Science.gov

Sample records for alkali feldspar quartz

  1. Quartz and feldspar glasses produced by natural and experimental shock.

    NASA Technical Reports Server (NTRS)

    Stoeffler, D.; Hornemann, U.

    1972-01-01

    Refractive index, density, and infrared absorption studies of naturally and experimentally shocked-produced glasses formed from quartz, plagioclase, and alkali-feldspar confirm the existence of two main groups of amorphous forms of the framework silicates: solid-state and liquid-state glasses. These were apparently formed as metastable release products of high-pressure-phases above and below the glass transition temperatures. Solid-state glasses exhibit a series of structural states with increasing disorder caused by increasing shock pressures and temperatures. They gradually merge into the structural state of fused minerals similar to that of synthetic glasses quenched from a melt. Shock-fused alkali feldspars can, however, be distinguished from their laboratory-fused counterparts by infrared absorption and by higher density.

  2. Chemically induced fracturing in alkali feldspar

    NASA Astrophysics Data System (ADS)

    Scheidl, K. S.; Schaeffer, A.-K.; Petrishcheva, E.; Habler, G.; Fischer, F. D.; Schreuer, J.; Abart, R.

    2014-01-01

    Fracturing in alkali feldspar during Na+-K+ cation exchange with a NaCl-KCl salt melt was studied experimentally. Due to a marked composition dependence of the lattice parameters of alkali feldspar, any composition gradient arising from cation exchange causes coherency stress. If this stress exceeds a critical level fracturing occurs. Experiments were performed on potassium-rich gem-quality alkali feldspars with polished (010) and (001) surfaces. When the feldspar was shifted toward more sodium-rich compositions over more than about 10 mole %, a system of parallel cracks with regular crack spacing formed. The cracks have a general (h0l) orientation and do not correspond to any of the feldspar cleavages. The cracks are rather oriented (sub)-perpendicular to the direction of maximum tensile stress. The critical stress needed to initiate fracturing is about 325 MPa. The critical stress intensity factor for the propagation of mode I cracks, K Ic, is estimated as 2.30-2.72 MPa m1/2 (73-86 MPa mm1/2) from a systematic relation between characteristic crack spacing and coherency stress. An orientation mismatch of 18° between the crack normal and the direction of maximum tensile stress is ascribed to the anisotropy of the longitudinal elastic stiffness which has pronounced maxima in the crack plane and a minimum in the direction of the crack normal.

  3. APPLICATIONS OF CATHODOLUMINESCENCE OF QUARTZ AND FELDSPAR TO SEDIMENTARY PETROLOGY.

    USGS Publications Warehouse

    Ruppert, Leslie F.

    1987-01-01

    Cathodoluminescence (CL), the emission of visible light during electron bombardment, was first used in sandstone petrology in the mid-1960's. CL techniques are especially useful for determining the origin and source of quartz and feldspar, two of the most common constituents in clastic rocks. CL properties of both minerals are dependent on their temperature of crystallization, duration of cooling, and/or history of deformation. Detrital quartz and feldspar are typically derived from igneous and metamorphic sources and luminesce in the visible range whereas authigenic quartz and feldspar form at low temperatures and do not luminesce. Quantification of luminescent and non-luminescent quartz and feldspar with the scanning electron microscope, electron microprobe, or a commercial CL device can allow for the determination of origin, diagenesis, and source of clastic rocks when used in conjunction with field and other petrographic analyses.

  4. Cathodoluminescence characterization of experimentally shocked alkali feldspar

    NASA Astrophysics Data System (ADS)

    Kayama, M.; Nishido, H.; Sekine, T.; Ninagawa, K.

    2009-12-01

    Cathodoluminescence (CL) spectroscopy and microscopy provide important information to know the existence and distribution of defects and trace elements in materials. CL features of materials depend on varieties of luminescence centers, host chemical compositions and crystal fields, all of which are closely related to the genetic processes. Advanced investigations on CL of shock-induced silica minerals have been attempted to estimate their shock pressures, although very few studies have been reported for feldspars. In this study, CL and Raman spectra of experimentally shocked alkali feldspar were measured to evaluate the shock metamorphic effect. A single crystal of sanidine (Or81Ab19) from Eifel, Germany was selected as a starting material for shock recovery experiments at peak pressures of about 10, 20, 32 and 40 GPa by a propellant gun. Polished thin sections of recovered samples were used for CL and Raman measurements. CL was collected in the range from 300 to 800 nm by a secondary electron microscopy-cathodoluminescence (SEM-CL) system. CL spectra of unshocked sample consist of two emission bands at around 420 nm in blue region and 720 nm in red-IR region assigned to Al-O--Al defect and Fe3+ impurity center, respectively. There are three features between unshocked and shocked sanidine. (1) The blue emission is absent in the shocked samples. (2) The peak wavelength of the red-IR emission shifts to a short wavelength side with an increase in shock pressure up to 20 GPa, suggesting the alteration of the crystal field related to Fe3+ activator by shock metamorphic effect. The Raman spectrum of the unshocked sample exhibits pronounced peaks at around 180, 205, 290, 490 and 520 cm-1. The intensities of these peaks decrease with an increase in shock pressure. The shocked samples above 32 GPa show only two weak peaks at around 490 and 580 cm-1 which were also observed in maskelynite in Martian meteorites. Shock pressure causes partly breaking of the framework structure

  5. Cathodoluminescence Characterization of Maskelynite and Alkali Feldspar in Shergottite (Dhofar 019)

    SciTech Connect

    Kayama, M.; Nakazato, T.; Nishido, H.; Ninagawa, K.; Gucsik, A.

    2009-08-17

    Dhofar 019 is classified as an olivine-bearing basaltic shergottite and consists of subhedral grains of pyroxene, olivine, feldspar mostly converted to maskelynite and minor alkali feldspar. The CL spectrum of its maskelynite exhibits an emission band at around 380 nm. Similar UV-blue emission has been observed in the plagioclase experimentally shocked at 30 and 40 GPa, but not in terrestrial plagioclase. This UV-blue emission is a notable characteristic of maskelynite. CL spectrum of alkali feldspar in Dhofar 019 has an emission bands at around 420 nm with no red emission. Terrestrial alkali feldspar actually consists of blue and red emission at 420 and 710 nm assigned to Al-O{sup -}-Al and Fe{sup 3+} centers, respectively. Maskelynite shows weak and broad Raman spectral peaks at around 500 and 580 cm{sup -1}. The Raman spectrum of alkali feldspar has a weak peak at 520 cm{sup -1}, whereas terrestrial counterpart shows the emission bands at 280, 400, 470, 520 and 1120 cm{sup -1}. Shock pressure on this meteorite transformed plagioclase and alkali feldspar into maskelynite and almost glass phase, respectively. It eliminates their luminescence centers, responsible for disappearance of yellow and/or red emission in CL of maskelynite and alkali feldspar. The absence of the red emission band in alkali feldspar can also be due to the lack of Fe{sup 3+} in the feldspar as it was reported for some lunar feldspars.

  6. Cryptic microtextures and geological histories of K-rich alkali feldspars revealed by charge contrast imaging

    NASA Astrophysics Data System (ADS)

    Flude, Stephanie; Lee, Martin R.; Sherlock, Sarah C.; Kelley, Simon P.

    2012-06-01

    Charge contrast imaging in the scanning electron microscope can provide new insights into the scale and composition of alkali feldspar microtextures, and such information helps considerably with the interpretation of their geological histories and results of argon isotope thermochronological analyses. The effectiveness of this technique has been illustrated using potassium-rich alkali feldspars from the Dartmoor granite (UK). These feldspars contain strain-controlled lamellar crypto- and microperthites that are cross-cut by strain-free deuteric microperthites. The constituent albite- and orthoclase-rich phases of both microperthite generations can be readily distinguished by atomic number contrast imaging. The charge contrast results additionally show that sub-micrometre-sized albite `platelets' are commonplace between coarser exsolution lamellae and occur together to make cryptoperthites. Furthermore, charge contrast imaging reveals that the orthoclase-rich feldspar is an intergrowth of two phases, one that is featureless with uniform contrast and another that occurs as cross-cutting veins and grains with the {110} adularia habit. Transmission electron microscopy shows that the featureless feldspar is tweed orthoclase, whereas the veins and euhedral grains are composed of irregular microcline that has formed from orthoclase by `unzipping' during deuteric or hydrothermal alteration. The charge contrast imaging results are especially important in demonstrating that deuteric perthites are far more abundant in alkali feldspars than would be concluded from investigations using conventional microscopy techniques. The unexpected presence of such a high volume of replacement products has significant implications for understanding the origins and geological histories of crustal rocks and the use of alkali feldspars in geo- and thermochronology. Whilst the precise properties of feldspars that generate contrast remain unclear, the similarity between charge contrast images

  7. Sorption Mechanisms of Antibiotic Cephapirin onto Quartz and Feldspar by Raman Spectroscopy

    SciTech Connect

    Peterson, Jonathan; Wang, Wei; Gu, Baohua

    2009-01-01

    Raman spectroscopy was used to investigate the sorption mechanisms of cephapirin (CHP), a veterinary antibiotic, onto quartz (SiO2) and feldspar (KAlSi3O8) at different pH values. Depending on the charge and surface properties of the mineral, different reaction mechanisms including electrostatic attraction, monodentate and bidentate complexation were found to be responsible for CHP sorption. The zwitterion (CHPo) adsorbs to a quartz(+) surface by electrostatic attraction of the carboxylate anion group ( COO-) at a low pH, but adsorbs to a quartz(-) surface through electrostatic attraction of the pyridinium cation and possibly COO- bridge complexes at relatively higher pH conditions. CHP- bonds to a quartz(-) surface by bidentate complexation between one oxygen of COO- and oxygen from the carbonyl (C=O) of the acetoxymethyl group. On a feldspar surface of mixed charge, CHPo forms monodentate complexes between C=O as well as COO- bridging complexes or electrostatically attached to localized edge (hydr)oxy-Al surfaces. CHP- adsorbs to feldspar(-) through monodentate C=O complexation, and similar mechanisms may operate for the sorption of other cephalosporins. This research demonstrates, for the first time, that Raman spectroscopic techniques can be effective for evaluating the sorption processes and mechanisms of cephalosporin antibiotics even at relatively low sorbed concentrations (97-120 μmol/kg).

  8. Thermodynamic assessment of hydrothermal alkali feldspar-mica-aluminosilicate equilibria

    USGS Publications Warehouse

    Sverjensky, D.A.; Hemley, J.J.; d'Angelo, W. M.

    1991-01-01

    The thermodynamic properties of minerals retrieved from consideration of solid-solid and dehydration equilibria with calorimetric reference values, and those of aqueous species derived from studies of electrolytes, are not consistent with experimentally measured high-temperature solubilities in the systems K2O- and Na2O-Al2O3-SiO2-H2O-HCl (e.g., K-fs - Ms - Qtz - K+ - H+). This introduces major inaccuracies into the computation of ionic activity ratios and the acidities of diagenetic, metamorphic, and magmatic hydrothermal fluids buffered by alkali silicate-bearing assemblages. We report a thermodynamic analysis of revised solubility equilibria in these systems that integrates the thermodynamic properties of minerals obtained from phase equilibria studies (Berman, 1988) with the properties of aqueous species calculated from a calibrated equation of state (Shock and Helgeson, 1988). This was achieved in two separate steps. First, new values of the free energies and enthalpies of formation at 25??C and 1 bar for the alkali silicates muscovite and albite were retrieved from the experimental solubility equilibria at 300??C and Psat. Because the latter have stoichiometric reaction coefficients different from those for solid-solid and dehydration equilibria, our procedure preserves exactly the relative thermodynamic properties of the alkali-bearing silicates (Berman, 1988). Only simple arithmetic adjustments of -1,600 and -1,626 (??500) cal/mol to all the K- and Na-bearing silicates, respectively, in Berman (1988) are required. In all cases, the revised values are within ??0.2% of calorimetric values. Similar adjustments were derived for the properties of minerals from Helgeson et al. (1978). Second, new values of the dissociation constant of HCl were retrieved from the solubility equilibria at temperatures and pressures from 300-600??C and 0.5-2.0 kbars using a simple model for aqueous speciation. The results agree well with the conductance-derived dissociation

  9. Peculiar Feldspar And Quartz Inclusions Within Zircons From Anorthosites, North Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Eliwa, H. A.; Dawoud, M. I.; Khalaf, I. M.; Negendank, J. F.; Itaya, T.

    2004-12-01

    Zircons from three anorthosite outcrops along Wadi Dib area, north Eastern Desert of Egypt contain abundant and conspicuous inclusions of quartz, feldspar, amphibole and apatite. These anorthosites, as (50-100m thick) layers, represent the top of mafic-ultramafic intrusions exhibiting rhythmic layering visible by reputation of melanocratic and leucocratic layers. Field and microscopic studies exhibit that these anorthosites were affected by the action of residual magmatic solutions associated with the late stage crystallization of the younger granites, which modified their mineralogical composition. They are composed totally of plagioclase with subordinate amount of clinoenstatite, augite, amphibole, biotite, K-feldspar, and quartz. Accessories are magnetite, ilmenite, apatite and zircon. The abundance and the mode of occurrence of K-feldspar, quartz, and biotite with apatite and zircon among the megacrysts suggest their formation is ascribed to the interaction with the residual solutions. The microprobe data exhibit difference between feldspar and amphiboles contained herein zircons and those as anorthosite mineral constituents. The genetic relationship between zircons and their inclusions suggests later growth of zircons than inclusions and most probably at the final stage of rock modification. Zircons are magmatic and found in the interstitial feldspar and quartz among plagioclase megacrysts in aggregates or as individual grains. The microscopic and SEM images investigation exhibit that most zircons are subhedral to euhedral equant and prismatic crystals. Most zircons have same range of crystal morphologies and internal growth structures with predominance of prism /{100/} and pyramid /{101/} and occasionally prism /{110/} and pyramid /{111/}. No evidences for poly-faceted grains, inherited cores or later overgrowths were detected. CL images distinguished zircons with visible core-rim structures and others with regular and continuous growth zones contained herein

  10. Experimental alkali feldspar dissolution at 100 degree C by carboxylic acids and their anions

    SciTech Connect

    Stoessell, R.K. ); Pittman, E.D. )

    1990-05-01

    Feldspar dissolution will enhance sandstone porosity if the released aluminum can be transported away in the subsurface waters. Carboxylic acids have been proposed to provide hydrogen ions to promote dissolution and anions to complex aqueous aluminum to keep it in solution. However, the hydrogen ions should react quickly following acid generation in source beds, leaving monocarboxylic anions with lesser amounts of dicarboxylic acids and their anions on feldspar dissolution and the apparent complexing of aluminum in solution. Two-week dissolution experiments of alkali feldspar were run at 100{degree}C and 300 bars in acetic acid, oxalic acid, and sodium salt solutions of chloride, acetate, propionate, oxalate, and malonate. Extrapolation of the results, to reservoir conditions during sandstone diagenesis, implies that concentrations of aluminum-organic complexes are not significant for acetate and propionate and are possibly significant for oxalate and malonate, depending upon fluid compositions. Propionate appeared to inhibit feldspar dissolution and hence might decrease secondary porosity formation. Increases in aluminum concentrations in the presence of oxalic and acetic acid solutions appear to be due to enhanced dissolution kinetics and greater aluminum solubility under low-pH conditions. Such low-pH fluids are generally absent in subsurface reservoirs, making this an unlikely mechanism for enhancing porosity. Furthermore, the observed thermal instability of oxalate and malonate anions explains their general low concentrations in subsurface fluids which limits their aluminum complexing potential in reservoirs during late diagenesis.

  11. Potassium self-diffusion in a K-rich single-crystal alkali feldspar

    NASA Astrophysics Data System (ADS)

    Hergemöller, Fabian; Wegner, Matthias; Deicher, Manfred; Wolf, Herbert; Brenner, Florian; Hutter, Herbert; Abart, Rainer; Stolwijk, Nicolaas A.

    2016-12-01

    The paper reports potassium diffusion measurements performed on gem-quality single-crystal alkali feldspar in the temperature range from 1169 to 1021 K. Natural sanidine from Volkesfeld, Germany was implanted with ^{43}K at the ISOLDE/CERN radioactive ion-beam facility normal to the ( 001) crystallographic plane. Diffusion coefficients are well described by the Arrhenius equation with an activation energy of 2.4 eV and a pre-exponential factor of 5 × 10^{-6} m^2/s, which is more than three orders of magnitude lower than the ^{22}Na diffusivity in the same feldspar and the same crystallographic direction. State-of-the-art considerations including ionic conductivity data on the same crystal and Monte Carlo simulations of diffusion in random binary alloy structures point to a correlated motion of K and Na through the interstitialcy mechanism.

  12. Crystallization kinetics of alkali feldspars in cooling and decompression-induced crystallization experiments in trachytic melt

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Carroll, Michael R.

    2013-10-01

    Cooling and decompression experiments have been carried out on trachytic melts in order to investigate crystallization kinetics of alkali feldspar, the effect of the degree of undercooling ( ΔT = T liquidus - T experimental) and time on nucleation and crystal growth process. This experimental work gives us new data about crystallization kinetics of trachytic melts, and it that will be useful to better understand the natural system of Campi Flegrei volcanoes. Experiments have been conducted using cold seal pressure vessel apparatus, at pressure between 30 and 200 MPa, temperature between 750 and 855 °C, time between 7,200 and 57,600 s and redox condition close to the NNO +0.8 buffer. These conditions are ideal to reproducing pre- and syn-eruptive conditions of the Campi Flegrei volcanoes, where the "conditions" pertain to the complete range of pressures, temperatures and time at which the experiments were performed. Alkali feldspar is the main phase present in this trachyte, and its abundance can strongly vary with small changes in pressure, temperature and water content in the melt, implying appreciable variations in the textures and in the crystallization kinetics. The obtained results show that crystallization kinetics are strictly related to ΔT, time, final pressure, superheating (- ΔT) and water content in the melt. ΔT is the driving force of the crystallization, and it has a strong influence on nucleation and growth processes. In fact, the growth process dominates crystallization at small ΔT, whereas the nucleation dominates crystallization at large ΔT. Time also is an important variable during crystallization process, because long experiment durations involve more nucleation events of alkali feldspar than short experiment durations. This is an important aspect to understand magma evolution in the magma chamber and in the conduit, which in turn has strong effects on magma rheology.

  13. Frictional Properties of Feldspar and Quartz at the Temperatures of Seismogenic Zone

    NASA Astrophysics Data System (ADS)

    Arai, T.; Masuda, K.; Takahashi, M.; Fujimoto, K.; Shigematsu, N.; Sumii, T.; Okuyama, Y.

    2003-12-01

    Most of earthquakes in the crust occurred at the depth of 5 to 20km, and temperatures of 100 to 350° C. The physical properties of rocks at around these temperatures were determined by many frictional experiments. These results indicated the velocity dependence of steady state friction (a-b) was switched from velocity weakening ( seismic slip ) to velocity strengthening ( aseismic slip ) at around 350° C in the wet condition. In these experimental studies, granites were generally used. On the other hand, it is important to evaluate and to compare the physical properties of each mineral which composed of crustal rocks, for example feldspar and quartz, in order to understand the source processes of earthquakes in detail. In this study, we conducted frictional experiments by using albite, anorthite, and quartz gouges ( about 3μ m diameter ) under high pressure and high temperature in a triaxial apparatus, and compared frictional behaviors of three minerals with elevated temperature under the wet and dry conditions. These experiments were conducted by the velocity-stepping test. Temperature varied from room temperature to 600° C. In the dry conditions, experiments were conducted under the confining pressure of 150MPa. In the wet conditions, pore water pressure was applied up to 50MPa under the confining pressure of 200MPa. Sample was put between upper and lower sawcut alumina cylinders ( 20mm diameter x 40mm long ). The sawcut was oriented at 30° to the loading axis. These were jacketed with thin sleeves of annealed Cu. The values for a-b of quartz and albite were positive under the dry condition from room temperature to 600° C. On the other hand, those values of albite and quartz were negative at the temperature of 200° C and 300° C under the wet condition respectively. Those values of quartz decreased as the temperature increased from 100° C to 300° C and increased as the temperature increased from 300° C to 600° C. Those values of albite were switched

  14. Retention of inherited Ar by alkali feldspar xenocrysts in a magma: Kinetic constraints from Ba zoning profiles

    NASA Astrophysics Data System (ADS)

    Renne, Paul R.; Mulcahy, Sean R.; Cassata, William S.; Morgan, Leah E.; Kelley, Simon P.; Hlusko, Leslea J.; Njau, Jackson K.

    2012-09-01

    40Ar/39Ar dating of volcanic alkali feldspars provides critical age constraints on many geological phenomena. A key assumption is that alkali feldspar phenocrysts in magmas contain no initial radiogenic 40Ar (40Ar∗), and begin to accumulate 40Ar∗ only after eruption. This assumption is shown to fail dramatically in the case of a phonolitic lava from southern Tanzania that contains partially resorbed xenocrystic cores which host inherited 40Ar manifest in 40Ar/39Ar age spectra. Magmatic overgrowths on the xenocrysts display variable oscillatory zoning with episodic pulses of Ba enrichment and intervals of resorption. Ba concentration profiles across contrasting compositional zones are interpreted as diffusion couples. Inferred temperature time histories recorded by these profiles reveal significant variations between phenocrysts. Combined with Ar diffusion kinetics for alkali feldspars and magma temperature inferred from two feldspar thermometry, the results indicate that >1% inherited 40Ar can be retained in such xenocrysts despite immersion in magma at ˜900 °C for tens to >100 years. In cases where the age contrast between inherited and magmatic feldspars is less pronounced, the age biasing effect of incompletely degassed xenocrysts may easily go undetected.

  15. Structure-dependent interactions between alkali feldspars and organic compounds: implications for reactions in geologic carbon sequestration.

    PubMed

    Yang, Yi; Min, Yujia; Jun, Young-Shin

    2013-01-02

    Organic compounds in deep saline aquifers may change supercritical CO(2) (scCO(2))-induced geochemical processes by attacking specific components in a mineral's crystal structure. Here we investigate effects of acetate and oxalate on alkali feldspar-brine interactions in a simulated geologic carbon sequestration (GCS) environment at 100 atm of CO(2) and 90 °C. We show that both organics enhance the net extent of feldspar's dissolution, with oxalate showing a more prominent effect than acetate. Further, we demonstrate that the increased reactivity of Al-O-Si linkages due to the presence of oxalate results in the promotion of both Al and Si release from feldspars. As a consequence, the degree of Al-Si order may affect the effect of oxalate on feldspar dissolution: a promotion of ~500% in terms of cumulative Si concentration was observed after 75 h of dissolution for sanidine (a highly disordered feldspar) owing to oxalate, while the corresponding increase for albite (a highly ordered feldspar) was ~90%. These results provide new insights into the dependence of feldspar dissolution kinetics on the crystallographic properties of the mineral under GCS conditions.

  16. Na/K-interdiffusion in alkali feldspar: new data on diffusion anisotropy and composition dependence

    NASA Astrophysics Data System (ADS)

    Schaeffer, Anne-Kathrin; Petrishcheva, Elena; Habler, Gerlinde; Abart, Rainer; Rhede, Dieter

    2013-04-01

    Exchange experiments between gem-quality alkali feldspar with an initial XOr of 0.85 or 0.72 and Na/K-salt melts have been conducted at temperatures between 800° and 1000° C. The crystals were prepared as crystallographically oriented plates, the polished surfaces corresponding to the (010) or (001) plane of the feldspar. The composition of the melts was varied systematically to induce a controlled shift of the feldspar towards more Na-rich or K-rich compositions (XOr 0.5 to 1). A molar excess of cations by a factor of 40 in the melt ensured constant concentration boundary conditions for cation exchange. Different geometries of diffusion profiles can be observed depending on the direction of the composition shift. For a shift towards more K-rich compositions the diffusion profile exhibits two plateaus corresponding to an exchanged rim in equilibrium with the melt and a completely unexchanged core, respectively. Between these plateaus an exchange front develops with an inflection point that progresses into the crystal with t1-2. The width of this diffusion front varies greatly with the extent of chemical shift and crystallographic direction. The narrowest profiles are always found in the direction normal to (010), i.e. b, marking the slowest direction of interdiffusion. A shift towards more Na-rich composition leads to the development of a crack system due to the composition strain associated with the substitution of the larger K+ion with the smaller Na+ion. The exchange front developing in this case lacks the inflection point observed for shifts towards more K-rich compositions. The observed geometry of the diffusion fronts can be explained by a composition dependence of the interdiffusion coefficient. We used the Boltzmann transformation to calculate the interdiffusion coefficient in dependence of composition from our data in a range between XOr 0.5 and 1 for profiles normal to both (010) and (001) and for different temperatures. As indicated by the different

  17. Fluvial terrace gravels of the "Hochterrasse" (N-Alpine Foreland, Austria): luminescence characteristics of quartz and feldspar

    NASA Astrophysics Data System (ADS)

    Bickel, L.; Lomax, J.; Fiebig, M.

    2012-04-01

    The Northern Alpine Foreland has played a major role in the investigation of glacial and furthermore paleo-climatic events. It was at the beginning of the 20th century, when Albrecht Penck developed the idea of four big alpine glaciations which extended into the alpine foreland. He developed the model of the glacial series in which he correlated terminal moraines with distinguishable terrace bodies. In the case of the fluvial sediments of the Hochterrasse (correlated with marine isotope stage (MIS) 6 in Austrian geological maps) the existence of numerical ages in the Austrian Alpine Foreland is sparse. This study is aimed at shedding light on the luminescence properties of quartz and feldspar derived from Hochterrasse systems in foreland valleys (Traun, Enns and Ybbs valley) so far attributed to the penultimate glaciation. Coarse grain (100-200 µm) K-feldspar and quartz are analyzed by Infrared stimulated luminescence (IRSL), post-Infrared Infrared stimulated luminescence (pIRIR) and optically stimulated luminescence (OSL) methods. One of the issues that arise when dating glaciofluvial quartz from this area is the apparent underestimation of the quartz ages which can vary up to 50% from the calculated IRSL ages. Linearly modulated OSL shows a big contribution of thermally unstable components to the overall equivalent dose (De) which can add to the general underestimation of quartz. Also the measurement of feldspar aliquots is anything but trivial. Luminescence signal intensities are very viable for the samples from the Enns and Traun valley. The samples derived from the Ybbs valley in contrast show very low feldspar signal intensities on most aliquots. Thermal transfer has shown to have negligible impact on the overall paleodose for the feldspar samples (maximum 1% of the paleodose attributed to thermal transfer). In contrast anomalous fading seems to be affecting all feldspar samples. However an assessment of the amount of signal loss in time is difficult to

  18. Experimental Na/K exchange between alkali feldspar and an NaCl-KCl salt melt: chemically induced fracturing and element partitioning

    NASA Astrophysics Data System (ADS)

    Neusser, G.; Abart, R.; Fischer, F. D.; Harlov, D.; Norberg, N.

    2012-08-01

    The exchange of Na+ and K+ between alkali feldspar and a NaCl-KCl salt melt has been investigated experimentally. Run conditions were at ambient pressure and 850 °C as well as 1,000 °C. Cation exchange occurred by interdiffusion of Na+ and K+ on the feldspar sub-lattice, while the Si-Al framework remained unaffected. Due to the compositional dependence of the lattice parameters compositional heterogeneities resulting from Na+/K+ interdiffusion induced coherency stress and associated fracturing. Depending on the sense of chemical shift, different crack patterns developed. For the geometrically most regular case that developed when potassic alkali feldspar was shifted toward more sodium-rich compositions, a prominent set of cracks corresponding to tension cracks opened perpendicular to the direction of maximum tensile stress and did not follow any of the feldspar cleavage planes. The critical stress needed to initiate fracturing in a general direction of the feldspar lattice was estimated at ≤0.35 GPa. Fracturing provided fast pathways for penetration of salt melt or vapor into grain interiors enhancing overall cation exchange. The Na/K partitioning between feldspar and the salt melt attained equilibrium values in the exchanged portions of the grains allowing for extraction of the alkali feldspar mixing properties.

  19. Regional fluid migration in the Illinois basin: evidence from in situ oxygen isotope analysis of authigenic K-feldspar and quartz from the Mount Simon Sandstone

    USGS Publications Warehouse

    Chen, Zhensheng; Riciputi, Lee R.; Mora, Claudia I.; Fishman, Neil S.

    2001-01-01

    Oxygen isotope compositions of widespread, authigenic K-feldspar and quartz overgrowths and cements in the Upper Cambrian Mount Simon Sandstone were measured by ion microprobe in 11 samples distributed across the Illinois basin and its periphery. Average K-feldspar δ18O values increase systematically from +14‰ ± 1‰ in the southernmost and deepest samples in Illinois to +24‰ ± 2‰ in the northernmost outcrop sample in Wisconsin. A similar trend was observed for quartz overgrowths (22‰ ± 2‰ to 28‰ ± 2‰). Constant homogenization temperatures (100–130 °C) of fluid inclusions associated with quartz overgrowths throughout the basin suggest that the geographic trend in oxygen isotope compositions is a result of diagenetic modification of a south to north migrating basinal fluid.

  20. Geology and mineralization of the Jabalat alkali-feldspar granite, northern Asir region, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al Tayyar, Jaffar; Jackson, Norman J.; Al-Yazidi, Saeed

    The Jabalat post-tectonic granite pluton is composed of albite- and oligoclase-bearing, low-calcium, F-, Sn- and Rb-rich subsolvus granites. These granites display evidence of late-magmatic, granitophile- and metallic-element specialization, resulting ultimately in the development of post-magmatic, metalliferous hydrothermal systems characterized by a Mo sbnd Sn sbnd Cu sbnd Pb sbnd Zn sbnd Bi sbnd Ag sbnd F signature. Two main types of mineralization are present within the pluton and its environs: (1) weakly mineralized felsic and aplitic dikes and veins enhanced in Mo, Bi, Ag, Pb and Cu; and (2) pyrite—molybdenite—chalcopyrite-bearing quartz and quartz—feldspar veins rich in Mo, Sn, Bi, Cu, Zn and Ag. A satellite stock, 3 km north of the main intrusion, is composed of fine-grained, miarolitic, muscovite—albite—microcline (microperthite) granite. The flanks of this intrusion and adjacent dioritic rocks are greisenized and highly enriched in Sn, Bi and Ag. Quartz veins which transect the satellite stock contain molybdenite and stannite.

  1. Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 4. Numerical modeling of kinetic reaction paths

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Lu, Peng; Zheng, Zuoping; Ganor, Jiwchar

    2010-07-01

    This paper explores how dissolution and precipitation reactions are coupled in batch reactor experimental systems at elevated temperatures. This is the fourth paper in our series of "Coupled Alkali Feldspar Dissolution and Secondary Mineral Precipitation in Batch Systems". In our third paper, we demonstrated via speciation-solubility modeling that partial equilibrium between secondary minerals and aqueous solutions was not attained in feldspar hydrolysis batch reactors at 90-300 °C and that a strong coupling between dissolution and precipitation reactions follows as a consequence of the slower precipitation of secondary minerals ( Zhu and Lu, 2009). Here, we develop this concept further by using numerical reaction path models to elucidate how the dissolution and precipitation reactions are coupled. Modeling results show that a quasi-steady state was reached. At the quasi-steady state, dissolution reactions proceeded at rates that are orders of magnitude slower than the rates measured at far from equilibrium. The quasi-steady state is determined by the relative rate constants, and strongly influenced by the function of Gibbs free energy of reaction ( ΔG) in the rate laws. To explore the potential effects of fluid flow rates on the coupling of reactions, we extrapolate a batch system ( Ganor et al., 2007) to open systems and simulated one-dimensional reactive mass transport for oligoclase dissolution and kaolinite precipitation in homogeneous porous media. Different steady states were achieved at different locations along the one-dimensional domain. The time-space distribution and saturation indices (SI) at the steady states were a function of flow rates for a given kinetic model. Regardless of the differences in SI, the ratio between oligoclase dissolution rates and kaolinite precipitation rates remained 1.626, as in the batch system case ( Ganor et al., 2007). Therefore, our simulation results demonstrated coupling among dissolution, precipitation, and flow rates

  2. Microscopy and Cathodoluminescence Spectroscopy Characterization of Quartz Exhibiting Different Alkali-Silica Reaction Potential.

    PubMed

    Kuchařová, Aneta; Götze, Jens; Šachlová, Šárka; Pertold, Zdeněk; Přikryl, Richard

    2016-02-01

    Different quartz types from several localities in the Czech Republic and Sweden were examined by polarizing microscopy combined with cathodoluminescence (CL) microscopy, spectroscopy, and petrographic image analysis, and tested by use of an accelerated mortar bar test (following ASTM C1260). The highest alkali-silica reaction potential was indicated by very fine-grained chert, containing significant amounts of fine-grained to cryptocrystalline matrix. The chert exhibited a dark red CL emission band at ~640 nm with a low intensity. Fine-grained orthoquartzites, as well as fine-grained metamorphic vein quartz, separated from phyllite exhibited medium expansion values. The orthoquartzites showed various CL of quartz grains, from blue through violet, red, and brown. Two CL spectral bands at ~450 and ~630 nm, with various intensities, were detected. The quartz from phyllite displayed an inhomogeneous dark red CL with two CL spectral bands of low intensities at ~460 and ~640 nm. The massive coarse-grained pegmatite quartz from pegmatite was assessed to be nonreactive and displayed a typical short-lived blue CL (~480 nm). The higher reactivity of the fine-grained hydrothermal quartz may be connected with high concentrations of defect centers, and probably with amorphized micro-regions in the quartz, respectively; indicated by a yellow CL emission (~570 nm).

  3. Vacancy-related diffusion correlation effects in a simple cubic random alloy and on the Na-K sublattice of alkali feldspar

    NASA Astrophysics Data System (ADS)

    Wilangowski, F.; Stolwijk, N. A.

    2015-07-01

    Motivated by the need to analyse experimental data on ionic conductivity in alkali feldspar, we performed Monte Carlo (MC) simulations of vacancy diffusion in random binary systems. We employed an efficient procedure for the calculation of the vacancy correlation factor ?, which includes the computation of the associated partial correlation factors (PCFs) ? and ?. Test simulations on a simple cubic lattice show the improvements compared to previous MC data and the discrepancies with the Manning model. Vacancy correlation factors on the Na-K sublattice in the monoclinic structure of alkali feldspar proved to be dependent on crystal orientation. For the ?-direction, PCFs related to the four different jump types were calculated. We also examined the percolation behaviour for extreme ratios of the atomic jump frequencies. The results are found to agree with known data for the simple cubic lattice. In the case of feldspar, we provide the first useful estimates for the percolation threshold and the associated critical exponent using a simplified set of jump frequencies.

  4. Adsorption of N-tallow 1,3-propanediamine-dioleate collector on albite and quartz minerals, and selective flotation of albite from greek stefania feldspar ore.

    PubMed

    Vidyadhar, A; Hanumantha Rao, K; Forssberg, K S E

    2002-04-01

    The adsorption behavior of tallow 1,3-propanediamine-dioleate (Duomeen TDO) collector on albite and quartz minerals is assessed through Hallimond flotation, zeta potential, and diffuse reflectance FTIR investigations, together with the species distribution of the collector. The collector performance on albite separation from a natural feldspar material is evaluated in bench scale flotation tests. The Hallimond flotation responses of the minerals as a function of pH and collector concentration indicate that albite can be selectively floated from quartz at pH 2 where the doubly positively charged collector species adsorb on albite but not on quartz. However, the zeta potential and infrared spectra reveal that the adsorption behavior of the collector is similar on both minerals. The discrepancy in the flotation and adsorption results is attributed to the coarse and fine particle size fractions, and the shorter and longer equilibration periods employed in these studies respectively. The comparable adsorption on fine particles of albite and quartz at pH 2 is explained by the interaction of ammonium ions on silanol groups by hydrogen bonding as well as electrostatic interactions. The changes in zeta potentials are in good agreement with the formation of ionic species and free molecular forms of the collector. The IR spectra show the coexistence of neutral oleic acid together with charged amine species at low pH values in accordance with the species distribution diagram. Selective flotation of albite is accomplished from a natural feldspar material with tallow diamine-dioleate collector at pH 2 using sulfuric acid, only when the feed is deslimed prior to the bench scale flotation tests. An albite recovery exceeding 85% is achieved from a feed material containing about 50% albite.

  5. Trace-element partitioning at conditions far from equilibrium: Ba and Cs distributions between alkali feldspar and undercooled hydrous granitic liquid at 200 MPa

    NASA Astrophysics Data System (ADS)

    Morgan, George; London, David

    2002-12-01

    This study examines the effects of increasing supersaturation, attained by single-step liquidus undercooling (ΔT), on the partitioning of barium and cesium between potassic alkali feldspar (Afs) and hydrous granitic liquid at 200 MPa. The investigation is motivated by trace-element distribution patterns in granitic pegmatites which cannot be simulated by fractionation models using "equilibrium" partition coefficients, and thus its purpose is to assess if, how, and why partition coefficients for compatible and incompatible trace elements may vary when crystal growth commences far from the crystal-melt equilibrium boundary. Barium expands the liquidus stability field of potassic feldspar to higher temperatures, such that liquidi for the Ba-rich ( 0.5 wt% BaO) compositions used are 100 °C higher than for Ba-absent analogues. At low degrees of undercooling (ΔT 50 °C), values of DBaAfs/m. ( 10-20) fall within the range of previous investigations, as do values of DCsAfs/m. (<=0.10) from experiments at all temperatures. Progressively greater undercooling is manifested in the run products by increasingly skeletal to cuneiform crystal morphologies, increased compositional zonation of Afs, and the development of compositional boundary layers in glass. Whereas the partitioning behavior of Cs (incompatible) is not measurably affected, strong undercooling apparently causes the partitioning of Ba (highly compatible) to deviate from equilibrium behavior. Feldspars produced by strong undercooling (ΔT>=100 °C) are heterogeneous, such that DBaAfs/m. versus K/K+Na varies linearly between the average value at 850 °C and the equilibrium value appropriate to the temperature of growth. Hence, high supersaturation accompanying undercooling produces feldspar compositions by isothermal growth which record a vestige of the liquid line of descent (i.e., an ontogeny within zoned crystals which approximately tracks the feldspar liquidus from high temperature to the final low temperature

  6. Provenance of sands from the confluence of the Amazon and Madeira rivers based on detrital heavy minerals and luminescence of quartz and feldspar

    NASA Astrophysics Data System (ADS)

    do Nascimento, Daniel R.; Sawakuchi, André O.; Guedes, Carlos C. F.; Giannini, Paulo C. F.; Grohmann, Carlos H.; Ferreira, Manuela P.

    2015-03-01

    Source-to-sink systems are poorly known in tropical rivers. For the Amazonian rivers, the majority of the provenance studies remain focused on the suspended load, implying a poor understanding of the processes governing production and distribution of sands. In this study, we perform heavy mineral and optically stimulated luminescence (OSL) analysis to cover the entire spectrum (heavy and light minerals fraction) of 29 sand samples of the Lower Madeira river region (Amazon and Madeira rivers), of which the main goal was to find provenance indicators specific to these rivers. Despite the tropical humid climate, the sands of the Amazon and Lower Madeira rivers are rich in unstable heavy minerals as augite, hypersthene, green hornblende and andalusite. The Madeira river is highlighted by its higher content of andalusite, with source attributed to the Amazon Craton (medium-to-high grade metamorphic rocks), while the Amazon river, upstream of the Madeira river mouth, has a signature of augite and hypersthene, that suggests an Andean provenance (volcanic rocks). Sands from the Madeira river can be tracked in the Amazon river by the increasing concentration in andalusite. OSL analysis of the light minerals fraction was used as an index of feldspar concentration and sedimentary history of quartz grains. Lower feldspar concentration and quartz grains with longer sedimentary history (higher OSL sensitivity) also point to a major contribution of cratonic sources for the sands in the Madeira river. While the sands from the Lower Madeira would be mainly supplied by cratonic rocks, previous work recognised that suspended sediments (silt and clay) are derived from Andean rocks. Therefore, we interpret a decoupling between the sources of sand and mud (silt and clay) under transport in the Madeira river. Andean sands (rich in augite and hypersthene) would be trapped in the foreland zones of the Beni and Mamoré tributaries. In the Amazon river sands, the low OSL sensitivity of the

  7. New ages for Middle and Later Stone Age deposits at Mumba rockshelter, Tanzania: optically stimulated luminescence dating of quartz and feldspar grains.

    PubMed

    Gliganic, Luke A; Jacobs, Zenobia; Roberts, Richard G; Domínguez-Rodrigo, Manuel; Mabulla, Audax Z P

    2012-04-01

    The archaeological deposits at Mumba rockshelter, northern Tanzania, have been excavated for more than 70 years, starting with Margit and Ludwig Köhl-Larsen in the 1930s. The assemblages of Middle Stone Age (MSA) and Later Stone Age (LSA) artefacts collected from this site constitute the type sequences for these cultural phases in East Africa. Despite its archaeological importance, however, the chronology of the site is poorly constrained, despite the application since the 1980s of several dating methods (radiocarbon, uranium-series and amino acid racemisation) to a variety of materials recovered from the deposits. Here, we review these previous chronologies for Mumba and report new ages obtained from optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL) measurements on single grains of quartz and multi-grain aliquots of potassium (K) feldspar from the MSA and LSA deposits. Measurements of single grains of quartz allowed the rejection of unrepresentative grains and the application of appropriate statistical models to obtain the most reliable age estimates, while measurements of K-feldspars allowed the chronology to be extended to older deposits. The seven quartz ages and four K-feldspar ages provide improved temporal constraints on the archaeological sequence at Mumba. The deposits associated with the latest Kisele Industry (Bed VI-A) and the earliest Mumba Industry (Bed V) are dated to 63.4 ± 5.7 and 56.9 ± 4.8 ka (thousands of years ago), respectively, thus constraining the time of transition between these two archaeological phases to ~60 ka. An age of 49.1 ± 4.3 ka has been obtained for the latest deposits associated with the Mumba Industry, which show no evidence for post-depositional mixing and contain ostrich eggshell (OES) beads and abundant microlithics. The Nasera Industry deposits (Bed III) contain large quantities of OES beads and date to 36.8 ± 3.4 ka. We compare the luminescence ages with the previous chronologies for

  8. Experimental calibration of cotectic melt compositions coexisting with quartz and feldspar in rhyolitic systems - Application to Snake River Plain rhyolites,Yellowstone hotspot

    NASA Astrophysics Data System (ADS)

    Holtz, F.; Klahn, C.; Bolte, T.; Almeev, R. R.; Christiansen, E. H.; Nash, B. P.

    2013-12-01

    The depth of magma storage prior to eruption is difficult to constrain for rhyolitic systems and remains often unknown because the typical mineral assemblages in rhyolite magmas are not suitable for geobarometry. As an alternative to mineral compositions, the silica content of rhyolitic melts can be used to constrain pressure, provided that the silicate melts have cotectic compositions (melts coexisting with quartz and feldspar). From studies in synthetic haplogranitic systems, it is well known that the silica content of cotectic melts decreases with increasing pressure and that it may be used as barometer. However, the evolution of silica content with pressure is not calibrated for natural rhyolitic systems containing up to 2 wt% CaO and 4 wt% FeO. Crystallization experiments in Fe-, Ca- and Ti-bearing rhyolitic systems have been performed at 200 MPa and a temperature range of 790 to 850°C to calibrate the position of cotectic compositions in natural rhyolitic systems and the results have been projected onto the haplogranitic quartz-albite-orthoclase diagram (Qz-Ab-Or). The starting materials were glasses with various proportions of the Qz, Ab and Or components; all glasses contained 1 wt% FeO, 3.4 wt% An component and 0.2 wt% TiO2. The glasses were pre-hydrated with 3 wt% H2O in an internally heated pressure vessel. The crystallization experiments were conducted in cold seal pressure vessels. The water contents of the pre-hydrated starting glasses were checked by Fourier Transform Infrared Spectroscopy (FTIR) and Karl Fischer titration. The experimental products (glasses and crystals) were analyzed via electron microprobe. Results at 200 MPa show that the cotectic line separating the quartz primary field from the feldspar primary field is shifted towards the Qz apex by 6 wt% when compared with the water-undersaturated haplogranitic system (containing 3 wt% water). The minimum composition is shifted towards the Qz-Or sideline when compared with the haplogranitic

  9. Dissolution of Quartz, Albite and K-feldspar Into H2O-Saturated Haplogranitic Melt at 800oC and 200 MPa: Diffusive Transport Properties of Granitic Melts at Crustal Anatectic Temperatures

    NASA Astrophysics Data System (ADS)

    Acosta, A.; London, D.; Dewers, T.; Morgan, G.

    2002-12-01

    With the aim of investigating the diffusive transport properties of granitic melts at crustal anatectic conditions and obtaining some constraints on speciation and coordination in the melt, we conducted albite, K-feldspar and quartz dissolution experiments in H2O-saturated metaluminous haplogranitic glass (nominal composition of the 200 MPa H2O-saturated haplogranite eutectic of Tuttle and Bowen, 1958) at 800oC and 200 MPa. Mineral and glass cylinders were juxtaposed against flat polished surfaces inside platinum or gold capsules, then run for durations in the range 120-960 h. Based on the time dependence of interface retreat dissolution is interface reaction-controlled up to 700 h, and becomes diffusion-controlled afterwards. Upon dissolution of albite, Al and Na entering the melt decouple and Na diffuses away from the interface to maintain a constant Al/Na molar ratio throughout the entire melt column. Potassium from the bulk melt diffuses uphill towards the albite-melt interface to maintain a constant Aluminum Saturation Index (ASI=molar Al2O3/Na2O+K2O) of 1.00 throughout the entire melt column. Dissolution of K-feldspar results in migration of K away from the interface and uphill diffusion of Na from the bulk melt towards the interface, again maintaining constant Al/Na and ASI ratios in the bulk melt. Dissolution of quartz produces enrichment in SiO2 versus dilution of the rest of components in the interface melt. These results indicate that in the five-component H2O-saturated metaluminous haplogranite system, uncoupled diffusion takes place along the following four directions in composition space: SiO2; Na2O; K2O; and a combination of Al2O3 and alkalis such that the Al/Na molar ratio is equal to that in the bulk melt, and the Al2O3/Na2O+K2O molar ratio is equal to the equilibrium ASI of the melt. These observations are in accord with results obtained from corundum and andalusite dissolution experiments in the same system and P-T-X conditions (Acosta-Vigil et

  10. Origin of hydrous alkali feldspar-silica intergrowth in spherulites from intra-plate A2-type rhyolites at the Jabal Shama, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Surour, Adel A.; El-Nisr, Said A.; Bakhsh, Rami A.

    2016-03-01

    Miocene rhyolites (19.2 ± 0.9 Ma) at the Jabal Shama in western Saudi Arabia represent an example of rift-related silicic volcanism that took place during the formation of the Red Sea. They mostly consist of tuffaceous varieties with distinct flow banding, and pea-sized spherulites, obsidian and perlitized rhyolite tuffs. Although they have the geochemical signature of A2-type rhyolites, these silicic rocks are not typically alkaline but alkali-calcic to calc-alkaline. They developed in a within-plate regime and possibly derived from a recycled mafic subducted slab in depleted sub-continental mantle beneath the western Arabian plate. The Jabal Shama rhyolites are younger in age than their Miocene counterparts in Yemen and Ethiopia. The Jabal Shama spherulites consist of hydrous alkali feldspar-silica radial intergrowths with an occasional brown glass nucleus. Carbonate- and glass-free spherulites give up to 4.45 wt% L.O.I. The hydrous nature of these silicates and the absence of magnetite in the spherulites is a strong indication of oxidizing conditions. The spherulites contain hydrous feldspars with up to ∼6 wt% H2O, and they develop by diffusion and devitrification of glass in the rhyolite tuff at ∼800 °C. Owing to higher undercooling due to supersaturation, the radial hydrous phases within spherulites might grow faster and led to coagulation. The polygonal contacts between spherulites and the ∼120° dihedral angle suggest solid-state modification and recrystallization as the process of devitrification proceeds as low as ∼300 °C. The sum of FeO + MgO is positively correlated with total alkalies along with magnetite oxidation in the matrix to Fe-oxyhydroxides, and to the incorporation of OH- into silicates within the spehrulites themselves. Structural H2O in glass of the Jabal Shama perlite (obsidian) is considerable (∼9-12 wt%) with 3.72-5.6 wt% L.O.I. of the whole-rock. The presence of deleterious silica impurities would lower the ore grade due to

  11. Preparation and characterization of new dental porcelains, using K-feldspar and quartz raw materials. Effect of B2O3 additions on sintering and mechanical properties.

    PubMed

    Harabi, Abdelhamid; Guerfa, Fatiha; Harabi, Esma; Benhassine, Mohamed-Tayeb; Foughali, Lazhar; Zaiou, Soumia

    2016-08-01

    The aim of this work was to determine the effect of temperature and boric oxide (B2O3) addition on sintering and mechanical properties of a newly developed dental porcelain (DP) prepared from local Algerian raw materials. Based on a preliminary work, the new selected composition was 75wt.% feldspar, 20wt.% quartz and 5wt.% kaolin. It was prepared by sintering the mixture at different temperatures (1100-1250°C). The optimum sintering conditions gave a relatively higher density (2.47g/cm(3)) and excellent mechanical properties. The three point flexural strength (3PFS) and Martens micro-hardness of dental porcelains were 149MPa and 2600MPa, respectively. This obtained 3PFS value is more than four times greater than that of hydroxyapatite (HA) value (about 37MPa) sintered under the same conditions. However, the sintering temperature was lowered by about 25 and 50°C for 3 and 5wt.% B2O3 additions, respectively. But, it did not improve furthermore the samples density and their mechanical properties. It has also been found that B2O3 additions provoke a glass matrix composition variation which delays the leucite formation during sintering.

  12. Complex impedance spectroscopy of alkali impurities in as-grown, irradiated and annealed quartz

    SciTech Connect

    Devautour-Vinot, S.; Cambon, O.; Prud'homme, N.; Giuntini, J. C.; Boy, J.-J.; Cibiel, G.

    2007-11-15

    This work compares the dielectric relaxation properties of different crystalline quartz materials, according to their source (natural or synthetics). It is shown that these relaxation properties are due to a hopping process of alkaline (Li{sup +}, Na{sup +}, and K{sup +}) impurities located near [Al-O{sub 4}]{sup 5-} tetrahedra. A detailed analysis, in terms of the distribution function of the dielectric loss peak, allowed us to perfectly distinguish the different types of as-grown quartz. We show that (i) the natural quartz has less stable M{sup +} charge carriers than the synthetic materials and that (ii) the homogeneity of the M{sup +} trapping sites, created by the [Al-O{sub 4}]{sup 5-} tetrahedra, strongly depends on the crystal growth conditions. These features were then studied using quartz samples with different treatment conditions: as-grown, irradiated, or annealed at high temperature. We propose that the irradiation greatly facilitates the M{sup +} relaxation, by creating additional low energy M{sup +} hosting sites, whose number depends on the source of the quartz crystals. We also show that for 100 krad irradiation, the saturation state of the defects is already reached for all the materials under consideration. Finally, we propose that the irradiation followed by annealing at 450 deg. C improves the M{sup +} stability and homogeneity in quartz materials, compared with the as-grown materials, this trend being much more relevant for the natural than for the synthetic quartz.

  13. Elastic properties of alpha quartz and the alkali halides based on an interatomic force model.

    NASA Technical Reports Server (NTRS)

    Weidner, D. J.; Simmons, G.

    1972-01-01

    A two-body central-force atomic model can be used to describe accurately the elastic properties of alpha quartz if the nontetrahedral O:O forces are included. The strength of the Si:O interaction has little effect on the bulk modulus. The technique is sufficiently general to allow calculations of the elastic properties of a specified structure under arbitrary pressure from a complete description of the interatomic forces. The elastic constants for the NaCl structure and the CsCl structure are examined. Our model includes two-body, central, anion-anion, anion-cation, and electrostatic interactions.

  14. Feldspar dissolution rates in the Topopah Spring Tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Bryan, C.R.; Helean, K.B.; Marshall, B.D.; Brady, P.V.

    2009-01-01

    Two different field-based methods are used here to calculate feldspar dissolution rates in the Topopah Spring Tuff, the host rock for the proposed nuclear waste repository at Yucca Mountain, Nevada. The center of the tuff is a high silica rhyolite, consisting largely of alkali feldspar (???60 wt%) and quartz polymorphs (???35 wt%) that formed by devitrification of rhyolitic glass as the tuff cooled. First, the abundance of secondary aluminosilicates is used to estimate the cumulative amount of feldspar dissolution over the history of the tuff, and an ambient dissolution rate is calculated by using the estimated thermal history. Second, the feldspar dissolution rate is calculated by using measured Sr isotope compositions for the pore water and rock. Pore waters display systematic changes in Sr isotopic composition with depth that are caused by feldspar dissolution. The range in dissolution rates determined from secondary mineral abundances varies from 10-16 to 10-17 mol s-1 kg tuff-1 with the largest uncertainty being the effect of the early thermal history of the tuff. Dissolution rates based on pore water Sr isotopic data were calculated by treating percolation flux parametrically, and vary from 10-15 to 10-16 mol s-1 kg tuff-1 for percolation fluxes of 15 mm a-1 and 1 mm a-1, respectively. Reconciling the rates from the two methods requires that percolation fluxes at the sampled locations be a few mm a-1 or less. The calculated feldspar dissolution rates are low relative to other measured field-based feldspar dissolution rates, possibly due to the age (12.8 Ma) of the unsaturated system at Yucca Mountain; because oxidizing and organic-poor conditions limit biological activity; and/or because elevated silica concentrations in the pore waters (???50 mg L-1) may inhibit feldspar dissolution. ?? 2009 Elsevier Ltd. All rights reserved.

  15. Sintering behaviour of feldspar and influence of electric charge effects

    NASA Astrophysics Data System (ADS)

    Gallala, W.; Gaied, M. E.

    2011-04-01

    The characterization of feldspar for electric porcelain and the behaviour of these materials after heating at 1230°C were studied. X-ray diffraction (XRD) and scanning electronic microscopy (SEM) were used to identify the present phases and the densification level. Feldspar sand was treated by flotation. The floated feldspar is constituted by microcline, quartz, and minor amounts of albite. The microstructure of sintered feldspar at 1230°C is essentially vitreous with open microporosities. The dielectrical properties of composites were characterized by using the induced courant method (ICM), which indicates that the charge trapping capacity depends on the mineralogical and chemical composition of feldspar.

  16. Not all feldspars are equal: a survey of ice nucleating properties across the feldspar group of minerals

    NASA Astrophysics Data System (ADS)

    Harrison, Alexander D.; Whale, Thomas F.; Carpenter, Michael A.; Holden, Mark A.; Neve, Lesley; O'Sullivan, Daniel; Vergara Temprado, Jesus; Murray, Benjamin J.

    2016-09-01

    Mineral dust particles from wind-blown soils are known to act as effective ice nucleating particles in the atmosphere and are thought to play an important role in the glaciation of mixed phase clouds. Recent work suggests that feldspars are the most efficient nucleators of the minerals commonly present in atmospheric mineral dust. However, the feldspar group of minerals is complex, encompassing a range of chemical compositions and crystal structures. To further investigate the ice-nucleating properties of the feldspar group we measured the ice nucleation activities of 15 characterized feldspar samples. We show that alkali feldspars, in particular the potassium feldspars, generally nucleate ice more efficiently than feldspars in the plagioclase series which contain significant amounts of calcium. We also find that there is variability in ice nucleating ability within these groups. While five out of six potassium-rich feldspars have a similar ice nucleating ability, one potassium rich feldspar sample and one sodium-rich feldspar sample were significantly more active. The hyper-active Na-feldspar was found to lose activity with time suspended in water with a decrease in mean freezing temperature of about 16 °C over 16 months; the mean freezing temperature of the hyper-active K-feldspar decreased by 2 °C over 16 months, whereas the "standard" K-feldspar did not change activity within the uncertainty of the experiment. These results, in combination with a review of the available literature data, are consistent with the previous findings that potassium feldspars are important components of arid or fertile soil dusts for ice nucleation. However, we also show that there is the possibility that some alkali feldspars may have enhanced ice nucleating abilities, which could have implications for prediction of ice nucleating particle concentrations in the atmosphere.

  17. Natural radioactivity and rare earth elements in feldspar samples, Central Eastern desert, Egypt.

    PubMed

    Walley El-Dine, Nadia; El-Shershaby, Amal; Afifi, Sofia; Sroor, Amany; Samir, Eman

    2011-05-01

    The pegmatite bodies of the Eastern Desert of Egypt are widely distributed especially along the Marsa-Alam-Idfu road. The Abu Dob area covers about 150km(2) of the Arabian Nubian shield at the central part of the Eastern Desert of Egypt. Most of the pegmatite is zoned; the zonation starts with milky quartz at the core followed by alkali feldspar at the margins. The feldspars vary in color from rose to milky and in composition from K-feldspar to Na-feldspar, sometimes interactions of both types are encountered. Thirteen feldspar samples were collected from different locations in the Abu Dob area for measuring the natural radioactivity of (238)U, (232)Th and (40)K using an HPGe detector. The variation in concentration of radionuclides for the area under investigation can be classified into regions of high, medium and low natural radioactivity. The average concentration in BqKg(-1) has been observed to be from 9.5 to 183675.7BqKg(-1) for (238)U, between 6.1 and 94,314.2BqKg(-1) for (232)Th and from 0 to 7894.6BqKg(-1) for (40)K. Radium equivalent activities (Ra(eq)), dose rate (D(R)) and external hazard (H(ex)) have also been determined. In the present work, the concentration of rare earth elements are measured for two feldspar samples using two techniques, Environmental Scanning Electron microscope XIL 30 ESEM, Philips, and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The existence of rare earth elements in this area are very high and can be used in different important industries.

  18. Particle size and X-ray analysis of Feldspar, Calvert, Ball, and Jordan soils

    NASA Technical Reports Server (NTRS)

    Chapman, R. S.

    1977-01-01

    Pipette analysis and X-ray diffraction techniques were employed to characterize the particle size distribution and clay mineral content of the feldspar, calvert, ball, and jordan soils. In general, the ball, calvert, and jordan soils were primarily clay size particles composed of kaolinite and illite whereas the feldspar soil was primarily silt-size particles composed of quartz and feldspar minerals.

  19. Trace Elements in Igneous Quartz: a new Petrogenetic Tool for the Study of Granite Pegmatite Genesis

    NASA Astrophysics Data System (ADS)

    Larsen, R. B.; Larsen, R. B.; Flem, B.; Henderson, I.; Ihlen, P. M.; Ihlen, P. M.; Lahaye, Y.; Malvik, T.; Prestvik, T.

    2001-12-01

    The trace-element chemistry of quartz is rarely, if ever, considered when evaluating the origin and evolution of silica over-saturated igneous rocks. Analytical obstacles have efficiently prevented in-depth studies of the trace-element chemistry of quartz because the most interesting elements are present at the sub-ppm level and because mineral separation of quartz for traditional solution analysis is a time-consuming process. Also, igneous quartz may contain both fluid and solid inclusions that are difficult to identify during handpicking and may influence the analytical results significantly. However, in the present study we utilised in situ Laser Ablation of quartz specimens with direct introduction of the ablated material in to a double focusing sector field, ICP-MS instrument, and we developed a method that is fine-tuned for the analysis of trace elements in quartz (Flem et al., Chemical Geology, in press). Among the elements covered by the method we have focussed on substitutional trace-elements replacing Si4+ (e.g. Ti, Ge, Al, Fe and P) or elements that represent charge compensators that are accommodated in lattice vacancies or in structural channels (e.g. Li, B, K, Ca, Be). Elements analysed at low, medium and high resolutions include Li, B, Be, Al, Mn, Ge, Rb, Sr, Ba, Pb, Th, Mg, P, Ti, Ca, Cr, Fe and K. 29Si or 30Si, were used as internal standards. In the present study we evaluate the chemical evolution of quartz by comparing with the chemistry of co-existing alkali-feldspar, for which the compositional changes during igneous evolution is well known from the literature. The study includes 75 strongly zoned gadolinite-type REE-Nb-Ta rich chamber pegmatites from two major Neoproterozoic pegmatite fields in SE-Norway. Analysis of alkali-feldspar for major and accessory elements including the REE shows that the pegmatites were formed from progressively more evolved liquids through extreme fractionation of primitive granitic melts. The total concentration of

  20. A detailed study of ice nucleation by feldspar minerals

    NASA Astrophysics Data System (ADS)

    Whale, T. F.; Murray, B. J.; Wilson, T. W.; Carpenter, M. A.; Harrison, A.; Holden, M. A.; Vergara Temprado, J.; Morris, J.; O'Sullivan, D.

    2015-12-01

    Immersion mode heterogeneous ice nucleation plays a crucial role in controlling the composition of mixed phase clouds, which contain both supercooled liquid water and ice particles. The amount of ice in mixed phase clouds can affect cloud particle size, lifetime and extent and so affects radiative properties and precipitation. Feldspar minerals are probably the most important minerals for ice nucleation in mixed phase clouds because they nucleate ice more efficiently than other components of atmospheric mineral dust (Atkinson et al. 2013). The feldspar class of minerals is complex, containing numerous chemical compositions, several crystal polymorphs and wide variations in microscopic structure. Here we present the results of a study into ice nucleation by a wide range of different feldspars. We found that, in general, alkali feldspars nucleate ice more efficiently than plagioclase feldspars. However, we also found that particular alkali feldspars nucleate ice relatively inefficiently, suggesting that chemical composition is not the only important factor that dictates the ice nucleation efficiency of feldspar minerals. Ice nucleation by feldspar is described well by the singular model and is probably site specific in nature. The alkali feldspars that do not nucleate ice efficiently possess relatively homogenous structure on the micrometre scale suggesting that the important sites for nucleation are related to surface topography. Ice nucleation active site densities for the majority of tested alkali feldspars are similar to those found by Atkinson et al (2013), meaning that the validity of global aerosol modelling conducted in that study is not affected. Additionally, we have found that ice nucleation by feldspars is strongly influenced, both positively and negatively, by the solute content of droplets. Most other nucleants we have tested are unaffected by solutes. This provides insight into the mechanism of ice nucleation by feldspars and could be of importance

  1. Residence times of alkali feldspar phenocrysts from magma feeding the Agnano-Monte Spina Eruption (4.7 ka), Campi Flegrei caldera (Napoli, southern Italy) based on Ba-zonation modelling

    NASA Astrophysics Data System (ADS)

    Iovine, Raffaella Silvia; Wörner, Gerhard; Carmine Mazzeo, Fabio; Arienzo, Ilenia; Fedele, Lorenzo; Civetta, Lucia; D'Antonio, Massimo; Orsi, Giovanni

    2016-04-01

    Timescales governing the development of crustal magma reservoirs are a key for understanding magmatic processes such as ascent, storage and mixing event. An estimate of these timescales can provide important constraints for volcanic hazard assessment of active volcanoes. We studied the Agnano-Monte Spina eruption (A-MS; 4.7 ka; VEI = 4; 0.85 km3 D.R.E. of magma erupted) of the Campi Flegrei caldera, one of the most dangerous volcanic areas on Earth. The A-MS eruption has been fed by magmas varying from more to less evolved trachyte whose variable 87Sr/86Sr and trace elements features suggest magma mixing between two end-members. Ba zonation profiles of alkali feldspar phenocrysts have been determined through combined energy-dispersive and wavelength-dispersive electron microprobe analyses (EDS-WDS-EMPA). We focused on distinct compositional breaks near the rim of the crystals that likely represent the last mixing event prior to eruption. We always chose the steepest gradients close to the crystal rims, taking into account that any effects related to cutting angles or crystal orientation should give longer apparent diffusion times. Two different approaches were undertaken: (1) a quantitative Ba compositional profiles were measured by point analyses along a short transect crossing growth discontinuities and (2) grey-scale profiles were taken parallel to the acquired point profiles. Assuming that Ba dominates the backscattered electron intensities in sanidines, greyscale gradients can be used as a diffusive tracer. BSE images were processed using the ImageJ® software, in order to extract a numerical greyscale profile. In both cases, each profile was interpolated through a non-linear Boltzmann fit curve with the Mathematica® software. A few traverses done at angles smaller than 90° to the compositional boundary interface were corrected by multiplying the distance values by the sinus of the traverse angle relative to the vertical on the interface. Our preliminary

  2. Principles of Thermal Expansion in Feldspars

    NASA Astrophysics Data System (ADS)

    Hovis, Guy; Medford, Aaron; Conlon, Maricate; Tether, Allison; Romanoski, Anthony

    2010-05-01

    Following the recent thermal expansion work of Hovis et al. (1) on AlSi3 feldspars, we have investigated the thermal expansion of plagioclase, Ba-K, and Ca-K feldspar crystalline solutions. X-ray powder diffraction data were collected between room temperature and 925 °C on six natural plagioclase specimens ranging in composition from anorthite to oligoclase, the K-exchanged equivalents of these plagioclase specimens, and five synthetic Ba-K feldspars with compositions ranging from 25 to 99 mol % BaAl2Si2O8. The resulting thermal expansion coefficients (α) for volume have been combined with earlier results for end-member Na- and K-feldspars (2,3). Unlike AlSi3 feldspars, Al2Si2 feldspars, including anorthite and celsian from the present study plus Sr- and Pb-feldspar from other workers (4,5), show essentially constant and very limited thermal expansion, regardless of divalent cation size. In the context of structures where the Lowenstein rule (6) requires Al and Si to alternate among tetrahedra, the proximity of bridging Al-O-Si oxygen ions to divalent neighbors (ranging from 0 to 2) produces short Ca-O (or Ba-O) bonds (7,8) that apparently are the result of local charge-balance requirements (9). Gibbs et al. (10) suggest that short bonds such as these have a partially covalent character. This in turn stiffens the structure. Thus, for feldspar series with coupled substitution the change away from a purely divalent M-site occupant gives the substituting (less strongly bonded) monovalent cations increasingly greater influence on thermal expansion. Overall, then, thermal expansion in the feldspar system is well represented on a plot of α against room-temperature volume, where one sees a quadrilateral bounded by data for (A) AlSi3 feldspars whose expansion behavior is controlled largely by the size of the monovalent alkali-site occupant, (B) Al2Si2 feldspars whose expansion is uniformly limited by partially-covalent bonds between divalent M-site occupants and

  3. Neon diffusion kinetics in olivine, pyroxene and feldspar: Retentivity of cosmogenic and nucleogenic neon

    NASA Astrophysics Data System (ADS)

    Gourbet, Loraine; Shuster, David L.; Balco, Greg; Cassata, William S.; Renne, Paul R.; Rood, Dylan

    2012-06-01

    We performed stepwise degassing experiments by heating single crystals of neutron- or proton-irradiated olivine, pyroxene and feldspar to study diffusion kinetics of neon. This is important in evaluating the utility of these minerals for cosmogenic 21Ne measurements and, potentially, for Ne thermochronometry. Degassing patterns are only partially explained by simple Arrhenius relationships; most samples do not exhibit a precisely-determined activation energy in an individual diffusion domain. Regardless, we find clear differences in diffusion kinetics among these minerals. Based on sub-selected data, our estimates for neon diffusion kinetics (activation energy Ea and pre-exponential factor Do, assuming the analyzed fragments approximate the diffusion domain) in each mineral are as follows: for the feldspars, Ea ranges from ∼65 to 115 kJ/mol and Do from 3.9 × 10-3 to 7.1 × 102 cm2s-1; for the pyroxenes, Ea ranges from ∼292 to 480 kJ/mol and Do from 1.6 × 102 to 2.9 × 1011 cm2s-1; for the olivines, Ea ranges from ∼360 to 370 kJ/mol and Do from 1.5 × 106 to 5.0 × 106 cm2s-1. Differences in these parameters are broadly consistent with the expected effect of structural differences between feldspar, and olivine and pyroxene. These results indicate that cosmogenic 21Ne will be quantitatively retained within olivine and pyroxene at Earth surface temperatures over geological timescales. The diffusion kinetics for feldspars, on the other hand, predicts that 21Ne retention at Earth surface temperatures will vary significantly with domain size, crystal microtexture, surface temperature, and exposure duration. Quantitative retention is expected only in favorable conditions. This conclusion is reinforced by additional measurements of cosmogenic 21Ne in coexisting quartz and feldspar from naturally irradiated surface samples; sanidine from a variety of rhyolitic ignimbrites exhibits quantitative retention, whereas alkali-feldspar from several granites does not.

  4. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles

    PubMed Central

    2015-01-01

    Mineral dusts originating from Earth’s crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. K-feldspar showed by far the highest ice nucleation activity. Finally, we give a potential explanation of this effect, finding alkali-metal ions having different hydration shells and thus an influence on the ice nucleation activity of feldspar surfaces. PMID:25584435

  5. Can cathodoluminescence of feldspar be used as provenance indicator?

    NASA Astrophysics Data System (ADS)

    Scholonek, Christiane; Augustsson, Carita

    2016-05-01

    We have studied feldspar from crystalline rocks for its textural and spectral cathodoluminescence (CL) characteristics with the aim to reveal their provenance potential. We analyzed ca. 60 rock samples of plutonic, volcanic, metamorphic, and pegmatitic origin from different continents and of 16 Ma to 2 Ga age for their feldspar CL textures and ca. 1200 feldspar crystals from these rocks for their CL color spectra. Among the analyzed rocks, igneous feldspar is most commonly zoned, whereby oscillatory zoning can be confirmed to be typical for volcanic plagioclase. The volcanic plagioclase also less commonly contains twin lamellae that are visible in CL light than crystals from other rock types. Alkali feldspar, particularly from igneous and pegmatitic rocks, was noted to be most affected by alteration features, visible as dark spots, lines and irregular areas. The size of all textural features of up to ca. 150 μm, in combination with possible alteration in both the source area and the sedimentary system, makes the CL textures of feldspar possible to use for qualitative provenance research only. We observed alkali feldspar mostly to luminesce in a bluish color and sometimes in red, and plagioclase in green to yellow. The corresponding CL spectra are dominated by three apparent intensity peaks at 440-520 nm (mainly blue), 540-620 nm (mainly green) and 680-740 nm (red to infrared). A dominance of the peak in the green wavelength interval over the blue one for plagioclase makes CL particularly useful for the differentiation of plagioclase from alkali feldspar. An apparent peak position in red to infrared at < 710 nm for plagioclase mainly is present in mafic rocks. Present-day coastal sand from Peru containing feldspar with the red to infrared peak position mainly exceeding 725 nm for northern Peruvian sand and a larger variety for sand from southern Peru illustrates a discriminative effect of different source areas. We conclude that the provenance application

  6. Elasticity of plagioclase feldspars

    NASA Astrophysics Data System (ADS)

    Brown, J. Michael; Angel, Ross J.; Ross, Nancy L.

    2016-02-01

    Elastic properties are reported for eight plagioclase feldspars that span compositions from albite (NaSi3AlO8) to anorthite (CaSi2Al2O8). Surface acoustic wave velocities measured using Impulsive Stimulated Light Scattering and compliance sums from high-pressure X-ray compression studies accurately determine all 21 components of the elasticity tensor for these triclinic minerals. The overall pattern of elasticity and the changes in individual elastic components with composition can be rationalized on the basis of the evolution of crystal structures and chemistry across this solid-solution join. All plagioclase feldspars have high elastic anisotropy; a* (the direction perpendicular to the b and c axes) is the softest direction by a factor of 3 in albite. From albite to anorthite the stiffness of this direction undergoes the greatest change, increasing twofold. Small discontinuities in the elastic components, inferred to occur between the three plagioclase phases with distinct symmetry (C1>¯, I1>¯, and P1>¯), appear consistent with the nature of the underlying conformation of the framework-linked tetrahedra and the associated structural changes. Measured body wave velocities of plagioclase-rich rocks, reported over the last five decades, are consistent with calculated Hill-averaged velocities using the current moduli. This confirms long-standing speculation that previously reported elastic moduli for plagioclase feldspars are systematically in error. The current results provide greater assurance that the seismic structure of the middle and lower crusts can be accurately estimated on the basis of specified mineral modes, chemistry, and fabric.

  7. Thermal infrared spectroscopy on feldspars — Successes, limitations and their implications for remote sensing

    NASA Astrophysics Data System (ADS)

    Hecker, Christoph; der Meijde, Mark van; van der Meer, Freek D.

    2010-11-01

    Minerals of the feldspar group are the most common on earth. Feldspars are economically important in two ways: either as industrial minerals or as a vector-to-ore for mineral deposits. In order to use feldspars for classifying rock compositions or metasomatic conditions during rock alteration events, there is a need for analytical methods to identify and classify feldspars. Traditionally, feldspar composition and structure have been investigated using methods such as optical microscopy, electron microprobe analysis (EMPA), cathodoluminescence and X-ray diffraction (XRD) analysis. In this paper infrared techniques (0.7-25 μm)) are reviewed in detail and investigated in how far some of the traditional analytical methods can be replaced by infrared spectroscopy. Successes as well as limitations of infrared approaches are highlighted and existing work is scrutinized in terms of its applicability to remote sensing techniques. Even though numerous studies on mid-infrared (MIR) spectroscopy of feldspars exist, their results often cannot be directly related to remote sensing applications. Examples are the effects of feldspar twinning, exsolution textures and structural state on infrared spectra. The applicability of the results to emission remote sensing requires further research. It has been shown that linear unmixing of laboratory infrared spectra of rocks works fairly well. Detection limits for feldspar are around 5% and plagioclase composition can be determined within error margins of ± 4% anorthite component. Infrared spectroscopy can, however, not detect compositional zonation or different generations of feldspars. Infrared spectra represent the current average plagioclase and average alkali feldspar composition in the sample. With several new airborne instruments under development, it is opportune to focus upcoming research efforts on developing standardized processing techniques and spectral feldspar indices for thermal infrared imagery. Commercially interesting

  8. Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: Electron microscopic characterization

    USGS Publications Warehouse

    Zhu, Chen; Veblen, D.R.; Blum, A.E.; Chipera, S.J.

    2006-01-01

    Naturally weathered feldspar surfaces in the Jurassic Navajo Sandstone at Black Mesa, Arizona, was characterized with high-resolution transmission and analytical electron microscope (HRTEM-AEM) and field emission gun scanning electron microscope (FEG-SEM). Here, we report the first HRTEM observation of a 10-nm thick amorphous layer on naturally weathered K-feldspar in currently slightly alkaline groundwater. The amorphous layer is probably deficient in K and enriched in Si. In addition to the amorphous layer, the feldspar surfaces are also partially coated with tightly adhered kaolin platelets. Outside of the kaolin coatings, feldspar grains are covered with a continuous 3-5 ??m thick layer of authigenic smectite, which also coats quartz and other sediment grains. Authigenic K-feldspar overgrowth and etch pits were also found on feldspar grains. These characteristics of the aged feldspar surfaces accentuate the differences in reactivity between the freshly ground feldspar powders used in laboratory experiments and feldspar grains in natural systems, and may partially contribute to the commonly observed apparent laboratory-field dissolution rate discrepancy. At Black Mesa, feldspars in the Navajo Sandstone are dissolving at ???105 times slower than laboratory rate at comparable temperature and pH under far from equilibrium condition. The tightly adhered kaolin platelets reduce the feldspar reactive surface area, and the authigenic K-feldspar overgrowth reduces the feldspar reactivity. However, the continuous smectite coating layer does not appear to constitute a diffusion barrier. The exact role of the amorphous layer on feldspar dissolution kinetics depends on the origin of the layer (leached layer versus re-precipitated silica), which is uncertain at present. However, the nanometer thin layer can be detected only with HRTEM, and thus our study raises the possibility of its wide occurrence in geological systems. Rate laws and proposed mechanisms should consider the

  9. Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: Electron microscopic characterization

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Veblen, David R.; Blum, Alex E.; Chipera, Stephen J.

    2006-09-01

    Naturally weathered feldspar surfaces in the Jurassic Navajo Sandstone at Black Mesa, Arizona, was characterized with high-resolution transmission and analytical electron microscope (HRTEM-AEM) and field emission gun scanning electron microscope (FEG-SEM). Here, we report the first HRTEM observation of a 10-nm thick amorphous layer on naturally weathered K-feldspar in currently slightly alkaline groundwater. The amorphous layer is probably deficient in K and enriched in Si. In addition to the amorphous layer, the feldspar surfaces are also partially coated with tightly adhered kaolin platelets. Outside of the kaolin coatings, feldspar grains are covered with a continuous 3-5 μm thick layer of authigenic smectite, which also coats quartz and other sediment grains. Authigenic K-feldspar overgrowth and etch pits were also found on feldspar grains. These characteristics of the aged feldspar surfaces accentuate the differences in reactivity between the freshly ground feldspar powders used in laboratory experiments and feldspar grains in natural systems, and may partially contribute to the commonly observed apparent laboratory-field dissolution rate discrepancy. At Black Mesa, feldspars in the Navajo Sandstone are dissolving at ˜10 5 times slower than laboratory rate at comparable temperature and pH under far from equilibrium condition. The tightly adhered kaolin platelets reduce the feldspar reactive surface area, and the authigenic K-feldspar overgrowth reduces the feldspar reactivity. However, the continuous smectite coating layer does not appear to constitute a diffusion barrier. The exact role of the amorphous layer on feldspar dissolution kinetics depends on the origin of the layer (leached layer versus re-precipitated silica), which is uncertain at present. However, the nanometer thin layer can be detected only with HRTEM, and thus our study raises the possibility of its wide occurrence in geological systems. Rate laws and proposed mechanisms should consider the

  10. Feldspar minerals as efficient deposition ice nuclei

    NASA Astrophysics Data System (ADS)

    Yakobi-Hancock, J. D.; Ladino, L. A.; Abbatt, J. P. D.

    2013-11-01

    Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically relevant mineral samples have been studied, using a continuous flow diffusion chamber at -40.0 ± 0.3 °C and particles size-selected at 200 nm. By focussing on using the same experimental procedure for all experiments, a relative ranking of the ice nucleating abilities of the samples was achieved. In addition, the ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD) and Mojave Desert Dust (MDD), and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN), requiring a critical relative humidity with respect to ice (RHi) of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RHi) 126.3 ± 3.4%) and ATD (RHi 129.5 ± 5.1%) have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz), and feldspar minerals (orthoclase, plagioclase) present in the atmospheric dusts, it was found that the feldspar minerals (particularly orthoclase) and some clays (particularly kaolinite) were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase) may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals.

  11. Feldspar minerals as efficient deposition ice nuclei

    NASA Astrophysics Data System (ADS)

    Yakobi-Hancock, J. D.; Ladino, L. A.; Abbatt, J. P. D.

    2013-06-01

    Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically-relevant mineral samples have been studied, using a continuous flow diffusion chamber at -40.0 ± 0.3 °C. The same particle size (200 nm) and particle preparation procedure were used throughout. The ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD) and Mojave Desert Dust (MDD), and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN), requiring a critical relative humidity with respect to ice (RHi) of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RHi 126.3 ± 3.4%) and ATD (RHi 129.5 ± 5.1%) have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz), and feldspar minerals (orthoclase, plagioclase) present in the atmospheric dusts it was found that the feldspar minerals (particularly orthoclase), and not the clays, were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase) may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals.

  12. Progressive deformation of feldspar recording low-barometry impact processes, Tenoumer impact structure, Mauritania

    NASA Astrophysics Data System (ADS)

    Jaret, Steven J.; Kah, Linda C.; Harris, R. Scott

    2014-06-01

    The Tenoumer impact structure is a small, well-preserved crater within Archean to Paleoproterozoic amphibolite, gneiss, and granite of the Reguibat Shield, north-central Mauritania. The structure is surrounded by a thin ejecta blanket of crystalline blocks (granitic gneiss, granite, and amphibolite) and impact-melt rocks. Evidence of shock metamorphism of quartz, most notably planar deformation features (PDFs), occurs exclusively in granitic clasts entrained within small bodies of polymict, glass-rich breccia. Impact-related deformation features in oligoclase and microcline grains, on the other hand, occur both within clasts in melt-breccia deposits, where they co-occur with quartz PDFs, and also within melt-free crystalline ejecta, in the absence of co-occurring quartz PDFs. Feldspar deformation features include multiple orientations of PDFs, enhanced optical relief of grain components, selective disordering of alternate twins, inclined lamellae within alternate twins, and combinations of these individual textures. The distribution of shock features in quartz and feldspar suggests that deformation textures within feldspar can record a wide range of average pressures, starting below that required for shock deformation of quartz. We suggest that experimental analysis of feldspar behavior, combined with detailed mapping of shock metamorphism of feldspar in natural systems, may provide critical data to constrain energy dissipation within impact regimes that experienced low average shock pressures.

  13. Modeling H, Na, and K diffusion in plagioclase feldspar by relating point defect parameters to bulk properties

    NASA Astrophysics Data System (ADS)

    Zhang, Baohua; Shan, Shuangming; Wu, Xiaoping

    2016-02-01

    Hydrogen and alkali ion diffusion in plagioclase feldspars is important to study the evolution of the crust and the kinetics of exsolution and ion-exchange reactions in feldspars. Using the available PVT equation of state of feldspars, we show that the diffusivities of H and alkali in plagioclase feldspars as a function of temperature can be successfully reproduced in terms of the bulk elastic and expansivity data through a thermodynamic model that interconnects point defect parameters with bulk properties. Our calculated diffusion coefficients of H, Na, and K well agree with experimental ones when uncertainties are considered. Additional point defect parameters such as activation enthalpy, activation entropy, and activation volume are also predicted. Furthermore, the electrical conductivity of feldspars inferred from our predicted diffusivities of H, Na, and K through the Nernst-Einstein equation is compared with previous experimental data.

  14. Sillimanite-potash feldspar assemblages in graphitic pelites, Strontian area, Scotland

    NASA Astrophysics Data System (ADS)

    Tyler, I. M.; Ashworth, J. R.

    1982-11-01

    Graphitic pelites of the western Moinian were metamorphosed at the time of emplacement of the Strontian Granodiorite intrusion, at a late stage of the Caledonian Orogeny, producing a metamorphic zonation. The Sillimanite Zone (in which K feldspar does not occur with sillimanite) is succeeded by the Muscovite-Sillimanite-K feldspar Zone, Sillimanite-K feldspar Zone (without primary muscovite) and Cordierite-K feldspar Zone. Secondary muscovite from retrograde hydration of sillimanite+K feldspar is distinguished texturally from primary muscovite, but is compositionally similar. Primary porphyroblastic muscovite, inherited from the regional metamorphic textural evolution of the rocks, disappears abruptly at the “muscovite-out” isograd. Migmatites of earlier regional origin, with recrystallized textures, are distinguished from those associated with the late Caledonian metamorphism, which are confined to the Sillimanite-K feldspar and Cordierite-K feldspar Zones. Muscovite compositions are inferred to be very low in Fe3+. There are no marked changes in muscovite composition at the entry of sillimanite+K feldspar. Higher Na contents than in some other muscovites coexisting with sillimanite+K feldspar are interpreted in terms of relatively low P in the Strontian area. Andalusite is found at two localities. From cordierite-garnet-sillimanite-biotite-K feldspar-quartz assemblages, a P estimate of 4.1±0.4 kbar is obtained, with the aqueous fluid having x_{{text{H}}_{text{2}} {text{O}}} ≈ 0.5, and the T at the cordierite-K feldspar isograd is estimated as 690° C. T at the muscovite-out isograd is inferred to the maximum for muscovite-quartz-sillimanite-K feldspar equilibrium with graphite at P≈4.1 kbar: T≈ 645° C, with x_{{text{H}}_{text{2}} {text{O}}} ≈ 0.84. The well-defined lower boundary of the Muscovite-Sillimanite-K feldspar Zone is attributed to regionally rather homogeneous fluid composition at x_{{text{H}}_{text{2}} {text{O}}} ≈ 0.7. The low P

  15. Feldspar diagenesis in the Frio Formation, Brazoria County, Texas Gulf Coast

    NASA Astrophysics Data System (ADS)

    Land, Lynton S.; Milliken, Kitty L.

    1981-07-01

    Tremendous quantities of detrital feldspar have been dissolved or albitized below about 14,000 ft (4,267 m) in the Frio Formation (Oligocene), Chocolate Bayou Field, Brazoria County, Texas. Some sandstones no longer contain any unmodified detrital feldspar grains. Material transfer involved in these reactions is immense, affecting at least 15% of the rock volume. Thus, albitization has important implications for several other diagenetic processes that involve feldspars or their components. These processes include formation of secondary porosity, precipitation of quartz and carbonate cements, and the evolution of Na-Ca-Cl formation water.

  16. The Thermal Expansion Of Feldspars

    NASA Astrophysics Data System (ADS)

    Hovis, G. L.; Medford, A.; Conlon, M.

    2009-12-01

    Hovis and others (1) investigated the thermal expansion of natural and synthetic AlSi3 feldspars and demonstrated that the coefficient of thermal expansion (α) decreases significantly, and linearly, with increasing room-temperature volume (VRT). In all such feldspars, therefore, chemical expansion limits thermal expansion. The scope of this work now has been broadened to include plagioclase and Ba-K feldspar crystalline solutions. X-ray powder diffraction data have been collected between room temperature and 925 °C on six plagioclase specimens ranging in composition from anorthite to oligoclase. When combined with thermal expansion data for albite (2,3,4) a steep linear trend of α as a function of VRT emerges, reflecting how small changes in composition dramatically affect expansion behavior. The thermal expansion data for five synthetic Ba-K feldspars ranging in composition from 20 to 100 mole percent celsian, combined with data for pure K-feldspar (3,4), show α-VRT relationships similar in nature to the plagioclase series, but with a slope and intercept different from the latter. Taken as a group all Al2Si2 feldspars, including anorthite and celsian from the present study along with Sr- (5) and Pb-feldspar (6) from other workers, show very limited thermal expansion that, unlike AlSi3 feldspars, has little dependence on the divalent-ion (or M-) site occupant. This apparently is due to the necessitated alternation of Al and Si in the tetrahedral sites of these minerals (7), which in turn locks the tetrahedral framework and makes the M-site occupant nearly irrelevant to expansion behavior. Indeed, in feldspar series with coupled chemical substitution it is the change away from a 1:1 Al:Si ratio that gives feldspars greater freedom to expand. Overall, the relationships among α, chemical composition, and room-temperature volume provide useful predictive tools for estimating feldspar thermal expansion and give insight into the controls of expansion behavior in

  17. Alkali-granitoids as fragments within the ordinary chondrite Adzhi-Bogdo: Evidence for highly fractionated, alkali-granitic liquids on asteroids

    NASA Technical Reports Server (NTRS)

    Bischoff, A.

    1993-01-01

    Adzhi-Bogdo is an ordinary chondrite regolith breccia (LL3-6) that fell October 30, 1949 in Gobi Altay, Mongolia. The rock consists of submm- to cm-sized fragments embedded in a fine-grained elastic matrix. The breccia contains various types of clasts, some of which must be of foreign heritage. Based on chemical compositions of olivine some components have to be classified as L-type. Components of the breccia include chondrules, impact melts (some are K-rich, similar to those found in other LL-chondrites, highly recrystalized rock fragments ('granulites'), pyroxene-rich fragments with achondritic textures, and alkali-granitoidal fragments that mainly consist of K-feldspar and quartz or tridymite. Probably, this is the first report on granitoids from asteroids. It can be ruled out that these fragments represent huge rock assemblages of the parent body like granites do on Earth. Therefore, to avoid misunderstandings, these rocks will be designated as granitoids. In one thin section four granitoids were observed. The main phases within these clasts are K-feldspar and SiO2-phases. Minor phases include albite, Cl-apatite, whitlockite, ilmenite, zircon, Ca-poor pyroxene, and an unidentified Na,Ti-bearing silicate. Based on chemical composition and on optical properties quartz appears to be the SiO2-phase in two fragments, whereas tridymite seems to occur in the other two. The calculated formula of the unknown Na,Ti-rich silicate is very close to (Na,Ca)2.7(Fe,Mg)6(Ti)1.3(Si)7(O)24. Quartz and K-feldspar can reach sizes of up to 700 microns. Thus, the fragments can be described as coarse-grained (by chondritic standards). This is especially the case considering that quartz and K-feldspar are very rare minerals in ordinary chondrites. Representative analyses of minerals from some granitoidal clasts are given. Based on the mineral compositions and the modal abundances the bulk compositions were calculated. Besides these granitoidal rocks, pyroxene-rich fragments occur that

  18. Mineral resource of the month: feldspar

    USGS Publications Warehouse

    Potter, Michael J.

    2004-01-01

    The United States is the third leading producer of feldspar worldwide, after Italy and Turkey, according to data published by the U.S. Geological Survey. Foreign analysts indicate that China is also a leading feldspar producer, but official production data are not available. Feldspars are aluminum silicate minerals that contain varying proportions of calcium, potassium and sodium. Usually occurring in igneous rocks, feldspars are estimated to constitute 60 percent of Earth’s crust.

  19. Cathodoluminescence microscopy and petrographic image analysis of aggregates in concrete pavements affected by alkali-silica reaction

    SciTech Connect

    Stastna, A.; Sachlova, S.; Pertold, Z.; Prikryl, R.; Leichmann, J.

    2012-03-15

    Various microscopic techniques (cathodoluminescence, polarizing and electron microscopy) were combined with image analysis with the aim to determine a) the modal composition and degradation features within concrete, and b) the petrographic characteristics and the geological types (rocks, and their provenance) of the aggregates. Concrete samples were taken from five different portions of Highway Nos. D1, D11, and D5 (the Czech Republic). Coarse and fine aggregates were found to be primarily composed of volcanic, plutonic, metamorphic and sedimentary rocks, as well as of quartz and feldspar aggregates of variable origins. The alkali-silica reaction was observed to be the main degradation mechanism, based upon the presence of microcracks and alkali-silica gels in the concrete. Use of cathodoluminescence enabled the identification of the source materials of the quartz aggregates, based upon their CL characteristics (i.e., color, intensity, microfractures, deformation, and zoning), which is difficult to distinguish only employing polarizing and electron microscopy. - Highlights: Black-Right-Pointing-Pointer ASR in concrete pavements on the Highways Nos. D1, D5 and D11 (Czech Republic). Black-Right-Pointing-Pointer Cathodoluminescence was combined with various microscopic techniques and image analysis. Black-Right-Pointing-Pointer ASR was attributed to aggregates. Black-Right-Pointing-Pointer Source materials of aggregates were identified based on cathodoluminescence characteristics. Black-Right-Pointing-Pointer Quartz comes from different volcanic, plutonic and metamorphic parent rocks.

  20. Energy related studies utilizing K-feldspar thermochronology

    SciTech Connect

    Not Available

    1993-01-01

    Two distinct sources of information are available from a [sup 40]Ar/[sup 39]Ar step-heating experiment: the age spectrum and Arrhenius plot. Model ages are calculated from the flux of radiogenic argon ([sup 40]Ar*) (assuming trapped argon of atmospheric composition) relative to the reactor produced [sup 39]Ar evolved during discrete laboratory heating steps. With the additional assumption that the [sup 39]Ar is uniformly distributed within the sample, we can infer the spatial distribution of the daughter product. ne associated Arrhenius plot, derived by plotting the diffusion coefficient (obtained from the inversion of the 39[sup Ar] release function assuming a single domain) against the inverse temperature of laboratory heating, are a convolution of the parameters which characterize the individual diffusion domains (whether these be dictated by varying length scale, energetics, etc.). However, many and perhaps Most [sup 40]Ar/[sup 39]Ar age spectra for slowly cooled alkali feldspars are significantly different from model age spectra calculated assuming a single diffusion-domain size. In addition, Arrhenius plots calculated from the measured loss of [sup 39]Ar during the step heating experiment show departures from linearity that are inconsistent with diffusion from domains of equal size. By extending the single diffusion-domain closure model (Dodsontype) to apply to minerals with a discrete distribution of domain sizes, we obtained an internally consistent explanation for the commonly observed features of alkali feldspar age spectra and their associated Arrhenius plots.

  1. Exchange of Na+ and K+ between water vapor and feldspar phases at high temperature and low vapor pressure

    USGS Publications Warehouse

    Fournier, R.O.

    1976-01-01

    In order to determine whether gas (steam) containing a small amount of dissolved alkali chloride is effective in promoting base exchange of Na+ and K+ among alkali feldspars and coexisting brine or brine plus solid salt, experiments were carried out at 400-700??C and steam densities ranging down to less than 0.05. For bulk compositions rich in potassium, the low pressure results are close to previous high-pressure results in composition of the fluid and coexisting solid phase. However, when the bulk composition is more sodic, alkali feldspars are relatively richer in potassium at low pressure than at high pressure. This behaviour corresponds to enrichment of potassium in the gas phase relative to coexisting brine and precipitation of solid NaCl when the brine plus gas composition becomes moderately sodic. The gas phase is very effective in promoting base exchange between coexisting alkali feldspars at high temperature and low water pressure. This suggests that those igneous rocks which contain coexisting alkali feldspars out of chemical equilibrium either remained very dry during the high-temperature part of their cooling history or that the pore fluid was a gas containing very little potassium relative to sodium. ?? 1976.

  2. Argon Diffusion in Shocked Pyroxene, Feldspar, and Olivine

    NASA Astrophysics Data System (ADS)

    Weirich, J.; Isachsen, C. E.; Johnson, J. R.; Swindle, T.

    2010-12-01

    low activation energy, somewhat similar to that of unshocked alkali feldspar, despite remaining a high temperature mineral due to a much lower frequency factor. References: [1]Jessberger E. K. and Ostertag R. (1982). GCA 46:1465-1471. [2]Stephan T. and Jessberger E. K. (1992). GCA 56:1591-1605.

  3. Mineral resource of the month: feldspar

    USGS Publications Warehouse

    ,

    2011-01-01

    The article focuses on feldspar, a mineral that composes of potassium, sodium, or a fusion of the two, and its various applications. According to estimates by scientists, the mineral is present at 60 percent of the crust of Earth, wherein it is commonly used for making glass and ceramics. Global mining of feldspar was about 20 million metric tons in 2010, wherein Italy, Turkey, and China mine 55 percent of the feldspar worldwide.

  4. Alteration and fluid flow around a sulfide-carbonate-quartz vein, Lucky Friday mine, Northern Idaho

    SciTech Connect

    Gitlin, E.C.

    1985-01-01

    Wall rocks at the Lucky Friday mine, Coeur d'Alene district, Idaho, contain a >500m wide zone about a steeply dipping Pb-Zn-Ag vein. This zone has experienced local conditions distinct from the regional metamorphism of the quartzite + argillite host rock. Within the district, the host rock (Precambrian Revett Formation) has undergone low grade metamorphism and contains varying proportions of quartz, phengitic muscovite, detrital alkali feldspar, magnetite, hematite, ilmenite, rutile, zircon, tourmaline, +/- calcite, +/- ankeritic dolomite. In contrast, the Lucky Friday wall rocks lack feldspar and Fe-bearing oxides, and contain Fe-poor muscovite and up to 40% carbonate: siderite, ankerite, and/or calcite. A comparison of district-wide Revett rocks with Lucky Friday wall rocks suggests that the wall rocks have undergone localized dephengitization with concomitant Fe-enrichment in the carbonates and Fe-depletion of the oxides. Pertinent metamorphic reactions consume CO/sub 2/ and liberate H/sub 2/O. Fluid inclusions from the vein and wall rock stringers have homogenization temperatures from approx. =200/sup 0/ to <375/sup 0/C, but they define no temperature gradient. With few exceptions, compositions of the carbonates are identical throughout the altered wall rock. These observations suggest that the carbonate subzone contacts are not isograds but isofluxes: the loci of equivalent fluid/reactant mineral ratio. The disposition of isofluxes around a dominant fluid channelway, i.e. the vein, affords an opportunity to interpret fluid flow pathways during low temperatures metamorphism.

  5. Comparative Petrographic Maturity of River and Beach Sand, and Origin of Quartz Arenites.

    ERIC Educational Resources Information Center

    Ferree, Rob A.; And Others

    1988-01-01

    Describes a deterministic computer model that incorporates: (1) initial framework composition; (2) abrasion factors for quartz, feldspar, and rock fragments; and (3) a fragmentation ratio for rock fragments to simulate the recycling of coastal sands by rivers and beaches. (TW)

  6. Secondary porosity revisited: The chemistry of feldspar dissolution by carboxylic acids and anions

    SciTech Connect

    Stoessell, R.K. ); Pittman, E.D. )

    1990-12-01

    Carboxylic acids in subsurface waters have been proposed as agents for dissolving feldspars and complexing aluminum to create secondary porosity in sandstones. Previously published experimental work indicated high aluminum mobility in the presence of carboxylic acid solutions. In order to further evaluate aluminum mobility, alkali feldspar dissolution experiments were run at 100C and 300 bars in the presence of mono- and dicarboxylic acids and their anions. Experimental results imply that under reservoir conditions, aluminum-organic anion complexes are insignificant for acetate and propionate and possibly significant for oxalate and malonate. Propionate appeared to inhibit alkali feldspar dissolution and, hence, may retard aluminum mobility. Dissolution of feldspar in the presence of oxalic and acetic acid can be explained by enhanced dissolution kinetics and greater aluminum mobility under low-pH conditions. The general absence of such low-pH fluids in subsurface reservoirs makes this an unlikely mechanism for creating secondary porosity. Also, the thermal instability of oxalate and malonate limits their aluminum-complexing potential in reservoirs at temperatures above 100C.

  7. Systematic variations of argon diffusion in feldspars and implications for thermochronometry

    NASA Astrophysics Data System (ADS)

    Cassata, William S.; Renne, Paul R.

    2013-07-01

    Coupled information about the time-dependent production and temperature-dependent diffusion of radiogenic argon in feldspars can be used to constrain the thermal evolution attending a host of Earth and planetary processes. To better assess the accuracy of thermal models, an understanding of the mechanisms and pathways by which argon diffuses in feldspars is desirable. Here we present step-heating Ar diffusion experiments conducted on feldspars with diverse compositions, structural states, and microstructural characteristics. The experiments reveal systematic variations in diffusive behavior that appear closely related to these variables, with apparent closure temperatures for 0.1-1 mm grains of ˜200-400 °C (assuming a 10 °C/Ma cooling rate). Given such variability, there is no broadly applicable set of diffusion parameters that can be utilized in feldspar thermal modeling; sample-specific data are required. Diffusion experiments conducted on oriented cleavage flakes do not reveal directionally-dependent diffusive anisotropy to within the resolution limits of our approach (approximately a factor of 2). Additional experiments aimed at constraining the physical significance of the diffusion domain are presented and indicate that unaltered feldspar crystals with or without coherent exsolution lamellae diffuse at the grain-scale, whereas feldspars containing hydrothermal alteration and/or incoherent sub-grain intergrowths do not. Arrhenius plots for argon diffusion in plagioclase and alkali feldspars appear to reflect a confluence of intrinsic diffusion kinetics and structural transitions that occur during incremental heating experiments. These structural transitions, along with sub-grain domain size variations, cause deviations from linearity (i.e., upward and downward curvature) on Arrhenius plots. An atomistic model for Arrhenius behavior is proposed that incorporates the variable lattice deformations of different feldspars in response to heating and compression

  8. Systematic variations of argon diffusion in feldspars and implications for thermochronometry

    DOE PAGES

    Cassata, William S.; Renne, Paul R.

    2013-03-07

    Coupled information about the time-dependent production and temperature-dependent diffusion of radiogenic argon in feldspars can be used to constrain the thermal evolution attending a host of Earth and planetary processes. To better assess the accuracy of thermal models, an understanding of the mechanisms and pathways by which argon diffuses in feldspars is desirable. Here we present step-heating Ar diffusion experiments conducted on feldspars with diverse compositions, structural states, and microstructural characteristics. The experiments reveal systematic variations in diffusive behavior that appear closely related to these variables, with apparent closure temperatures for 0.1–1 mm grains of ~200–400 °C (assuming a 10more » °C/Ma cooling rate). Given such variability, there is no broadly applicable set of diffusion parameters that can be utilized in feldspar thermal modeling; sample-specific data are required. Diffusion experiments conducted on oriented cleavage flakes do not reveal directionally-dependent diffusive anisotropy to within the resolution limits of our approach (approximately a factor of 2). Additional experiments aimed at constraining the physical significance of the diffusion domain are presented and indicate that unaltered feldspar crystals with or without coherent exsolution lamellae diffuse at the grain-scale, whereas feldspars containing hydrothermal alteration and/or incoherent sub-grain intergrowths do not. Arrhenius plots for argon diffusion in plagioclase and alkali feldspars appear to reflect a confluence of intrinsic diffusion kinetics and structural transitions that occur during incremental heating experiments. These structural transitions, along with sub-grain domain size variations, cause deviations from linearity (i.e., upward and downward curvature) on Arrhenius plots. An atomistic model for Arrhenius behavior is proposed that incorporates the variable lattice deformations of different feldspars in response to heating and

  9. Systematic variations of argon diffusion in feldspars and implications for thermochronometry

    SciTech Connect

    Cassata, William S.; Renne, Paul R.

    2013-03-07

    Coupled information about the time-dependent production and temperature-dependent diffusion of radiogenic argon in feldspars can be used to constrain the thermal evolution attending a host of Earth and planetary processes. To better assess the accuracy of thermal models, an understanding of the mechanisms and pathways by which argon diffuses in feldspars is desirable. Here we present step-heating Ar diffusion experiments conducted on feldspars with diverse compositions, structural states, and microstructural characteristics. The experiments reveal systematic variations in diffusive behavior that appear closely related to these variables, with apparent closure temperatures for 0.1–1 mm grains of ~200–400 °C (assuming a 10 °C/Ma cooling rate). Given such variability, there is no broadly applicable set of diffusion parameters that can be utilized in feldspar thermal modeling; sample-specific data are required. Diffusion experiments conducted on oriented cleavage flakes do not reveal directionally-dependent diffusive anisotropy to within the resolution limits of our approach (approximately a factor of 2). Additional experiments aimed at constraining the physical significance of the diffusion domain are presented and indicate that unaltered feldspar crystals with or without coherent exsolution lamellae diffuse at the grain-scale, whereas feldspars containing hydrothermal alteration and/or incoherent sub-grain intergrowths do not. Arrhenius plots for argon diffusion in plagioclase and alkali feldspars appear to reflect a confluence of intrinsic diffusion kinetics and structural transitions that occur during incremental heating experiments. These structural transitions, along with sub-grain domain size variations, cause deviations from linearity (i.e., upward and downward curvature) on Arrhenius plots. An atomistic model for Arrhenius behavior is proposed that incorporates the variable lattice deformations of different feldspars in response to heating and

  10. Raman Spectroscopic Characterization of the Feldspars: Implications for Surface Mineral Characterization in Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Freeman, J. J.; Wang, Alian; Kuebler, K. E.; Haskin, L. A.

    2003-01-01

    The availability in the last decade of improved Raman instrumentation using small, stable, intense lasers, sensitive CCD array detectors, and advanced fast grating systems enabled us to develop the Mars Microbeam Raman Spectrometer (MMRS), a field-portable Raman spectrometer with precision and accuracy capable of identifying minerals and their different compositions. For example, we can determine Mg cation ratios in pyroxenes and olivines to +/-0.1 on the basis of Raman peak positions. Feldspar is another major mineral formed in igneous systems whose characterization is important for determining rock petrogenesis and alteration. From their Raman spectral pattern, feldspars can be readily distinguished from ortho- and chain-silicates and from other tecto-silicates such as quartz and zeolites. We show here how well Raman spectral analysis can distinguish among members within the feldspar group.

  11. Authigenic K-feldspar in salt rock (Haselgebirge Formation, Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Leitner, Christoph

    2015-04-01

    The crystallisation of authigenic quartz under low temperature, saline conditions is well known (Grimm, 1962). Also the growth of low temperature authigenic feldspar in sediments is a long known phenomenon (Kastner & Siever, 1979; Sandler et al., 2004). In this study we intend to show that halite (NaCl) is a major catalyser for authigenic mineral growth. During late Permian (c. 255-250 Ma), when the later Eastern Alps were located around north of the equator, the evaporites of the Haselgebirge Formation were deposited (Piller et al., 2004). The Haselgebirge Fm. consists in salt mines of a two-component tectonite of c. 50 % halite and 50 % sedimentary clastic and other evaporite rocks (Spötl 1998). Most of the clastic rocks are mud- to siltstones ("mudrock"). During this study, we investigated rare sandstones embedded in salt rock form four Alpine salt mines. Around 40 polished thin sections were prepared by dry grinding for thin section analysis and scanning electron microscopy. The sandstones consist mainly of quartz, K-feldspar, rock fragments, micas, accessory minerals and halite in the pore space. They are fine grained and well sorted. Mudrock clasts in sandstone were observed locally, and also coal was observed repeatedly. Asymmetric ripples were found only in the dimension of millimeters to centimeters. Euhedral halite crystals in pores indicate an early presence of halite. During early diagenesis, authigenic minerals crystallized in the following chronological order. (1) Where carbonate (mainly magnesite) occurred, it first filled the pore space. Plant remains were impregnated with carbonate. (2) Halite precipitated between the detritic sandstone grains. Carbonate grains can be completely embedded in halite. (3) K-feldspar and quartz grains usually expose a detritic core and a later grown euhedral inclusion free rim. Euhedral rims of K-feldspar often also enclose a halite core. K-feldspar replaced the pre-existing halite along former grain boundaries of

  12. Preferential cataclastic grain size reduction of feldspar in deformation bands in poorly consolidated arkosic sands

    PubMed Central

    Exner, Ulrike; Tschegg, Cornelius

    2012-01-01

    This study presents microstructural as well as bulk and mineral chemical investigations of deformation bands in uncemented, friable arkosic sands of Miocene age (Vienna Basin, Austria). Our microstructural study indicates grain size reduction by grain flaking in deformation bands with small offsets (0.5–8 cm), and dominant intragranular fracturing and cataclasis of altered feldspar grains at larger displacements (up to 60 cm). Relative to quartz, the sericitized feldspar grains are preferably fractured and abraded, which additionally leads to an enrichment of mainly phyllosilicates by mechanical expulsion from feldspar. Both cataclasis of quartz and feldspar grains and enrichment of phyllosilicates result in grain size reduction within the deformation bands. The measured reduction in porosity of up to 20% is in some cases associated with a permeability reduction, reflected in the retention of iron-oxide rich fluids along deformation bands. These deformation bands formed at very shallow burial depths in unconsolidated sediments indicate that fault sealing may occur in the absence of chemical alteration of the deformation bands and lead to a compartmentalization of a groundwater or hydrocarbon reservoir. PMID:26523078

  13. Preferential cataclastic grain size reduction of feldspar in deformation bands in poorly consolidated arkosic sands

    NASA Astrophysics Data System (ADS)

    Exner, Ulrike; Tschegg, Cornelius

    2012-10-01

    This study presents microstructural as well as bulk and mineral chemical investigations of deformation bands in uncemented, friable arkosic sands of Miocene age (Vienna Basin, Austria). Our microstructural study indicates grain size reduction by grain flaking in deformation bands with small offsets (0.5-8 cm), and dominant intragranular fracturing and cataclasis of altered feldspar grains at larger displacements (up to 60 cm). Relative to quartz, the sericitized feldspar grains are preferably fractured and abraded, which additionally leads to an enrichment of mainly phyllosilicates by mechanical expulsion from feldspar. Both cataclasis of quartz and feldspar grains and enrichment of phyllosilicates result in grain size reduction within the deformation bands. The measured reduction in porosity of up to 20% is in some cases associated with a permeability reduction, reflected in the retention of iron-oxide rich fluids along deformation bands. These deformation bands formed at very shallow burial depths in unconsolidated sediments indicate that fault sealing may occur in the absence of chemical alteration of the deformation bands and lead to a compartmentalization of a groundwater or hydrocarbon reservoir.

  14. Preferential cataclastic grain size reduction of feldspar in deformation bands in poorly consolidated arkosic sands.

    PubMed

    Exner, Ulrike; Tschegg, Cornelius

    2012-10-01

    This study presents microstructural as well as bulk and mineral chemical investigations of deformation bands in uncemented, friable arkosic sands of Miocene age (Vienna Basin, Austria). Our microstructural study indicates grain size reduction by grain flaking in deformation bands with small offsets (0.5-8 cm), and dominant intragranular fracturing and cataclasis of altered feldspar grains at larger displacements (up to 60 cm). Relative to quartz, the sericitized feldspar grains are preferably fractured and abraded, which additionally leads to an enrichment of mainly phyllosilicates by mechanical expulsion from feldspar. Both cataclasis of quartz and feldspar grains and enrichment of phyllosilicates result in grain size reduction within the deformation bands. The measured reduction in porosity of up to 20% is in some cases associated with a permeability reduction, reflected in the retention of iron-oxide rich fluids along deformation bands. These deformation bands formed at very shallow burial depths in unconsolidated sediments indicate that fault sealing may occur in the absence of chemical alteration of the deformation bands and lead to a compartmentalization of a groundwater or hydrocarbon reservoir.

  15. Using Neutron Diffraction to Determine the Low-Temperature Behavior of Pb2+ in Lead Feldspar

    NASA Astrophysics Data System (ADS)

    Kolbus, L. M.; Anovitz, L. M.; Chakoumackos, B. C.; Wesolowski, D. J.

    2014-12-01

    Feldspar minerals comprise 60% of the Earth's crust, so it imperative that the properties of feldspar be well understood for seismic modeling. The structure of feldspar consists of a three-dimensional framework of strongly-bonded TO4 tetrahedra formed by the sharing of oxygen atoms between tetrahedra. The main solid solution series found in natural feldspars are alkali NaAlSi3O8 -KAlSi3O8 and plagioclase CaAl2Si2O8-NaAlSi3O8. Recently, efforts have been made to systematically quantify feldspars structural change at non-ambient temperatures by considering only the relative tilts of the tetrahedral framework [1]. This serves as a tool to predict various behaviors of the structure such as the relative anisotropy of unit cell parameters and volume evolution with composition and temperature. Monoclinic feldspars are well predicted by the model [1], but discrepancies still remain between the model predictions and real structures with respect to absolute values of the unit cell parameters. To improve the existing model, a modification must be made to account for the M-cation interaction with its surrounding oxygen atoms. We have, therefore, chosen to study the structure of Pb-feldspar (PbAl2Si2O8), which provides the opportunity to characterize a monoclinic Al2Si2 feldspar containing a large M-site divalent cation using neutron diffraction. Neutron diffraction allows for the characterization of the M-site cation interaction between the oxygen atoms in the polyhedral cage by providing information to accurately determine the atomic displacement parameters.. Lead feldspar was synthesized for this study using the method described in [2], and confirmed to have a monoclinic C2/m space group. In this talk we will present structural determinations and atomic displacement parameters of Pb-feldspar from 10 - 300K generated from Neutron diffraction at the POWGEN beamline at the Spallation Neutron Source at Oak Ridge National lab, and compare our results to those predicted by the

  16. Shock effects in plagioclase feldspar from the Mistastin Lake impact structure, Canada

    NASA Astrophysics Data System (ADS)

    Pickersgill, Annemarie E.; Osinski, Gordon R.; Flemming, Roberta L.

    2015-09-01

    Shock metamorphism, caused by hypervelocity impact, is a poorly understood process in feldspar due to the complexity of the crystal structure, the relative ease of weathering, and chemical variations, making optical studies of shocked feldspars challenging. Understanding shock metamorphism in feldspars, and plagioclase in particular, is vital for understanding the history of Earth's moon, Mars, and many other planetary bodies. We present here a comprehensive study of shock effects in andesine and labradorite from the Mistastin Lake impact structure, Labrador, Canada. Samples from a range of different settings were studied, from in situ central uplift materials to clasts from various breccias and impact melt rocks. Evidence of shock metamorphism includes undulose extinction, offset twins, kinked twins, alternate twin deformation, and partial to complete transformation to diaplectic plagioclase glass. In some cases, isotropization of alternating twin lamellae was observed. Planar deformation features (PDFs) are notably absent in the plagioclase, even when present in neighboring quartz grains. It is notable that various microlites, twin planes, and compositionally different lamellae could easily be mistaken for PDFs and so care must be taken. A pseudomorphous zeolite phase (levyne-Ca) was identified as a replacement mineral of diaplectic feldspar glass in some samples, which could, in some instances, also be potentially mistaken for PDFs. We suggest that the lack of PDFs in plagioclase could be due to a combination of structural controls relating to the crystal structure of different feldspars and/or the presence of existing planes of weakness in the form of twin and cleavage planes.

  17. Biochemical evolution II: origin of life in tubular microstructures on weathered feldspar surfaces.

    PubMed

    Parsons, I; Lee, M R; Smith, J V

    1998-12-22

    Mineral surfaces were important during the emergence of life on Earth because the assembly of the necessary complex biomolecules by random collisions in dilute aqueous solutions is implausible. Most silicate mineral surfaces are hydrophilic and organophobic and unsuitable for catalytic reactions, but some silica-rich surfaces of partly dealuminated feldspars and zeolites are organophilic and potentially catalytic. Weathered alkali feldspar crystals from granitic rocks at Shap, north west England, contain abundant tubular etch pits, typically 0.4-0.6 microm wide, forming an orthogonal honeycomb network in a surface zone 50 microm thick, with 2-3 x 10(6) intersections per mm2 of crystal surface. Surviving metamorphic rocks demonstrate that granites and acidic surface water were present on the Earth's surface by approximately 3.8 Ga. By analogy with Shap granite, honeycombed feldspar has considerable potential as a natural catalytic surface for the start of biochemical evolution. Biomolecules should have become available by catalysis of amino acids, etc. The honeycomb would have provided access to various mineral inclusions in the feldspar, particularly apatite and oxides, which contain phosphorus and transition metals necessary for energetic life. The organized environment would have protected complex molecules from dispersion into dilute solutions, from hydrolysis, and from UV radiation. Sub-micrometer tubes in the honeycomb might have acted as rudimentary cell walls for proto-organisms, which ultimately evolved a lipid lid giving further shelter from the hostile outside environment. A lid would finally have become a complete cell wall permitting detachment and flotation in primordial "soup." Etch features on weathered alkali feldspar from Shap match the shape of overlying soil bacteria.

  18. Petrology and geochemistry of alkali gabbronorites from Lunar Breccia 67975

    NASA Astrophysics Data System (ADS)

    James, Odette B.; Lindstrom, Marilyn M.; Flohr, Marta K.

    Clasts of an unusual type of lunar highlands igneous rock, alkali gabbronorite, have been found in Apollo 16 breccia 67975. The alkali gabbronorites form two distinct subgroups, magnesian and ferroan. Modes and bulk compositions are highly varied. The magnesian alkali gabbronorites are composed of bytownitic plagioclase (Or2-5An82-89), hypersthene (Wo3-5En49-62), augite (Wo39-42En36-44), a silica mineral, and trace Ba-rich K-feldspar. The ferroan alkali gabbronorites are composed of ternary plagioclase (Or11-22An65-74), pigeonite (Wo6-9En35-47), augite (Wo38-40En29-35), Ba-rich K-feldspar, and a silica mineral. Trace minerals in both subgroups are apatite, REE-rich whitlockite, and zircon. The magnesian and ferroan alkali gabbronorites appear to have formed by progressive differentiation of the same, or closely related, parent magmas; the compositional data indicate that these magmas were REE-rich. The ternary plagioclase is probably a high-temperature metastable phase formed during crystallization. In composition and mineralogy, the 67975 alkali gabbronorites show many similarities to Apollo 12 and 14 alkali norites, alkali gabbronorites, and alkali anorthosites, and all these rocks together constitute a distinctive alkali suite. In addition, the alkali gabbronorites show some similarities to KREEP basalts, Mg-norites, and some felsites. These data suggest genetic links between some or all of these types of pristine rocks. Two types of relationships are possible. The first is that alkali-suite rocks crystallized in plutons of KREEP basalt magma, and KREEP basalts are their extrusive equivalents. The second is that the alkali-suite rocks and some felsites all crystallized in plutons of Mg-norite parent magmas, and KREEP basalt magmas formed by remelting of these plutons. Additional studies are needed to resolve which of these hypotheses is correct.

  19. Petrology and geochemistry of alkali gabbronorites from lunar breccia 67975

    NASA Astrophysics Data System (ADS)

    James, Odette B.; Lindstrom, Marilyn M.; Flohr, Marta K.

    1987-09-01

    Clasts of an unusual type of lunar highlands igneous rock, alkali gabbronorite, have been found in Apollo 16 breccia 67975. The alkali gabbronorites form two distinct subgroups, magnesian and ferroan. Modes and bulk compositions are highly varied. The magnesian alkali gabbronorites are composed of bytownitic plagioclase (Or2-5An82-89), hypersthene (Wo3-5En49-62), augite (Wo39-42En36-44), a silica mineral, and trace Ba-rich K-feldspar. The ferroan alkali gabbronorites are composed of ternary plagioclase (Or11-22An65-74), pigeonite (Wo6-9En35-47), augite (Wo38-40En29-35), Ba-rich K-feldspar, and a silica mineral. Trace minerals in both subgroups are apatite, REE-rich whitlockite, and zircon. The magnesian and ferroan alkali gabbronorites appear to have formed by progressive differentiation of the same, or closely related, parent magmas; the compositional data indicate that these magmas were REE-rich. The ternary plagioclase is probably a high-temperature metastable phase formed during crystallization. In composition and mineralogy, the 67975 alkali gabbronorites show many similarities to Appllo 12 and 14 alkali norites, alkali gabbronorites, and alkali anorthosites, and all these rocks together constitute a distinctive alkali suite. In addition, the alkali gabbronorites, show some similarities to KREEP basalts, Mg-norites, and some felsites. These data suggest genetic links between some or all of these types of pristine rocks. Two types of relationships are possible. The first is that alkali-suite rocks crystallized in plutons of KREEP basalt magma, and KREEP basalts are their extrusive equivalents. The second is that the alkali-suite rocks and some felsites all crystallized in plutons of Mg-norite parent magmas, and KREEP basalt magmas formed by remelting of these plutons. Additional studies are needed to resolve which of these hypotheses is correct.

  20. Deformation behaviour of feldspar in greenschist facies granitoide shear zones from the Austroalpine basement to the south of the western Tauern window, Eastern Alps

    NASA Astrophysics Data System (ADS)

    Hentschel, Felix; Trepmann, Claudia

    2015-04-01

    Objective of this study is to elucidate the feldspar deformation behaviour at greenschist facies conditions relevant for the long-term rheological properties of continental crust. Uncertainties in models for the rheological properties are partly due to a poor knowledge of the deformation mechanisms taking place in granitoid rocks at inaccessible depth. The deformation behaviour of feldspar, the most abundant mineral in the continental crust, is characterized by an interaction of brittle, dissolution-precipitation and crystal-plastic processes, which is difficult to evaluate in experiments given the problematic extrapolation of experimental conditions to reasonable natural conditions. However, microfabrics of metamorphic granitoid rocks record the grain-scale deformation mechanisms and involved chemical reactions proceeding during their geological history. This usually includes deformation and modification through several stages in space (depth, i.e., P, T conditions) and/or time. For deciphering the rock's record this implies both, challenge and chance to resolve these different stages. Here, we use the deformation record of mylonitic pegmatites from the Austroalpine basement south to the western Tauern window. The structural, crystallographic and chemical characteristics of the feldspar microfabrics are determined via micro-analytical techniques (polarized light microscopy, scanning electron microscopy, SEM, electron back scatter diffraction, EBSD) to identify the relevant deformation mechanisms and deformation conditions. The pegmatites represent a relatively simple Ca-poor granitoid system, mineralogically dominated by albite-rich plagioclase, K-feldspar and quartz. The matrix of the mylonitic pegmatites is composed of alternating monomineralic albite and quartz ribbons defining the foliation. Fragmented tourmaline and K-feldspar porphyroclasts occur isolated within the matrix. At sites of dilation along the stretching lineation K-feldspar porphyroclasts show

  1. Quartz ball value

    NASA Technical Reports Server (NTRS)

    Goetz, C.; Ingle, W. M.

    1979-01-01

    Quartz ball valve consisting of two quartz joints sealed back-to-back and seated in quartz sockets perform at temperatures of up to 1,250 C and in corrosive chemical environments without contamination or degradation.

  2. Two-feldspar geothermometry: a review and revision for slowly cooled rocks

    NASA Astrophysics Data System (ADS)

    Kroll, Herbert; Evangelakakis, Christos; Voll, Gerhard

    1993-09-01

    Recent improvements in the experimental and thermodynamic basis of two-feldspar geothermometry allow one to recover temperatures of coexistence more reliably. Some problems, however, persist: (1) the experimental solvi by Seck (1971a) and Elkins and Grove (1990) differ from each other; (2) it is not known to what extent Na-K-Ca exchange equilibrium is approached; (3) both solvi are probably metastable with regard to Al, Si order; (4) it is difficult to judge how closely high-temperature natural feldspars compare to this situation; (5) the thermodynamic treatment neglects phase transformations; (6) the temperature dependence of the Margules parameters used to model non-ideal mixing behaviour may not be linear; (7) it is not clear which expressions should be used to describe ideal activities. With these caveats in mind we treat the problem of retrograde resetting in high-grade metamorphic rocks that were slowly cooled under essentially dry conditions. Coexisting feldspars from such rocks commonly do not plot on a common isotherm. Thus temperatures derived from such pairs using any of the proposed two-feldspar geothermometers will necessarily be in error. We suggest that the non-equilibrium compositions result from retrograde intercrystalline K-Na exchange. This exchange continues after the plagioclase and alkali feldspar have already become essentially closed systems with respect to Al-Si exchange, which is a prerequisite for (Na,K)-Ca exchange. We use a modified version of the Fuhrman and Lindsley (1988) programme to reverse the K-Na exchange and derive concordant temperatures.

  3. Characterization and Thermodynamics Studies of Feldspar and Feldspathoid Minerals

    NASA Astrophysics Data System (ADS)

    Rudow, M.; Lilova, K.

    2015-12-01

    The application of thermal analysis and calorimetry for the studies of minerals has a history as long as the existence of the thermal methods themselves. New advanced calorimetric techniques have been developed for more accurate characterization of both bulk and nano materials thus impacting their design, processing, and applications. TG-DTA and TG-DSC are used to characterize the composition of complex minerals (e.g. [KxNa1-x(AlSi3)O8]) based on the weight changes and phase transformations observed with temperature increase. Additionally, those techniques allow to determine the quantity of the different types of water contained in natural feldspars and feldspathoids (absorbed, interlayer, structural). The results for several clays will be discussed. The geochemical properties and thermal stability of another class of minerals - aluminosilicate frameworks (alkali sodalities, natrolites, etc.) as related to high-level nuclear waste treatment facilities, radioactive waste storage and management were studied. The natural sodalite Na8[Al6Si6O24]Cl2 and similar frameworks with different anions are part of sodium-aluminosilicate (NAS) low activity radioactive waste produced during steam reforming process treatment. The enthalpies and entropies of formation and the hydration enthalpies of the above-mentioned feltspathoids are obtained and the effect of the different cations and anions on the thermodynamic stability was studied. The results will allow to predict the long term behavior of the compounds in the environment under different conditions.

  4. Brittle grain-size reduction of feldspar, phase mixing and strain localization in granitoids at mid-crustal conditions (Pernambuco shear zone, NE Brazil)

    NASA Astrophysics Data System (ADS)

    Viegas, Gustavo; Menegon, Luca; Archanjo, Carlos

    2016-03-01

    The Pernambuco shear zone (northeastern Brazil) is a large-scale strike-slip fault that, in its eastern segment, deforms granitoids at mid-crustal conditions. Initially coarse-grained (> 50 µm) feldspar porphyroclasts are intensively fractured and reduced to an ultrafine-grained mixture consisting of plagioclase and K-feldspar grains (< 15 µm) localized in C' shear bands. Detailed microstructural observations and electron backscatter diffraction (EBSD) analysis do not show evidence of intracrystalline plasticity in feldspar porphyroclasts and/or fluid-assisted replacement reactions. Quartz occurs either as thick (˜ 1-2 mm) monomineralic veins transposed along the shear zone foliation or as thin ribbons ( ≤ 25 µm width) dispersed in the feldspathic mixture. The microstructure and c axis crystallographic-preferred orientation are similar in the thick monomineralic veins and in the thin ribbons, and they suggest dominant subgrain rotation recrystallization and activity of prism < a > and rhomb < a > slip systems. However, the grain size in monophase recrystallized domains decreases when moving from the quartz monomineralic veins to the thin ribbons embedded in the feldspathic C' bands (14 µm vs. 5 µm respectively). The fine-grained feldspar mixture has a weak crystallographic-preferred orientation interpreted as the result of shear zone parallel-oriented growth during diffusion creep, as well as the same composition as the fractured porphyroclasts, suggesting that it generated by mechanical fragmentation of rigid porphyroclasts with a negligible role of chemical disequilibrium. Once C' shear bands were generated and underwent viscous deformation at constant stress conditions, the polyphase feldspathic aggregate would have deformed at a strain rate 1 order of magnitude faster than the monophase quartz monomineralic veins, as evidenced by applying experimentally and theoretically calibrated flow laws for dislocation creep in quartz and diffusion creep in

  5. Energy related studies utilizing K-feldspar thermochronology. Progress performance report, 1990--1993

    SciTech Connect

    Not Available

    1993-05-01

    Two distinct sources of information are available from a {sup 40}Ar/{sup 39}Ar step-heating experiment: the age spectrum and Arrhenius plot. Model ages are calculated from the flux of radiogenic argon ({sup 40}Ar*) (assuming trapped argon of atmospheric composition) relative to the reactor produced {sup 39}Ar evolved during discrete laboratory heating steps. With the additional assumption that the {sup 39}Ar is uniformly distributed within the sample, we can infer the spatial distribution of the daughter product. ne associated Arrhenius plot, derived by plotting the diffusion coefficient (obtained from the inversion of the 39{sup Ar} release function assuming a single domain) against the inverse temperature of laboratory heating, are a convolution of the parameters which characterize the individual diffusion domains (whether these be dictated by varying length scale, energetics, etc.). However, many and perhaps Most {sup 40}Ar/{sup 39}Ar age spectra for slowly cooled alkali feldspars are significantly different from model age spectra calculated assuming a single diffusion-domain size. In addition, Arrhenius plots calculated from the measured loss of {sup 39}Ar during the step heating experiment show departures from linearity that are inconsistent with diffusion from domains of equal size. By extending the single diffusion-domain closure model (Dodsontype) to apply to minerals with a discrete distribution of domain sizes, we obtained an internally consistent explanation for the commonly observed features of alkali feldspar age spectra and their associated Arrhenius plots.

  6. Sweeping and Q Measurements at Elevated Temperatures in Quartz,

    DTIC Science & Technology

    1979-05-01

    unsuccessfully. Copper migration is of interest, since neither the metal nor the bipositive ion will migrate. However, the singly charged cuprous ion ...will migrate even though it is larger than the cupric inn. Thus, the charge on the ion seems to be more important than the ionic size. The role of...litn on.. rao ide It n.....wv and idengify by block nanbor) Sweeping Synthetic quartz Solid state electrolysis a-quartz B Elect rodiffus ion Alkali

  7. Petrology and geochemistry of alkali gabbronorites from lunar breccia 67975

    NASA Technical Reports Server (NTRS)

    James, Odette B.; Flohr, Marta K.; Lindstrom, Marilyn M.

    1987-01-01

    Detailed results of petrologic and compositional studies of three clasts found in thin sections of the Apollo 16 lunar breccia 67975 and of four clasts extracted from the breccia (for instrumental neutron activation analysis) prior to thin sectioning are reported. The alkali gabbronorites of the breccia form two distinct subgroups, magnesian and ferroan. The magnesian gabbronorites are composed of bytownitic plagioclase, hypersthene, augite, a silica mineral, and trace Ba-rich K-feldspar. The ferroan gabbronorites are composed of ternary plagioclase, pigeonite, augite, Ba-rich K-feldspar, and a silica mineral. Trace minerals in both subgroups are apatite, REE-rich whitlockite, and zircon. The magnesian and ferroan alkali gabbronorites appear to have formed by progressive differentiation of the same, or closely related, parent REE-rich magmas.

  8. Biochemical evolution. I. Polymerization on internal, organophilic silica surfaces of dealuminated zeolites and feldspars

    PubMed Central

    Smith, Joseph V.

    1998-01-01

    Catalysis at mineral surfaces might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and photochemical gas reactions. Many ideas are implausible in detail because the proposed mineral surfaces strongly prefer water and other ionic species to organic ones. The molecular sieve silicalite (Union Carbide; = Al-free Mobil ZSM-5 zeolite) has a three-dimensional, 10-ring channel system whose electrically neutral Si-O surface strongly adsorbs organic species over water. Three -O-Si tetrahedral bonds lie in the surface, and the fourth Si-O points inwards. In contrast, the outward Si-OH of simple quartz and feldspar crystals generates their ionic organophobicity. The ZSM-5-type zeolite mutinaite occurs in Antarctica with boggsite and tschernichite (Al-analog of Mobil Beta). Archean mutinaite might have become de-aluminated toward silicalite during hot/cold/wet/dry cycles. Catalytic activity of silicalite increases linearly with Al-OH substitution for Si, and Al atoms tend to avoid each other. Adjacent organophilic and catalytic Al-OH regions in nanometer channels might have scavenged organic species for catalytic assembly into specific polymers protected from prompt photochemical destruction. Polymer migration along weathered silicic surfaces of micrometer-wide channels of feldspars might have led to assembly of replicating catalytic biomolecules and perhaps primitive cellular organisms. Silica-rich volcanic glasses should have been abundant on the early Earth, ready for crystallization into zeolites and feldspars, as in present continental basins. Abundant chert from weakly metamorphosed Archaean rocks might retain microscopic clues to the proposed mineral adsorbent/catalysts. Other framework silicas are possible, including ones with laevo/dextro one-dimensional channels. Organic molecules, transition-metal ions, and P occur inside modern feldspars. PMID:9520372

  9. CO2 sequestration in feldspar-rich sandstone: Coupled evolution of fluid chemistry, mineral reaction rates, and hydrogeochemical properties

    NASA Astrophysics Data System (ADS)

    Tutolo, Benjamin M.; Luhmann, Andrew J.; Kong, Xiang-Zhao; Saar, Martin O.; Seyfried, William E.

    2015-07-01

    transport modeling experiments to explore processes occurring during the flow-through experiments, we have found that the overall progress of feldspar hydrolysis is negligibly affected by quartz dissolution, but significantly impacted by the rates of secondary mineral precipitation and their effect on feldspar saturation state. The observations produced here are critical to the development of models of CCUS operations, yet more work, particularly in the quantification of coupled dissolution and precipitation processes, will be required in order to produce models that can accurately predict the behavior of these systems.

  10. Extreme alkali bicarbonate- and carbonate-rich fluid inclusions in granite pegmatite from the Precambrian Rønne granite, Bornholm Island, Denmark

    NASA Astrophysics Data System (ADS)

    Thomas, Rainer; Davidson, Paul; Schmidt, Christian

    2011-02-01

    Our study of fluid and melt inclusions in quartz and feldspar from granite pegmatite from the Precambrian Rønne granite, Bornholm Island, Denmark revealed extremely alkali bicarbonate- and carbonate-rich inclusions. The solid phases (daughter crystals) are mainly nahcolite [NaHCO3], zabuyelite [Li2CO3], and in rare cases potash [K2CO3] in addition to the volatile phases CO2 and aqueous carbonate/bicarbonate solution. Rare melt inclusions contain nahcolite, dawsonite [NaAl(CO3)(OH)2], and muscovite. In addition to fluid and melt inclusions, there are primary CO2-rich vapor inclusions, which mostly contain small nahcolite crystals. The identification of potash as a naturally occurring mineral would appear to be the first recorded instance. From the appearance of high concentrations of these carbonates and bicarbonates, we suggest that the mineral-forming media were water- and alkali carbonate-rich silicate melts or highly concentrated fluids. The coexistence of silicate melt inclusions with carbonate-rich fluid and nahcolite-rich vapor inclusions indicates a melt-melt-vapor equilibrium during the crystallization of the pegmatite. These results are supported by the results of hydrothermal diamond anvil cell experiments in the pseudoternary system H2O-NaHCO3-SiO2. Additionally, we show that boundary layer effects were insignificant in the Bornholm pegmatites and are not required for the origin of primary textures in compositionally simple pegmatites at least.

  11. Synthesis of feldspar bicrystals by direct bonding

    NASA Astrophysics Data System (ADS)

    Heinemann, S.; Wirth, R.; Dresen, G.

    We have produced synthetic feldspar bicrystals using a direct bonding technique. A gem-quality orthoclase crystal from Itrongay, Madagascar, was used for the bonding experiments. Microprobe analysis shows only minor concentrations of iron and sodium. Orthoclase single crystal plates oriented parallel (0 0 1) were cut and chemomechanically polished with silica slurry. From interferometry, final roughness of the square crystal plates was about 0.34 nm. Specimens were wet-chemically cleaned using deionised water. The bonding procedure produced an orthoclase bicrystal with an optically straight grain boundary-oriented parallel (0 0 1), which was investigated by HREM. Along the interface no amorphous layer was observed between lattice fringes of both crystals. We suggest that the bicrystals formed by initial hydrogen bonding and subsequent water loss and polymerisation of silanol and aluminol groups at elevated temperatures.

  12. Hydrothermal Synthesis of Monodisperse Single-Crystalline Alpha-Quartz Nanospheres

    PubMed Central

    Jiang, Xingmao; Jiang, Ying-Bing

    2014-01-01

    Uniformly-sized, single-crystal alpha-quartz nanospheres have been synthesized at 200°C and 15atm under continuous stirring starting from uniform, amorphous Stöber silica colloids and using NaCl and alkali hydroxide as mineralizers. Quartz nanosphere size is controlled by the colloid particle size via direct devitrification. Uniform, high-purity nanocrystalline quartz is important for understanding nanoparticle toxicology and for advanced polishing and nanocomposite fabrication. PMID:21629887

  13. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  14. Near-liquidus growth of feldspar spherulites in trachytic melts: 3D morphologies and implications in crystallization mechanisms

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Mancini, Lucia; Voltolini, Marco; Cicconi, Maria Rita; Mohammadi, Sara; Giuli, Gabriele; Mainprice, David; Paris, Eleonora; Barou, Fabrice; Carroll, Michael R.

    2015-02-01

    The nucleation and growth processes of spherulitic alkali feldspar have been investigated in this study through X-ray microtomography and electron backscatter diffraction (EBSD) data. Here we present the first data on Shape Preferred Orientation (SPO) and Crystal Preferred Orientation (CPO) of alkali feldspar within spherulites. The analysis of synchrotron X-ray microtomography and EBSD datasets allowed us to study the morphometric characteristics of spherulites in trachytic melts in quantitative fashion, highlighting the three-dimensional shape, preferred orientation, branching of lamellae and crystal twinning, providing insights about the nucleation mechanism involved in the crystallization of the spherulites. The nucleation starts with a heterogeneous nucleus (pre-existing crystal or bubble) and subsequently it evolves forming "bow tie" morphologies, reaching radially spherulitic shapes in few hours. Since each lamella within spherulite is also twinned, these synthetic spherulites cannot be considered as single nuclei but crystal aggregates originated by heterogeneous nucleation. A twin boundary may have a lower energy than general crystal-crystal boundaries and many of the twinned grains show evidence of strong local bending which, combined with twin plane, creates local sites for heterogeneous nucleation. This study shows that the growth rates of the lamellae (10- 6-10- 7 cm/s) in spherulites are either similar or slightly higher than that for single crystals by up to one order of magnitude. Furthermore, the highest volumetric growth rates (10- 11-10- 12 cm3/s) show that the alkali feldspar within spherulites can grow fast reaching a volumetric size of ~ 10 μm3 in 1 s.

  15. Lunar granites with unique ternary feldspars

    NASA Technical Reports Server (NTRS)

    Ryder, G.; Stoeser, D. B.; Marvin, U. B.; Bower, J. F.

    1975-01-01

    An unusually high concentration of granitic fragments, with textures ranging from holocrystalline to glassy, occurs throughout Boulder 1, a complex breccia of highland rocks from Apollo 17, Station 2. Among the minerals included in the granites are enigmatic K-Ca-rich feldspars that fall in the forbidden region of the ternary diagram. The great variability in chemistry and texture is probably the result of impact degradation and melting of a granitic source-rock. Studies of the breccia matrix suggest that this original granitic source-rock may have contained more pyroxenes and phosphates than most of the present clasts contain. Petrographic observations on Apollo 15 KREEP basalts indicate that granitic liquids may be produced by differentiation without immiscibility, and the association of the granites with KREEP-rich fragments in the boulder suggests that the granites represent a residual liquid from the plutonic fractional crystallization of a KREEP-rich magma. Boulder 1 is unique among Apollo 17 samples in its silica-KREEP-rich composition. We conclude that the boulder represents a source-rock unlike the bedrock of South Massif.

  16. Feldspar Variability in Northwest Africa 7034

    NASA Technical Reports Server (NTRS)

    Santos, A. R.; Lewis, J. A.; Agee, C. B.; Humayun, M.; McCubbin, F. M.; Shearer, C. K.

    2017-01-01

    The martian meteorite Northwest Africa 7034 (and pairings) is a breccia that provides important information about the rocks and processes of the martian crust (e.g., 1-3). Additional information can be gleaned from the components of the breccia. These components, specifically those designated as clasts, record the history of their parent rock (i.e., the rock that has been physically broken down to produce the clasts). In order to study these parent rocks, we must first determine which clasts within the breccia are de-rived from the same parent. Previous studies have be-gun this process (e.g., 4), but the search for genetic linkages between clasts has not integrated clasts with different grain sizes. We begin to take this approach here, incorporating igneous-textured clasts with both fine and coarse mineral grains. In NWA 7034, almost all materials (clasts and breccia matrix) are composed of the same mineral assemblages (feldspar, pyroxene, Fe-Ti oxides, apatite) with largely the same mineral compositions [1, 4-6]. Bulk breccia Sm-Nd systematics define a single isochron [7]. These observations are consistent with a majority of the components within NWA 7034 originating from the same geochemical source and crystallizing at roughly the same time.

  17. Milk-alkali syndrome

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000332.htm Milk-alkali syndrome To use the sharing features on this page, please enable JavaScript. Milk-alkali syndrome is a condition in which there ...

  18. Igneous phenocrystic origin of K-feldspar megacrysts in granitic rocks from the Sierra Nevada batholith

    USGS Publications Warehouse

    Moore, J.G.; Sisson, T.W.

    2008-01-01

    Study of four K-feldspar megacrystic granitic plutons and related dikes in the Sierra Nevada composite batholith indicates that the megacrysts are phenocrysts that grew in contact with granitic melt. Growth to megacrystic sizes was due to repeated replenishment of the magma bodies by fresh granitic melt that maintained temperatures above the solidus for extended time periods and that provided components necessary for K-feldspar growth. These intrusions cooled 89-83 Ma, are the youngest in the range, and represent the culminating magmatic phase of the Sierra Nevada batholith. They are the granodiorite of Topaz Lake, the Cathedral Peak Granodiorite, the Mono Creek Granite, the Whitney Granodiorite, the Johnson Granite Porphyry, and the Golden Bear Dike. Megacrysts in these igneous bodies attain 4-10 cm in length. All have sawtooth oscillatory zoning marked by varying concentration of BaO ranging generally from 3.5 to 0.5 wt%. Some of the more pronounced zones begin with resorption and channeling of the underlying zone. Layers of mineral inclusions, principally plagioclase, but also biotite, quartz, hornblende, titanite, and accessory minerals, are parallel to the BaO-delineated zones, are sorted by size along the boundaries, and have their long axes preferentially aligned parallel to the boundaries. These features indicate that the K-feldspar megacrysts grew while surrounded by melt, allowing the inclusion minerals to periodically attach themselves to the faces of the growing crystals. The temperature of growth of titanite included within the K-feldspar megacrysts is estimated by use of a Zr-in-titanite geothermometer. Megacryst-hosted titanite grains all yield temperatures typical of felsic magmas, mainly 735-760 ??C. Titanite grains in the granodiorite hosts marginal to the megacrysts range to lower growth temperatures, in some instances into the subsolidus. The limited range and igneous values of growth temperatures for megacryst-hosted titanite grains support the

  19. Alteration of alkali reactive aggregates autoclaved in different alkali solutions and application to alkali-aggregate reaction in concrete

    SciTech Connect

    Lu Duyou; Xu Zhongzi; Tang Mingshu; Fournier, Benoit

    2006-06-15

    Surface alteration of typical aggregates with alkali-silica reactivity and alkali-carbonate reactivity, i.e. Spratt limestone (SL) and Pittsburg dolomitic limestone (PL), were studied by XRD and SEM/EDS after autoclaving in KOH, NaOH and LiOH solutions at 150 deg. C for 150 h. The results indicate that: (1) NaOH shows the strongest attack on both ASR and ACR aggregates, the weakest attack is with LiOH. For both aggregates autoclaved in different alkali media, the crystalline degree, morphology and distribution of products are quite different. More crystalline products are formed on rock surfaces in KOH than that in NaOH solution, while almost no amorphous product is formed in LiOH solution; (2) in addition to dedolomitization of PL in KOH, NaOH and LiOH solutions, cryptocrystalline quartz in PL involves in reaction with alkaline solution and forms typical alkali-silica product in NaOH and KOH solutions, but forms lithium silicate (Li{sub 2}SiO{sub 3}) in LiOH solution; (3) in addition to massive alkali-silica product formed in SL autoclaved in different alkaline solutions, a small amount of dolomite existing in SL may simultaneously dedolomitize and possibly contribute to expansion; (4) it is promising to use the duplex effect of LiOH on ASR and ACR to distinguish the alkali-silica reactivity and alkali-carbonate reactivity of aggregate when both ASR and ACR might coexist.

  20. Timescales of quartz crystallization and the longevity of the Bishop giant magma body.

    PubMed

    Gualda, Guilherme A R; Pamukcu, Ayla S; Ghiorso, Mark S; Anderson, Alfred T; Sutton, Stephen R; Rivers, Mark L

    2012-01-01

    Supereruptions violently transfer huge amounts (100 s-1000 s km(3)) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted ~760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500-3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies.

  1. Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body

    SciTech Connect

    Gualda, Guilherme A.R.; Pamukcu, Ayla S.; Ghiorso, Mark S.; Anderson, Jr. , Alfred T.; Sutton, Stephen R.; Rivers, Mark L.

    2013-04-08

    Supereruptions violently transfer huge amounts (100 s-1000 s km{sup 3}) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted {approx}760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500-3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies.

  2. Simulation of quartz resonators

    NASA Astrophysics Data System (ADS)

    Weinmann, M.; Radius, R.; Mohr, R.

    Quartz resonators are suitable as novel sensor elements in the field of profilometry and three dimensional measurement techniques. This application requires a tailoring of the oscillator circuit which is performed by a network analysis program. The equivalent network parameters are computed by a finite element analysis. The mechanical loading of the quartz is modeled by a viscous damping approach.

  3. The Efficiency of 24 Minerals as Deposition Ice Nuclei: Focus on Feldspars, Clays and Metals

    NASA Astrophysics Data System (ADS)

    Yakobi-Hancock, J.; Ladino Moreno, L.; Abbatt, J.

    2013-12-01

    While the ice nucleating abilities of clay minerals have been extensively studied, those of the more minor mineralogical components of mineral dust have not been as widely examined. As a result, the deposition ice nucleating abilities of 24 atmospherically-relevant mineral samples were investigated using the University of Toronto continuous flow diffusion chamber at -40.0 × 0.3oC, using the same particle size (200nm) and preparation procedure throughout. The pure minerals' ice nucleating efficiencies were compared to those of complex mixtures (Arizona Test Dust and Mojave Desert Dust) and to that of lead iodide, which in the past was a prospective cloud seeding agent. Requiring a relative humidity with respect to ice (RHi) of 122.0 × 2.0% to activate 0.1% of the particles, lead iodide was the most efficient ice nucleus (IN) considered. Mojave Desert Dust (RHi 126.3 × 3.4%) and Arizona Test Dust (RHi 129.5 × 5.1%) exhibited lower but comparable activities. Through the analysis of a series of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz, and other metal-containing species), and feldspar minerals (orthoclase, plagioclase) it was found that the feldspar minerals (particularly orthoclase), and not the clays, were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 × 6.3% and 136.2 × 1.3%, respectively. The presence of feldspars (most notably orthoclase) may play a large role in the deposition IN efficiencies of mineral dusts in spite of their lower percentage in composition relative to clay minerals. By contrast, most metal oxides, sulfide and sulfates were poor ice nuclei.

  4. Pure and Simple Shear Partitioning at Microscale revealed by Quartz Fabric in the South Tibetan Detachment, Zanskar, NW India

    NASA Astrophysics Data System (ADS)

    Hasalova, Pavlina; Weinberg, Roberto

    2013-04-01

    In order to better understand how deformation is partitioned in polymineralic and banded granitic rocks within a large scale shear zone, we investigated quartz microstructures and the c-axis crystallographic preferred orientation (CPO) distribution in mylonitic orthogneiss samples, cropping out in the normal shear zone that marks the South Tibetan Detachment (STD) in Zanskar, NW India. Mylonitic orthogneiss comprise Qtz + Plg + Kfs + Bi + Mu ± Grt ± Trm and were deformed at amphibolite facies conditions (~650°C at 5kbars). The quartz fabric was analysed using a Fabric Analyser G50 and the quantitative analysis have been done using MATLAB™ PolyLX Toolbox. In the field and in micro-scale, rocks record asymmetric deformation characteristic of normal shearing. Bulk quartz CPO fabric from sections of the same thin section reveal a variety of slip systems (from rhomb to prism) and either bulk pure shear or simple shear. The question then is what controls the slip system and the shear component during deformation of these granitic rocks. In order to answer this, we defined different domains in each sample based on compositional layering and detailed the fabric and the CPO distribution within them. The domains typically are: (1) quartz-rich domain (>95% quartz), (2) quartz (60-80%) and biotite-rich domain, (3) quartz (60-80%) and muscovite-rich domain, and (4) quartz (50%), two micas and feldspars domain. Quartz in quartz-rich domain shows extensive recrystallization by grain boundary migration, deformation in simple shear regime with a strong c-axis CPO with maxima perpendicular to the shear band boundaries. Biotite and muscovite in domains 2 and 3 form an interconnected network wrapping around the less strained quartz grains that undergo pure shear as indicated by their CPO. In domain 4 quartz and biotite form a network around large plagioclase and K-feldspar porphyroblasts. Both feldspars reveal intragranular cracks filled with recrystallized quartz. Quartz

  5. The P-Fe diagram for K-feldspars: A preliminary approach in the discrimination of pegmatites

    NASA Astrophysics Data System (ADS)

    Sánchez-Muñoz, Luis; Müller, Axel; Andrés, Sol López; Martin, Robert F.; Modreski, Peter J.; de Moura, Odulio J. M.

    2017-02-01

    Pegmatites are extremely coarse-grained and heterogeneous rocks in which quantitative measurements of mineral proportions and chemical compositions of the whole rock are virtually impossible to acquire. Thus, conventional criteria such as bulk compositions and modal mineralogy used for the classifications of igneous rocks simply cannot be applied for pegmatites. An alternative is to use the mineralogical and chemical attributes of K-rich feldspars, the only mineral that is omnipresent in pegmatites. We have used this approach to test a possible discriminant among four groups of pegmatites on the basis of major petrological features, such as the abundance of quartz, feldspars, micas and phosphates. Group I is represented by relatively flux-poor, and silica-poor pegmatites, in most cases with hypersolvus feldspars, devoid of quartz and with minor biotite, which are common in rift settings as in the Coldwell Alkaline Complex in northwestern Ontario, Canada. Group II comprises relatively flux-poor, silica-rich pegmatites with quartz, subsolvus feldspars and biotite as major primary minerals, typically occurring in the asymmetric collisional Grenville Orogeny. Group III comprises relatively flux-rich, silica-rich P-poor pegmatites with quartz, subsolvus feldspars, and muscovite as the major primary minerals. Finally, group IV consists of relatively flux-rich, silica-rich, P-rich pegmatites with the same previous major minerals as in group III but with abundant phosphates. Group III and IV are found in most symmetric collisional orogens, such as in the Eastern Brazilian Pegmatite Province as the result of the collision of cratons mainly formed by igneous and metamorphic rock of Archean and Early Proterozoic age. We have selected specimens of blocky perthitic K-rich feldspar from the inner part of thirty-one pegmatites belonging to these four categories occurring worldwide to cover a wide range of mineralogy, geological age, geotectonic setting and geographical positions

  6. Investigation of Potassium Feldspar Reactivity in Wet Supercritical CO2 by In Situ Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Thompson, C.; Widener, C.; Schaef, T.; Loring, J.; McGrail, B. P.

    2014-12-01

    Capture and subsequent storage of CO2 in deep geologic reservoirs is progressively being considered as a viable approach to reduce anthropogenic greenhouse gas emissions. In the long term, injected CO2 may become permanently entrapped as silicate minerals react with CO2 enriched fluids to form stable carbonate minerals. Potassium feldspars are highly abundant in the earth's crust and are present in the caprocks and storage formations of many target reservoirs. While the dissolution kinetics and carbonation reactions of feldspars have been well studied in the aqueous phase, comparatively little work has focused on K-feldspar reactivity in the CO2-rich fluid. In this study, we used in situ infrared spectroscopy to investigate the carbonation reactions of natural microcline samples. Experiments were carried out at 50 °C and 91 bar by circulating dry or wet supercritical CO2 (scCO2) past a thin film of powdered sample. Water concentrations ranged from 0% to 125% relative to saturation, and transmission-mode absorbance spectra were recorded as a function of time for 48 hours. No discernible reaction was detected when the samples were exposed to anhydrous scCO2. However, in fully water-saturated scCO2, a thin film of liquid-like water was observed on the samples' surfaces, and up to 0.6% of the microcline was converted to a carbonate phase. Potassium carbonate is the most likely reaction product, but minor amounts of sodium carbonate and siderite may also have formed from minor sample impurities. The extent of reaction appears to be related to the thickness of the water film and is likely a consequence of the film's ability to solvate and transport ions in the vicinity of the mineral surface. Other features observed in the spectra correspond to microcline dissolution and precipitation of amorphous silica. Implications about the role of water in these reactions and the relative effectiveness of alkali feldspars for mineral trapping of CO2 will be discussed.

  7. In situ 40K-40Ca ‘double-plus’ SIMS dating resolves Klokken feldspar 40K-40Ar paradox

    NASA Astrophysics Data System (ADS)

    Harrison, T. Mark; Heizler, Matthew T.; McKeegan, Kevin D.; Schmitt, Axel K.

    2010-11-01

    The 40K- 40Ca decay system has not been widely utilized as a geochronometer because quantification of radiogenic daughter is difficult except in old, extremely high K/Ca domains. Even these environments have not heretofore been exploited by ion microprobe analysis due to the very high mass resolving power (MRP) of 25,000 required to separate 40K + from 40Ca +. We introduce a method that utilizes doubly-charged K and Ca species which permits isotopic measurements to be made at relatively low MRP (~ 5000). We used this K-Ca 'double-plus' approach to address an enduring controversy in 40Ar/ 39Ar thermochronology revolving around exsolved alkali feldspars from the 1166 Ma Klokken syenite (southern Greenland). Ion microprobe 40K- 40Ca analysis of Klokken samples reveal both isochron and pseudoisochron behaviors that reflect episodic isotopic and chemical exchange of coarsely exsolved perthites and a near end-member K-feldspar until ≤ 719 Ma, and perhaps as late at ~ 400 Ma. Feldspar microtextures in the Klokken syenite evolved over a protracted interval by non-thermal processes (fluid-assisted recrystallization) and thus this sample makes a poor model from which to address the general validity of 40Ar/ 39Ar thermochronological methodologies.

  8. QUARTZ FIBER ELECTROSCOPES

    DOEpatents

    Henderson, R.P.

    1957-09-17

    An instrument carried unobtrusively about the person such as in a finger ring to indicate when that person has been exposed to an unusual radiation hazard is described. A metallized quartz fiber is electrically charged to indicate a full scale reading on an etched glass background. The quartz fiber and the scale may be viewed through a magnifying lens for ease of reading. Incident radiation will ionize gaseous particles in the sealed structure thereby allowing the charge to leak off the quartz fiber with its resulting movement across the scale proportionally indicating the radiation exposure.

  9. Carbonate diagenesis and feldspar alteration in fracture-related bleaching zones (Buntsandstein, central Germany): possible link to CO2-influenced fluid-mineral reactions

    NASA Astrophysics Data System (ADS)

    Wendler, Jens; Köster, Jens; Götze, Jens; Kasch, Norbert; Zisser, Norbert; Kley, Jonas; Pudlo, Dieter; Nover, Georg; Gaupp, Reinhard

    2012-01-01

    Fracture-related bleaching of Lower Triassic Buntsandstein red beds of central Germany was related to significant carbonate diagenesis and feldspar alteration caused by CO2-rich fluids. Using cathodoluminescence microscopy and spectroscopy combined with electron microprobe analysis and stable carbon isotope study, two major fluid-mineral interactions were detected: (1) zoned, joint-filling calcites and zoned pore-filling calcite cements, the latter replacing an earlier dolomite, were formed during bleaching. During the calcite formation and dolomite-calcite transformation, iron was incorporated into the calcite cement crystal cores due to Fe availability from the coeval bleaching. The dedolomitisation was ultimately associated with a volume increase. The related permeability decrease implies a certain degree of sealing and increasing retention of CO2, and the volume increase offers a minor CO2 sink. Carbonate-rich sandstone, therefore, can provide advantages for underground CO2 storage especially when situated in the fringes of the reservoir. (2) Alkali-feldspar alteration due to the bleaching fluids is reflected in cathodoluminescence spectra predominantly by the modulation of a brown luminescence emission peak (~620 nm). This peak represents a newly discovered effect related to alkali-feldspar alteration not solely associated with bleaching. Its modulation by the bleaching is interpreted to be due to Na depletion or a lattice defect in the Si-O bonds of the SiO4-tetrahedron. Alteration reflected by this luminescence feature has a destructive effect on the feldspars implying the possibility of diminished rock integrity due to bleaching and, hence, CO2-rich fluids. Two further CL spectral changes related to bleaching occur, (a) decreased intensity between around 570 nm assigned to Mn-depletion, and (b) increased amplitude and wavelength shift of the red (~680 nm) band. Converging evidence from carbonate and feldspar diagenesis, stable carbon isotope data and

  10. Crystallized alkali-silica gel in concrete from the late 1890s

    SciTech Connect

    Peterson, Karl . E-mail: cee@mtu.edu; Gress, David . E-mail: dlgress@unh.edu; Van Dam, Tom . E-mail: cee@mtu.edu; Sutter, Lawrence . E-mail: cee@mtu.edu

    2006-08-15

    The Elon Farnsworth Battery, a concrete structure completed in 1898, is in an advanced state of disrepair. To investigate the potential for rehabilitation, cores were extracted from the battery. Petrographic examination revealed abundant deposits of alkali silica reaction products in cracks associated with the quartz rich metasedimentary coarse aggregate. The products of the alkali silica reaction are variable in composition and morphology, including both amorphous and crystalline phases. The crystalline alkali silica reaction products are characterized by quantitative X-ray energy dispersive spectrometry (EDX) and X-ray diffraction (XRD). The broad extent of the reactivity is likely due to elevated alkali levels in the cements used.

  11. Differential rates of feldspar weathering in granitic regoliths

    USGS Publications Warehouse

    White, A.F.; Bullen, T.D.; Schulz, M.S.; Blum, A.E.; Huntington, T.G.; Peters, N.E.

    2001-01-01

    Differential rates of plagioclase and K-feldspar weathering commonly observed in bedrock and soil environments are examined in terms of chemical kinetic and solubility controls and hydrologic permeability. For the Panola regolith, in the Georgia Piedmont Province of southeastern United States, petrographic observations, coupled with elemental balances and 87Sr/86Sr ratios, indicate that plagioclase is being converted to kaolinite at depths > 6 m in the granitic bedrock. K-feldspar remains pristine in the bedrock but subsequently weathers to kaolinite at the overlying saprolite. In contrast, both plagioclase and K-feldspar remain stable in granitic bedrocks elsewhere in Piedmont Province, such as Davis Run, Virginia, where feldspars weather concurrently in an overlying thick saprolite sequence. Kinetic rate constants, mineral surface areas, and secondary hydraulic conductivities are fitted to feldspar losses with depth in the Panola and Davis Run regoliths using a time-depth computer spreadsheet model. The primary hydraulic conductivities, describing the rates of meteoric water penetration into the pristine granites, are assumed to be equal to the propagation rates of weathering fronts, which, based on cosmogenic isotope dating, are 7 m/106 yr for the Panola regolith and 4 m/106 yr for the Davis Run regolith. Best fits in the calculations indicate that the kinetic rate constants for plagioclase in both regoliths are factors of two to three times faster than K-feldspar, which is in agreement with experimental findings. However, the range for plagioclase and K-feldspar rates (kr = 1.5 x 10-17 to 2.8 x 10-16 mol m-2 s-1) is three to four orders of magnitude lower than for that for experimental feldspar dissolution rates and are among the slowest yet recorded for natural feldspar weathering. Such slow rates are attributed to the relatively old geomorphic ages of the Panola and Davis Run regoliths, implying that mineral surface reactivity decreases significantly with

  12. Vacuum electrolysis of quartz

    DOEpatents

    King, James Claude

    1976-01-13

    The disclosure is directed to a method for processing quartz used in fabricating crystal resonators such that transient frequency change of resonators exposed to pulse irradiation is virtually eliminated. The method involves heating the crystal quartz in a hydrogen-free atmosphere while simultaneously applying an electric field in the Z-axis direction of the crystal. The electric field is maintained during the cool-down phase of the process.

  13. Quartz cementation mechanisms between adjacent sandstone and shale in Middle Cambrian, West Lithuania

    NASA Astrophysics Data System (ADS)

    Zhou, Lingli; Friis, Henrik

    2013-04-01

    Quartz is an important cementing material in siliciclastic sandstones that can reduce porosity and permeability severely. For efficiently predicting and extrapolating petrophysical properties such as porosity and permeability, the controls on the occurrence and the degree of quartz cementation need to be better understood. Because it is generally difficult to identify specific sources for quartz cement, many models attempting to explain quartz cementation conclude that external sources of silica are needed to explain the observed quantity of quartz cement, such as the mass transfer between sandstone and shale. Cambrian sandstones in Lithuania have abundant quartz cement which has significant effect on reservoir properties. The detrital quartz grains have been dissolved extensively along the shale-quartz contacts zones, making it a natural laboratory to study the influence of mass transfer between sandstone and shale to quartz cementation on petrophysical properties and reservoir quality. Our Cambrian shale samples in west Lithuania are mainly silty shale or siltstone (sample locations vary from 330 to 2090 m of burial depth). They are composed of quartz, clay and traces of feldspars, sericite, calcite, and pyrite. The clay minerals are mainly illite, with variable content of kaolinite and traces of chlorite. In the sandstone lamina, authigenic illite occurs as pore-filling cement which was composed of fibrous illite; pore-filling kaolinite is generally well crystallized and occurs as hexagonal plates arranged in booklets; quartz overgrowth are obvious in these sandstone laminas, especially in the contact zones between sandstone and shale. Dolomite and pyrite cementation are also present in some sandstone laminas but with few quartz overgrowth. Depositional facies and architecture played an important role in the precipitation of silica. Three different possible sources are distinguished for the quartz overgrowths in the intercalated sandstones: 1) Pressure

  14. Calorimetric investigation of the excess entropy of mixing in analbite-sanidine solid solutions: lack of evidence for Na,K short- range order and implications for two-feldspar thermometry.

    USGS Publications Warehouse

    Haselton, H.T.; Hovis, G.L.; Hemingway, B.S.; Robie, R.A.

    1983-01-01

    Heat capacities (5-380 K) have been measured by adiabatic calorimetry for five highly disordered alkali feldspars (Ab99Or1, Ab85Or15, Ab55Or45, Ab25Or75 and Ab1Or99). The thermodynamic and mineralogical implications of the results are discussed. The new data are also combined with recent data for plagioclases in order to derive a revised expression for the two-feldspar thermometer. T calculated from the revised expression tend to be higher than previous calculations.-J.A.Z.

  15. Evidence for the compaction of feldspar-rich cumulates in the Pleasant Bay layered intrusion, coastal Maine

    SciTech Connect

    Horrigan, E.K. )

    1993-03-01

    The Pleasant Bay intrusion is roughly 12 km by 20 km. It consists of prominent rhythmic layers, up to 100 m thick, that grade from chilled gabbro on the base, to coarse-grained gabbroic, dioritic, or granitic rocks on the top. These layers were formed by multiple injections of basalt into a large chamber of silicic magma. The focus of this study is on one layer that is about 100 m thick, and is overlain by another basally chilled gabbroic layer at least 50 m thick. Silicic pipes and veins extend upward into the overlying gabbroic chill. The lower part of the layer has dominant calcic plagioclase, An60, augite, and olivine, with subordinate hornblende and biotite. The uppermost part has dominant sodic plagioclase, An20, and two pyroxenes with subordinate quartz, K-feldspar and hornblende. SiO[sub 2] and MgO vary from 49% and 5% at the base to 58% and 1% at the top, respectively. The top 7 m of this layer are characterized by variably deformed minerals. The deformation grades from bent biotite and plagioclase near the bottom to sutured plagioclase at the top. Pockets of undeformed quartz and K-feldspar in the uppermost rocks demonstrate that interstitial liquid was present during a after compaction. The pipes and veins probably represent trapped liquid and some crystals that were expelled into the overlying gabbroic chill.

  16. [The characteristics of microstructure and chemical compositions of K-feldspar, sphene and zircon with zoning structure].

    PubMed

    Liu, Chun-Hua; Wu, Cai-Lai; Lei, Min; Qin, Hai-Peng; Li, Ming-Ze

    2013-08-01

    K-feldspar, sphene and zircon in quartz monzonite from Shahewan, south Qinling, showing strong zoning structure. Characteristics of microstructure and chemical compositions of K-feldspar, sphene and zircon with zoning structure were investigated using advanced instruments of electron probe micro analyses equipped with wavelength dispersive spectrometer (EPM-WDS), scanning electron microscopy with energy dispersive spectrometer (SEM-EDS) and laser ablation--inductively coupled plasma--mass spectrometry (LA-ICP-MS). Our study suggests that K+ could be substituted by small amounts of Na+, Ca2+, Ba2+, Fe2+ and Ce3+. Ca2+ in sphene could be replaced by V3+, Ce3+, Ba2+ and Ti4+ could be substituted by both Fe2+ and Al3+. Zircon contains trace elements like Fe, Th, U, Nb, Ta, Y, Hf, Yb and Pb. Concentration of Si, Al, K, Ca, Na, Mg and Ba in K-feldspar ranked from high to low, among which the contents of K and Na are negatively correlated, the lighter part of BSE images featuring K-feldspar is attributed to comparably higher Ba content, additionally, Si and K contents are elevated while Na content decreased rimward. Ca, Si, Ti, Ba, V, Ce, Al and Fe concentration listed downward, among which higher iron content corresponds to brighter portion of BSE images. Element concentration of zircon could be ranked from high to low as Zr, Si, Nd, Ce, Hf, U, Pb and Th, in which Hf and Zr exhibit negatively correlated. Zr concentration increased while Hf, U and Th concentration decreased from core to rim.

  17. Immersion Freezing of Potassium-feldspar and related Natural Samples

    NASA Astrophysics Data System (ADS)

    Zolles, Tobias; Burkart, Julia; Grothe, Hinrich

    2014-05-01

    Ice nucleation activities of mineral dust particles were investigated. The experiments were carried out using cryo-microscopy which is an oil-emulsion based method. The immersion freezing mode was addressed with this experimental setup. The studied samples were common inorganic atmospheric aerosols. Single minerals and natural samples were tested [1]. Mineral dust particles are active ice nuclei in the immersion freezing mode up to 256 K. Only recently potassium-feldspar has been identified as the by far most active ice nucleus followed by other silicates [2, 3]. Natural samples which contain more than 5% K-feldspar are also active. The activity of K-feldspar can be attributed to its surface structure and the presence of potassium ions in the surface. Ice nucleation on mineral dust particles takes place at certain nucleation sites. These sites are domains of molecular sites where water is stabilized in an ice-like structure. To form a good ice nucleation site, the site density of molecular sites needs to be high. More molecular sites are able to form larger domains on the surface, leading to better nucleation sites. This suggests further that the nucleation temperature of mineral dust particles scales with the surface area. The exact configuration of a molecular site is material specific and influenced by the local chemistry and structure of the dust particle surface. A favourable arrangement of the functional groups like surface hydroxyl and oxygen is proposed for the K-feldspar. Potassium ions seem to have a positive or neutral effect on the ice nucleation property of a silicate surface while cations with a higher charge density like calcium and sodium have a negative influence. K-feldspar is abundant in the environment and actually is the most important dust ice nucleus in the atmosphere. The nucleation temperatures of the K-feldspar particles are sufficient to enable further meteorological glaciation processes in high altitude clouds. References [1] Zolles, T

  18. Optical contacting of quartz

    NASA Technical Reports Server (NTRS)

    Payne, L. L.

    1982-01-01

    The strength of the bond between optically contacted quartz surfaces was investigated. The Gravity Probe-B (GP-B) experiment to test the theories of general relativity requires extremely precise measurements. The quartz components of the instruments to make these measurements must be held together in a very stable unit. Optical contacting is suggested as a possible method of joining these components. The fundamental forces involved in optical contacting are reviewed and relates calculations of these forces to the results obtained in experiments.

  19. Quartz ball valve

    NASA Technical Reports Server (NTRS)

    Goetz, C.; Ingle, W. M. (Inventor)

    1980-01-01

    A ball valve particularly suited for use in the handling of highly corrosive fluids is described. It is characterized by a valve housing formed of communicating segments of quartz tubing, a pair of communicating sockets disposed in coaxial alignment with selected segments of tubing for establishing a pair of inlet ports communicating with a common outlet port, a ball formed of quartz material supported for displacement between the sockets and configured to be received alternately thereby, and a valve actuator including a rod attached to the ball for selectively displacing the ball relative to each of the sockets for controlling fluid flow through the inlet ports.

  20. Petrology, composition, and age of intrusive rocks associated with the Quartz Hill molybdenite deposit, southeastern Alaska.

    USGS Publications Warehouse

    Hudson, T.; Smith, James G.; Elliott, R.L.

    1979-01-01

    A large porphyry molybdenum deposit (Quartz Hill deposit) was recently discovered in the heart of the Coast Range batholithic complex about 70 km E of Ketchikan, SE Alaska. Intrusive rocks associated with the mineral deposit form two composite epizonal to hypabyssal stocks and many dikes in country rocks. All observed metallization and alteration is within the Quartz Hill stock. Molybdenite forms fracture coatings and occurs in veins with quartz. Alteration is widespread and includes development of secondary quartz, pyrite, K-feldspar, biotite, white mica, chlorite, and zeolite. Field relations indicate that the stocks were emplaced after regional uplift and erosion of the Coast Range batholithic complex, and K-Ar data show that intrusion and alteration took place in late Oligocene time, about 27 to 30 Ma ago. Data from the Ketchikan quadrangle indicate that porphyry molybdenum metallization in the Coast Range batholithic complex is associated with regionally extensive but spotty, middle Tertiary or younger, felsic magmatism. -from Authors

  1. Thermoluminescence signal in K-feldspar grains: Revisited.

    PubMed

    Gong, Gelian; Sun, Weidong; Xu, Hongyun

    2015-11-01

    Recent work has shown that infrared stimulated luminescence (IRSL) signals in sedimentary coarse-grain K-feldspars are derived mainly from high temperature thermoluminescence (TL) peaks around 400°C, and the fading components of the IRSL signal can be preferentially removed by prior IR stimulation at relatively low temperature. Considering the complexity of TL signal for very old samples, we may choose non-fading components from K-feldspar TL signals using the combination of optical and thermal activation methods. This paper examines a protocol of post-IR isothermal TL (i.e. pIRITL) signal for sedimentary coarse-grain K-feldspars, which results from isothermal TL measurements following elevated temperature IR bleaching. We show that a sum of two exponential decay functions can fit well to the pIRITL decay curves, and both the holding temperature for isothermal TL measurements and the prior elevated temperature IR bleaching can affect greatly the fast components of pIRITL signal. The dose response ranges of pIRITL signal are wider than those of post-IR IRSL signals, but the relative high residual pIRITL signal means that it is not appropriate for dating young samples. It is expected that one isothermal TL signal for K-feldspar measured at ~400°C following IR bleaching at 290°C (i.e. pIRITL400) is useful for dating very old samples.

  2. Shocked Feldspar Distributions From Global Thermal Emission Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Johnson, J. R.; Staid, M. I.; Byrnes, J. M.

    2006-12-01

    Laboratory spectra of experimentally shocked feldspars (anorthosite and albitite rocks) were included in spectral deconvolutions of thermal infrared data acquired from the Thermal Emission Spectrometer (TES) on Mars Global Surveyor. This work expands on previous investigations in Cimmeria Terra in which model results suggested that exposures of shocked feldspars were not necessarily restricted to regions near morphologically fresh impact craters (Johnson et al., Icarus, 180, 60-74, 2006). We used a multiple endmember spectral mixing algorithm (MESMA) to model global TES emissivity data sets at 1 pixel/degree (ppd) resolution (Bandfield, JGR, 107, 2001JE001510, 2002). TES data were restricted to surface temperatures >250 K, atmospheric dust opacities < 0.30, water ice opacities < 0.15, and emission angles < 30 degrees. Data marked with anomalies (e.g., phase inversions) were not used. The emissivity data were further constrained to exclude pixels with TES bolometric albedo values > 0.24 (a proxy for regions with abundant dust cover). MESMA deconvolutions using spectral endmember libraries containing typical minerals and glasses plus atmospheric endmembers (CO2, dust, water ice) were supplemented by separate model runs that incorporated intermediate and highly shocked feldspar spectra (27 GPa, 56 GPa). In the latter models, final results were constrained by selecting only those pixels modeled with > 33% combined surface minerals (i.e., < 67% modeled atmospheric contribution to the TES signal), as well as > 10% shocked feldspar abundances. Models also were constrained to exhibit model root-mean-square errors < 0.0045 that also improved upon inclusion of shocked feldspar spectra. Preliminary results suggest that spatially contiguous regions of shocked feldspars are found in four main regions: Solis Planum, Acidalia Planitia, Syrtis Major Planum, and northern Utopia Planitia. Subsequent work will involve detailed analyses of these regions using higher resolution TES

  3. (Energy related studies utilizing K-feldspar thermochronology)

    SciTech Connect

    Not Available

    1992-01-01

    In our second year of current funding cycle, we have investigated the Ar diffusion properties and microstructures of K-feldspars and the application of domain theory to natural K-feldspars. We completed a combined TEM and argon diffusion study of the effect of laboratory heat treatment on the microstructure and kinetic properties of K-feldspar. We conclude in companion papers that, with one minor exception, no observable change in the diffusion behavior occurs during laboratory extraction procedures until significant fusion occurs at about 1100{degrees}C. The effect that is observed involves a correlation between the homogenization of cryptoperthite lamelle and the apparent increase in retentivity of about 5% of the argon in the K-feldspar under study. We can explain this effect of both as an artifact of the experiment or the loss of a diffusion boundary. Experiments are being considered to resolve this question. Refinements have been made to our experimental protocol that appears that greatly enhance the retrieval of multi-activation energies from K-feldspars. We have applied the multi-domain model to a variety of natural environments (Valles Caldera, Red River fault, Appalachian basin) with some surprising results. Detailed {sup 40}Ar/{sup 39} Ar coverage of the Red River shear zone, thought to be responsible for the accommodation of a significant fraction of the Indo-Asian convergence, strongly suggests that our technique can precisely date both the termination of ductile strike-slip motion and the initiation of normal faulting. Work has continued on improving our numerical codes for calculating thermal histories and the development of computer based graphing tools has significantly increased our productivity.

  4. Feldspars as a source of nutrients for microorganisms

    USGS Publications Warehouse

    Rogers, J.R.; Bennett, P.C.; Choi, W.J.

    1998-01-01

    Phosphorus and nitrogen are essential macronutrients necessary for the survival of virtually all living organisms. In groundwater systems, these nutrients can be quite scarce and can represent limiting elements for growth of subsurface microorganisms. In this study we examined silicate sources of these elements by characterizing the colonization and weathering of feldspars in situ using field microcosms. We found that in carbon-rich anoxic groundwaters where P and N are scarce, feldspars that contain inclusions of P-minerals such as apatite are preferentially colonized over similar feldspars without P. A microcline from S. Dakota, which contains 0.24% P2O5 but ,1 mmol/ g NH , was heavily colonized 1 4 and deeply weathered. A similar microcline from Ontario, which has no detectable P or NH , was barren of attached organisms and completely unweathered after one year. An- 1 4 orthoclase (0.28% P2O5, ;1 mmol/g NH ) was very heavily colonized and weathered, 1 4 whereas plagioclase specimens (,0.01% P, ,1 mmmol/g NH ) were uncolonized and 1 4 unweathered. In addition, the observed weathering rates are faster than expected based on laboratory rates. We propose that this system is particularly sensitive to the availability of P, and the native subsurface microorganisms have developed biochemical strategies to aggressively scavenge P (or some other essential nutrient such as Fe31 ) from resistant feldspars. The result of this interaction is that only minerals containing P will be signifi- cantly colonized, and these feldspars will be preferentially destroyed, as the subsurface microbial community scavenges a limiting nutrient.

  5. Immiscible separation of metalliferous Fe/ Ti-oxide melts from fractionating alkali basalt: P-T-fO2 conditions and two-liquid elemental partitioning

    NASA Astrophysics Data System (ADS)

    Hurai, Vratislav; Simon, Klaus; Wiechert, Uwe; Hoefs, Jochen; Konečný, Patrik; Huraiová, Monika; Pironon, Jacques; Lipka, Jozef

    Globules of iron-dominated (59-69 wt% FeOtot) and titanium-dominated (43.5 wt% TiO2) oxide melts have been detected in igneous xenoliths from Pliocene-to-Pleistocene alkali basalts of the Western Carpathians. Fluid inclusion and mineral composition data indicate immiscible separation of the high-iron-oxide melt (HIM) at magmatic temperatures. The HIM separation occurred during clinopyroxene (augite) accumulation in an alkali trachybasalt and continued during crystallization of amphibole (kaersutite) and K-feldspar (anorthoclase), the latter coexisting with trachyte and alkalic rhyolite residual melts. Some HIM was also expelled from sub-alkalic rhyolite (70-77% SiO2), coexisting with An27-45 plagioclase and quartz in granitic (tonalite-trondhjemite) xenoliths. Oxygen fugacities during HIM separation range from -1.4to +0.6log units around the QFM buffer. A close genetic relationship between HIM-hosted xenoliths and mantle-derived basaltic magma is documented by mineral 18O values ranging from 4.9 to 5.9‰ V-SMOW. δD values of gabbroic kaersutite between -61 and -86‰ V-SMOW are in agreement with a presumed primary magmatic water source. Most trace elements, except Li, Rb and Cs, have preferentially partitioned into the HIM. The HIM/Si-melt partition coefficients for transition elements (Sc, V, Cr, Co, Ni) and base metals (Zn, Cu, Mo) are between 2-160, resulting in extreme enrichment in the HIM. La and Ce also concentrate in the silicic melt, whereas Tb-Tm in the HIM. Hence, the immiscible separation causes REE fractionation and produces residual silicic melt enriched in LREE and depleted in HREE. The weak fractionation among Tb-Tm and Yb, Lu can be attributed to recurrent extraction of the HIM from the magmatic system, while flat HREE chondrite-normalized patterns are interpreted to indicate no or little loss of the HIM.

  6. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  7. Rock-forming Minerals Transformations in Conditions of Stepwise Shock Compression of Qwartz-feldspar-biotite-garnet Schist from Southern Ural

    NASA Astrophysics Data System (ADS)

    Belyatinskaya, Irina; Feldman, Vilen; Milyavskiy, Vladimir; Borodina, Tatiana

    2011-06-01

    Samples for experiments with use of recovery assemblies of planar geometry have been taken from Southern Ural (Russia). The maximal shock pressures in the samples were attained upon a few reverberations of the waves between the walls of the recovery ampoule (stepwise shock compression) and were equal 26, 36 and 52 GPa. Shock-metamorphic transformations of rock-forming minerals (garnet, biotite, quartz, potash feldspar and plagioclase) have been studied with the use of optical and scanning electron microscopy (SEM) methods, microprobe analysis, and X-ray phase analysis (XPA). The strongest transformations (mechanical and chemical) were observed in potash feldspar and plagioclase. These minerals undergo strong amorphization at 26 GPa already. Plagioclase chemical transformations are equal to results of earlier stepwise shock compression experiments. Biotite also reveals strong mechanical (kink-bands, partial melting) and chemical (for melted biotites only) transformations. Garnet reveals mechanical transformations only. The work was supported by RFBR (09-05-00211).

  8. Quartz crystal growth

    DOEpatents

    Baughman, Richard J.

    1992-01-01

    A process for growing single crystals from an amorphous substance that can undergo phase transformation to the crystalline state in an appropriate solvent. The process is carried out in an autoclave having a lower dissolution zone and an upper crystallization zone between which a temperature differential (.DELTA.T) is maintained at all times. The apparatus loaded with the substance, solvent, and seed crystals is heated slowly maintaining a very low .DELTA.T between the warmer lower zone and cooler upper zone until the amorphous substance is transformed to the crystalline state in the lower zone. The heating rate is then increased to maintain a large .DELTA.T sufficient to increase material transport between the zones and rapid crystallization. .alpha.-Quartz single crystal can thus be made from fused quartz in caustic solvent by heating to 350.degree. C. stepwise with a .DELTA.T of 0.25.degree.-3.degree. C., increasing the .DELTA.T to about 50.degree. C. after the fused quartz has crystallized, and maintaining these conditions until crystal growth in the upper zone is completed.

  9. Protomylonite evolution potentially revealed by the 3D depiction and fractal analysis of chemical data from a feldspar

    NASA Astrophysics Data System (ADS)

    Słaby, Ewa; Domonik, Andrzej; Śmigielski, Michał; Majzner, Katarzyna; Motuza, Gediminas; Götze, Jens; Simon, Klaus; Moszumańska, Izabela; Kruszewski, Łukasz; Rydelek, Paweł

    2014-04-01

    An alkali feldspar megacryst from a protomylonite has been studied using laser ablation-ICP-mass spectrometry combined with cathodoluminescence imaging, Raman spectroscopy, and electron probe microanalysis. The aim was to determine the original (magmatic) geochemical pattern of the crystal and the changes introduced by protomylonitization. Digital concentration-distribution models, derivative gradient models, and fractal statistics, e.g., Hurst-exponent values are used in a novel way to reveal subtle changes in the trace-element composition of the feldspar. Formation of the crystal is reflected in a slightly chaotic trace-element (Ba, Sr, and Rb) distribution pattern that is more or less characterized by continuous development from a fairly homogeneous environment. Derivative gradient models demonstrate a microdomain pattern. Fractal statistics show that element behavior was changeable, with Ba and Sr always more persistent (continuing) and Rb always less persistent, with the latter showing a tendency to migrate. The variations in the Hurst exponent are, however, too large to be explained by magmatic differentiation alone. The observed element behavior may be explained by structural changes revealed by Raman spectroscopy and CL. In high-strain domains, T-O-T modes become stronger for Si-O-Al than Al-O-Al linkages. Increasing amounts of Al-O--Al defects are demonstrated by cathodoluminescence. Both may result from small-distance diffusion creep, making the crystal geochemical pattern slightly patchy. In turn, the marginal part of the megacryst has a mosaic of randomly orientated, newly crystallized K-feldspars. The re-growth is confirmed by trace-element distribution patterns and fractal statistics which identify an abrupt change in the transformation environment. The novel set of tools used in this study reveals a complicated history of megacryst formation and transformation that otherwise would be difficult to unravel and decipher.

  10. Phosphate and feldspar mineralogy of equilibrated L chondrites: The record of metasomatism during metamorphism in ordinary chondrite parent bodies

    NASA Astrophysics Data System (ADS)

    Lewis, Jonathan A.; Jones, Rhian H.

    2016-10-01

    In ordinary chondrites (OCs), phosphates and feldspar are secondary minerals known to be the products of parent-body metamorphism. Both minerals provide evidence that metasomatic fluids played a role during metamorphism. We studied the petrology and chemistry of phosphates and feldspar in petrologic type 4-6 L chondrites, to examine the role of metasomatic fluids, and to compare metamorphic conditions across all three OC groups. Apatite in L chondrites is Cl-rich, similar to H chondrites, whereas apatite in LL chondrites has lower Cl/F ratios. Merrillite has similar compositions among the three chondrite groups. Feldspar in L chondrites shows a similar equilibration trend to LL chondrites, from a wide range of plagioclase compositions in petrologic type 4 to a homogeneous albitic composition in type 6. This contrasts with H chondrites which have homogeneous albitic plagioclase in petrologic types 4-6. Alkali- and halogen-rich and likely hydrous metasomatic fluids acted during prograde metamorphism on OC parent bodies, resulting in albitization reactions and development of phosphate minerals. Fluid compositions transitioned to a more anhydrous, Cl-rich composition after the asteroid began to cool. Differences in secondary minerals between H and L, LL chondrites can be explained by differences in fluid abundance, duration, or timing of fluid release. Phosphate minerals in the regolith breccia, Kendleton, show lithology-dependent apatite compositions. Bulk Cl/F ratios for OCs inferred from apatite compositions are higher than measured bulk chondrite values, suggesting that bulk F abundances are overestimated and that bulk Cl/F ratios in OCs are similar to CI.

  11. Sr and Pb isotopic geochemistry of feldspars and implications for the growth of megacrysts in plutonic settings.

    NASA Astrophysics Data System (ADS)

    Munnikhuis, J.; Glazner, A. F.; Coleman, D. S.; Mills, R. D.

    2015-12-01

    Why megacrystic textures develop in silicic igneous rocks is still unknown. One hypothesis is that these crystals nucleate early in a magma chamber with a high liquid content. A supportive observation of this hypothesis is areas in plutons with high concentrations of megacrysts suggesting flow sorting. Another group of hypotheses suggest megacrystic textures form during protracted late-stage coarsening in a low-melt, interlocked matrix due to either thermal oscillations from incremental pluton emplacement, or Ostwald ripening. Isotopic analyses of large, euhedral K-feldspar megacrysts from the Cretaceous intrusive suites of the Sierra Nevada batholith (SNB) provide new insight into their origin. Megacrysts from the SNB reach the decimeter scale, are Or rich (85-90%), are perthitic, and host mineral inclusions of nearly all phases in the host rock. In-situ micro-drilling of transects, from core to rim, of the alkali feldspars provides material for Sr and Pb isotopic analyses by thermal ionization mass spectrometry (TIMS). Preliminary 87Sr/86Sr(i) isotopic data from samples from the Cathedral Peak Granodiorite, of the Tuolumne Intrusive Suite range from 0.706337 to 0.706452 (~1.6ɛSr) near the cores, whereas a sawtooth pattern with larger variability, 0.706179 to 0.706533 (~5ɛSr), occurs nears the rims. We interpret these preliminary data to indicate that the late portion of growth (i.e. crystal rim) was dominated by either cannibalism of small K-feldspar crystals with isotopic variability, or by addition of isotopically diverse late components to the magma. By comparing the Sr and Pb isotopic stratigraphy of megacrysts from a variety of rock matrices and different granitoids in the SNB isotopic trends can be evaluated to determine if crystals sizes are dependent on disequilibrium processes or grow at a steady state.

  12. Colorado quartz: occurrence and discovery

    USGS Publications Warehouse

    Kile, D.E.; Modreski, P.J.; Kile, D.L.

    1991-01-01

    The many varieties and associations of quartz found throughout the state rank it as one of the premier worldwide localities for that species. This paper briefly outlines the historical importance of the mineral, the mining history and the geological setting before discussing the varieties of quartz present, its crystallography and the geological enviroments in which it is found. The latter include volcanic rocks and near surface igneous rocks; pegmatites; metamorphic and plutonic rocks; hydrothermal veins; skarns and sedimentary deposits. Details of the localities and mode of occurrence of smoky quartz, amethyst, milky quartz, rock crystal, rose quartz, citrine, agate and jasper are then given. -S.J.Stone

  13. Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body

    PubMed Central

    Gualda, Guilherme A. R.; Pamukcu, Ayla S.; Ghiorso, Mark S.; Anderson, Alfred T.; Sutton, Stephen R.; Rivers, Mark L.

    2012-01-01

    Supereruptions violently transfer huge amounts (100 s–1000 s km3) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted ∼760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500–3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies. PMID:22666359

  14. The compression pathway of quartz

    SciTech Connect

    Thompson, Richard M.; Downs, Robert T.; Dera, Przemyslaw

    2011-11-07

    The structure of quartz over the temperature domain (298 K, 1078 K) and pressure domain (0 GPa, 20.25 GPa) is compared to the following three hypothetical quartz crystals: (1) Ideal {alpha}-quartz with perfectly regular tetrahedra and the same volume and Si-O-Si angle as its observed equivalent (ideal {beta}-quartz has Si-O-Si angle fixed at 155.6{sup o}). (2) Model {alpha}-quartz with the same Si-O-Si angle and cell parameters as its observed equivalent, derived from ideal by altering the axial ratio. (3) BCC quartz with a perfectly body-centered cubic arrangement of oxygen anions and the same volume as its observed equivalent. Comparison of experimental data recorded in the literature for quartz with these hypothetical crystal structures shows that quartz becomes more ideal as temperature increases, more BCC as pressure increases, and that model quartz is a very good representation of observed quartz under all conditions. This is consistent with the hypothesis that quartz compresses through Si-O-Si angle-bending, which is resisted by anion-anion repulsion resulting in increasing distortion of the c/a axial ratio from ideal as temperature decreases and/or pressure increases.

  15. Visible/near-infrared spectra of experimentally shocked plagioclase feldspars

    USGS Publications Warehouse

    Johnson, J. R.; Horz, F.

    2003-01-01

    High shock pressures cause structural changes in plagioclase feldspars such as mechanical fracturing and disaggregation of the crystal lattice at submicron scales, the formation of diaplectic glass (maskelynite), and genuine melting. Past studies of visible/ near-infrared spectra of shocked feldspars demonstrated few spectral variations with pressure except for a decrease in the depth of the absorption feature near 1250-1300 nm and an overall decrease in reflectance. New visible/near-infrared spectra (400-2500 nm) of experimentally shocked (17-56 GPa) albite- and anorthite-rich rock powders demonstrate similar trends, including the loss of minor hydrated mineral bands near 1410, 1930, 2250, and 2350 nm. However, the most interesting new observations are increases in reflectance at intermediate pressures, followed by subsequent decreases in reflectance at higher pressures. The amount of internal scattering and overall sample reflectance is controlled by the relative proportions of micro-fractures, submicron grains, diaplectic glass, and melts formed during shock metamorphism. We interpret the observed reflectance increases at intermediate pressures to result from progressively larger proportions of submicron feldspar grains and diaplectic glass. The ensuing decreases in reflectance occur after diaplectic glass formation is complete and the proportion of genuine melt inclusions increases. The pressure regimes over which these reflectance variations occur differ between albite and anorthite, consistent with thermal infrared spectra of these samples and previous studies of shocked feldspars. These types of spectral variations associated with different peak shock pressures should be considered during interpretation and modeling of visible/near-infrared remotely sensed spectra of planetary and asteroidal surfaces.

  16. OSL-thermochronometry of feldspar from the KTB borehole, Germany

    NASA Astrophysics Data System (ADS)

    Guralnik, Benny; Jain, Mayank; Herman, Frédéric; Ankjærgaard, Christina; Murray, Andrew S.; Valla, Pierre G.; Preusser, Frank; King, Georgina E.; Chen, Reuven; Lowick, Sally E.; Kook, Myungho; Rhodes, Edward J.

    2015-08-01

    The reconstruction of thermal histories of rocks (thermochronometry) is a fundamental tool both in Earth science and in geological exploration. However, few methods are currently capable of resolving the low-temperature thermal evolution of the upper ∼2 km of the Earth's crust. Here we introduce a new thermochronometer based on the infrared stimulated luminescence (IRSL) from feldspar, and validate the extrapolation of its response to artificial radiation and heat in the laboratory to natural environmental conditions. Specifically, we present a new detailed Na-feldspar IRSL thermochronology from a well-documented thermally-stable crustal environment at the German Continental Deep Drilling Program (KTB). There, the natural luminescence of Na-feldspar extracted from twelve borehole samples (0.1-2.3 km depth, corresponding to 10-70 °C) can be either (i) predicted within uncertainties from the current geothermal gradient, or (ii) inverted into a geothermal palaeogradient of 29 ± 2 °C km-1, integrating natural thermal conditions over the last ∼65 ka. The demonstrated ability to invert a depth-luminescence dataset into a meaningful geothermal palaeogradient opens new venues for reconstructing recent ambient temperatures of the shallow crust (<0.3 Ma, 40-70 °C range), or for studying equally recent and rapid transient cooling in active orogens (<0.3 Ma, >200 °C Ma-1 range). Although Na-feldspar IRSL is prone to field saturation in colder or slower environments, the method's primary relevance appears to be for borehole and tunnel studies, where it may offer remarkably recent (<0.3 Ma) information on the thermal structure and history of hydrothermal fields, nuclear waste repositories and hydrocarbon reservoirs.

  17. Europium anomaly in plagioclase feldspar - Experimental results and semiquantitative model.

    NASA Technical Reports Server (NTRS)

    Weill, D. F.; Drake, M. J.

    1973-01-01

    The partition of europium between plagioclase feldspar and magmatic liquid is considered in terms of the distribution coefficients for divalent and trivalent europium. A model equation is derived giving the europium anomaly in plagioclase as a function of temperature and oxygen fugacity. The model explains europium anomalies in plagioclase synthesized under controlled laboratory conditions as well as the variations of the anomaly observed in natural terrestrial and extraterrestrial igneous rocks.

  18. Mesoscale Approach to Feldspar Dissolution: Quantification of Dissolution Incongruency Based on Al/Si Ordering State

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Min, Y.; Jun, Y.

    2012-12-01

    Dissolution mechanism of aluminosilicates is important for understanding natural and anthropogenic carbon cycles. The total mass of atmospheric CO2 is regulated by the weathering of silicate minerals, and the fate of geologically sequestered CO2 is affected by the interactions between brine, sandstone, caprock, and CO2, which is initiated by mineral dissolution. It has been shown through both experimental and ab initio studies that the dissolution/weathering reactivities of Al and Si in the matrix of an aluminosilicate can be different under many conditions. A subsequent observation is that the release rates of Al and Si, both from the same mineral, may not be stoichiometric when compared to the bulk chemistry of the mineral. For a very long time, the relationship between mineral dissolution incongruency and mineral crystallographic properties remain largely qualitative and descriptive. Here we study the dissolution incongruency of feldspars, the most abundant aluminosilicate on earth. Mineral dissolution experiments for a series of alkali feldspars (albite, anorthoclase, sanidine, and microcline) and plagioclases (oligoclase, andesine, labradorite, bytownite, and anorthite) were conducted at pH 1.68 under ambient conditions. Synchrotron-based X-ray diffraction (HR-XRD), Fourier transform infrared spectroscopy (FTIR), and water chemistry analysis (ICP-MS) are combined to examine the effect of Al/Si ordering on mineral dissolution. Our analysis based on a C1 structure model shows that the incongruency, stemming from the different reactivities of Al-O-Si and Si-O-Si linkages in feldspar's framework, is quantifiable and closely related to the Al/Si ordering state of a feldspar. Our results also suggest that the more random the Al/Si distribution of a mineral, the greater the dissolution incongruency. Our results have significant implications for understanding water-rock interactions. First, when studying the effect of water chemistry on water-rock interaction, smaller

  19. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  20. QUARTZ FIBER ELECTROSCOPES

    DOEpatents

    Henderson, R.P.

    1956-04-17

    This patent pertains to quartz fiber electroscopes of small size for use by personnel to monitor nuclear radiation. The invention resides tn a novel way of charging the electroscope whereby the charging of the electroscope whereby the charging of the electroscope is carried out without obtaining contact with the fiber system or its support and the electroscope can therefore be constructed without a protective cap to prevent wrongful discharge. The electroscope is charged by placing a voltage between an electrode located in close proximity to the element to be charged and the electroscope me metallic case. ABSTRACTS

  1. MDD Analysis of Microtexturally Characterized K-Feldspar Fragments

    NASA Astrophysics Data System (ADS)

    Short, C. H.; Heizler, M. T.; Parsons, I.; Heizler, L.

    2011-12-01

    Multiple diffusion domain (MDD) analysis of K-feldspar 40Ar/39Ar age spectra is a powerful thermochronological tool dating back 25 years, but continued validation of the basic assumptions of the model can be afforded by microanalysis of K-feldspar crystal fragments. MDD theory assumes that diffusion of Ar in K-feldspars is controlled by domains of varying size bounded by infinitely fast diffusion pathways. However, the physical character of these domain boundaries is not fully understood and this issue remains a point of criticism of the MDD model. We have evaluated the relationship between texture, age, and thermal history via step heating and modeling of texturally characterized K-feldspar crystal fragments (250-500 μm). K-feldspar phenocrysts from the Shap granite, chosen for their well-studied and relatively simple microtextures, contain large areas of homogenous regular strain-controlled film perthite with periodicities on the order of ~1 μm and abundant misfit dislocations, as well as areas of much coarser, irregular, slightly turbid, patch and vein perthite. Total gas ages (TGA) for all Shap fragments, regardless of texture, show less than 2% variation, but the shape of the age spectra varies with microtexture. Film perthites produce flat spectra whereas patch/vein perthite spectra have initial steps 5 - 25% older than the age of the emplacement with younger plateau or gently rising steps afterward. Patch/vein perthites have substantial microporosity and their spectral shapes may be a consequence of trapped 40Ar* that has diffused into micropores or other defects that have no continuity with the crystal boundaries. Correlations between spectral shape and heating schedule suggest that initial old ages are produced by the early release of trapped 40Ar* separated from the K parent rather than degassing of excess 40Ar*. The MH-42 K-feldspar from the Chain of Ponds Pluton has two primary microtextures: a coarse patch/vein perthite with lamellae 1-20 μm in

  2. Alkali metal ion battery with bimetallic electrode

    DOEpatents

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  3. Ideas about Acids and Alkalis.

    ERIC Educational Resources Information Center

    Toplis, Rob

    1998-01-01

    Investigates students' ideas, conceptions, and misconceptions about acids and alkalis before and after a teaching sequence in a small-scale research project. Concludes that student understanding of acids and alkalis is lacking. (DDR)

  4. Insights Into the Formation of Rhyolite From the Searchlight Pluton: Evidence from Oriented Quartz Clusters

    NASA Astrophysics Data System (ADS)

    Froemming, N.; Deering, C. D.; Beane, R. J.; Bachmann, O.

    2012-12-01

    The Miocene Searchlight pluton (SLP) in the Colorado River extensional corridor of southern Nevada, is well-exposed and tilted near-vertical for exceptional cross-sectional study of magma reservoir dynamics and crystal fractionation of a mid- to upper-crustal pluton (3 to 13 km depth). The upper quartz monzonite section is dominated by minerals in apparent random orientation with a medium- to fine-grained texture due to direct contact with the cold host rock. The middle granitic section is dominated by coarse-grained quartz and feldspar, and interpreted to be a zone of extracted liquid from an intermediate magma. The lower monzonite section is composed of coarse-grained plagioclase and potassium feldspar. We used the crystallographic orientations of quartz clusters, as determined by Electron Backscatter Diffraction (EBSD), to test for crystal accumulation in the SLP. Clusters of quartz crystals with matched dipyramidal faces (parallel or Esterel twin orientation) may indicate a period of crystal accumulation. By analyzing representative samples from each section of the pluton, we found that the lower section (intermediate cumulate) and upper section (crystallization front) do not have quartz clusters with matched dipyramidal faces. Although plagioclase grains are aligned in the lower section, the late crystallization of quartz appears to have prevented aligned or preferred growth orientations. In contrast, the middle section has a high percentage of quartz clusters with matched dipyramidal faces - similar to that found in granite porphyry of the Vinalhaven pluton, Maine. The aligned grains may have formed by fractional crystallization, compaction and synneusis of the early forming quartz in this granitic section. We interpret the middle section of the Searchlight pluton as being similar to shallow, upper crustal plutons (3-8 km depth) such as Vinalhaven pluton. The deep vertical exposure of the SLP, shows that the middle section was formed from periodic episodes of

  5. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  6. New observations on the quartz monzodiorite-granite suite

    NASA Astrophysics Data System (ADS)

    Marvin, U. B.; Holmberg, B. B.; Lindstrom, M. M.; Martinez, R. R.

    Five new fragments of quartz monzodiorite (QMD) were identified in particles from soil 15403, which was collected from the boulder sampled as rock 15405, an impact-melt breccia containing clasts of KREEP basalt, QMD, granite, and a more primitive alkali norite. Petrographic and geochemical studies of the fragments show considerable variation in modal proportions and bulk composition. This heterogeneity is due to unrepresentative sampling in small fragments of coarse-grained rocks. Variations in the proportions of accessory minerals have marked effects on incompatible-trace-element concentrations and ratios. Semiquantitative calculations support the derivation of QMD from 60-percent fractional crystallization of a KREEP basalt magma as suggested by Hess (1989). Apollo 15 KREEP basalt cannot be the actual parent magma because the evolved rocks predate volcanic KREEP basalts. It is suggested that ancient KREEP basalt magmas have crystallized as plutons, with alkali norite clasts offering the only direct evidence of this precursor.

  7. ORIGIN OF QUARTZ IN COAL.

    USGS Publications Warehouse

    Ruppert, Leslie F.; Cecil, C. Blaine; Stanton, Ronald W.

    1984-01-01

    Both a scanning electron microscope and an electron microprobe (EMP) were used in this study to analyze the cathodoluminescence properties of quartz grains in samples of the Upper Freeport coal bed because quartz grains in coal are small (silt sized) and below the resolution capabilities of a standard luminoscope. Quartz grains were identified by the detection of silicon alone with energy dispersive X-ray units attached to both the SEM and the EMP.

  8. A re-examination of the role of hydrogen in Al-Si interdiffusion in feldspars

    NASA Astrophysics Data System (ADS)

    Graham, Colin M.; Elphick, Stephen C.

    1990-07-01

    Recent experimental studies have shown that the rates of Al-Si order-disorder and interdiffusion in alkali feldspars at high pressures under dry conditions increase dramatically in the approximate pressure range 7 14 kb, depending on temperature and feldspar composition (Goldsmith 1987, 1988). Enhancement of Al-Si interdiffusion rates is ascribed to the involvement of hydrogen, but the species of hydrogen involved is undetermined. A simple kinetic analysis of the data of Goldsmith (1987) on disordering of dry albite at 800° 950° C and 6 24 kb in the solid media press is consistent with the NaCl pressure cell acting as a proton donor by enhancing dissociation of water in the pressure medium, generating a higha_{H^ + } in the experimental environment. The rate constant for disordering of albite is found to increase linearly with the estimated experimentala_{H^ + } and with the density of aqueous salt solution, implicating H+ as the rate-enhancing species. Further experimental studies confirm the importance ofa_{H^ + } . At 16 kb and 850° C, dry albite in sealed Pt capsules in a NaCl cell containing tantalum powder (which reduces H2O to H2) remains highly ordered over the same time that complete disordering would occur in the absence of Ta. H2 cannot therefore be the rate-enhancing species. At 1 kb and 850° C, the extent of Al-Si disorder in albite in direct contact with various NaCl-H2O solutions increases from partially disordered for pure H2O to completely disordered for saturated aqueous NaCl solution, giving strong support to the proton model. SIMS scanning ion imaging of albite run products demonstrates conclusively that solution-reprecipitation is not responsible for enhanced disordering rates. Results of disordering experiments in the solid media apparatus cannot be duplicated in Ar gas media internally-heated pressure vessels, even with the same experimental configuration around the albite-bearing capsules, due to the different proton-buffering capacities

  9. Chlor-Alkali Technology.

    ERIC Educational Resources Information Center

    Venkatesh, S.; Tilak, B. V.

    1983-01-01

    Chlor-alkali technology is one of the largest electrochemical industries in the world, the main products being chlorine and caustic soda (sodium hydroxide) generated simultaneously by the electrolysis of sodium chloride. This technology is reviewed in terms of electrochemical principles and manufacturing processes involved. (Author/JN)

  10. Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars

    USGS Publications Warehouse

    Johnson, J. R.; Horz, F.; Staid, M.I.

    2003-01-01

    Thermal infrared emission and reflectance spectra (250-1400 cm-1; ???7???40 ??m) of experimentally shocked albite- and anorthite-rich rocks (17-56 GPa) demonstrate that plagioclase feldspars exhibit characteristic degradations in spectral features with increasing pressure. New measurements of albite (Ab98) presented here display major spectral absorptions between 1000-1250 cm-1 (8-10 ??m) (due to Si-O antisymmetric stretch motions of the silica tetrahedra) and weaker absorptions between 350-700 cm-1 (14-29 ??m) (due to Si-O-Si octahedral bending vibrations). Many of these features persist to higher pressures compared to similar features in measurements of shocked anorthite, consistent with previous thermal infrared absorption studies of shocked feldspars. A transparency feature at 855 cm-1 (11.7 ??m) observed in powdered albite spectra also degrades with increasing pressure, similar to the 830 cm-1 (12.0 ??m) transparency feature in spectra of powders of shocked anorthite. Linear deconvolution models demonstrate that combinations of common mineral and glass spectra can replicate the spectra of shocked anorthite relatively well until shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation. Albite deconvolutions exhibit higher errors overall but do not change significantly with pressure, likely because certain clay minerals selected by the model exhibit absorption features similar to those in highly shocked albite. The implication for deconvolution of thermal infrared spectra of planetary surfaces (or laboratory spectra of samples) is that the use of highly shocked anorthite spectra in end-member libraries could be helpful in identifying highly shocked calcic plagioclase feldspars.

  11. Quartz resonator processing system

    DOEpatents

    Peters, Roswell D. M.

    1983-01-01

    Disclosed is a single chamber ultra-high vacuum processing system for the oduction of hermetically sealed quartz resonators wherein electrode metallization and sealing are carried out along with cleaning and bake-out without any air exposure between the processing steps. The system includes a common vacuum chamber in which is located a rotatable wheel-like member which is adapted to move a plurality of individual component sets of a flat pack resonator unit past discretely located processing stations in said chamber whereupon electrode deposition takes place followed by the placement of ceramic covers over a frame containing a resonator element and then to a sealing stage where a pair of hydraulic rams including heating elements effect a metallized bonding of the covers to the frame.

  12. Alkali basalts and enclosed ultramafic xenoliths near Ushuaia, Tierra Del Fuego, Argentina.

    PubMed

    Acevedo, Rogelio Daniel

    2016-01-01

    At the southernmost part of Tierra del Fuego a few outcrops and erratic boulders of alkali basaltic rocks with ultramafic enclaves have been studied. Alkali basalt plugs or pipes hitherto identified are scarce, and host rocks are constituted by slates that belong to Mesozoic deposition. The petrography, texture and composition of the basalt and xenoliths were investigated by petrographic microscope and electron microprobe analysis. Xenocrysts of amphibole and alkali feldspar, phenocrysts of nepheline, olivine, spinel, phlogopite and Fe-Ti minerals (10 %) and a diversity of xenoliths, mainly lherzolitic, pyroxenite and wehrlitic nodules (15 %), but also from metamorphic rocks provenance, are contained in the basalt groundmass (75 %). This finer-grained material is made up of laths or needles of plagioclase, pyroxene, opaque minerals, apatite and glass, with intersertal, hyalopilitic and pilotaxitic. Locally, rock has an even granoblastic texture. Former amygdules are filled by analcite, zeolites, sodalite and calcite. The normative classification, based on nepheline content, conclude that this rock is an alkali basalt. The chemical classification, considering immobile elements as Zr/TiO2 versus Nb/Y indicate an alkali basalt too and plots over the TAS diagram fall in the foidite (Na-rich or nephelinite) and basanite fields. The REE patterns are fractionated (La/Yb primitive mantle normalized is approximately 30). The K-Ar isotopic technique on individual macrocrysts gave ages of 146 ± 5 Ma (amphibole) and 127 ± 4 Ma (alkali feldspar); and K-Ar whole rock datum reported 8.3 ± 0.3 Ma. Nevertheless, fertile samples show geochemical features typical of deep derived material thus, based on the position in the actual tectonic setting, indicate that the basalt is older than its isotopic age.

  13. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  14. Quartz microstructures and crystallographic preferred orientation: Which shear sense do they indicate?

    NASA Astrophysics Data System (ADS)

    Kilian, Rüdiger; Heilbronner, Renée; Stünitz, Holger

    2011-10-01

    Crystallographic preferred orientation (CPO) and shape fabrics of dynamically recrystallized quartz are currently used as shear sense indicators. We show that the CPO and shape fabric in a polyphase rock do not necessarily indicate the shear sense at the global scale of the shear zone but rather at the local scale of the deforming and recrystallizing quartz aggregates. In lower amphibolite facies shear zones in the Gran Paradiso metagranodiorite, magmatic quartz grains have recrystallized dynamically by subgrain rotation and grain boundary migration and deform inside a very fine-grained feldspar-mica matrix. The quartz CPO has a peripheral [c]-axis maximum inclined synthetically with the local shear sense. The orientation of the surface fabric is related to the orientation of the [c]-axis maximum and the microscopic shear sense in the quartz aggregate. The geometry of the surface fabric ranges from monoclinic to symmetric depending on the relative contribution of grain boundary migration. It is inferred that flow partitioning between the quartz aggregates and the matrix controls the local kinematics. CPOs are only reliable shear sense indicators in polyphase rocks if the most highly strained parts are analyzed where spin of the aggregates with respect to the shear zone boundary has ceased.

  15. Control of Montmorillonite Surface Coatings on Quartz Grains in Bentonite by Precursor Volcanic Glass

    NASA Astrophysics Data System (ADS)

    Wendlandt, R. F.; Harrison, W. J.

    2008-12-01

    The pathogenic tendencies of respirable-sized quartz grains may be dependent on inherent characteristics of the quartz as well as external factors. Surface coatings on quartz are of particular interest as they modify both physical and chemical properties of quartz grain surfaces and sequester the grain from contact with reactive lung fluids. Wendlandt et al. (Appl. Geochem. 22, 2007) investigated the surface properties of respirable-sized quartz grains in bentonites and recognized pervasive montmorillonite surface coatings on the quartz that resisted removal by repeated vigorous washings and reaction with HCl. To understand the persistence of montmorillonite coatings on quartz grains of igneous origin, volcanic ash deposits of varying age and degree of alteration to montmorillonite were sampled in Utah, including the distal Lava Creek (c. 0.64 Ma) and Bishop Tuffs (c. 0.74 Ma), and SW Colorado (Conejos Fm, San Juan Volcanic Field) for comparison with commercial grade Cretaceous-age "western" and "southern" bentonites. Quartz grains, hand-picked from these samples, were analyzed using FE-SEM and HRTEM. Continuous coatings of volcanic glass occur on quartz grains from the distal volcanic ash samples. As glass alteration to montmorillonite becomes more extensive, quartz grain surfaces start to display patches of montmorillonite. These patches become continuous in extent on quartz grains from the bentonites. Late precipitation of opal- CT lepispheres is consistent with the alteration reaction for volcanic glass: Volcanic glass + H2O = montmorillonite + SiO2(am) + ions(aq). HRTEM of quartz grains reveals an amorphous surface layer, consistent with a volcanic glass coating. Our results indicate that persistent montmorillonite coatings on quartz grains in bentonites are related to precursor volcanic glass coatings on these grains. The absence of glass coatings on other mineral grains in bentonite (feldspar, biotite) may be a consequence of the presence of strong cleavage

  16. Permeability Reduction Due to Precipitation of Quartz under Nonisothermal Conditions

    SciTech Connect

    Keith, Laura A.; Delaney, Paul T.; Moore, Diane E.

    1983-12-15

    Many problems concerning the origin and exploitation of geothermal reservoirs demonstrate the need for models of reactive-solute transport. Of particular interest to us is the coupling between dissolution/precipitation reactions and transient-flow behavior. In an effort to account for observed flow-rate reductions during experiments on samples of granite held in a temperature gradient (summarized at this meeting in 1981 by Moore and others), we examine the effect of quartz precipitation on fluid flow. Our results confirm earlier inerences that reactions responsible for porosity reduction were affected by kinetic factors. Although our results show substantial flow-rate reductions, we are unable to reproduce measured silica concentrations of the outlet fluid by considering the behavior of silica phases without regard for that of the feldspars and micas.

  17. Formation of rhyolite at the Okataina Volcanic Complex, New Zealand: New insights from analysis of quartz clusters in plutonic lithics

    NASA Astrophysics Data System (ADS)

    Graeter, K.; Beane, R. J.; Deering, C. D.; Gravley, D. M.; Bachmann, O.

    2014-12-01

    Granitoid lithic clasts from the 0.7 ka Kaharoa eruption at the Tarawera volcano (Okataina Volcanic Complex, Taupo Volcanic Zone, New Zealand) - the world's most productive region where rhyolite volcanism is currently active - give insight into the processes of rhyolite formation. The plutonic lithic clasts of the Kaharoa eruption consist of (1) quartz phenocrysts, which are often grouped into clusters of two to eight quartz grains, (2) plagioclase phenocrysts with anorthitic cores and albitic rims, and (3) interstitial potassium feldspar. Quartz orientations obtained through electron backscatter diffraction (EBSD) methods show that 78% of the 82 analyzed clusters have at least one pair of quartz grains with matched dipyramidal faces that are in either parallel or Esterel twin orientation. Variations in cathodoluminescence (CL) zoning patterns of the quartz suggest that quartz clusters in the plutonic lithics formed after initial crystal growth and that many quartz crystals were subject to one or more resorption events. Thus, individual quartz crystals with different magmatic histories came together into preferred orientations to form clusters; this process is indicative of oriented quartz synneusis and suggests a history of crystal accumulation. The quartz clusters are interpreted to have formed as part of a crystal cumulate mush within a shallow magma chamber where quartz crystals rotated into contact along their dipyramidal faces during hindered settling and/or compaction. Therefore, the preservation of oriented quartz clusters from the Kaharoa plutonic lithics provides direct evidence for synchronous, shallow pluton formation from a cumulate mush during active volcanism. This result is consistent with a model whereby melt-rich, high-silica rhyolite formation occurs via interstitial melt extraction from a low-silica rhyolite mush in the shallow crust.

  18. Chemical Zoning of Feldspars in Lunar Granitoids: Implications for the Origins of Lunar Silicic Magmas

    NASA Technical Reports Server (NTRS)

    Mills, R. D; Simon, J. I.; Alexander, C.M. O'D.; Wang, J.; Christoffersen, R.; Rahman, Z..

    2014-01-01

    Fine-scale chemical and textural measurements of alkali and plagioclase feldspars in the Apollo granitoids (ex. Fig. 1) can be used to address their petrologic origin(s). Recent findings suggest that these granitoids may hold clues of global importance, rather than of only local significance for small-scale fractionation. Observations of morphological features that resemble silicic domes on the unsampled portion of the Moon suggest that local, sizable net-works of high-silica melt (>65 wt % SiO2) were present during crust-formation. Remote sensing data from these regions suggest high concentrations of Si and heat-producing elements (K, U, and Th). To help under-stand the role of high-silica melts in the chemical differentiation of the Moon, three questions must be answered: (1) when were these magmas generated?, (2) what was the source material?, and (3) were these magmas produced from internal differentiation. or impact melting and crystallization? Here we focus on #3. It is difficult to produce high-silica melts solely by fractional crystallization. Partial melting of preexisting crust may therefore also have been important and pos-sibly the primary mechanism that produced the silicic magmas on the Moon. Experimental studies demonstrate that partial melting of gabbroic rock under mildly hydrated conditions can produce high-silica compositions and it has been suggested by that partial melting by basaltic underplating is the mechanism by which high-silica melts were produced on the Moon. TEM and SIMS analyses, coordinated with isotopic dating and tracer studies, can help test whether the minerals in the Apollo granitoids formed in a plutonic setting or were the result of impact-induced partial melting. We analyzed granitoid clasts from 3 Apollo samples: polymict breccia 12013,141, crystalline-matrix breccia 14303,353, and breccia 15405,78

  19. Alkalis in alternative biofuels

    SciTech Connect

    Miles, T.R.; Miles, T.R. Jr.; Bryers, R.W.; Baxter, L.L.; Jenkins, B.M.; Oden, L.L.

    1994-12-31

    The alkali content and behavior of inorganic material of annually produced biofuels severely limits their use for generating electrical power in conventional furnaces. A recent eighteen-month investigation of the chemistry and firing characteristics of 26 different biofuels has been conducted. Firing conditions were simulated in the laboratory for eleven biofuels. This paper describes some results from the investigation including fuel properties, deposits, deposition mechanisms, and implications for biomass boiler design, fuel sampling and characterizations. Urban wood fuel, agricultural residues, energy crops, and other potential alternate fuels are included in the study. Conventional methods for establishing fuel alkali content and determining ash sticky temperatures were deceptive. The crux of the problem was found to be the high concentration of potassium in biofuels and its reactions with other fuel constituents which lower the ``sticky temperature`` of the ash to the 650 C to 760 C (1,200 F-1,400 F).

  20. Alkali-vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.; Krupke, W. F.

    2010-02-01

    We report on the results from several of our alkali laser systems. We show highly efficient performance from an alexandrite-pumped rubidium laser. Using a laser diode stack as a pump source, we demonstrate up to 145 W of average power from a CW system. We present a design for a transversely pumped demonstration system that will show all of the required laser physics for a high power system.

  1. Electrochemical Quartz Crystal Nanobalance

    NASA Astrophysics Data System (ADS)

    Inzelt, György

    The method of piezoelectric microgravimetry (nanogravimetry) using an electrochemical quartz crystal microbalance (EQCM) or nanobalance (EQCN) can be considered as a novel and much more sensitive version of electrogravimetry. The EQCN technique has become a widely used technique in several areas of electrochemistry, electroanalytical chemistry, bioelectrochemistry, etc. [1-10]. Obviously, mass changes occurring during adsorption, sorption, electrosorption, electrodeposition, or spontaneous deposition can be followed, which is very helpful for the elucidation of reaction mechanism via identification of the species accumulated on the surface. These investigations include metal and alloy deposition, underpotential deposition, electroplating, synthesis of conducting polymers by electropolymerization, adsorption of biologically active materials, and analytical determination of small ions and biomolecules. Of course, the opposite processes, i.e., spontaneous dissolution, electrodissolution, corrosion, can also be studied. Electrochemical oscillations, in which the formation and oxidation of chemisorbed molecular fragments play a determining role, have been studied, too. The majority of the investigations have been devoted to ion and solvent transport associated with the redox transformations of electrochemically active polymers. Similar studies have been carried out regarding polynuclear surface layers such as metal hexacyanometalates as well as inorganic and organic microcrystals of different compositions.

  2. Quartz crystal fabrication facility

    NASA Astrophysics Data System (ADS)

    Ney, R. J.

    1980-05-01

    The report describes the design and operation of a five chamber, interconnected vacuum system, which is capable of cleaning, plating, and sealing precision quartz crystal units in ceramic flatpack enclosures continuously in a high vacuum environment. The production rate design goal was 200 units per eight hour day. A unique nozzle beam gold deposition source was developed to operate for extended periods of time without reloading. The source puts out a narrow beam of gold typically in the order of 2 1/2 deg included cone angle. Maximum deposition rates are in the order of 400 a/min at 5.5 in. 'throw' distance used. Entrance and exit air lock chambers expedite the material throughput, so that the processing chambers are at high vacuum for extended periods of time. A stainless steel conveyor belt, in conjunction with three vacuum manipulators, transport the resonator components to the various work stations. Individual chambers are normally separated from each other by gate valves. The crystal resonators, mounted in flatpack frames but unplated, are loaded into transport trays in a lid-frame-lid sequency for insertion into the system and exit as completed crystal units. The system utilizes molybdenum coated ball bearings at essentially all friction surfaces. The gold sources and plating mask heads are equipped with elevators and gate valves, so that they can be removed from the system for maintenance without exposing the chambers to atmosphere.

  3. Hydrogen speciation in synthetic quartz

    USGS Publications Warehouse

    Aines, R.D.; Kirby, S.H.; Rossman, G.R.

    1984-01-01

    The dominant hydrogen impurity in synthetic quartz is molecular H2O. H-OH groups also occur, but there is no direct evidence for the hydrolysis of Si-O-Si bonds to yield Si-OH HO-Si groups. Molecular H2O concentrations in the synthetic quartz crystals studied range from less than 10 to 3,300 ppm (H/Si), and decrease smoothly by up to an order of magnitude with distance away from the seed. OH- concentrations range from 96 to 715 ppm, and rise smoothly with distance away from the seed by up to a factor of three. The observed OH- is probably all associated with cationic impurities, as in natural quartz. Molecular H2O is the dominant initial hydrogen impurity in weak quartz. The hydrolytic weakening of quartz may be caused by the transformation H2O + Si-O-Si ??? 2SiOH, but this may be a transitory change with the SiOH groups recombining to form H2O, and the average SiOH concentration remaining very low. Synthetic quartz is strengthened when the H2O is accumulated into fluid inclusions and cannot react with the quartz framework. ?? 1984 Springer-Verlag.

  4. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process.

    PubMed

    Long, Jiang; Song, Hu; Jun, Xiang; Sheng, Su; Lun-Shi, Sun; Kai, Xu; Yao, Yao

    2012-07-01

    Investigating the release characteristics of alkali and alkaline earth metallic species (AAEMs) is of potential interest because of AAEM's possible useful service as catalysts in biomass thermal conversion. In this study, three kinds of typical Chinese biomass were selected to pyrolyse and their chars were subsequently steam gasified in a designed quartz fixed-bed reactor to investigate the release characteristics of alkali and alkaline earth metallic species (AAEMs). The results indicate that 53-76% of alkali metal and 27-40% of alkaline earth metal release in pyrolysis process, as well as 12-34% of alkali metal and 12-16% of alkaline earth metal evaporate in char gasification process, and temperature is not the only factor to impact AAEMs emission. The releasing characteristics of AAEMs during pyrolysis and char gasification process of three kinds of biomass were discussed in this paper.

  5. Quartz Resorption as a Geospeedometer in Peralkaline Rhyolites

    NASA Astrophysics Data System (ADS)

    Janebo, M.; Caricchi, L.; Rust, A.

    2010-12-01

    Magma ascent rate affects eruptive style and intensity as it determines time available for syn-eruptive crystallization, vesiculation and permeable gas loss. The width of hornblende reaction rims has previously been used to estimate ascent rates for eruptions of andesitic volcanoes. Reactions between quartz and the coexisting melt could provide a similar proxy for peralkaline silicic magmas. Mayor Island, a peralkaline rhyolitic volcano in New Zealand, was used as a case study to investigate the use of quartz resorption as a geospeedometer. During the last 130 ka, Mayor Island has exhibited a wide range of eruptions, both with regards to intensity and volume. Previous studies have determined the pre-eruptive temperature to be around 750°C and pressure to be 100-125 MPa, and proposed that the magma chamber is saturated in water (Barclay et al., 1996). Neither the composition of the magma (72-74 wt% SiO2) nor the water content (4.4 wt%) have changed significantly between the different styles of eruptions, and the wide range of eruptive style was therefore attributed to variations in the ascent rate. In general, the quartz phenocrysts from the effusive eruptions are rounded, whereas those from the explosive eruptions are euhedral. Scaillet and Macdonald (2001) established that there are realistic conditions for which quartz in peralkaline rhyolites goes from stable to unstable to stable again during decompression. In this study, the stability fields of quartz were determined for a Mayor Island magma composition using an externally heated cold-seal pressure vessel. The rate of quartz resorption was assessed by carrying out time-series experiments. The pre-eruptive conditions were determined to be about 700-750°C from feldspar thermometry and phase equilibria. The results indicate that the magma was water under-saturated and consequently stored at higher pressures than previously calculated. The time-series experiments imply that magma that erupt explosively did not

  6. Thermoelectrically-cooled quartz microbalance

    NASA Technical Reports Server (NTRS)

    Mckeown, D.

    1975-01-01

    Temperature of microbalance can be maintained at ambient temperature or held at some other desired temperature. Microbalance has tow-stage thermoelectric device that controls temperature of quartz crystal. Heat can be pumped to or from balance by Peltier effect.

  7. Feldspars Detected by ChemCam in Gale Crater with Implications for Future Martian Exploration

    NASA Astrophysics Data System (ADS)

    Gasda, P. J.; Carlson, E.; Wiens, R. C.; Bridges, J.; Sautter, V.; Cousin, A.; Maurice, S.; Gasnault, O.; Clegg, S. M.

    2015-12-01

    Feldspar is a common igneous mineral that can shed light on parent magma temperatures, pressures, and compositions. During the first 801 sols of the NASA Mars Science Laboratory mission, we have detected 125 possible feldspar grains using the ChemCam LIBS instrument. We analyzed spectra from successive laser shots at the same location and approximate whole rock compositions for each target. Feldspar-containing targets range from tephrite-basanite to trachyandesite. The most common feldspar type is andesine; no targets are >An60. Over 30% are anorthoclase, and ~10% have potassium contents up to Or60. Individual shot measurements in a single spot suggest some feldspars are zoned. Most of these rocks are either float or incorporated into conglomerates, and thus we do not know their provenance. Many of the samples may originate from the Gale crater walls, indicative of Southern Highland ancient crust. Some may also be flung from further away (e.g., emplaced by impact processes). Hence, these rocks may give us a general clue to the variety of evolved igneous materials on Mars. The ubiquity of feldspars at Gale suggests that they have been significantly underestimated for the Southern Highlands, if not for the whole of Mars. For example, significant abundance of andesitic feldspars in both the southern highland and northern lowlands of Mars would imply that Martian volcanism has produced a greater extent of evolved igneous materials to a greater degree than previously thought. Remote sensing instruments are insensitive to plagioclase due to dust cover, lack of exposures, or low feldspar FeO content. However, the Mars 2020 rover will be equipped with 3 new instruments, the arm-mounted SHERLOC Raman, PIXL μXRF, and the mast-mounted SuperCam combined Raman-LIBS instruments, which should help characterize Martian feldspars. Additionally, the SuperCam instrument plans to include three feldspars in its suite of 20+ onboard standards to improve feldspar chemical analysis.

  8. Evaluation of laboratory test method for determining the potential alkali contribution from aggregate and the ASR safety of the Three-Gorges dam concrete

    SciTech Connect

    Lu Duyou . E-mail: duyoulu@njut.edu.cn; Zhou, Xiaoling; Xu Zhongzi; Lan Xianghui; Tang Mingshu; Fournier, Benoit

    2006-06-15

    The releasable alkali from granite, which was used in the Three-Gorges concrete dam project in China, and from gneiss and feldspar was estimated by extraction in distilled water and super-saturated Ca(OH){sub 2} solution. Results show that: i) the finer the particles and the higher the temperature, the greater and faster the release of alkali; ii) compared with extraction by distilled water, super-saturated Ca(OH){sub 2} solution had a stronger activation on feldspar than on granite and gneiss; iii) for the three rocks tested, thermal activation had the largest effect on gneiss and a lower and similar effect on granite and feldspar. For very fine particles, temperature had a similar effect on the release of alkali by all three rocks. Because the aggregate used in the Three-Gorges dam concrete is non-reactive and a low calcium fly ash was used in the concrete, ASR would not be an issue for the dam, despite the release of alkali from the aggregate into the concrete.

  9. Lithological influence of aggregate in the alkali-carbonate reaction

    SciTech Connect

    Lopez-Buendia, A.M. . E-mail: angel.lopez@aidico.es; Climent, V. . E-mail: vcliment@grupogla.com; Verdu, P.

    2006-08-15

    The reactivity of carbonate rock with the alkali content of cement, commonly called alkali-carbonate reaction (ACR), has been investigated. Alkali-silica reaction (ASR) can also contribute in the alkali-aggregate reaction (AAR) in carbonate rock, mainly due to micro- and crypto-crystalline quartz or clay content in carbonate aggregate. Both ACR and ASR can occur in the same system, as has been also evidenced on this paper. Carbonate aggregate samples were selected using lithological reactivity criteria, taking into account the presence of dedolomitization, partial dolomitization, micro- and crypto-crystalline quartz. Selected rocks include calcitic dolostone with chert (CDX), calcitic dolostone with dedolomitization (CDD), limestone with chert (LX), marly calcitic dolostone with partial dolomitization (CD), high-porosity ferric dolostone with clays (FD). To evaluate the reactivity, aggregates were studied using expansion tests following RILEM AAR-2, AAR-5, a modification using LiOH AAR-5Li was also tested. A complementary study was done using petrographic monitoring with polarised light microscopy on aggregates immersed in NaOH and LiOH solutions after different ages. SEM-EDAX has been used to identify the presence of brucite as a product of dedolomitization. An ACR reaction showed shrinkage of the mortar bars in alkaline solutions explained by induced dedolomitization, while an ASR process typically displayed expansion. Neither shrinkage nor expansion was observed when mortar bars were immersed in solutions of lithium hydroxide. Carbonate aggregate classification with AAR pathology risk has been elaborated based on mechanical behaviours by expansion and shrinkage. It is proposed to be used as a petrographic method for AAR diagnosis to complement the RILEM AAR1 specifically for carbonate aggregate. Aggregate materials can be classified as I (non-reactive), II (potentially reactive), and III (probably reactive), considering induced dedolomitization ACR

  10. Martabah gabbro—monzonite complex, Hijaz region, Kingdom of Saudi Arabia; petrography and structure

    NASA Astrophysics Data System (ADS)

    Douch, Colin J.; Al-Hazmi, Hassan; Aidrous, Abdullah

    The Martabah complex consists of an almost circular gabbroic rim, the outer portion of which is intruded by ring dikes of alkali-feldspar granite, and a core of (quartz) monzonite intruded by arcuate lenses and dikes of (quartz) syenite. A central lens of kaolinized, porphyritic quartz alkali-feldspar syenite is possibly derived from monzonitic rocks. There is an intense aeromagnetic anomaly over the gabbro and a low-intensity radiometric anomaly over the core.

  11. Boron-bearing potassium feldspar of authigenic origin in closed-basin deposits

    USGS Publications Warehouse

    Sheppard, Richard A.; Gude, Arthur J.

    1973-01-01

    Silicic vitric tuffs in saline, alkaline lacustrine deposits are commonly altered to a variety of zeolites and potassium feldspar. The tuffs generally show a lateral gradation, in a basinward direction, of fresh glass to zeolites and then to potassium feldspar. Zeolites were formed early in diagenesis by reaction of the glass with the interstitial water. The feldspar, however, was formed later by reaction of the zeolites with interstitial water, and its formation can be correlated with water of relatively high salinity and alkalinity. Semiquantitative spectrographic analyses for boron in the zeolites and potassium feldspar show that most of the boron resides in the relatively late feldspar. The boron content of the zeolites is commonly less than 100 ppm, whereas the boron content of the potassium feldspar is commonly greater than 1,000 ppm. Boron apparently substitutes for aluminum in the feldspar structure and causes distortion of the monoclinic unit cell such that the b and c dimensions are shortened. These boron-bearing potassium feldspars having anomalous cell parameters seem unique to saline,alkaline lacustrine deposits and could serve as a prospecting aid for locating buried saline minerals.

  12. Preparation of alkali metal dispersions

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Landel, R. F. (Inventor)

    1968-01-01

    A method is described for producing alkali metal dispersions of high purity. The dispersions are prepared by varying the equilibrium solubility of the alkali metal in a suitable organic solvent in the presence of aromatic hydrocarbons. The equilibrium variation is produced by temperature change. The size of the particles is controlled by controlling the rate of temperature change.

  13. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  14. [Study on crystal chemistry and spectra of feldspar from Zhoukoudian granodiorite].

    PubMed

    Zhang, Yong-wang; Zeng, Jian-hui; Liu, Yan; Guo, Jian-yu

    2009-09-01

    The chemical composition and spectra characteristic of feldspar from Zhoukoudian granodiorite were systematically analyzed. Based on the field work, some feldspar samples were selected for crystal chemistry and structure analysis through EMPA, IR, LRM and XRD. The compositions of the feldspar range between Ab (85.21) Or (0.18) An (9.11) and Ab (90.06) Or (3.00) An (13.27) by electronic microscope probe analysis. According to the XRD peak and its diffraction intensity, the mineral species was found the unit cell parameters were calculated. The absorption bands and peaks of infrared and Raman spectra were also assigned and the results show that the characteristics of its infrared and Raman spectra are in accordance with the ideal atlas of albite. The infrared spectra show that all the analyzed feldspar grains contain structural hydrogen, which occur as OH-. On the basis of the above analyses, the crystal chemistry and structure characteristics of feldspar were summarized.

  15. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  16. Role of Substrate on Quartz Cementation in Quartz Aggregates

    NASA Astrophysics Data System (ADS)

    Farver, J. R.; Winslow, D.; Onasch, C.

    2010-12-01

    Quartz cementation in quartz aggregates has been experimentally investigated. The starting material was disaggregated detrital quartz grains from the well-sorted, mature St. Peter Sandstone. The ‘as-is’ grains have patches of iron oxide coatings and some have euhedral overgrowths that contain iron oxide dust rims. In addition a set of experiments was run using grains that were cleaned by soaking in sodium hydrosulfite and sodium bisulfate solutions to remove exposed iron oxide coatings. Experimental charges consisted of amorphous silica powder (≈30 mg) to provide a source of silica for the quartz cement, AlCl3 powder (≈3 mg) to provide a tracer for Cathodoluminescence (CL) identification of cement formed during the experiment, 25 wt% NaCl brine solution (≈25 mg) to increase the silica solubility and to better mimic oil field brines, and the natural quartz grains (100-130 mg). The charges were weld-sealed in Au capsules and run in cold-seal pressure vessels at 250°C to 450°C at 150 MPa confining pressure for up to 8 weeks. After the experiments, the samples were vacuum impregnated with a low viscosity epoxy containing a blue dye. After curing, the sample charge was sawn in half along its long axis and one half was polished (to 1 micron diamond paste) for analysis. The nature and amount of quartz cement in the samples were determined by a combination of CL, light microscopy, and scanning electron microscopy. Photomosaics of the samples were created and the amount of cement, porosity, and average grain sizes were determined by point-counting. The cement formed during the experiment was easily recognized from the quartz grains (and previous overgrowths) by the difference in luminescence. The results indicate the amorphous silica powder provides a ready source for silica for quartz cementation due to its greater solubility than the quartz. The cementation rates are rapid (>14% cement formed in 2 weeks at 450°C and >7% in 8 weeks at 250°C). Compared to

  17. Nd isotopes demonstrate the role of contamination in the formation of coexisting quartz and nepheline syenites at the Abu Khruq Complex, Egypt

    NASA Astrophysics Data System (ADS)

    Landoll, J. D.; Foland, K. A.; Henderson, C. M. B.

    1994-08-01

    The petrogenesis of Abu Khruq, an 89 Ma alkaline ring complex of eastern Egypt which is composed of alkali gabbros and both silica over- and undersaturated syenites, has been investigated. Major and trace element relationships and Nd and Sr isotope data are consistent with formation of the gabbros from an alkaline mafic magma that experienced extensive fractionation, and all syenites from a felsic derivative of this melt. The parental magma had an 87Sr/86Sr of 0.7030 and an 143Nd/144Nd of 0.512750 (ɛNd = +4.4) indicating derivation from a depeleted mantle source. The initial 143Nd/144Nd ratios are: 0.512721 to 0.512748 for the gabbros, 0.512739 to 0.512750 for the alkali syenites and trachytes, 0.512717 to 0.512755 for the nepheline syenites, and, 0.512706 to 0.512732 for the quartz syenites. In contrast, analyzed Precambrian granites from eastern Egypt have generally lower 143Nd/144Nd ratios (ranging from 0.51247 to 0.51261 or ɛNd = -0.8 to 1.7, for 89Ma); their Nd model ages range from 775 to 935 Ma and suggest there was no significant input of pre-Pan-African crust in their formation. Among Abu Khruq rocks, 143Nd/144Nd ratios indicate that the quartz syenites formed by open-system, crustal contamination processes whereas the nepheline syenites experienced little or no contamination. Modeling shows that contamination occurred at various stages, affecting both mafic and more evolved compositions with input of about 20% crustal Nd for the most contaminated samples. The degree of contamination is related to the silica saturation of the quartz syenites. Simplified modeling of magma evolution within Petrogeny's Residua System demonstrates the ability of AFC processes to cause a critically undersaturated magma to evolve across the feldspar join and produce oversaturated rocks. The oversaturated syenites at Abu Khruq were produced in this manner whereas the nepheline syenites formed by fractionation without similarly large degrees of contamination. The results have

  18. The contribution of quartz and the role of aluminum for understanding the AAR with greywacke

    SciTech Connect

    Huenger, Klaus-Juergen E-mail: huenger@tu-cottbus.de

    2007-08-15

    Precambrian Greywacke from Lower Lusatia (Germany) has been well known as an alkali sensitive aggregate for several years. It can cause considerable damages in concrete buildings due to an Alkali-Aggregate-Reaction. The investigations are focused on quartz as the main releaser of silica, its characterization and its behavior in an alkaline solution. But there are no relations between quartz properties and the alkali sensitivities of greywacke samples. To understand this fact the role of aluminum which greywacke releases in different amounts into the alkaline solution too must be considered. Aluminum affects the silica concentration by three different mechanisms. The result is always a decrease of the silica concentration in the solution caused by an alumino silicate formation. The silica bound by alumino silicate structures can be quantified by {sup 27}Al-NMR-spectroscopy. The expansions of concrete samples can now be described much well as a function of a so called 'free' silica. Based on this results a direct test method for the assessment of the alkali sensitivity of greywackes could be created and suggestions for an inhibition can be given.

  19. Fault core and damage zone fracture attributes vary along strike owing to interaction of fracture growth, quartz accumulation, and differing sandstone composition

    NASA Astrophysics Data System (ADS)

    Laubach, S. E.; Eichhubl, P.; Hargrove, P.; Ellis, M. A.; Hooker, J. N.

    2014-11-01

    Small, meter-to decimeter-displacement oblique-slip faults cut latest Precambrian lithic arkose to feldspathic litharenite and Cambrian quartz arenite sandstones in NW Scotland. Despite common slip and thermal histories during faulting, the two sandstone units have different fault-core and damage-zone attributes, including fracture length and aperture distributions, and location of quartz deposits. Fault cores are narrow (less than 1 m), low-porosity cataclasite in lithic arkose/feldspathic litharenites. Damage zone-parallel opening-mode fractures are long (meters or more) with narrow ranges of lengths and apertures, are mostly isolated, have sparse quartz cement, and are open. In contrast, quartz arenites, despite abundant quartz cement, have fault cores that contain porous breccia and dense, striated slip zones. Damage-zone fractures have lengths ranging from meters to centimeters or less, but with distributions skewed to short fractures, and have power-law aperture distributions. Owing to extensive quartz cement, they tend to be sealed. These attributes reflect inhibited authigenic quartz accumulation on feldspar and lithic grains, which are unfavorable precipitation substrates, and favored accumulation on detrital quartz. In quartz breccia, macropores >0.04 mm wide persist where surrounded by slow-growing euhedral quartz. Differences in quartz occurrence and size distributions are compatible with the hypothesis that cement deposits modify the probability of fracture reactivation. Existing fractures readily reactivate in focused growth where quartz accumulation is low and porosity high. Only some existing, partly cemented fractures reactivate and some deformation is manifest in new fracture formation in partitioned growth where quartz accumulation is high. Consequences include along-strike differences in permeability and locus of fluid flow between cores and damage zones and fault strength.

  20. Shocked quartz and more: Impact signatures in K-T boundary clays and claystones

    NASA Technical Reports Server (NTRS)

    Bohor, Bruce F.

    1988-01-01

    Quartz grains displaying multiple sets of planar features are described from numerous Cretaceous-Tertiary (K-T) boundary clays and claystones at both marine and nonmarine depositional sites around the world. All these sites also show anomalously high amounts of iridium and enrichments of other siderophile elements in cosmic ratios within these boundary units. This combination of mineralogical and geochemical features are used in support of an impact hypothesis for the end-Cretaceous event. Recently, it was suggested that some combination of explosive and nonexplosive volcanism associated with the formation of the Deccan traps in India could be responsible for the mineralogy and geochemistry seen in the K-T boundary units. Besides the obvious contradition of simultaneous explosive and nonexplosive volcanism from one locality during an instant of geologic time, there remains the difficulty of spreading both iridium (and trace elements in cosmic proportions) and quartz grains around the world by volcanic (atmospheric) transport. In addition, the ability of volcanism to produce the type of shock metamorphism seen in minerals at the K-T boundary was not demonstrated. Multiple sets of shock lamellae in quartz are considered characteristic of shock metamorphism in rocks at the sites of known impact craters and are the type of deformation seen in quartz from K-T boundary clays and claystones. Single sets of poorly defined lamellae described from rare quartz grains in certain volcanic deposits are characteristic of tectonic deformation and do not correspond to the shock lamellae in quartz from K-T sediments and impact structures. So-called shock mosaicism in quartz and feldspar grains described from volcanic deposits can result from many processes other than shock metamorphism, and therefore is not considered to be an effect characteristic solely of shock. The mineralogy of shock-metamorphosed grains at the K-T boundary also argues against a volcanic origin.

  1. Water Content of Lunar Alkali Fedlspar

    NASA Technical Reports Server (NTRS)

    Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

    2016-01-01

    Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of < 1 ppm in urKREEP. Using these data, predict that the bulk water content of the magma ocean would have <10 ppm. In contrast, estimate water contents of 320 ppm for the bulk Moon and 1.4 wt % for urKREEP from plagioclase in ferroan anorthosites. Results and interpretation: NanoSIMS data from granitic clasts from Apollo sample 15405,78 show that alkali feldspar, a common mineral in K-enriched rocks, can have approx. 20 ppm of water, which implies magmatic water contents of approx. 1 wt % in the high-silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was

  2. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  3. Formation of halloysite from feldspar: Low temperature, artificial weathering versus natural weathering

    USGS Publications Warehouse

    Parham, W.E.

    1969-01-01

    Weathering products formed on surfaces of both potassium and plagioclase feldspar (An70), which were continuously leached in a Soxhlet extraction apparatus for 140 days with 7.21 of distilled water per day at a temperature of approximately 78 ??C, are morphologically identical to natural products developed on potassium feldspars weathered under conditions of good drainage in the humid tropics. The new products, which first appear as tiny bumps on the feldspar surface, start to develop mainly at exposed edges but also at apparently random sites on flat cleavage surfaces. As weathering continues, the bumps grow outward from the feldspar surface to form tapered projections, which then develop into wide-based thin films or sheets. The thin sheets of many projections merge laterally to form one continuous flame-shaped sheet. The sheets formed on potassium feldspars may then roll to form tubes that are inclined at a high angle to the feldspar surface. Etch pits of triangular outline on the artificially weathered potassium feldspars serve as sites for development of continuous, non-rolled, hollow tubes. It is inferred from its morphology that this weathering product is halloysite or its primitive form. The product of naturally weathered potassium feldspars is halloysite . 4H2O. The flame-shaped films or sheets formed on artificially weathered plagioclase feldspar do not develop into hollow tubes, but instead give rise to a platy mineral that is most probably boehmite. These plates form within the flame-shaped films, and with continued weathering are released as the film deteriorates. There is no indication from this experiment that platy pseudohexagonal kaolinite forms from any of these minerals under the initial stage of weathering. ?? 1969.

  4. Plagioclase feldspars - Visible and near infrared diffuse reflectance spectra as applied to remote sensing

    NASA Technical Reports Server (NTRS)

    Adams, J. B.; Goullaud, L. H.

    1978-01-01

    Visible and near IR diffuse reflectance spectra of plagioclase feldspars are characterized by absorption features caused by minor amounts of Fe(2+) that occur bound in the crystal structure. It is found that identification of terrestrial feldspars by remote sensing appears to be feasible for the compositional range An50 to An80, providing that other minerals do not mask the feldspar signatures. Determination of plagioclase composition using the wavelength of the Fe(2+) band may be possible for lunar samples, where the plagioclase can be assumed to be more calcic than An65.

  5. Effects of aqueous cations on the dissolution of labradorite feldspar

    SciTech Connect

    Muir, I.J.; Nesbitt, H.W. )

    1991-11-01

    Specimens of labradorite feldspar (An {approx} 54) were dissolved in mildly acidic solutions containing the cations Al, Ca, and Mg at 9.3 {times} 10{sup {minus}3}, 1.9 {times} 10{sup {minus}2}, and 3.7 {times} 10{sup {minus}2} mmol {center dot} L{sup {minus}1} for 72 days at 21 {plus minus} 2C and atmospheric pressure. Depth profiles by secondary ion mass spectrometry (SIMS) show that the extent to which altered layers form on dissolving labradorite can be influenced by the cation concentration of the leachant solutions. Silicon-enriched altered layers {approx} 1,500 {angstrom} thick form on labradorite surfaces ((001) cleavage faces) during dissolution in aqueous HCl (pH 4). Addition of dissolved Al, Ca, and Mg to the leachant solution reduces the thickness of the altered layers. The formation of thinner altered layers may result from competition between cations and H ions for active surface sites such that the supply of H ions to the labradorite surface is reduced. Dissolved Al in the leachant solutions also alters the release rates of Ca and Al relative to one another. On the other hand, the same is not observed for labradorite specimens dissolved in solutions containing Ca{sub (aq)}. The results from these experiments also support a diffusion-limited processes for the release of Al from fresh labradorite to solutions containing Al{sub (aq)}. Previous attention has been focused on the effects of organic ligands; however, the results demonstrate the important role dissolved cations play in the dissolution of aluminosilicates.

  6. Laser welding of fused quartz

    DOEpatents

    Piltch, Martin S.; Carpenter, Robert W.; Archer, III, McIlwaine

    2003-06-10

    Refractory materials, such as fused quartz plates and rods are welded using a heat source, such as a high power continuous wave carbon dioxide laser. The radiation is optimized through a process of varying the power, the focus, and the feed rates of the laser such that full penetration welds may be accomplished. The process of optimization varies the characteristic wavelengths of the laser until the radiation is almost completely absorbed by the refractory material, thereby leading to a very rapid heating of the material to the melting point. This optimization naturally occurs when a carbon dioxide laser is used to weld quartz. As such this method of quartz welding creates a minimum sized heat-affected zone. Furthermore, the welding apparatus and process requires a ventilation system to carry away the silicon oxides that are produced during the welding process to avoid the deposition of the silicon oxides on the surface of the quartz plates or the contamination of the welds with the silicon oxides.

  7. Laboratory measurements of alkali metal containing vapors released during biomass combustion

    SciTech Connect

    Dayton, D.C.; Milne, T.A.

    1996-12-31

    Alkali metals, in particular potassium, have been implicated as key ingredients for enhancing fouling and slagging of heat transfer surfaces in power generating facilities that convert biomass to electricity. When biomass is used as a fuel in boilers, the deposits formed reduce efficiency, and in the worst case lead to unscheduled plant downtime. Blending biomass with other fuels is often used as a strategy to control fouling and slagging problems. Depending on the combustor, sorbents can be added to the fuel mixture to sequester alkali metals. Another possibility is to develop methods of hot gas cleanup that reduce the amount of alkali vapor to acceptable levels. These solutions to fouling and slagging, however, would greatly benefit from a detailed understanding of the mechanisms of alkali release during biomass combustion. Identifying these alkali vapor species and understanding how these vapors enhance deposit formation would also be beneficial. The approach is to directly sample the hot gases liberated from the combustion of small biomass samples in a variable-temperature quartz-tube reactor employing a molecular beam mass spectrometer (MBMS) system. The authors have successfully used this experimental technique to identify alkali species released during the combustion of selected biomass feedstocks used in larger scale combustion facilities. Fuels investigated include lodgepole pine, eucalyptus, poplar, corn stover, switchgrass, wheat straw, rice straw, pistachio shells, almond shells and hulls, wood wastes, waste paper, alfalfa stems, and willow tops.

  8. Upgrading platform using alkali metals

    DOEpatents

    Gordon, John Howard

    2017-01-17

    A method for removing sulfur, nitrogen or metals from an oil feedstock. The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  9. Upgrading platform using alkali metals

    SciTech Connect

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  10. The Interfacial Transition Zone in Alkali-Activated Slag Mortars

    NASA Astrophysics Data System (ADS)

    San Nicolas, Rackel; Provis, John

    2015-12-01

    The interfacial transition zone (ITZ) is known to strongly influence the mechanical and transport properties of mortars and concretes. This paper studies the ITZ between siliceous (quartz) aggregates and alkali activated slag binders in the context of mortar specimens. Backscattered electron images (BSE) generated in an environmental scanning electron microscope (ESEM) are used to identify unreacted binder components, reaction products and porosity in the zone surrounding aggregate particles, by composition and density contrast. X-ray mapping is used to exclude the regions corresponding to the aggregates from the BSE image of the ITZ, thus enabling analysis of only the binder phases, which are segmented into binary images by grey level discrimination. A distinct yet dense ITZ region is present in the alkali-activated slag mortars, containing a reduced content of unreacted slag particles compared to the bulk binder. The elemental analysis of this region shows that it contains a (C,N)-A-S-H gel which seems to have a higher content of Na (potentially deposited through desiccation of the pore solution) and a lower content of Ca than the bulk inner and outer products forming in the main binding region. These differences are potentially important in terms of long-term concrete performance, as the absence of a highly porous interfacial transition zone region is expected to provide a positive influence on the mechanical and transport properties of alkali-activated slag concretes.

  11. Raman Study of Shock Effects in Plagioclase Feldspar from the Mistastin Lake Impact Structure, Canada

    NASA Astrophysics Data System (ADS)

    Xie, T. X.; Shieh, S. R. S.; Osinski, G. R. O.

    2016-08-01

    This study mainly uses Raman spectroscopy with a 514 nm laser to study anorthosite from Mistastin Lake Impact Crater, Canada, which mainly contains plagioclase with composition of An 28-55, to better understand shock processes in plagioclase feldspar.

  12. Authigenic potassium feldspar in Cambrian carbonates: Evidence of Alleghanian brine migration

    USGS Publications Warehouse

    Hearn, P.P.; Sutter, J.F.

    1985-01-01

    The shallow-water limestones and dolostones of the Conococheague Limestone (Upper Cambrian) of western Maryland contain large amounts of authigenic potassium feldspar. The presence of halite daughter crystals in breached fluid inclusions, low whole-rock ratios of chlorine to bromine, and thermochemical data suggest that the potassium feldspar formed at low temperature by the reaction of connate brines with intercalated siliciclastic debris. Analyses of argon age spectra indicate that the authigenic feldspar probably formed during Late Pennsylvanian to Early Permian time. These results may indicate mobilization and migration of connate brines brought about by Alleghanian folding. The widespread occurrence of authigenic potassium feldspar in Cambrian and Ordovician carbonate rocks throughout the Appalachians suggests that this may have occurred throughout the entire basin.

  13. [Study on the fine structure of K-feldspar of Qichun granite].

    PubMed

    Du, Deng-Wen; Hong, Han-Lie; Fan, Kan; Wang, Chao-Wen; Yin, Ke

    2013-03-01

    Fine structure of K-feldspar from the Qichun granite was investigated using X-ray diffraction (XRD), Fourier infrared absorption spectroscopy (FTIR), and inductively coupled plasma mass spectrometry methods to understand the evolution of the granitic magmatism and its correlation to molybdenite mineralization. The XRD results showed that K-feldspar of the potassic alteration veins has higher ordering index and triclinicity and is namely microcline with triclinic symmetry. K-feldspar of the early cretaceous granite has relatively lower ordering index and has widening [131] peak and is locally triclinic ordering. K-feldspar of the late cretaceous granite has lowest ordering index and sharp [131] peak and is honiogeneously monoclinic. The FTIR results showed that the IR spectra of the Qichun K-feldspar are similar to that of orthoclase reported by Farmer (1974). The 640 cm-1 absorption band increases while the 540 cm-' absorption band decreases with increase in K-feldspar ordering index, also, the 1,010 cm-1 absorption band separates into 1,010 and 1,046 cm-1 absorption bands, with a change in the band shape from widening to sharp outline. The ICP-MS results suggested that K-feldspar of the early cretaceous granite has relatively higher metal elements and rare earth elements, and the granite exhibits better mineralization background, K-feldspar of the potassic alteration veins has markedly lower Sr and Ba, indicating that the alteration fluid originated from the granitic magmatism, and hence, potassic alteration is a good indicator for molybdenite exploration.

  14. Shock metamorphism of deformed quartz

    NASA Technical Reports Server (NTRS)

    Gratz, Andrew J.; Christie, John; Tyburczy, James; Ahrens, Thomas; Pongratz, Peter

    1988-01-01

    The effect produced by shock loading (to peak pressures of 12 and 24) on deformed synthetic quartz containing a dislocation and abundant bubbles and small inclusions was investigated, and the relationships between preexisting dislocation density shock lamellae in the target material were examined. The resultant material was found to be inhomogeneously deformed and extremely fractured. Results of TEM examinations indicate that no change in dislocation density was caused by shock loading except in regions containing shock lamellae, where the dislocation density was lowered. The shock-induced defects tend to nucleate on and be controlled by preexisting stress concentrators; shock lamellae, glassy veins, and most curviplanar defects form in tension, presumably during release. An extremely mobile silica fluid is formed and injected into fractures during release, which forcibly removes crystalline fragments from vein walls. It is concluded that shock deformation in quartz is dominated by fracture and melting.

  15. Positronium physisorption at quartz surfaces

    NASA Astrophysics Data System (ADS)

    Saniz, Rolando; Freeman, Arthur; Barbiellini, Bernardo; Platzman, Phil

    2007-03-01

    The possibility of having positronium (Ps) physisorbed at a material surface is of great fundamental interest, since it can lead to new insight regarding quantum sticking and is a necessary first step to try to obtain a Ps2 molecule on a material host. Experimental evidence for physisorbed Ps at the surface of quartz was reported some years ago, but firm theoretical support for such a conclusion was lacking. With the FLAPW method we calculated the electronic structure and dielectric function of α-quartz and obtained the interaction potential with a Ps atom on its surface. We show that there is indeed a bound state with an energy of ˜0.19 eV, which is reasonably close to the experimental estimates of 0.14 - 0.17 eV. A brief energy analysis in terms of the Langmuir-Hinshelwood mechanism further shows that the formation of a Ps2 molecule at quartz surface would be possible. Sferlazzo, Berko, Canter, Phys. Rev. B 3, 6067 (1985). Wimmer, Krakauer, Weinert, Freeman, Phys. Rev. B 24, 864 (1981).

  16. Alkalis in Coal and Coal Cleaning Products / Alkalia W Węglu I Productach Jego Wzbogacania

    NASA Astrophysics Data System (ADS)

    Bytnar, Krzysztof; Burmistrz, Piotr

    2013-09-01

    In the coking process, the prevailing part of the alkalis contained in the coal charge goes to coke. The content of alkalis in coal (and also in coke) is determined mainly by the content of two elements: sodium and potasium. The presence of these elements in coal is connected with their occurrence in the mineral matter and moisture of coal. In the mineral matter and moisture of the coals used for the coke production determinable the content of sodium is 26.6 up to 62. per cent, whereas that of potassium is 37.1 up to 73.4 per cent of the total content of alkalis. Major carriers of alkalis are clay minerals. Occasionally alkalis are found in micas and feldspars. The fraction of alkalis contained in the moisture of the coal used for the production of coke in the total amount of alkalis contained there is 17.8 up to 62.0 per cent. The presence of sodium and potassium in the coal moisture is strictly connected with the presence of the chloride ions. The analysis of the water drained during process of the water-extracting from the flotoconcentrate showed that the Na to K mass ratio in the coal moisture is 20:1. Increased amount of the alkalis in the coal blends results in increased content of the alkalis in coke. This leads to the increase of the reactivity (CRI index), and to the decrease of strength (CSR index) determined with the Nippon Steel Co. method. W procesie koksowania przeważająca część zawartych we wsadzie węglowym alkaliów przechodzi do koksu. Zawartość alkaliów w węglu, a co za tym idzie i w koksie determinowana jest głównie zawartością dwóch pierwiastków: sodu i potasu. Obecność tych pierwiastków w węglu wiąże się z występowaniem ich w substancji mineralnej i wilgoci węgla. W substancji mineralnej oraz wilgoci węgli stosowanych do produkcji koksu, oznaczona zawartość sodu wynosi od 26.6 do 62.9%, a zawartość potasu od 37.1 do 73.4% alkaliów ogółem. Głównymi nośnikami alkaliów w substancji mineralnej są minera

  17. Experimental studies of alunite: II. Rates of alunite-water alkali and isotope exchange

    USGS Publications Warehouse

    Stoffregen, R.E.; Rye, R.O.; Wasserman, M.D.

    1994-01-01

    Rates of alkali exchange between alunite and water have been measured in hydrothermal experiments of 1 hour to 259 days duration at 150 to 400??C. Examination of run products by scanning electron microscope indicates that the reaction takes place by dissolution-reprecipitation. This exchange is modeled with an empirical rate equation which assumes a linear decrease in mineral surface area with percent exchange (f) and a linear dependence of the rate on the square root of the affinity for the alkali exchange reaction. This equation provides a good fit of the experimental data for f = 17% to 90% and yields log rate constants which range from -6.25 moles alkali m-2s-1 at 400??C to - 11.7 moles alkali m-2s-1 at 200??C. The variation in these rates with temperature is given by the equation log k* = -8.17(1000/T(K)) + 5.54 (r2 = 0.987) which yields an activation energy of 37.4 ?? 1.5 kcal/mol. For comparison, data from O'Neil and Taylor (1967) and Merigoux (1968) modeled with a pseudo-second-order rate expression give an activation energy of 36.1 ?? 2.9 kcal/mol for alkali-feldspar water Na-K exchange. In the absence of coupled alkali exchange, oxygen isotope exchange between alunite and water also occurs by dissolution-reprecipitation but rates are one to three orders of magnitude lower than those for alkali exchange. In fine-grained alunites, significant D-H exchange occurs by hydrogen diffusion at temperatures as low as 100??C. Computed hydrogen diffusion coefficients range from -15.7 to -17.3 cm2s-1 and suggest that the activation energy for hydrogen diffusion may be as low as 6 kcal/mol. These experiments indicate that rates of alkali exchange in the relatively coarse-grained alunites typical of hydrothermal ore deposits are insignificant, and support the reliability of K-Ar age data from such samples. However, the fine-grained alunites typical of low temperature settings may be susceptible to limited alkali exchange at surficial conditions which could cause

  18. Anisotropy of synthetic quartz electrical conductivity at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Wang, Duojun; Li, Heping; Yi, Li; Matsuzaki, Takuya; Yoshino, Takashi

    2010-09-01

    AC measurements of the electrical conductivity of synthetic quartz along various orientations were made between 0.1 and 1 MHz, at ˜855˜1601 K and at 1.0 GPa. In addition, the electrical conductivity of quartz along the c axis has been studied at 1.0-3.0 GPa. The impedance arcs representing bulk conductivity occur in the frequency range of 103-106 Hz, and the electrical responses of the interface between the sample and the electrode occur in the 0.1˜103 Hz range. The pressure has a weak effect on the electrical conductivity. The electrical conductivity experiences no abrupt change near the α - β phase transition point. The electrical conductivity of quartz is highly anisotropic; the electrical conductivity along the c axis is strongest and several orders of magnitude larger than in other directions. The activation enthalpies along various orientations are determined to be 0.6 and 1.2 eV orders of magnitude, respectively. The interpretation of the former is based on the contribution of alkali ions, while the latter effect is attributed to additional unassociated aluminum ions. Comparison of determined anisotropic conductivity of quartz determined with those from field geophysical models shows that the quartz may potentially provide explanations for the behavior of electrical conductivity of anisotropy in the crust that are inferred from the transverse magnetic mode.

  19. Hydrothermal alkali metal catalyst recovery process

    DOEpatents

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  20. Nature and origin of authigenic K-feldspar in Precambrian basement rocks of the North American midcontinent

    SciTech Connect

    Duffin, M.E. )

    1989-08-01

    Authigenic K-feldspar occurs in alteration profiles in uppermost Precambrian igneous and metamorphic basement rocks of the midcontinent. The K-feldspar is widespread and has been identified in six states. The profiles occur directly below the Cambrian-Precambrian unconformity and range from about <1 to 8 m in thickness. Authigenic K-feldspar occurs throughout the profile. The K-feldspar is monoclinic or triclinic by X-ray diffraction, of end-member composition, and may compose 63% of rock volume. Much of the K-feldspar formed by replacement of primary feldspar. A sample of wholly authigenic K-feldspar from altered basement in southern Illinois gives a K/Ar data of 549 {plus minus} 18 Ma (Early Cambrian). This data is in agreement with Early Cambrian Rb/Sr dates for potassic alteration of uppermost Precambrian basement in Ohio. Dated authigenic K-feldspars from both Ohio and Illinois give identical {delta}{sup 18}O values of 17.5, suggesting formation from a very similar fluid. Concordancy of both dates and {delta}{sup 18}O values suggests that the K-feldspar formed during an episode of potassic alteration during Early Cambrian time that affected much of midcontinent North America. The dates and {delta}{sup 18}O values for K-feldspar, when considered together, do not fit any of the hypotheses presented here.

  1. Investigation of structural properties associated with alkali-silica reaction by means of macro- and micro-structural analysis

    SciTech Connect

    Mo Xiangyin . E-mail: moxiangyin@njnu.edu.cn; Fournier, Benoit

    2007-02-15

    Structural properties associated with alkali-silica reaction were systematically investigated by means of macro-structural accelerated mortar prism expansion levels testing, combined with micro-structural analysis. One part of this study is to determine the reactivity of the aggregate by means of accelerated mortar bar tests, and also to evaluate perlite aggregate constituents, especially the presence of deleterious components and find main causes of the alkali-silica reaction, which was based on the petrographic studies by optical microscope and the implication of X-ray diffraction on the aggregate. Results implied that the aggregate was highly alkali-silica reactive and the main micro-crystalline quartz-intermediate character and matrix that is mainly composed of chalcedony are potentially suitable for alkali-silica reaction. The other part is to study the long-term effect of lithium salts against alkali-silica reaction by testing accelerated mortar prism expansion levels. The macro-structural results were also consistent with the micro-structural mechanisms of alkali-silica reaction of mortar prisms containing this aggregate and the effect of chemical admixtures by means of the methods of scanning electron microscope-X-ray energy-dispersive spectroscopy and X-ray diffraction. It was indicated by these techniques that lithium salts, which were introduced into concrete containing reactive aggregate at the mixing stage, suppressed the alkali-silica reaction by producing non-expansive crystalline materials.

  2. Alkali Metal Cluster Theory.

    NASA Astrophysics Data System (ADS)

    Chen, Jian

    Available from UMI in association with The British Library. Requires signed TDF. In this thesis, we apply the tight-binding Hubbard model to alkali metal clusters with Hartree-Fock self-consistent methods and perturbation methods for the numerical calculations. We have studied the relation between the equilibrium structures and the range of the hopping matrix elements in the Hubbard Hamiltonian. The results show that the structures are not sensitive to the interaction range but are determined by the number of valence electrons each atom has. Inertia tensors are used to analyse the symmetries of the clusters. The principal axes of the clusters are determined and they are the axes of rotational symmetries of clusters if the clusters have any. The eigenvalues of inertia tensors which are the indication of the deformation of clusters are compared between our model and the ellipsoidal jellium model. The agreement is good for large clusters. At a finite temperature, the thermal motion fluctuates the structures. We defined a fluctuation function with the distance matrix of a cluster. The fluctuation has been studied with the Monte-Carlo simulation method. Our studies show that the clusters remain in the solid state when temperature is low. The small values of fluctuation functions indicates the thermal vibration of atoms around their equilibrium positions. If the temperature is high, the atoms are delocalized. The cluster melts and enters the liquid region. The cluster melting is simulated by the Monte-Carlo simulation with the fluctuation function we defined. Energy levels of clusters are calculated from the Hubbard model. Ionization potentials and magic numbers are also obtained from these energy levels. The results confirm that the Hubbard model is a good approximation for a small cluster. The excitation energy is presented by the difference between the original level and excited level, and the electron-hole interactions. We also have studied cooling of clusters

  3. Cathodoluminescence investigations on quartz cement in the sandstones of Khabour Formation from Iraqi Kurdistan Region, Northern Iraq

    NASA Astrophysics Data System (ADS)

    Omer, Muhamed F.; Friis, Henrik

    2014-03-01

    The Ordovician deltaic to shallow marine Khabour Formation in Northern Iraq consists mainly of sandstone with minor siltstone and interbedded shale. The sandstones are pervasively cemented by quartz that resulted in very little preserved primary porosity. Cathodoluminescence and petrographic studies showed that the silica cementation occurred in five successive phases which can be distinguished by their luminescence pattern. The precipitations of two phases have predated the major compaction process while the other phases are younger. The successive phases represent a sequence of changes in silica supply which were classified as very early and early, derived from dissolved biogenic silica that precipitated as opal/microquartz, possibly pre-compactional and of non-luminescent quartz overgrowth type. This was followed by phases whose silica supply derived from pressure solution of quartz, dissolution of feldspar, and hydrothermal fluids related to major thrust fault event. These successive quartz cement phases showed an increase in luminescence and the development of complicated zonation pattern in late-stage quartz cementation.

  4. Asbestos contamination in feldspar extraction sites: a failure of prevention? Commentary.

    PubMed

    Cavariani, Fulvio

    2016-01-01

    Fibrous tremolite is a mineral species belonging to the amphibole group. It is present almost everywhere in the world as a natural contaminant of other minerals, like talc and vermiculite. It can be also found as a natural contaminant of the chrysotile form of asbestos. Tremolite asbestos exposures result in respiratory health consequences similar to the other forms of asbestos exposure, including lung cancer and mesothelioma. Although abundantly distributed on the earth's surface, tremolite is only rarely present in significant deposits and it has had little commercial use. Significant presence of amphibole asbestos fibers, characterized as tremolite, was identified in mineral powders coming from the milling of feldspar rocks extracted from a Sardinian mining site (Italy). This evidence raises several problems, in particular the prevention of carcinogenic risks for the workers. Feldspar is widespread all over the world and every year it is produced in large quantities and it is used for several productive processes in many manufacturing industries (over 21 million tons of feldspar mined and marketed every year). Until now the presence of tremolite asbestos in feldspar has not been described, nor has the possibility of such a health hazard for workers involved in mining, milling and handling of rocks from feldspar ores been appreciated. Therefore the need for a wider dissemination of knowledge of these problems among professionals, in particular mineralogists and industrial hygienists, must be emphasized. In fact both disciplines are necessary to plan appropriate environmental controls and adequate protections in order to achieve safe working conditions.

  5. Chemistry of potassium feldspars from three zoned pegmatites, Black Hills, South Dakota: Implications concerning pegmatite evolution

    NASA Astrophysics Data System (ADS)

    Shearer, C. K.; Papike, J. J.; Laul, J. C.

    1985-03-01

    An initial phase of an extensive geochemical study of pegmatites from the Black Hills, South Dakota, indicates potassium feldspar composition is useful in interpreting petrogenetic relationships among pegmatites and among pegmatite zones within a single pegmatite. The K/Rb and Rb/Sr ratios and Li and Cs contents of the feldspars within each zoned pegmatite, to a first approximation, are consistent with the simple fractional crystallization of the potassium feldspar from a silicate melt from the wall zone to the core of the pegmatites. Some trace element characteristics ( i.e. Cs) have been modified by subsolidus reequilibration of the feldspars with late-stage residual fluid. K/Rb ratios of the potassium feldspar appear to be diagnostic of the pegmatite mineral assemblage. The relationship between K/Rb and mineralogy is as follows: Harney Peak Granite (barren pegmatites) > 180; Li-Fe-Mn phosphate-bearing pegmatites = 90-50; spodumene-bearing pegmatites = 60-40; pollucitebearing pegmatites < 30. Although the K/Rb ratios suggest that the pegmatites studied are genetically related by fractional crystallization to each other and the Harney Peak Granite, overlapping Rb/Sr ratios and the general increase in Sr and Ba with decreasing K/Rb indicate the genetic relationship is much more complex and may also be dependent upon slight variations in source (chemistry and mineralogy) material composition and degrees of partial melting.

  6. Hydrothermally grown buddingtonite, an anhydrous ammonium feldspar (NH4AlSi3O8)

    NASA Astrophysics Data System (ADS)

    Voncken, J. H. L.; Konings, R. J. M.; Jansen, J. B. H.; Woensdregt, C. F.

    1988-03-01

    Ammonium feldspar was grown hydrothermally from a gel, having a stöchiometric Al2O3·6SiO2 composition. As a source for NH{4/+}, a 25 percent NH3 solution was used. Internal Cr/CrN and graphite/methane buffers fixed the fugacity of NH3 during the experiments. Unit cell parameters of the synthetic ammonium feldspar are a: 0.8824 (5) nm, b: 1.3077 (8) nm, c: 0.7186 (4) nm, β: 116.068 (12)°, V: 0.7448 (34) nm3. the X-ray power diffraction pattern is measured and indexed in accordance to the space group C2/m. Infrared and thermal gravimetric analyses provide no evidence for the presence of structurally bound water molecules in the crystal structure of synthetic ammonium feldspar. Hydrothermally grown anhydrous ammonium feldspar is shown to be identical to the mineral buddingtonite by the similarity of the data between the synthetic and natural materials. There may be justification for considering natural buddingtonite as an anhydrous feldspar with the ideal formula NH4Si3O8. Reexamination of natural specimens is desirable.

  7. Rock-Forming feldspars of the Khibiny alkaline pluton, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Ivanyuk, G. Yu.; Pakhomovsky, Ya. A.; Konopleva, N. G.; Kalashnikov, A. O.; Korchak, Yu. A.; Selivanova, E. A.; Yakovenchuk, V. N.

    2010-12-01

    This paper describes the structural-compositional zoning of the well-known Khibiny pluton in regard to rock-forming feldspars. The content of K-Na-feldspars increases inward and outward from the Main foidolite ring. The degree of coorientation of tabular K-Na-feldspar crystals sharply increases in the Main ring zone, and microcline-dominant foyaite turns into orthoclase-dominant foyaite. The composition of K-Na-feldspars in the center of the pluton and the Main ring zone is characterized by an enrichment in Al. This shift is compensated by a substitution of some K and Na with Ba (the Main ring zone) or by an addition of K and Na cations to the initially cation-deficient microcline (the central part of the pluton). Feldspars of volcanosedimentary rocks occurring as xenoliths in foyaite primarily corresponded to plagioclase An15-40, but high-temperature fenitization and formation of hornfels in the Main ring zone gave rise to the crystallization of anorthoclase subsequently transformed into orthoclase and albite due to cooling and further fenitization. Such a zoning is the result of filling the Main ring fault zone within the homogeneous foyaite pluton with a foidolite melt, which provided the heating and potassium metasomatism of foyaite and xenoliths of volcanosedimentary rocks therein. The process eventually led to the transformation of foyaite into rischorrite-lyavochorrite, while xenoliths were transformed into aluminum hornfels with anorthoclase, annite, andalusite, topaz, and sekaninaite.

  8. Frequency retrace of quartz oscillators

    NASA Astrophysics Data System (ADS)

    Euler, F.; Yannoni, N. F.

    Frequency retrace measurements are reported on oven controlled quartz oscillators utilizing AT and SC cut plated and BVA resonators. Prior to full aging, the retrace error is added to the aging effect. With well-aged resonators, after one or several on-off cycles, the frequency settles at a new level characteristic for intermittent operation. Severe frequency shifts have sometimes been found after the first restart following prolonged continuous operation. SC cut resonators appear to show distinctly smaller retrace errors than AT cut.

  9. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    DOEpatents

    Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  10. Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides

    DOEpatents

    Gordon, John Howard; Alvare, Javier

    2016-10-25

    Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte solution and may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.

  11. Electrical Resistivity of Alkali Elements.

    DTIC Science & Technology

    1976-01-01

    rubidium, cesium, and francium ) and contains recommended reference values (or provisional or typical values). The compiled data include all the...and information on the electrical resistivity of alkali elements (lithium, sodium, potassium, rubidium, cesium, and francium ) and contains...107Ic. Magnetic Flux Density Dependence o.. .. ... .... 112 4.6. Francium ..........................115j a. Temperature Dependence

  12. Development of an alkali chloride vapour-generating apparatus for calibration of ultraviolet absorption measurements

    NASA Astrophysics Data System (ADS)

    Leffler, T.; Brackmann, C.; Berg, M.; Aldén, M.; Li, Z. S.

    2017-02-01

    A novel design of alkali chloride vapour-generating cell has been developed, which can serve as a calibration cell for quantitative ultraviolet absorption concentration measurements and meticulous spectral investigations of alkali compounds. The calibration cell was designed to provide alkali vapour of well-controlled concentrations and temperatures, and consisted of a sealed quartz cell measuring 0.4 m in length with a temperature-controlled reservoir containing solid alkali salt. The cell was placed in a furnace and the alkali vapours generated from the reservoir have direct access to the measuring chamber. Investigations of potassium chloride (KCl) were made on sublimated vapour at temperatures 650, 700, 750, 780, and 800 °C while the reservoir temperature was kept 50 °C lower to avoid condensation. The cell provides stable KCl vapour pressures, and the furnace provides a homogenous temperature profile along the cell. KCl vapour pressures are well characterised and conform the base for determination of the KCl concentration in the cell. The alkali chloride levels matched the concentration range of the absorption setup and indicated a previously employed calibration method to overestimate KCl concentrations. The KCl absorption cross sections for wavelengths λ =197.6 nm and λ =246.2 nm were calculated to be 3.4 × 10-17 and 2.9 × 10-17 cm2/molecule, respectively. The absorption cross section spectra did not show any structural differences with increasing temperature, which could indicate influence of dimers or significant changes of the population in the KCl vibrational states. The KCl absorption cross sections thus did not show any temperature dependence in the temperature region of 700-800 °C. Moreover, the applicability of the calibration cell for measurement of other alkali chlorides and hydroxides is discussed.

  13. Active sites in heterogeneous ice nucleation—the example of K-rich feldspars

    NASA Astrophysics Data System (ADS)

    Kiselev, Alexei; Bachmann, Felix; Pedevilla, Philipp; Cox, Stephen J.; Michaelides, Angelos; Gerthsen, Dagmar; Leisner, Thomas

    2017-01-01

    Ice formation on aerosol particles is a process of crucial importance to Earth’s climate and the environmental sciences, but it is not understood at the molecular level. This is partly because the nature of active sites, local surface features where ice growth commences, is still unclear. Here we report direct electron-microscopic observations of deposition growth of aligned ice crystals on feldspar, an atmospherically important component of mineral dust. Our molecular-scale computer simulations indicate that this alignment arises from the preferential nucleation of prismatic crystal planes of ice on high-energy (100) surface planes of feldspar. The microscopic patches of (100) surface, exposed at surface defects such as steps, cracks, and cavities, are thought to be responsible for the high ice nucleation efficacy of potassium (K)–feldspar particles.

  14. Iron removal on feldspar by using Averrhoa bilimbii as bioleaching agent

    NASA Astrophysics Data System (ADS)

    Amin, Muhammad; Aji, Bramantyo B.; Supriyatna, Yayat Iman; Bahfie, Fathan

    2017-01-01

    Investigation of Averrhoa bilimbii as bioleaching agent was carried out. Parameters of leaching duration, acid concentration, and temperature were performed in iron removal process. Feldspar with sized 149 µm was diluted in 30 ml acid solution in order to reduce its iron content. The experimental results showed a good technical feasibility of the process which iron oxide content of feldspar was decreased from 2.24% to 0.29%. The lowest iron concentration remained was obtained after 5 hours of leaching treatment at 60 °C, and concentrated (100 vol%) Averrhoa bilimbii extract as bioleaching agent. SEM characterizations were carried out on the feldspar before and after the leaching treatment. The result shows that there were no significant effect of leaching process on the ore morphology.

  15. New observations on the quartz monzodiorite-granite suite. [in lunar soil

    NASA Technical Reports Server (NTRS)

    Marvin, U. B.; Holmberg, B. B.; Lindstrom, M. M.; Martinez, R. R.

    1991-01-01

    Five new fragments of quartz monzodiorite (QMD) were identified in particles from soil 15403, which was collected from the boulder sampled as rock 15405, an impact-melt breccia containing clasts of KREEP basalt, QMD, granite, and a more primitive alkali norite. Petrographic and geochemical studies of the fragments show considerable variation in modal proportions and bulk composition. This heterogeneity is due to unrepresentative sampling in small fragments of coarse-grained rocks. Variations in the proportions of accessory minerals have marked effects on incompatible-trace-element concentrations and ratios. Semiquantitative calculations support the derivation of QMD from 60-percent fractional crystallization of a KREEP basalt magma as suggested by Hess (1989). Apollo 15 KREEP basalt cannot be the actual parent magma because the evolved rocks predate volcanic KREEP basalts. It is suggested that ancient KREEP basalt magmas have crystallized as plutons, with alkali norite clasts offering the only direct evidence of this precursor.

  16. Solubility of Albite + Paragonite +/- Quartz in H2O at 1 GPa, 580° C: Implications for Metamorphic Fluids

    NASA Astrophysics Data System (ADS)

    Antignano, A.; Manning, C.

    2003-12-01

    One of the most common mineral assemblages in crustal metamorphism is feldspar + quartz; however, little is known about the solubility of this assemblage in metamorphic fluids. We measured the solubility of albite and albite+quartz in H2O at 580° C and 1.0 GPa using a piston cylinder apparatus. Experiments were conducted using Amelia albite in NaCl-graphite assemblies. Experiments were conducted using a double capsule arrangement. Inner capsules consisting of perforated 1.6 mm OD Pt capsules containing a single albite crystal were load in 3.5mm OD outer capsules containing ultra pure H2O +/- quartz. Solubility was determined by the weight loss of single albite and quartz grains after 8 hr runs. Time series experiments on this system show no variation in fluid composition or solubility after 4hrs. Albite exhibited incongruent dissolution, yielding paragonite as a husk that mantles the albite grain. The composition of the fluid was determined by mass balance as determined by the weights of albite, quartz, and paragonite. In the albite-only experiments, the concentration of total dissolved solids (TDS) were 0.628 molal, with Na, Al and Si in the fluid of 0.137, 0.081, and 0.41 molal, respectively, and Na/Al of 1.691. In the presence of quartz, there is an increase in the overall TDS to 0.777 molal. Albite-quartz experiments produce an increase in Si concentration to 0.628 molal, with lower Na and Al concentrations of 0.098 and 0.051 molal, respectively, and Na/Al of 1.922. The aqueous Si concentrations in the albite-only experiments are higher than those in fluid equilibrated with quartz (Manning, 1994, GCA, 58, 4831) at the same conditions. This is consistent with the data of Anderson and Burnham (1983, Am. J. Sci., 283-A, 283) on albite. In the quartz-present experiments results show still higher Si concentration in the fluid phase. Our results demonstrate enhanced solubility of silica in the presence of albite and albite+quartz, relative to quartz alone

  17. Red-IR stimulated luminescence in K-feldspar: Single or multiple trap origin?

    NASA Astrophysics Data System (ADS)

    Thalbitzer Andersen, Martin; Jain, Mayank; Tidemand-Lichtenberg, Peter

    2012-08-01

    We investigate on the origins of the infra-red stimulated luminescence (IRSL) signals in 3 potassium feldspars based on IR-red spectroscopy (˜700-1050 nm) using a fiber-coupled tunable Ti:Sapphire laser, in combination with different thermal and optical (pre)treatments of the samples. We also measure dose-response curves with different wavelengths and at different stimulation temperatures so as to be able to distinguish between traps based on their electron trapping cross-sections. Our data suggest that the dosimetric signals, IRSL, and the post IR-IRSL in K-feldspars arise from a single electron trapping centre.

  18. Isothermal thermoluminescence dating of K-feldspar from sediments to determine fault slip rates: development and assessment

    NASA Astrophysics Data System (ADS)

    Rhodes, E. J.; Roder, B. J.; Lawson, M. J.; Dolan, J. F.; McGill, S. F.; McAuliffe, L.

    2012-04-01

    Faults in California accommodate most of the relative motion between the Pacific and North American tectonic plates, along either one main strike-slip fault, - the San Andreas fault - or a network of sub-parallel faults (e.g., the San Jacinto, Elsinore and San Andreas faults). Slip is also accommodated along many other associated faults and folds, and the region suffers frequent damaging earthquakes. Contemporary movements of different fault-bounded blocks are relatively well established on decadal timescales using remote sensing and GPS, and on timescales of 106 to 107 years, by dating offset geologic features with radiometric methods. However, on timescales of decades to several hundred thousand years, determining total fault offset and mean slip rate is harder. Critical questions for understanding fault dynamics and improving earthquake risk assessment include the degree to which slip is clustered into episodes of more rapid movement, and how slip is accommodated by different sub-parallel faults. In many cases, streams with offset courses can be recognised, and in some cases offset terrace surfaces can be located, especially when using LiDAR data to complement field mapping. Radiocarbon and terrestrial cosmogenic nuclides have been used to date these features, but both have limitations of age range, sample suitability and availability. OSL (optically stimulated luminescence) and IRSL (infra-red stimulated luminescence) have great potential to complement these techniques, though the characteristics of quartz in some parts of southern California are suboptimal, displaying low sensitivity and other limitations. In order to overcome these limitations encountered using quartz OSL, we are developing a new geochronometer based on the isothermal thermoluminescence (ITL) signal of K feldspar measured at 250°C. Preliminary ITL age estimates from the paleoseismic site of El Paso Peaks on the Central Garlock fault in the Mojave Desert, California, agree well with a well

  19. SCR neon and argon in Kapoeta feldspar: Evidence for an active ancient Sun

    NASA Technical Reports Server (NTRS)

    Rao, M. N.; Garrison, D. H.; Bogard, D. D.

    1993-01-01

    From etched feldspar size-fractions of Kapoeta, we determine a significant excess of cosmogenic Ne-21 and Ar-38 over that produced by galactic cosmic rays. This excess component is attributed to early production by energetic solar protons and suggest that the energetic proton flux from the ancient Sun was several hundred times more intense than that of the contemporary Sun.

  20. Positron-alkali atom scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.; Ward, S. J.

    1990-01-01

    Positron-alkali atom scattering was recently investigated both theoretically and experimentally in the energy range from a few eV up to 100 eV. On the theoretical side calculations of the integrated elastic and excitation cross sections as well as total cross sections for Li, Na and K were based upon either the close-coupling method or the modified Glauber approximation. These theoretical results are in good agreement with experimental measurements of the total cross section for both Na and K. Resonance structures were also found in the L = 0, 1 and 2 partial waves for positron scattering from the alkalis. The structure of these resonances appears to be quite complex and, as expected, they occur in conjunction with the atomic excitation thresholds. Currently both theoretical and experimental work is in progress on positron-Rb scattering in the same energy range.

  1. The Quartz Analog Watch: A Wonder Machine.

    ERIC Educational Resources Information Center

    Crane, H. Richard, Ed.

    1993-01-01

    Summarizes how a quartz watch works. Discusses the quartz crystal, its form, and how its frequency is set to a standard; the integrated circuit chip that drives the crystal in vibration, scales its frequency down, and forms pulses that turn the motor; and the motor that drives the gear train that turns the hands. (ZWH)

  2. Sealed-in-quartz resistance heater

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B.

    1980-01-01

    Electric resistance quartz heater operates at 1,400 F without developing excessively hot spots that can fail prematurely. Since resistance element is sealed in quartz, heater can be used in hostile environments. Sealed construction also keeps heater from contaminating heated object.

  3. Precise Sealing of Fused-Quartz Ampoules

    NASA Technical Reports Server (NTRS)

    Debnan, W. J. J.; Clark, I. O.

    1982-01-01

    New technique rapidly evacuates and seals fused-quartz ampoule with precise clearance over contents without appreciably thinning ampoule walls. Quartz plug is lowered into working section of ampoule after ampoule has been evacuated. Plug is then fused to ampoule walls, forming vacuum seal. New technique maintains wall strength and pumping speed.

  4. Alkali metal/sulfur battery

    DOEpatents

    Anand, Joginder N.

    1978-01-01

    Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

  5. [Energy related studies utilizing K-feldspar thermochronology]. Progress report, 1991--1992

    SciTech Connect

    Not Available

    1992-03-01

    In our second year of current funding cycle, we have investigated the Ar diffusion properties and microstructures of K-feldspars and the application of domain theory to natural K-feldspars. We completed a combined TEM and argon diffusion study of the effect of laboratory heat treatment on the microstructure and kinetic properties of K-feldspar. We conclude in companion papers that, with one minor exception, no observable change in the diffusion behavior occurs during laboratory extraction procedures until significant fusion occurs at about 1100{degrees}C. The effect that is observed involves a correlation between the homogenization of cryptoperthite lamelle and the apparent increase in retentivity of about 5% of the argon in the K-feldspar under study. We can explain this effect of both as an artifact of the experiment or the loss of a diffusion boundary. Experiments are being considered to resolve this question. Refinements have been made to our experimental protocol that appears that greatly enhance the retrieval of multi-activation energies from K-feldspars. We have applied the multi-domain model to a variety of natural environments (Valles Caldera, Red River fault, Appalachian basin) with some surprising results. Detailed {sup 40}Ar/{sup 39} Ar coverage of the Red River shear zone, thought to be responsible for the accommodation of a significant fraction of the Indo-Asian convergence, strongly suggests that our technique can precisely date both the termination of ductile strike-slip motion and the initiation of normal faulting. Work has continued on improving our numerical codes for calculating thermal histories and the development of computer based graphing tools has significantly increased our productivity.

  6. Mineral dissolution in the Cape Cod aquifer, Massachusetts, USA: I . Reaction stoichiometry and impact of accessory feldspar and glauconite on strontium isotopes, solute concentrations, and REY distribution

    NASA Astrophysics Data System (ADS)

    Bau, Michael; Alexander, Brian; Chesley, John T.; Dulski, Peter; Brantley, Susan L.

    2004-03-01

    To compare relative reaction rates of mineral dissolution in a mineralogically simple groundwater aquifer, we studied the controls on solute concentrations, Sr isotopes, and rare earth element and yttrium (REY) systematics in the Cape Cod aquifer. This aquifer comprises mostly carbonate-free Pleistocene sediments that are about 90% quartz with minor K-feldspar, plagioclase, glauconite, and Fe-oxides. Silica concentrations and pH in the groundwater increase systematically with increasing depth, while Sr isotopic ratios decrease. No clear relationship between 87Sr/ 86Sr and Sr concentration is observed. At all depths, the 87Sr/ 86Sr ratio of the groundwater is considerably lower than the Sr isotopic ratio of the bulk sediment or its K-feldspar component, but similar to that of a plagioclase-rich accessory separate obtained from the sediment. The Si- 87Sr/ 86Sr-depth relationships are consistent with dissolution of accessory plagioclase. In addition, solutes such as Sr, Ca, and particularly K show concentration spikes superimposed on their respective general trends. The K-Sr- 87Sr/ 86Sr systematics suggests that accessory glauconite is another major solute source to Cape Cod groundwater. Although the authigenic glauconite in the Cape Cod sediment is rich in Rb, it is low in in-grown radiogenic 87Sr because of its young Pleistocene age. The low 87Sr/ 86Sr ratios are consistent with equilibration of glauconite with seawater. The impact of glauconite is inferred to vary due to its variable abundance in the sediments. In the Cape Cod groundwater, the variation of REY concentrations with sampling depth resembles that of K and Rb, but differs from that of Ca and Sr. Shale-normalized REY patterns are light REY depleted, show negative Ce anomalies and super-chondritic Y/Ho ratios, but no Eu anomalies. REY input from feldspar, therefore, is insignificant compared to input from a K-Rb-bearing phase, inferred to be glauconite. These results emphasize that interpretation of

  7. Mineral dissolution in the Cape Cod aquifer, Massachusetts, USA: I . Reaction stoichiometry and impact of accessory feldspar and glauconite on strontium isotopes, solute concentrations, and REY distribution

    USGS Publications Warehouse

    Bau, Michael; Alexander, Brian; Chesley, John T.; Dulski, Peter; Brantley, Susan L.

    2004-01-01

    To compare relative reaction rates of mineral dissolution in a mineralogically simple groundwater aquifer, we studied the controls on solute concentrations, Sr isotopes, and rare earth element and yttrium (REY) systematics in the Cape Cod aquifer. This aquifer comprises mostly carbonate-free Pleistocene sediments that are about 90% quartz with minor K-feldspar, plagioclase, glauconite, and Fe-oxides. Silica concentrations and pH in the groundwater increase systematically with increasing depth, while Sr isotopic ratios decrease. No clear relationship between 87Sr/86Sr and Sr concentration is observed. At all depths, the 87Sr/86Sr ratio of the groundwater is considerably lower than the Sr isotopic ratio of the bulk sediment or its K-feldspar component, but similar to that of a plagioclase-rich accessory separate obtained from the sediment. The Si-87Sr/86Sr-depth relationships are consistent with dissolution of accessory plagioclase. In addition, solutes such as Sr, Ca, and particularly K show concentration spikes superimposed on their respective general trends. The K-Sr-87Sr/86Sr systematics suggests that accessory glauconite is another major solute source to Cape Cod groundwater. Although the authigenic glauconite in the Cape Cod sediment is rich in Rb, it is low in in-grown radiogenic 87Sr because of its young Pleistocene age. The low 87Sr/86Sr ratios are consistent with equilibration of glauconite with seawater. The impact of glauconite is inferred to vary due to its variable abundance in the sediments. In the Cape Cod groundwater, the variation of REY concentrations with sampling depth resembles that of K and Rb, but differs from that of Ca and Sr. Shale-normalized REY patterns are light REY depleted, show negative Ce anomalies and super-chondritic Y/Ho ratios, but no Eu anomalies. REY input from feldspar, therefore, is insignificant compared to input from a K-Rb-bearing phase, inferred to be glauconite. These results emphasize that interpretation of groundwater

  8. Geology of the Quartz Creek Pegmatite District, Gunnison County Colorado

    USGS Publications Warehouse

    Staatz, Mortimer H.; Trites, A.F.

    1952-01-01

    Inferred reserves of the district are estimated for beryl, scrap mica, both hand-cobbing and milling feldspar, lepidolite, columbite-tantalite, topaz, monazite, and microlite. No sheet mica was found. Reserves are small and transportation costs are high so substantial production of low-priced feldspar and scrap mica will depend on the adoption of economica milling techniques for recovering the large quantities of feldspar available.  Beryl is irregularly distributed and its recovery as a byproduct will depend on the establishment of a stable market for feldspar and scrap mica.  Lepidolite reserves are small low grade.

  9. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  10. Regenerable activated bauxite adsorbent alkali monitor probe

    SciTech Connect

    Lee, S.H.D.

    1991-01-22

    This invention relates to a regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor 5 concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC 10 exhaust gases.

  11. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  12. Mechanical twinning in small quartz crystals

    NASA Astrophysics Data System (ADS)

    Laughner, J. W.; Newnham, R. E.; Cross, L. E.

    1982-02-01

    Quartz is known to be ferrobielastic; that is, quartz crystals have domain states (Dauphiné twins) which differ in their elastic compliance values and which can be switched by an appropriately oriented stress. Polycrystalline quartz has also been reported (Tullis 1970) to show preferential orientation of these domains following application of large uniaxial stresses. These experiments were designed to study twinning of synthetic quartz “grains” (minimum size 0.07×0.07×0.02 cm) in specially-constructed composites and of grains in three natural quartz aggregates — a quartzite, a novaculite, and a jasper. Backreflection X-ray techniques were used to verify twinning in the composite grains, while special electroding and electrical detection allowed the twinning processes to be examined in “real time.” Small synthetic quartz crystals were found to behave identically to the massive samples previously studied. Electrical pulses due to the reversal of piezoelectric coefficient d 11 in twinned quartz were detected from quartzite and from the man-made composites. Novaculite also gave electrical pulses which were probably from twinning (evidenced by the correlation of expected and observed pulse sizes and shapes), while no pulses from the jaspers indicative of twinning were detected. Grain size distribution differences are considered the main structural reason for the different behaviors.

  13. Alkali-Activated Aluminium-Silicate Composites as Insulation Materials for Industrial Application

    NASA Astrophysics Data System (ADS)

    Dembovska, L.; Bajare, D.; Pundiene, I.; Bumanis, G.

    2015-11-01

    The article reports on the study of thermal stability of alkali-activated aluminium- silicate composites (ASC) at temperature 800-1100°C. ASC were prepared by using calcined kaolinite clay, aluminium scrap recycling waste, lead-silicate glass waste and quartz sand. As alkali activator, commercial sodium silicate solution modified with an addition of sodium hydroxide was used. The obtained alkali activation solution had silica modulus Ms=1.67. Components of aluminium scrap recycling waste (aluminium nitride (AlN) and iron sulphite (FeSO3)) react in the alkali media and create gases - ammonia and sulphur dioxide, which provide the porous structure of the material [1]. Changes in the chemical composition of ASC during heating were identified and quantitatively analysed by using DTA/TG, dimension changes during the heating process were determined by using HTOM, pore microstructure was examined by SEM, and mineralogical composition of ASC was determined by XRD. The density of ASC was measured in accordance with EN 1097-7. ASC with density around 560 kg/m3 and heat resistance up to 1100°C with shrinkage less than 5% were obtained. The intended use of this material is the application as an insulation material for industrial purposes at elevated temperatures.

  14. Static and Dynamic Behavior of Quartz Resonators

    DTIC Science & Technology

    1979-07-01

    representative of a long line of 110] W. J. Spencer and W. L. Smith , "Precision crystal frequency stan- dards," in Poc. 15th AFC3, May-June 1961, pp...1963, pp. 248- 266. The actual frequency instabilities observed in quartz crystal 1121 W. L. Smith and W. J. Spencer, "Quartz crystal thermometer for...for improved appear in Proc. 33rd AFCS, May-June 1979. quartz crystal oscillator performance," IEEE Trans. Instrum. [411 G. Theobald , G. Marianneau, R

  15. Brittle-viscous deformation of vein quartz under fluid-rich low greenschist facies conditions

    NASA Astrophysics Data System (ADS)

    Kjøll, H. J.; Viola, G.; Menegon, L.; Sørensen, B. E.

    2015-01-01

    A coarse grained, statically crystallized quartz vein, embedded in a phyllonitic matrix, was studied by EBSD and optical microscopy to gain insights into the processes of strain localization in quartz deformed under low-grade conditions, broadly coincident with the frictional-viscous transition. The vein is from a high strain zone at the front of the Porsa Imbricate Stack in the Paleoproterozoic Repparfjord Tectonic Window in northern Norway. The vein was deformed under lower greenschist facies conditions during deformation along a large out-of-sequence phyllonitic thrust of Caledonian age. The host phyllonite formed at the expense of metabasalt wherein feldspar broke down to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the studied quartz vein acted as a relatively rigid body deforming mainly by coaxial strain. Viscous deformation was initially accommodated by basal ⟨a⟩ slip of quartz during the development of a mesoscopic pervasive extensional crenulation cleavage. Under the prevailing boundary conditions, however, dislocation glide-accommodated deformation of quartz resulted inefficient and led to dislocation tangling and strain hardening of the vein. In response to hardening, to the progressive increase of fluid pressure and the increasing competence contrast between the vein and the weak foliated host phyllonite, quartz crystals began to deform frictionally along specific, optimally oriented lattice planes, creating microgouges along microfractures. These were, however, rapidly sealed by nucleation of new grains as transiently over pressured fluids penetrated the deforming system. The new nucleated grains grew initially by solution-precipitation and later by grain boundary migration. Due to the random initial orientation of the vein crystals, strain was accommodated differently in the individual crystals, leading to the development of remarkably different microstructures. Crystals

  16. Phonon spectra of alkali metals

    NASA Astrophysics Data System (ADS)

    Zeković, S.; Vukajlović, F.; Veljković, V.

    1982-10-01

    In this work we used a simple local model pseudopotential which includes screening for the phonon spectra calculations of alkali metals. The results obtained are in very good agreement with experimental data. In some branches of phonon spectra the differences between theoretical and experimental results are within 1-2%, while the maximum error is about 6%. The suggested form of the pseudopotential allows us to describe the phonon spectra of Na, K and Rb with only one, and, at the same time, a unique, parameter. In this case, the maximum disagreements from experiment are 9% for Na, 8% for K and 7% for Rb.

  17. Age of K-feldspar authigenesis in Lower Paleozoic and uppermost Precambrian rocks of the Mississippi Valley area

    SciTech Connect

    Hay, R.L.; Liu, J. . Dept. of Geology); Deino, A. . Geochronology Center); Kyser, T.K. . Dept. of Geology)

    1992-01-01

    Published K-Ar dates (n = 12) of authigenic K-feldspar in Cambrian and Ordovician rocks of the Mississippi Valley area range from 448 to 375 Ma (Late Ordovician to Middle Devonian), suggesting a lengthy episode of K-feldspar authigenesis. Here the authors report an age span of 465--400 Ma (Middle Ordovician to Early Devonian) for authigenic K-feldspar of two samples from the alteration profile widely developed over Precambrian rocks at the unconformity with Cambrian deposits. This dating was done on 42 to 48 mesh grains of K-feldspar by the laser incremental-heating Ar-40/Ar-39 method. One sample, from west-central Wisconsin, is from a vein formed along a fracture in kaolinitic altered granite. Three grains nearest the fracture yielded plateau ages with a range of 9 Ma and an average of 430 Ma. Three grains distant from the fracture yielded a similar range of 10 Ma but with an average age of 397 Ma. Thus the grains grew over an extended period from at least 430 to 400 Ma. The other sample, from the St. Francois Mts. of Missouri, is of diabase replaced by K-feldspar. Three grains yielded plateau ages ranging over 20 Ma and apparently recording an extended history of K-feldspar growth. The average age of these grains is 454 Ma, compared to a K-Ar date of 444 [+-] 9 Ma obtained from a split of the same sample. The period(s) of K-feldspar authigenesis does not support its linkage with orogenic activity. Oxygen-isotope values of authigenic K-feldspar from lower Paleozoic and uppermost Precambrian rocks range from +19.8 to +23.0 [per thousand] and average 21.4 [per thousand] (N = 11). These values are compatible with formation of the K-feldspar from similar fluids and comparable temperatures.

  18. Studies on interfacial behavior and wettability change phenomena by ionic and nonionic surfactants in presence of alkalis and salt for enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Mandal, Ajay

    2016-05-01

    Surfactant flooding is one of the most promising method of enhanced oil recovery (EOR) used after the conventional water flooding. The addition of alkali improves the performance of surfactant flooding due to synergistic effect between alkali and surfactant on reduction of interfacial tension (IFT), wettability alteration and emulsification. In the present study the interfacial tension, contact angle, emulsification and emulsion properties of cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and polysorbate 80 (Tween 80) surfactants against crude oil have been investigated in presence of sodium chloride (NaCl) and alkalis viz. sodium hydroxide (NaOH), sodium carbonate (Na2CO3), ammonium hydroxide (NH4OH), sodium metaborate (SMB) and diethanolamine (DEA). All three surfactants significantly reduce the IFT values, which are further reduced to ultra-low value (∼10-4 mN/m) by addition of alkalis and salt. It has been found experimentally that alkali-surfactant systems change the wettability of an intermediate-wet quartz rock to water-wet. Emulsification of crude oil by surfactant and alkali has also been investigated in terms of the phase volume and stability of emulsion. A comparative FTIR analysis of crude oil and different emulsions were performed to investigate the interactions between crude oil and displacing water in presence of surfactant and alkali.

  19. Microfluidic Leaching of Soil Minerals: Release of K+ from K Feldspar.

    PubMed

    Ciceri, Davide; Allanore, Antoine

    2015-01-01

    The rate of K+ leaching from soil minerals such as K-feldspar is believed to be too slow to provide agronomic benefit. Currently, theories and methods available to interpret kinetics of mineral processes in soil fail to consider its microfluidic nature. In this study, we measure the leaching rate of K+ ions from a K-feldspar-bearing rock (syenite) in a microfluidic environment, and demonstrate that at the spatial and temporal scales experienced by crop roots, K+ is available at a faster rate than that measured with conventional apparatuses. We present a device to investigate kinetics of mineral leaching at an unprecedented simultaneous resolution of space (~101-102 μm), time (~101-102 min) and fluid volume (~100-101 mL). Results obtained from such a device challenge the notion that silicate minerals cannot be used as alternative fertilizers for tropical soils.

  20. Microfluidic Leaching of Soil Minerals: Release of K+ from K Feldspar

    PubMed Central

    Ciceri, Davide; Allanore, Antoine

    2015-01-01

    The rate of K+ leaching from soil minerals such as K-feldspar is believed to be too slow to provide agronomic benefit. Currently, theories and methods available to interpret kinetics of mineral processes in soil fail to consider its microfluidic nature. In this study, we measure the leaching rate of K+ ions from a K-feldspar-bearing rock (syenite) in a microfluidic environment, and demonstrate that at the spatial and temporal scales experienced by crop roots, K+ is available at a faster rate than that measured with conventional apparatuses. We present a device to investigate kinetics of mineral leaching at an unprecedented simultaneous resolution of space (~101-102 μm), time (~101-102 min) and fluid volume (~100-101 mL). Results obtained from such a device challenge the notion that silicate minerals cannot be used as alternative fertilizers for tropical soils. PMID:26485160

  1. Effects of chemical surface modification on the ice nucleation ability of feldspar and illite

    NASA Astrophysics Data System (ADS)

    Augustin, Stefanie; Wex, Heike; Kanter, Sandra; Ebert, Martin; Niedermeier, Dennis; Stratmann, Frank

    2014-05-01

    Mineral dust is the most abundant ice nuclei (IN) in the atmosphere and thus it is thought to be important for ice nucleation in clouds (Murray et al. [2012]). The clay minerals contribute approximately two thirds of the mineral dust mass (Atkinson et al. [2013]), and illite is the most abundant clay mineral found in the atmosphere [Broadley et al., 2012]. In the past years a lot of the ice nucleation research focused on proxies for clay minerals like Arizona Test Dust (ATD), kaolinite and illite (see reviews by Murray et al. [2012] and Hoose and Möhler. [2012]). In most experiments, these substances acted as IN only at relatively low temperatures (lower than -25°C). Very recently Atkinson et al. (2013) showed that K-feldspar, which is a common crustal material, is the most active mineral dust with freezing temperatures above -20°C. In the present study we compared the immersion freezing behavior of size segregated illite and feldspar particles. We used illite-NX (Arginotec) and a feldspar sample from Minas Gerais, Brazil (consisting to roughly 80% of a K-feldspar with the remainder being a Na-feldspar). Both substances were examined in the framework of the INUIT research project. For the illite-NX particles freezing onset was observed at temperatures around -34°C. The feldspar sample already induced freezing at -23°C. The data obtained was in agreement to those reported in Broadley el al. [2012] and Atkinson et al. [2013]. To simulate chemical aging of the particle surface we coated the particles with sulfuric acid and repeated the measurements. The illite-NX showed a rather small change in the ice nucleation ability, whereas the freezing ability of the feldspar was strongly reduced and became similar to that of illite-NX. It seems that the sulfuric acid destroyed those sites on the particle surface which are responsible for the initiation of freezing. We continue our work in trying to better understand what exactly it is that gives K-feldspar its good IN

  2. Quartz-enhanced photoacoustic spectroscopy: a review.

    PubMed

    Patimisco, Pietro; Scamarcio, Gaetano; Tittel, Frank K; Spagnolo, Vincenzo

    2014-03-28

    A detailed review on the development of quartz-enhanced photoacoustic sensors (QEPAS) for the sensitive and selective quantification of molecular trace gas species with resolved spectroscopic features is reported. The basis of the QEPAS technique, the technology available to support this field in terms of key components, such as light sources and quartz-tuning forks and the recent developments in detection methods and performance limitations will be discussed. Furthermore, different experimental QEPAS methods such as: on-beam and off-beam QEPAS, quartz-enhanced evanescent wave photoacoustic detection, modulation-cancellation approach and mid-IR single mode fiber-coupled sensor systems will be reviewed and analysed. A QEPAS sensor operating in the THz range, employing a custom-made quartz-tuning fork and a THz quantum cascade laser will be also described. Finally, we evaluated data reported during the past decade and draw relevant and useful conclusions from this analysis.

  3. Quartz Mountain/Oklahoma Summer Arts Institute.

    ERIC Educational Resources Information Center

    Frates, Mary Y.; Madeja, Stanley S.

    1982-01-01

    Describes the Quartz Mountain Oklahoma Summer Arts Institute program. It is designed to nurture artistic talent and to provide intensive arts experiences in music, dance, theater, and the visual arts for talented students aged 14-18. (AM)

  4. Fabrication of a novel quartz micromachined gyroscope

    NASA Astrophysics Data System (ADS)

    Xie, Liqiang; Xing, Jianchun; Wang, Haoxu; Wu, Xuezhong

    2015-04-01

    A novel quartz micromachined gyroscope is proposed in this paper. The novel gyroscope is realized by quartz anisotropic wet etching and 3-dimensional electrodes deposition. In the quartz wet etching process, the quality of Cr/Au mask films affecting the process are studied by experiment. An excellent mask film with 100 Å Cr and 2000 Å Au is achieved by optimization of experimental parameters. Crystal facets after etching seriously affect the following sidewall electrodes deposition process and the structure's mechanical behaviours. Removal of crystal facets is successfully implemented by increasing etching time based on etching rate ratios between facets and crystal planes. In the electrodes deposition process, an aperture mask evaporation method is employed to prepare electrodes on 3-dimensional surfaces of the gyroscope structure. The alignments among the aperture masks are realized by the ABM™ Mask Aligner System. Based on the processes described above, a z-axis quartz gyroscope is fabricated successfully.

  5. Quartz-Enhanced Photoacoustic Spectroscopy: A Review

    PubMed Central

    Patimisco, Pietro; Scamarcio, Gaetano; Tittel, Frank K.; Spagnolo, Vincenzo

    2014-01-01

    A detailed review on the development of quartz-enhanced photoacoustic sensors (QEPAS) for the sensitive and selective quantification of molecular trace gas species with resolved spectroscopic features is reported. The basis of the QEPAS technique, the technology available to support this field in terms of key components, such as light sources and quartz-tuning forks and the recent developments in detection methods and performance limitations will be discussed. Furthermore, different experimental QEPAS methods such as: on-beam and off-beam QEPAS, quartz-enhanced evanescent wave photoacoustic detection, modulation-cancellation approach and mid-IR single mode fiber-coupled sensor systems will be reviewed and analysed. A QEPAS sensor operating in the THz range, employing a custom-made quartz-tuning fork and a THz quantum cascade laser will be also described. Finally, we evaluated data reported during the past decade and draw relevant and useful conclusions from this analysis. PMID:24686729

  6. Quartz resonator fluid monitors for vehicle applications

    SciTech Connect

    Cernosek, R.W.; Martin, S.J.; Wessendorf, K.O.; Terry, M.D.; Rumpf, A.N.

    1994-09-01

    Thickness shear mode (TSM) quartz resonators operating in a new {open_quotes}Lever oscillator{close_quotes} circuit are used as monitors for critical automotive fluids. These monitors respond to the density and viscosity of liquids contacting the quartz surface. Sensors have been developed for determining the viscosity characteristics of engine lubricating oil, the state-of-charge of lead-acid storage batteries, and the concentration variations in engine coolant.

  7. Method of making a quartz resonator

    DOEpatents

    Vig, John R.; Filler, Raymond L.; Peters, R. Donald; Frank, James M.

    1981-01-01

    A quartz resonator is made from a chemically polished quartz plate. The plate is placed in an enclosure fitted with at least three mounting clips to receive the plate. The plate is secured to the clips with an electrically conductive adhesive capable of withstanding operation at 350 degrees C. The assembly is cleaned and a metallic electrode deposited onto the plate until the desired frequency is reached. The enclosure is then hermetically sealed. The resulting resonator can consistently withstand extremely high shocks.

  8. Partitioning of Eu and Sr between coexisting plagioclase and K-feldspar.

    NASA Technical Reports Server (NTRS)

    Nagasawa, H.

    1971-01-01

    Minerals were separated by an EM approach and with the aid of liquids of great density. An analysis of K, Rb, Ca, Sr, Ha, and rare earth elements was conducted by means of a mass spectrometer isotope dilution technique. The behavior of the divalent europium ions during the partition process was found to be very similar to that of divalent strontium ions, taking into consideration data of the partition coefficients between coexisting feldspars in acidic rocks.

  9. 40Ar/39Ar ages in deformed potassium feldspar: evidence of microstructural control on Ar isotope systematics

    NASA Astrophysics Data System (ADS)

    Reddy, Steven M.; Potts, Graham J.; Kelley, Simon P.

    2001-05-01

    Detailed field and microstructural studies have been combined with high spatial resolution ultraviolet laser 40Ar/39Ar dating of naturally deformed K-feldspar to investigate the direct relationship between deformation-related microstructure and Ar isotope systematics. The sample studied is a ~1,000 Ma Torridonian arkose from Skye, Scotland, that contains detrital feldspars previously metamorphosed at amphibolite-facies conditions ~1,700 Ma. The sample was subsequently deformed ~430 Ma ago during Caledonian orogenesis. The form and distribution of deformation-induced microstructures within three different feldspar clasts has been mapped using atomic number contrast and orientation contrast imaging, at a range of scales, to identify intragrain variations in composition and lattice orientation. These variations have been related to thin section and regional structural data to provide a well-constrained deformation history for the feldspar clasts. One hundred and forty-three in-situ 40Ar/39Ar analyses measured using ultraviolet laser ablation record a range of apparent ages (317-1030 Ma). The K-feldspar showing the least strain records the greatest range of apparent ages from 420-1,030 Ma, with the oldest apparent ages being found close to the centre of the feldspar away from fractures and the detrital grain boundary. The most deformed K-feldspar yields the youngest apparent ages (317-453 Ma) but there is no spatial relationship between apparent age and the detrital grain boundary. Within this feldspar, the oldest apparent ages are recorded from orientation domain boundaries and fracture surfaces where an excess or trapped 40Ar component resides. Orientation contrast images at a similar scale to the Ar analyses illustrate a significant deformation-related microstructural difference between the feldspars and we conclude that deformation plays a significant role in controlling Ar systematics of feldspars at both the inter- and intragrain scales even at relatively low

  10. Ammonium in aqueous fluids to 600 °C, 1.3 GPa: A spectroscopic study on the effects on fluid properties, silica solubility, and K-feldspar to muscovite reactions

    NASA Astrophysics Data System (ADS)

    Schmidt, Christian; Watenphul, Anke

    2010-12-01

    The behavior of ammonium, NH 4+, in aqueous systems was studied based on Raman spectroscopic experiments to 600 °C and about 1.3 GPa. Spectra obtained at ambient conditions revealed a strong reduction of the dynamic three-dimensional network of water with addition of ammonium chloride, particularly at small solute concentrations. The differential scattering cross section of the ν 1-NH 4+ Raman band in these solutions was found to be similar to that of salammoniac. The Raman band of silica monomers at ˜780 cm -1 was present in all spectra of the fluid at high temperatures in hydrothermal diamond-anvil cell experiments with H 2O ± NH 4Cl and quartz or the assemblage quartz + kyanite + K-feldspar ± muscovite/tobelite. However, these spectra indicated that dissolved silica is less polymerized in ammonium chloride solutions than in comparable experiments with water. Quantification based on the normalized integrated intensity of the H 4SiO 40 band showed that the silica solubility in experiments with H 2O + NH 4Cl was significantly lower than that in equimolal NaCl solutions. This suggests that ammonium causes a stronger decrease in the activity of water in chloridic solutions than sodium. The Raman spectra of the fluid also showed that a significant fraction of ammonium was converted to ammonia, NH 3, in all experiments at temperatures above 300 °C. This indicates a shift towards acidic conditions for experiments without a buffering mineral assemblage. The estimated pH of the fluid was ˜2 at 600 °C, 0.26 GPa, 6.6 m initial NH 4Cl, based on the ratio of the integrated ν 1-NH 3 and ν 1-NH 4+ intensities and the HCl 0 dissociation constant. The NH 3/NH 4+ ratio increased with temperature and decreased with pressure. This implies that more ammonium should be retained in K-bearing minerals coexisting with chloridic fluids upon high- P low- T metamorphism. At 500 °C, 0.73 GPa, ammonium partitions preferentially into the fluid, as constrained from infrared

  11. Preparation of ultrafine silica from potash feldspar using sodium carbonate roasting technology

    NASA Astrophysics Data System (ADS)

    Liu, Jia-nan; Shen, Xiao-yi; Wu, Yan; Zhang, Jun; Zhai, Yu-chun

    2016-08-01

    A novel process was developed for the preparation of ultrafine silica from potash feldspar. In the first step, potash feldspar was roasted with Na2CO3 and was followed by leaching using NaOH solution to increase the levels of potassium, sodium, and aluminum in the solid residue. The leaching solution was then carbonated to yield ultrafine silica. The optimized reaction conditions in the roasting process were as follows: an Na2CO3-to-potash feldspar molar ratio of 1.1, a reaction temperature of 875°C, and a reaction time of 1.5 h. Under these conditions, the extraction rate of SiO2 was 98.13%. The optimized carbonation conditions included a final solution pH value of 9.0, a temperature of 40°C, a CO2 flow rate of 6 mL/min, a stirring intensity of 600 r/min, and an ethanol-to-water volume ratio of 1:9. The precipitation rate and granularity of the SiO2 particles were 99.63% and 200 nm, respectively. We confirmed the quality of the obtained ultrafine silica by comparing the recorded indexes with those specified in Chinese National Standard GB 25576―2010.

  12. Gamma activity of stream sediment feldspars as ceramic raw materials and their environmental impact.

    PubMed

    Aboelkhair, Hatem; Ibrahim, Tarek; Saad, Ahmed

    2012-08-01

    In situ gamma spectrometric measurements have been performed to characterise the natural radiation that emitted from the stream sediment feldspars in Wadi El Missikat and Wadi Homret El Gergab, Eastern Desert, Egypt. The measurements of potassium (K, %), equivalent uranium (eU, ppm) and equivalent thorium (eTh, ppm) were converted into specific activities and equivalent dose rate. The average specific activities were 1402 Bq kg(-1) for K, 113 Bq kg(-1) for eU and 108 Bq kg(-1) for eTh in Wadi El Missikat, while they were 1240, 104 and 185 Bq kg(-1) in Wadi Homret El Gergab. The calculated outdoor average effective dose rates was 1.1 mSv y(-1) in wadi El Missikat and 1.3 mSv y(-1) in Wadi Homret El Gergab. The terrestrial-specific activities and effective dose rate levels of the natural radioactivity in the two areas lie within the international recommended limits for occupational feldspar quarry workers. On the other hand, these results indicated that irradiation is higher than the allowable level for members of the public. Therefore, quarrying the feldspar sediments from these locations as ceramic raw materials may yield an undesired impact on the environment, especially through the indoor applications.

  13. Process for the disposal of alkali metals

    DOEpatents

    Lewis, Leroy C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.

  14. Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana

    USGS Publications Warehouse

    Rusk, B.G.; Reed, M.H.; Dilles, J.H.; Kent, A.J.R.

    2006-01-01

    Textures of hydrothermal quartz revealed by cathodoluminescence using a scanning electron microscope (SEM-CL) reflect the physical and chemical environment of quartz formation. Variations in intensity of SEM-CL can be used to distinguish among quartz from superimposed mineralization events in a single vein. In this study, we present a technique to quantify the cathodoluminescent intensity of quartz within individual and among multiple samples to relate luminescence intensity to specific mineralizing events. This technique has been applied to plutonic quartz and three generations of hydrothermal veins at the porphyry copper deposit in Butte, Montana. Analyzed veins include early quartz-molybdenite veins with potassic alteration, pyrite-quartz veins with sericitic alteration, and Main Stage veins with intense sericitic alteration. CL intensity of quartz is diagnostic of each mineralizing event and can be used to fingerprint quartz and its fluid inclusions, isotopes, trace elements, etc., from specific mineralizing episodes. Furthermore, CL intensity increases proportional to temperature of quartz formation, such that plutonic quartz from the Butte quartz monzonite (BQM) that crystallized at temperatures near 750 ??C luminesces with the highest intensity, whereas quartz that precipitated at ???250 ??C in Main Stage veins luminesces with the least intensity. Trace-element analyses via electron microprobe and laser ablation-ICP-MS indicate that plutonic quartz and each generation of hydrothermal quartz from Butte is dominated by characteristic trace amounts of Al, P, Ti, and Fe. Thus, in addition to CL intensity, each generation of quartz can be distinguished based on its unique trace-element content. Aluminum is generally the most abundant element in all generations of quartz, typically between 50 and 200 ppm, but low-temperature, Main Stage quartz containing 400 to 3600 ppm Al is enriched by an order of magnitude relative to all other quartz generations. Phosphorous

  15. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  16. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  17. Study on water-dispersible colloids in saline-alkali soils by atomic force microscopy and spectrometric methods.

    PubMed

    Liu, Zhiguo; Xu, Fengjie; Zu, Yuangang; Meng, Ronghua; Wang, Wenjie

    2016-06-01

    Recent studies have revealed that water-dispersible colloids play an important role in the transport of nutrients and contaminants in soils. In this study, water-dispersible colloids extracted from saline-alkali soils have been characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV absorption spectra. AFM observation indicated that the water-dispersible colloids contain some large plates and many small spherical particles. XRD, XPS, and UV absorption measurement revealed that the water-dispersible colloids are composed of kaolinite, illite, calcite, quartz and humic acid. In addition, UV absorption measurement demonstrated that the humic acids are associated with clay minerals. Water-dispersible colloids in the saline-alkali soils after hydrolyzed polymaleic anhydride treatment and an agricultural soil (nonsaline-alkali soil) were also investigated for comparison. The obtained results implied that the saline-alkali condition facilitates the formation of a large quantity of colloids. The use of AFM combined with spectrometric methods in the present study provides new knowledge on the colloid characteristics of saline-alkali soils. Microsc. Res. Tech. 79:525-531, 2016. © 2016 Wiley Periodicals, Inc.

  18. Frictional Behavior of Anorthite and Quartz at High Pressure and High Temperature Conditions

    NASA Astrophysics Data System (ADS)

    Arai, T.; Masuda, K.; Fujimoto, K.; Shigematsu, N.; Ohtani, T.; Sumii, T.; Okuyama, Y.

    2002-12-01

    Most of earthquakes in the crust occurred at the depth of 5 to 20km, and the distribution of mainshocks matches the base of this zone, where is considered to be consistent with brittle-ductile transition zone. The lower boundary on seismicity results from a switch from velocity weakening to velocity strengthening of friction with increasing temperature. The physical properties of rocks associated with elevated temperatures were determined by many frictional experiments. In these experimental studies, quartz, which controls the rock strength at brittle-ductile transition zone, was generally used. On the other hand, frictional experiment with feldspar is very few in spite of dominant phase in the crust, because feldspar behaves in a brittle manner at greenshist facies. However, recent studies indicate fine-grained plagioclase (1um) contributed deformation process largely at the Hatagawa fault zone, northeast Japan, where is considered to have been brittle-ductile transition zone in the past. In order to understand the source processes of earthquakes, it is important to evaluate the physical properties of fine grained plagioclace as well as those of quartz. In this study, we conducted frictional experiments by using anorthite and quartz gouges under high pressure and high temperature in a triaxial apparatus, and compared frictional behaviors of two minerals with elevated temperature. Temperature varied from room temperature to 800°C. Fine- (1-10um,1um) and coarse-grained (50um, 100um) samples were prepared to evaluate the effect of different grain size as observed Hatagawa fault zone. The samples were put between upper and lower sawcut cylinders (20mm diameter x 40mm long). The sawcut was oriented at 30° to the loading axis. These were jacketed with thin sleeves of annealed Cu. Pore fluids accelerated deformation process of Hatagawa mylonite at higher temperature than 600°C under the same effective confining pressure (Masuda et al., presented in this meeting

  19. Age and thermochronology of K-feldspars from the Manson Impact Structure

    NASA Technical Reports Server (NTRS)

    Zeitler, P. K.; Kunk, M. J.

    1993-01-01

    As a contribution to the effort to obtain a precise age for the Manson Impact Structure, we are approaching the problem from a thermo chronological perspective, with the goal of extracting an age from Ar-40/Ar-39 age-spectrum analysis of partially overprinted K-feldspars taken from granitoid clasts. We find that shocked feldspars from Manson generally show a strong overprint in their age spectra, with more than 50 percent of each spectrum being reset. The reset portions of the age spectra correspond to gas lost from very small diffusion domains, and a characteristic of the Manson samples is the very large range in apparent diffusion dimensions that they display, with the smallest domains being some 400 times smaller than the largest domains. It is also noteworthy that the small domains comprise a substantial portion of the volume of the feldspars (50 percent or more). These observations are consistent with the extreme shock experienced by these samples. In detail, the spectra we have measured to date are saddle-shaped and show minimum ages of between 67 and 72 Ma, which we interpret to be maximum estimates for the age of the impact. In the case of one sample (M1-678.3; K-feldspar from a large syenite block located well below the apparent melt-matrix breccia in the M1 borehole), isotope correlation analysis suggests the presence of a non-atmospheric trapped Ar component (Ar-40/Ar-36 of 660 plus or minus 40), and an age of about 65.3 plus or minus 0.5 Ma (2 sigma). Our interpretation of our results is that the shock of impact greatly reduced the diffusion-domain sizes of our samples, making them susceptible to significant Ar loss during heating associated with impact. It appears that while our feldspars were partially open to Ar loss, they equilibrated with a non-atmospheric Ar component, probably related to impact-related degassing of old basement around the impact site.

  20. Magmatic-hydrothermal fluid interaction and mineralization in alkali-syenite nodules from the Breccia Museo pyroclastic deposit, Naples, Italy: Chapter 7 in Volcanism in the Campania Plain — Vesuvius, Campi Flegrei and Ignimbrites

    USGS Publications Warehouse

    Fedele, Luca; Tarzia, Maurizio; Belkin, Harvey E.; De Vivo, Benedetto; Lima, Annamaria; Lowenstern, Jacob

    2007-01-01

    The Breccia Museo, a pyroclastic flow that crops out in the Campi Flegrei volcanic complex (Naples, Italy), contains alkali-syenite (trachyte) nodules with enrichment in Cl and incompatible elements (e.g., U, Zr, Th, and rare-earth elements). Zircon was dated at ≈52 ka, by U-Th isotope systematics using a SHRIMP. Scanning electron microscope and electron microprobe analysis of the constituent phases have documented the mineralogical and textural evolution of the nodules of feldspar and mafic accumulations on the magma chamber margins. Detailed electron microprobe data are given for alkali and plagioclase feldspar, salite to ferrosalite clinopyroxene, pargasite, ferrogargasite, magnesio-hastingsite hornblende amphibole, biotite mica, Cl-rich scapolite, and a member (probable davyne-type) of the cancrinite group. Detailed whole rock, major and minor element data are also presented for selected nodules. A wide variety of common and uncommon accessory minerals were identified such as zircon, baddeleyite, zirconolite, pollucite, sodalite, titanite, monazite, cheralite, apatite, titanomagnetite and its alteration products, scheelite, ferberite, uraninite/thorianite, uranpyrochlore, thorite, pyrite, chalcopyrite, and galena. Scanning electron microscope analysis of opened fluid inclusions identified halite, sylvite, anhydrite, tungstates, carbonates, silicates, sulfides, and phosphates; most are probably daughter minerals. Microthermometric determinations on secondary fluid inclusions hosted by alkali feldspar define a temperature regime dominated by hypersaline aqueous fluids. Fluid-inclusion temperature data and mineral-pair geothermometers for coexisting feldspars and hornblende and plagioclase were used to construct a pressure-temperature scenario for the development and evolution of the nodules. We have compared the environment of porphyry copper formation and the petrogenetic environment constructed for the studied nodules. The suite of ore minerals observed in

  1. What classic greywacke (litharenite) can reveal about feldspar diagenesis: An example from Permian Rotliegend sandstone in Hessen, Germany

    NASA Astrophysics Data System (ADS)

    Molenaar, Nicolaas; Felder, Marita; Bär, Kristian; Götz, Annette E.

    2015-08-01

    Rotliegend siliciclastic sediments in southern Hessen (Germany) are a good example of dissolution of detrital feldspars, which is a common feature in many sandstones. Dissolution occurred after mechanical compaction of the lithic-rich sandstone, which experienced framework collapse with pores and pore connections filled and obstructed by deformed ductile lithic grains (pseudomatrix) thereby reducing pore space to microporosity., The advanced degree of compaction and reduced porosity caused low permeability and low hydraulic conductivity of the rock mass. This is further reduced by the presence of wackes and shales that occur intercalated with the sandstones. Feldspar dissolution thus took place in low permeable sediments when large-scale flow of meteoric or acidic fluids is ruled out as a cause of feldspar dissolution. Mineral precipitation (illite, kaolinite, and albite) took place within pseudomatrix and detrital matrix as well as in secondary pores created by feldspar dissolution. Feldspar was the source for the authigenesis. The system was thus closed during burial after framework collapse, and diagenetic reactants in the form of detrital components were already present within the system. The original mass was preserved, but redistributed and diagenetic minerals were the local sinks for the dissolved reactants, precipitating within the system. This also suggests that burial diagenesis in general might be more mass conservative than usually assumed. Rotliegend sandstones thus form a case where, despite of the lack of external exchange of mass by fluid flow, major diagenetic processes did take place and significantly modified the original mineralogy and texture. Feldspar diagenesis can take place from other processes than mere large-scale flushing of open systems as often supposed. It implies that the volumes of rock affected by feldspar diagenesis may be much larger than anticipated based upon the common hold believe that feldspar diagenesis is linked to

  2. Comment on “Systematic variations of argon diffusion in feldspars and implications for thermochronometry” by Cassata and Renne

    NASA Astrophysics Data System (ADS)

    Lovera, Oscar M.; Harrison, T. Mark; Boehnke, Patrick

    2015-02-01

    Cassata and Renne (2013) is a data-rich paper potentially providing opportunities to systematically test long-standing models of argon diffusion behavior in feldspars and we congratulate them on a heroic achievement. That said, several of their interpretations are highly problematic due to misconceptions of both the nature of their sample and diffusion modeling. Evidence of grain-scale diffusion in an exsolved feldspar

  3. AUthigenic feldspar as an indicator of paleo-rock/water interactions in Permian carbonates of the Northern Calcareous Alps, Austria

    USGS Publications Warehouse

    Spotl, C.; Kralik, M.; Kunk, M.J.

    1996-01-01

    Dolostones interbedded with Upper Permian evaporites at the base of the Northern Calcareous Alps contain abundant authigenic K-feldspar. Two petrographically, structurally, and isotopically distinct generations of K-feldspar can be distinguished: crystals composed of an inclusion-rich core and a clear rim, and optically unzoned, transparent crystals. Both feldspar types have essentially identical K-feldspar end-member compositions with ??? 99.5 mole % Or component. Low oxygen isotope ratios (+16.1??? to +18.1??? SMOW) suggest precipitation from 18O-enriched, saline fluids at temperatures in excess of ??? 140??C. 40Ar/39Ar plateau-age spectra of five samples range from 145 ?? 1 to 144 ?? 1 Ma (Early Berriasian) and suggest that both types of feldspar were formed within an interval that did not exceed ??? 2 m.y. Rb/Sr model ages range from 152 to 140 Ma, assuming that the burial diagenetic regime was buffered with respect to strontium by the associated marine Permian evaporites. Authigenic K-feldspar records two distinct events of hot brine flow, most likely triggered by tectonic movements (detachment) and by an increase in the subsurface temperature in response to thrust loading.

  4. Authigenic feldspar as an indicator of paleo-rock/water interactions in Permian carbonates of the Northern Calcareous Alps, Austria

    SciTech Connect

    Spoetl, C.; Kralik, M.; Kunk, M.J.

    1996-01-01

    Dolostones interbedded with Upper Permian evaporites at the base of the Northern Calcareous alps contain abundant authigenic K-feldspar. Two petrographically, structurally, and isotopically distinct generations of K-feldspar can be distinguished: crystals composed of an inclusion-rich core and a clear rim, and optically unzoned, transparent crystals. Both feldspar types have essentially identical K-feldspar end-member compositions with {ge} 99.5 mole % Or component. Low oxygen isotope ratios (+16.1{per_thousand} to + 18.1{per_thousand} SMOW) suggest precipitation from {sup 18}O-enriched, saline fluids at temperatures in excess of {approximately} 140 C. {sup 40}Ar/{sup 39}Ar plateau-age spectra of five samples range from 145 {+-} 1 to 144 {+-} 1 Ma (Early Berriasian) and suggest that both types of feldspar were formed within an interval that did not exceed {approximately} 2 m.y. Rb/Sr model ages range from 152 to 140 Ma, assuming that the burial diagenetic regime was buffered with respect to strontium by the associated marine Permian evaporites. Authigenic K-feldspar records two distinct events of hot brine flow, most likely triggered by tectonic movements (detachment) and by an increase in the subsurface temperature in response to thrust loading.

  5. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Schmalzer, D.K.; Steindler, M.J.; Lee, S.H.D.; Swift, W.M.

    1992-12-01

    This project supports the DOE/METC Fossil Energy Program for the development of Pressurized fluidized bed combustion (PFBC) technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an alternative to the on-line alkali analyzer for field application. RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no high temperature/high pressure (HTHP) sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-reaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial-grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6{und M}-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed in the following.

  6. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Schmalzer, D.K.; Steindler, M.J.; Lee, S.H.D.; Swift, W.M.

    1992-01-01

    This project supports the DOE/METC Fossil Energy Program for the development of Pressurized fluidized bed combustion (PFBC) technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an alternative to the on-line alkali analyzer for field application. RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no high temperature/high pressure (HTHP) sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-reaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial-grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6[und M]-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed in the following.

  7. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1992-01-01

    This project supports the DOE/METC Fossil Energy Program for the development of PFBC technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an altemative to the on-line alkali analyzer for field application. As shown in Fig. 1, the RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no HTHP sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-leaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6M-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite [8]. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed.

  8. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1992-11-01

    This project supports the DOE/METC Fossil Energy Program for the development of PFBC technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an altemative to the on-line alkali analyzer for field application. As shown in Fig. 1, the RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no HTHP sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-leaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6M-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite [8]. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed.

  9. Sediment grain size and surface textural observations of quartz grains in late quaternary lacustrine sediments from Schirmacher Oasis, East Antarctica: Paleoenvironmental significance

    NASA Astrophysics Data System (ADS)

    Warrier, Anish Kumar; Pednekar, Hemant; Mahesh, B. S.; Mohan, Rahul; Gazi, Sahina

    2016-03-01

    In this study we report the sediment grain size parameters and surface textural observations (using scanning electron microscopy (SEM)) of quartz grains from sediments of Sandy Lake, Schirmacher Oasis, East Antarctica. The sediment core spans the last 43 cal ka B.P. The statistical parameters of grain size data (sorting, skewness, kurtosis, mean grain size, D10, D50, D90 and SPAN index) indicate that the sediments are primarily transported by melt-water streams and glaciers. However, during the last glacial period, sediments seem to be transported due to wind activity as evident by the good correlation between rounded quartz data and dust flux data from EPICA ice-core data. The mean grain size values are low during the last glacial period indicating colder climatic conditions and the values increase after the last glacial maximum suggesting an increase in the energy of the transporting medium, i.e., melt-water streams. The sediments are poorly sorted and finely skewed and show different modes of grain size distribution throughout the last 43 cal ka B.P. SEM studies of selected quartz grains and analyses of various surface textures indicate that glacigenic conditions must have prevailed at the time of their transport. Semi-quantitative analyses of mineral (quartz, feldspar, mica, garnet and rock fragments & other minerals) counts suggest a mixed population of minerals with quartz being the dominant mineral. Higher concentration of quartz grains over other minerals indicates that the sediments are compositionally mature. The study reveals the different types of physical weathering, erosive signatures, and chemical precipitation most of them characteristic of glacial environment which affected these quartz grains before final deposition as lake sediments. The palaeoclimatic signals obtained from this study show similarities with ice-core and lake sediment records from Schirmacher Oasis and other ice-free regions in East Antarctica.

  10. Examining the Effect of Water on the Strength of Quartz Using Polycrystalline Quartz Aggregates

    NASA Astrophysics Data System (ADS)

    Barbery, A. M.; Holyoke, C. W., III; Kronenberg, A. K.; Fukuda, J. I.

    2015-12-01

    Quartzite rheology has been extensively studied to model the strength of continental crust. Previous studies have shown that the presence of water in fluid inclusions weakens polycrystalline quartz, and this weakening is usually related to water fugacity. However, no attempt has been made to determine the effect of water content on the strength of quartz. We have deformed hot-pressed quartz aggregates with low water contents at a pressure of 1.5 GPa, a temperature of 1200°C, and strain rates of 10-4 to 10-6/s. Fine synthetic quartz powders were hot-pressed at 1120°C and 1.5 GPa for 24 hours to create quartzites with a grain size of ~20 microns and water contents of <150 H/106Si. The water band in FTIR spectra collected from the hot-pressed quartz aggregates is similar to the broad water band observed in natural quartzites (i.e. free water in fluid inclusions) rather than the spectra observed in synthetic quartz crystals. Results of deformation experiments indicate that the strain rate sensitivity of the strength of these quartz aggregates is consistent with deformation by dislocation creep (n~3.5). Microstructures observed in samples from these experiments include undulatory extinction, flattened grains, and bulging grain boundaries, which are also consistent with dislocation creep. The strength of these quartz aggregates deformed with low water contents (<150 H/106 Si) are an order of magnitude greater than the strengths predicted by polycrystalline quartz flow laws derived from quartzites with high (>2000 H/106Si) water contents. Our results indicate that quartz strength is dependent on water content, in addition to being dependent on water fugacity.

  11. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  12. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  13. Advancements in flowing diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Pitz, Greg A.; Stalnaker, Donald M.; Guild, Eric M.; Oliker, Benjamin Q.; Moran, Paul J.; Townsend, Steven W.; Hostutler, David A.

    2016-03-01

    Multiple variants of the Diode Pumped Alkali Laser (DPAL) have recently been demonstrated at the Air Force Research Laboratory (AFRL). Highlights of this ongoing research effort include: a) a 571W rubidium (Rb) based Master Oscillator Power Amplifier (MOPA) with a gain (2α) of 0.48 cm-1, b) a rubidium-cesium (Cs) Multi-Alkali Multi-Line (MAML) laser that simultaneously lases at both 795 nm and 895 nm, and c) a 1.5 kW resonantly pumped potassium (K) DPAL with a slope efficiency of 50%. The common factor among these experiments is the use of a flowing alkali test bed.

  14. Titanium, vanadium, and niobium mineralization and alkali metasomatism from the Magnet Cove complex, Arkansas

    USGS Publications Warehouse

    Flohr, M.J.K.

    1994-01-01

    The Christy deposit formed through a series of complex processes. The initial phase of mineralization is directly related to the infiltration of novaculite by alkali-rich fluids that were probably derived from carbonatite magma. Titanium, V, Nb, and Li were introduced by the alkali-rich fluids at temperatures that were as high as 600??C. During the initial stage of mineralization, V was concentrated in aegirine and sodic amphibole, Li was concentrated in taeniolite, minor amounts of Ti were concentrated in aegirine, and pyrite formed. The replacement of novaculite by the aforementioned minerals yielded excess silica, which precipitated as quartz. Niobium- and V-bearing brookite precipitated with the quartz. Minerals formed during the first stage reacted with a second fluid at temperatures of 100?? to 300??C and V was then concentrated in smectite and goethite. The second fluid was a mixture of low-temperature metasomatic fluid and groundwater. Vanadium was further concentrated in clay minerals in goethite, and in vug minerals as low-temperature alteration proceeded. -from Author

  15. Synthetic quartz with high ultraviolet transmission.

    PubMed

    Ballman, A A; Dodd, D M; Kuebler, N A; Laudise, R A; Wood, D L; Rudd, D W

    1968-07-01

    Quartz has been synthesized under hydrothermal conditions at rates of 1.78 mm/day in the presence of LiNO(2) in Ag lined and Ag plated systems, and it is shown that such quartz has optical transmission between 1500 A and 3 micro equal, and in some cases superior to, natural quartz. The uv cutoff at about 1500 A has been shown to be associated with Fe whose concentration may be reduced by procedures that reduce the concentration of charge compensating H+ in the lattice (growth in LiNO(2)) and by procedures which reduce the concentration of Fe in solutions (inert conditions). Transmission near 3 micro is affected by OH which can be reduced by LiNO(2).

  16. Adsorption of goethite onto quartz and kaolinite

    USGS Publications Warehouse

    Goldberg, M.C.; Weiner, Eugene R.; Boymel, P.M.

    1984-01-01

    The adsorption of colloidal goethite onto quartz and kaolinite substrates has been studied as a function of pH and NaCl concentration. Goethite adsorption was measured quantitatively by Fourier-transform infrared spectroscopy. The results indicate that adsorption onto both substrates is due primarily to coulombic forces; however, the pH dependence of adsorption is very different for the two substrates. This is explained by the fact that the surface charge on quartz is entirely pH-dependent, while kaolinite has surface faces which carry a permanent negative charge. Adsorption of goethite on to kaolinite increases markedly with increasing NaCl concentration, while adsorption onto quartz is relatively independent of NaCl concentration. This can be explained by the influence of NaCl concentration upon the development of surface charge on the substrates. A method is described for separating surface-bound goethite from free goethite.

  17. Beryl pegmatite at Jabal Tarban, southern Najd region, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Jackson, Norman J.

    Beryl pegmatite near Jabal Tarban forms a carapace on a small stock of alkali-feldspar microgranite. Geological, petrographic and geochemical features indicate a genetic relationship between pegmatite and microgranite. Crystallization of quartz and alkali feldspar from a low-Ca granitic magma resulted in formation of a residuum enriched in rare elements. Silica separated from this residuum to form a pegmatitic carapace over the stock; the remainder crystallized as the fine-grained albite-rich groundmass of the microgranite.

  18. Alkali metal for ultraviolet band-pass filter

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  19. Basic Material Quartz and Related Innovations

    NASA Astrophysics Data System (ADS)

    Ballato, A.

    Although material quartz is of scientific interest in its own right, its volume of usage and variety of applications dictate its technological importance.The technological prominence of α-quartz stems largely from the presence of piezoelectricity, combined with extremely low acoustic loss. It was one of the minerals with which the Brothers Curie first established the piezoelectric effect in 1880. In the early 1920s, the quartz resonator was first used for frequency stabilization. Temperature-compensated orientations (the AT and BT shear cuts) were introduced in the 1930s, and assured the technology's success. By the late 1950s, growth of cultured bars became commercially viable, and in the early 1970s, cultured quartz use for electronic applications first exceeded that of the natural variety. The discovery of cuts that addressed compensation of stress and temperature transient effects occurred in the 1970s, and led to the introduction of compound cuts such as the SC, which hasboth a zero temperature coefficient of frequency, and is simultaneously stress-compensated [1-5]. Between 109 and 1010 quartz units per year were produced by 2000 at frequencies from below 1 kHz to above 10 GHz. Categories of application include resonators, filters, delay lines, transducers, sensors, signal processors, and actuators. Particularly noteworthy are the bulk- and surface-wave resonators; their uses span the gamut from disposable timepieces to highest precision oscillators for position-location, and picosecond timing applications. Stringent high-shock and high-pressure sensor operations are also enabled. Table 2.1 shows the major applications of quartz crystals. These applications are discussed subsequently in greater detail. For general background and historical developments, see [1,6-11].

  20. Investigating K-feldspar Luminescence Thermochronometry for Application in the Mont Blanc Massif

    NASA Astrophysics Data System (ADS)

    Lambert, R.; King, G. E.; Herman, F.; Valla, P.

    2015-12-01

    Luminescence dating has the potential to quantify the recent exhumation history of mountain ranges as a low-temperature thermochronometer. During rock exhumation, electrons get trapped through exposure to ionizing radiation whilst elevated temperatures cause thermally stimulated detrapping. The resulting luminescence signals measured in the laboratory can be used to constrain rock thermal histories through modelling of the kinetic parameters of electron trapping and detrapping. Here, we investigate and model laboratory kinetic processes of the luminescence of K-feldspar and assess their extrapolation over geological timescales. Samples were taken from the actively eroding Mont Blanc massif in the European Alps, along a 12 km long tunnel with ambient temperatures of 10-35 °C. In this setting rapid exhumation rates have been found during the last 2 million years (up to ~2 km/Myr), however, we intend to increase the temporal resolution to sub-Quaternary timescales using luminescence thermochronometry. Infra-red stimulated luminescence signals at 50 °C (IR50) and at 225 °C (post-IR IRSL225) of K-feldspar extracted from Mont Blanc tunnel samples were measured and our first results reveal a thermal signature from which rock cooling rates can be derived. Isothermal decay experiments show non-exponential decay, but interestingly, experiments with a range of regenerative doses reveal first-order kinetics. The observed thermal decay pattern is well-described by a model based on a physically plausible distribution of the density of states. Ultimately, we intend to use the IR50 and post-IR IRSL225 signals of K-feldspar as dual thermochronometers to determine the late-Quaternary cooling history of the Mont Blanc massif. Moreover, the luminescence signals may give insights into local thermal field evolution, before the influence of postglacial hydrothermal flow.

  1. Optical dating of Holocene tidal deposits from the southwestern coast of the South Yellow Sea using different grain-size quartz fractions

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Long, Hao; Shen, Ji; Yu, Ge; Liao, Mengna; Yin, Yong

    2017-03-01

    The tidal flat deposit provides ideal sedimentary records for paleoenvironmental studies. Reliable chronology is crucial to utilize this archive for deciphering the history of environmental changes. In this study, we applied optically stimulated luminescence (OSL) dating method to a Holocene tidal flat sequence using both coarse-grained (CG, 90-200 μm) and fine-grained (FG, 4-11 μm) quartz extracts from a sedimentary core (YZ07) in western coast of the South Yellow Sea. The luminescence characteristics of the two grain-size fractions were investigated and then their resulting OSL ages were systematically compared. The results suggested that most tidal flat deposits are well bleached and their FG quartz ages are generally consistent with CG quartz ages, while some samples have CG ages underestimated compared with FG, likely resulted from the K-feldspar contamination for CG quartz. Hence, we applied post-IR OSL dating and pulsed OSL dating techniques; they could overcome the problems caused by feldspar contamination, and yielded identical dates as FG OSL ages. All OSL ages are generally in stratigraphic order; in contrast, the 14C ages are much more disorder and characterized with severe inversions. Finally, the age framework of the tidal flat sequence under this study was constructed based on the 30 OSL ages and one acceptable radiocarbon age. According to the age-depth model, three main periods of sedimentation-rate (SR) variation were identified. These SR changes are probably associated with sea-level rise/fall history, and the depocenter landward/seaward movement as well as the transition of depositional process within the Holocene delta initiation. The depositional environment changes were also reflected in sedimentological features of the tidal flat deposits in our study area.

  2. Quartz: Anomalous Weakness of Synthetic Crystals.

    PubMed

    Griggs, D T; Blacic, J D

    1965-01-15

    The strength of a synthetic quartz crystal drops rapidly at 400 degrees C, and at 600 degrees C is a hundredfold lower than at 300 degrees C. Large plastic deformations can be produced without fracture. The predominant mechanism of deformation is translation gliding. The preferred explanation for this anomalous weakness is that this synthetic quartz contains water which has hydrolyzed the silicon-oxygen bonds. The silanol groups so formed are presumed to be rendered sufficiently mobile by elevating the temperature to 400 degrees C so that they align themselves in dislocation lines and move through the crystal with the dislocation under the small applied shear stress.

  3. Effects of magma mingling in the granites of Mount Desert Island, Maine

    SciTech Connect

    Seaman, S.J.; Ramsey, P.C. )

    1992-07-01

    Textures and compositional relationships associated with dark-colored, fine-grained enclaves in the Cadillac Mountain and Somesville granites, Mount Desert Island, Maine, preserve abundant evidence for contamination of host granitic magmas by enclave liquids. Fine-grained enclaves, which apparently represent chilled magmatic droplets, have affected the composition and texture of the host granites by three possible mechanisms: (1) crystallization of feldspar-quartz-hornblende pegmatite pods from fluids of enclave origin in the granite surrounding enclaves, and the disaggregation of the pods and dispersion of crystals into the granite; (2) ionic exchange between enclaves and granitic magmas; (3) the generation around enclaves of rinds consisting of an inner alkali feldspar-quartz zone and an outer zone of hornblende-enriched granite. Thermal calculations suggest that the alkali feldspar-quartz zones of the rinds surrounding enclaves may result from resorption of alkali feldspar and quartz crystals in the granitic magma by heat of cooling and crystallization of enclave material. The interaction between the hot enclave and the alkali feldspar-quartz composition liquid may be analogous to that between a pluton and meteoric water in a hydrothermal system. The segregation of alkali feldspar-quartz and hornblende-rich zones may result from the minimum melt composition fluid migrating toward the enclave, leaving behind unmelted hornblende, as part of a convection circuit set up by the enclave. Alternatively, hornblende-rich zones concentric to and outside of the alkali feldspar-quartz rinds may record limit of movement of a front of hydrous fluid driven from the enclave boundary down a thermal gradient.

  4. Effect of ageing of K-feldspar on its ice nucleating efficiency in immersion, deposition and contact freezing modes

    NASA Astrophysics Data System (ADS)

    Peckhaus, Andreas; Bachmann, Felix; Hoffmann, Nadine; Koch, Michael; Kiselev, Alexei; Leisner, Thomas

    2015-04-01

    Recently K-feldspar was identified as one of the most active atmospheric ice nucleating particles (INP) of mineral origin [1]. Seeking the explanation to this phenomena we have conducted extensive experimental investigation of the ice nucleating efficiency of K-feldspar in three heterogeneous freezing modes. The immersion freezing of K-feldspar was investigated with the cold stage using arrays of nanoliter-size droplets containing aqueous suspension of polydisperse feldspar particles. For contact freezing, the charged droplets of supercooled water were suspended in the laminar flow of the DMA-selected feldspar-containing particles, allowing for determination of freezing probability on a single particle-droplet contact [2]. The nucleation and growth of ice via vapor deposition on the crystalline surfaces of macroscopic feldspar particles have been investigated in the Environmental Scanning Electron Microscope (ESEM) under humidified nitrogen atmosphere. The ice nucleation experiments were supplemented with measurements of effective surface area of feldspar particles and ion chromatography (IC) analysis of the leached framework cations (K+, Na+, Ca2+, Mg2+). In this contribution we focus on the role of surface chemistry influencing the IN efficiency of K-feldspar, in particular the connection between the degree of surface hydroxylation and its ability to induce local structural ordering in the interfacial layer in water molecules (as suggested by recent modeling efforts). We mimic the natural process of feldspar ageing by suspending it in water or weak aqueous solution of carbonic acid for different time periods, from minutes to months, and present its freezing efficiency as a function of time. Our immersion freezing experiments show that ageing have a nonlinear effect on the freezing behavior of feldspar within the investigated temperature range (-40°C to -10°C). On the other hand, deposition nucleation of ice observed in the ESEM reveals clear different pattern

  5. Improved alkali-metal/silicate binders

    NASA Technical Reports Server (NTRS)

    Schutt, J.

    1978-01-01

    Family of inorganic binders utilizes potassium or sodium oxide/silicate dispersion and employs high mole ratio of silicon dioxide to alkali-metal binder. Binders are stable, inexpensive, extremely water resistant, and easy to apply.

  6. Alkali Metal Handling Practices at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Salvail, Patrick G.; Carter, Robert R.

    2002-01-01

    NASA Marshall Space Flight Center (MSFC) is NASA s principle propulsion development center. Research and development is coordinated and carried out on not only the existing transportation systems, but also those that may be flown in the near future. Heat pipe cooled fast fission cores are among several concepts being considered for the Nuclear Systems Initiative. Marshall Space Flight Center has developed a capability to handle high-purity alkali metals for use in heat pipes or liquid metal heat transfer loops. This capability is a low budget prototype of an alkali metal handling system that would allow the production of flight qualified heat pipe modules or alkali metal loops. The processing approach used to introduce pure alkali metal into heat pipe modules and other test articles are described in this paper.

  7. Alkali metal propellants for MPD thrusters

    NASA Technical Reports Server (NTRS)

    Polk, J. E.; Pivirotto, T. J.

    1991-01-01

    Experiments performed in the United States in the 1960s and early 1970s and in the Soviet Union with alkali metal-fuelled MPD thrusters indicate performance levels substantially better than those achieved with gaseous propellants. Cathode wear appears to be less in engines with alkali metal propellants also. A critical review of the available data indicates that the data are consistent and reliable. An analysis of testing and systems-level considerations shows that pumping requirements for testing are substantially decreased and reductions in tankage fraction can be expected. In addition, while care must be exercised in handling the alkali metals, it is not prohibitively difficult or hazardous. The greatest disadvantage seems to be the potential for spacecraft contamination, but there appear to be viable strategies for minimizing the impact of propellant deposition on spacecraft surfaces. Renewed examination of alkali metal-fuelled MPD thrusters for ambitious SEI missions is recommended.

  8. Age of authigenic K-feldspar in Lower Paleozoic and uppermost Precambrian rocks of the Mississippi Valley area

    SciTech Connect

    Hay, R.L.; Liu, J. . Dept. of Geology); Deino, A. . Geochronology Center); Kyser, T.K. . Dept. of Geology)

    1993-03-01

    Published K-Ar dates of authigenic K-feldspar in Cambrian and Ordovician rocks of the Mississippi Valley area range from 448 to 375 Ma (Late Ordovician to Middle Devonian), suggesting a lengthy episode of K-feldspar authigenesis. Here the authors report an age span of [approximately]464--400 Ma (Middle Ordovician to Early Devonian) for authigenic K-feldspar of two samples from the alteration profile widely developed over Precambrian rocks at the unconformity with Cambrian deposits. This dating was done on 42 to 48 mesh grains of K-feldspar by the laser incremental-heating [sup 40]Ar/[sup 39]Ar method. One sample, from west-central Wisconsin, is from an 8-mm-thick vein formed along a fracture in kaolinitic altered granite. Three grains nearest the fracture yielded plateau ages with a range of [approximately]9 Ma and an average of 430 Ma. Three grains distant from the fracture yielded a similar range of 10 Ma but with an average age of 397 Ma. Thus the grains grew over an extended period from at least [approximately]430 to 400 Ma. A K-Ar date of 411 Ma was obtained from a sample representing the entire thickness of the vein. The other sample, from the St. Francois Mts. of Missouri, is of diabase replaced by K-feldspar. Three grains yielded plateau ages ranging from [approximately]444 to 464 Ma. Oxygen-isotope values of authigenic K-feldspar from lower Paleozoic and uppermost Precambrian rocks range from +19.8 to +22.2[per thousand] and average 21.4[per thousand] (n = 11). These values are compatible with formation of the K-feldspar from similar fluids and comparable temperatures.

  9. Authigenic potassium feldspar: a tracer for the timing of palaeofluid flow in carbonate rocks, Northern Calcareous Alps, Austria

    USGS Publications Warehouse

    Spotl, C.; Kunk, M.J.; Ramseyer, K.; Longstaffe, F.J.

    1998-01-01

    This paper is included in the Special Publication entitled 'Dating and duration of fluid flow and fluid-rock interaction', edited by J. Parnell. Feldspar is a common authigenic constituent in Permian carbonate rocks which occur as tectonically isolated blocks within the evaporitic Haselgebirge melange in the Northern Calcareous Alps (NCA). Coexisting with pyrite, anhydrite, (saddle) dolomite, magnesite, fluorite and calcite, K-feldspar and minor albite record an event of regionally extensive interaction of hot brines with carbonate rocks. Detailed petrographic, crystallographic and geochemical studies reveal a variability in crystal size and shape, Al-Si ordering, elemental and stable isotopic compositions of the K-feldspar, which is only partially consistent with the traditional view of authigenic feldspar as a well-ordered, compositionally pure mineral. 40Ar-39Ar step- heating measurements of authigenic potassium feldspar from several localities yield two age populations, an older one of 145-154 Ma, and a younger one of c.90-97 Ma. Most age spectra reflect cooling through the argon retention temperature interval, which was rapid in some localities (as indicated by plateau ages) and slower in others. Rb-Sr isotope data are more difficult to interpret, because in many K-feldspar samples they are controlled largely by Sr-bearing inclusions. The Jurassic 40Ar-39Ar dates are interpreted as minimum ages of feldspar growth and hence imply that fluid-rock interaction is likely to be simultaneous with or to slightly predate melange formation. Deformation associated with the closure and subduction of the Meliata-Hallstatt ocean south of the NCA during the Upper Jurassic is regarded as the principal geodynamic driving force for both enhanced fluid circulation and melange formation. Some localities were reheated beyond the argon retention temperature for microcline during mid-Cretaceous nappe stacking of the NCA, thus obliterating the older signal.

  10. Desulfurizing Coal With an Alkali Treatment

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kalvinskas, J. J.

    1987-01-01

    Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.

  11. Effect of Alkali Ions on the Amorphous to Crystalline Phase Transition of Silica

    NASA Astrophysics Data System (ADS)

    Venezia, A. M.; La Parola, V.; Longo, A.; Martorana, A.

    2001-11-01

    The effect of the addition of alkali ions to commercial amorphous silica, generally used as support for heterogeneous catalysts, has been investigated from the point of view of morphological and structural changes. Samples of alkali-doped silica were prepared by impregnation and subsequent calcination at various temperatures. The structural effect of Li, Na, K, and Cs was determined by use of techniques such as wide-angle (WAXS) and small-angle X-ray scattering (SAXS). The WAXS diffractograms, analyzed with the Rietveld method using the GSAS program, allowed qualitative and quantitative identification of the fraction of the different silica polymorphs like quartz, tridymite, and cristobalite. SAXS measurements, using the classical method based on Porod's law, yielded the total surface area of the systems. The calculated areas were compared with the surface areas determined by the nitrogen adsorption technique using the analytical method of Brunauer-Emmett-Teller. The results are explained in terms of sizes of the alkali ions and cell volume of the different crystalline phases.

  12. Ternary feldspar thermometry of Paleoproterozoic granulites from In-Ouzzal terrane (Western Hoggar, southern Algeria)

    NASA Astrophysics Data System (ADS)

    Benbatta, A.; Bendaoud, A.; Cenki-Tok, B.; Adjerid, Z.; Lacène, K.; Ouzegane, K.

    2017-03-01

    The In Ouzzal terrane in western Hoggar (Southern Algeria) preserves evidence of ultrahigh temperature (UHT) crustal metamorphism. It consists in Archean crustal units, composed of orthogneissic domes and greenstone belts, strongly remobilized during the Paleoproterozoic orogeny which was recognized as an UHT event (peak T > 1000 °C and P ≈ 9-12 kbar). This metamorphism was essentially defined locally in Al-Mg granulites, Al-Fe granulites and quartzites outcropping in the Northern part of the In Ouzzal terrane (IOT). In order to test and verify the regional spread of the UHT metamorphism in this terrane, ternary feldspar thermometry on varied rock types (Metanorite, Granulite Al-Mg and Orthogneiss) and samples that crop out in different zones of the In Ouzzal terrane. These rocks contain either perthitic, antiperthitic or mesoperthitic parageneses. Ternary feldspars used in this study have clearly a metamorphic origin. The obtained results combined with previous works show that this UHT metamorphism (>900 °C) affected the whole In Ouzzal crustal block. This is of major importance as for future discussion on the geodynamic context responsible for this regional UHT metamorphism.

  13. Can Ice-Like Structures Form on Non-Ice-Like Substrates? The Example of the K-feldspar Microcline

    PubMed Central

    2016-01-01

    Feldspar minerals are the most common rock formers in Earth’s crust. As such they play an important role in subjects ranging from geology to climate science. An atomistic understanding of the feldspar structure and its interaction with water is therefore desirable, not least because feldspar has been shown to dominate ice nucleation by mineral dusts in Earth’s atmosphere. The complexity of the ice/feldspar interface arising from the numerous chemical motifs expressed on the surface makes it a challenging system. Here we report a comprehensive study of this challenging system with ab initio density functional theory calculations. We show that the distribution of Al atoms, which is crucial for the dissolution kinetics of tectosilicate minerals, differs significantly between the bulk environment and on the surface. Furthermore, we demonstrate that water does not form ice-like overlayers in the contact layer on the most easily cleaved (001) surface of K-feldspar. We do, however, identify contact layer structures of water that induce ice-like ordering in the second overlayer. This suggests that even substrates without an apparent match with the ice structure may still act as excellent ice nucleating agents. PMID:27917255

  14. Plastic Deformation of Quartz: Unfinished business?

    NASA Astrophysics Data System (ADS)

    Paterson, M. S.

    2011-12-01

    Starting at Harvard in the mid-1930's, David Griggs built a series of high pressure machines for experimental rock deformation. One persistent aim was to achieve the plastic deformation of quartz. Each time he built a new machine for higher pressure and/or temperature, one of the first materials he tested would be quartz. This search went on through a 500 MPa liquid-medium machine at temperatures up to 300°C, then with a gas-medium machine for temperatures up to 800°C, and finally with a solid-medium machine for higher pressures and temperatures. Quartz proved stubbornly resistant to deformation except at extremely high stresses until, finally and somewhat serendipitously, it was found possible to deform quartz at relatively low stresses in the presence of water under special conditions. The breakthrough came in an experiment in a 1500 MPa solid-medium apparatus in which talc was used as pressure medium. At the temperature of the experiment, the talc dehydrated and so released water. Under these conditions, natural quartz proved to be very weak and to readily undergo plastic deformation, a phenomenon that became known as "hydrolytic weakening". Soon after this discovery, it was also found that certain synthetic single crystals could be easily deformed ab initio. These crystals were from a particular set that had been grown rapidly under hydrothermal conditions and had incorporated water during growth. Attempts in our laboratory to weaken crystals in a gas-medium apparatus at around 300 MPa by cooking dry quartz in the presence of added water were all unsuccessful, although we could deform wet synthetic crystals. There was considerable speculation about a role of high pressure in promoting hydrolytic weakening, but the dilemma was eventually clarified by electron microscope studies by Fitz Gerald and coworkers. These studies showed that crystals that had been subjected to high pressure and temperature in the solid-medium apparatus were extensively microcracked

  15. Force chain forming quartz in an ultramylonite

    NASA Astrophysics Data System (ADS)

    Kilian, Rüdiger; Morales, Luiz F. G.; Peters, Max

    2014-05-01

    Polymineralic ultramylonites often show microstructures indicative of grain size sensitive creep with dissolution precipitation or diffusion accommodated grain boundary sliding. Typically phases show an anticorrelated distribution, the grain size is small and a crystallographic preferred orientation is absent. The latter observation is usually thought to originate from rigid body rotation of grains because flow dominated by diffusion creep operates at differential stresses, which are too low to activate crystal-plastic mechanisms. Here, we present quartz texture measurements from a natural ultramylonite, deformed under upper amphibolite facies conditions from the Nordmannvik Nappe, Upper Allochton of the Norwegian Caledonides. The ultramylonite has a mean grain size < 10 μm (eq. diameter) and shows a very homogeneous microstructure with an anticorrelated phase distribution with quartz (50 vol%), separated by a matrix of biotite, white mica, plagioclase and titanite while garnet forms porphyroclasts. Quartz occurs either as isolated grains or in 'one grain' thick, small clusters. Two types of clusters can be distinguished: foliation parallel clusters and oblique clusters with a long axis at a small angle to the inferred shortening direction, the latter being prominent in the most homogeneous ultramylonite. Quartz shows a weak but non-random texture. In the foliation parallel clusters a [c]-axis maximum is elongated around the y-direction towards the normal of the foliation, -axes form point maxima at a small angle to the lineation, very similar to textures found in high temperature quartz mylonites (e.g. Pennacchioni et al., 2010). In the foliation oblique clusters, the [c]-axes form a very broad maximum around the y-direction and axes show three distinct, close to orthogonal maxima close to x,y,z-directions, rotated about 10-15° antithetically around the y-direction. Isolated quartz grains also show a weak texture of this type. Quartz grains contain low angle

  16. Open grain boundaries of quartz as fluid pathways in metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Kruhl, J. H.; Wirth, R.; Morales, L. F. G.

    2012-04-01

    TEM analyses coupled with SEM/FIB sequential imaging of quartz from a metamorphic contact aureole and from greenschist-facies regional metamorphism shows that quartz grain boundaries are partly open on the nanometre scale. Three different types of voids occur: (i) up to 500 nm wide open zones parallel to the grain boundaries, (ii) cavities of variable shape and up to micrometer size along the open grain boundaries, and (iii) cone-shaped, nanometre-sized depressions at sites where dislocation lines meet the open grain boundaries. From animations generated with a pile of 100 pictures it is obvious that in three dimensions the larger cavities are interconnected and form channel-like structures which 'migrate' along the grain boundaries and change in dimensions and shape. Consequently, the partly connected open grain boundaries and cavities form a pathway for fluid percolation. Comparison between the measurements and the results of semi-quantitative modelling indicates that the partially open grain boundaries most probably result (i) from reduction of cell dimensions during cooling below the diffusion threshold of quartz (~300°C; Voll, 1976) and (ii) from the fact that this reduction is anisotropic, i.e., different for different crystallographic directions (Kihara, 1990). Preliminary imaging of phase boundaries of quartz, plagioclase, K-feldspar, amphibole and pyroxene and of grain boundaries in calcite show similar features: several hundred nanometre wide open zones parallel to the boundaries and cavities of variable shape and size, often with euhedral segmentation. In addition, newly-grown, partly euhedral crystalline matter of similar composition as the neighbouring minerals may cover the open grain boundaries. These observations indicate locally strong dissolution-precipitation processes within a connected network of open grain and phase boundaries. All these minerals are common in rocks of the middle and lower continental crust, which partly cooled from higher

  17. OSL dating of fine-grained quartz from Holocene Yangtze delta sediments

    NASA Astrophysics Data System (ADS)

    Sugisaki, S.; Buylaert, J. P.; Murray, A. S.; Tada, R.; Zheng, H.; Ke, W.; Saito, K.; Irino, T.; Chao, L.; Shiyi, L.; Uchida, M.

    2014-12-01

    Flood events in the Yangtze River are associated with variation in East Asian Summer Monsoon (EASM) precipitation. Understanding the frequency and scale of the EASM precipitation during the Holocene is a key to understanding the mechanism and cyclicity of floods and droughts. Because about 70% of the annual discharge occurs during the flood season, the Yangtze delta sediments provide a good archive of EASM precipitation. In this study, we investigate the possibility of applying OSL dating to establishing high-resolution chronologies for the Yangtze delta sediment cores YD13-1H and G3. The objectives of this study are: (1) test whether fine grained quartz in present day suspended particle matter (SPM) is fully bleached or reset before deposition, (2) where possible, test quartz fine- and coarse-grain OSL dating against radiocarbon shell ages, (3) interpret the sediment transport processes through the differential bleaching of quartz and feldspar OSL signals. We show that the SPM collected from the surface water column of the Yangtze River during the flood season is well-bleached (offset ~60 years). Fine-grained pro-delta sediments are thus potentially a good dosimeter for OSL dating. OSL ages sediment cores indicate a pronounced change in sedimentation rate at ~6 ka and ~2ka. These events are consistent with what is known of the evolution of the Yangtze catchment and delta. The delta began to build at ~6 ka (Zhao et al., 1979), and human activities increased significantly in the catchment at ~2ka (Chen et al., 1985). It is however surprising that the entire top 9 m of sediment only records these two events. The question of whether significant deposition was limited to 2 ka and 6 ka, or whether the record has been disturbed by erosion/reworking remains. These issues are discussed in terms of the reliability of the quartz OSL ages, the degree of bleaching by comparison with polymineral OSL signals, and the relationship of the OSL ages to the sedimentary record.

  18. ASR potential of quartz based on expansion values and microscopic characteristics of mortar bars

    NASA Astrophysics Data System (ADS)

    Stastna, Aneta; Sachlova, Sarka; Kuchynova, Marketa; Pertold, Zdenek; Prikryl, Richard

    2016-04-01

    The alkali-silica reaction (ASR) is one of the most damaging factors for concrete structures. Different analytical techniques are used to quantify ASR potential of aggregates. The accelerated mortar bar test (ASTM C1260) in combination with the petrographic examination of aggregates by microscopic techniques belongs to the frequently employed methods. Such a methodical approach enables quantification of the ASR potential, based on the expansion values of accelerated mortar bars; and also to identify deleterious components in aggregates. In this study, the accelerated mortar bar test (ASTM C1260) was modified and combined with the scanning electron microscopy of polished sections prepared from mortar bars. The standard 14-day test period of mortar bars was prolonged to 1-year. ASR potential of aggregates was assessed based on expansion values (both 14-day and 1-year) of mortar bars and microscopic analysis of ASR products (alkali silica gels, microcracks, dissolution gaps) detected in the sections. Different varieties of quartz-rich rocks including chert, quartz meta-greywacke, three types of quartzite and pegmatite were used as aggregate. Only quartz from pegmatite was assessed to be non reactive (14-day expansion of 0.08%, 1-year expansion of 1.25%). Aggregate sections exhibited minor ASR products even after 1-year of mortar bar immersion in 1 M NaOH. Expansion values of the rest of samples exceeded the limit of 0.10% after 14-day test period indicating aggregates as reactive. The highest ASR potential was detected in mortar bars containing chert (14-day expansion of 0.55%, 1-year expansion of 2.70%) and quartz meta-greywacke (14-day expansion of 0.46%, 1-year expansion of 2.41%). The high ASR potential was explained by presence of cryptocrystalline matrix in significant volumes (24 - 65 vol%). Influence of the lengths of the immersion in the alkaline solution was observed mainly in the microstructure of the cement paste and on the extension of ASR products. The

  19. Millimeter And Submillimeter-Wave Integrated Circuits On Quartz

    NASA Technical Reports Server (NTRS)

    Mehdi, Imran; Mazed, Mohammad; Siegel, Peter; Smith, R. Peter

    1995-01-01

    Proposed Quartz substrate Upside-down Integrated Device (QUID) relies on UV-curable adhesive to bond semiconductor with quartz. Integrated circuits including planar GaAs Schottky diodes and passive circuit elements (such as bandpass filters) fabricated on quartz substrates. Circuits designed to operate as mixers in waveguide circuit at millimeter and submillimeter wavelengths. Integrated circuits mechanically more robust, larger, and easier to handle than planar Schottky diode chips. Quartz substrate more suitable for waveguide circuits than GaAs substrate.

  20. Effect of irradiation and thermal annealing on quartz materials luminescence

    NASA Astrophysics Data System (ADS)

    Korovkin, M. V.; Ananyeva, L. G.

    2017-01-01

    X-ray and gamma-quanta irradiation of radiation-resistant quartz materials including natural and synthetic quartz crystals and high-purity quartzite causes the luminescence in the ultraviolet range (365 nm), thermally stimulated luminescence and radiofrequency electromagnetic emission. Preliminary radiation and thermal annealing improves luminescence properties of quartz materials.

  1. Optical processing furnace with quartz muffle and diffuser plate

    DOEpatents

    Sopori, Bhushan L.

    1996-01-01

    An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy.

  2. Improved thermoelectrically cooled quartz crystal microbalance

    NASA Technical Reports Server (NTRS)

    Mckeown, W. E.; Corbin, W. E., Jr.; Fox, M. G.

    1974-01-01

    Design changes in the thermoelectrically-cooled quartz microbalance, which is used to monitor surface contamination in space simulation chambers, is described in terms of its extended temperature range, increased temperature control, mass sensitivity, and cooling power. The mass sensor uses 20 MHz quartz crystals having a sensitivity of 8.8 x 10 to the minus tenth power g/sq cm - Hz. The crystals are optically polished, metal plated, and overplated with magnesium fluoride to simulate an optical surface. The microbalance temperature circuitry is designed to readout and control surface temperature between 100 C and minus 59 C to plus or minus 0.5 C, and readout only temperature between minus 60 C and minus 199 C using auxiliary liquid nitrogen cooling. Data is included on the measurement of oil contamination of surfaces as a function of temperature in space simulation chambers.

  3. Quartz Channel Fabrication for Electrokinetically Driven Separations

    SciTech Connect

    Arnold, D.W.; Ashby, C.I.H.; Bailey, C.G.; Kravitz, S.H., Warren, M.E.; Matzke, C.M.

    1998-12-01

    For well resolved electrokinetic separation, we L tilize crystalline quartz to micromachine a uniformly packe Q&iKLmnel. Packing features are posts 5 Vm on a side with:} pm spacing and etched 42 Vm deep. In addition to anisotropic wet etch characteristics for micromachining, quartz propmties are compatible with chemical soiutioits, ekctrokinetic high voltage operation, and stationary phase film depositions. To seal these channels, we employ a room temperature silicon-oxynhride deposition to forma membrane, that is subsequently coated for mechanical stability. Using this technique, particulate issues and global warp, that make large area wafer bon ding methods difficult, are avoided, and a room temperature process, in contrast to high temperature bonding techniques, accommodate preprocessing of metal films for electrical interconnect. After sealing channels, a number of macro-assembly steps are required to attach a micro-optical detection system and fluid interconnects. Keywords: microcharmel, integrated channel, micromachined channel, packed channel, electrokinetic channel, eleetrophoretic channel

  4. Emission polarization study on quartz and calcite.

    NASA Technical Reports Server (NTRS)

    Vincent, R. K.

    1972-01-01

    Calculation of the spectral emission polarization of quartz and calcite polished plates for observation angles of 20 and 70 deg by the substitution of complex index of refraction values for each mineral into Fresnel's equations. The emission polarization is shown to be quite wavelength-dependent, demonstrating that selected narrow or medium-width spectral bands exhibit a significantly higher percentage of polarization than a broad spectral band for these two minerals. Field measurements with a broadband infrared radiometer yield polarizations on the order of 2% for a coarse-grained granite rock and beach sand (both quartz-rich). This implies that a more sensitive detector with a selected medium-width filter may be capable of measuring emission polarization accurately enough to make this parameter useful as a remote sensing tool for discrimination among rocks on the basis of texture.

  5. THE FRICTION OF QUARTZ IN HIGH VACUUM

    DTIC Science & Technology

    the effects of surface cleanliness . Ultra-high vacuums (to 10 to the minus 10th power torr) and high temperatures (to 350 deg C) were combined with...chemical cleaning and careful handling techniques to produce the maximum surface cleanliness . The coefficient of static friction under varying...on 30-40 mesh glass balls. The coefficient of friction of smooth quartz was found to vary from 0.1 to 1.0 depending on the surface cleanliness . The

  6. Error analysis of quartz crystal resonator applications

    SciTech Connect

    Lucklum, R.; Behling, C.; Hauptmann, P.; Cernosek, R.W.; Martin, S.J.

    1996-12-31

    Quartz crystal resonators in chemical sensing applications are usually configured as the frequency determining element of an electrical oscillator. By contrast, the shear modulus determination of a polymer coating needs a complete impedance analysis. The first part of this contribution reports the error made if common approximations are used to relate the frequency shift to the sorbed mass. In the second part the authors discuss different error sources in the procedure to determine shear parameters.

  7. Laboratory measurements of upwelled radiance and reflectance spectra of Calvert, Ball, Jordan, and Feldspar soil sediments

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Usry, J. W.; Witte, W. G.; Gurganus, E. A.

    1977-01-01

    An effort to investigate the potential of remote sensing for monitoring nonpoint source pollution was conducted. Spectral reflectance characteristics for four types of soil sediments were measured for mixture concentrations between 4 and 173 ppm. For measurements at a spectral resolution of 32 mm, the spectral reflectances of Calvert, Ball, Jordan, and Feldspar soil sediments were distinctly different over the wavelength range from 400 to 980 nm at each concentration tested. At high concentrations, spectral differences between the various sediments could be detected by measurements with a spectral resolution of 160 nm. At a low concentration, only small differences were observed between the various sediments when measurements were made with 160 nm spectral resolution. Radiance levels generally varied in a nonlinear manner with sediment concentration; linearity occurred in special cases, depending on sediment type, concentration range, and wavelength.

  8. Improving age constraints on Patagonian glaciations using a new luminescence dating method for feldspars

    NASA Astrophysics Data System (ADS)

    Smedley, R. K.; Glasser, N. F.; Duller, G. A.

    2013-12-01

    Multiple moraine ridges are preserved in the Lago Buenos Aires and Lago Pueyrrédon valleys, east of the Northern Patagonian Icefield and offer a unique perspective on understanding past environmental change in the mid-latitudes of the Southern Hemisphere. Previous age constraints provided for the moraine ridges relies on cosmogenic isotope dating and constraining radiocarbon and 40Ar/36Ar ages. Providing age constraints using luminescence dating of the glaciofluvial landforms associated with the moraine ridges offers great potential to contribute towards improving the accuracy and precision of age constraints in such challenging glacial settings. This is the first study to use a new luminescence dating method recently developed for feldspars (Thomsen et al. 2008) to constrain the ages of moraine deposition. A range of sediments were sampled from the outwash plains and glaciofluvial channels that are associated with moraine deposition in the Lago Buenos Aires and Lago Pueyrrédon valleys. Elevation measurements and the geomorphological context of the outwash plains and glaciofluvial channels are used to relate the sampled material to the associated moraine ridges, and therefore constrain the ages of moraine deposition in the valleys. Moraine ridges dated using cosmogenic isotope dating to the Last Glacial Maximum are the main focus of this study, but the overall aim is to provide a new dating technique that can be used to understand the temporal and spatial extent of terrestrial environmental change during past glaciations of the mid-latitudes in the Southern Hemisphere. Thomsen, K.J., Murray, A.S., Jain, M. and Bøtter-Jensen, L. 2008. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements 43, 1474 - 1486.

  9. Assessment of quality of quartz crystals by EPR and γ-ray diffraction

    NASA Astrophysics Data System (ADS)

    Nienhaus, K.; Stegger, P.; Lehmann, G.; Schneider, J. R.

    1986-03-01

    Natural amethysts from amygdoidal cavities and from fissures as well as synthetic iron-doped quartz crystals of different origins were studied by EPR and γ-ray diffraction. Anisotropic broadening proportional to the slopes of the transitions consistent with a distribution of orientations, most likely due to a mosaic structure, was observed in the EPR spectra of Fe 3+. This broadening was considerably smaller or completely absent in natural amethysts from fissures as well as in a synthetic crystal grown from NH 4F solution. From this broadening average distributions of orientations could be evaluated for substitutional Fe 3+ in good overall agreement with those obtained for the whole crystals by γ-ray diffraction. Thus Fe 3+ is a good probe for the overall quality of the crystals, but the γ-ray diffraction experiments clearly show predominance of a few orientations rather than a random distribution. In the quartz samples of high perfection a hyperfine splitting from an alkali nucleus could be resolved in the EPR spectra of substitutional Fe 3+ at low temperatures and a contribution of vibrations to the minimum linewidths was also observed.

  10. Optical processing furnace with quartz muffle and diffuser plate

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the door or wall of the muffle is also provided for controlling the source of optical energy. The quartz for the diffuser plate is surface etched (to give the quartz diffusive qualities) in the furnace during a high intensity burn-in process.

  11. Evaluation of ASR potential of quartz-rich rocks by alkaline etching of polished rock sections

    NASA Astrophysics Data System (ADS)

    Šachlová, Šárka; Kuchařová, Aneta; Pertold, Zdeněk; Přikryl, Richard

    2015-04-01

    Damaging effect of alkali-silica reaction (ASR) on concrete structures has been observed in various countries all over the World. Civil engineers and real state owners are demanding reliable methods in the assessment of ASR potential of aggregates before they are used in constructions. Time feasible methods are expected, as well as methods which enable prediction of long-term behaviour of aggregates in concrete. The most frequently employed accelerated mortar bar test (AMBT) quantifies ASR potential of aggregates according to the expansion values of mortar bars measured after fourteen days testing period. Current study aimed to develop a new methodical approach facilitating identification and quantification of ASR potential of aggregates. Polished rock sections of quartz and amorphous SiO2 (coming from orthoquartzite, quartz meta-greywacke, pegmatite, phyllite, chert, and flint) were subjected to experimental leaching in 1M NaOH solution at 80°C. After 14 days of alkaline etching, the rock sections were analyzed employing scanning electron microscope combined with energy dispersive spectrometer. Representative areas were documented in back scattered electron (BSE) images and measured using fully-automatic petrographic image analysis (PIA). Several features connected to alkaline etching were observed on the surface of polished rock sections: deep alkaline etching, partial leach-out of quartz and amorphous particles, alkaline etching connected to quartz grain boundaries, and alkaline etching without any connection to grain boundaries. All features mentioned above had significant influence on grey-scale spectrum of BSE images. A specific part of the grey-scale spectrum (i.e. grey-shade 0-70) was characteristic of areas affected by alkaline etching (ASR area). By measuring such areas we quantified the extent of alkaline etching in studied samples. Very good correlation was found between the ASR area and ASR potential of investigated rocks measured according to the

  12. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  13. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  14. N2 adsorption study on quartz, silver, and carbon nanotube by inductive pulse quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Park, Jang-ik; Yu, Insuk; Seo, Yongho

    2007-03-01

    We utilize an "inductive pulse" quartz crystal microbalance method to study N2 adsorption on quartz, silver, and a single wall carbon nanotube at 77 K. This method is based on radio frequency electric pulse excitation and ring-down signal measurements of quartz crystal resonators located in an induction coil. The surface areas and adsorption strength c are estimated by the Brunauer-Emmett-Teller (BET) model. The estimated c for quartz and silver surface are about 1/5 times smaller than that measured by the conventional method. This is explained as suppression of the self-heating effect, by using our inductive pulse method. We suggest a simple theoretical estimation of self-heating effects on conventional and inductive pulse methods. For the intermediate adsorption range, we analyze our data using the generalized Frenkel-Hasley-Hill (FHH) model with fractal dimension. While the quartz and silver have fractal dimensions of about 2.2±0.1, single wall carbon nanotube has 1.2±0.1, which are explained by its strong adsorptive force.

  15. Alkali-aggregate reaction in concrete containing high-alkali cement and granite aggregate

    SciTech Connect

    Owsiak, Z

    2004-01-01

    The paper discusses results of the research into the influence of high-alkali Portland cement on granite aggregate. The deformation of the concrete structure occurred after 18 months. The research was carried out by means of a scanning electron microscope equipped with a high-energy dispersive X-ray analyzer that allowed observation of unpolished sections of concrete bars exhibiting the cracking pattern typical of the alkali-silica reaction. Both the microscopic observation and the X-ray elemental analysis confirm the presence of alkali-silica gel and secondary ettringite in the cracks.

  16. Salts of alkali metal anions and process of preparing same

    DOEpatents

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  17. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  18. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  19. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  20. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  1. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  2. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  3. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  4. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  5. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  6. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  7. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in...

  8. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  9. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  10. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  11. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  12. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in...

  13. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  14. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in...

  15. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in...

  16. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  17. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  18. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  19. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in...

  20. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  1. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  2. Effect of quartz sand replacement by agate rejects in triaxial porcelain.

    PubMed

    Correia, Sivaldo L; Dienstmann, Gracieli; Folgueras, Marilena V; Segadaes, Ana M

    2009-04-15

    The ceramics industry, given the high volume of materials processed, stands as one of the largest consumers of natural raw materials but has also the capacity and potential to make significant contributions to solving environmental problems associated with other industries rejects. This work investigates the effects of quartz sand replacement by agate rejects (scrap) in a traditional triaxial porcelain composition. The study was carried out using the design of experiments (DoE) method. Characterization results were used to calculate statistically significant and valid regression equations, relating dried and fired body properties with clay, feldspar and agate scrap contents in the unfired mixture. The regression models were then discussed against X-ray diffraction and scanning electron microscopy results and used simultaneously to delimit the combinations of those three raw materials most adequate to produce a porcelainized stoneware floor tile with specified properties. Thus, an alternative use of an otherwise waste material is proposed, which can be translated into economic benefits and an important and welcome relief on environmental and waste disposal concerns.

  3. Quartz deformation mechanisms during Barrovian metamorphism: Implications from crystallographic orientation of different generations of quartz in pelites

    NASA Astrophysics Data System (ADS)

    Rahimi-Chakdel, A.; Boyle, A. P.; Prior, D. J.

    2006-12-01

    The behaviour of quartz during metamorphism is studied based on two case studies from the Barrovian terrains of Sulitjelma in arctic Scandinavia and Loch Tay in the Central Highlands Dalradian of Scotland. Both terrains preserve evidence for metamorphism in pelites involving nucleation and growth of garnet at different times in the deformation history. Data are presented on the size, shape and crystallographic orientation of quartz preserved as inclusions in garnet and as grains in the surrounding matrix. While quartz-grains remain small and dispersed between mica grains, deformation appears to be dominated by grain-boundary sliding accommodated by dissolution-precipitation. At amphibolite facies, textural coarsening occurs by dissolution of small quartz grains and growth of larger quartz grains, coupled with segregation of quartz from mica. As a result, quartz deforms by dislocation creep, developing crystallographic preferred orientations (CPO) consistent with both coaxial and non-coaxial strain. Quartz CPOs with <0001> axes lying parallel to foliation and stretching direction are commonly developed, and best explained by mechanical rotation of inequant (detrital?) quartz grains. There is no evidence for selective entrapment of quartz inclusions in garnet on the basis of quartz crystallographic orientation.

  4. Multiple Feldspar replacement in Hercynian granites of the Montseny-Guilleries Massif (Catalan Coastal Ranges, NE Spain)

    NASA Astrophysics Data System (ADS)

    Fàbrega, Carles; Parcerisa, David; Gómez-Gras, David

    2013-04-01

    The core of the Montseny-Guilleries Massif (Catalan Coastal Ranges) is mainly composed by late-Hercynian granitoids (leucogranites and granodiorites) intruded within Cambrian to Carnoniferous metasediments. The granites are unconformably covered by Triassic (Buntsandstein) and Paleocene red beds at the western boundary, preserving a continuous outcrop of the Permo-Triassic unconformity for about 20 km. In the southwestern Montseny-Guilleries Massif the granites are covered by the Buntsandstein red sandstones that overlain a peneplain paleorelief called the Permo-Triassic palaeosurface. Beneath the palaeosurface the granite displays a characteristic pink colouration. This pink alteration is characterized by precipitation of minute heamatite crystals and albitization of pristine plagioclases (mostly labradorite). The secondary albite is pseudomorphic (mono- or polycrystalline), optically continuous, non-luminiscent, contains widespread microporosity and displays compositions about Ab98. These features are typical of low temperature replacive feldspars (Kastner and Siever, 1979). Albitization of plagioclases is almost total close to the Permo-Triassic palaeosurface and progressively decreases towards depth, displaying a 150-200 m thick alteration profile. The formation of this profile was controlled by fluid circulation along macro- and microfractures and crystal boundaries. Inside the plagioclase crystals fluid pathways were microfractures, twinning and cleavage planes and crystalline defects. The secondary albite holds widespread unconnected micron-size porosity often filled by Fe-oxides. The reaction front is sharp and displays an abrupt composicional change (Ab65 to Ab98) at micron scale. Porosity only appears to be connected at this reaction front surface. The geometrical arrangement of this alterations suggest that albitization was a shallow process related with Na-rich descending fluids linked to the Permo-Triassic palaeosurface, in a similar way to

  5. Brittle-viscous deformation of vein quartz under fluid-rich low greenschist facies conditions

    NASA Astrophysics Data System (ADS)

    Jørgen Kjøll, Hans; Viola, Giulio; Menegon, Luca; Sørensen, Bjørn

    2015-04-01

    A coarse grained, statically crystallized quartz vein with a random CPO, embedded in a phyllonitic matrix, was studied by optical microscopy, SEM imaging and EBSD to gain insights into the processes of strain localization in quartz deformed under low greenschist facies conditions at the frictional-viscous transition. The vein is located in a high strain zone at the front of an imbricate stack of Caledonian age along the northwesternmost edge of the Repparfjord Tectonic Window in northern Norway. The vein was deformed within the Nussirjavrri Fault Zone (NFZ), an out-of-sequence thrust with a phyllonitic core characterized by a ramp-flat-ramp geometry, NNW plunging stretching lineations and top-to-the SSE thrusting kinematics. Deformation conditions are typical of the frictional-viscous transition. The phyllonitic core formed at the expense of metabasalt wherein feldspar broke down to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the studied quartz vein acted as a relatively rigid body deforming mainly by coaxial strain. Viscous deformation, related to the development of a mesoscopic pervasive extensional crenulation cleavage, was accommodated within the vein initially by basal slip of suitably oriented quartz crystals, which produced e.g. undulose extinction, extinction bands and bulging grain boundaries. In the case of misoriented quartz crystals, however, glide-accommodated dislocation creep resulted soon inefficient and led to localized dislocation tangling and strain hardening. In response to 1) hardening, 2) progressive increase of fluid pressure within the actively deforming vein and 3) increasing competence contrast between the vein and the surrounding weak, foliated phyllonitic fault core, quartz crystals began to deform frictionally along specific lattice planes oriented optimally with respect to the imposed stress field. Microfaulting generated small volumes of gouge along

  6. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    DOEpatents

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  7. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries

    SciTech Connect

    Deng, Zhi; Mo, Yifei; Ong, Shyue Ping

    2016-03-25

    The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that are currently of the most commercial interest.

  8. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries

    DOE PAGES

    Deng, Zhi; Mo, Yifei; Ong, Shyue Ping

    2016-03-25

    The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that aremore » currently of the most commercial interest.« less

  9. Jabal Hamra REE-mineralized silexite, Hijaz region, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Jackson, Norman J.; Douch, Colin J.

    The Jabal Hamra silexite, a crescent-shaped stock 300 m long by 100 m wide, averages over 6000 ppm combined REE and is the Kingdom's highest-grade resource of these elements. It is anomalously radioactive (total-count gamma radiation 1000-3000 cps), has high average contents of U (75 ppm) and Th (263 ppm) and is also enriched in Nb, Zr, Y, Sn and Ta. The silexite crystallized as a pressure-quenched rock resembling aplite, and was subsequently pervasively cataclased. It was derived by differentiation of a quartz alkali-feldspar syenite magma. Petrologic continuity can be demonstrated from quartz alkali-feldspar syenite through leucocratic and amphibole-bearing alkali-feldspar granite to silexite. Although the geochemical signature of the mineralization resembles that of mineralized Arabian alkali granites, the nature of the associated rocks and therefore the genesis of the deposit are significantly different.

  10. Paragenesis and chemical characteristics of the celsian-hyalophane-K-feldspar series and associated Ba-Cr micas in barite-bearing strata of the Mesoarchaean Ghattihosahalli Belt, Western Dharwar Craton, South India

    NASA Astrophysics Data System (ADS)

    Raith, Michael M.; Devaraju, Tadasore C.; Spiering, Beate

    2014-04-01

    The upper greenschist - lower amphibolite facies, argillaceous to chemical-exhalative metasedimentary sequence of the Mesoarchaean Ghattihosahalli Schist Belt (GHSB), southern India, has been examined with a special focus on the paragenesis and solid solution characteristics of barian feldspars and associated dioctahedral Ba-Cr-bearing micas. Barian feldspars occur as untwinned porphyroblasts in a recrystallized finely banded matrix of barite, quartz and minor white mica. Idioblastic celsian (Cls98-76Or2-20Ab1-8) and hyalophane (Cls55-39Or35-51Ab10) predate the greenschist-facies foliation, whereas xenoblastic hyalophane (Cls44-35Or45-59Ab8-17) and mantles on celsian (Cls45-35Or42-60Ab13-5) as well as xenoblastic barian K-feldspar (Cls6Or90Ab2) postdate the last fabric-defining event. The preservation of extremely complex zoning patterns down to the micron-scale shows that diffusional homogenization did not operate at fluid-present low to medium-grade conditions (350-550 °C, 3-5 kb). Microstructures indicate that at these conditions barian feldspars deform exclusively by brittle fracturing and do not undergo recrystallization. Barian feldspar compositions confirm the positive correlation of Na-content with temperature and the existence of a narrow asymmetric compositional gap (Cls90-85↔Cls55, ~350 °C) which probably closes at lower amphibolite facies conditions (Xc ~Cls75; Tc ~550 °C). White micas are solid solutions of the end-members muscovite, ganterite (Ba0.5 K0.5)Al2(Al1.5Si2.5)O10(OH)2, paragonite, celadonite with a significant substitution of [VI]Al by Cr. Zoning is a common feature with cores being enriched in Ba. The data document extensive Ba substitution for K from muscovite to ganterite, exclusively controlled by the coupled substitution [XII]K + [IV]Si ↔ [XII]Ba + [IV]Al and strongly dependent on bulk composition. The extent of solid solution from (Ms+Gnt) towards paragonite and celadonite end-members is controlled by the miscibility gap in the

  11. Ingestion of caustic alkali farm products.

    PubMed

    Neidich, G

    1993-01-01

    Since the Poison Prevention Packaging Act took effect, the number of ingestions of caustic alkali from household products has been significantly reduced. Commercial caustic alkalis used on farms, however, were not included in this legislation. Fourteen children over a 5 year period were seen after ingestion of commercial caustic alkalis used on farms. Seven of the children had ingested liquid pipeline cleaners and seven had ingested solid agents used for a variety of reasons. Six of seven children ingesting liquid agents did so from nonoriginal containers into which the caustic had been transferred for convenience. All seven children ingesting solid agents did so from the original container. Eight of the 14 children were found to have second-degree or worse esophageal involvement. Both solid and liquid caustic agents used commercially on farms can cause significant morbidity. Development of a child-resistant container for daily transfer of liquid pipeline agents could be helpful in preventing injuries from liquid pipeline cleaners. Pediatric gastroenterologists as well as primary care physicians in rural areas should be familiar with this type of injury and should take an active role in instructing parents of children living on farms to prevent such injuries. Extension of the Poison Prevention Packaging Act to caustic alkalis used on farms needs to be considered.

  12. The Additive Coloration of Alkali Halides

    ERIC Educational Resources Information Center

    Jirgal, G. H.; and others

    1969-01-01

    Describes the construction and use of an inexpensive, vacuum furnace designed to produce F-centers in alkali halide crystals by additive coloration. The method described avoids corrosion or contamination during the coloration process. Examination of the resultant crystals is discussed and several experiments using additively colored crystals are…

  13. Cohesive Energy of the Alkali Metals.

    ERIC Educational Resources Information Center

    Poole, R. T.

    1980-01-01

    Describes a method, considered appropriate for presentation to undergraduate students in materials science and related courses, for the calculation of cohesive energies of the alkali metals. Uses a description based on the free electron model and gives results to within 0.1 eV of the experimental values. (Author/GS)

  14. Terahertz radiation in alkali vapor plasmas

    SciTech Connect

    Sun, Xuan; Zhang, X.-C.

    2014-05-12

    By taking advantage of low ionization potentials of alkali atoms, we demonstrate terahertz wave generation from cesium and rubidium vapor plasmas with an amplitude nearly one order of magnitude larger than that from nitrogen gas at low pressure (0.02–0.5 Torr). The observed phenomena are explained by the numerical modeling based upon electron tunneling ionization.

  15. Effect of silicate and aluminate ion adsorption on the reaction of quartz and alumina with caustic solution

    SciTech Connect

    Thornton, S.D.

    1986-05-01

    Caustic consumption is recognized as a problem in enhanced oil recovery by alkaline flooding. Chemical reactions which cause caustic consumption are governed by equilibria between reservoir minerals and alkaline solution. Identification of the individual dissolving and precipitating minerals in a given brine and rock system is a critical step in predicting caustic consumption and scale formation in oil recovery by alkaline flooding. This work demonstrates that ion adsorption may have a significant effect on mineral/alkali equilibria. Powdered quartz and alumina were mixed with alkaline solutions containing 0.01 to 0.1 molar hydroxide ion and added silicate or aluminate ion. Each suspension was sealed in a Teflon bottle and shaken continuously for approximately 1 week at 24/sup 0/ or 70/sup 0/C. Samples of the supernatant were removed periodically and analyzed for the elements silicon and aluminum. The solubilities of quartz and alumina in caustic solutions were found to be reduced significantly by added aluminate and silicate ion, respectively. Adsorption of these ions onto the minerals was also measured. It is postulated that these ions form a protective aluminosilicate layer when they are adsorbed onto the mineral surface. Such an aluminosilicate layer will reduce mineral reactions during alkaline flooding. Two major conclusions result from this work. Adsorbed aluminate and silicate ions can reduce the solubilities of quartz and alumina, respectively. The effect of adsorption on mineral equilibria should be included in a mineral reaction model for alkaline flooding. 18 refs., 5 figs., 8 tabs.

  16. Kinetics of the coesite to quartz transformation

    USGS Publications Warehouse

    Mosenfelder, J.L.; Bohlen, S.R.

    1997-01-01

    The survival of coesite in ultrahigh-pressure (UHP) rocks has important implications for the exhumation of subducted crustal rocks. We have conducted experiments to study the mechanism and rate of the coesite ??? quartz transformation using polycrystalline coesite aggregates, fabricated by devitrifying silica glass cylinders containing 2850H/106 Si at 1000??C and 3.6 GPa for 24h. Conditions were adjusted following synthesis to transform the samples at 700-1000??C at pressures 190-410 MPa below the quartz-coesite equilibrium boundary. Reaction proceeds via grain-boundary nucleation and interface-controlled growth, with characteristic reaction textures remarkably similar to those seen in natural UHP rocks. We infer that the experimental reaction mechanism is identical to that in nature, a prerequisite for reliable extrapolation of the rate data. Growth rates obtained by direct measurement differ by up to two orders of magnitude from those estimated by fitting a rate equation to the transformation-time data. Fitting the rates to Turnbull's equation for growth therefore yields two distinct sets of parameters with similar activation energies (242 or 269 kJ/mol) but significantly different pre-exponential constants. Extrapolation based on either set of growth rates suggests that coesite should not be preserved on geologic time scales if it reaches the quartz stability field at temperatures above 375-400??C. The survival of coesite has previously been linked to its inclusion in strong phases, such as garnet, that can sustain a high internal pressure during decompression. Other factors that may play a crucial role in preservation are low fluid availability - possibly even less than that of our nominally "dry" experiments - and the development of transformation stress, which inhibits nucleation and growth. These issues are discussed in the context of our experiments as well as recent observations from natural rocks. ?? 1997 Elsevier Science B.V.

  17. Deformation of ⊥m single quartz crystals

    NASA Astrophysics Data System (ADS)

    Krasner, P.; Holyoke, C. W., III; Kronenberg, A. K.

    2015-12-01

    The rheology of quartz deformed by dislocation creep is essential to understanding the strength of the mid to lower continental crust. Our current understanding of quartz rheology is derived primarily from studies of polycrystalline quartz and little is known about the temperature, strain rate, or water dependence of the individual quartz slip systems. In order to better understand the rheology of quartz slip systems, we have deformed synthetic quartz single crystals with the prism oriented at 45° to the compression direction (⊥m orientation). We converted the gel-type water found in synthetic quartz crystals to free water fluid inclusions, similar to water observed in milky quartz crystals, by annealing the crystals at 900°C/0.1 MPa for 24 hours. The single crystals were deformed at a confining pressure of 1.5 GPa with temperatures of 850 to 1000°C and strain rates of 10-6 to 10-4/s. FTIR measurements of water concentrations in the starting material, annealed synthetic crystals and deformed synthetic quartz crystals indicate that the water concentrations (125-300 H/106Si) are not affected by the annealing process or deformation. However, the spectra in the annealed and deformed samples are similar to those of natural milky quartz rather than those of synthetic quartz. Results of temperature and strain rate stepping experiments indicate that the strength of the crystals decreases with increasing temperature and/or decreasing strain rate. Undulatory extinction is the predominant microstructure observed in deformed samples, which is consistent with deformation by dislocation creep. The strength of the ⊥m oriented quartz crystals deformed in this study with free water is greater than those of the studies of synthetic quartz with gel type water (Linker and Kirby, 1981 and Muto et al., 2011).

  18. The occurrence of quartz in coal fly ash particles

    SciTech Connect

    Meij R.; Nagengast S.; Winkel H.T.

    2000-10-15

    Quartz is present in both coal and residual ash. Ash originates from combustion of pulverised coal and, once removed from the flue gases by electrostatic precipitators (ESPs), it is called pulverized fuel ash (PFA). Thus, occupational exposure to PFA could also include exposure to silica. However, epidemiological studies did not show evidence of progressive massive fibrosis (PMF). In vitro tests demonstrated that PFA is less toxic than silica, and in vivo data of PFA did not support the importance of silica content for toxicity. Commissioned by the Dutch coal-fired power plants, KEMA has started a research project to determine the quartz content in coal and the corresponding PFA. It appears that on average 50% of the alpha-quartz in coal is found again in the total fraction of PFA (D50(ae) 31 {mu}m, where D50(ae) is the aerodynamically mass median diameter), whereas 16% is found in an even finer fraction (D50(ae) 10 {mu}m). The remaining part of the quartz is embedded in a glass phase. Scanning electron microscopy (SEM) with x-ray microanalyses (XMA) of cross-sections of 11,130 ash particles showed that quartz in PFAis present as unmelted sand particles. These quartz particles are angularly shaped. However, two types are to be distinguished: free coarse angular quartz particles (not respirable) and small angular quartz particles within the PFA particles. From the SEM/XMA results, it has to be concluded that the quartz in the respirable fraction is predominantly present within the original molten PFA particle. Since the effects of quartz are surface related, this elucidates the negative results of quartz-related effects of PFA in epidemiological, in vitro and in vivo studies. Besides, the amount of the total alpha-quartz in the respirable fraction of the ashes studied is less than 0.2%, so probably the Dutch occupational quartz standard of 0.075 mg m{sup 3} will not be exceeded.

  19. Spherical quartz crystals investigated with synchrotron radiation

    SciTech Connect

    Pereira, N. R.; Macrander, A. T.; Hill, K. W.; Baronova, E. O.; George, K. M.; Kotick, J.

    2015-10-15

    The quality of x-ray spectra and images obtained from plasmas with spherically bent crystals depends in part on the crystal’s x-ray diffraction across the entire crystal surface. We employ the energy selectivity and high intensity of synchrotron radiation to examine typical spherical crystals from alpha-quartz for their diffraction quality, in a perpendicular geometry that is particularly convenient to examine sagittal focusing. The crystal’s local diffraction is not ideal: the most noticeable problems come from isolated regions that so far have failed to correlate with visible imperfections. Excluding diffraction from such problem spots has little effect on the focus beyond a decrease in background.

  20. Calorimetric thermobarometry of experimentally shocked quartz

    NASA Technical Reports Server (NTRS)

    Ocker, Katherine D.; Gooding, James L.; Hoerz, Friedrich

    1994-01-01

    Structural damage in experimentally shock-metamorphosed, granular quartz is quantitatively measurable by differential scanning calorimetry (DSC). Shock-induced loss of crystallinity is witnessed by disappearance of the alpha/beta phase transformation and evolution of a broad endoenthalpic strain peak at 650-900 K. The strain-energy peak grows rapidly at less than 10 GPa but declines with increasing shock pressure; it approaches zero at 32 GPa where vitrification is extensive. Effects of grain size and post-shock thermal history must be better understood before calorimetric thermobarometry of naturally shocked samples becomes possible.

  1. Excitons and Optical Properties of {alpha} -Quartz

    SciTech Connect

    Chang, Eric K.; Rohlfing, Michael; Louie, Steven G. [Department of Physics, University of California at Berkeley, Berkeley, California 94720

    2000-09-18

    We present an ab initio study of the optical properties of {alpha} -quartz. The absorption spectrum is calculated by solving the Bethe-Salpeter equation for the interacting electron-hole system and found to be in excellent agreement with the measured spectrum up to 10 eV above the absorption threshold. We find that excitonic effects are crucial in understanding the sharp features in the absorption spectrum in this energy range. They are also crucial in the ab initio computation of the static dielectric constant, significantly enhancing its value. (c) 2000 The American Physical Society.

  2. Environmental sensitivities of quartz crystal oscillators

    NASA Technical Reports Server (NTRS)

    Walls, Fred L.

    1990-01-01

    The frequency, amplitude, and noise of the output signal of a quartz crystal controlled oscillator is affected by a large number of environmental effects. The physical basis for the sensitivity of precision oscillators to temperature, humidity, pressure, vibration, magnetic field, electric field, load, and radiation is discussed. The sensitivity of crystal oscillators to radiation is a very complex topic and poorly understood. Therefore only a few general results are mentioned. The sensitivity to most external influences often varies significantly from one oscillator type to another and from one unit of given type to another. For a given unit, the sensitivity to one parameter often depends on the value of other parameters and history.

  3. Control of electroosmosis in coated quartz capillaries

    NASA Technical Reports Server (NTRS)

    Herren, Blair J.; Van Alstine, James; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1987-01-01

    The effectiveness of various coatings for controlling the electroosmotic fluid flow that hinders electrophoretic processes is studied using analytical particle microelectrophoresis. The mobilities of 2-micron diameter glass and polystyrene latex spheres (exhibiting both negative and zero effective surface charge) were measured in 2-mm diameter quartz capillaries filled with NaCl solutions within the 3.5-7.8 pH range. It is found that capillary inner surface coatings using 5000 molecular weight (or higher) poly(ethylene glycol): significantly reduced electroosmosis within the selected pH range, were stable for long time periods, and appeared to be more effective than dextran, methylcellulose, or silane coatings.

  4. Calcium-Alkali Syndrome in the Modern Era

    PubMed Central

    Patel, Ami M.; Adeseun, Gbemisola A.; Goldfarb, Stanley

    2013-01-01

    The ingestion of calcium, along with alkali, results in a well-described triad of hypercalcemia, metabolic alkalosis, and renal insufficiency. Over time, the epidemiology and root cause of the syndrome have shifted, such that the disorder, originally called the milk-alkali syndrome, is now better described as the calcium-alkali syndrome. The calcium-alkali syndrome is an important cause of morbidity that may be on the rise, an unintended consequence of shifts in calcium and vitamin D intake in segments of the population. We review the pathophysiology of the calcium-alkali syndrome. PMID:24288027

  5. Discovery of coesite and shocked quartz associated with the upper Eocene cpx spherule layer

    NASA Technical Reports Server (NTRS)

    Liu, S.; Kyte, T.; Glass, B. P.

    2002-01-01

    At least two major impact ejecta layers have been discovered in upper Eocene strata. The upper layer is the North American microtektite layer. lt consists tektite fragments, microtektites, and shocked mineral grains (e.g., quartz and feldspar with multiple sets of PDFs, coesite and reidite (a high-pressure polymorph of zircon)). The slightly older layer contains clinopyroxene-bearing (cpx) spherules and microtektites associated with an Ir anomaly. The North American tektite layer may be derived from the Chesapeake Bay impact structure, and the cpx spherule layer may from the Popigai impact crater. A cpx spherule layer associated with a positive Ir anomaly was recently found at ODP Site 709, western Indian Ocean. A large sample (Hole 709C, core 31, section 4, 145-150 cm), originally used for a study of interstitial water by shipboard scientists, was acquired for the purpose of recovering a large number of spherules for various petrographic and geochemical studies. A split of the sample (50.35 g) was disaggregated and wet-sieved. More than 17,000 cpx spherules and several hundred microtektites (larger than 125 microns) were recovered from the sample. Rare white opaque grains were observed in the 125-250 micron size fraction after removal of the carbonate component using dilute HCI. Seven of the white opaque grains were X-rayed using a Gandolfi camera and six were found to be coesite (probably mixed with lechatelierite). Eighty translucent colorless grains from the 63-125 micron size fraction were studied with a petrographic microscope. Four of the grains exhibit one to two sets of planar deformation features (PDFs). The only other possible known occurrence of shocked minerals associated with the cpx spherule layer is at Massignano, Italy, where pancake-shaped clay spherules (thought to be diagenetically altered cpx spherules are associated with a positive Ir anomaly and Ni- rich spinel crystals. Shocked quartz grains with multiple sets of PDFs also occur at this site

  6. Alkali metal recovery from carbonaceous material conversion process

    DOEpatents

    Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  7. Positron states and nanoobjects in proton-irradiated quartz single crystals: Positronium atom in quartz

    SciTech Connect

    Grafutin, V. I.; Zaluzhnyi, A. G.; Timoshenkov, S. P.; Britkov, O. M.; Ilyukhina, O. V.; Myasishcheva, G. G.; Prokop'ev, E. P. Funtikov, Yu. V.

    2008-04-15

    The influence of proton bombardment and metal atom impurities on the structure of quartz single crystals has been studied. The related defects have been studied using positron annihilation spectroscopy (angular correlation of positron-annihilation photons), acoustic absorption, and optical absorption measurements. It is shown that the presence of a narrow component f in the angular distribution of annihilation photons (ADAP), which is related to the formation of parapositronium, determines a high sensitivity of this method with respect to features of the crystal structure of quartz. It is established that the defectness of the structure of irradiated quartz crystals can be characterized by the ratio f/f{sub 0} of the relative intensities of narrow components in the ADAP curves measured before (f{sub 0}) and after (f) irradiation. Any process leading to a decrease in the probability of positronium formation (e.g., positron loss as a result of the trapping on defects and the interaction with impurity atoms and lattice distortions) decreases the intensity of the narrow component. Based on the ADAP data, estimates of the radii and concentrations of nanodefects in quartz have been obtained and their variation upon annealing at temperatures up to T = 873 K has been studied.

  8. The behaviour of alkali metals in biomass conversion systems

    SciTech Connect

    Hald, P.

    1995-12-31

    Alkali metals present in biomass contribute to problems as agglomeration, deposition and corrosion. In order to reduce the problems. It is of interest to describe the behavior of alkali metals in the conversion systems. Useful tools for die description are equilibrium calculations combined with measurements of gaseous alkali metal and analyses of solid materials. A comprehensive equilibrium study has been conducted and the results organized in tables, showing which alkali metal components can be present, dependent on the temperature and the ratios alkali metal to sulphur and alkali metal to chlorine. The tables presented can be used as a catalogue, giving easy access to equilibrium results. A sampling method for die measurement of gaseous alkali metal is described and the sampling efficiency is given. The developed tools are demonstrated for a straw gasifier and a fluidized bed combustor using a coal/straw mixture as a fuel.

  9. The effect of alkalis and polymerization on the solubility of H2O and CO2 in alkali-rich silicate melts

    NASA Astrophysics Data System (ADS)

    Vetere, Francesco; Holtz, Francois; Behrens, Harald; Botcharnikov, Roman E.; Fanara, Sara

    2014-05-01

    The effect of alkalis on the solubility of H2O and CO2 in alkali-rich silicate melts was investigated at 500 MPa and 1,250 °C in the systems with H2O/(H2O + CO2) ratio varying from 0 to 1. Using a synthetic analog of phonotephritic magma from Alban Hills (AH1) as a base composition, the Na/(Na + K) ratio was varied from 0.28 (AH1) to 0.60 (AH2) and 0.85 (AH3) at roughly constant total alkali content. The obtained results were compared with the data for shoshonitic and latitic melts having similar total alkali content but different structural characteristics, e.g., NBO/ T parameter (the ratio of non-bridging oxygens over tetrahedrally coordinated cations), as those of the AH compositions. Little variation was observed in H2O solubility (melt equilibrated with pure H2O fluid) for the whole compositional range in this study with values ranging between 9.7 and 10.2 wt. As previously shown, the maximum CO2 content in melts equilibrated with CO2-rich fluids increases strongly with the NBO/T from 0.29 wt % for latite (NBO/ T = 0.17) to 0.45 wt % for shoshonite (NBO/ T = 0.38) to 0.90 wt % for AH2 (NBO/ T = 0.55). The highest CO2 contents determined for AH3 and AH1 are 1.18 ± 0.05 wt % and 0.86 ± 0.12 wt %, respectively, indicating that Na is promoting carbonate incorporation stronger than potassium. At near constant NBO/ T, CO2 solubility increases from 0.86 ± 0.12 wt % in AH1 [Na/(Na + K)] = 0.28, to 1.18 ± 0.05 wt % in AH3 [Na/(Na + K)] = 0.85, suggesting that Na favors CO2 solubility on an equimolar basis. An empirical equation is proposed to predict the maximum CO2 solubility at 500 MPa and 1,100-1,300 °C in various silicate melts as a function of the NBO/ T, (Na + K)/∑cations and Na/(Na + K) parameters: This model is valid for melt compositions with NBO/ T between 0.0 and 0.6, (Na + K)/∑cation between 0.08 and 0.36 and Na/(Na + K) ratio from 0.25 to 0.95 at oxygen fugacities around the quartz-fayalite-magnetite buffer and above.

  10. Adsorption of B. Subtilis and P. Mendocina Onto Fe-Oxide Coated Quartz and Pure Quartz

    NASA Astrophysics Data System (ADS)

    Ams, D.; Fein, J. B.

    2002-12-01

    Understanding the controls on bacterial adsorption onto mineral surfaces is crucial in order to model a range of processes, such as contaminant transport, mineral dissolution behavior, and bioremediation techniques. At present, little is known concerning the adsorption behavior of bacteria, even onto some of the most common mineral surfaces present in near-surface environments. In this study, we measured the adsorption of a Gram positive bacterial species (B. subtilis) and a Gram negative species (P. mendocina) onto a quartz sand, and onto an Fe-oxide coated quartz sand, both as functions of time, pH and bacteria:mineral mass ratio. The extent of adsorption was determined by measuring the concentration of free bacteria in the mineral-bacteria systems both before, and after, reaction, using a uv-vis spectrophotometric approach. pH and bacteria:mineral ratio exert strong controls on the extent of bacterial adsorption of both species onto Fe-coated quartz. The extent of adsorption of B. subtilis onto the Fe-coated quartz increases with decreasing pH from close to 0% at pH 10 to a plateau of approximately 80% adsorption between pH 6 and 4. Below pH 4, adsorption of B. subtilis decreases to 50% at pH 2. Adsorption of P. mendocina is similar to that observed for B. subtilis, only it is significantly less extensive under otherwise identical conditions. These adsorption behaviors are in marked contrast to that observed for both species onto the uncoated quartz. There is little to no adsorption of either species onto the uncoated quartz sand over most of the pH range studied. We use a thermodynamic approach to model the adsorption behavior of each species onto the Fe-coated quartz sand, determining equilibrium constants for the dominant adsorption reactions. Our results demonstrate that bacterial adsorption within geologic systems can be strongly dependent on mineralogy, fluid composition, and on the bacterial species present. However, our modeling approach enables the

  11. Insitu Calibration of Quartz Crystal Microbalances

    NASA Technical Reports Server (NTRS)

    Albyn, Keith; Burns, Dewit

    2006-01-01

    Computer models that predict the rate at which molecular contamination will deposit on optical surfaces typically use outgassing source terms, measured with quartz crystal microbalances, as a basis for the prediction. The American Society of Testing and Materials, Standard Test Method for Contamination Outgassing Characteristics of Spacecraft Materials (Method E-1559), is probably the best know technique used by the aerospace community to measure the outgassing rates or source terms of materials. A simple method for the insitu calibration of quartz crystal microbalances, based on the heat of enthalphy of Adipic Acid, has been developed and demonstrated by the Marshall Space Flight Center, Environmental Effects Group. The calibration has been demonstrated over a sample temperature range of 25 to 66 degrees Celsius and deposition rates of 7 x 10 (exp -11) grams/cm(sup 2)-s and greater, for several measurement system configurations. This calibration technique is fully compatible with the American Society for Testing and Materials, Method E-1559, as well as other methodology. The calibration requires no modification of outgassing facilities employing an effusion cell and does not degrade the performance or function of typical vacuum systems.

  12. Shock characterization of quartz phenolic composite

    SciTech Connect

    Weirick, L.J.; Chhabildas, L.C.

    1994-03-01

    Goal was to obtain dynamic mechanical property data on a quartz phenolic (abbreviated QP) composite. Shock loading and shock release measurements have been conducted using impact techniques utilizing both a light-gas gun and a powder gun at impact pressures up to 20 GPa. The primary diagnostic tool used was a velocity interferometer. The data analysis includes Hugoniot measurements to give both pressure-particle velocity and shock velocity-particle velocity relationships; spall measurements to determine the fracture stress at which the material spells; and attenuation measurements to determine the shock attenuation with material thickness. The QP Hugoniot relationship was found to be significantly different than that of a phenolic without a filler material indicating that the impedance of the QP used in this investigation was higher. The spall strength was measured to be {approximately}0.075 GPa, similar to nonfilled phenolic, which indicated that the presence of quartz fibers was not contributing to the fracture strength. The material was found to attenuate an imposed shock of approximately 6.3 GPa pressure and 0.18 {mu}s to 50% of the initial impact value after a propagation distance of 7mm.

  13. Aqueous Wetting Films on Fused Quartz.

    PubMed

    Mazzoco; Wayner

    1999-06-15

    Using an image analyzing interferometer, IAI, the interfacial characteristics of an isothermal constrained vapor bubble, CVB, in a quartz cuvette were studied as a precursor to heat transfer research. The effects of pH and electrolyte concentration on the meniscus properties (curvature and adsorbed film thickness) and the stability of the aqueous wetting films were evaluated. The surface potential in the electric double layer was a function of the cleaning and hydroxylation of the quartz surface. The disjoining pressure isotherm for pure water was very close to that predicted by the Langmuir equation. For aqueous solutions of moderate electrolyte concentration, the Gouy-Chapman theory provided a good representation of the electrostatic effects in the film. The effect of temperature on the film properties of aqueous solutions and pure water was also evaluated: The meniscus curvature decreased with increasing temperature, while Marangoni effects, intermolecular forces, and local evaporation and condensation enhanced waves on the adsorbed film layer. Pure water wetting films were mechanically metastable, breaking into droplets and very thin films (less than 10 nm) after a few hours. Aqueous wetting films with pH 12.4 proved to be stable during a test of several months, even when subjected to temperature and mechanical perturbations. The mechanical stability of wetting films can explain the reported differences between the critical heat fluxes of pure water and aqueous solutions. The IAI-CVB technique is a simple and versatile experimental technique for studying the characteristics of interfacial systems. Copyright 1999 Academic Press.

  14. Xenon diffusion following ion implantation into feldspar - Dependence on implantation dose

    NASA Technical Reports Server (NTRS)

    Melcher, C. L.; Burnett, D. S.; Tombrello, T. A.

    1982-01-01

    The diffusion properties of xenon implanted into feldspar, a major mineral in meteorites and lunar samples, are investigated in light of the importance of xenon diffusion in the interpretation of early solar system chronologies and the retention time of solar-wind-implanted Xe. Known doses of Xe ions were implanted at an energy of 200 keV into single-crystal plagioclase targets, and depth profiles were measured by alpha particle backscattering before and after annealing for one hour at 900 or 1000 C. The fraction of Xe retained following annealing is found to be strongly dependent on implantation dose, being greatest at a dose of 3 x 10 to the 15th ions/sq cm and decreasing at higher and lower doses. Xe retention is also observed to be unaffected by two-step anneals, or by implantation with He or Ar. Three models of the dose-dependent diffusion properties are considered, including epitaxial crystal regrowth during annealing controlled by the extent of radiation damage, the creation of trapping sites by radiation damage, and the inhibition of recrystallization by Xe during annealing

  15. Accretion and canal impacts in a rapidly subsiding wetland II: Feldspar marker horizon technique

    USGS Publications Warehouse

    Cahoon, D.R.; Turner, R.E.

    1989-01-01

    Recent (6-12 months) marsh sediment accretion and accumulation rates were measured with feldspar marker horizons in the vicinity of natural waterways and man-made canals with spoil banks in the rapidly subsiding environment of coastal Louisiana. Annual accretion rates in a Spartina alterniflora salt marsh in the Mississippi deltaic plain averaged 6 mm in marsh adjacent to canals compared to 10 mm in marsh adjacent to natural waterways. The rates, however, were not statistically significantly different. The average rate of sediment accretion in the same salt marsh region for a transect perpendicular to a canal (13 mm yr-1) was significantly greater than the rate measured for a transect perpendicular to a natural waterway (7 mm yr-1). Measurements of soil bulk density and organic matter content from the two transects were also different. This spatial variability in accretion rates is probably related to (1) spoil bank influences on local hydrology; and (2) a locally high rate of sediment input from lateral erosion associated with pond enlargement. In a brackish Spatina patens marsh on Louisiana's chenier plain, vertical accretion rates were the same along natural and canal waterways (3-4 mm yr-1) in a hydrologically restricted marsh region. However, the accretion rates for both waterways were significantly lower than the rates along a nonhydrologically restricted natural waterway nearby (11 mm yr-1). The vertical accretion of matter displayed semi-annual differences in the brackish marsh environment.

  16. Cathodoluminescence of shocked quartz at the Cretaceous-Tertiary boundary

    NASA Astrophysics Data System (ADS)

    Owen, Michael R.; Anders, Mark H.

    Empirical studies have documented an association between rock type and the cathodoluminescence color of constituent quartz grains. Quartz from extrusive igneous sources luminesces uniform pale blue. Quartz from intrusive igneous and high-grade metamorphic rocks generally luminesces darker purple-blue, whereas quartz recrystallized under low-grade metamorphic conditions luminesces reddish-brown. Quartz grains in most sandstones luminesce a heterogeneous mixture of these colors because the grains were derived from a variety of ultimate source rocks. If shocked quartz found at the Cretaceous-Tertiary (K-T) boundary is volcanic in origin, its cathodoluminescence should be predominantly pale blue. Alternatively, quartz grains derived from bolide impact upon, and ejection of, mixed igneous, metamorphic, and sedimentary rocks should luminesce a variety of colors. Grain mounts of sand collected at the K-T boundary horizon from the Clear Creek North site in the Raton Basin, Colorado were examined. Shocked quartz luminesced a variety of colors and very few grains luminesced the pale blue color that is typical of volcanic quartz. It was concluded that the shocked quartz was derived from a petrologically diverse source region without substantial volcanic contribution. Most shocked grains apparently were derived from low-grade metamorphic rocks, with a slightly smaller contribution from high-grade metamorphic and intrusive igneous rocks. Rare quartz grains with brown-luminescing rims reflect a minor addition from detrital sedimentary sources. The apparent relative abundances of intrusive (and rare extrusive) igneous, metamorphic, and sedimentary ultimate source rocks suggested by CL colors of shock-deformed quartz at the K-T boundary is consistent with a crustal/supracrustal origin for the grains.

  17. Mineral resource of the month: cultured quartz crystal

    USGS Publications Warehouse

    ,

    2008-01-01

    The article presents information on cultured quartz crystals, a mineral used in mobile phones, computers, clocks and other devices controlled by digital circuits. Cultured quartz, which is synthetically produced in large pressurized vessels known as autoclaves, is useful in electronic circuits for precise filtration, frequency control and timing for consumer and military use. Several ingredients are used in producing cultured quartz, including seed crystals, lascas, a solution of sodium hydroxide or sodium carbonate, lithium salts and deionized water.

  18. Active feedback cooling of massive electromechanical quartz resonators

    SciTech Connect

    Jahng, Junghoon; Lee, Manhee; Stambaugh, Corey; Bak, Wan; Jhe, Wonho

    2011-08-15

    We present a general active feedback cooling scheme for massive electromechanical quartz resonators. We cool down two kinds of macrosized quartz tuning forks and find several characteristic constants for this massive quartz-resonator feedback cooling, in good agreement with theoretical calculations. When combined with conventional cryogenic techniques and low-noise devices, one may reach the quantum sensitivity for macroscopic sensors. This may be useful for high sensitivity measurements and for quantum information studies.

  19. Quartz technology allows for wider downhole pressure testing range

    SciTech Connect

    Dennis, J.R. ); Zeller, V.P. )

    1991-03-01

    This paper presents a quartz-thickness shear-mode transducer for use in a borehole environment. The pressure sensor is a direct-conversion device that uses a noncylindrical shell to convert and to transmit forces to the quartz-crystal resonator. A brief conceptual description of the transducer is given. Laboratory and field examples illustrate the exceptional performance of the quartz-thickness shear-mode transducer.

  20. Optical processing furnace with quartz muffle and diffuser plate

    DOEpatents

    Sopori, B.L.

    1996-11-19

    An optical furnace for annealing a process wafer is disclosed comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy. 5 figs.

  1. Cathodoluminescence of shocked quartz at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Owen, Michael R.; Anders, Mark H.

    1988-01-01

    Empirical studies have documented an association between rock type and the cathodoluminescence color of constituent quartz grains. Quartz from extrusive igneous sources luminesces uniform pale blue. Quartz from intrusive igneous and high-grade metamorphic rocks generally luminesces darker purple-blue, whereas quartz recrystallized under low-grade metamorphic conditions luminesces reddish-brown. Quartz grains in most sandstones luminesce a heterogeneous mixture of these colors because the grains were derived from a variety of ultimate source rocks. If shocked quartz found at the Cretaceous-Tertiary (K-T) boundary is volcanic in origin, its cathodoluminescence should be predominantly pale blue. Alternatively, quartz grains derived from bolide impact upon, and ejection of, mixed igneous, metamorphic, and sedimentary rocks should luminesce a variety of colors. Grain mounts of sand collected at the K-T boundary horizon from the Clear Creek North site in the Raton Basin, Colorado were examined. Shocked quartz luminesced a variety of colors and very few grains luminesced the pale blue color that is typical of volcanic quartz. It was concluded that the shocked quartz was derived from a petrologically diverse source region without substantial volcanic contribution. Most shocked grains apparently were derived from low-grade metamorphic rocks, with a slightly smaller contribution from high-grade metamorphic and intrusive igneous rocks. Rare quartz grains with brown-luminescing rims reflect a minor addition from detrital sedimentary sources. The apparent relative abundances of intrusive (and rare extrusive) igneous, metamorphic, and sedimentary ultimate source rocks suggested by CL colors of shock-deformed quartz at the K-T boundary is consistent with a crustal/supracrustal origin for the grains.

  2. The Potential for Measuring Slow Crustal Evolution using Ar-Ar Dating of Large K-feldspar Crystals

    NASA Astrophysics Data System (ADS)

    Kelley, S. P.; Flude, S.

    2012-12-01

    There has been a great deal of debate concerning Ar/Ar age profiles in K-feldspar, even gem quality K-feldspar which should exhibit simple diffusion behaviour. Here we explore their potential for measuring very slow crustal evolution and cratonization. Several different models have been evoked which if correct would challenge our capability to recover long thermal histories from Ar/Ar data. We have measured 40Ar/39Ar ages in gem quality K-feldspar grains from Itrongay Madagascar of 435 [1] - 477 [2] Ma using UV-laserprobe to produce both depth profiles (0-20 microns) and spot traverses (0-1000 microns) to test the mechanisms that might control Ar diffusion in nature. Micron scale UV laser depth profiling was used to determine Ar diffusion adjacent to the natural crystal surface (presumed to have formed as the sample crystallised). UV laser spot dating was used to measure the age variations on length scales of 10s of microns to mm and even cm. The high potassium content and age of the Itrongay sample made it possible to measure natural argon age profiles at high precision and high spatial resolution, to address some of the issues surrounding Ar diffusion. The analysis reveals the presence of very long age gradients in the Itrongay feldspar spanning more than 50Ma - ages as low as 415.7±3.0 Ma were measured at the grain margin and as high as 473.8±2.2 Ma in the core. As previous work on Itrongay feldspar has tended to be carried out on mm-sized fragments without knowledge of the original crystal boundaries, the variation in radiometric ages in the published literature is likely due to these internal age variations. We interpret the age profiles as the combination of diffusion and 40K decay to 40Ar over the full range of spatial scales from micron to centimetre. Thermal models for the thermal history of Itrongay K-feldspar appear to be in agreement with previous thermochronology in the area and hold out the hope for unravelling very long and slow crustal evolution

  3. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    PubMed

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins.

  4. OH zoning in alpine quartz from Austria

    NASA Astrophysics Data System (ADS)

    Hertweck, B.; Niedermayr, G.; Beran, A.

    2003-04-01

    Rock crystals from various alpine clefts in Austria were investigated in terms of morphology, domain structure, and OH defects. Since the formation of alpine clefts is a long lasting and multiphase process, the crystal growth of alpine quartz is dominated by different morphologies and various OH defects. 140 samples were investigated by FTIR spectroscopy and optical methods to reveal complementary information on morphology, twining, hydrogen incorporation, and zoning of the OH defects. IR spectroscopic measurements of colourless and smoky quartz samples revealed six characteristic absorption bands in the range of the OH stretching frequencies at 3315, 3380, 3430, 3480, 3510 and 3595 cm-1. The quantitative analysis of the water content revealed an amount of 0.5-20 ppm H_2O. With a maximum of frequency in the 1-2 ppm range the amount of water incorporation is comparably lower than known from non-alpine deposits. The spectra can be divided in four types characterised by the number and/or the relative band intensities. Among the Austrian samples one type, showing clearly all the six bands, is abundant and has not been found in the spectra from non-alpine sites. A significant relation between spectra type, crystal morphology, mineral deposit (within Austria), and OH content cannot be deduced. Microspectroscopic measurements of profiles through crystals cut perpendicular to the c-axis revealed that the spectra types rarely change within one sample. However, a variation of the water content is commonly related to a change of the relative intensity of the 3480 cm-1 absorption band. Regarding the hydrogen incorporation all samples show a distinct zoning. In addition, the OH zoning as well as the crystal growth appear regularly, leading to different hydrogen amounts in core and mantle zone of the crystals. The average zoning is given by factor 1.2, whereas strong variations were measured up to factor 2.5. The formation of Brazil twin domains often coincides with a distinct

  5. Removal of Retired Alkali Metal Test Systems

    SciTech Connect

    Brehm, W. F.; Church, W. R.; Biglin, J. W.

    2003-02-26

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  6. Geopolymers and Related Alkali-Activated Materials

    NASA Astrophysics Data System (ADS)

    Provis, John L.; Bernal, Susan A.

    2014-07-01

    The development of new, sustainable, low-CO2 construction materials is essential if the global construction industry is to reduce the environmental footprint of its activities, which is incurred particularly through the production of Portland cement. One type of non-Portland cement that is attracting particular attention is based on alkali-aluminosilicate chemistry, including the class of binders that have become known as geopolymers. These materials offer technical properties comparable to those of Portland cement, but with a much lower CO2 footprint and with the potential for performance advantages over traditional cements in certain niche applications. This review discusses the synthesis of alkali-activated binders from blast furnace slag, calcined clay (metakaolin), and fly ash, including analysis of the chemical reaction mechanisms and binder phase assemblages that control the early-age and hardened properties of these materials, in particular initial setting and long-term durability. Perspectives for future research developments are also explored.

  7. Transcriptome Analysis of Alkali Shock and Alkali Adaptation in Listeria monocytogenes 10403S

    PubMed Central

    Giotis, Efstathios S.; Muthaiyan, Arunachalam; Natesan, Senthil; Wilkinson, Brian J.; Blair, Ian S.

    2010-01-01

    Abstract Alkali stress is an important means of inactivating undesirable pathogens in a wide range of situations. Unfortunately, Listeria monocytogenes can launch an alkaline tolerance response, significantly increasing persistence of the pathogen in such environments. This study compared transcriptome patterns of alkali and nonalkali-stressed L. monocytogenes 10403S cells, to elucidate the mechanisms by which Listeria adapts and/or grows during short- or long-term alkali stress. Transcription profiles associated with alkali shock (AS) were obtained by DNA microarray analysis of midexponential cells suspended in pH 9 media for 15, 30, or 60 min. Transcription profiles associated with alkali adaptation (AA) were obtained similarly from cells grown to midexponential phase at pH 9. Comparison of AS and AA transcription profiles with control cell profiles identified a high number of differentially regulated open-reading frames in all tested conditions. Rapid (15 min) changes in expression included upregulation of genes encoding for multiple metabolic pathways (including those associated with Na+/H+ antiporters), ATP-binding cassette transporters of functional compatible solutes, motility, and virulence-associated genes as well as the σB controlled stress resistance network. Slower (30 min and more) responses to AS and adaptation during growth in alkaline conditions (AA) involved a different pattern of changes in mRNA concentrations, and genes involved in proton export. PMID:20677981

  8. Alkali metal protective garment and composite material

    DOEpatents

    Ballif, III, John L.; Yuan, Wei W.

    1980-01-01

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  9. Alkali Metal Heat Pipe Life Issues

    SciTech Connect

    Reid, Robert S.

    2004-07-01

    One approach to fission power system design uses alkali metal heat pipes for the core primary heat-transfer system. Heat pipes may also be used as radiator elements or auxiliary thermal control elements. This synopsis characterizes long-life core heat pipes. References are included where information that is more detailed can be found. Specifics shown here are for demonstration purposes and do not necessarily reflect current Nasa Project Prometheus point designs. (author)

  10. Thermal positron interactions with alkali covered tungsten

    NASA Astrophysics Data System (ADS)

    Yamashita, Takashi; Iida, Shimpei; Terabe, Hiroki; Nagashima, Yasuyuki

    2016-11-01

    The branching ratios of positron reemission, positronium emission, positronium negative ion emission and capture to the surface state for thermalized positrons at polycrystalline tungsten surfaces coated with Na, K and Cs have been measured. The data shows that the ratios depend on the coverage of the alkali-metal coating. The fraction of the emitted positronium increases with the coverage of the coating up to 90%.

  11. Alkali Metal Heat Pipe Life Issues

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.

    2004-01-01

    One approach to space fission power system design is predicated on the use of alkali metal heat pipes, either as radiator elements, thermal management components, or as part of the core primary heat-transfer system. This synopsis characterizes long-life core heat pipes. References are included where more detailed information can be found. Specifics shown here are for demonstrational purposes and do not necessarily reflect current Project Prometheus point designs.

  12. Dynamics-enabled quartz reference oscillators

    NASA Astrophysics Data System (ADS)

    Chang, David T.; Moyer, Harris P.; Kubena, Randall L.; Joyce, Richard J.; Kirby, Deborah J.; Brewer, Peter D.; Nguyen, Hung D.; Nagele, Robert G.; Stratton, Frederic P.

    2012-06-01

    Stable local oscillators with low phase noise are extremely important elements in high performance military communication and navigation systems. We present the development of compact UHF-band frequency sources capable of maintaining low phase noise under high accelerations or vibrations and over a wide temperature range for handheld portable systems. We also explored nonlinearity in MEMS resonators and attempted to use nonlinear dynamics to enhance phase noise performance. Using the quartz MEMS technology, we have thus far demonstrated a 645 MHz Pierce oscillator with -113 dBc/Hz phase noise at 1 kHz offset with acceleration sensitivity of 5x10-10/g. The controlled oscillation of a nonlinear Duffing resonator in a closed-loop system with improved phase noise is described.

  13. Transport properties of alkali metal doped fullerides

    SciTech Connect

    Yadav, Daluram Yadav, Nishchhal

    2015-07-31

    We have studied the intercage interactions between the adjacent C{sub 60} cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C{sub 60} phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, T{sub c}, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C{sub 60} phonons as 5 K, which is much lower as compared to reported T{sub c} (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  14. Climate dependence of feldspar weathering in shale soils along a latitudinal gradient

    NASA Astrophysics Data System (ADS)

    Dere, Ashlee L.; White, Timothy S.; April, Richard H.; Reynolds, Brian; Miller, Thomas E.; Knapp, Elizabeth P.; McKay, Larry D.; Brantley, Susan L.

    2013-12-01

    Although regolith, the mantle of physically, chemically, and biologically altered material overlying bedrock, covers much of Earth’s continents, the rates and mechanisms of regolith formation are not well quantified. Without this knowledge, predictions of the availability of soil to sustain Earth’s growing population are problematic. To quantify the influence of climate on regolith formation, a transect of study sites has been established on the same lithology - Silurian shale - along a climatic gradient in the northern hemisphere as part of the Susquehanna Shale Hills Critical Zone Observatory, Pennsylvania, USA. The climate gradient is bounded by a cold/wet end member in Wales and a warm/wet end member in Puerto Rico; in between, mean annual temperature (MAT) and mean annual precipitation (MAP) increase to the south through New York, Pennsylvania, Virginia, Tennessee and Alabama. The site in Puerto Rico does not lie on the same shale formation as the Appalachian sites but is similar in composition. Soils and rocks were sampled at geomorphologically similar ridgetop sites to compare and model shale weathering along the transect. Focusing on the low-concentration, non-nutrient element Na, we observe that the extent and depth of Na depletion is greater where mean annual temperature (MAT) and precipitation (MAP) are higher. Na depletion, a proxy for feldspar weathering, is the deepest reaction documented in the augerable soil profiles. This may therefore be the reaction that initiates the transformation of high bulk-density bedrock to regolith of low bulk density. Based on the shale chemistry along the transect, the time-integrated Na release rate (QNa) increases exponentially as a function of MAT and linearly with MAP. NY, the only site with shale-till parent material, is characterized by a QNa that is 18 times faster than PA, an observation which is attributed to the increased surface area of minerals due to grinding of the glacier and kinetically limited

  15. Highly retentive core domains in K-feldspar preserve argon ages from high temperature stages of granite exhumation

    NASA Astrophysics Data System (ADS)

    Forster, Marnie; Lister, Gordon

    2016-04-01

    Retentive core domains are characterized by diffusion parameters that imply K-feldspar should be able to retain argon even at temperatures near or above the granite solidus. In this case it should be possible to date granite emplacement using argon geochronology, and the same answer should be obtained as by using other methods. We present one case study where this is the case, from the elevated Capoas granite stock on Palawan, in the Philippines, and another where it is not, from the South Cyclades Shear Zone, on Ios, Greece. We attempt to determine the factors such as the role of fluid ingress in triggering the in situ recrystallization that can eliminate and/or modify the core domains, leading to relatively youthful ages. Thermochronology is still possible, because less retentive diffusion domains exist, but different methods need to be applied to interpret the data. The work also demonstrates that K-feldspar can be sufficiently retentive as to allow direct dating of processes that reduce the dimensions of diffusion domains, e.g., cataclased and/or recrystallized K-feldspar in fault rock and/or mylonite. These are important developments in the methodology of 40Ar/39Ar geochronology, but to further advance we need to clarify the nature of these highly retentive core domains. In particular, we need better understand how they are modified by microstructural processes during deformation and metamorphism. We need also to assess the role of any crystal structural changes during step-heating in vacuo.

  16. Alteration of alkali reactive aggregates autoclaved in different alkali solutions and application to alkali-aggregate reaction in concrete (II) expansion and microstructure of concrete microbar

    SciTech Connect

    Lu Duyou . E-mail: duyoulu@njut.edu.cn; Mei Laibao; Xu Zhongzi; Tang Mingshu; Mo Xiangyin; Fournier, Benoit

    2006-06-15

    The effect of the type of alkalis on the expansion behavior of concrete microbars containing typical aggregate with alkali-silica reactivity and alkali-carbonate reactivity was studied. The results verified that: (1) at the same molar concentration, sodium has the strongest contribution to expansion due to both ASR and ACR, followed by potassium and lithium; (2) sufficient LiOH can completely suppress expansion due to ASR whereas it can induce expansion due to ACR. It is possible to use the duplex effect of LiOH on ASR and ACR to clarify the ACR contribution when ASR and ACR may coexist. It has been shown that a small amount of dolomite in the fine-grained siliceous Spratt limestone, which has always been used as a reference aggregate for high alkali-silica reactivity, might dedolomitize in alkaline environment and contribute to the expansion. That is to say, Spratt limestone may exhibit both alkali-silica and alkali-carbonate reactivity, although alkali-silica reactivity is predominant. Microstructural study suggested that the mechanism in which lithium controls ASR expansion is mainly due to the favorable formation of lithium-containing less-expansive product around aggregate particles and the protection of the reactive aggregate from further attack by alkalis by the lithium-containing product layer.

  17. Quartz enhanced photoacoustic spectroscopy based trace gas sensors using different quartz tuning forks.

    PubMed

    Ma, Yufei; Yu, Guang; Zhang, Jingbo; Yu, Xin; Sun, Rui; Tittel, Frank K

    2015-03-27

    A sensitive trace gas sensor platform based on quartz-enhanced photoacoustic spectroscopy (QEPAS) is reported. A 1.395 μm continuous wave (CW), distributed feedback pigtailed diode laser was used as the excitation source and H2O was selected as the target analyte. Two kinds of quartz tuning forks (QTFs) with a resonant frequency (f0) of 30.72 kHz and 38 kHz were employed for the first time as an acoustic wave transducer, respectively for QEPAS instead of a standard QTF with a f0 of 32.768 kHz. The QEPAS sensor performance using the three different QTFs was experimentally investigated and theoretically analyzed. A minimum detection limit of 5.9 ppmv and 4.3 ppmv was achieved for f0 of 32.768 kHz and 30.72 kHz, respectively.

  18. Assessment of quartz materials crystallinity by x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Korovkin, M.; AnanIeva, L.; Nebera, T.; Antsiferova, A.

    2016-02-01

    The estimated degree of crystallinity of natural and synthetic grown quartz and quartzite by calculating the x-ray diffraction patterns. It is shown that the index of crystallinity of natural quartzite varies widely, reflecting the different degree of their transformation. The highest values of the index of crystallinity are characterized natural and synthetic single crystals of quartz.

  19. Passivation of quartz for halogen-containing light sources

    DOEpatents

    Falkenstein, Zoran

    1999-01-01

    Lifetime of halogen containing VUV, UV, visible or IR light sources can be extended by passivating the quartz or glass gas containers with halogens prior to filling the quartz with the halogen and rare gas mixtures used to produce the light.

  20. Analysis of Rare Earth Elements (REE) in vein quartz and quartz-sandstone host rock in the Zhelannoe high purity quartz deposit, Russia

    NASA Astrophysics Data System (ADS)

    Zemskova, Marina; Prokofiev, Vsevolod; Bychkov, Andrey

    2015-04-01

    The Zhelannoe high purity quartz deposit is located on the western slope of the Polar Urals. It is one of the largest deposits of vein quartz and rock crystal in Russia. Most of the mineralization is hosted within a single horizon of very firm quartz-sandstone, where plastic deformation did not occur almost entirely. All tectonic stress was released by the development of numerous thrust faults of different scales. Cavities formed during this process were later filled with quartz and rock crystal. In order to obtain more details on conditions under which mineralization took place, analysis of trace element contents in vein quartz and host rocks, and the micro-thermometric study of fluid inclusions in quartz have been carried out. The trace element composition of vein quartz and of the host rock has been determined by ICP-MS. The results have shown that concentrations of most of the 46 studied elements in quartz are two orders of magnitude lower than in chondrite, and more than three orders of magnitude lower than in the upper crust. Even though Pb and Li have the highest concentrations in quartz samples, levels are only nearly comparable in chondrite, and substantially lower in the upper crust. At the same time, negative anomalies of Pb and Li concentrations in the host rock may indicate the removal of these elements during vein quartz formation. Contents of most REEs are two orders of magnitude lower than in chondrite, and three orders of magnitude lower than in the host rock. Generally, the patterns of REE distribution in vein quartz and the host rock express a clear correlation; confirming the genetic link between vein quartz and quartz-sandstone host rock. However, the process of quartz recrystallization led to an intense decrease of REEs content, and of all other impurities, which consequently influenced industrial value of the Zhelannoe deposit. As a result of the micro-thermometric study of fluid inclusions in quartz, the following physical

  1. Method for the safe disposal of alkali metal

    DOEpatents

    Johnson, Terry R.

    1977-01-01

    Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam-CO.sub.2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps.

  2. Microwave GaAs Integrated Circuits On Quartz Substrates

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.; Mehdi, Imran; Wilson, Barbara

    1994-01-01

    Integrated circuits for use in detecting electromagnetic radiation at millimeter and submillimeter wavelengths constructed by bonding GaAs-based integrated circuits onto quartz-substrate-based stripline circuits. Approach offers combined advantages of high-speed semiconductor active devices made only on epitaxially deposited GaAs substrates with low-dielectric-loss, mechanically rugged quartz substrates. Other potential applications include integration of antenna elements with active devices, using carrier substrates other than quartz to meet particular requirements using lifted-off GaAs layer in membrane configuration with quartz substrate supporting edges only, and using lift-off technique to fabricate ultrathin discrete devices diced separately and inserted into predefined larger circuits. In different device concept, quartz substrate utilized as transparent support for GaAs devices excited from back side by optical radiation.

  3. A Modular Control Platform for a Diode Pumped Alkali Laser

    DTIC Science & Technology

    2008-09-01

    A Modular Control Platform for a Diode Pumped Alkali Laser Joshua Shapiro, Scott W. Teare New Mexico Institute of Mining and Technology, 801 Leroy...gain media, such as is done in diode pumped alkali lasers (DPALs), has been proposed and early experiments have shown promising results. However...REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE A Modular Control Platform for a Diode Pumped Alkali Laser 5a

  4. Determination of the common and rare alkalies in mineral analysis

    USGS Publications Warehouse

    Wells, R.C.; Stevens, R.E.

    1934-01-01

    Methods are described which afford a determination of each member of the alkali group and are successful in dealing with the quantities of the rare alkalies found in rocks and minerals. The procedures are relatively rapid and based chiefly on the use of chloroplatinic acid, absolute alcohol and ether, and ammonium sulfate. The percentages of all the alkalies found in a number of minerals are given.

  5. Study on alkali removal technology from coal gasification gas

    SciTech Connect

    Inai, Motoko; Kajibata, Yoshihiro; Takao, Shoichi; Suda, Masamitsu

    1999-07-01

    The authors have proposed a new coal based combined cycle power plant concept. However, there are certain technical problems that must be overcome to establish this system. Major technical problem of the system is hot corrosion of gas turbine blades caused by sulfur and alkali vapor, because of high temperature dust removal without sulfur removal from the coal gas. So the authors have conducted several fundamental studies on dry type alkali removal sorbents for the purposed of reducing the corrosion on gas turbine blades. Based on the fundamental studies the authors found preferable alkali removal sorbents, and made clear their alkali removal performance.

  6. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, David C.; Mailhe, Catherine C.; De Jonghe, Lutgard C.

    1986-01-01

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  7. Alkali cation specific adsorption onto fcc(111) transition metal electrodes.

    PubMed

    Mills, J N; McCrum, I T; Janik, M J

    2014-07-21

    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  8. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.

    1985-07-10

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  9. Correlation of the Na/K ratio in geothermal well waters with the thermodynamic properties of low albite and potash feldspar

    SciTech Connect

    Apps, J.A.; Chang, G.M.

    1992-03-01

    The Na/K ratio in geothermal well waters provides a better estimate of the relative stability of low albite and potash feldspar than do predictions from calorimetry and high temperature phase equilibria. The calculated saturation indices from field data for low albite, potash feldspar suggest that {Delta}G{sub f,298}{sup o} for the latter should be revised to {minus}3748.6{plus_minus}3.7 kJ.mol{sup {minus}1}.

  10. Correlation of the Na/K ratio in geothermal well waters with the thermodynamic properties of low albite and potash feldspar

    SciTech Connect

    Apps, J.A.; Chang, G.M.

    1992-03-01

    The Na/K ratio in geothermal well waters provides a better estimate of the relative stability of low albite and potash feldspar than do predictions from calorimetry and high temperature phase equilibria. The calculated saturation indices from field data for low albite, potash feldspar suggest that [Delta]G[sub f,298][sup o] for the latter should be revised to [minus]3748.6[plus minus]3.7 kJ.mol[sup [minus]1].

  11. Recycling of quartz-poor/lithic-rich foreland-basin sediments in arid climate (Euphrates-Tigris-Karun river system)

    NASA Astrophysics Data System (ADS)

    Garzanti, Eduardo; Juboury, Ali Ismail Al; Zoleikhaei, Yousef; Vermeesch, Pieter; Hamzah Abdulhussein Jotheri, Jaafar; Akkoca, Dicle Bal; Allen, Mark; Andò, Sergio; Limonta, Mara; Padoan, Marta; Resentini, Alberto; Vezzoli, Giovanni

    2016-04-01

    In this detailed petrological analysis of a large source-to-sink sediment-routing system (catchment area > 1 million km2) we document its several peculiarities, and illustrate a rich petrographic and heavy-mineral dataset integrated by bulk-sediment geochemistry and detrital-zircon U-Pb geochronological data that widens the spectrum of compositions generally assumed as paradigmatic for orogenic settings. We test traditional versus upgraded sedimentary-petrology models in the endeavor to derive a more refined conceptual model of reference, in order to enhance the power of provenance analysis but also to define its limitations and understand which secret of nature is likely to remain beyond reach in our efforts to reconstruct orogenic landscapes of the past. Sands derived from the Zagros-Southeast Anatolian fold-thrust belt contain an abundance of lithic grains derived not only first-cycle from carbonates, cherts, mudrocks, arc volcanics, and obducted mantle serpentinites representing the exposed shallow structural level of the orogen, but also recycled from Neogene molassic strata exposed in the foothills. Quartz, K-feldspar and mica are equally scarce in first-cycle and recycled sediments. This quartz-poor petrographic signature, characterizing the broad undissected tectonic domain of the Anatolia-Iranian plateau, is markedly distinct from that of sands shed by highly elevated and dissected collision orogens of the same mountain system such as the Himalaya or the Alps. Arid climate in the region allows full preservation of chemically unstable grains including carbonate and mafic/ultramafic rock fragments even through more than a single sedimentary cycle. Also, it reduces transport capacity of fluvial systems, which dump most of their load in Mesopotamian marshlands upstream of the Arabian/Persian Gulf allochemical carbonate factory. Quartz-poor orogenic sediments from the Zagros-Southeast Anatolian range mix with quartz-rich recycled sands ultimately derived from

  12. Contribution of feldspar and marine organic aerosols to global ice nucleating particle concentrations

    NASA Astrophysics Data System (ADS)

    Vergara-Temprado, Jesús; Murray, Benjamin J.; Wilson, Theodore W.; O'Sullivan, Daniel; Browse, Jo; Pringle, Kirsty J.; Ardon-Dryer, Karin; Bertram, Allan K.; Burrows, Susannah M.; Ceburnis, Darius; DeMott, Paul J.; Mason, Ryan H.; O'Dowd, Colin D.; Rinaldi, Matteo; Carslaw, Ken S.

    2017-03-01

    Ice-nucleating particles (INPs) are known to affect the amount of ice in mixed-phase clouds, thereby influencing many of their properties. The atmospheric INP concentration changes by orders of magnitude from terrestrial to marine environments, which typically contain much lower concentrations. Many modelling studies use parameterizations for heterogeneous ice nucleation and cloud ice processes that do not account for this difference because they were developed based on INP measurements made predominantly in terrestrial environments without considering the aerosol composition. Errors in the assumed INP concentration will influence the simulated amount of ice in mixed-phase clouds, leading to errors in top-of-atmosphere radiative flux and ultimately the climate sensitivity of the model. Here we develop a global model of INP concentrations relevant for mixed-phase clouds based on laboratory and field measurements of ice nucleation by K-feldspar (an ice-active component of desert dust) and marine organic aerosols (from sea spray). The simulated global distribution of INP concentrations based on these two species agrees much better with currently available ambient measurements than when INP concentrations are assumed to depend only on temperature or particle size. Underestimation of INP concentrations in some terrestrial locations may be due to the neglect of INPs from other terrestrial sources. Our model indicates that, on a monthly average basis, desert dusts dominate the contribution to the INP population over much of the world, but marine organics become increasingly important over remote oceans and they dominate over the Southern Ocean. However, day-to-day variability is important. Because desert dust aerosol tends to be sporadic, marine organic aerosols dominate the INP population on many days per month over much of the mid- and high-latitude Northern Hemisphere. This study advances our understanding of which aerosol species need to be included in order to

  13. (abstract) Fundamental Mechanisms of Electrode Kinetics and Alkali Metal Atom Transport at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kisor, A.; Kikkert, S. K.

    1993-01-01

    The mechanisms of electrode kinetics and mass transport of alkali metal oxidation and alkali metal cation reduction at the solid electrolyte/porous electrode boundary as well as alkali metal transport through porous metal electrodes has important applications in optimizing device performance in alkali metal thermal to electric converter (AMTEC) cells which are high temperature, high current density electrochemical cells. Basic studies of these processes also affords the opportunity to investigate a very basic electrochemical reaction over a wide range of conditions; and a variety of mass transport modes at high temperatures via electrochemical techniques. The temperature range of these investigations covers 700K to 1240K; the alkali metal vapor pressures range from about 10(sup -2) to 10(sup 2) Pa; and electrodes studied have included Mo, W, Mo/Na(sub 2)MoO(sub 4), W/Na(sub 2)WO(sub 4), WPt(sub x), and WRh(sub x) (1.0 < x < 6.0 ) with Na at Na-beta'-alumina, and Mo with K at K-beta'-alumina. Both liquid metal/solid electrolyte/alkali metal vapor and alkali metal vapor/solid electrolyte/vapor cells have been used to characterize the reaction and transport processes. We have previously reported evidence of ionic, free molecular flow, and surface transport of sodium in several types of AMTEC electrodes.

  14. Intracavity quartz-enhanced photoacoustic sensor

    SciTech Connect

    Borri, S. Galli, I.; Mazzotti, D.; Giusfredi, G.; De Natale, P.; Patimisco, P.; Scamarcio, G.; Spagnolo, V.; Akikusa, N.; Yamanishi, M.

    2014-03-03

    We report on a spectroscopic technique named intracavity quartz-enhanced photoacoustic spectroscopy (I-QEPAS) employed for sensitive trace-gas detection in the mid-infrared spectral region. It is based on a combination of QEPAS with a buildup optical cavity. The sensor includes a distributed feedback quantum cascade laser emitting at 4.33 μm. We achieved a laser optical power buildup factor of ∼500, which corresponds to an intracavity laser power of ∼0.75 W. CO{sub 2} has been selected as the target molecule for the I-QEPAS demonstration. We achieved a detection sensitivity of 300 parts per trillion for 4 s integration time, corresponding to a noise equivalent absorption coefficient of 1.4 × 10{sup −8} cm{sup −1} and a normalized noise-equivalent absorption of 3.2 × 10{sup −10} W cm{sup −1} Hz{sup −1/2}.

  15. Alkali Halide Nanotubes: Structure and Stability

    PubMed Central

    Fernandez-Lima, Francisco A.; Henkes, Aline Verônica; da Silveira, Enio F.; Nascimento, Marco Antonio Chaer

    2013-01-01

    Accurate density functional theory (DFT) and coupled-cluster (CCSD) calculations on a series of (LiF)n=2,36 neutral clusters suggest that nanotube structures with hexagonal and octagonal transversal cross sections show stability equal to or greater than that of the typical cubic form of large LiF crystals. The nanotube stability was further corroborated by quantum dynamic calculations at room temperature. The fact that stable nanotube structures were also found for other alkali halides (e.g., NaCl and KBr) suggests that this geometry may be widely implemented in material sciences. PMID:24376901

  16. Cathode architectures for alkali metal / oxygen batteries

    DOEpatents

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  17. Intensity Scaling for Diode Pumped Alkali Lasers

    DTIC Science & Technology

    2012-01-01

    unphased diode lasers is absorbed in the near IR by atomic potassium, rubidium , or cesium. The gain cell for a DPAL system using a heat pipe design is...demonstrated linear scaling of a rubidium laser to 32 times threshold.3 In our present work, we explore scaling to pump in- tensities of >100kW/cm2. The...of output power. Each alkali atom in the laser medium may be required to cycle as many as 1010 pump photons per second. We demonstrated a rubidium

  18. High power diode pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.

    2008-05-01

    Diode pumped alkali lasers have developed rapidly since their first demonstration. These lasers offer a path to convert highly efficient, but relatively low brightness, laser diodes into a single high power, high brightness beam. General Atomics has been engaged in the development of DPALs with scalable architectures. We have examined different species and pump characteristics. We show that high absorption can be achieved even when the pump source bandwidth is several times the absorption bandwidth. In addition, we present experimental results for both potassium and rubidium systems pumped with a 0.2 nm bandwidth alexandrite laser. These data show slope efficiencies of 67% and 72% respectively.

  19. Electrodes For Alkali-Metal Thermoelectric Converters

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Wheeler, Bob L.; Jeffries-Nakamura, Barbara; Lamb, James L.; Bankston, C. Perry; Cole, Terry

    1989-01-01

    Combination of thin, porous electrode and overlying collector grid reduces internal resistance of alkali-metal thermoelectric converter cell. Low resistance of new electrode and grid boosts power density nearly to 1 W/cm2 of electrode area at typical operating temperatures of 1,000 to 1,300 K. Conductive grid encircles electrode film on alumina tube. Bus wire runs along tube to collect electrical current from grid. Such converters used to transform solar, nuclear, and waste heat into electric power.

  20. Towards a magmatic quartz database: tracing melt sources

    NASA Astrophysics Data System (ADS)

    Tailby, N. D.; Ackerson, M. R.; Watson, E. B.; Thomas, J. B.

    2014-12-01

    Quartz composition has seen increasing interest among the scientific community over the last decade due to new calibrations (e.g., Ti-in-quartz) and the proliferation of trace element analytical facilities. What is presently lacking in the field of quartz research is a quartz composition database. Such a single body of information can be used to evaluate whether variation seen in different crystallization environments is equally manifest in quartz composition. In this study we present >2000 new quartz analyses from >70 different granitoids and volcanic settings from around the globe (Lachlan Fold Belt, High Himalaya, French Massif, Cordilleran, Caledonian, White Mountains, Bishop, Toba, Snake River, Oman ophiolite and a number of other select locations). This dataset also combines data from a number of previous studies and together the data may collectively be used to determine which geochemical characteristics can be used to distinguish quartz from different magma types. A number of trace element concentrations or ratios (e.g., Al/Ti, Ge, Li, P and B) are notably useful when distinguishing peraluminous (e.g., cordierite-bearing granitoid) systems from more metaluminous systems (e.g., hornblende granodiorite) or plagiogranites.

  1. Plastic Deformation of O+ Oriented Quartz Single Crystals

    NASA Astrophysics Data System (ADS)

    Poston, E. J.; Holyoke, C. W., III; Kronenberg, A. K.

    2015-12-01

    The strength of wet quartz deforming by dislocation creep significantly influences the strength of mid to lower crust. Dislocation creep of quartz in Earth's crust is dominated by slip on the basal slip system. However, very little is known about the temperature, strain rate, or water fugacity dependence of this slip system. In order to better understand the rheology of the basal slip system, we deformed single crystals of synthetic quartz, with the basal slip system oriented at 45° to the compression direction (O+ orientation). Each core was annealed at 900°C and 1 atm for 24 hours to convert the gel-type water defects found in synthetic quartz into fluid inclusions, like those observed in milky quartz. FTIR analysis indicate that water contents (200-450 H/106Si) were not affected by the annealing process. The annealed single crystals were then deformed in a Griggs piston-cylinder rock deformation apparatus using a solid salt assembly, at temperatures from 800 to 900°C, strain rates from 10-6 to 10-4/s, and a confining pressure of 1.5 GPa. The strength of the quartz crystals increases with faster strain rates and decreases with increasing temperature. During some of the faster strain rate steps at 800°C, the crystals did not deform plastically before the differential stress reached the confining pressure, whereas they deformed at low stresses at 800°C and 10-6/s. The microstructures visible in the deformed samples are consistent with dislocation creep. The samples exhibit undulatory extinction, and show no deformation lamellae or subgrain formation. The strength of synthetic quartz crystals with low water contents deformed in this study is greater than milky quartz single crystals with high water contents deformed at the same conditions in other studies. These results indicate that the strength of basal slip system in quartz is affected by both water content and water fugacity.

  2. Quartz dissolution in organic-rich aqueous systems

    USGS Publications Warehouse

    Bennett, Philip C.

    1991-01-01

    Organic electrolytes are a common component of natural waters and are known to be important in many rock-water interactions. The influence of organic electrolytes on silica mobility, quartz solubility, and quartz dissolution kinetics, however, is less well understood. While there is mounting evidence supporting the presence of an aqueous organic-silica complex in natural waters, the significance of this species is difficult to characterize because of competing interactions in mixed inorganic-organic electrolyte environments. In the experiments reported here, the kinetics of quartz dissolution in dilute aqueous organic-acid solutions between 25 and 70°C were investigated to determine the influence of both organic and inorganic electrolytes.Batch-reactor dissolution experiments in inorganic and organic electrolyte solutions were designed to investigate the hypothesis that organic acids at circum-neutral pH accelerate the dissolution and increase the solubility of quartz in water. Results suggest that multi-functional organic acids such as citrate and oxalate accelerate quartz dissolution by decreasing the activation energy by approximately 20%. The increase in dissolution rate was accompanied by a 100% increase in apparent quartz solubility at 25°C. Experiments using inorganic electrolytes, in contrast, increase the rate of quartz dissolution without decreasing the activation energy, and without increasing solubility.From these data, a model for both a solution complex between dissolved organic acid and monomeric silicic acid, and an activated complex on quartz surfaces is proposed. The model suggests that dissolved organic compounds in natural waters at near-neutral pH and low temperatures are capable of accelerating the dissolution of quartz and increasing its solubility.

  3. Relationship between amorphous silica and precious metal in quartz veins

    NASA Astrophysics Data System (ADS)

    Harrichhausen, N.; Rowe, C. D.; Board, W. S.; Greig, C. J.

    2015-12-01

    Super-saturation of silica is common in fault fluids, due to pressure changes associated with fracture, fault slip, or temperature gradients in hydrothermal systems. These mechanisms lead to precipitation of amorphous silica, which will recrystallize to quartz under typical geologic conditions. These conditions may also promote the saturation of precious metals, such as gold, and the precipitation of nanoparticles. Previous experiments show that charged nanoparticles of gold can attach to the surface of amorphous silica nanoparticles. Thus, gold and silica may be transported as a colloid influencing mineralization textures during amorphous silica recrystallization to quartz. This may enrich quartz vein hosted gold deposits, but the instability of hydrous silica during subsequent deformation means that the microstructural record of precipitation of gold is lost. We investigate a recent, shallow auriferous hydrothermal system at Dixie Valley, Nevada to reveal the nano- to micro-scale relationships between gold and silica in fresh veins. Fault slip surfaces at Dixie Valley exhibit layers of amorphous silica with partial recrystallization to quartz. Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) show amorphous silica can contain a few wt. % gold while areas recrystallized to quartz are barren. At the Jurassic Brucejack deposit in British Columbia, Canada we observe the cryptocrystalline quartz textures that may indicate recrystallization from amorphous silica within quartz-carbonate veins containing high grade gold. Comb quartz within syntaxial veins, vugs, and coating breccia clasts indicate structural dilation. Vein geometry is investigated to determine relative importance of fault slip in creating dilational sites. By comparing quartz-carbonate veins from the Dixie Valley to Brucejack, we can determine whether amorphous silica formed in different environments show similar potential to affect precious metal mineralization.

  4. Alkali sorber (RABSAM), September 1, 1990--August 30, 1991

    SciTech Connect

    Lee, S.H.D.; Swift, M.W.

    1991-01-01

    The objective of this work is to develop a regenerable activated-bauxite sorber alkali monitor that requires no high-temperature/high-pressure sampling line for the reliable in situ measurement of alkali-vapor concentration in the exhaust from the pressurized fluidized-bed combustion of coal. 11 refs., 2 figs., 1 tab.

  5. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    DOEpatents

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  6. Formation of lysinoalanine in egg white under alkali treatment.

    PubMed

    Zhao, Yan; Luo, Xuying; Li, Jianke; Xu, Mingsheng; Tu, Yonggang

    2016-03-01

    To investigate the formation mechanism of lysinoalanine (LAL) in eggs during the alkali treatment process, NaOH was used for the direct alkali treatment of egg white, ovalbumin, and amino acids; in addition, the amount of LAL formed during the alkali treatment process was measured. The results showed that the alkali treatment resulted in the formation of LAL in the egg white. The LAL content increased with increasing pH and temperature, with the LAL content first increasing and then leveling off with increasing time. The amount of LAL formed in the ovalbumin under the alkali treatment condition accounted for approximately 50.51% to 58.68% of the amount of LAL formed in the egg white. Thus, the LAL formed in the ovalbumin was the main source for the LAL in the egg white during the alkali treatment process. Under the alkali treatment condition, free L-serine, L-cysteine, and L-cystine reacted with L-lysine to form LAL; therefore, they are the precursor amino acids of LAL formed in eggs during the alkali treatment process.

  7. [Raman spectra of endospores of Bacillus subtilis by alkali stress].

    PubMed

    Dong, Rong; Lu, Ming-qian; Li, Feng; Shi, Gui-yu; Huang, Shu-shi

    2013-09-01

    To research the lethal mechanism of spores stressed by alkali, laser tweezers Raman spectroscopy (LTRS) combined with principal components analysis (PCA) was used to study the physiological process of single spore with alkali stress. The results showed that both spores and germinated spores had tolerance with alkali in a certain range, but the ability of spores was obviously lower than that of spores due to the release of their Ca2+ -DPA which plays a key role in spores resistance as well as spores resistance to many stresses; A small amount of Ca2+ -DPA of spores was observed to release after alkali stress, however, the behavior of release was different with the normal Ca2+ -DPA release behavior induced by L-alanine; The data before and after alkali stress of the spores and g. spores with PCA reflected that alkali mainly injured the membrane of spores, and alkali could be easily enter into the inner structure of spores to damage the structure of protein backbone and injure the nucleic acid of spores. We show that the alkali could result in the small amount of Ca2+ -DPA released by destroying the member channel of spores.

  8. Self-discharge in bimetallic cells containing alkali metal

    NASA Technical Reports Server (NTRS)

    Foster, M. S.; Hesson, J. C.; Shimotake, H.

    1969-01-01

    Theoretical analysis of thermally regenerative bimetallic cells with alkali metal anodes shows a relation between the current drawn and the rate of discharge under open-circuit conditions. The self-discharge rate of the cell is due to the dissolution and ionization of alkali metal atoms in the fused-salt electrolyte

  9. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, Wen Y.

    1984-01-01

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them (46, 53, 61, 69) with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide (63) to precipitate silicon constituents, the pH of the resultant solution is increased (81), preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated (84) to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process (86, 18, 17) where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  10. Superconductivity in alkali metal intercalated iron selenides

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  11. Durability of Alkali Activated Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  12. High-Frequency Electrodeless Quartz Crystal Microbalance Chip with a Bare Quartz Resonator Encapsulated in a Silicon Microchannel

    NASA Astrophysics Data System (ADS)

    Kato, Fumihito; Ogi, Hirotsugu; Yanagida, Taiji; Nishikawa, Shintaro; Nishiyama, Masayoshi; Hirao, Masahiko

    2011-07-01

    We present a high-frequency electrodeless quartz crystal microbalance (QCM) chip with a bare quartz resonator encapsulated in a silicon microchannel, which is fabricated by micromachining technology. This QCM chip packages an AT-cut quartz plate 2.5 mm long, 1.7 mm wide, and 9.6 µm thick, which is supported by micropillars without fixed parts. There is no issue about destruction during assembly because handling the fragile quartz resonator becomes unnecessary. The quartz resonator is electrodeless and not fixed; therefore, there are no losses due to electrodes and contacting wires. As a result, a high quality factor (Q-factor) and a high signal-to-noise ratio (SNR) can be obtained. The Q-factor is about 800-2800 at 170 MHz in the flow of the carrier solution. In addition, it is possible to reuse the device, because the quartz surfaces can adsorb receptor proteins nonspecifically, which can be removed by a washing procedure with a strong acid solution flowed in the microchannel. The high-frequency quartz resonator (170 MHz) encapsulated in the microchannel can reduce the influence of the viscosity contribution to the frequency shift, achieving highly sensitive and quantitative analysis. The QCM chip is excited and detects the shear vibrations of the quartz resonator by the line antennas without contact. Consequently, both sides of the quartz resonator can be used as the detection area in a solution. We succeeded in detecting the human immunoglobulin G (hIgG) at a concentration of 6 µg/ml via the staphylococcal protein A (SPA) immobilized nonspecifically on the developed QCM chip in real time without any labeling.

  13. EPR study of Fe3+ in α-quartz: Further lithium-compensated centers

    NASA Astrophysics Data System (ADS)

    Choi, Deok; Weil, John A.

    1990-12-01

    Fe3+ (S=52) centers in synthetic α-quartz, designated by S'1 and S''1 by previous workers, which are very similar to the previously studied center [FeO4/Li]0α (called S1), have been examined at temperatures around 35 K via an X-band electron-paramagnetic-resonance study. Hyperfine signals due to the Li7 nucleus were detected for both centers, establishing their alkali-metal-ion content. The spin-Hamiltonian parameters were determined, allowing for anisotropy of the g factor as well as [g,D,A(Li7), P(Li7)]-matrix noncoaxiality, and including high-spin terms of the form S4. Evaluation of the results indicates that the lithium 1+ ion is present interstitially near to the substitutional Fe3+ ion (located at a Si4+ site) on the same crystal twofold axis, for all three centers: S1, S'1 and S''1. The designations [FeO4/Li]0α' are proposed for the centers S'1 and S''1, respectively. The relative concentrations of these centers appear to depend sensitively on the growth regions within each crystal.

  14. Kinetic parameters of lithium and aluminium doped quartz from thermoluminescence glow curves.

    PubMed

    Gómez-Ros, J M; Correcher, V; García-Guinea, J; Delgado, A

    2002-01-01

    The thermoluminescence (TL) glow curves of irradiated annealed and non-annealed synthetic beta-quartz (Li0.73Al0.73Si1.27O4) synthesised using the ceramic method have been studied. Annealed samples (1200 degrees C for 12 h) exhibit some changes of shape and intensity in the TL glow curves when compared to non-annealed samples in the range of 0.1-5 Gy. These changes can be attributed mainly to thermal alkali self-diffusion through the lattice interfaces involving modifications in the components of the luminescent traps. In non-annealed samples six groups of components at about 100 degrees C, 130 degrees C, 160 degrees C, 210 degrees C, 330 degrees C and 450 degrees C can be found, whereas annealed samples only display one very intense peak at a lower temperature (deconvoluted into three peaks at 90 degrees C, 105 degrees C and 130 degrees C) and a lower intensity second wide broad emission at approximately 240 degrees C. In this paper, a computerised curve-fitting based on general order kinetics has been used to characterise the glow curve structure resolving trapping parameters for each glow peak: trap depth (E), frequency factor (s) and the order of the kinetics (b). The dose dependence of the individual components of the glow curve has been also studied. These data allow us to select the most stable component for use in dosimetric purposes.

  15. Electron microprobe study of lunar and planetary zoned plagioclase feldspars: An analytical and experimental study of zoning in plagioclase

    NASA Technical Reports Server (NTRS)

    Smith, R. K.; Lofgren, G. E.

    1982-01-01

    Natural and experimentally grown zoned plagioclase feldspars were examined by electron microprobe. The analyses revealed discontinuous, sector, and oscillary chemical zoning superimposed on continuous normal or reverse zoning trends. Postulated mechanisms for the origin of zoning are based on either physical changes external to the magma (P, T, H2O saturation) or kinetic changes internal to the magma (diffusion, supersaturation, growth rate). Comparison of microprobe data on natural zoned plagioclase with zoned plagioclase grown in controlled experiments show that it may be possible to distinguish zonal development resulting from physio-chemical changes to the bulk magma from local kinetic control on the growth of individual crystals.

  16. Quartz crystal microbalance immunosensors for environmental monitoring.

    PubMed

    Kurosawa, Shigeru; Park, Jong-Won; Aizawa, Hidenobu; Wakida, Shin-Ichi; Tao, Hiroaki; Ishihara, Kazuhiko

    2006-10-15

    This paper presents discussion of quartz crystal microbalance (QCM) immunosensors for environmental monitoring. Factors limiting the practical application of antibodies to analytical problems are also presented. Among several candidates for the QCM immunosensor device, selected QCM devices and oscillating circuits were tested thoroughly and developed to obtain highly stable and sensitive frequency signals. The biointerface of QCM immunosensor was designed and controlled to immobilize antibody on the QCM surface, to reduce non-specific binding and to suppress denaturation of immobilizing antibody by self-assembled monolayer technique and artificial phospholipid (2-methacryloyloxyethyl phosphorylcholine (MPC)) polymer. MPC polymer as a antibody-stabilizing reagent was added to reduce non-specific binding of the antigen solution and stabilize the immunologic activity of the antibody-immobilized QCM. In addition, it provides examples for detection and quantitation of environmental samples using QCM immunosensors. The analytical results for fly ash extracted samples of dioxins using the QCM immunosensor indicated a good relationship with GC/MS methods. The integrating protocols of the competitive immunoassay and signal-enhancing step are for detecting low molecular analytes with extremely low detection limits using an QCM immunosensor. Furthermore, its detect limitation was extended from 0.1 to 0.01 ng/ml by the signal-enhancing step when the anti-bisphenol-A antibody conjugated MPC polymeric nanoparticles was used. The QCM immunosensor method has demonstrated its effectiveness as an alternative screening method for environmental monitoring because these results were compared with results obtained through environmental monitoring methods such as ELISA and GC/MS.

  17. A model that helps explain Sr-isotope disequilibrium between feldspar phenocrysts and melt in large-volume silicic magma systems

    USGS Publications Warehouse

    Duffield, W.A.; Ruiz, J.

    1998-01-01

    Feldspar phenocrysts of silicic volcanic rocks are commonly in Sr-isotopic disequilibrium with groundmass. In some cases the feldspar is more radiogenic, and in others it is less radiogenic. Several explanations have been published previously, but none of these is able to accommodate both senses of disequilibrium. We present a model by which either more- or less-radiogenic feldspar (or even both within a single eruptive unit) can originate. The model requires a magma body open to interaction with biotite- and feldspar-bearing wall rock. Magma is incrementally contaminated as wall rock melts incongruently. Biotite preferentially melts first, followed by feldspar. Such melting behavior, which is supported by both field and experimental studies, first contaminates magma with a relatively radiogenic addition, followed by a less-radiogenic addition. Feldspar phenocrysts lag behind melt (groundmass of volcanic rock) in incorporating the influx of contaminant, thus resulting in Sr-isotopic disequilibrium between the crystals and melt. The sense of disequilibrium recorded in a volcanic rock depends on when eruption quenches the contamination process. This model is testable by isotopic fingerprinting of individual feldspar crystals. For a given set of geologic boundary conditions, specific core-to-rim Sr-isotopic profiles are expectable. Moreover, phenocrysts that nucleate at different times during the contamination process should record different and predictable parts of the history. Initial results of Sr-isotopic fingerprinting of sanidine phenocrysts from the Taylor Creek Rhyolite are consistent with the model. More tests of the model are desirable.Feldspar phenocrysts of silicic volcanic rocks are commonly in Sr-isotopic disequilibrium with groundmass. In some cases the feldspar is more radiogenic, and in others it is less radiogenic. Several explanations have been published previously, but none of these is able to accommodate both senses of disequilibrium. We present a

  18. Effects of alkali treatments on Ag nanowire transparent conductive films

    NASA Astrophysics Data System (ADS)

    Kim, Sunho; Kang, Jun-gu; Eom, Tae-yil; Moon, Bongjin; Lee, Hoo-Jeong

    2016-06-01

    In this study, we employ various alkali materials (alkali metals with different base strengths, and ammonia gas and solution) to improve the conductivity of silver nanowire (Ag NW)-networked films. The alkali treatment appears to remove the surface oxide and improve the conductivity. When applied with TiO2 nanoparticles, the treatment appears more effective as the alkalis gather around wire junctions and help them weld to each other via heat emitted from the reduction reaction. The ammonia solution treatment is found to be quick and aggressive, damaging the wires severely in the case of excessive treatment. On the other hand, the ammonia gas treatment seems much less aggressive and does not damage the wires even after a long exposure. The results of this study highlight the effectiveness of the alkali treatment in improving of the conductivity of Ag NW-networked transparent conductive films.

  19. Performance of Straight Steel Fibres Reinforced Alkali Activated Concrete

    NASA Astrophysics Data System (ADS)

    Faris, Meor Ahmad; Bakri Abdullah, Mohd Mustafa Al; Nizar Ismail, Khairul; Muniandy, Ratnasamy; Putra Jaya, Ramadhansyah

    2016-06-01

    This paper focus on the performance of alkali activated concrete produced by using fly ash activated by sodium silicate and sodium hydroxide solutions. These alkali activated concrete were reinforced with straight steel fibres with different weight percentage starting from 0 % up to 5 %. Chemical composition of raw material in the production alkali activated concrete which is fly ash was first identified by using X-ray fluorescence. Results reveal there have an effect of straight steel fibres inclusion to the alkali activated concrete. Highest compressive strength of alkali activated concrete which is 67.72 MPa was obtained when 3 % of straight fibres were added. As well as flexural strength, highest flexural strength which is 6.78 MPa was obtained at 3 % of straight steel fibres inclusions.

  20. Shock-Induced Effect on Chathodoluminesence of Experimentally Shocked Quartz

    NASA Astrophysics Data System (ADS)

    Chang, Y.; Kayama, M.; Tajika, E.; Sekine, Y.; Sekine, T.; Nishido, H.; Kobayashi, T.

    2015-07-01

    We conducted a series of shock recovery experiments on single crystals of natural and synthetic quartz. In the presentation, we show the results of the variation of Cathodoluminescence (CL) spectral features with increasing shock pressure.

  1. Quartz crystals detect gas contaminants during vacuum chamber evacuation

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.

    1967-01-01

    Piezoelectric quartz crystals detect condensable gas contaminants backstreaming into a vacuum chamber when a pump is evacuating the chamber. One crystal acts as a thermometer, the other detects mass change. They are energized by electronic equipment which records frequency changes.

  2. Origin of organism-dependent biogenic silica quartz formation.

    PubMed

    Sato, Kiminori

    2011-12-15

    Organism-dependent biogenic quartz formation in the steady-state environment is a phenomenon that can address the global environmental issues such as diagenetic evolution, biogeochemical cycling, and reservoir formation, but detailed studies have not been performed so far. Here, steady-state quartz formation is studied for amorphous silica of different biogenic origin on the basis of the recently established mechanistic model [Sato et al., J. Phys. Chem. C 2011, 115, 18131]. Amorphous silica originated from rice husks possesses angstrom-scale pores larger by 1.3 Å than those originated from diatom algae. The slight difference of pore size dramatically reduces activation energies of water diffusion by 78% and reactions of water molecules at pore surfaces by 47%, resulting in the reduction of activation energy of biogenic quartz formation by 64%. The present findings evidence that angstrom-scale pores intrinsically residing in the amorphous matrix are the organism-dependent origin of steady-state biogenic quartz formation.

  3. Degradation of glycine and alanine on irradiated quartz.

    PubMed

    Pawlikowski, Maciej; Benko, Aleksandra; Wróbel, Tomasz P

    2013-04-01

    Recent researches suggest participation of minerals in the formation of life under primordial conditions. Among all of the minerals, quartz seems to be one of the most probable to take part in such processes. However, an external source of energy is needed, e.g. electric discharge. A device simulating the proposed conditions was designed and was used to simulate prebiotic conditions. Investigation of processes occurring during the stimulation of quartz with electric discharge was studied by means of Ultraviolet-visible (UV-VIS) spectroscopy, in order to monitor the generation kinetics of free radicals. Additionally, infrared spectroscopy was applied to identify chemical reaction products created in a solution of alanine or glycine, in the presence of quartz treated with electric discharge. Formation of increased amounts of free radicals, compared to experiments performed without quartz and/or amino acid, is reported, along with identification of possible degradation products of alanine. No synthetic reactions were observed.

  4. Structure optimization and simulation analysis of the quartz micromachined gyroscope

    NASA Astrophysics Data System (ADS)

    Wu, Xuezhong; Wang, Haoxu; Xie, Liqiang; Dong, Peitao

    2014-03-01

    Structure optimization and simulation analysis of the quartz micromachined gyroscope are reported in this paper. The relationships between the structure parameters and the frequencies of work mode were analysed by finite element analysis. The structure parameters of the quartz micromachined gyroscope were optimized to reduce the difference between the frequencies of the drive mode and the sense mode. The simulation results were proved by testing the prototype gyroscope, which was fabricated by micro-electromechanical systems (MEMS) technology. Therefore, the frequencies of the drive mode and the sense mode can match each other by the structure optimization and simulation analysis of the quartz micromachined gyroscope, which is helpful in the design of the high sensitivity quartz micromachined gyroscope.

  5. Thermal conductivity calculations of crystalline quartz from the BKS potential

    NASA Astrophysics Data System (ADS)

    Yoon, Young-Gui; Car, Roberto; Srolovitz, David J.; Scandolo, Sandro

    2003-03-01

    We present thermal conductivity calculations from the classical BKS potential[1]. Following a velocity rescaling method for a constant heat flux proposed by P. Jund and R. Jullien[2], thermal conductivity as a heat flux to temperature gradient ratio is directly calculated in periodic simulation cells. Our calculations in a wide temperature range at which crystalline quartz exists are consistent with the experimental trend[3]. The conductivity decreases with temperature in the alpha-quartz regime, and increases after the phase transition to beta-quartz. The temperature dependence is rather small in the beta-quartz regime. [1] B. W. H. van Beest, G. J. Kramer, and R. A. van Santen, Phy. Rev. Lett. 64, 1995 (1990). [2] P. Jund, and R. Jullien, Phy. Rev. B 59, 13707 (1999). [3] H. Kanamori, N. Fujii, and H. Mizutani, J. Geophys. Res. 73, 595 (1968).

  6. Quartz Fibers For Laser Therapy In Tissue Contact

    NASA Astrophysics Data System (ADS)

    Lenz, P.; Sabber, G.; Lambert, R.; Berger, F.

    1984-03-01

    Quartz fibers not protected by a gas stream and used in tissue contact can work virtually indefinitely due to "self cleaning" and "regeneration". Tissue lesions are similar to those obtained with conventional devices.

  7. Elasticity of Single-Crystal Quartz to 10 GPa

    NASA Astrophysics Data System (ADS)

    Wang, J.; Mao, Z.; Jiang, F.; Duffy, T. S.

    2010-12-01

    Quartz is a geologically abundant and technically important mineral. Upon static compression at 300 K, alpha-quartz is found to undergo pressure-driven amorphization and related phase transition, which provide insights into the metastable behavior of materials as a function of pressure [Hemley et al.1988, Haines et al. 2001]. This metastable behavior may be related to the elastic instabilities of quartz. The elasticity of alpha-quartz is also fundamental to a range of solid-state phenomena including elastic wave propagation and the equation of state. Despite this, the single-crystal elastic constants of quartz at high pressures are poorly constrained. Previous studies of quartz elasticity at high pressures by Brillouin scattering, ultrasonic interferometry and density functional theory (DFT) exhibit discrepancies that are unresolved [Gregoryanz et al. 2000, Calderon et al. 2007, Kimizuka et al. 2007]. Here, we report new high-quality Brillouin scattering data using two different orientations of carefully characterized, untwined crystals of pure alpha-quartz compressed in hydrostatic pressure media. Our results provide new insights into the evolution of the mechanical behavior of SiO2 with compression up to 10.2 GPa. Using our measured elastic constants, we directly compared our individual Cijs with previous studies within this pressure range. Our data are more consistent with DFT calculations. Extrapolation of ultrasonic data measured below 1 GPa to high pressure yields poor agreement with our data. Equation of state data obtained from this study match previous synchrotron X-ray studies [Angel et al. 1997, Levien et al. 1980, Hazen et al. 1989] with uncertainties. Calculation of linear compressibility shows that quartz remains strongly anisotropic with compression.

  8. A study of optically contacted quartz at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Payne, L. L.

    1982-01-01

    Optical contacting as a method of joining the quartz components of the instruments for the Gravity Probe-B experiment is evaluated. The strength of the bond between optically contacted fused quartz surfaces at liquid helium temperature was investigated. A test apparatus which can be used for making measurements of the tensile strength of these bonds was designed. Results of the tensile pull tests are given and the reliability of such bonds analyzed.

  9. Surface adsorption of Cs137 ions on quartz crystals

    USGS Publications Warehouse

    Antkiw, Stephen; Waesche, H.; Senftle, F.

    1954-01-01

    Adsorption tests were made on four large synthetic and three natural quartz crystals to see if surface defects might be detected by subsequent autoradiography techniques. The adsorbent used was radioactive Cs137 in a solution of Cs 137Cl. Natural quartz crystals adsorbed more cesium than the synthetic crystals. Certain surface defects were made evident by this method, but twinning features could not be detected.

  10. Melt rock components in KREEPy breccia 15205: Petrography and mineral chemistry of KREEP basalts and quartz-normative mare basalts

    NASA Technical Reports Server (NTRS)

    Shervais, John W.; Vetter, Scott K.

    1993-01-01

    Many current models for the origin of lunar highland rocks feature as an essential component the assimilation of KREEPy material by primitive magmas parental to the Mg-rich suite and alkali suite plutonic rocks. Similar models have also been proposed for the origin of various mare basalt suites. However, any model which considers assimilation of KREEP an important petrologic process must sooner-or-later deal with the question: what is KREEP? Because pristine KREEP basalts are rare, and most known samples are small (e.g., 15382/15386), the geochemical variability of KREEP basalts is poorly known. Other KREEP compositions which are commonly used in these models include the hypothetical 'high-K KREEP' component of Warren and Wasson, which is derived from Apollo 14 soil data, and the 'superKREEP' quartz-monzodiorite 15405. Lunar breccia 15205 is a polymict regolith breccia that consists of approximately 20% KREEP basalt clasts and 20% quartz-normative basalt clasts in a KREEP-rich matrix. Bulk rock mixing calculations show that this sample comprises about 84% KREEP. The clasts range up to 1 cm in size, but most are considerably smaller. The primary aim is to characterize pristine KREEP basalts petrographically, to establish the range in chemical compositions of KREEP basalts, and to test models that were proposed for their origin. In addition, we may be able to extend the compositional range recognized in the quartz-normative basalt suite and cast some light on its origin as well. Preliminary whole rock geochemical data on the KREEP basalts are presented in a companion paper by M.M. Lindstrom and co-workers. Concentration is on petrography and mineral chemistry of these clasts, and the implications these data have for the origin of the different melt rock suites.

  11. Interaction Between Graphene Oxide Nanoparticles and Quartz Sand.

    PubMed

    Sotirelis, Nikolaos P; Chrysikopoulos, Constantinos V

    2015-11-17

    In this study, the influence of pH, ionic strength (IS), and temperature on graphene oxide (GO) nanoparticles attachment onto quartz sand were investigated. Batch experiments were conducted at three controlled temperatures (4, 12, and 25 °C) in solutions with different pH values (pH 4, 7, and 10), and ionic strengths (IS = 1.4, 6.4, and 21.4 mM), under static and dynamic conditions. The surface properties of GO nanoparticles and quartz sand were evaluated by electrophoretic mobility measurements. Derjaguin-Landau-Verwey-Overbeek (DLVO) potential energy profiles were constructed for the experimental conditions, using measured zeta potentials. The experimental results showed that GO nanoparticles were very stable under the experimental conditions. Both temperature and pH did not play a significant role in the attachment of GO nanoparticles onto quartz sand. In contrast, IS was shown to influence attachment. The attachment of GO particles onto quartz sand increased significantly with increasing IS. The experimental data were fitted nicely with a Freundlich isotherm, and the attachment kinetics were satisfactorily described with a pseudo-second-order model, which implies that the quartz sand exhibited substantial surface heterogeneity and that GO retention was governed by chemisorption. Furthermore, thermodynamic analysis revealed that the attachment process was nonspontaneous and endothermic, which may be associated with structural changes of the sand surfaces due to chemisorption. Therefore, secondary minimum interaction may not be the dominant mechanism for GO attachment onto the quartz sand under the experimental conditions.

  12. Atomistic molecular dynamics simulations of shock compressed quartz

    NASA Astrophysics Data System (ADS)

    Farrow, M. R.; Probert, M. I. J.

    2011-07-01

    Atomistic non-equilibrium molecular dynamics simulations of shock wave compression of quartz have been performed using the so-called BKS semi-empirical potential of van Beest, Kramer, and van Santen [Phys. Rev. B 43, 5068 (1991)], 10.1103/PhysRevB.43.5068 to construct the Hugoniot of quartz. Our scheme mimics the real world experimental set up by using a flyer-plate impactor to initiate the shock wave and is the first shock wave simulation that uses a geometry optimised system of a polar slab in a three-dimensional system employing periodic boundary conditions. Our scheme also includes the relaxation of the surface dipole in the polar quartz slab which is an essential pre-requisite to a stable simulation. The original BKS potential is unsuited to shock wave calculations and so we propose a simple modification. With this modification, we find that our calculated Hugoniot is in good agreement with experimental shock wave data up to 25 GPa, but significantly diverges beyond this point. We conclude that our modified BKS potential is suitable for quartz under representative pressure conditions of the Earth core, but unsuitable for high-pressure shock wave simulations. We also find that the BKS potential incorrectly prefers the β-quartz phase over the α-quartz phase at zero-temperature, and that there is a β → α phase-transition at 6 GPa.

  13. Asymmetrical quartz crystallographic fabrics formed during constrictional deformation

    NASA Astrophysics Data System (ADS)

    Sullivan, W. A.; Beane, R. J.

    2010-10-01

    Numerical simulations predict unique quartz crystallographic fabric patterns for plane strain, flattening, and constriction. Multiple studies support the predictions for plane strain and flattening. To test predictions for constriction, this paper analyzes five examples of quartz crystallographic fabrics from a 1-km-wide domain of L tectonites in the Pigeon Point high-strain zone, Klamath Mountains, California, U.S.A. These samples were deformed under greenschist- to amphibolite-facies conditions. Quartz c-axis fabrics are similar to the predicted double-girdle fabrics except that amphibolite-facies samples exhibit c-axis maxima and are distinctly asymmetrical about the elongation lineations. Activation of different slip systems combined with small deviations from pure constriction account for the c-axis maxima, and noncoaxial flow accounts for the fabric asymmetry. The simple-shear component is randomly oriented in geographic coordinates throughout the domain of L tectonites. These data confirm that numerical simulations predict the quartz c-axis fabric geometry developed during constriction for some deformation conditions, and they confirm the quartz a-axis patterns predicted for constriction for the first time. These data also demonstrate that the relationship between quartz crystallographic fabrics and strain geometry is not straightforward, and they indicate that a-axis fabrics may be more useful indicators of strain geometry variations.

  14. Composition of steam in the system NaCl-KCl-H2O-quartz at 600°C

    USGS Publications Warehouse

    Fournier, Robert O.; Thompson, J. Michael

    1993-01-01

    In the system NaCl-KCl-H2O, with and without ??-quartz present, steam was equilibrated in a large-volume reaction vessel with brine and/or precipitated salt at 600??C and pressures ranging from about 100 to 0.4 MPa. Episodically, steam was extracted for chemical analysis, accompanied by a decrease in pressure within the reaction vessel. In the absence of precipitated salt, within the analytical uncertainty stoichiometric quantities of Cl and total alkali, metals (Na + K) dissolve in steam coexisting with chloriderich brine. In contrast, in the presence of precipitated salt (in our experiments halite with some KCl in solid solution), significant excess chloride as associated hydrogen chloride (HCl0??) dissolves in steam. The HCl0 is generated by the reaction of steam with solid NaCl(s), producing solid NaOH(s) that diffuses into halite, forming a solid solution. In our quasistatic experiments, compared to dynamic flow-through experiments of others, higher initial ratios of H2O/NaCl have apparently resulted in higher model fractions of NaOH(s) in solid solution in halite. This, in turn, resulted in incrementally higher concentrations of associated NaOHo dissolved in steam. Addition of quartz to the system NaCl + KC1 + H2O resulted in an order of magnitude increase in the concentration of HCl0 dissolved in steam, apparently as a consequence of the formation of sodium disilicate by reaction of silica with NaOH(s). The measured dissolved silica in steam saturated with alkali halides at 600??C in the pressure range 7-70 MPa agrees nicely with calculated values of the solubility of ??-quartz obtained using the equation of Fournier and Potter (1982), corrected for dissolved salt by the method of fournier (1983). Na K ratios in steam at 600??C tend to be slightly greater than in coexisting brine. When precipitated halite is present, larger mole fractions of NaOH(s) in solid solution in that halite apparently result in even larger Na K ratios in coexisting steam

  15. Alkali oxide-tantalum oxide and alkali oxide-niobium oxide ionic conductors

    NASA Technical Reports Server (NTRS)

    Roth, R. S.; Parker, H. S.; Brower, W. S.; Minor, D.

    1974-01-01

    A search was made for new cationic conducting phases in alkali-tantalate and niobate systems. The phase equilibrium diagrams were constructed for the six binary systems Nb2O5-LiNbO3, Nb2O5-NaNbO3, Nb2O5-KNbO3, Ta2O5-NaTaO3, Ta2O5-LiTaO3, and Ta2O5-KTaO3. Various other binary and ternary systems were also examined. Pellets of nineteen phases were evaluated (by the sponsoring agency) by dielectric loss measurements. Attempts were made to grow large crystals of eight different phases. The system Ta2O5-KTaO3 contains at least three phases which showed peaks in dielectric loss vs. temperature. All three contain structures related to the tungsten bronzes with alkali ions in non-stoichiometric crystallographic positions.

  16. Preparation and Characterization of Chitosan/Feldspar Biohybrid as an Adsorbent: Optimization of Adsorption Process via Response Surface Modeling

    PubMed Central

    Yazdani, Maryam; Bahrami, Hajir; Arami, Mokhtar

    2014-01-01

    Chitosan/feldspar biobased beads were synthesized, characterized, and tested for the removal of Acid Black 1 dye from aquatic phases. A four-factor central composite design (CCD) accompanied by response surface modeling (RSM) and optimization was used to optimize the dye adsorption by the adsorbent (chitosan/feldspar composite) in 31 different batch experiments. Independent variables of temperature, pH, initial dye concentration, and adsorbent dose were used to change to coded values. To anticipate the responses, a quadratic model was applied. Analysis of variance (ANOVA) tested the significance of the process factors and their interactions. The adequacy of the model was investigated by the correlation between experimental and predicted data of the adsorption and the calculation of prediction errors. The results showed that the predicted maximum adsorption amount of 21.63 mg/g under the optimum conditions (pH 3, temperature 15°C, initial dye concentration 125 mg/L, and dose 0.2 g/50 mL) was close to the experimental value of 19.85 mg/g. In addition, the results of adsorption behaviors of the dye illustrated that the adsorption process followed the Langmuir isotherm model and the pseudo-second-order kinetic model. Langmuir sorption capacity was found to be 17.86 mg/g. Besides, thermodynamic parameters were evaluated and revealed that the adsorption process was exothermic and favourable. PMID:24587722

  17. Complex subvolcanic magma plumbing system of an alkali basaltic maar-diatreme volcano (Elie Ness, Fife, Scotland)

    NASA Astrophysics Data System (ADS)

    Gernon, T. M.; Upton, B. G. J.; Ugra, R.; Yücel, C.; Taylor, R. N.; Elliott, H.

    2016-11-01

    Alkali basaltic diatremes such as Elie Ness (Fife, Scotland) expose a range of volcanic lithofacies that points to a complex, multi-stage emplacement history. Here, basanites contain phenocrysts including pyrope garnet and sub-calcic augites from depths of 60 km. Volcanic rocks from all units, pyroclastic and hypabyssal, are characterised by rare earth element (REE) patterns that show continuous enrichment from heavy REE (HREE) to light REE (LREE), and high Zr/Y that are consistent with retention of garnet in the mantle source during melting of peridotite in a garnet lherzolite facies. Erupted garnets are euhedral and unresorbed, signifying rapid ascent through the lithosphere. The magmas also transported abundant pyroxenitic clasts, cognate with the basanite host, from shallower depths ( 35-40 km). These clasts exhibit wide variation in texture, mode and mineralogy, consistent with growth from a range of compositionally diverse melts. Further, clinopyroxene phenocrysts from both the hypabyssal and pyroclastic units exhibit a very wide compositional range, indicative of polybaric fractionation and magma mixing. This is attributed to stalling of earlier magmas in the lower crust - principally from 22 to 28 km - as indicated by pyroxene thermobarometry. Many clinopyroxenes display chemical zoning profiles, occasionally with mantles and rims of higher magnesium number (Mg#) suggesting the magmas were mobilised by juvenile basanite magma. The tuffs also contain alkali feldspar megacrysts together with Fe-clinopyroxene, zircon and related salic xenoliths, of the 'anorthoclasite suite' - inferred to have crystallised at upper mantle to lower crustal depths from salic magma in advance of the mafic host magmas. Despite evidence for entrainment of heterogeneous crystal mushes, the rapidly ascending melts experienced negligible crustal contamination. The complex association of phenocrysts, megacrysts and autoliths at Elie Ness indicates thorough mixing in a dynamic system

  18. Suitability of alkaline leaching and etching experiments in the quantification of ASR potential of quartz-rich rocks

    NASA Astrophysics Data System (ADS)

    Kuchařová, Aneta; Šachlová, Šárka; Pertold, Zdeněk; Přikryl, Richard

    2015-04-01

    Three groups of methods are conventionally applied in the assessment of the susceptibility of aggregates used in concrete to be affected by alkali-silica reaction (ASR). The most frequently employed expansion tests (accelerated mortar bar test and concrete prism test, e.g. ASTM C1260, RILEM AAR2, RILEM AAR4.1) quantify ASR potential of aggregates according to the expansion values of mortar bars (resp. concrete prisms) measured after certain testing time period. Petrographic methods are based on the quantification of alkali-reactive phases by polarizing microscopy (e.g. RILEM AAR1). Chemical methods quantify ASR potential according to the amount of Si4+ dissolved into alkaline solution combined with the reduction of alkalinity of the solution (e.g. ASTM C289). The current study focused on the comparison of three approaches: the alkaline etching of polished rock sections and standard chemical method (following ASTM C289) with the measuring of expansion values of mortar bars (following ASTM C1260). Various types of quartz and amorphous SiO2 used for the experiments were separated from rock samples of orthoquartzite, quartz meta-greywacke, pegmatite, phyllite, chert, and flint. Polished rock sections (resp. crushed fraction 0.125/0.250) were used and subjected to leaching in 1M NaOH solution at 80°C for 14 days (resp. 24 hours). After alkaline etching in alkaline solution, the rock sections were analyzed by scanning electron microscopy combined with energy dispersive spectrometer. Representative areas were documented in back scattered electron images and quantified using fully-automatic petrographic image analysis. ASR potential of the polished rock sections was evaluated by the vol. % of area affected by alkaline etching. ASR potential of crushed aggregate was estimated by measurements of Si4+ dissolved into the solution versus the reduction of alkalinity of the solution (following ASTM C289). Classification according to the ASTM C289 indicated three of investigated

  19. Heat pipes containing alkali metal working fluid

    NASA Technical Reports Server (NTRS)

    Morris, J. F. (Inventor)

    1981-01-01

    A technique for improving high temperature evaporation-condensation heat-transfer devices which have important and unique advantage in terrestrial and space energy processing is described. The device is in the form of a heat pipe comprising a sealed container or envelope which contains a capillary wick. The temperature of one end of the heat pipe is raised by the input of heat from an external heat source which is extremely hot and corrosive. A working fluid of a corrosive alkali metal, such as lithium, sodium, or potassium transfers this heat to a heat receiver remote from the heat source. The container and wick are fabricated from a superalloy containing a small percentage of a corrosion inhibiting or gettering element. Lanthanum, scandium, yttrium, thorium, and hafnium are utilized as the alloying metal.

  20. Volcanic Origin of Alkali Halides on Io

    NASA Technical Reports Server (NTRS)

    Schaefer, L.; Fegley, B., Jr.

    2003-01-01

    The recent observation of NaCl (gas) on Io confirms our earlier prediction that NaCl is produced volcanically. Here we extend our calculations by modeling thermochemical equilibrium of O, S, Li, Na, K, Rb, Cs, F, Cl, Br, and I as a function of temperature and pressure in a Pele-like volcanic gas with O/S/Na/Cl/K = 1.518/1/0.05/0.04/0.005 and CI chondritic ratios of the other (as yet unobserved) alkalis and halogens. For reference, the nominal temperature and pressure for Pele is 1760 plus or minus 210 K and 0.01 bars based on Galileo data and modeling.

  1. Hump-shaped 40Ar/ 39Ar age spectra in K-feldspar and evidence for Cretaceous authigenesis in the Fountain Formation near Eldorado Springs, Colorado

    NASA Astrophysics Data System (ADS)

    Warnock, Andrew C.; van de Kamp, Peter C.

    1999-12-01

    The Fountain Formation near Eldorado Springs, CO, USA, shows evidence of alteration by hydrothermal fluids that precipitated authigenic potassium feldspar (adularia) as rims on detrital feldspars and as interstitial cement deposits. Detailed 40Ar/ 39Ar step-heating experiments of samples from the Fountain Formation reveal age spectra having a characteristic hump at laboratory temperatures between 900 and 1080°C. The humps appear to be related to the presence of adularia. Laser analyses of small grains of adularia indicate that the hump can be physically dissected, unlike age gradients found in igneous feldspars. Such behavior is consistent with the mixing of gas from two or more generations of K-feldspar, each having unique diffusion properties. The feldspars studied here indicate that two pulses of ˜150°C hydrothermal fluids migrated through the Fountain Formation at 135 and 94 Ma, prior to the main phase of Laramide tectonic activity in the region. The limited occurrence of authigenic cements suggests that reactivation of the underlying Precambrian Idaho Springs-Ralston Creek shear zone was significant enough to heat and mobilize large quantities of meteoric fluids. In addition, these data also suggest that Cretaceous movements along the Transcontinental Arch, correlated with stratigraphic events, began approximately 40 million years earlier than previously thought.

  2. Ionic alkali halide XUV laser feasibility study

    SciTech Connect

    Yang, T.T.; Gylys, V.T.; Bower, R.D.; Harris, D.G.; Blauer, J.A.; Turner, C.E.; Hindy, R.N.

    1989-11-10

    The objective of this work is to assess the feasibility of a select set of ionic alkali halide XUV laser concepts by obtaining the relevant kinetic and spectroscopic parameters required for a proof-of-principle and conceptual design. The proposed lasers operate in the 80--200 nm spectral region and do not require input from outside radiation sources for their operation. Frequency up-conversion and frequency mixing techniques and therefore not considered in the work to be described. An experimental and theoretical study of a new type of laser operating in the extreme ultraviolet wavelength region has been conducted. The lasing species are singly ionized alkali halide molecules such as Rb{sup 2+}F{sub {minus}}, Rb{sup 2+}Br{sup {minus}} and Cs{sup 2+}F{sup {minus}}. These species are similar in electronic structure to the rare gas halide excimers, such as XeF and Krf, except that the ionic molecules emit at wavelengths of 80--200 nm, much shorter than the conventional rare-gas halide excimer laser. The radiative lifetime of these molecules are typically near 1 ns, which is about an order of magnitude shorter than that for rare-gas halide systems. The values of the cross section for stimulated emission are on the order of 1 {times} 10{sup {minus}16}cm{sup 2}. Because of the fundamental similarity to existing UV lasers, these systems show promise as a high power, efficient XUV lasers. 55 refs., 50 figs., 5 tabs.

  3. Ultrasonic coal washing to leach alkali elements from coals.

    PubMed

    Balakrishnan, S; Reddy, V Midhun; Nagarajan, R

    2015-11-01

    Deposition of fly ash particles onto heat-transfer surfaces is often one of the reasons for unscheduled shut-downs of coal-fired boilers. Fouling deposits encountered in convective sections of a boiler are characterized by arrival of ash particles in solidified (solid) state. Fouling is most frequently caused by condensation and chemical reaction of alkali vapors with the deposited ash particles creating a wet surface conducive to collect impacting ash particles. Hence, the amount of alkali elements present in coals, which, in turn, is available in the flue gas as condensable vapors, determines the formation and growth of fouling deposits. In this context, removal of alkali elements becomes vital when inferior coals having high-ash content are utilized for power generation. With the concept of reducing alkali elements present in a coal entering the combustor, whereby the fouling deposits can either be minimized or be weakened due to absence of alkali gluing effect, the ultrasonic leaching of alkali elements from coals is investigated in this study. Ultrasonic water-washing and chemical-washing, in comparison with agitation, are studied in order to estimate the intensification of the alkali removal process by sonication.

  4. Alkali elemental and potassium isotopic compositions of Semarkona chondrules

    USGS Publications Warehouse

    Alexander, C.M. O'D.; Grossman, J.N.

    2005-01-01

    We report measurements of K isotope ratios in 28 Semarkona chondrules with a wide range of petrologic types and bulk compositions as well as the compositions of CPX-mesostasis pairs in 17 type I Semarkona chondrules, including two chondrules with radial alkali zonation and 19 type II chondrules. Despite the wide range in K/Al ratios, no systematic variations in K isotopic compositions were found. Semarkona chondrules do not record a simple history of Rayleigh-type loss of K. Experimentally determined evaporation rates suggest that considerable alkali evaporation would have occurred during chondrule formation. Nevertheless, based on Na CPX-mesostasis distribution coefficients, the alkali contents of the cores of most chondrules in Semarkona were probably established at the time of final crystallization. However, Na CPX-mesostasis distribution coefficients also show that alkali zonation in type I Semarkona chondrules was produced by entry of alkalis after solidification, probably during parent body alteration. This alkali metasomatism may have gone to completion in some chondrules. Our preferred explanation for the lack of systematic isotopic enrichments, even in alkali depleted type I chondrule cores, is that they exchanged with the ambient gas as they cooled. ?? The Meteoritical Society, 2005.

  5. Controlled in-situ dissolution of an alkali metal

    DOEpatents

    Jones, Jeffrey Donald; Dooley, Kirk John; Tolman, David Donald

    2012-09-11

    A method for the controllable dissolution of one or more alkali metals from a vessel containing a one or more alkali metals and/or one or more partially passivated alkali metals. The vessel preferably comprising a sodium, NaK or other alkali metal-cooled nuclear reactor that has been used. The alkali metal, preferably sodium, potassium or a combination thereof, in the vessel is exposed to a treatment liquid, preferably an acidic liquid, more preferably citric acid. Preferably, the treatment liquid is maintained in continuous motion relative to any surface of unreacted alkali metal with which the treatment liquid is in contact. The treatment liquid is preferably pumped into the vessel containing the one or more alkali metals and the resulting fluid is extracted and optionally further processed. Preferably, the resulting off-gases are processed by an off-gas treatment system and the resulting liquids are processed by a liquid disposal system. In one preferred embodiment, an inert gas is pumped into the vessel along with the treatment liquid.

  6. Synkinematic quartz cementation in partially open fractures in sandstones

    NASA Astrophysics Data System (ADS)

    Ukar, Estibalitz; Laubach, Stephen E.; Fall, Andras; Eichhubl, Peter

    2014-05-01

    Faults and networks of naturally open fractures can provide open conduits for fluid flow, and may play a significant role in hydrocarbon recovery, hydrogeology, and CO2 sequestration. However, sandstone fracture systems are commonly infilled, at least to some degree, by quartz cement, which can stiffen and occlude fractures. Such cement deposits can systematically reduce the overall permeability enhancement due to open fractures (by reducing open fracture length) and result in permeability anisotropies. Thus, it is important to identify the factors that control the precipitation of quartz in fractures in order to identify potential fluid conduits under the present-day stress field. In many sandstones, quartz nucleates syntaxially on quartz grain or cement substrate of the fracture wall, and extends between fracture walls only locally, forming pillars or bridges. Scanning electron microscope cathodoluminescence (SEM-CL) images reveal that the core of these bridges are made up of bands of broken and resealed cement containing wall-parallel fluid inclusion planes. The fluid inclusion-rich core is usually surrounded by a layer of inclusion-poor clear quartz that comprises the lateral cement. Such crack-seal textures indicate that this phase was precipitating while the fractures were actively opening (synkinematic growth). Rapid quartz accumulation is generally believed to require temperatures of 80°C or more. Fluid inclusion thermometry and Raman spectroscopy of two-phase aqueous fluid-inclusions trapped in crack-seal bands may be used to track the P-T-X evolution of pore fluids during fracture opening and crack-seal cementation of quartz. Quartz cement bridges across opening mode fractures in the Cretaceous Travis Peak Formation of the tectonically quiescent East Texas Basin indicate individual fractures opened over a 48 m.y. time span at rates of 16-23 µm/m.y. Similarly, the Upper Cretaceous Mesaverde Group in the Piceance Basin, Colorado contains fractures that

  7. Diagenesis of quartz in the Upper Proterozoic Kaimur Sandstones, Son Valley, central India

    NASA Astrophysics Data System (ADS)

    Morad, S.; Bhattacharyya, Ajit; Al-Aasm, I. S.; Ramseyer, K.

    1991-10-01

    The Upper Proterozoic Kaimur Sandstones in central India are quartz-, sublithic- and lithic-arenites cemented by quartz, illite and hematite. Diagenetic quartz occurs in five modes: syntaxial overgrowths, fracture healings, aggregates of small euhedral crystals, quartz resulting from the alteration of detrital silicates and from the recrystallization of quartz. Intergranular pressure dissolution is suggested as the main source of silica with smaller contribution from other sources, such as silica dissolved in meteoric waters, stylolitization, clay-mineral diagenesis, and the alteration of detrital silicates. Studies on the fluid inclusions and oxygen isotopes of diagenetic quartz suggest that meteoric water modified by diagenetic reactions has mediated the quartz cementation.

  8. Treated and untreated rock dust: Quartz content and physical characterization.

    PubMed

    Soo, Jhy-Charm; Lee, Taekhee; Chisholm, William P; Farcas, Daniel; Schwegler-Berry, Diane; Harper, Martin

    2016-11-01

    Rock dusting is used to prevent secondary explosions in coal mines, but inhalation of rock dusts can be hazardous if the crystalline silica (e.g., quartz) content in the respirable fraction is high. The objective of this study is to assess the quartz content and physical characteristics of four selected rock dusts, consisting of limestone or marble in both treated (such as treatment with stearic acid or stearates) and untreated forms. Four selected rock dusts (an untreated and treated limestone and an untreated and treated marble) were aerosolized in an aerosol chamber. Respirable size-selective sampling was conducted along with particle size-segregated sampling using a Micro-Orifice Uniform Deposit Impactor. Fourier Transform Infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analyses were used to determine quartz mass and particle morphology, respectively. Quartz percentage in the respirable dust fraction of untreated and treated forms of the limestone dust was significantly higher than in bulk samples, but since the bulk percentage was low the enrichment factor would not have resulted in any major change to conclusions regarding the contribution of respirable rock dust to the overall airborne quartz concentration. The quartz percentage in the marble dust (untreated and treated) was very low and the respirable fractions showed no enrichment. The spectra from SEM-EDX analysis for all materials were predominantly from calcium carbonate, clay, and gypsum particles. No free quartz particles were observed. The four rock dusts used in this study are representative of those presented for use in rock dusting, but the conclusions may not be applicable to all available materials.

  9. Treated and Untreated Rock Dust: Quartz Content and Physical Characterization

    PubMed Central

    Soo, Jhy-Charm; Lee, Taekhee; Chisholm, William P.; Farcas, Daniel; Schwegler-Berry, Diane; Harper, Martin

    2016-01-01

    SUMMARY Rock dusting is used to prevent secondary explosions in coal mines, but inhalation of rock dusts can be hazardous if the crystalline silica (e.g., quartz) content in the respirable fraction is high. The objective of this study is to assess the quartz content and physical characteristics of four selected rock dusts, consisting of limestone or marble in both treated (such as treatment with stearic acid or stearates) and untreated forms. Four selected rock dusts (an untreated and treated limestone and an untreated and treated marble) were aerosolized in an aerosol chamber. Respirable size-selective sampling was conducted along with particle size-segregated sampling using a Micro-Orifice Uniform Deposit Impactor. Fourier Transform Infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analyses were used to determine quartz mass and particle morphology, respectively. Quartz percentage in the respirable dust fraction of untreated and treated forms of the limestone dust was significantly higher than in bulk samples, but since the bulk percentage was low the enrichment factor would not have resulted in any major change to conclusions regarding the contribution of respirable rock dust to the overall airborne quartz concentration. The quartz percentage in the marble dust (untreated and treated) was very low and the respirable fractions showed no enrichment. The spectra from SEM-EDX analysis for all materials were predominantly from calcium carbonate, clay, and gypsum particles. No free quartz particles were observed. The four rock dusts used in this study are representative of those presented for use in rock dusting, but the conclusions may not be applicable to all available materials. PMID:27314444

  10. Quartz concentration trends in metal and nonmetal mining.

    PubMed

    Watts, Winthrop F; Huynh, Tran B; Ramachandran, Gurumurthy

    2012-01-01

    From 1974 through 2010, the Mine Safety and Health Administration (MSHA) collected nearly 147,000 respirable dust samples with a mass of at least 0.1 mg and a minimum of 1% quartz. These samples represent about 50% of all respirable dust compliance samples collected by MSHA. Analysis of these data shows that pockets of high concentrations and overexposure continue to exist. At underground mines, from 2005 to 2010, occupations with >20% of the samples exceeding the permissible exposure limit (PEL) and geometric mean quartz concentrations exceeding the ACGIH threshold limit value of 25 μg/m(3) included mucking, crusher operator, general laborer/utility, and front-end loader operator. During the same period, stone and rock saw operators and bagger and packers working at surface mines and mills also had >20% of the samples exceeding the PEL and geometric mean quartz concentrations >25 μg/m(3). Regardless of mine type or location, slow but steady improvement in exposure levels is seen in jobs involving crushing operations, which are widespread in the mining industry. Crusher operators are more likely to work in an enclosed area where it is easier to apply dust controls and air conditioning. A downward trend is also observed for vehicle equipment operators who drive load-haul-dumps, front-end loaders, trucks, and similar equipment. Crusher operators and vehicle equipment operators represent occupational categories that are widely sampled by MSHA inspectors. A small but statistically significant reduction in the overall mean respirable quartz dust and quartz concentrations from 1993 to 2010 was observed in most commodity groups. Variability from year to year and between commodities is high. Reduction in respirable quartz dust concentration does not necessarily correspond to a reduction in quartz concentration within the same commodity group. These trends are consistent with those reported in previous studies.

  11. Soil chemistry in lithologically diverse datasets: the quartz dilution effect

    USGS Publications Warehouse

    Bern, Carleton R.

    2009-01-01

    National- and continental-scale soil geochemical datasets are likely to move our understanding of broad soil geochemistry patterns forward significantly. Patterns of chemistry and mineralogy delineated from these datasets are strongly influenced by the composition of the soil parent material, which itself is largely a function of lithology and particle size sorting. Such controls present a challenge by obscuring subtler patterns arising from subsequent pedogenic processes. Here the effect of quartz concentration is examined in moist-climate soils from a pilot dataset of the North American Soil Geochemical Landscapes Project. Due to variable and high quartz contents (6.2–81.7 wt.%), and its residual and inert nature in soil, quartz is demonstrated to influence broad patterns in soil chemistry. A dilution effect is observed whereby concentrations of various elements are significantly and strongly negatively correlated with quartz. Quartz content drives artificial positive correlations between concentrations of some elements and obscures negative correlations between others. Unadjusted soil data show the highly mobile base cations Ca, Mg, and Na to be often strongly positively correlated with intermediately mobile Al or Fe, and generally uncorrelated with the relatively immobile high-field-strength elements (HFS) Ti and Nb. Both patterns are contrary to broad expectations for soils being weathered and leached. After transforming bulk soil chemistry to a quartz-free basis, the base cations are generally uncorrelated with Al and Fe, and negative correlations generally emerge with the HFS elements. Quartz-free element data may be a useful tool for elucidating patterns of weathering or parent-material chemistry in large soil datasets.

  12. Near atomically smooth alkali antimonide photocathode thin films

    NASA Astrophysics Data System (ADS)

    Feng, Jun; Karkare, Siddharth; Nasiatka, James; Schubert, Susanne; Smedley, John; Padmore, Howard

    2017-01-01

    Nano-roughness is one of the major factors degrading the emittance of electron beams that can be generated by high efficiency photocathodes, such as the thermally reacted alkali antimonide thin films. In this paper, we demonstrate a co-deposition based method for producing alkali antimonide cathodes that produce near atomic smoothness with high reproducibility. We calculate the effect of the surface roughness on the emittance and show that such smooth cathode surfaces are essential for operation of alkali antimonide cathodes in high field, low emittance radio frequency electron guns and to obtain ultracold electrons for ultrafast electron diffraction applications.

  13. Increasing Class C fly ash reduces alkali silica reactivity

    SciTech Connect

    Hicks, J.K.

    2007-07-01

    Contrary to earlier studies, it has been found that incremental additions of Class C fly ash do reduce alkali silica reactivity (ASR), in highly reactive, high alkali concrete mixes. AST can be further reduced by substituting 5% metakaolin or silica fume for the aggregate in concrete mixes with high (more than 30%) Class C fly ash substitution. The paper reports results of studies using Class C fly ash from the Labadie Station plant in Missouri which typically has between 1.3 and 1.45% available alkalis by ASTM C311. 7 figs.

  14. Control of alkali species in gasification systems: Final report

    SciTech Connect

    Turn, S.; Kinoshita, C.; Ishimura, D. Zhou, J.; Hiraki, T.; Masutani, S.

    2000-07-13

    Gas-phase alkali metal compounds contribute to fouling, slagging, corrosion, and agglomeration problems in energy conversion facilities. One mitigation strategy applicable at high temperature is to pass the gas stream through a fixed bed sorbent or getter material, which preferentially absorbs alkali via physical adsorption or chemisorption. This report presents results of an experimental investigation of high-temperature alkali removal from a hot filtered gasifier product gas stream using a packed bed of sorbent material. Two getter materials, activated bauxite and emathlite, were tested at two levels of space time by using two interchangeable reactors of different internal diameters. The effect of getter particle size was also investigated.

  15. Electrochemical cell utilizing molten alkali metal electrode-reactant

    DOEpatents

    Virkar, Anil V.; Miller, Gerald R.

    1983-11-04

    An improved electrochemical cell comprising an additive-modified molten alkali metal electrode-reactant and/or electrolyte is disclosed. Various electrochemical cells employing a molten alkali metal, e.g., sodium, electrode in contact with a cationically conductive ceramic membrane experience a lower resistance and a lower temperature coefficient of resistance whenever small amounts of selenium are present at the interface of the electrolyte and the molten alkali metal. Further, cells having small amounts of selenium present at the electrolyte-molten metal interface exhibit less degradation of the electrolyte under long term cycling conditions.

  16. Geophysical anomalies and quartz microstructures, Eastern Warburton Basin, North-east South Australia: Tectonic or impact shock metamorphic origin?

    NASA Astrophysics Data System (ADS)

    Glikson, Andrew Y.; Uysal, I. Tonguç; Fitz Gerald, John D.; Saygin, Erdinc

    2013-03-01

    The Eastern Warburton Basin, Northeast South Australia, features major geophysical anomalies, including a magnetic high of near-200 nT centred on a 25 km-wide magnetic low (< 100 nT), interpreted in terms of a magmatic body below 6 km depth. A distinct seismic tomographic low velocity anomaly may reflect its thick (9.5 km) sedimentary section, high temperatures and possible deep fracturing. Scanning electron microscope (SEM) analyses of granites resolves microbreccia veins consisting of micron-scale particles injected into resorbed quartz grains. Planar and sub-planar elements in quartz grains (Qz/PE) occur in granites, volcanics and sediments of the > 30,000 km-large Eastern Warburton Basin. The Qz/PE include multiple intersecting planar to curved sub-planar elements with relic lamellae less than 2 μm wide with spacing of 4-5 μm. Qz/PE are commonly re-deformed, displaying bent and wavy patterns accompanied with fluid inclusions. U-stage measurements of a total of 243 planar sets in 157 quartz grains indicate dominance of ∏{10-12}, ω{10-13} and subsidiary §{11-22}, {22-41}, m{10-11} and x{51-61} planes. Transmission Electron Microscopy (TEM) analysis displays relic narrow ≤ 1 μm-wide lamellae and relic non-sub grain boundaries where crystal segments maintain optical continuity. Extensive sericite alteration of feldspar suggests hydrothermal alteration to a depth of 500 m below the unconformity which overlies the Qz/PE-bearing Warburton Basin terrain. The data are discussed in terms of (A) Tectonic-metamorphic deformation and (B) impact shock metamorphism producing planar deformation features (Qz/PDF). Deformed Qz/PE are compared to re-deformed Qz/PDFs in the Sudbury, Vredefort, Manicouagan and Charlevoix impact structures. A 4-5 km uplift of the Big Lake Granite Suite during 298-295 Ma is consistent with missing of upper Ordovician to Devonian strata and possible impact rebound. The occurrence of circular seismic tomography anomalies below the east

  17. Coating Characterization with the Quartz Crystal Microbalance

    NASA Astrophysics Data System (ADS)

    Sturdy, Lauren F.

    The quartz crystal microbalance is a sensitive tool that can be used to measure the mass, modulus and phase angle of films of appropriate thicknesses. It is can be applied to systems with very varied properties, from liquid to solid, and under many different conditions. In this thesis its capabilities have been used to study the properties of several different systems of relevance to the coatings, art conservation, and rubber communities, in the process of which new techniques and tools were developed to analyze data and improve QCM data collection and experimental design. Alkyd resins, which have been used in artists' paints since the twentieth century, are the subject of the first studies. Alkyds are oil-modified polyesters. These resins are of interest because of their relatively recent use in art and how little is known of the mechanical properties in the early stages of cure. The QCM was shown to be sensitive to the curing process, changes in temperature, and mass change due to exposure to water. Kinetic studies during the first days of curing showed that the curing process can be divided into three regions. The first is dominated by solvent evaporation. In the second, oxygen absorption dominates and the mechanical properties change rapidly. The final stage extends from when the film is touch dry after about a day to years and is characterized by mass loss and continued increases in the modulus. Studying the curing at different temperatures revealed that the reactions do proceed much more rapidly at higher temperatures and an overall energy of activation was calculated for the curing process. The mechanical properties of alkyd resins containing zinc oxide, a white pigment, were studied with the QCM, nanoindentation and dynamic mechanical analysis. These measurements showed increases in the modulus with the inclusion of zinc oxide, and the QCM data showed that the second region started at earlier times as the pigment concentration was increased. Linseed oil is

  18. Do ages of authigenic K-feldspar date the formation of Mississippi valley-type Pb-Zn deposits, central and southeastern United States?: Pb isotopic evidence

    USGS Publications Warehouse

    Aleinikoff, J.N.; Walter, M.; Kunk, M.J.; Hearn, P.P.

    1993-01-01

    Pb concentrations and isotopic compositions have been determined for authigenic overgrowths and detrital cores of K-feldspar from Cambrian sedimentary rocks in Texas, Tennessee, and Pennsylvania (group 1) and southeastern Missouri (group 2). Overgrowths and cores were separated by abrasion and analyzed separately. The disparity in Pb isotopic ratios of group 1 overgrowths and Pb in nearby Mississippi Valley-type deposits implies that the regional authigenic K-feldspar event was not synchronous with ore deposition in the southeastern United States. In contrast, Pb isotopic ratios from group 2 authigenic K-feldspar are similar to ratios in ores of southeastern Missouri, suggesting a genetic relation in late Paleozoic time. -from Authors

  19. Fluor-ferro-leakeite, NaNa2(FC2+2Fe3+2Li)Si8O22F2, a new alkali amphibole from the Canada Pinabete pluton, Questa, New Mexico, U.S.A.

    USGS Publications Warehouse

    Hawthorne, F.C.; Oberti, R.; Ungaretti, L.; Ottolini, L.; Grice, Joel D.; Czamanske, G.K.

    1996-01-01

    Fluor-ferro-leakeite is a new amphibole species from the Canada Pinabete pluton, Questa, New Mexico, U.S.A.; it occurs in association with quartz, alkali feldspar, acmite, ilmenite, and zircon. It forms as anhedral bluish black crystals elongated along c and up to 1 mm long. It is brittle, H = 6, Dmeas = 3.37 g/cm3, Dcalc = 3.34 g/cm3. In plane-polarized light, it is strongly pleochroic, X = very dark indigo blue, Y = gray blue, Z = yellow green; X ??? c = 10?? (in ??obtuse), Y = b, Z ??? a = 4?? (in ?? obtuse), with absorption X > Y > Z. Fluor-ferro-leakeite is biaxial positive, ?? = 1.675(2), ??= 1.683(2), ?? = 1.694(1); 2V = 87(2)??; dispersion is not visible because of the strong absorption. Fluor-ferro-leakeite is monoclinic, space group C2/m, a = 9.792(1), b = 17.938(1), c = 5.3133(4) A??, ??= 103.87(7)??, V = 906.0(1) A??3, Z = 2. The ten strongest X-ray diffraction lines in the powder pattern are [d(I,hkl)]: 2.710(100,151), 2.536(92,202), 3.404(57,131), 4.481(54,040), 8.426(45,110), 2.985(38,241), 2.585(38,061), 3.122(29,310), 2.165(26,261), and 1.586(25,403). Analysis by a combination of electron microprobe, ion microprobe, and crystal-structure refinement (Hawthorne et al. 1993) gives SiO2 51.12, Al2O3 1.13, TiO2 0.68, Fe2O3 16.73, FeO 8.87, MgO 2.02, MnO 4.51, ZnO 0.57, CaO 0.15, Na2O 9.22, K2O 1.19, Li2O 0.99, F 2.87, H2Ocalc 0.60, sum 99.44 wt%. The formula unit, calculated on the basis of 23 O atoms, is (K0.23Na0.76)(Na1.97Ca0.03)(Mg 0.46Fe2+1.4Mn2+0.59Zn0.07Fe3+1.93-Ti 0.08Al0.02Li0.61])(Si7.81Al 0.19)O22(F1.39OH0.61). A previous crystal-structure refinement (Hawthorne et al. 1993) shows Li to be completely ordered at the M3 site. Fluor-ferro-leakeite, ideally NaNa2(Fe2+2Fe3+2Li)Si8O22F2, is related to leakeite, NaNa2(Mg2Fe3+3Li)Si 8O22(OH)2, by the substitutions Fe2+ ??? Mg and F ??? OH.

  20. A quartz crystal biosensor for measurement in liquids.

    PubMed

    Kösslinger, C; Drost, S; Aberl, F; Wolf, H; Koch, S; Woias, P

    1992-01-01

    The detection of anti-human immunodeficiency virus (HIV) antibodies by means of synthetic HIV peptide immobilized on a piezoelectric quartz sensor is demonstrated. The measurement set-up consists of an oscillator circuit, a suitably modified AT-cut thickness-shear-mode quartz crystal with gold electrodes, which is housed in a special reaction vessel, and a computer-controlled frequency counter for the registration of the measured frequency values. The quartz crystal is adapted for a steady operation in liquids at a frequency of 20 MHz. In phosphate-buffered saline solution the oscillator reaches a stability of about 0.5 Hz within a few seconds, of about 2 Hz within 10 min and about 30 Hz within 1 h. The frequency shift due to the adsorption of various proteins to the uncoated sensor surface has been investigated. It can be shown that a stable adsorptive binding of proteins to an oscillating gold surface is feasible and can be used for the immobilization of a receptor layer (e.g. HIV peptide). Specific binding of the anti-HIV monoclonal antibody to the HIV peptide immobilized on the quartz sensor is demonstrated. Control experiments show, however, additional unspecific binding. According to the experiments, the Sauerbrey formula gives a sufficiently accurate value for the decrease of the resonant frequency due to adsorption or binding of macromolecular proteins on the quartz crystal surface.

  1. Nature of radiation-induced defects in quartz

    SciTech Connect

    Wang, Bu; Yu, Yingtian; Bauchy, Mathieu; Pignatelli, Isabella; Sant, Gaurav

    2015-07-14

    Although quartz (α-form) is a mineral used in numerous applications wherein radiation exposure is an issue, the nature of the atomistic defects formed during radiation-induced damage has not been fully clarified. Especially, the extent of oxygen vacancy formation is still debated, which is an issue of primary importance as optical techniques based on charged oxygen vacancies have been utilized to assess the level of radiation damage in quartz. In this paper, molecular dynamics simulations are applied to study the effects of ballistic impacts on the atomic network of quartz. We show that the defects that are formed mainly consist of over-coordinated Si and O, as well as Si–O connectivity defects, e.g., small Si–O rings and edge-sharing Si tetrahedra. Oxygen vacancies, on the contrary, are found in relatively low abundance, suggesting that characterizations based on E′ centers do not adequately capture radiation-induced structural damage in quartz. Finally, we evaluate the dependence on the incident energy, of the amount of each type of the point defects formed, and quantify unambiguously the threshold displacement energies for both O and Si atoms. These results provide a comprehensive basis to assess the nature and extent of radiation damage in quartz.

  2. Respirable quartz exposure at silica flour producers, 1975-1986

    SciTech Connect

    Not Available

    1988-10-01

    A study was conducted on respirable quartz exposures at silica flour producers for the period 1975-1986. In 1979, evaluations were performed at two silica-flour facilities in Illinois for the purpose of determining worker exposure to respirable quartz. It was evident that workers at both sites had a high incidence of silicosis. Continuing with the effort, visits were made to 28 silica-flour producers between 1975 and 1986. A total of 2,175 respirable quartz samples were examined and 52% of these exceeded the Mining Safety and Health Act (MSHA) Permissible Exposure Level (PEL). In 1984, 1985, and 1986, the percentages of samples taken which exceeded the PEL were 44, 46, and 34, respectively. The Recommended Exposure Level (REL) as established in NIOSH for pure respirable quartz limits exposure to a 10-hour time-weighted average level of 0.05mg/m{sup 3}. The percentage of samples of respirable quartz which exceeded this REL for the same time period were 74, 76, and 69, respectively. According to the authors, while the figures since 1979 do show the exposures to be dropping, there were still far more overexposures in this industry than in most other metal and nonmetal commodities. Without greater efforts to meet the levels required, the new cases of silicosis will continue to occur among workers in this industry.

  3. Direct measurement of Ar diffusion profiles in a gem-quality Madagascar K-feldspar using the ultra-violet laser ablation microprobe (UVLAMP)

    NASA Astrophysics Data System (ADS)

    Wartho, Jo-Anne; Kelley, Simon P.; Brooker, Richard A.; Carroll, Mike R.; Villa, Igor M.; Lee, Martin R.

    1999-06-01

    Controversy surrounding the mechanisms and controls on argon diffusion in K-feldspar has led us to undertake direct diffusion measurements on a crystal with simple microtextures, over a range of temperatures. Measurements of argon diffusion profiles in a gem-quality iron-rich orthoclase heated in a cold seal apparatus, have been undertaken in situ using an ultra-violet laser ablation microprobe (UVLAMP) technique. The results agree very closely with the previously determined bulk values for Benson Mines orthoclase (activation energy ( E)=43.8±1 kcal mol -1) and vacuum furnace cycle-heating studies of K-feldspars ( E=46±6 kcal mol -1). However, instead of defining a single activation energy ( E) and diffusion coefficient ( Do), the data yield two sets of parameters: a low-temperature (550-720°C) array with an E of 47.2±2.5 kcal mol -1 (198.2±10.5 kJ mol -1) and a Do of 0.0374 +0.1123-0.0281 cm 2 s -1, and a high-temperature (725-1019°C) array with an E of 63.8±3.4 kcal mol -1 (268.0±14.3 kJ mol -1) and a Do of 55.0 +225.5-44.2 cm 2 s -1. The new results closely reproduce two sets of apparent activation energies previously measured in cycle-heating studies of Madagascar K-feldspar (40±3 and 57±3 kcal mol -1). Previous interpretations of the two arrays have included multiple domains with variable activation energies and fast track diffusion. However, the UV depth profile analyses indicate simple diffusion to the grain surface and importantly, diffusion radii calculated by combining the UVLAMP and cycle-heating data, are the same as the physical grain sizes used in the experiments, around 1 mm. Vacuum furnace stepped heating experiments on slowly cooled K-feldspars have been interpreted as showing diffusion radii of around 6 μm and indicate complex populations of sub-grains. This study indicates that Madagascar K-feldspar and thus probably all gem-quality K-feldspars act as single diffusion domains and that short-circuit (or pipe) diffusion was not an

  4. Reply to the comment of Lovera et al. (2015) on “Systematic variations of argon diffusion in feldspars and implications for thermochronometry” by Cassata and Renne

    NASA Astrophysics Data System (ADS)

    Cassata, W. S.; Renne, P. R.

    2015-05-01

    In this reply we address remarks from Lovera et al. (2015) regarding experiments that we conducted on K-feldspar from Madagascar and their previously published diffusion experiments. Observations of curvature on Arrhenius plots obtained from multiple-domain K-feldspars, as discussed by Lovera et al. (2015), are consistent with the general conclusion of our paper that both sub-grain domains and structural modifications associated with laboratory heating cause deviations from linearity on Arrhenius plots. We review observations of non-linearity that are inconsistent with multiple-domain theory (e.g., upward curvature on plagioclase Arrhenius plots) to support our contention that structural transitions are an important consideration.

  5. The 4843 Alkali Metal Storage Facility Closure Plan

    SciTech Connect

    Not Available

    1991-06-01

    The 4843 AMSF has been used primarily to provide a centralized building to receive and store dangerous and mixed alkali metal waste, including sodium and lithium, which has been generated at the Fast Flux Test Facility and at various other Hanford Site operations that used alkali metals. Most of the dangerous and mixed alkali metal waste received consists of retired equipment from liquid sodium processes. The unit continues to store material. In general, only solid alkali metal waste that is water reactive is stored at the 4843 AMSF. The 4843 AMSF will be closed in a manner consistent with Ecology guidelines and regulations (WAC 173-303-610). The general closure procedure is detailed as follows.

  6. Effect of cavitation on removal of alkali elements from coal

    NASA Astrophysics Data System (ADS)

    Srivalli, H.; Nirmal, L.; Nagarajan, R.

    2015-12-01

    The main impurities in coal are sulphur, ash and alkali. On combustion, the volatile forms of these impurities are either condensed on the boilers, or emitted in the form of potentially hazardous gases. The alkali elements present in coal help the fly ash particles adhere to boiler surfaces by providing a wet surface on which collection of these particles can take place. Use of ultrasonic techniques in cleaning of coal has stirred interest among researchers in recent times. Extraction of alkali elements by cavitation effect using low-frequency ultrasound, in the presence of reagents (HNO3 and H2O2) is reported in this paper. Powdered coal was dissolved with the reagent and exposed to ultrasonic fields of various frequencies at different time intervals. The treated solution is filtered and tested for alkali levels.

  7. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, M.M.; Ma, Y.; Visco, S.J.; DeJonghe, L.

    1995-08-22

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  8. Electric field-induced softening of alkali silicate glasses

    SciTech Connect

    McLaren, C.; Heffner, W.; Jain, H.; Tessarollo, R.; Raj, R.

    2015-11-02

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  9. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1995-01-01

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  10. Hall Determination of Atomic Radii of Alkali Metals

    ERIC Educational Resources Information Center

    Houari, Ahmed

    2008-01-01

    I will propose here an alternative method for determining atomic radii of alkali metals based on the Hall measurements of their free electron densities and the knowledge of their crystal structure. (Contains 2 figures.)

  11. Late Paleozoic deformation and exhumation in the Sierras Pampeanas (Argentina): 40Ar/39Ar-feldspar dating constraints

    NASA Astrophysics Data System (ADS)

    Löbens, Stefan; Oriolo, Sebastián; Benowitz, Jeff; Wemmer, Klaus; Layer, Paul; Siegesmund, Siegfried

    2016-09-01

    Systematic 40Ar/39Ar feldspar data obtained from the Sierras Pampeanas are presented, filling the gap between available high- (>~300 °C) and low-temperature (<~150 °C) thermochronological data. Results show Silurian-Devonian exhumation related to the late stages of the Famatinian/Ocloyic Orogeny for the Sierra de Pocho and the Sierra de Pie de Palo regions, whereas the Sierras de San Luis and the Sierra de Comechingones regions record exhumation during the Carboniferous. Comparison between new and available data points to a Carboniferous tectonic event in the Sierras Pampeanas, which represents a key period to constrain the early evolution of the proto-Andean margin of Gondwana. This event was probably transtensional and played a major role during the evolution of the Paganzo Basin as well as during the emplacement of alkaline magmatism in the retroarc.

  12. Electrochemical cell having an alkali-metal-nitrate electrode

    DOEpatents

    Roche, M.F.; Preto, S.K.

    1982-06-04

    A power-producing secondary electrochemical cell includes a molten alkali metal as the negative-electrode material and a molten-nitrate salt as the positive-electrode material. The molten material in the respective electrodes are separated by a solid barrier of alkali-metal-ion conducting material. A typical cell includes active materials of molten sodium separated from molten sodium nitrate and other nitrates in mixture by a layer of sodium ..beta..'' alumina.

  13. Alkali absorption and citrate excretion in calcium nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p < 0.001). In 11 patients with distal renal tubular acidosis (RTA), urinary citrate excretion was subnormal relative to net GI alkali absorption, with data from most patients residing outside the 95% confidence ellipse described for normal subjects. However, the normal relationship between urinary citrate and net absorbed alkali was maintained in 11 patients with chronic diarrheal syndrome (CDS) and in 124 stone-forming patients devoid of RTA or CDS, half of whom had "idiopathic" hypocitraturia. The 18 stone-forming patients without RTA or CDS received potassium citrate (30-60 mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p < 0.0001), with the slope indistinguishable from that of normal subjects. Thus, urinary citrate was normally dependent on the net GI absorption of alkali. This dependence was less marked in RTA, confirming the renal origin of hypocitraturia. However, the normal dependence was maintained in CDS and in idiopathic hypocitraturia, suggesting that reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  14. Rock Degradation by Alkali Metals: A Possible Lunar Erosion Mechanism.

    PubMed

    Naughton, J J; Barnes, I L; Hammond, D A

    1965-08-06

    When rocks melt under ultrahigh-vacuum conditions, their alkali components volatilize as metals. These metal vapors act to comminute polycrystalline rocks to their component minerals. The resultant powder is porous and loosely packed and its characteristics may be compatible with the lunar surface as revealed by the Ranger photographs. If meteorite impact or lunar volcanism has produced vaporization or areas of molten lava, alkali erosion may have given dust of this character in adjacent solid areas.

  15. Atomistic pathways of the pressure-induced densification of quartz

    NASA Astrophysics Data System (ADS)

    Liang, Yunfeng; Miranda, Caetano R.; Scandolo, Sandro

    2015-10-01

    When quartz is compressed at room temperature it retains its crystal structure at pressures well above its stability domain (0-2 GPa), and collapses into denser structures only when pressure reaches 20 GPa. Depending on the experimental conditions, pressure-induced densification can be accompanied by amorphization; by the formation of crystalline, metastable polymorphs; and can be preceded by the appearance of an intermediate phase, quartz II, with unknown structure. Based on molecular dynamic simulations, we show that this rich phenomenology can be rationalized through a unified theoretical framework of the atomistic pathways leading to densification. The model emphasizes the role played by the oxygen sublattice, which transforms from a bcc-like order in quartz into close-packed arrangements in the denser structures, through a ferroelastic instability of martensitic nature.

  16. Probing biomechanical properties with a centrifugal force quartz crystal microbalance.

    PubMed

    Webster, Aaron; Vollmer, Frank; Sato, Yuki

    2014-10-21

    Application of force on biomolecules has been instrumental in understanding biofunctional behaviour from single molecules to complex collections of cells. Current approaches, for example, those based on atomic force microscopy or magnetic or optical tweezers, are powerful but limited in their applicability as integrated biosensors. Here we describe a new force-based biosensing technique based on the quartz crystal microbalance. By applying centrifugal forces to a sample, we show it is possible to repeatedly and non-destructively interrogate its mechanical properties in situ and in real time. We employ this platform for the studies of micron-sized particles, viscoelastic monolayers of DNA and particles tethered to the quartz crystal microbalance surface by DNA. Our results indicate that, for certain types of samples on quartz crystal balances, application of centrifugal force both enhances sensitivity and reveals additional mechanical and viscoelastic properties.

  17. Frequency interference between two mesa-shaped quartz crystal microbalances.

    PubMed

    Shen, Feng; O'Shea, Sean J; Lee, Kwok H; Lu, Pin; Ng, Teng Y

    2003-06-01

    The multichannel quartz crystal microbalance (MQCM) is very attractive for biosensor applications. The principle of the MQCM design involves fabricating arrays of quartz microbalances on a single substrate, and it is important that the individual sensor performance is not influenced by the neighboring devices. Feasible ways to control the coupling of acoustical energy within a MQCM structure are to increase the difference in the resonance frequency between the electroded and unelectroded portions of the substrate; and a practical way to achieve this is to use mesa structures. In this paper, the frequency interference between two mesa-shaped quartz crystal microbalances is investigated using Mindlin's theory. The results show that even a very small mesa height (approximately 5% of the plate thickness) can greatly reduce the frequency interference and more effectively trap the acoustic energy. This allows for a broader design window and higher packing density for MQCM applications.

  18. Luminescence quartz dating of lime mortars. A first research approach.

    PubMed

    Zacharias, N; Mauz, B; Michael, C T

    2002-01-01

    Lime mortars mixed with sand are well suited for connecting structural materials, like stones and bricks, due to the mechanical properties this material exhibits. Their extensive use in architectural and decorative works during the last 4000 years motivated the introduction of the 'Luminescence clock' for age determination of mortars. The same principles as for quartz optically stimulated luminescence (OSL) dating of sediments were applied for age estimation of a mortar fragment removed from a Byzantine church monument dated by archaeological means to 1050-1100 years ago (the first half of the 10th century). The OSL from the quartz was monitored under blue light stimulation and UV detection, using a single-aliquot-regenerative-dose protocol. The quartz-OSL dating of the mortar resulted in 870 +/- 230 a. TL polymineral fine grain dating was also performed on a brick fragment which was connected to the mortar, resulting in a TL age of 1095 +/- 190 a.

  19. Grain boundary diffusion of titanium in polycrystalline quartz and its implications for titanium in quartz (TitaniQ) geothermobarometry

    NASA Astrophysics Data System (ADS)

    Bromiley, Geoffrey David; Hiscock, Matthew

    2016-04-01

    We have performed a series of experiments to measure diffusivity of Ti in polycrystalline quartz under high pressure/temperature, nominally anhydrous conditions. Resulting diffusion profiles reveal operation of both slow lattice diffusion and faster grain boundary diffusion. Over the temperature range investigated, 1000-1400 °C, grain boundary diffusion of Ti is between 3 and 4 orders of magnitude faster than lattice diffusion and can be expressed by the following Arrhenius relationship: Grain boundary diffusion is expected to have a considerable influence on Ti mobility in the crust in Si-rich rocks under fluid-absent conditions, especially in fine-grained rocks, with grain boundaries acting as fast conduits for transporting Ti. This has important consequences for the application of Ti in quartz geothermobarometry (TitaniQ). Grain boundary diffusion is a viable mechanism for re-equilibrating Ti contents in quartz-rich rocks to lower values, for example during dynamic recrystallization. This implies that TitaniQ can be applied to relatively low temperatures (below 600 °C) although zonation of Ti contents in larger quartz grains is expected due to the relative sluggishness of lattice diffusion under these conditions and because fast diffusion in grain boundary regions effectively inhibits growth entrapment. Grain boundary diffusion for Ti also has implications for the activity of Ti in quartz-rich rocks and application of the TitaniQ geothermobarometer.

  20. Pb isotope variations among Bandelier Tuff feldspars: No evidence for a long-lived silicic magma chamber

    NASA Astrophysics Data System (ADS)

    Wolff, J. A.; Ramos, F. C.

    2003-06-01

    We report, for the first time, high-precision Pb isotope data from a high-silica rhyolite. Prior work on Sr isotopes in the 1.6 Ma Otowi Member of the Bandelier Tuff (Valles caldera, New Mexico) established that large 87Sr/86Sr variations exist among Otowi glasses and sanidine phenocrysts. While the glasses display unequivocal evidence for wall-rock contamination of the Otowi magma following sanidine growth, a positive correlation between 87Sr/86Sri and 87Rb/86Sr among the feldspars could be interpreted as either a mixing line or an in situ magmatic isochron dating a differentiation event ˜270 k.y. prior to eruption. The 206Pb/204Pb and 87Sr/86Sr ranges for Otowi sanidines are 17.790 ± 0.002 to 17.831 ± 0.002 and 0.7074 0.7052, respectively. This Pb isotope range cannot be produced by radiogenic ingrowth at the U/Pb ratios of the host magma on any geologically reasonable time scale, and hence is unequivocal evidence for open-system behavior of the Otowi magma prior to and/or concurrent with feldspar growth. Open-system behavior is predicted to control Sr isotope variations due to much higher concentrations of Sr, relative to Pb, in the country rock than in the magma. These observations therefore undermine any age significance of the Rb-Sr isotope variations. In the absence of supporting data, Rb-Sr relations alone do not impart any information about residence times of high-silica rhyolite magmas with subchondritic concentrations of Sr.