emission activity accompanies tensile fracture formation whereas the acoustic emission rate increases exponentially prior to shear fracture. Temperature does not significantly affect the failure mechanism, and the experimental results have not demonstrated the occurrence of thermal fracturing. A critical result of these experiments is that fluid injection at intermediate rates and elevated differential stress levels increases permeability by more than an order of magnitude without producing macroscopic fractures, and low-level acoustic emission activity occurs simultaneously near the borehole and propagates outward into the specimen with time. Permeability measurements conducted at atmospheric pressure both before and after these experiments show that increased permeability is produced by permanent structural changes in the rock. Although results of this study have not demonstrated the occurrence of thermal fracturing, they suggest that fluid injection at certain rates in situ may markedly increase local permeability. This could prove critical to increasing the efficiency of heat exchange for geothermal energy extraction from hot dry rock. ?? 1980.

  20. Mortality experience of Vermont granite workers

    SciTech Connect

    Davis, L.K.; Wegman, D.H.; Monson, R.R.; Froines, J.

    1982-01-01

    A comparison was made between the chief cause of death among 969 deceased white male granite workers in Vermont and the causes of death among other individuals not in that occupation. Tuberculosis deaths were ten times the number predicted, based on the U.S. white male experience. Of the 65 tuberculosis deaths, 48 were silicotuberculosis and 16 were pulmonary tuberculosis. A notable increase was found for deaths due to all respiratory diseases, with 28 deaths due to silicosis. Excluding deaths due to silicosis and tuberculosis left a small excess of emphysema-related deaths. For 25 men in the respiratory disease category whose cause of death was not listed as silicosis, ten had evidence of silicosis in their x-ray records suggesting some misdiagnoses may have occurred. An excess of lung cancer deaths was noted among sawyers and polishers, suggesting possible effects of abrasive exposures. No tuberculosis deaths were noted in men who started work in the post dust control period, after 1950. There was an excess of suicide deaths before 1970.

  1. Numerical Experiments on Ductile Fracture in Granites

    NASA Astrophysics Data System (ADS)

    Regenauer-Lieb, K.; Weinberg, R. F.

    2006-12-01

    Ceramics and, by analogy rocks, are brittle at low temperatures, however, at high temperature and high pressure a second ductile mode of fracture based on dislocation and/or diffusion processes predominates. For ceramics 0.5-0.7 times the melting temperature suffice to create creep/ductile fracture which occurs typically after long time of deformation 104-1010 s (1). Ductile creep fractures make up for the low stress by profiting from accumulated strain and diffusion during slow creep deformation. Creep fractures typically nucleate on grain or phase boundaries, rigid or soft inclusions. Ultimately, the localized inhomogeneous damaged zone, begin to spread laterally and coalesce to create or follow a propagating shear band. The creep fracture sequence of crack nucleation, growth and coalescence relies on a mechanism of self-organization of fluids into a shear band during deformation and converts macroscopically to the crack like propagation of localized shear zones. Numerical experiments are used to test the ductile fracture hypothesis for the segregation and transfer of melts in granites. Ref: (1) C. Ghandi, M. F. Ashby, Acta Metallurgica 27, 1565 (1979).

  2. An investigation of cathodoluminescence in albite from the A-type Georgeville granite, Nova Scotia

    SciTech Connect

    Dalby, Kim N.; Anderson, Alan J.; Mariano, Anthony N.; Gordon, Robert A.; Mayanovic, Robert A.; Wirth, Richard

    2009-12-15

    Cathodoluminescence (CL) reveals red and blue colors within single, non-turbid albite (Ab{sub 98-99}) grains from the Georgeville granite, Nova Scotia. A 720 nm X-ray excited optical luminescence (XEOL) peak characterizes red CL regions, while a 280 nm XEOL feature dominates blue CL regions. Synchrotron X-ray fluorescence results indicate that red CL and the 720 nm XEOL peak intensities relate to total Fe concentrations. The relationship between red CL and Fe content is confirmed by electron microprobe (EMPA) and laser ablation-inductively coupled mass spectrometry (LA-ICP-MS). The XEOL technique is used to exclude the Fe K-edge as the cause of red CL. X-ray absorption spectroscopy results indicate that Fe in both the red and blue CL regions is Fe{sup 3+}, and that red CL activation may relate to the Si-Al order of the feldspar and to the distribution of Fe on tetrahedral sites. The CL textures, combined with EMPA and LA-ICPMS analyses, indicate that blue CL albite (Ab98) regions contain higher concentrations of Ca, Ti, Pb and rare earth elements, and were replaced, in part, by a more Fe-rich, trace element depleted albite (Ab99) which displays red CL. Complex diffraction contrasts and amorphous deposits identified in transmission electron microscope images suggest that aqueous fluids have reacted with both red and blue CL regions. Fluid inclusion homogenization temperatures of up to 430 C provide a lower estimate of the fluid temperature.

  3. The H2O Content of Granite Embryos

    NASA Astrophysics Data System (ADS)

    Bartoli, O.; Cesare, B.; Remusat, L.; Acosta-Vigil, A.; Poli, S.

    2014-12-01

    Quantification of H2O contents of natural granites has been an on-going challenge owing to the extremely fugitive character of H2O during cooling and ascent of melts and magmas. Here we approach this problem by studying granites in their source region (i.e. the partially melted continental crust) and we present the first NanoSIMS analyses of anatectic melt inclusions (MI) hosted in peritectic phases of migmatites and granulites. These MI which totally crystallized upon slow cooling represent the embryos of the upper-crustal granites. The approach based on the combination of MI and NanoSIMS has been here tested on amphibolite-facies migmatites at Ronda (S Spain) that underwent fluid-present to fluid-absent melting at ~700 °C and ~5 kbar. Small (≤ 5 µm) crystallized MI trapped in garnet have been remelted using a piston-cylinder apparatus and they show leucogranitic compositions. We measure high and variable H2O contents (mean of 6.5±1.4 wt%) in these low-temperature, low-pressure granitic melts. We demonstrate that, when the entire population from the same host is considered, MI reveal the H2O content of melt in the specific volume of rock where the host garnet grew. Mean H2O values for the MI in different host crystals range from 5.4 to 9.1 wt%. This range is in rather good agreement with experimental models for granitic melts at the inferred P-T conditions. Our study documents for the first time the occurrence of H2O heterogeneities in natural granitic melts at the source region. These heterogeneities are interpreted to reflect the birth of granitic melts under conditions of "mosaic" equilibrium, where the distinct fractions of melt experience different buffering assemblages at the micro-scale, with concomitant differences in melt H2O content. These results confirm the need for small-scale geochemical studies on natural samples to improve our quantitative understanding of crustal melting and granite formation. The same approach adopted here can be applied to

  4. The H2O content of granite embryos

    NASA Astrophysics Data System (ADS)

    Bartoli, Omar; Cesare, Bernardo; Remusat, Laurent; Acosta-Vigil, Antonio; Poli, Stefano

    2015-04-01

    Quantification of H2O contents of natural granites has been an on-going challenge owing to the extremely fugitive character of H2O during cooling and ascent of melts and magmas. Here we approach this problem by studying granites in their source region (i.e. the partially melted continental crust) and we present the first NanoSIMS analyses of anatectic melt inclusions (MI) hosted in peritectic phases of migmatites and granulites. These MI which totally crystallized upon slow cooling represent the embryos of the upper-crustal granites [1, 2, 3]. The approach based on the combination of MI and NanoSIMS has been here tested on amphibolite-facies migmatites at Ronda (S Spain) that underwent fluid-present to fluid-absent melting at ~700 °C and ~5 kbar. Small (≤ 5 µm) crystallized MI trapped in garnet have been remelted using a piston-cylinder apparatus and they show leucogranitic compositions. We measure high and variable H2O contents (mean of 6.5±1.4 wt%) in these low-temperature, low-pressure granitic melts. We demonstrate that, when the entire population from the same host is considered, MI reveal the H2O content of melt in the specific volume of rock where the host garnet grew. Mean H2O values for the MI in different host crystals range from 5.4 to 9.1 wt%. This range is in rather good agreement with experimental models for granitic melts at the inferred P-T conditions. Our study documents for the first time the occurrence of H2O heterogeneities in natural granitic melts at the source region [3]. These heterogeneities are interpreted to reflect the birth of granitic melts under conditions of "mosaic" equilibrium, where the distinct fractions of melt experience different buffering assemblages at the micro-scale, with concomitant differences in melt H2O content. These results confirm the need for small-scale geochemical studies on natural samples to improve our quantitative understanding of crustal melting and granite formation. The same approach adopted here can

  5. Geochronology and petrogenesis of the western highlands alkali suite: Radiogenic isotopic evidence from Apollo 14

    NASA Astrophysics Data System (ADS)

    Snyder, Gregory A.; Taylor, Lawrence A.; Halliday, Alex N.

    1993-03-01

    Several rocks of alkalic affinity, from the western highlands of the Moon, have been analyzed for their Nd and Sr isotopic compositions. One sample yields a Sm-Nd mineral isochron of 4110 = 41 Ma. This age, in conjunction with U-Pb zircon ages on two other alkalic rocks from the Apollo 14 landing site suggests a distinct western highlands 'event' which was approximately 100 Ma in duration. Since the last dregs of the lunar magma ocean likely crystallized prior to 4.3 Ga, this alkalic 'event' may have included the re-melting of evolved plutons or the remobilization of urKREEP trapped liquid from upper mantle cumulates. Alkalic lithologies such as granites and felsites have been known from the Moon since the earliest days of the Apollo lunar sample returns. However, not until 1977 were alkali-rich rocks recognized from typical highlands suites such as ferroan anorthosites (FAN) and norites and Mg-suite rocks. In the intervening years, several other alkali suite samples have been discovered and characterized, mostly through labor-intesive breccia pull-apart studies of clasts and analyses of coarse-fine fractions of soils. We will speculate on the origins of this suite of lunar highlands rocks.

  6. Geochronology and petrogenesis of the western highlands alkali suite: Radiogenic isotopic evidence from Apollo 14

    NASA Technical Reports Server (NTRS)

    Snyder, Gregory A.; Taylor, Lawrence A.; Halliday, Alex N.

    1993-01-01

    Several rocks of alkalic affinity, from the western highlands of the Moon, have been analyzed for their Nd and Sr isotopic compositions. One sample yields a Sm-Nd mineral isochron of 4110 = 41 Ma. This age, in conjunction with U-Pb zircon ages on two other alkalic rocks from the Apollo 14 landing site suggests a distinct western highlands 'event' which was approximately 100 Ma in duration. Since the last dregs of the lunar magma ocean likely crystallized prior to 4.3 Ga, this alkalic 'event' may have included the re-melting of evolved plutons or the remobilization of urKREEP trapped liquid from upper mantle cumulates. Alkalic lithologies such as granites and felsites have been known from the Moon since the earliest days of the Apollo lunar sample returns. However, not until 1977 were alkali-rich rocks recognized from typical highlands suites such as ferroan anorthosites (FAN) and norites and Mg-suite rocks. In the intervening years, several other alkali suite samples have been discovered and characterized, mostly through labor-intesive breccia pull-apart studies of clasts and analyses of coarse-fine fractions of soils. We will speculate on the origins of this suite of lunar highlands rocks.

  7. Determination of Matrix Diffusion Properties of Granite

    SciTech Connect

    Holtta, Pirkko; Siitari-Kauppi, Marja; Huittinen, Nina; Poteri, Antti

    2007-07-01

    Rock-core column experiments were introduced to estimate the diffusion and sorption properties of Kuru Grey granite used in block-scale experiments. The objective was to examine the processes causing retention in solute transport through rock fractures, especially matrix diffusion. The objective was also to estimate the importance of retention processes during transport in different scales and flow conditions. Rock-core columns were constructed from cores drilled into the fracture and were placed inside tubes to form flow channels in the 0.5 mm gap between the cores and the tube walls. Tracer experiments were performed using uranin, HTO, {sup 36}Cl, {sup 131}I, {sup 22}Na and {sup 85}Sr at flow rates of 1-50 {mu}L.min{sup -1}. Rock matrix was characterized using {sup 14}C-PMMA method, scanning electron microscopy (SEM), energy dispersive X-ray micro analysis (EDX) and the B.E.T. method. Solute mass flux through a column was modelled by applying the assumption of a linear velocity profile and molecular diffusion. Coupling of the advection and diffusion processes was based on the model of generalised Taylor dispersion in the linear velocity profile. Experiments could be modelled applying a consistent parameterization and transport processes. The results provide evidence that it is possible to investigate matrix diffusion at the laboratory scale. The effects of matrix diffusion were demonstrated on the slightly-sorbing tracer breakthrough curves. Based on scoping calculations matrix diffusion begins to be clearly observable for non-sorbing tracer when the flow rate is 0.1 {mu}L.min{sup -1}. The experimental results presented here cannot be transferred directly to the spatial and temporal scales that prevail in an underground repository. However, the knowledge and understanding of transport and retention processes gained from this study is transferable to different scales from laboratory to in-situ conditions. (authors)

  8. Laboratory measurements of upwelled radiance and reflectance spectra of Calvert, Ball, Jordan, and Feldspar soil sediments

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Usry, J. W.; Witte, W. G.; Gurganus, E. A.

    1977-01-01

    An effort to investigate the potential of remote sensing for monitoring nonpoint source pollution was conducted. Spectral reflectance characteristics for four types of soil sediments were measured for mixture concentrations between 4 and 173 ppm. For measurements at a spectral resolution of 32 mm, the spectral reflectances of Calvert, Ball, Jordan, and Feldspar soil sediments were distinctly different over the wavelength range from 400 to 980 nm at each concentration tested. At high concentrations, spectral differences between the various sediments could be detected by measurements with a spectral resolution of 160 nm. At a low concentration, only small differences were observed between the various sediments when measurements were made with 160 nm spectral resolution. Radiance levels generally varied in a nonlinear manner with sediment concentration; linearity occurred in special cases, depending on sediment type, concentration range, and wavelength.

  9. Improving age constraints on Patagonian glaciations using a new luminescence dating method for feldspars

    NASA Astrophysics Data System (ADS)

    Smedley, R. K.; Glasser, N. F.; Duller, G. A.

    2013-12-01

    Multiple moraine ridges are preserved in the Lago Buenos Aires and Lago Pueyrrédon valleys, east of the Northern Patagonian Icefield and offer a unique perspective on understanding past environmental change in the mid-latitudes of the Southern Hemisphere. Previous age constraints provided for the moraine ridges relies on cosmogenic isotope dating and constraining radiocarbon and 40Ar/36Ar ages. Providing age constraints using luminescence dating of the glaciofluvial landforms associated with the moraine ridges offers great potential to contribute towards improving the accuracy and precision of age constraints in such challenging glacial settings. This is the first study to use a new luminescence dating method recently developed for feldspars (Thomsen et al. 2008) to constrain the ages of moraine deposition. A range of sediments were sampled from the outwash plains and glaciofluvial channels that are associated with moraine deposition in the Lago Buenos Aires and Lago Pueyrrédon valleys. Elevation measurements and the geomorphological context of the outwash plains and glaciofluvial channels are used to relate the sampled material to the associated moraine ridges, and therefore constrain the ages of moraine deposition in the valleys. Moraine ridges dated using cosmogenic isotope dating to the Last Glacial Maximum are the main focus of this study, but the overall aim is to provide a new dating technique that can be used to understand the temporal and spatial extent of terrestrial environmental change during past glaciations of the mid-latitudes in the Southern Hemisphere. Thomsen, K.J., Murray, A.S., Jain, M. and Bøtter-Jensen, L. 2008. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements 43, 1474 - 1486.

  10. Silicified Granites (Bleeding Stone and Ochre Granite) as Global Heritage Stones Resources from Avila (Central of Spain)

    NASA Astrophysics Data System (ADS)

    Garcia-Talegon, Jacinta; Iñigo, Adolfo C.; Vicente-Tavera, Santiago; Molina-Ballesteros, Eloy

    2015-04-01

    Silicified Granites have been widely used to build the main Romanesque monuments in the 12 th century of Avila city that was designated a World Heritage Site by the UNESCO in 1985. The stone was used in the Cathedral (12 th century); churches located interior and exterior of the Walls (e.g. Saint Vincent; Saint Peter). During the Renaissance and Gothic period, 15 th century Silicified Granites have been used mainly to buid ribbed vaults in Avila city (e.g. Royal Palace of the Catholic Monarchs, and Chapel of Mosén Rubí). Silicified Granites are related to an intermediate and upper parts of a complex palaeoweathering mantle developed on the Iberian Hercynian Basement (the greatest part of the western Iberian Peninsula and its oldest geological entity). In the Mesozoic the basement underwent tropical weathering processes. The weathered mantle were truncated by the Alpine tectonic movements during the Tertiary, and Its remnants were unconformably covered by more recent sediments and are located in the west and south part of the Duero Basin and in the north edge of the Ambles Valley graben. For the weathering profiles developed on the Hercynian Basement is possible to define three levels from bottom to top: 1) Lower level (biotitic granodiorite/porphyry and aplite dykes); 2) Intermediate level (ochre granite); 3) Upper level (red/white granite). The lower level has been much used as a source of ornamental stone, Avila Grey granite. The porphyry and applite dykes are mainly used to built the Walls of the City. The intermediate level is called Ochre granite or Caleño and was formed from the previous level through a tropical weathering process that, apart from variations in the petrophysical characteristics of the stone, has been accompanied by important mineralogical changes (2:1 and 1:1 phyllosilicates) and decreases in the contents of the most mobile cations. The upper level has received several names, Bleeding stone, Red and White granite or Silcrete and was formed

  11. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2005 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Putnam, Scott A.

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2005 spring out-migration at migrant traps on the Snake River and Salmon River. In 2005 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, the age-1 and older fish were distinguishable from wild fish by the occurrence of fin erosion. Age-0 Chinook salmon are more difficult to distinguish between wild and non-adclipped hatchery fish and therefore classified as unknown rearing. The total annual hatchery spring/summer Chinook salmon catch at the Snake River trap was 0.34 times greater in 2005 than in 2004. The wild spring/summer Chinook catch was 0.34 times less than the previous year. Hatchery steelhead trout catch was 0.67 times less than in 2004. Wild steelhead trout catch was 0.72 times less than the previous year. The Snake River trap collected 1,152 age-0 Chinook salmon of unknown rearing. During 2005, the Snake River trap captured 219 hatchery and 44 wild/natural sockeye salmon and 110 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. Trap operations began on March 6 and were terminated on June 3. The trap was out of operation for a total of one day due to heavy debris. FPC requested that the trap be restarted on June 15 through June 22 to collect and PIT tag age-0 Chinook salmon. Hatchery Chinook salmon catch at the Salmon River trap was 1.06 times greater and wild Chinook salmon catch was 1.26 times greater than in 2004. The hatchery steelhead trout collection in 2005 was 1.41 times greater and wild steelhead trout collection was 1.27 times greater than the previous year. Trap operations

  12. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2003 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Putnam, Scott A.

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2003 spring out-migration at migrant traps on the Snake River and Salmon River. In 2003 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 2.1 times less in 2003 than in 2002. The wild Chinook catch was 1.1 times less than the previous year. Hatchery steelhead trout catch was 1.7 times less than in 2002. Wild steelhead trout catch was 2.1 times less than the previous year. The Snake River trap collected 579 age-0 Chinook salmon of unknown rearing. During 2003, the Snake River trap captured five hatchery and 13 wild/natural sockeye salmon and 36 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant differences in catch between 2003 and the previous year were due mainly to low flows during much of the trapping season and then very high flows at the end of the season, which terminated the trapping season 12 days earlier than in 2002. Trap operations began on March 9 and were terminated on May 27. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 16.8% less and wild Chinook salmon catch was 1.7 times greater than in 2002. The hatchery steelhead trout collection in 2003 was 5.6% less than in 2002. Wild steelhead trout collection was 19.2% less than the previous year. Trap operations began on March 9 and were terminated on May 24 due to high

  13. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2004 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Putnam, Scott A.

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2004 spring out-migration at migrant traps on the Snake River and Salmon River. In 2004 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 1.1 times greater in 2004 than in 2003. The wild Chinook catch was 1.1 times greater than the previous year. Hatchery steelhead trout catch was 1.2 times greater than in 2003. Wild steelhead trout catch was 1.6 times greater than the previous year. The Snake River trap collected 978 age-0 Chinook salmon of unknown rearing. During 2004, the Snake River trap captured 23 hatchery and 18 wild/natural sockeye salmon and 60 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. Trap operations began on March 7 and were terminated on June 4. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 10.8% less and wild Chinook salmon catch was 19.0% less than in 2003. The hatchery steelhead trout collection in 2004 was 20.0% less and wild steelhead trout collection was 22.3% less than the previous year. Trap operations began on March 7 and were terminated on May 28 due to high flows. There were two days when the trap was taken out of service because wild Chinook catch was very low, hatchery Chinook catch was very high, and the weekly quota of PIT tagged hatchery Chinook had been met. Travel time (d) and migration rate (km

  14. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2002 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Putnam, Scott A.

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2002 spring out-migration at migrant traps on the Snake River and Salmon River. In 2002 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 11.4 times greater in 2002 than in 2001. The wild Chinook catch was 15.5 times greater than the previous year. Hatchery steelhead trout catch was 2.9 times greater than in 2001. Wild steelhead trout catch was 2.8 times greater than the previous year. The Snake River trap collected 3,996 age-0 Chinook salmon of unknown rearing. During 2002, the Snake River trap captured 69 hatchery and 235 wild/natural sockeye salmon and 114 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant increase in catch in 2002 was due to a 3.1 fold increase in hatchery Chinook production and a more normal spring runoff. Trap operations began on March 10 and were terminated on June 7. The trap was out of operation for a total of four days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 4.2 times greater and wild Chinook salmon catch was 2.4 times greater than in 2001. The hatchery steelhead trout collection in 2002 was 81% of the 2001 numbers. Wild steelhead trout collection in 2002 was 81% of the previous year's catch. Trap operations began on March 10 and were terminated on May 29 due to high flows. The trap was out of operation for four days due to high flow or debris. The increase

  15. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  16. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  17. Prevalence of dry methods in granite countertop fabrication in Oklahoma.

    PubMed

    Phillips, Margaret L; Johnson, Andrew C

    2012-01-01

    Granite countertop fabricators are at risk of exposure to respirable crystalline silica, which may cause silicosis and other lung conditions. The purpose of this study was to estimate the prevalence of exposure control methods, especially wet methods, in granite countertop fabrication in Oklahoma to assess how many workers might be at risk of overexposure to crystalline silica in this industry. Granite fabrication shops in the three largest metropolitan areas in Oklahoma were enumerated, and 47 of the 52 shops participated in a survey on fabrication methods. Countertop shops were small businesses with average work forces of fewer than 10 employees. Ten shops (21%) reported using exclusively wet methods during all fabrication steps. Thirty-five shops (74%) employing a total of about 200 workers reported using dry methods all or most of the time in at least one fabrication step. The tasks most often performed dry were edge profiling (17% of shops), cutting of grooves for reinforcing rods (62% of shops), and cutting of sink openings (45% of shops). All shops reported providing either half-face or full-face respirators for use during fabrication, but none reported doing respirator fit testing. Few shops reported using any kind of dust collection system. These findings suggest that current consumer demand for granite countertops is giving rise to a new wave of workers at risk of silicosis due to potential overexposure to granite dust.

  18. Petrological features of the Santa Teresa Granitic Complex Southeastern Uruguay

    NASA Astrophysics Data System (ADS)

    Muzio, Rossana; Artur, Antonio Carlos

    1999-09-01

    The Santa Teresa Granitic Complex, located in the north-eastern region of the Rocha Department (Eastern Uruguay), is an epizonal Late-Brasiliano granite intruded in the low-grade metasedimentary sequence of the Rocha Group. Twelve different facies types, each with distinctive structural-petrographic features, were recognized during detailed mapping (1:50,000) of the central-eastern part of the granitic complex and form two magmatic suites. The Santa Teresa Calk-alkaline Suite is composed of mostly porphyritic 3a-3b granites with variable amounts of biotite, sphene, allanite, magnetite and microgranular enclaves and belongs to a middle to high potassium calk-alkaline series with high silica contents. In contrast, the Sierra de la Blanqueada Peraluminous Suite has a great variation of grain size, including 3a-3b granitic facies with variable content of muscovite, biotite, tourmaline, ilmenite and monazite. Zircon morphology was studied in both suites and also shows their calk-alkaline and peraluminous nature. The Santa Teresa Calk-alkaline Suite had a Late- to Post-orogenic setting whereas the Sierra de la Blanqueada Peraluminous Suite was formed during the crustal thickening related to a syn-collisional environment.

  19. Salts of alkali metal anions and process of preparing same

    DOEpatents

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  20. Origin and evolution of the granitic intrusions in the Brusque Group of the Dom Feliciano Belt, south Brazil: Petrostructural analysis and whole-rock/isotope geochemistry

    NASA Astrophysics Data System (ADS)

    Hueck, Mathias; Basei, Miguel Angelo Stipp; Castro, Neivaldo Araújo de

    2016-08-01

    In the southern Brazilian state of Santa Catarina the Dom Feliciano Belt, formed by the tectonic juxtaposition of different crustal blocks during the Brasiliano-Pan African Orogenic cycle, can be divided into three domains. In the central domain, three granitic suites intrude the metavolcanosedimentary sequence of the Brusque Group: São João Batista (SJBS), Valsungana (VS) and Nova Trento (NTS), from the oldest to the youngest. This extensive magmatism, here referred to as granitic intrusions in the Brusqe Group (GIBG), is coeval with the thermal peak in the host metamorphic successions, but postdates its main foliation. A progressive deformation starting from the magmatic stage throughout the cooling history points to the influence of the late stages of deformation recorded in the Brusque Group. The SJBS consists of gray to white leucocratic, equigranular granites, with aluminous minerals such as muscovite, garnet and tourmaline. The porphyritic VS is the largest of the suites and is characterized by its cm-sized K-feldspar megacrysts in a coarse-grained biotite-rich matrix. The granites from the NTS are equigranular, light gray to pink in color and have biotite as the main mafic mineral, but magmatic muscovite, tourmaline and hornblende can occur as well. Geochemically, the GIBG are mildly peraluminous and show a calc-alkaline affinity. Most intrusions have a high REE fractionation, but some SJBS granites show a characteristic pattern with no fractionation and strong negative Eu anomalies ("seagull pattern"). Elevated Sr(i) values, between 0.707 and 0.735, and negative εNd values as low as -24 points to the melting of old evolved crust. The Nd (TDM) ages are scattered between 1.54 and 2.76 Ga, with a predominance of values around 2.0 Ga. The GIBG have a strong crustal signature that most closely connects, within the regional units, to that of the metasedimentary rocks of the Brusque Group and its crystalline basement, the Camboriú Complex. All three suites

  1. Earth's youngest exposed granite and its tectonic implications: the 10-0.8 Ma Kurobegawa Granite.

    PubMed

    Ito, Hisatoshi; Yamada, Ryuji; Tamura, Akihiro; Arai, Shoji; Horie, Kenji; Hokada, Tomokazu

    2013-01-01

    Although the quest for Earth's oldest rock is of great importance, identifying the youngest exposed pluton on Earth is also of interest. A pluton is a body of intrusive igneous rock that crystallized from slowly cooling magma at depths of several kilometers beneath the surface of the Earth. Therefore, the youngest exposed pluton represents the most recent tectonic uplift and highest exhumation. The youngest exposed pluton reported to date is the Takidani Granodiorite (~ 1.4 Ma) in the Hida Mountain Range of central Japan. Using LA-ICP-MS and SHRIMP U-Pb zircon dating methods, this study demonstrates that the Kurobegawa Granite, also situated in the Hida Mountain Range, is as young as ~ 0.8 Ma. In addition, data indicate multiple intrusion episodes in this pluton since 10 Ma with a ~ 2-million-year period of quiescence; hence, a future intrusion event is likely within 1 million years.

  2. The mechanism of ascent and emplacement of granite magma during transpression: a syntectonic granite paradigm

    NASA Astrophysics Data System (ADS)

    Brown, M.; Solar, G. S.

    1999-10-01

    We propose a model for syntectonic ascent and emplacement of granite magma based on structural relations in part of the northern Appalachians. In the study area in western Maine, strain was distributed heterogeneously during Devonian Acadian transpression. Metasedimentary rocks (migmatites at high grades) record two contrasting types of finite strain in zones that alternate across strike. Rocks in both types of zones have a penetrative, moderately-to-steeply NE-plunging mineral elongation lineation defined by bladed muscovite (fibrolite/sillimanite at high grades). In `straight' belts of enhanced deformation rocks have S > L fabrics that record apparent flattening-to-plane strain (apparent flattening zones, AFZs), but rocks between these belts have L > S fabrics that record apparent constriction (apparent constriction zones, ACZs). At metamorphic grades above the contemporary solidus, rocks in AFZs developed stromatic structure in migmatite, which suggests that percolative flow of melt occurred along the evolving flattening fabric. Stromatic migmatites are intruded by concordant to weakly discordant, m-scale composite sheet-like bodies of granite to suggest magma transport in planar conduits through the AFZ rocks. Inhomogeneous migmatite is found in the intervening ACZs, which suggests migration of partially molten material through these zones en masse, probably by melt-assisted granular flow. Inhomogeneous migmatites are intruded by irregular m-scale bodies of granite that vary from elongate to sub-circular in plan view and seem cylindrical in three dimensions. These bodies apparently plunge to the northeast, parallel to the regional mineral elongation lineation, to suggest magma transport in pipe-like conduits through the ACZ rocks. We postulate that the form of magma ascent conduits was deformation-controlled, and was governed by the contemporaneous strain partitioning. Magma ascent in planar and pipe-like conduits through migmatites is possible because oblique

  3. An early Paleozoic monzonorite-granite suite in the South China block: implications for the intracontinental felsic magmatism

    NASA Astrophysics Data System (ADS)

    Xu, Wenjing; Xu, Xisheng

    2017-01-01

    Large granitoid complexes within the continental crust are believed to be closely linked to mantle-derived magmas based on field observations and isotopic studies. However, details on the contribution of mantle-derived magmas in the generation of felsic magmas deep in the lower to middle crust, especially the interaction between the mantle-derived mafic magmas and the generated felsic melts, are not well constrained by petrological and mineralogical studies. Here we present a detailed study of an early Paleozoic monzonorite-granite suite from the South China Block and comparison with the other coeval magmatic rocks ( 22,000km2) in the region, to provide more details on the underplating/intraplating of mantle-derived magmas and the generation of felsic magmas in intracontinental settings. It is shown that the monzonorite has signatures of both mantle-derived magmas (substantial contents of MgO, Cr, and Ni; presence of olivine and orthopyroxene) and crust-derived magmas (substantial contents of SiO2, K2O, Rb, Ba, and light rare-earth elements; presence of K-feldspar, quartz and low-calcium plagioclase). Interestingly, the monzonorite, granite and the mafic microgranular enclaves (MME) are remarkably uniform in Sr-Nd-Hf isotopic compositions, with high initial 87Sr/86Sr ratios (0.7081-0.7098), low ɛNd (t) values (-6.8 to -6.3) and low zircon ɛHf (t) values (-8.0 to -7.4). An integrated study of petrological, mineralogical, and geochemical data of the monzonorite-granite suite and coeval magmatic rocks from the same region makes it clear that the input of crustal components is essential to explain the unusual signatures of the monzonorite. Petrogenetic modelling and isotopic compositions suggest that the contribution of mantle-derived mafic magmas in the generation of crust-derived felsic magmas is represented by heat input and minor mass input, and in the meantime, we prefer to explain the unusual geochemical signatures of the monzonorite by selective contamination

  4. Pulverized Tejon Lookout Granite: Attempts at Placing Constraints on the Processes

    NASA Astrophysics Data System (ADS)

    Sisk, M.; Dor, O.; Rockwell, T.; Girty, G.; Ben-Zion, Y.

    2007-12-01

    We have described and analyzed pulverized Tejon Lookout granite recovered from several transects of the western segment of the Garlock fault on Tejon Ranch in southern California. Observations and data collected at this location are compared to a sampled transect of the San Andreas fault at Tejon Pass previously studied by Wilson et al. (2005), also exposing the Tejon Lookout granite. The purpose of this study is to characterize the physical and chemical properties of the pervasively pulverized leucocratic rocks at multiple locations and to hopefully place constraints on the processes producing them. To accomplish this we performed particle size analysis with the use of both laser particle analyzer and pipette methodology; major and trace chemistry analyses determined by XRF; clay mineralogy determined by XRD; and we evaluated fabric and texture through the study of thin sections. Recovered samples met the field criteria of pulverization developed by Dor et al., 2006 - that is, the individual 1-2 mm-sized crystals can be recognized in the field but the granite (including quartz and feldspar) can be mashed with ones fingers and exhibits the texture of toothpaste. All samples were analyzed on a Horiba LA930 Laser Particle Analyzer in an attempt to reproduce the earlier results of Wilson et al. (2005) with similar methodology. We also utilized the classic pipette methodology to ensure complete discrimination of particle sizes. Our PSD analysis shows that the dominant particle size falls in the 31-125 micron range, much coarser than previously reported by Wilson et al. (2005), with >90% of the total sample falling in the >31 micron size range. We can reproduce the previously documented results by allowing the samples to circulate for long periods of time at slow circulation speeds in the laser particle size analyzer, during which time the coarse fraction settles out, thereby leaving only the fine fraction for detection. However, subsequent increase in the circulation

  5. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1994 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Brimmer, Arnold F.

    1994-10-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1994 spring outmigration at migrant traps on the Snake River, Clearwater River, and Salmon River. The 1994 snowpack was among the lowest since the beginning of the present drought, and the subsequent runoff was very poor. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1994. Total annual (hatchery + wild) chinook salmon catch at the Snake River trap was 1.5 times greater than in 1993. Hatchery and wild steelhead trout catches were similar to 1993. The Snake River trap collected 30 age 0 chinook salmon. Hatchery chinook salmon catch at the Clearwater River trap was 3.5 times higher than in 1993, and wild chinook salmon catch was 4.2 times higher. Hatchery steelhead trout trap catch was less than half of 1993 numbers because the trap was fishing near the north shore during the majority of the hatchery steelhead movement due to flow augmentations from Dworshak. Wild steelhead trout trap catch was 2 times higher than in 1993. The Salmon River trap was operated for about a month longer in 1994 than in 1993 due to extremely low flows. Hatchery chinook salmon catch was 1.4 times greater in 1994 than the previous year. Wild chinook salmon catch was slightly less in 1994. The 1994 hatchery steelhead trout collection did not change significantly from 1993 numbers. Wild steelhead trout collection in 1994 was 59% of the 1993 catch. Fish tagged with Passive Integrated Transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993, cumulative interrogation data is not comparable with the prior five years (1988-1992).

  6. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  7. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Subs