Electron detachment energies in high-symmetry alkali halide solvated-electron anions
NASA Astrophysics Data System (ADS)
Anusiewicz, Iwona; Berdys, Joanna; Simons, Jack; Skurski, Piotr
2003-07-01
We decompose the vertical electron detachment energies (VDEs) in solvated-electron clusters of alkali halides in terms of (i) an electrostatic contribution that correlates with the dipole moment (μ) of the individual alkali halide molecule and (ii) a relaxation component that is related to the polarizability (α) of the alkali halide molecule. Detailed numerical ab initio results for twelve species (MX)n- (M=Li,Na; X=F,Cl,Br; n=2,3) are used to construct an interpolation model that relates the clusters' VDEs to their μ and α values as well as a cluster size parameter r that we show is closely related to the alkali cation's ionic radius. The interpolation formula is then tested by applying it to predict the VDEs of four systems [i.e., (KF)2-, (KF)3-, (KCl)2-, and (KCl)3-] that were not used in determining the parameters of the model. The average difference between the model's predicted VDEs and the ab initio calculated electron binding energies is less than 4% (for the twelve species studied). It is concluded that one can easily estimate the VDE of a given high-symmetry solvated electron system by employing the model put forth here if the α, μ and cation ionic radii are known. Alternatively, if VDEs are measured for an alkali halide cluster and the α and μ values are known, one can estimate the r parameter, which, in turn, determines the "size" of the cluster anion.
Electrolytic systems and methods for making metal halides and refining metals
Holland, Justin M.; Cecala, David M.
2015-05-26
Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.
Li, Xiaobo; Patterson, Howard H.
2013-01-01
Dicyanoaurate, dicyanoargentate, and dicyanocuprate ions in solution and doped in different alkali halide hosts exhibit interesting photophysical and photochemical behavior, such as multiple emission bands, exciplex tuning, optical memory, and thermochromism. This is attributed to the formation of different sizes of nanoclusters in solution and in doped hosts. A series of spectroscopic methods (luminescence, UV-reflectance, IR, and Raman) as well as theoretical calculations have confirmed the existence of excimers and exciplexes. This leads to the tunability of these nano systems over a wide wavelength interval. The population of these nanoclusters varies with temperature and external laser irradiation, which explains the thermochromism and optical memory. DFT calculations indicate an MLCT transition for each nanocluster and the emission energy decreases with increasing cluster size. This is in agreement with the relatively long life-time for the emission peaks and the multiple emission peaks dependence upon cluster concentration. PMID:28811397
Alkali metal and alkali earth metal gadolinium halide scintillators
Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.
2016-08-02
The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.
The Effect of Radiation "Memory" in Alkali-Halide Crystals
NASA Astrophysics Data System (ADS)
Korovkin, M. V.; Sal'nikov, V. N.
2017-01-01
The exposure of the alkali-halide crystals to ionizing radiation leads to the destruction of their structure, the emergence of radiation defects, and the formation of the electron and hole color centers. Destruction of the color centers upon heating is accompanied by the crystal bleaching, luminescence, and radio-frequency electromagnetic emission (REME). After complete thermal bleaching of the crystal, radiation defects are not completely annealed, as the electrons and holes released from the color centers by heating leave charged and locally uncompensated defects. Clusters of these "pre centers" lead to electric microheterogeneity of the crystal, the formation of a quasi-electret state, and the emergence of micro-discharges accompanied by radio emission. The generation of REME associated with residual defectiveness, is a manifestation of the effect of radiation "memory" in dielectrics.
PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS
Moore, R.H.
1962-10-01
A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlcek, Lukas; Uhlik, Filip; Moucka, Filip
We evaluate the ability of selected classical molecular models to describe the thermodynamic and structural aspects of gas-phase hydration of alkali halide ions and the formation of small water clusters. To understand the effect of many-body interactions (polarization) and charge penetration effects on the accuracy of a force field, we perform Monte Carlo simulations with three rigid water models using different functional forms to account for these effects: (i) point charge non-polarizable SPC/E, (ii) Drude point charge polarizable SWM4- DP, and (iii) Drude Gaussian charge polarizable BK3. Model predictions are compared with experimental Gibbs free energies and enthalpies of ionmore » hydration, and with microscopic structural properties obtained from quantum DFT calculations. We find that all three models provide comparable predictions for pure water clusters and cation hydration, but differ significantly in their description of anion hydration. None of the investigated classical force fields can consistently and quantitatively reproduce the experimental gas phase hydration thermodynamics. The outcome of this study highlights the relation between the functional form that describes the effective intermolecular interactions and the accuracy of the resulting ion hydration properties.« less
Indirect NMR spin-spin coupling constants in diatomic alkali halides
NASA Astrophysics Data System (ADS)
Jaszuński, Michał; Antušek, Andrej; Demissie, Taye B.; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth
2016-12-01
We report the Nuclear Magnetic Resonance (NMR) spin-spin coupling constants for diatomic alkali halides MX, where M = Li, Na, K, Rb, or Cs and X = F, Cl, Br, or I. The coupling constants are determined by supplementing the non-relativistic coupled-cluster singles-and-doubles (CCSD) values with relativistic corrections evaluated at the four-component density-functional theory (DFT) level. These corrections are calculated as the differences between relativistic and non-relativistic values determined using the PBE0 functional with 50% exact-exchange admixture. The total coupling constants obtained in this approach are in much better agreement with experiment than the standard relativistic DFT values with 25% exact-exchange, and are also noticeably better than the relativistic PBE0 results obtained with 50% exact-exchange. Further improvement is achieved by adding rovibrational corrections, estimated using literature data.
The thermo-elastic instability model of melting of alkali halides in the Debye approximation
NASA Astrophysics Data System (ADS)
Owens, Frank J.
2018-05-01
The Debye model of lattice vibrations of alkali halides is used to show that there is a temperature below the melting temperature where the vibrational pressure exceeds the electrostatic pressure. The onset temperature of this thermo-elastic instability scales as the melting temperature of NaCl, KCl, and KBr, suggesting its role in the melting of the alkali halides in agreement with a previous more rigorous model.
2015-06-01
INVESTIGATION OF HEAVY OXIDE AND ALKALI-HALIDE SCINTILLATORS FOR POTENTIAL USE IN NEUTRON AND GAMMA DETECTION SYSTEMS by Jeremy S. Cadiente June...AND ALKALI- HALIDE SCINTILLATORS FOR POTENTIAL USE IN NEUTRON AND GAMMA DETECTION SYSTEMS 5. FUNDING NUMBERS 6. AUTHOR(S) Jeremy S. Cadiente 7...fast neutron detection efficiencies well over 40%, were investigated for potential use as highly efficient gamma- neutron radiation detectors. The
Fractionation of Cl/Br during fluid phase separation in magmatic-hydrothermal fluids
NASA Astrophysics Data System (ADS)
Seo, Jung Hun; Zajacz, Zoltán
2016-06-01
Brine and vapor inclusions were synthesized to study Cl/Br fractionation during magmatic-hydrothermal fluid phase separation at 900 °C and pressures of 90, 120, and 150 MPa in Li/Na/K halide salt-H2O systems. Laser ablation ICP-MS microanalysis of high-density brine inclusions show an elevated Cl/Br ratio compared to the coexisting low-density vapor inclusions. The degree of Cl/Br fractionation between vapor and brine is significantly dependent on the identity of the alkali metal in the system: stronger vapor partitioning of Br occurs in the Li halide-H2O system compared to the systems of K and Na halide-H2O. The effect of the identity of alkali-metals in the system is stronger compared to the effect of vapor-brine density contrast. We infer that competition between alkali-halide and alkali-OH complexes in high-temperature fluids might cause the Cl/Br fractionation, consistent with the observed molar imbalances of alkali metals compared to halides in the analyzed brine inclusions. Our experiments show that the identity of alkali metals controls the degrees of Cl/Br fractionation between the separating aqueous fluid phases at 900 °C, and suggest that a significant variability in the Cl/Br ratios of magmatic fluids can arise in Li-rich systems.
NASA Technical Reports Server (NTRS)
Altman, R. L.; Mayer, L. A.; Ling, A. C. (Inventor)
1983-01-01
Fire extinguishant composition comprising a mixture of a finely divided aluminum compound and alkali metal, stannous or plumbous halide is provided. Aluminum compound may be aluminum hydroxide, alumina or boehmite but preferably it is an alkali metal dawsonite. The metal halide may be an alkali metal, e.g. potassium iodide, bromide or chloride or stannous or plumbous iodide, bromide or chloride. Potassium iodide is preferred.
The role of halide ions on the electrochemical behaviour of iron in alkali solutions
NASA Astrophysics Data System (ADS)
Begum, S. Nathira; Muralidharan, V. S.; Basha, C. Ahmed
2008-02-01
Active dissolution and passivation of transition metals in alkali solutions is of technological importance in batteries. The performance of alkaline batteries is decided by the presence of halides as they influence passivation. Cyclic voltammetric studies were carried out on iron in different sodium hydroxide solutions in presence of halides. In alkali solutions iron formed hydroxo complexes and their polymers in the interfacial diffusion layer. With progress of time they formed a cation selective layer. The diffusion layer turned into bipolar ion selective layer consisted of halides, a selective inner sublayer to the metal side and cation selective outer layer to the solution side. At very high anodic potentials, dehydration and deprotonation led to the conversion of salt layer into an oxide.
NASA Technical Reports Server (NTRS)
Schlosser, Herbert
1992-01-01
In this note we present two expressions relating the cohesive energy, E(sub coh), and the zero pressure isothermal bulk modulus, B(sub 0), of the alkali halides. Ag halides and TI halides, with the nearest neighbor distances, d(sub nn). First, we show that the product E(sub coh)d(sub 0) within families of halide crystals with common crystal structure is to a good approximation constant, with maximum rms deviation of plus or minus 2%. Secondly, we demonstrate that within families of halide crystals with a common cation and common crystal structure the product B(sub 0)d(sup 3.5)(sub nn) is a good approximation constant, with maximum rms deviation of plus or minus 1.36%.
Theoretical Studies in Chemical Kinetics - Annual Report, 1970.
DOE R&D Accomplishments Database
Karplus, Martin
1970-10-01
The research performed includes (a) Alkali-Halide, Alkali-Halide (MX, M?X?) Exchange Reactions; (b) Inversion Problem; (c) Quantum Mechanics of Scattering Processes, (d) Transition State Analysis of Classical Trajectories, (e) Differential Cross Sections from Classical Trajectories; and (f) Other Studies.
Positron Annihilation in Insulating Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asoka-Kumar, P; Sterne, PA
2002-10-18
We describe positron results from a wide range of insulating materials. We have completed positron experiments on a range of zeolite-y samples, KDP crystals, alkali halides and laser damaged SiO{sub 2}. Present theoretical understanding of positron behavior in insulators is incomplete and our combined theoretical and experimental approach is aimed at developing a predictive understanding of positrons and positronium annihilation characteristics in insulators. Results from alkali halides and alkaline-earth halides show that positrons annihilate with only the halide ions, with no apparent contribution from the alkali or alkaline-earth cations. This contradicts the results of our existing theory for metals, whichmore » predicts roughly equal annihilation contributions from cation and anion. We also present result obtained using Munich positron microprobe on laser damaged SiO{sub 2} samples.« less
Reshaping and linking of molecules in ion-pair traps
NASA Astrophysics Data System (ADS)
Cochrane, Bryce; Naumkin, Fedor Y.
2016-01-01
A series of insertion complexes of small molecules trapped between alkali-halide counter-ions are investigated ab initio. The molecular shape is altered inside the complexes and varies in corresponding anions. Stabilities and charge distributions are investigated. Strong charge-transfer in the alkali-halide component effectively through the almost neutral molecule results in very large dipole moments. The most stable species is used to construct a dimer significantly bound via dipole-dipole interaction. Another complex with two alkali-halide diatoms trapping the molecule represents a unit of corresponding longer oligomer. This completes the array of systems with the molecule effectively in ion-pair, ion-dipole, dipole-pair electric fields.
The Additive Coloration of Alkali Halides
ERIC Educational Resources Information Center
Jirgal, G. H.; and others
1969-01-01
Describes the construction and use of an inexpensive, vacuum furnace designed to produce F-centers in alkali halide crystals by additive coloration. The method described avoids corrosion or contamination during the coloration process. Examination of the resultant crystals is discussed and several experiments using additively colored crystals are…
Alkali Halide Microstructured Optical Fiber for X-Ray Detection
NASA Technical Reports Server (NTRS)
DeHaven, S. L.; Wincheski, R. A.; Albin, S.
2014-01-01
Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.
Metal-halide mixtures for latent heat energy storage
NASA Technical Reports Server (NTRS)
Chen, K.; Manvi, R.
1981-01-01
Alkali metal and alkali halide mixtures are identified which may be suitable for thermal energy storage at temperatures above 600 C. The use of metal-halides is appropriate because of their tendency to form two immiscible melts with a density difference, which reduces scale formation and solidification on heat transfer surfaces. Also, the accumulation of phase change material along the melt interface is avoided by the self-dispersing characteristic of some metal-halides, in particular Sr-SrCl2, Ba-BaCl2, and Ba-BaBr2 mixtures. Further advantages lie in their high thermal conductivities, ability to cope with thermal shock, corrosion inhibition, and possibly higher energy densities.
Alkali Metal/Salt Thermal-Energy-Storage Systems
NASA Technical Reports Server (NTRS)
Phillips, Wayne W.; Stearns, John W.
1987-01-01
Proposed thermal-energy-storage system based on mixture of alkali metal and one of its halide salts; metal and salt form slurry of two immiscible melts. Use of slurry expected to prevent incrustations of solidified salts on heat-transfer surfaces that occur where salts alone used. Since incrustations impede heat transfer, system performance improved. In system, charging heat-exchanger surface immersed in lower liquid, rich in halide-salt, phase-charge material. Discharging heat exchanger surface immersed in upper liquid, rich in alkali metal.
Alkali halide microstructured optical fiber for X-ray detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeHaven, S. L., E-mail: stanton.l.dehaven@nasa.gov, E-mail: russel.a.wincheski@nasa.gov; Wincheski, R. A., E-mail: stanton.l.dehaven@nasa.gov, E-mail: russel.a.wincheski@nasa.gov; Albin, S., E-mail: salbin@nsu.edu
Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. Themore » results and associated materials difference are discussed.« less
PREPARATION OF URANIUM-ALUMINUM ALLOYS
Moore, R.H.
1962-09-01
A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)
Alkali Halide FLIR Lens Development
1981-10-01
in the atmosphere. The main emphasis in this 3 report has been development of protective coatings for potassium bromide lenses. The most favorable...placed onto the bottom electrode. Pieces of single-crystalline potassium chloride of approximately the same thickness as coated alkali halide samples...none of the samples appeared to be degraded by the high humidity associated with the exposure. 2. UNITS TESTED Four coated potassium bromide lenses
Partial oxidation process for producing a stream of hot purified gas
Leininger, Thomas F.; Robin, Allen M.; Wolfenbarger, James K.; Suggitt, Robert M.
1995-01-01
A partial oxidation process for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H.sub.2, CO, CO.sub.2, H.sub.2 O, CH.sub.4, NH.sub.3, HCl, HF, H.sub.2 S, COS, N.sub.2, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N.sub.2 and H.sub.2. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000.degree. F.
Partial oxidation process for producing a stream of hot purified gas
Leininger, T.F.; Robin, A.M.; Wolfenbarger, J.K.; Suggitt, R.M.
1995-03-28
A partial oxidation process is described for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H{sub 2}, CO, CO{sub 2}, H{sub 2}O, CH{sub 4}, NH{sub 3}, HCl, HF, H{sub 2}S, COS, N{sub 2}, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N{sub 2} and H{sub 2}. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000 F. 1 figure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirian, J.; Saint-James, R.
1959-01-01
A collection is presented of references dealing with the physicochemical studies of fused salts, in partictular the alkali and alkali earth halides. Numerous binary, ternary and quaternary systems of these halides with those of uranium and thoriuna are examined, and the physical properties, density, viscosity, and vapor pressure going from the halides to the mixtures are also considered. References relating to the corrosion of materials by these salts are included and the treatment of the salts with a view to recovery after irradiation in a nuclear reactor is discussed. (auth)
NASA Technical Reports Server (NTRS)
Ross, D. K.; Simon, J. I.; Simon, S. B.; Grossman, L.
2012-01-01
Ca-Fe and alkali-halide alteration of CAIs is often attributed to aqueous alteration by fluids circulating on asteroidal parent bodies after the various chondritic components have been assembled, although debate continues about the roles of asteroidal vs. nebular modification processes [1-7]. Here we report de-tailed observations of alteration products in a large Type B2 CAI, TS4 from Allende, one of the oxidized subgroup of CV3s, and propose a speculative model for aqueous alteration of CAIs in a nebular setting. Ca-Fe alteration in this CAI consists predominantly of end-member hedenbergite, end-member andradite, and compositionally variable, magnesian high-Ca pyroxene. These phases are strongly concentrated in an unusual "nodule" enclosed within the interior of the CAI (Fig. 1). The Ca, Fe-rich nodule superficially resembles a clast that pre-dated and was engulfed by the CAI, but closer inspection shows that relic spinel grains are enclosed in the nodule, and corroded CAI primary phases interfinger with the Fe-rich phases at the nodule s margins. This CAI also contains abundant sodalite and nepheline (alkali-halide) alteration that occurs around the rims of the CAI, but also penetrates more deeply into the CAI. The two types of alteration (Ca-Fe and alkali-halide) are adjacent, and very fine-grained Fe-rich phases are associated with sodalite-rich regions. Both types of alteration appear to be replacive; if that is true, it would require substantial introduction of Fe, and transport of elements (Ti, Al and Mg) out of the nodule, and introduction of Na and Cl into alkali-halide rich zones. Parts of the CAI have been extensively metasomatized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlcek, Lukas; Chialvo, Ariel; Simonson, J Michael
2013-01-01
Molecular models and experimental estimates based on the cluster pair approximation (CPA) provide inconsistent predictions of absolute single-ion hydration properties. To understand the origin of this discrepancy we used molecular simulations to study the transition between hydration of alkali metal and halide ions in small aqueous clusters and bulk water. The results demonstrate that the assumptions underlying the CPA are not generally valid as a result of a significant shift in the ion hydration free energies (~15 kJ/mol) and enthalpies (~47 kJ/mol) in the intermediate range of cluster sizes. When this effect is accounted for, the systematic differences between modelsmore » and experimental predictions disappear, and the value of absolute proton hydration enthalpy based on the CPA gets in closer agreement with other estimates.« less
NASA Astrophysics Data System (ADS)
Gupta, A. P.; Shanker, Jai
1980-02-01
The relation between long wavelength optical mode frequencies and the Anderson-Gruneisen parameter δ for alkali halides studied by Madan suffers from a mathematical error which is rectified in the present communication. A theoretical analysis of δ is presented adopting six potential functions for the short range repulsion energy. Values of δ and γTO calculated from the Varshni-Shukla potential are found in closest agreement with experimental data.
Development of processes for the production of solar grade silicon from halides and alkali metals
NASA Technical Reports Server (NTRS)
Dickson, C. R.; Gould, R. K.
1980-01-01
High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon in volume at low cost were studied. Experiments were performed to evaluate product separation and collection processes, measure heat release parameters for scaling purposes, determine the effects of reactants and/or products on materials of reactor construction, and make preliminary engineering and economic analyses of a scaled-up process.
NASA Astrophysics Data System (ADS)
Lushchik, A.; Lushchik, Ch.; Vasil'chenko, E.; Popov, A. I.
2018-04-01
Irradiation of alkali halide crystals creates pairs of Frenkel defects both in anion and cation sublattices. However, the particular nonimpact creation mechanisms (related to the decay of different electronic excitations) of cation Frenkel pairs are still unclear. At helium temperatures, there is yet no direct evidences of the creation of stable (long-lived) elemental cation defects. On the other hand, a number of complex structural defects containing cation vacancies and/or interstitials, were detected after irradiation of alkali halides at higher temperatures. Besides already proved mechanism related to the association of H and VK centers into trihalide molecules, the following possibilities of cation interstitial-vacancy pair creation are analyzed as well: (i) a direct decay of cation or anion excitons, (ii) the transformation of anion Frenkel pairs, formed at the decay of anion excitons or e-h recombination, into cation ones.
NASA Astrophysics Data System (ADS)
Padmos, J.; van Veen, A.
A number of salts of hexakis(pyridine N-oxide)zinc(II) complexes decompose in alkali halide pellets. Initially ion exchange occurs, often followed by the formation of Zn(pyno) 3X 2 (pyno = pyridine N-oxide; X = Br, Cl). The analogous cobalt and nickel compounds are nearly always stable. A mull between alkali halide plates gives greater amounts of the same product Washing this product with toluene gives Zn(pyno) 2X 2. Examples of i.r. and far i.r. spectra are given. Energetical and structural effects are discussed. Far i.r. spectra of M(pyno) 3X 2(M = Co, Zn) confirm the structure [M(pyno) 6][MX 4] for these compounds. New compounds are [Zn(pyno) 2(NO 3) 2], [Zn(pyno- d5) 2[NO 3) 2], [Zn(pyno- d5) 6](NO 3) 2 and [Zn(pyno) 6]I 2.
Theory of metal atom-water interactions and alkali halide dimers
NASA Technical Reports Server (NTRS)
Jordan, K. D.; Kurtz, H. A.
1982-01-01
Theoretical studies of the interactions of metal atoms with water and some of its isoelectronic analogs, and of the properties of alkali halides and their aggregates are discussed. Results are presented of ab initio calculations of the heats of reaction of the metal-water adducts and hydroxyhydrides of Li, Be, B, Na, Mg, and Al, and of the bond lengths and angles an; the heats of reaction for the insertion of Al into HF, H2O, NH3, H2S and CH3OH, and Be and Mg into H2O. Calculations of the electron affinities and dipole moments and polarizabilities of selected gas phase alkali halide monomers and dimers are discussed, with particular attention given to results of calculations of the polarizability of LiF taking into account electron correlation effects, and the polarizability of the dimer (LiF)2.
Destabilized and catalyzed borohydride for reversible hydrogen storage
Mohtadi, Rana F [Northville, MI; Zidan, Ragaiy [Aiken, SC; Gray, Joshua [Aiken, SC; Stowe, Ashley C [Knoxville, TN; Sivasubramanian, Premkumar [Aiken, SC
2012-02-28
A process of forming a hydrogen storage material, including the steps of: providing a borohydride material of the formula: M(BH.sub.4).sub.x where M is an alkali metal or an alkaline earth metal and 1.ltoreq.x.ltoreq.2; providing an alanate material of the formula: M.sub.1(AlH.sub.4).sub.x where M.sub.1 is an alkali metal or an alkaline earth metal and 1.ltoreq.x.ltoreq.2; providing a halide material of the formula: M.sub.2Hal.sub.x where M.sub.2 is an alkali metal, an alkaline earth metal or transition metal and Hal is a halide and 1.ltoreq.x.ltoreq.4; combining the borohydride, alanate and halide materials such that 5 to 50 molar percent from the borohydride material is present forming a reaction product material having a lower hydrogen release temperature than the alanate material.
NASA Technical Reports Server (NTRS)
Demarest, H. H., Jr.
1972-01-01
The elastic constants and the entire frequency spectrum were calculated up to high pressure for the alkali halides in the NaCl lattice, based on an assumed functional form of the inter-atomic potential. The quasiharmonic approximation is used to calculate the vibrational contribution to the pressure and the elastic constants at arbitrary temperature. By explicitly accounting for the effect of thermal and zero point motion, the adjustable parameters in the potential are determined to a high degree of accuracy from the elastic constants and their pressure derivatives measured at zero pressure. The calculated Gruneisen parameter, the elastic constants and their pressure derivatives are in good agreement with experimental results up to about 600 K. The model predicts that for some alkali halides the Grunesen parameter may decrease monotonically with pressure, while for others it may increase with pressure, after an initial decrease.
Refined potentials for rare gas atom adsorption on rare gas and alkali-halide surfaces
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.
1985-01-01
The utilization of models of interatomic potential for physical interaction to estimate the long range attractive potential for rare gases and ions is discussed. The long range attractive force is calculated in terms of the atomic dispersion properties. A data base of atomic dispersion parameters for rare gas atoms, alkali ion, and halogen ions is applied to the study of the repulsive core; the procedure for evaluating the repulsive core of ion interactions is described. The interaction of rare gas atoms on ideal rare gas solid and alkali-halide surfaces is analyzed; zero coverage absorption potentials are derived.
ELECTROLYTIC PROCESS FOR PRODUCING METALS
Kopelman, B.; Holden, R.B.
1961-06-01
A method is described for reducing beryllium halides to beryllium. The beryllfum halide fs placed in an eutectic mixture of alkali halides and alkaline earth halides. The constituents of this eutectic bath are so chosen that it has a melting point less than the boiling point of mercury, which acts as a cathode for the system. The beryllium metal is then deposited in the mercury upon electrolysis.
Uranium chloride extraction of transuranium elements from LWR fuel
Miller, W.E.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Pierce, R.D.
1992-08-25
A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800 C to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein. 1 figure.
Uranium chloride extraction of transuranium elements from LWR fuel
Miller, William E.; Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Pierce, R. Dean
1992-01-01
A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800.degree. C. to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein.
Structure and Binding of Ionic Clusters in Th and Zr Chloride Melts
NASA Astrophysics Data System (ADS)
Akdeniz, Z.; Tosi, M. P.
2001-11-01
We discuss microscopic ionic models for the structure and the binding of small clusters which may exist as structural units in molten ThCl4 and ZrCl4 and in their mixtures with alkali halides according to Raman scattering studies of Photiadis and Papatheodorou. The models are adjusted to the two isolated tetrahedral molecules. Appreciably higher ionicity is found for ThCl4 than for ZrCl4, and this fact underlies the strikingly different behaviour of the two systems in the dense liquid state -in particular, a molecular-type structure for molten ZrCl4 against a structure including charged oligomers in molten ThCl4.
NASA Astrophysics Data System (ADS)
Entani, S.; Kiguchi, M.; Saiki, K.; Koma, A.
2003-01-01
Epitaxial growth of CoO films was studied using reflection high-energy electron diffraction (RHEED), electron energy loss spectroscopy (EELS), ultraviolet photoelectron spectroscopy (UPS) and Auger electron spectroscopy (AES). The RHEED results indicated that an epitaxial CoO film grew on semiconductor and metal substrates (CoO (0 0 1)∥GaAs (0 0 1), Cu (0 0 1), Ag (0 0 1) and [1 0 0]CoO∥[1 0 0] substrates) by constructing a complex heterostructure with two alkali halide buffer layers. The AES, EELS and UPS results showed that the grown CoO film had almost the same electronic structure as bulk CoO. We could show that use of alkali halide buffer layers was a good way to grow metal oxide films on semiconductor and metal substrates in an O 2 atmosphere. The alkali halide layers not only works as glue to connect very dissimilar materials but also prevents oxidation of metal and semiconductor substrates.
Electrolytic method for the production of lithium using a lithium-amalgam electrode
Cooper, John F.; Krikorian, Oscar H.; Homsy, Robert V.
1979-01-01
A method for recovering lithium from its molten amalgam by electrolysis of the amalgam in an electrolytic cell containing as a molten electrolyte a fused-salt consisting essentially of a mixture of two or more alkali metal halides, preferably alkali metal halides selected from lithium iodide, lithium chloride, potassium iodide and potassium chloride. A particularly suitable molten electrolyte is a fused-salt consisting essentially of a mixture of at least three components obtained by modifying an eutectic mixture of LiI-KI by the addition of a minor amount of one or more alkali metal halides. The lithium-amalgam fused-salt cell may be used in an electrolytic system for recovering lithium from an aqueous solution of a lithium compound, wherein electrolysis of the aqueous solution in an aqueous cell in the presence of a mercury cathode produces a lithium amalgam. The present method is particularly useful for the regeneration of lithium from the aqueous reaction products of a lithium-water-air battery.
Metal Hydride and Alkali Halide Opacities in Extrasolar Giant Planets and Cool Stellar Atmospheres
NASA Technical Reports Server (NTRS)
Weck, Philippe F.; Stancil, Phillip C.; Kirby, Kate; Schweitzer, Andreas; Hauschildt, Peter H.
2006-01-01
The lack of accurate and complete molecular line and continuum opacity data has been a serious limitation to developing atmospheric models of cool stars and Extrasolar Giant Planets (EGPs). We report our recent calculations of molecular opacities resulting from the presence of metal hydrides and alkali halides. The resulting data have been included in the PHOENIX stellar atmosphere code (Hauschildt & Baron 1999). The new models, calculated using spherical geometry for all gravities considered, also incorporate our latest database of nearly 670 million molecular lines, and updated equations of state.
Method for removing semiconductor layers from salt substrates
Shuskus, Alexander J.; Cowher, Melvyn E.
1985-08-27
A method is described for removing a CVD semiconductor layer from an alkali halide salt substrate following the deposition of the semiconductor layer. The semiconductor-substrate combination is supported on a material such as tungsten which is readily wet by the molten alkali halide. The temperature of the semiconductor-substrate combination is raised to a temperature greater than the melting temperature of the substrate but less than the temperature of the semiconductor and the substrate is melted and removed from the semiconductor by capillary action of the wettable support.
Global expression for representing cohesive-energy curves. II
NASA Technical Reports Server (NTRS)
Schlosser, Herbert; Ferrante, John
1993-01-01
Schlosser et al. (1991) showed that the R dependence of the cohesive energy of partially ionic solids may be characterized by a two-term energy relationship consisting of a Coulomb term arising from the charge transfer, delta-Z, and a scaled universal energy function, E*(a *), which accounts for the partially covalent character of the bond and for repulsion between the atomic cores for small R; a* is a scaled length. In the paper by Schlosser et al., the normalized cohesive-energy curves of NaCl-structure alkali-halide crystals were generated with this expression. In this paper we generate the cohesive-energy curves of several families of partially ionic solids with different crystal structures and differing degrees of ionicity. These include the CsCl-structure Cs halides, and the Tl and Ag halides, which have weaker ionic bonding than the alkali halides, and which have the CsCl and NaCl structures, respectively. The cohesive-energy-curve parameters are then used to generate theoretical isothermal compression curves for the Li, Na, K, Cs, and Ag halides. We find good agreement with the available experimental compression data.
Oxidation of hydrogen halides to elemental halogens
Rohrmann, Charles A.; Fullam, Harold T.
1985-01-01
A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charkin, Dmitri O.; Black, Cameron; Downie, Lewis J.
Two new rare-earth – alkali – tellurium oxide halides were synthesized by a salt flux technique and characterized by single-crystal X-ray diffraction. The structures of the new compounds Cs{sub 7}Sm{sub 11}[TeO{sub 3}]{sub 12}Cl{sub 16} (I) and Rb{sub 7}Nd{sub 11}[TeO{sub 3}]{sub 12}Br{sub 16} (II) (both tetragonal, space group I4/mcm) correspond to the sequence of [MLn{sub 11}(TeO{sub 3}){sub 12}] and [M{sub 6}X{sub 16}] layers and bear very strong similarities to those of known selenite analogs. We discuss the trends in similarities and differences in compositions and structural details between the Se and Te compounds; more members of the family are predicted. -more » Graphical abstract: Two new rare-earth – alkali – tellurium oxide halides were predicted and synthesized. - Highlights: • Two new rare-earth – alkali – tellurium oxide halides were synthesized. • They adopt slab structure of rare earth-tellurium-oxygen and CsCl-like slabs. • The Br-based CsCl-like slabs have been observed first in this layered family.« less
Groen, Cornelis Petrus; Oskam, Ad; Kovács, Attila
2003-02-10
The structure, bonding, and vibrational properties of the mixed MLaX(4) (M = Na, K, Cs; X = F, Cl, Br, I) rare earth/alkali metal halide complexes have been studied using the MP2 method in conjunction with polarized triple-zeta valence basis sets and quasi-relativistic effective core potentials for the heavy atoms. From the three characteristic structures, possessing 1- (C(3)(v)), 2- (C(2)(v)), or 3-fold coordination (C(3)(v)) between the alkali metal and the bridging halide atoms, the bi- and tridentate forms are stable isomers with close dissociation energies. In general, for the complexes existing of lighter alkali metals and halogens, the bidentate structure corresponds to the global minimum of the potential energy surface, while the heavier analogues favor the tridentate structure. At experimentally relevant temperatures (T > 800 K), however, the isomerization entropy leads to a domination of the bidentate structures over the tridentate forms for all complexes. An important effect of the size of the alkali metal is manifested in the larger stabilities of the K and Cs complexes. The natural atomic charges are in agreement with strong electrostatic interactions in the title complexes. The marginal covalent contributions show a slight increasing trend in the heavier analogues. The calculated vibrational data indicate that infrared spectroscopy may be an effective tool for experimental investigation and characterization of MLaX(4) molecules.
Metal-halide mixtures for latent heat energy storage
NASA Astrophysics Data System (ADS)
Chen, K.; Manvi, R.
Some candidates for alkali metal and alkali halide mixtures suitable for thermal energy storage at temperatures 600 C are identified. A solar thermal system application which offer advantages such as precipitation of salt crystals away from heat transfer surfaces, increased thermal conductivity of phase change materials, corrosion inhibition, and a constant monotectic temperature, independent of mixture concentrations. By using the lighters, metal rich phase as a heat transfer medium and the denser, salt rich phase as a phase change material for latent heat storage, undesirable solidification on the heat transfer surface may be prevented, is presented.
Metal-halide mixtures for latent heat energy storage
NASA Technical Reports Server (NTRS)
Chen, K.; Manvi, R.
1981-01-01
Some candidates for alkali metal and alkali halide mixtures suitable for thermal energy storage at temperatures 600 C are identified. A solar thermal system application which offer advantages such as precipitation of salt crystals away from heat transfer surfaces, increased thermal conductivity of phase change materials, corrosion inhibition, and a constant monotectic temperature, independent of mixture concentrations. By using the lighters, metal rich phase as a heat transfer medium and the denser, salt rich phase as a phase change material for latent heat storage, undesirable solidification on the heat transfer surface may be prevented, is presented.
Ab Initio Study of KCl and AgCl Clusters.
NASA Astrophysics Data System (ADS)
McKeough, James; Hira, Ajit; Cathey, Tommy; Valdez, Alexandra
This paper presents a theoretical study of molecular clusters that examines the chemical and physical properties of small KnCln and AgnCln clusters (n = 2 - 24). Due to combinations of attractive and repulsive long-range forces, such clusters exhibit structural and dynamical behavior different from that of homogeneous clusters. The potentially important role of these molecular species in biochemical and medicinal processes is widely known. This work applies the hybrid ab initio methods to derive the different alkali-halide (MnHn) geometries. Of particular interest is the competition between hexagonal ring geometries and rock salt structures. Electronic energies, rotational constants, dipole moments, and vibrational frequencies for these geometries are calculated. Magic numbers for cluster stability are identified and are related to the property of cluster compactness. Mapping of the singlet, triplet, and quintet, potential energy surfaces is performed. Calculations were performed to examine the interactions of these clusters with some atoms and molecules of biological interest, including O, O2, and Fe. Potential design of new medicinal drugs is explored. We will also investigate model and material dependence of the results. AMP program of the National Science Foundation.
New silver-halide-sensitized gelatin material: the influence of bleaches on holograms
NASA Astrophysics Data System (ADS)
Zhang, Weiping; Pang, Lin; Guo, Lurong
1996-12-01
A new high-resolution-silver-halide (HRSH-II) material was produced, which has proper initial hardness for fabricating silver halide sensitized gelatin (SHSG) holograms. That would avoid high noise by seeking the gelatin in hot water. With different alkali halide component in B solution and its concentration (the ratio B/A), experiments were presented about bleaching effect with R-10 on processing for SHSG derived from this new material. High diffraction efficiency, as high as 81%, was achieved. Some of the observations are discussed.
Mrazek, Franklin C.; Smaga, John A.; Battles, James E.
1983-01-01
A positive electrode for a secondary electrochemical cell wherein an electrically conductive current collector is in electrical contact with a particulate mixture of gray cast iron and an alkali metal sulfide and an electrolyte including alkali metal halides or alkaline earth metal halides. Also present may be a transition metal sulfide and graphite flakes from the conversion of gray cast iron to iron sulfide. Also disclosed is a method of distributing carbon flakes in a cell wherein there is formed an electrochemical cell of a positive electrode structure of the type described and a suitable electrolyte and a second electrode containing a material capable of alloying with alkali metal ions. The cell is connected to a source of electrical potential to electrochemically convert gray cast iron to an iron sulfide and uniformly to distribute carbon flakes formerly in the gray cast iron throughout the positive electrode while forming an alkali metal alloy in the negative electrode. Also disclosed are compositions useful in preparing positive electrodes.
Chloride, bromide and iodide scintillators with europium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuravleva, Mariya; Yang, Kan
A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has beenmore » studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.« less
NASA Astrophysics Data System (ADS)
Striegel, André M.; Timpa, Judy D.; Piotrowiak, Piotr; Cole, Richard B.
1997-03-01
Oligosaccharides perform essential functions in a variety of biological and agricultural processes. Recent approaches to characterization of these molecules by mass spectrometry have utilized mainly soft-ionization methods such as electrospray ionization (ESI) and thermospray (TS), as well as fast atom bombardment (FAB). The behavior of a series of maltooligosaccharides with [alpha]-(1 --> 4) linkages, maltose (G2) through maltoheptaose (G7), under ESI conditions, has been investigated here. The oligosaccharides were dissolved in N,N-dimethylacetamide containing lithium chloride (DMAc/LiCl) prior to analysis by ESI-MS. A highly unusual feature, evident in all mass spectra obtained using this solvent system, was the presence of multiple [`]neutral' salt attachments onto lithium adducts of the sugars. Resultant ions took the form of [Gx + Li + nLiCl+, where n may reach a value as high as eight. Compared to LiCl, the propensity for alkali halide attachment using other alkali chlorides or lithium halides was greatly reduced. An investigation of this phenomenon is presented in which the organic and inorganic portions of the employed solvent were systematically varied, and semi-empirical computer modeling was performed to better understand lithium coordination by the sugars.
Oxidation of hydrogen halides to elemental halogens with catalytic molten salt mixtures
Rohrmann, Charles A.
1978-01-01
A process for oxidizing hydrogen halides by means of a catalytically active molten salt is disclosed. The subject hydrogen halide is contacted with a molten salt containing an oxygen compound of vanadium and alkali metal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen. The reduced vanadium which remains after this contacting is regenerated to the active higher valence state by contacting the spent molten salt with a stream of oxygen-bearing gas.
Mrazek, F.C.; Smaga, J.A.; Battles, J.E.
1981-01-19
A positive electrode for a secondary electrochemical cell is described wherein an electrically conductive current collector is in electrical contact with a particulate mixture of gray cast iron and an alkali metal sulfide and an electrolyte including alkali metal halides or alkaline earth metal halides. Also present may be a transition metal sulfide and graphite flakes from the conversion of gray cast iron to iron sulfide. Also disclosed is a method of distributing carbon flakes in a cell wherein there is formed an electrochemical cell of a positive electrode structure of the type described and a suitable electrolyte and a second electrode containing a material capable of alloying with alkali metal ions. The cell is connected to a source of electrical potential to electrochemically convert gray cast iron to an iron sulfide and uniformly to distribute carbon flakes formerly in the gray cast iron throughout the positive electrode while forming an alkali metal alloy in the negative electrode. Also disclosed are compositions useful in preparing positive electrodes.
Methods and apparatuses for making cathodes for high-temperature, rechargeable batteries
Meinhardt, Kerry D; Sprenkle, Vincent L; Coffey, Gregory W
2014-05-20
The approaches for fabricating cathodes can be adapted to improve control over cathode composition and to better accommodate batteries of any shape and their assembly. For example, a first solid having an alkali metal halide, a second solid having a transition metal, and a third solid having an alkali metal aluminum halide are combined into a mixture. The mixture can be heated in a vacuum to a temperature that is greater than or equal to the melting point of the third solid. When the third solid is substantially molten liquid, the mixture is compressed into a desired cathode shape and then cooled to solidify the mixture in the desired cathode shape.
Apparatuses for making cathodes for high-temperature, rechargeable batteries
Meinhardt, Kerry D.; Sprenkle, Vincent L.; Coffey, Gregory W.
2016-09-13
The approaches and apparatuses for fabricating cathodes can be adapted to improve control over cathode composition and to better accommodate batteries of any shape and their assembly. For example, a first solid having an alkali metal halide, a second solid having a transition metal, and a third solid having an alkali metal aluminum halide are combined into a mixture. The mixture can be heated in a vacuum to a temperature that is greater than or equal to the melting point of the third solid. When the third solid is substantially molten liquid, the mixture is compressed into a desired cathode shape and then cooled to solidify the mixture in the desired cathode shape.
Heat capacity of molten halides.
Redkin, Alexander A; Zaikov, Yurii P; Korzun, Iraida V; Reznitskikh, Olga G; Yaroslavtseva, Tatiana V; Kumkov, Sergey I
2015-01-15
The heat capacities of molten salts are very important for their practical use. Experimental investigation of this property is challenging because of the high temperatures involved and the corrosive nature of these materials. It is preferable to combine experimental investigations with empirical relationships, which allows for the evaluation of the heat capacity of molten salt mixtures. The isobaric molar heat capacities of all molten alkali and alkaline-earth halides were found to be constant for each group of salts. The value depends on the number of atoms in the salt, and the molar heat capacity per atom is constant for all molten halide salts with the exception of the lithium halides. The molar heat capacities of molten halides do not change when the anions are changed.
Inorganic rechargeable non-aqueous cell
Bowden, William L.; Dey, Arabinda N.
1985-05-07
A totally inorganic non-aqueous rechargeable cell having an alkali or alkaline earth metal anode such as of lithium, a sulfur dioxide containing electrolyte and a discharging metal halide cathode, such as of CuCl.sub.2, CuBr.sub.2 and the like with said metal halide being substantially totally insoluble in SO.sub.2 and admixed with a conductive carbon material.
Treatment of halogen-containing waste and other waste materials
Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.
1997-01-01
A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.
Treatment of halogen-containing waste and other waste materials
Forsberg, C.W.; Beahm, E.C.; Parker, G.W.
1997-03-18
A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.
Chloride, bromide and iodide scintillators with europium doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuravleva, Mariya; Yang, Kan
A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has beenmore » studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.« less
Silicon halide-alkali metal flames as a source of solar grade silicon
NASA Technical Reports Server (NTRS)
Olsen, D. B.; Miller, W. J.
1979-01-01
The feasibility of using alkali metal-silicon halide diffusion flames to produce solar-grade silicon in large quantities and at low cost is demonstrated. Prior work shows that these flames are stable and that relatively high purity silicon can be produced using Na + SiCl4 flames. Silicon of similar purity is obtained from Na + SiF4 flames although yields are lower and product separation and collection are less thermochemically favored. Continuous separation of silicon from the byproduct alkali salt was demonstrated in a heated graphite reactor. The process was scaled up to reduce heat losses and to produce larger samples of silicon. Reagent delivery systems, scaled by a factor of 25, were built and operated at a production rate of 0.5 kg Si/h. Very rapid reactor heating rates are observed with wall temperatures reaching greater than 2000 K. Heat release parameters were measured using a cooled stainless steel reactor tube. A new reactor was designed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werhahn, Jasper C.; Akase, Dai; Xantheas, Sotiris S.
2014-08-14
The scaled versions of the newly introduced [S. S. Xantheas and J. C. Werhahn, J. Chem. Phys.141, 064117 (2014)] generalized forms of some popular potential energy functions (PEFs) describing intermolecular interactions – Mie, Lennard-Jones, Morse, and Buckingham exponential-6 – have been used to fit the ab initio relaxed approach paths and fixed approach paths for the halide-water, X -(H 2O), X = F, Cl, Br, I, and alkali metal-water, M +(H 2O), M = Li, Na, K, Rb, Cs, interactions. The generalized forms of those PEFs have an additional parameter with respect to the original forms and produce fits tomore » the ab initio data that are between one and two orders of magnitude better in the χ 2 than the original PEFs. They were found to describe both the long-range, minimum and repulsive wall of the respective potential energy surfaces quite accurately. Overall the 4-parameter extended Morse (eM) and generalized Buckingham exponential-6 (gBe-6) potentials were found to best fit the ab initio data for these two classes of ion-water interactions. Finally, the fitted values of the parameter of the (eM) and (gBe-6) PEFs that control the repulsive wall of the potential correlate remarkably well with the ionic radii of the halide and alkali metal ions.« less
Aqueous solubility of a diatomic molecule as a function of its size & electronegativity difference.
Al-Malah, Kamal I
2011-02-01
The aqueous solubility of a diatomic molecule as a function of its size & electronegativity difference is investigated. The electronegativity of a diatomic molecule will be calculated using five different electronegativity scales, namely, Pauling [1], Allred-Rochow [2], Mulliken [3, 4], Parr-Yang [5], and Sanderson [6, 7]. It is hypothesized here that at a given pH, temperature, and pressure, the solubility of a diatomic molecule in water will be a function of its polar character; in particular, electronegativity difference and of its molecular size. Different forms of the solubility function were tested; it was found that the solubility model, given by Eq. 3, which is based on different electronegativity scales and the molecular volume, adequately describes the aqueous solubility of alkali halides. The aqueous solubility of alkali halides exhibits maximum at the condition of high electronegativity difference and large molecular volume. On the other hand, the minimum solubility region is observed at very low molecular volume and medium to slightly high values of electronegativity difference. The minimum solubility is also observed at low value of electronegativity difference and high molecular volume. Finally, the general trend of solubility of alkali halides, based on the proposed model (Eq. 3) could be explained in terms of the trade-off between electrostatic interactions (solid lattice side) and the entropic effects (water side).
Ab initio perspective on the Mollwo-Ivey relation for F centers in alkali halides
NASA Astrophysics Data System (ADS)
Tiwald, Paul; Karsai, Ferenc; Laskowski, Robert; Gräfe, Stefanie; Blaha, Peter; Burgdörfer, Joachim; Wirtz, Ludger
2015-10-01
We revisit the well-known Mollwo-Ivey relation that describes the "universal" dependence of the absorption energies of F-type color centers on the lattice constant a of alkali-halide crystals, Eabs∝a-n. We perform both state-of-the-art ab initio quantum chemistry and post-DFT calculations of F-center absorption spectra. By "tuning" independently the lattice constant and the atomic species we show that the scaling with the lattice constant alone (keeping the elements fixed) would yield n =2 in agreement with the "particle-in-the-box" model. Keeping the lattice constant fixed and changing the atomic species enables us to quantify the ion-size effects which are shown to be responsible for the exponent n ≈1.8 .
Persistent Infrared Spectral Hole-Burning for Impurity Vibrational Modes in Solids.
1986-09-30
infrared vibrational transitions of impurity molecules in solids. Examples include 1,2- difluoroethane in rare gas matrices, perrhenate ions in alkali...observed consists of infrared vibrational transitions of impurity molecules in solids. Examples include 1,2- difluoroethane in rare gas matrices...solids. Examples include 1,2- difluoroethane in rare gas matrices, perrhenate ions in alkali halide crystals, and most recently, cyanide and nitrite
Improved Heat-of-Fusion Energy Storage
NASA Technical Reports Server (NTRS)
Chen, K. H.; Manvi, R.
1982-01-01
Alkali metal/alkali-halide mixtures proposed for preventing solid buildup during energy recovery. When mixture melts (by absorption of heat of fusion), it forms two immiscible liquids. Salt-rich phase is heavier and has higher melting/recrysallization temperature; so during energy recovery salt crystallizes in this phase first. Since heat exchanger for energy recovery is in lighter metal-rich phase, solids do not form and there is no reduction of heat-recovery efficiency.
B1 to B2 structural phase transition in LiF under pressure
NASA Astrophysics Data System (ADS)
Jain, Aayushi; Dixit, R. C.
2018-05-01
In the last few decades the alkali halides emerged as crystals with useful applications and their high-pressure behaviour is the most intensively studied subject in high-pressure physics/chemistry, material science, and geosciences. Most alkali halides follow the B1 (NaCl-type)→B2 (CsCl-type) phase-transition route under pressure. In the present paper, we have investigated the characteristics of structural phase transition that occurred in Lithium Florid compound under high pressure. The transition pressure of B1-B2 was calculated using an effective interionic interaction potential (EIOP). The changes of the characteristics of crystals like, Gibbs free energy, cohesive energy, volume collapse, and lattice constant are calculated for the B1 and B2 structures. These data were compared with the available experimental and theoretical data.
Kimura, Keisaku; Sato, Seiichi
2014-05-01
A conventional laser microscope can be used to derive the index of refractivity by the ratio of geometrical height of the transparent platelet to the apparent height of the normal incident light for very small crystals in the wide size range. We demonstrate that the simple method is effective for the samples from 100 μm to 16 μm in size using alkali halide crystals as a model system. The method is also applied for the surface fractured micro-crystals and an inclined crystal with microscopic size regime. Furthermore, we present two-dimensional refractive index mapping as well as two-dimensional height profile for the mixture of three alkali halides, KCl, KI, and NaCl, all are μm in size.
NASA Astrophysics Data System (ADS)
Bizarri, Gregory; Del Ben, Mauro; Bourret, Edith; Canning, Andrew
The performance of new and improved materials for gamma ray scintillator detectors is dependant on multiple factors such as quantum efficiency, energy transport etc. In halide scintillator materials the energy transport is often impacted by self-trapped exciton (STE) formation and mobility. We present first-principles calculations at the hybrid density functional theory level for the structure, mobility and optical properties of STEs and their associated lattice defects (VK centers) in two important families of scintillator materials, alkali metal and lanthanum halides (AX and LaX). AX and LaX have been extensively characterized by experiments and serve as benchmark systems to assess the accuracy of our theoretical procedure. We show that hydrid functionals accurately predict the different types of self-trapped excitons (on and off-center) found in AX and LX materials in agreement with EPR experiments. We then applied this approach to perform preliminary studies on classes of new scintillator materials including the barium mixed halides and compared with our new experimental results. These studies have the potential to benefit the development of improved scintillator materials tailored for specific applications. This work is supported by the U.S. Department of Energy/NNSA/DNN R&D and is carried out at Lawrence Berkeley National Laboratory under Contract No. AC02-05CH11231.
Gray, Thomas G
2009-03-02
Same but different: DFT calculations on hexanuclear tungsten(II) halide clusters [W(6)X(8)X'(6)](2-) (X, X'=Cl, Br, I) indicate a breakdown in the isoelectronic analogy between themselves and the isostructural rhenium(III) chalcogenide clusters [Re(6)S(8)X(6)](4-) (see figure).The hexanuclear tungsten(II) halide clusters and the sulfido-halide clusters of rhenium(III) are subsets of a broad system of 24-electron metal-metal bonded assemblies that share a common structure. Tungsten(II) halide clusters and rhenium(III) sulfide clusters luminesce from triplet excited states upon ultraviolet or visible excitation; emission from both cluster series has been extensively characterized elsewhere. Reported here are density-functional theory studies of the nine permutations of [W(6)X(8)X'(6)](2-) (X, X'=Cl, Br, I). Ground-state properties including geometries, harmonic vibrational frequencies, and orbital energy-level diagrams, have been calculated. Comparison is made to the sulfide clusters of rhenium(III), of which [Re(6)S(8)Cl(6)](4-) is representative. [W(6)X(8)X'(6)](2-) and [Re(6)S(8)Cl(6)](4-) possess disparate electronic structures owing to the greater covalency of the metal-sulfur bond and hence of the [Re(6)S(8)](2+) core. Low-lying virtual orbitals are raised in energy in [Re(6)S(8)Cl(6)](4-) with the result that the LUMO+7 (or LUMO+8 in some cases) of tungsten(II) halide clusters is the LUMO of [Re(6)S(8)Cl(6)](4-) species. An inversion of the HOMO and HOMO-1 between the two cluster series also occurs. Time-dependent density-functional calculations using asymptotically correct functionals do not recapture the experimentally observed periodic trend in [W(6)X(14)](2-) luminescence (E(em) increasing in the order [W(6)Cl(14)](2-) < [W(6)Br(14)](2-) < [W(6)I(14)](2-)), predicting instead that emission energies decrease with incorporation of the heavier halides. This circumstance is either a gross failure of the time-dependent formalism of DFT or it indicates extensive multistate emission in [W(6)X(8)X'(6)](2-) clusters. The inapplicability of isoelectronic analogies between clusters of Group 6 and Group 7 is emphasized.
NASA Astrophysics Data System (ADS)
Král, Robert
2012-12-01
Suitable conditions for growth of high quality single crystals of ternary alkali lead halides prepared by a Bridgman method were explored using direct observation of a crystal/melt interface when pulling an ampoule out of a furnace, deliberated striations' induction and measurement of a temperature field in the filled ampoule in the vertical Bridgman arrangement, as model compounds lead chloride and ternary rubidium lead bromide were used. By direct observation only position of the crystal/melt interface was markedly determined, while by induced striations both the position and the shape of the interface were visualized but their contrast had to be intensified by adding admixtures. Performed temperature measurements in the filled ampoule brought both a view of temperature field in the 3D radial symmetry and basic data for comparison of a real temperature field with those obtained by projected modeling.
Electrochemical Doping of Halide Perovskites with Ion Intercalation.
Jiang, Qinglong; Chen, Mingming; Li, Junqiang; Wang, Mingchao; Zeng, Xiaoqiao; Besara, Tiglet; Lu, Jun; Xin, Yan; Shan, Xin; Pan, Bicai; Wang, Changchun; Lin, Shangchao; Siegrist, Theo; Xiao, Qiangfeng; Yu, Zhibin
2017-01-24
Halide perovskites have recently been investigated for various solution-processed optoelectronic devices. The majority of studies have focused on using intrinsic halide perovskites, and the intentional incoporation of dopants has not been well explored. In this work, we discovered that small alkali ions, including lithium and sodium ions, could be electrochemically intercalated into a variety of halide and pseudohalide perovskites. The ion intercalation caused a lattice expansion of the perovskite crystals and resulted in an n-type doping of the perovskites. Such electrochemical doping improved the conductivity and changed the color of the perovskites, leading to an electrochromism with more than 40% reduction of transmittance in the 450-850 nm wavelength range. The doped perovskites exhibited improved electron injection efficiency into the pristine perovskite crystals, resulting in bright light-emitting diodes with a low turn-on voltage.
Molecular dynamics simulations of the surface tension and structure of salt solutions and clusters.
Sun, Lu; Li, Xin; Hede, Thomas; Tu, Yaoquan; Leck, Caroline; Ågren, Hans
2012-03-15
Sodium halides, which are abundant in sea salt aerosols, affect the optical properties of aerosols and are active in heterogeneous reactions that cause ozone depletion and acid rain problems. Interfacial properties, including surface tension and halide anion distributions, are crucial issues in the study of the aerosols. We present results from molecular dynamics simulations of water solutions and clusters containing sodium halides with the interatomic interactions described by a conventional force field. The simulations reproduce experimental observations that sodium halides increase the surface tension with respect to pure water and that iodide anions reach the outermost layer of water clusters or solutions. It is found that the van der Waals interactions have an impact on the distribution of the halide anions and that a conventional force field with optimized parameters can model the surface tension of the salt solutions with reasonable accuracy. © 2012 American Chemical Society
Catalyzed borohydrides for hydrogen storage
Au, Ming [Augusta, GA
2012-02-28
A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.
EPR study of electron bombarded alkali- and alkaline-earth halide crystal surfaces
NASA Technical Reports Server (NTRS)
Fryburg, G. C.; Lad, R. A.
1975-01-01
An EPR study of electron bombarded LiF, NaCl, KCl, CaF2 and BaF2 polycrystalline surfaces has shown that small metal particles are formed on the surfaces of the crystals. Identification was made from CESR signals. The symmetric line-shape of the signals, even at 77 K, indicated that the particles were less than 0.5 micron in diameter. Signals due to F centers were observed in LiF but not in the other halides. Implications to metal deposition are considered.
Eubank, L.D.
1958-08-12
Improved flux baths are described for use in conjunction with hot dipped coatings for uranium. The flux bath consists of molten alkali metal, or alkaline earth metal halides. One preferred embodiment comprises a bath containing molten KCl, NaCl, and LiCl in proportions approximating the triple eutectic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brubaker, Erik; Dibble, Dean C.; Mengesha, Wondwosen
An ideal 3He detector replacement for the near- to medium-term future will use materials that are easy to produce and well understood, while maintaining thermal neutron detection efficiency and gamma rejection close to the 3He standard. Toward this end, we investigated the use of standard alkali halide scintillators interfaced with 6Li and read out with photomultiplier tubes (PMTs). Thermal neutrons are captured on 6Li with high efficiency, emitting high-energy and triton ( 3H) reaction products. These particles deposit energy in the scintillator, providing a thermal neutron signal; discrimination against gamma interactions is possible via pulse shape discrimination (PSD), since heavymore » particles produce faster pulses in alkali halide crystals. We constructed and tested two classes of detectors based on this concept. In one case 6Li is used as a dopant in polycrystalline NaI; in the other case a thin Li foil is used as a conversion layer. In the configurations studied here, these systems are sensitive to both gamma and neutron radiation, with discrimination between the two and good energy resolution for gamma spectroscopy. We present results from our investigations, including measurements of the neutron efficiency and gamma rejection for the two detector types. We also show a comparison with Cs 2LiYCl 6:Ce (CLYC), which is emerging as the standard scintillator for simultaneous gamma and thermal neutron detection, and also allows PSD. We conclude that 6Li foil with CsI scintillating crystals has near-term promise as a thermal neutron detector in applications previously dominated by 3He detectors. The other approach, 6Li-doped alkali halides, has some potential, but require more work to understand material properties and improve fabrication processes.« less
Process for oxidation of hydrogen halides to elemental halogens
Lyke, Stephen E.
1992-01-01
An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.
NASA Technical Reports Server (NTRS)
Dickson, C. R.; Gould, R. K.; Felder, W.
1981-01-01
High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon are described. Product separation and collection processes were evaluated, measure heat release parameters for scaling purposes and effects of reactants and/or products on materials of reactor construction were determined, and preliminary engineering and economic analysis of a scaled up process were made. The feasibility of the basic process to make and collect silicon was demonstrated. The jet impaction/separation process was demonstrated to be a purification process. The rate at which gas phase species from silicon particle precursors, the time required for silane decomposition to produce particles, and the competing rate of growth of silicon seed particles injected into a decomposing silane environment were determined. The extent of silane decomposition as a function of residence time, temperature, and pressure was measured by infrared absorption spectroscopy. A simplistic model is presented to explain the growth of silicon in a decomposing silane enviroment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Krieger, J.B.; Norman, M.R.
1991-11-15
The optimized-effective-potential (OEP) method and a method developed recently by Krieger, Li, and Iafrate (KLI) are applied to the band-structure calculations of noble-gas and alkali halide solids employing the self-interaction-corrected (SIC) local-spin-density (LSD) approximation for the exchange-correlation energy functional. The resulting band gaps from both calculations are found to be in fair agreement with the experimental values. The discrepancies are typically within a few percent with results that are nearly the same as those of previously published orbital-dependent multipotential SIC calculations, whereas the LSD results underestimate the band gaps by as much as 40%. As in the LSD---and it ismore » believed to be the case even for the exact Kohn-Sham potential---both the OEP and KLI predict valence-band widths which are narrower than those of experiment. In all cases, the KLI method yields essentially the same results as the OEP.« less
Strong Turbulence in Alkali Halide Negative Ion Plasmas
NASA Astrophysics Data System (ADS)
Sheehan, Daniel
1999-11-01
Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 <= fracm_+m- <= 20 are achievable. The source will allow tests of strong turbulence theory^2. 1 Sheehan, D.P., et al., Phys. Fluids B5, 1593 (1993). 2 Tsytovich, V. and Wharton, C.W., Comm. Plasma Phys. Cont. Fusion 4, 91 (1978).
Groen, C P; Oskam, A; Kovács, A
2000-12-25
The structure, bonding and vibrational properties of the mixed LiLnX4 (Ln = La, Dy; X = F, Cl, Br, I) rare earth/alkali halide complexes were studied using various quantum chemical methods (HF, MP2 and the Becke3-Lee-Yang-Parr exchange-correlation density functional) in conjunction with polarized triple-zeta valence basis sets and quasi-relativistic effective core potentials for the heavy atoms. Our comparative study indicated the superiority of MP2 theory while the HF and B3-LYP methods as well as less sophisticated basis sets failed for the correct energetic relations. In particular, f polarization functions on Li and X proved to be important for the Li...X interaction in the complexes. From the three characteristic structures of such complexes, possessing 1-(C3v), 2-(C2v), or 3-fold coordination (C3v) between the alkali metal and the bridging halide atoms, the bi- and tridentate forms are located considerably lower on the potential energy surface then the monodentate isomer. Therefore only the bi- and tridentate isomers have chemical relevance. The monodentate isomer is only a high-lying local minimum in the case of X = F. For X = Cl, Br, and I this structure is found to be a second-order saddle point. The bidentate structure was found to be the global minimum for the systems with X = F, Cl, and Br. However, the relative stability with respect to the tridentate structure is very small (1-5 kJ/mol) for the heavier halide derivatives and the relative order is reversed in the case of the iodides. The energy difference between the three structures and the dissociation energy decrease in the row F to I. The ionic bonding in the complexes was characterized by natural charges and a topological analysis of the electron density distribution according to Bader's theorem. Variation of the geometrical and bonding characteristics between the lanthanum and dysprosium complexes reflects the effect of "lanthanide contraction". The calculated vibrational data indicate that infrared spectroscopy may be an effective tool for experimental investigation and characterization of LiLnX4 molecules.
An efficient and clean synthesis of alkyl azides using microwave (MW) radiation is described in aqueous medium by reacting alkyl halides or tosylates with alkali azides. This general and expeditious MW-enhanced approach to nucleophilic substitution reactions is applicable to the ...
Kolodney, M.
1959-07-01
Methods are presented for the electro-deposition of plutonium from fused mixtures of plutonium halides and halides of the alkali metals and alkaline earth metals. Th salts, preferably chlorides and with the plutonium prefer ably in the trivalent state, are placed in a refractory crucible such as tantalum or molybdenam and heated in a non-oxidizing atmosphere to 600 to 850 deg C, the higher temperatatures being used to obtain massive plutonium and the lower for the powder form. Electrodes of graphite or non reactive refractory metals are used, the crucible serving the cathode in one apparatus described in the patent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matcha, R.L.; Pettitt, B.M.
1979-03-15
An interesting empirical relationship between zero point Compton profile anisotropies ..delta..J (0) and nuclear charges is noted. It is shown that, for alkali halide molecules AB, to a good approximation ..delta..J (0) =N ln(Z/sub b//Z/sub a/).
PROCESS OF PRODUCING ACTINIDE METALS
Magel, T.T.
1959-07-14
The preparation of actinide metals in workable, coherent form is described. In general, the objects of the invention are achieved by heating a mixture of an oxide and a halide of an actinide metal such as uranium with an alkali metal on alkaline earth metal reducing agent in the presence of iodine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Qinglong; Chen, Mingming; Li, Junqiang
Halide perovskites have recently been investigated for various solution-processed optoelectronic devices. The majority of studies have focused on using intrinsic halide perovskites, and the intentional incoporation of dopants has not been well explored. In this work, we discovered that small alkali ions, including lithium and sodium ions, could be electrochemically intercalated into a variety of halide and pseudohalide perovskites. The ion intercalation caused a lattice expansion of the perovskite crystals and resulted in an n-type doping of the perovskites. Such electrochemical doping improved the conductivity and changed the color of the perovskites, leading to an electrochromism with more than 40%more » reduction of transmittance in the 450–850 nm wavelength range. The doped perovskites exhibited improved electron injection efficiency into the pristine perovskite crystals, resulting in bright light-emitting diodes with a low turn-on voltage.« less
Powder Extinguishants for Jet-Fuel Fires
NASA Technical Reports Server (NTRS)
Altman, R. L.; Mayer, L. A.; Ling, A. C.
1986-01-01
Mixtures of alkali metal dawsonite and metal halide show superior performance. In tests of new dry powder fire extinguishants, mixtures of potassium dawsonite with either stannous iodide or potassium iodide found effective for extinguishing jet-fuel fires on hot metal surfaces (up to 900 degrees C). Mixtures performed more effectively than either compound alone.
Lithium-aluminum-magnesium electrode composition
Melendres, Carlos A.; Siegel, Stanley
1978-01-01
A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.
On the method of positron lifetime measurement
NASA Technical Reports Server (NTRS)
Nishiyama, F.; Shizuma, K.; Nasai, H.; Nishi, M.
1983-01-01
A fast-slow coincidence system was constructed for the measurement of positron lifetimes in material. The time resolution of this system was 270 ps for the (60)Co gamma rays. Positron lifetime spectra for 14 kinds of alkali halides were measured with this system. Two lifetime components and their intensities were derived from analyses of the lifetime spectra.
Method of coating graphite tubes with refractory metal carbides
Wohlberg, C.
1973-12-11
A method of coating graphite tubes with a refractory metal carbide is described. An alkali halide is reacted with a metallic oxide, the metallic portion being selected from the IVth or Vth group of the Periodic Table, the resulting salt reacting in turn with the carbon to give the desired refractory metal carbide coating. (Official Gazette)
NASA Technical Reports Server (NTRS)
Giner, J.
1972-01-01
Molten salt battery has been developed with theoretical energy density of 5.2 j/kg (650 W-h/lb). Battery, which operates at 150 C, can be used in primary mode or as rechargeable battery. Battery has aluminum anode and chlorine cathode. Electrolyte is mixture of AlCl3, NaCl, and some alkali metal halide such as KCl.
Chemistry of alkali cation exchanged faujasite and mesoporous NaX using alkyl halides and phosphates
NASA Astrophysics Data System (ADS)
Lee, Min-Hong
The purpose of this work was to increase the reactivity of Faujasite X (NaX) zeolite toward the reactive decontamination of materials subject to nucleophilic attack by means of zeolite cation optimization and by means of the synthesis of mesoporous Faujasite X. Primary alkyl halides and trialkyl phosphates have been the test materials on which the cation-optimized and mesoporous zeolites have been tested. In the alkali cation optimization work, reactions of methyl iodide and 1-chloropropane with alkali metal cation exchanged Faujasite zeolite X were investigated at room temperature. The reactivity of the framework and the product formation were shown to depend on zeolite framework counter-cation. A quantitative study of zeolite product formation has been carried out, primarily using solid-state NMR spectroscopy. Large alkali cations showed preference toward substitution chemistry. In contrast, alkyl halide exposed LiX and NaX zeolites underwent both substitution and elimination. Subsequently introduced water molecules led to hydrolysis of framework species that was sensitive to framework counter-cation. The mesoporous NaX zeolites work undertakes to test whether an improvement in surface chemical reactivity can be achieved by introducing mesopores into the already reactive nucleophilic microporous NaX zeolite. Incorporation of the polydiallyl dimethyl ammonium chloride (PDADMAC) template and the formation of mesopores in Faujasite X zeolite (NaX) were successful and well-characterized. The mesopores are proposed to have occurred from incorporation of the cationic PDADMAC polymer into the zeolite by compensating zeolite framework charge. Subsequent sodium cation exchange of calcined mesoporous NaX was shown to restore the chemical reactivity characteristic of as-synthesized NaX. Trialkyl organophosphorous compounds underwent substitution reactions. The reactivity of both microporous and mesoporous Faujasite zeolite X and the product formation was shown to depend on the length of the alkyl chain. Although introduced mesopores alleviated the limited reagent diffusion to reactive sites due to the microporosity of the NaX zeolites, no marked improvement in the product yields was achieved with either the 1-chloroalkanes or the trialkyl phosphates test compounds, regardless of alkyl chain length. The disappointing results have been attributed to lack of substantial net increase in the numbers of zeolite nucleophilic sites accompanying mesopore introduction.
Alkali Metal Doping for Improved CH3NH3PbI3 Perovskite Solar Cells.
Zhao, Wangen; Yao, Zhun; Yu, Fengyang; Yang, Dong; Liu, Shengzhong Frank
2018-02-01
Organic-inorganic hybrid halide perovskites are proven to be a promising semiconductor material as the absorber layer of solar cells. However, the perovskite films always suffer from nonuniform coverage or high trap state density due to the polycrystalline characteristics, which degrade the photoelectric properties of thin films. Herein, the alkali metal ions which are stable against oxidation and reduction are used in the perovskite precursor solution to induce the process of crystallization and nucleation, then affect the properties of the perovskite film. It is found that the addition of the alkali metal ions clearly improves the quality of perovskite film: enlarges the grain sizes, reduces the defect state density, passivates the grain boundaries, increases the built-in potential ( V bi ), resulting to the enhancement in the power conversion efficiency of perovskite thin film solar cell.
Alkali metal/halide thermal energy storage systems performance evaluation
NASA Technical Reports Server (NTRS)
Phillips, W. M.; Stearns, J. W.
1986-01-01
A pseudoheat-pipe heat transfer mechanism has been demonstrated effective in terms of both total heat removal efficiency and rate, on the one hand, and system isothermal characteristics, on the other, for solar thermal energy storage systems of the kind being contemplated for spacecraft. The selection of appropriate salt and alkali metal substances for the system renders it applicable to a wide temperature range. The rapid heat transfer rate obtainable makes possible the placing of the thermal energy storage system around the solar receiver canister, and the immersing of heat transfer fluid tubes in the phase change salt to obtain an isothermal heat source.
SEPARATION OF METAL SALTS BY ADSORPTION
Gruen, D.M.
1959-01-20
It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.
Carroll, David W.; Salazar, Kenneth V.; Trkula, Mitchell; Sandoval, Cynthia W.
2002-01-01
There has been invented a codeposition process for fabricating hydrogen scavengers. First, a .pi.-bonded allylic organometallic complex is prepared by reacting an allylic transition metal halide with an organic ligand complexed with an alkali metal; and then, in a second step, a vapor of the .pi.-bonded allylic organometallic complex is combined with the vapor of an acetylenic compound, irradiated with UV light, and codeposited on a substrate.
N ,N'-dimethylperylene-3,4,9,10-bis(dicarboximide) on alkali halide (001) surfaces
NASA Astrophysics Data System (ADS)
Fendrich, Markus; Lange, Manfred; Weiss, Christian; Kunstmann, Tobias; Möller, Rolf
2009-05-01
The growth of N ,N'-dimethylperylene-3,4,9,10-bis(dicarboximide) (DiMe-PTCDI) on KBr(001) and NaCl(001) surfaces has been studied. Experimental results have been achieved using frequency modulation atomic force microscopy at room temperature under ultrahigh vacuum conditions. On both substrates, DiMe-PTCDI forms molecular wires with a width of 10nm, typically, and a length of up to 600nm at low coverages. All wires grow along either the [110] direction (or [11¯0] direction, respectively) of the alkali halide (001) substrates. There is no wetting layer of molecules: atomic resolution of the substrates can be achieved between the wires. The wires are mobile on KBr but substantially more stable on NaCl. A p(2×2) superstructure in a brickwall arrangement on the ionic crystal surfaces is proposed based on electrostatic considerations. Calculations and Monte Carlo simulations using empirical potentials reveal possible growth mechanisms for molecules within the first layer for both substrates, also showing a significantly higher binding energy for NaCl(001). For KBr, the p(2×2) superstructure is confirmed by the simulations; for NaCl, a less dense, incommensurate superstructure is predicted.
Electric polarization switching in an atomically thin binary rock salt structure
NASA Astrophysics Data System (ADS)
Martinez-Castro, Jose; Piantek, Marten; Schubert, Sonja; Persson, Mats; Serrate, David; Hirjibehedin, Cyrus F.
2018-01-01
Inducing and controlling electric dipoles is hindered in the ultrathin limit by the finite screening length of surface charges at metal-insulator junctions1-3, although this effect can be circumvented by specially designed interfaces4. Heterostructures of insulating materials hold great promise, as confirmed by perovskite oxide superlattices with compositional substitution to artificially break the structural inversion symmetry5-8. Bringing this concept to the ultrathin limit would substantially broaden the range of materials and functionalities that could be exploited in novel nanoscale device designs. Here, we report that non-zero electric polarization can be induced and reversed in a hysteretic manner in bilayers made of ultrathin insulators whose electric polarization cannot be switched individually. In particular, we explore the interface between ionic rock salt alkali halides such as NaCl or KBr and polar insulating Cu2N terminating bulk copper. The strong compositional asymmetry between the polar Cu2N and the vacuum gap breaks inversion symmetry in the alkali halide layer, inducing out-of-plane dipoles that are stabilized in one orientation (self-poling). The dipole orientation can be reversed by a critical electric field, producing sharp switching of the tunnel current passing through the junction.
Preparation of Gelatin Layer Film with Gold Clusters in Using Photographic Film
NASA Astrophysics Data System (ADS)
Kuge, Ken'ichi; Arisawa, Michiko; Aoki, Naokazu; Hasegawa, Akira
2000-12-01
A gelatin layer film with gold clusters is produced by taking advantage of the photosensitivity of silver halide photography. Through exposure silver specks, which are called latent-image specks and are composed of several reduced silver atoms, are formed on the surface of silver halide grains in the photographic film. As the latent-image specks act as a catalyst for redox reaction, reduced gold atoms are deposited on the latent-image specks when the exposed film is immersed in a gold (I) thiocyanate complex solution for 5-20 days. Subsequently, when the silver halide grains are dissolved and removed, the gelatin layer film with gold clusters remains. The film produced by this method is purple and showed an absorption spectrum having a maximum of approximately 560 nm as a result of plasmon absorption. The clusters continued to grow with immersion time, and the growth rate increased as the concentration of the gold complex solution was increased. The cluster diameter changed from 20 nm to 100 nm. By this method, it is possible to produce a gelatin film of a large area with evenly dispersed gold clusters, and since it is produced only on the exposed area, pattern forming is also possible.
NASA Astrophysics Data System (ADS)
Hudson, L. T.; Tolk, N. H.; Bao, C.; Nordlander, P.; Russell, D. P.; Xu, J.
2000-10-01
The desorption yields of excited hydrogen atoms from the surfaces of KCl, KBr, NaCl, NaF, and LiF have been measured as a function of incident photon and electron energy and flux, time of irradiation, dosing pressure of H2 and sample temperature. As these surfaces are exposed to H2 gas during electron or photon bombardment, the fluorescence from excited hydrogen atoms ejected from the surface is monitored. The desorption yields are found to be contingent upon surface damage induced by the incident particle radiation, leading to dissociative adsorption at surface sites containing an excess of alkali metal. A desorption mechanism is presented in which incident electrons or photons induce a valence excitation to a neutral, antibonding state of the surface alkali hydride molecule complex, leading to the desorption of hydrogen atoms possessing several eV of kinetic energy.
Alternative Electrochemical Salt Waste Forms, Summary of FY11-FY12 Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Brian J.; Mccloy, John S.; Crum, Jarrod V.
2014-01-17
The Fuel Cycle Research and Development Program, sponsored by the U.S. Department of Energy Office of Nuclear Energy, is currently investigating alternative waste forms for wastes generated from nuclear fuel processing. One such waste results from an electrochemical separations process, called the “Echem” process. The Echem process utilizes a molten KCl-LiCl salt to dissolve the fuel. This process results in a spent salt containing alkali, alkaline earth, lanthanide halides and small quantities of actinide halides, where the primary halide is chloride with a minor iodide fraction. Pacific Northwest National Laboratory (PNNL) is concurrently investigating two candidate waste forms for themore » Echem spent-salt: high-halide minerals (i.e., sodalite and cancrinite) and tellurite (TeO2)-based glasses. Both of these candidates showed promise in fiscal year (FY) 2009 and FY2010 with a simplified nonradioactive simulant of the Echem waste. Further testing was performed on these waste forms in FY2011 and FY2012 to assess the possibility of their use in a sustainable fuel cycle. This report summarizes the combined results from FY2011 and FY2012 efforts.« less
Photoelectron spectroscopy of color centers in negatively charged cesium iodide nanocrystals
NASA Astrophysics Data System (ADS)
Sarkas, Harry W.; Kidder, Linda H.; Bowen, Kit H.
1995-01-01
We present the photoelectron spectra of negatively charged cesium iodide nanocrystals recorded using 2.540 eV photons. The species examined were produced using an inert gas condensation cluster ion source, and they ranged in size from (CsI)-n=13 to nanocrystal anions comprised of 330 atoms. Nanocrystals showing two distinct types of photoemission behavior were observed. For (CsI)-n=13 and (CsI)-n=36-165, a plot of cluster anion photodetachment threshold energies vs n-1/3 gives a straight line extrapolating (at n-1/3=0, i.e., n=∞) to 2.2 eV, the photoelectric threshold energy for F centers in bulk cesium iodide. The linear extrapolation of the cluster anion data to the corresponding bulk property implies that the electron localization in these gas-phase nanocrystals is qualitatively similar to that of F centers in extended alkali halide crystals. These negatively charged cesium iodide nanocrystals are thus shown to support embryonic forms of F centers, which mature with increasing cluster size toward condensed phase impurity centers. Under an alternative set of source conditions, nanocrystals were produced which showed significantly lower photodetachment thresholds than the aforementioned F-center cluster anions. For these species, containing 83-131 atoms, a plot of their cluster anion photodetachment threshold energies versus n-1/3 gives a straight line which extrapolates to 1.4 eV. This value is in accord with the expected photoelectric threshold energy for F' centers in bulk cesium iodide, i.e., color centers with two excess electrons in a single defect site. These nanocrystals are interpreted to be the embryonic F'-center containing species, Cs(CsI)-n=41-65.
Characterization of an F-center in an alkali halide cluster
NASA Astrophysics Data System (ADS)
Bader, R. F. W.; Platts, J. A.
1997-11-01
The removal of a fluorine atom from its central position in a cubiclike Li14F13+ cluster creates an F-center vacancy that may or may not be occupied by the remaining odd electron. The topology exhibited by the electron density in Li14F12+, the F-center cluster, enables one to make a clear distinction between the two possible forms that the odd electron can assume. If it possesses a separate identity, then a local maximum in the electron density will be found within the vacancy and the F-center will behave quantum mechanically as an open system, bounded by a surface of local zero flux in the gradient vector field of the electron density. If, however, the density of the odd electron is primarily delocalized onto the neighboring ions, then a cage critical point, a local minimum in the density, will be found at the center of the vacancy. Without an associated local maximum, the vacancy has no boundary and is undefined. Self-consistent field (SCF) calculations with geometry optimization of the Li14F13+ cluster and of the doublet state of Li14F12+ show that the creation of the central vacancy has only a minor effect upon the geometry of the cluster, the result of a local maximum in the electron density being formed within the vacancy. Thus the F-center is the physical manifestation of a non-nuclear attractor in the electron density. It is consequently a proper open system with a definable set of properties, the most characteristic being its low kinetic energy per electron. In addition to determining the properties of the F-center, the effect of its formation on the energies, volumes, populations, both electron and spin, and electron localizations of the ions in the cluster are determined.
Helium cluster isolation spectroscopy
NASA Astrophysics Data System (ADS)
Higgins, John Paul
Clusters of helium, each containing ~103- 104 atoms, are produced in a molecular beam and are doped with alkali metal atoms (Li, Na, and K) and large organic molecules. Electronic spectroscopy in the visible and UV regions of the spectrum is carried out on the dopant species. Since large helium clusters are liquid and attain an equilibrium internal temperature of 0.4 K, they interact weakly with atoms or molecules absorbed on their surface or resident inside the cluster. The spectra that are obtained are characterized by small frequency shifts from the positions of the gas phase transitions, narrow lines, and cold vibrational temperatures. Alkali atoms aggregate on the helium cluster surface to form dimers and trimers. The spectra of singlet alkali dimers exhibit the presence of elementary excitations in the superfluid helium cluster matrix. It is found that preparation of the alkali molecules on the surface of helium clusters leads to the preferential formation of high-spin, van der Waals bound, triplet dimers and quartet trimers. Four bound-bound and two bound-free transitions are observed in the triplet manifold of the alkali dimers. The quartet trimers serve as an ideal system for the study of a simple unimolecular reaction in the cold helium cluster environment. Analysis of the lowest quartet state provides valuable insight into three-body forces in a van der Waals trimer. The wide range of atomic and molecular systems studied in this thesis constitutes a preliminary step in the development of helium cluster isolation spectroscopy, a hybrid technique combining the advantages of high resolution spectroscopy with the synthetic, low temperature environment of matrices.
Silicon-Based Nanoscale Composite Energetic Materials
2013-02-01
February 2013 HDTRA1-08-1-0006 Steven F. Son et al. Prepared by: Purdue University 130 Chaffee Hall 500 Allison Road West...in preparation or submitted. One patent disclosure has been submitted. We plan to submit another patent disclosure in the next few weeks...approach, termed salt-assisted combustion synthesis (SACS) (28]. In a SACS process, the SHS reactive mixture is combined with alkali metal halides
NASA Astrophysics Data System (ADS)
Riera, Marc; Mardirossian, Narbe; Bajaj, Pushp; Götz, Andreas W.; Paesani, Francesco
2017-10-01
This study presents the extension of the MB-nrg (Many-Body energy) theoretical/computational framework of transferable potential energy functions (PEFs) for molecular simulations of alkali metal ion-water systems. The MB-nrg PEFs are built upon the many-body expansion of the total energy and include the explicit treatment of one-body, two-body, and three-body interactions, with all higher-order contributions described by classical induction. This study focuses on the MB-nrg two-body terms describing the full-dimensional potential energy surfaces of the M+(H2O) dimers, where M+ = Li+, Na+, K+, Rb+, and Cs+. The MB-nrg PEFs are derived entirely from "first principles" calculations carried out at the explicitly correlated coupled-cluster level including single, double, and perturbative triple excitations [CCSD(T)-F12b] for Li+ and Na+ and at the CCSD(T) level for K+, Rb+, and Cs+. The accuracy of the MB-nrg PEFs is systematically assessed through an extensive analysis of interaction energies, structures, and harmonic frequencies for all five M+(H2O) dimers. In all cases, the MB-nrg PEFs are shown to be superior to both polarizable force fields and ab initio models based on density functional theory. As previously demonstrated for halide-water dimers, the MB-nrg PEFs achieve higher accuracy by correctly describing short-range quantum-mechanical effects associated with electron density overlap as well as long-range electrostatic many-body interactions.
NASA Astrophysics Data System (ADS)
Li, Peiyun; Gridin, Sergii; Ucer, K. Burak; Williams, Richard T.; Menge, Peter R.
2018-04-01
Picosecond time-resolved optical absorption spectra induced by two-photon interband excitation of LaBr3 are reported. The spectra are similar in general characteristics to self-trapped exciton (STE) absorption previously measured in alkali halides and alkaline-earth halides. A broad ultraviolet absorption band results from excitation of the self-trapped hole within the STE. A series of infrared and red-visible bands results from excitation of the bound outer electron within the STE similar to bands found in alkali halides corresponding to different degrees of "off-center" relaxation. Induced absorption in cerium-doped LaBr3 after band-gap excitation of the host exhibits similar STE spectra, except it decays faster on the tens-of-picoseconds scale in proportion to the Ce concentration. This is attributed to dipole-dipole energy transfer from STE to Ce3 + dopant ions. The absorption spectra were also measured after direct excitation of the Ce3 + ions with sufficient intensity to drive two- and three-photon resonantly enhanced excitation. In this case, the spectrum attributed to STEs created adjacent to Ce3 + ions decays in 1 ps suggesting dipole-dipole transfer from the nearest-neighbor separation. A transient absorption band at 2.1 eV growing with Ce concentration is found and attributed to a charge-transfer excitation of the Ce3 +* excited state responsible for scintillation in LaBr3:Ce crystals. This study concludes that the energy transport from host to activator responsible for the scintillation of LaBr3:Ce proceeds by STE creation and dipole-dipole transfer more than by sequential trapping of holes and electrons on Ce3 + ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beattie, Ross J.; Sutton, Andrew D.; Scott, Brian L.
The sterically encumbered NacNac ligand, [HC(MeCNAr) 2] – (Ar = 2,6- i-Pr 2C 6H 3), was investigated as a platform for supporting Lu-halide complexes, sought for their potential capability of being further converted into hydrocarbyl derivatives via metathetical chemistries with alkali metal alkyls. As a result, these substituted analogs were targeted as potentially viable candidates for alkane elimination chemistries, with an eye towards the formation of an isolable Lu-alkylidene fragment.
METHOD FOR THE REDUCTION OF URANIUM COMPOUNDS
Cooke, W.H.; Crawford, J.W.C.
1959-05-12
An improved technique of preparing massive metallic uranium by the reaction at elevated temperature between an excess of alkali in alkaline earth metal and a uranium halide, such ss uranium tetrafluoride is presented. The improvement comprises employing a reducing atmosphere of hydrogen or the like, such as coal gas, in the vessel during the reduction stage and then replacing the reducing atmosphere with argon gas prior to cooling to ambient temperature.
METHOD OF MAKING ALLOYS OF SECOND RARE EARTH SERIES METALS
Baker, R.D.; Hayward, B.R.
1963-01-01
>This invention relates to a process for alloying the second rare earth series metals with Mo, Nb, or Zr. A halide of the rare earth metal is mixed with about 1 to 20 at.% of an oxide of Mo, Nb, or Zr. Iodine and an alkali or alkaline earth metal are added, and the resulting mixture is heated in an inert atmosphere to 350 deg C. (AEC)
Abdelkader, Amr M; Vallés, Cristina; Cooper, Adam J; Kinloch, Ian A; Dryfe, Robert A W
2014-11-25
Herein we present a green and facile approach to the successful reduction of graphene oxide (GO) materials using molten halide flux at 370 °C. GO materials have been synthesized using a modified Hummers method and subsequently reduced for periods of up to 8 h. Reduced GO (rGO) flakes have been characterized using X-ray-diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR), all indicating a significantly reduced amount of oxygen-containing functionalities on the rGO materials. Furthermore, impressive electrical conductivities and electrochemical capacitances have been measured for the rGO flakes, which, along with the morphology determined from scanning electron microscopy, highlight the role of surface corrugation in these rGO materials.
Lithium-aluminum-iron electrode composition
Kaun, Thomas D.
1979-01-01
A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.
NASA Astrophysics Data System (ADS)
Nakayama, Akira; Yamashita, Koichi
2001-01-01
Path integral Monte Carlo calculations have been performed to investigate the microscopic structure and thermodynamic properties of the AkṡHeN (Ak=Li, Na, K,N⩽300) clusters at T=0.5 K. Absorption spectra which correspond to the 2P←2S transitions of alkali atoms are also calculated within a pairwise additive model, which employs diatomic Ak-He potential energy curves. The size dependences of the cluster structure and absorption spectra that show the influence of the helium cluster environment are examined in detail. It is found that alkali atoms are trapped in a dimple on the helium cluster's surface and that, from the asymptotic behavior, the AkṡHe300 cluster, at least semiquantitatively, mimics the local structure of experimentally produced large helium clusters in the vicinity of alkali atoms. We have successfully reproduced the overall shapes of the spectra and explained their features from a static and structural point of view. The positions, relative intensities, and line widths of the absorption maxima are calculated to be in moderate agreement with experiments [F. Stienkemeier, J. Higgins, C. Callegari, S. I. Kanorsky, W. E. Ernst, and G. Scoles, Z. Phys. D 38, 253 (1996)].
A PEG/copper(i) halide cluster as an eco-friendly catalytic system for C-N bond formation.
Li, Cheng-An; Ji, Wei; Qu, Jian; Jing, Su; Gao, Fei; Zhu, Dun-Ru
2018-05-22
The catalytic activities of eight copper(i) halide clusters assembled from copper(i) halide and ferrocenyltelluroethers, 1-8, were investigated in C-N formation under various conditions. A catalytic procedure using poly(ethylene glycol) (PEG-400) as a greener alternative organic solvent has been developed. The PEG-400/5 system can achieve 99% targeted yield with a mild reaction temperature and short reaction time. After the isolation of the products by extraction with diethyl ether, this PEG-400/cluster system could be easily recycled. Spectroscopic studies elucidate a stepwise mechanism: firstly, proton-coupled electron transfer (PCET) involving the transfer of an electron from Cu+ and a proton from imidazole results in the formation of a labile penta-coordinated Cu2+ and aryl radical; the following effective electron transfer from the ferrocene unit reduces Cu2+ and forms the target product; finally, the ferrocenium unit is reduced by the I- anion. The merits of this eco-friendly synthesis are the efficient utilization of reagents and easy recyclability.
Absorption Coefficient of Alkali Halides. Part I.
1979-03-01
Q7 A*.oj DATA’ SET ±6 4-5. 0.827 T - Elsa - Li,. 1.62, 3..%?. f..224 1 t.-.5 :.13L 312.9 15.8 9.8*6 16. t u.. t...5 ., i lo.~ 6.705 Z6.8 . 87± - c7. 9...With Synchrotron Radiation," Solid State Coimnun., 6, 575 (1968). 168. Saito, H., Saito, S., Onaka, R., and Ikeo, B., "Extreme Ultraviolet Ab- sorption
New gas phase inorganic ion cluster species and their atmospheric implications
NASA Technical Reports Server (NTRS)
Maerk, T. D.; Peterson, K. I.; Castleman, A. W., Jr.
1980-01-01
Recent experimental laboratory observations, with high-pressure mass spectroscopy, have revealed the existence of previously unreported species involving water clustered to sodium dimer ions, and alkali metal hydroxides clustered to alkali metal ions. The important implications of these results concerning the existence of such species are here discussed, as well as how from a practical aspect they confirm the stability of certain cluster species proposed by Ferguson (1978) to explain masses recently detected at upper altitudes using mass spectrometric techniques.
NASA Astrophysics Data System (ADS)
McMillan, Paul F.; Gryko, Jan; Bull, Craig; Arledge, Richard; Kenyon, Anthony J.; Cressey, Barbara A.
2005-03-01
A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr 2) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300 °C. Syntheses at higher temperatures gave rise to microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.
Low temperature oxidation using support molten salt catalysts
Weimer, Alan W.; Czerpak, Peter J.; Hilbert, Patrick M.
2003-05-20
Molten salt reactions are performed by supporting the molten salt on a particulate support and forming a fluidized bed of the supported salt particles. The method is particularly suitable for combusting hydrocarbon fuels at reduced temperatures, so that the formation NO.sub.x species is reduced. When certain preferred salts are used, such as alkali metal carbonates, sulfur and halide species can be captured by the molten salt, thereby reducing SO.sub.x and HCl emissions.
Molecular dewetting on insulators.
Burke, S A; Topple, J M; Grütter, P
2009-10-21
Recent attention given to the growth and morphology of organic thin films with regard to organic electronics has led to the observation of dewetting (a transition from layer(s) to islands) of molecular deposits in many of these systems. Dewetting is a much studied phenomenon in the formation of polymer and liquid films, but its observation in thin films of the 'small' molecules typical of organic electronics requires additional consideration of the structure of the interface between the molecular film and the substrate. This review covers some key concepts related to dewetting and molecular film growth. In particular, the origins of different growth modes and the thickness dependent interactions which give rise to dewetting are discussed in terms of surface energies and the disjoining pressure. Characteristics of molecular systems which may lead to these conditions, including the formation of metastable interface structures and commensurate-incommensurate phase transitions, are also discussed. Brief descriptions of some experimental techniques which have been used to study molecular dewetting are given as well. Examples of molecule-on-insulator systems which undergo dewetting are described in some detail, specifically perylene derivatives on alkali halides, C(60) on alkali halides, and the technologically important system of pentacene on SiO(2). These examples point to some possible predicting factors for the occurrence of dewetting, most importantly the formation of an interface layer which differs from the bulk crystal structure.
Kalyuzhnyi, Yu V; Vlachy, Vojko; Dill, Ken A
2010-06-21
We use the AMSA, associative mean spherical theory of associative fluids, to study ion-ion interactions in explicit water. We model water molecules as hard spheres with four off-center square-well sites and ions as charged hard spheres with sticky sites that bind to water molecules or other ions. We consider alkali halide salts. The choice of model parameters is based on two premises: (i) The strength of the interaction between a monovalent ion and a water molecule is inversely proportional to the ionic (crystal) diameter sigma(i). Smaller ions bind to water more strongly than larger ions do, taking into account the asymmetry of the cation-water and anion-water interactions. (ii) The number of contacts an ion can make is proportional to sigma2(i). In short, small ions bind waters strongly, but only a few of them. Large ions bind waters weakly, but many of them. When both a monovalent cation and anion are large, it yields a small osmotic coefficient of the salt, since the water molecules avoid the space in between large ions. On the other hand, salts formed from one small and one large ion remain hydrated and their osmotic coefficient is high. The osmotic coefficients, calculated using this model in combination with the integral equation theory developed for associative fluids, follow the experimental trends, including the unusual behavior of caesium salts.
Danis, J A; Lin, M R; Scott, B L; Eichhorn, B W; Runde, W H
2001-07-02
UO(2)(C(2)H(3)O(2))(2).2H(2)O reacts with AX or A(C(2)H(3)O(2) or ClO(4)) (where A = Li, Na, K; X = Cl, Br) and crown ethers in HCl or HBr aqueous solutions to give the sandwich-type compounds [K(18-crown-6)](2)[UO(2)Cl(4)] (1), [K(18-crown-6)](2)[UO(2)Br(4)] (2), [Na(15-crown-5)](2)[UO(2)Cl(4)] (3), [Na(15-crown-5)](2)[UO(2)Br(4)] (4), [Li(12-crown-4)](2)[UO(2)Cl(4)] (5), and [Li(12-crown-4)](2)[UO(2)Br(4)] (6). The compounds have been characterized by single-crystal X-ray diffraction, powder diffraction, elemental analysis, IR, and Raman spectroscopy. The [UO(2)X(4)](2-) ions coordinate to two [A(crown)](+) cations through the four halides only (2), through two halides only (3), through the two uranyl oxygens and two halides (3, 4), or through the two uranyl oxygen atoms only (5, 6). Raman spectra reveal nu(U-O) values that correlate with expected trends. The structural trends are discussed within the context of classical principles of hard-soft acid-base theory.
NASA Astrophysics Data System (ADS)
West, Jennings Palmer
The studies and syntheses presented in this dissertation were primarily aimed at exploring new magnetic solids comprised of special framework oxides with novel magnetic properties. Low-dimensional magnetic behavior has been of great interest, especially pertaining to molecular solids having single magnetic domains where slow relaxation and quantum properties of magnetization are evident. In attempts to mimic molecular magnets and achieve reduced dimensionality of, in this case 3d-4f magnetic sublattices, diamagnetic oxyanions, XOmn-, and A-site cations (A = alkali and alkaline-earth metals) were used as nonmagnetic spacers in hopes of disrupting or confining magnetic interactions in certain dimensions. The general system type explored throughout these studies was of the form: A-R-M-X-O, where A = alkali and alkaline-earth metals, R = Bi3+ or lanthanide metals (4f), M = first row transition metals (3d), and X = P, As, or Ge. The scope of this research consisted of, first, finding new low-dimensional magnetic systems of the A-R-M-X-O type through exploratory molten-salt synthetic approaches, and upon characterizing these new systems, attempts were made to chemically modify these materials in order to understand and gain insight into how the structures of these materials dictate properties through structure and property correlations. Due to the refractory nature and low solubility of the covalent metal oxides, namely the lanthanide and transition metal oxides, excess amounts of eutectic halide flux mixtures (alkali and alkaline-earth halides) were employed to assist the reaction and promote crystal growth. One can think of these halide fluxes as a high-temperature solvent, in the molten state, that helps speed up the otherwise slow diffusion processes typically associated with traditional solid state synthetic approaches via unconventional dissolution (decomposition) and reprecipitation processes. Also advantageous in using alkali and alkaline-earth metal halides as solvent media is the fact that the salt itself or the alkali/alkaline-earth oxides formed in situ can be incorporated in phase formations. Both of the aforementioned cases, if incorporated, lead to an additional and different type of nonmagnetic spacer for the formation of low-dimensional 3d-4 f extended solids. It is believed that these nonmagnetic, ionic spacers are more disruptive to magnetic super-super-exchange in comparison to the nonmagnetic oxyanionic spacers, and should assist further in achieving truly confined magnetic sublattices. In the studies presented, the overall highlight considering structure and property correlations will be most exemplified through the comparison of two different pseudo-one-dimensional (1D), 3d-4 f arsenate systems (Chapters 3 and 4) where it is observed that further spacing of the 3d-4f sublattices leads to interesting low-dimensional magnetic behavior. In addition, an extension of one of these pseudo-1D, 3d-4f systems (Chapter 5) will highlight the intriguing properties resulting from the study of a family of compounds whereby a double aliovalent substitution has been performed with respect to the parent family. This particular system features a solid solution series where charge disorder exists, and in terms of magnetic properties, there are unique variations in comparison to the parent family. And finally, in relation to heterometallic system types, a new noncentrosymmetric phosphate family containing mixed 3d-6p (where 3 d = Mn, Fe; 6p = Bi3+) will be discussed (Chapter 6). As will be mentioned, new 3d-6p systems were explored originally for host materials where lanthanides could be substituted. Independent of lanthanide substitutions that are yet to be proven, the combination of both bulk acentricity and magnetically active ions makes systems of this type worthy of study due to multiferroic potentials aimed toward the coupling of polarization and magnetization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, Paul F.; Gryko, Jan; Bull, Craig
A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr{sub 2}) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300{sup o}C. Syntheses at higher temperatures gave rise tomore » microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.« less
A multi-frequency EPR and ENDOR study of Rh and Ir complexes in alkali and silver halides
NASA Astrophysics Data System (ADS)
Callens, F.; Vrielinck, H.; Matthys, P.
2003-01-01
Aliovalent Rh and Ir cations have been frequently used to influence the photographic properties of silver halide emulsions. The doping introduces several types of related defects with distinct trapping and recombination properties. EPR and ENDOR are, in principle, ideally suited for the determination of the microscopic structure of the individual centres but it will be demonstrated that well-chosen, sometimes sophisticated multi-frequency experiments are necessary in order to (partially) reach this goal. Model studies on single crystals of AgCl and NaCl also appeared indispensable for the unravelling of the spectra. In the review of Rh-centres in NaCl and AgCl special attention is paid to methods that allow to detect cation vacancies near Rh2+ complexes. An alternative explanation for the high temperature behaviour of the [RhCl6](4-) complexes in AgCl is presented.
Method of enhancing the wettability of boron nitride for use as an electrochemical cell separator
McCoy, L.R.
1981-01-23
A felt or other fabric of boron nitride suitable for use as an interelectrode separator within an electrochemical cell is wetted with a solution containing a thermally decomposable organic salt of an alkaline earth metal. An aqueous solution of magnesium acetate is the preferred solution for this purpose. After wetting the boron nitride, the solution is dried by heating at a sufficiently low temperature to prevent rapid boiling and the creation of voids within the separator. The dried material is then calcined at an elevated temperature in excess of 400/sup 0/C to provide a coating of an oxide of magnesium on the surface of the boron nitride fibers. A fabric or felt of boron nitride treated in this manner is easily wetted by molten electrolytic salts, such as the alkali metal halides or alkaline earth metal halides, that are used in high temperature, secondary electrochemical cells.
Method of enhancing the wettability of boron nitride for use as an electrochemical cell separator
McCoy, Lowell R.
1982-01-01
A felt or other fabric of boron nitride suitable for use as an interelecte separator within an electrochemical cell is wetted with a solution containing a thermally decomposable organic salt of an alkaline earth metal. An aqueous solution of magnesium acetate is the preferred solution for this purpose. After wetting the boron nitride, the solution is dried by heating at a sufficiently low temperature to prevent rapid boiling and the creation of voids within the separator. The dried material is then calcined at an elevated temperature in excess of 400.degree. C. to provide a coating of an oxide of magnesium on the surface of the boron nitride fibers. A fabric or felt of boron nitride treated in this manner is easily wetted by molten electrolytic salts, such as the alkali metal halides or alkaline earth metal halides, that are used in high temperature, secondary electrochemical cells.
1998-07-09
exist only as isolated single crystalline "islands" in the " sea " of melted phase. Tw2=386.5"C 400 T_.1=381"C L S300 wl L 03. E I- 200 S(Zn) (Sn) 0 20 40...Physics, 142432 Chernogolovka, Moscow distr., Fax: +7(096) 576-41-11; E-mail: kisel@issp.ac.ru The study of microplasticity in alkali halides, metals and
Refractive Index of Alkali Halides and Its Wavelength and Temperature Derivatives.
1975-05-01
of CoBr . . . .......... 236 82. Comparison of Dispersion Equations Proposed for CsBr ... . 237 83. Recommmded Values on the Refractive Index and Its... discovery of empirical relationships which enable us to calculate dn/dT data at 293 K for some ma- terials on which no data are available. In the data...or in handbooks. In the present work, however, this problem 160 was solved by our empirical discoveries by which the unknown parameters of Eq. (19) for
Brannon, Paul J.; Cowgill, Donald F.
1990-01-01
A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable.
NASA Technical Reports Server (NTRS)
Koziol, Jurek K.; Sadoway, Donald R.
1987-01-01
It is presently noted that molten salts possess attributes rendering them attractive as physical models of cast metals in solidification studies. Molten alkali halides have an approximately correct Prandtl number for this modeling of metallic melts, and are transparent to visible light. Attention is given to solidification in the LiCl-KCl system, in order to determine whether such phenomena as solute rejection can be observed and characterized through the application of laser schlieren imaging.
Lutetium functionalities supported by a sterically encumbered β-diketiminate ligand
Beattie, Ross J.; Sutton, Andrew D.; Scott, Brian L.; ...
2018-01-06
The sterically encumbered NacNac ligand, [HC(MeCNAr) 2] – (Ar = 2,6- i-Pr 2C 6H 3), was investigated as a platform for supporting Lu-halide complexes, sought for their potential capability of being further converted into hydrocarbyl derivatives via metathetical chemistries with alkali metal alkyls. As a result, these substituted analogs were targeted as potentially viable candidates for alkane elimination chemistries, with an eye towards the formation of an isolable Lu-alkylidene fragment.
Brannon, P.J.; Cowgill, D.F.
1990-12-18
A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable. 10 figs.
Binder, Mareike; Schrenk, Claudio; Block, Theresa; Pöttgen, Rainer; Schnepf, Andreas
2018-04-26
The most fruitful synthetic route to metalloid tin clusters applies the disproportionation reaction of metastable Sn(I) halide solutions, whereby Si(SiMe₃)₃ is mostly used as the stabilizing substituent. Here, we describe the synthesis and application of the slightly modified substituent Ge(SiMe₃)₃, which can be used for the synthesis of metalloid tin clusters to give the neutral cluster Sn 10 [Ge(SiMe₃)₃]₆ as well as the charged clusters {Sn 10 [Ge(SiMe₃)₃]₅} − and {Sn 10 [Ge(SiMe₃)₃]₄} 2− . The obtained metalloid clusters are structurally similar to their Si(SiMe₃)₃ derivatives. However, differences with respect to the stability in solution are observed. Additionally, a different electronic situation for the tin atoms is realized as shown by 119m Sn Mössbauer spectroscopy, giving further insight into the different kinds of tin atoms within the metalloid cluster {Sn 10 [Ge(SiMe₃)₃]₄} 2− . The synthesis of diverse derivatives gives the opportunity to check the influence of the substituent for further investigations of metalloid tin cluster compounds.
Final Project Report for ER15351 “A Study of New Actinide Zintl Ion Materials”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter K. Dorhout
2007-11-12
The structural chemistry of actinide main-group metal materials provides the fundamental basis for the understanding of structural coordination chemistry and the formation of materials with desired or predicted structural features. The main-group metal building blocks, comprising sulfur-group, phosphorous-group, or silicon-group elements, have shown versatility in oxidation state, coordination, and bonding preferences. These building blocks have allowed us to elucidate a series of structures that are unique to the actinide elements, although we can find structural relationships to transition metal and 4f-element materials. In the past year, we investigated controlled metathesis and self-propagating reactions between actinide metal halides and alkali metalmore » salts of main-group metal chalcogenides such as K-P-S salts. Ternary plutonium thiophosphates have resulted from these reactions at low temperature in sealed ampules. we have also focused efforts to examine reactions of Th, U, and Pu halide salts with other alkali metal salts such as Na-Ge-S and Na-Si-Se and copper chloride to identify if self-propagating reactions may be used as a viable reaction to prepare new actinide materials and we prepared a series of U and Th copper chalcogenide materials. Magnetic measurements continued to be a focus of actinide materials prepared in our laboratory. We also contributed to the XANES work at Los Alamos by preparing materials for study and for comparison with environmental samples.« less
NASA Astrophysics Data System (ADS)
Nguyen, Phuong T. M.; Nguyen, Van T.; Annapureddy, Harsha V. R.; Dang, Liem X.; Do, D. D.
2012-12-01
To enhance our understanding of ion specific activity in biological systems, the potential of mean force approach was utilized to study solvent effects on the interactions between two alkali cations (Na+ and K+) with a formate anion in water. A very complex free energy landscape was observed, much more so than alkali-halide ion pairs. Furthermore, a stronger binding between the Na+-formate pair was found in comparison to the K+-formate pair in water, which is in agreement with experimental and theoretical studies [1-4]. The kinetics of ion-pair inter-conversions was studied using the transition rate theory, along with a number of theoretical approaches such as the Kramers and Grote-Hynes theories. These kinetic results were used to predict solvent effects on dynamical features of ion-pair association, in which we have found that the dynamics of K+-formate pairs is faster than Na+-formate pairs.
Aluminum Pitting Corrosion in Halide Media: A Quantum Model and Empirical Evidence
NASA Astrophysics Data System (ADS)
Lashgari, Mohsen; Kianpour, Effat; Mohammadi, Esmaeil
2013-12-01
The phenomenon of localized damage of aluminum oxide surface in the presence of halide anions was scrutinized at an atomistic level, through the cluster approach and density functional theory. The phenomenon was also investigated empirically through Tafel polarization plots and scanning electron microscopy. A distinct behavior witnessed in the fluoride medium was justified through the hard-soft acid-base principle. The atomistic investigations revealed the greatest potency for chloride entrance into the metal oxide lattice and rationalized to the severity of damage. The interaction of halide anions with the oxide surface causing some displacements on the position of Al atoms provides a mechanistic insight of the phenomenon.
MAMA detector systems - A status report
NASA Technical Reports Server (NTRS)
Timothy, J. Gethyn; Morgan, Jeffrey S.; Slater, David C.; Kasle, David B.; Bybee, Richard L.
1989-01-01
Third-generation, 224 x 960 and 360 x 1024-pixel multianode microchannel (MAMA) detectors are under development for satellite-borne FUV and EUV observations, using pixel dimensions of 25 x 25 microns. An account is presently given of the configurations, modes of operation, and recent performance data of these systems. At UV and visible wavelengths, these MAMAs employ a semitransparent, proximity-focused photocathode structure. At FUV and EUV wavelengths below about 1500 A, opaque alkali-halide photocathodes deposited directly on the front surface of the MCP furnish the best detective quantum efficiencies.
Electrodeposition of magnesium and magnesium/aluminum alloys
Mayer, Anton
1988-01-01
Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.
Thermochemical water decomposition processes
NASA Technical Reports Server (NTRS)
Chao, R. E.
1974-01-01
Thermochemical processes which lead to the production of hydrogen and oxygen from water without the consumption of any other material have a number of advantages when compared to other processes such as water electrolysis. It is possible to operate a sequence of chemical steps with net work requirements equal to zero at temperatures well below the temperature required for water dissociation in a single step. Various types of procedures are discussed, giving attention to halide processes, reverse Deacon processes, iron oxide and carbon oxide processes, and metal and alkali metal processes. Economical questions are also considered.
Electrodeposition of magnesium and magnesium/aluminum alloys
Mayer, A.
1988-01-21
Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.
Boller, E.R.; Eubank, L.D.
1958-08-19
An improved process is described for the treatment of metallic uranium surfaces preparatory to being given hot dip coatings. The process consists in first pickling the uraniunn surInce with aqueous 50% to 70% nitric acid, at 60 to 70 deg C, for about 5 minutes, rinsing the acid solution from the uranium article, promptly drying and then passing it through a molten alkali-metal halide flux consisting of 42% LiCl, 53% KCla and 5% NaCl into a molten metal bath consisting of 85 parts by weight of zinc and 15 parts by weight of aluminum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Pifu; University of the Chinese Academy of Sciences, Beijing 100049; Luo, Siyang
A new alkali tin(II) halide compound, Na{sub 3}Sn{sub 2}F{sub 6}Cl, is synthesized by hydrothermal method. This compound crystallizes trigonally in space group of R-3c (167), and processes a zero-dimensional (0D) structure consisted of Na{sup +} cations, Cl{sup −} anions and the isolated [SnF{sub 3}]{sup -} trigonal pyramids in which the stereochemically active 5s{sup 2} lone pair electrons are attached to the Sn{sup 2+} cations. Interestingly, the [SnF{sub 3}]{sup −} trigonal pyramids are parallel arranged in the a-b plane, while oppositely arranged in line with rotation along the c- axis. Moreover, the energy bandgap, thermal stability and electronic structure of Na{submore » 3}Sn{sub 2}F{sub 6}Cl are characterized and the results reveal that this compound has and indirect bandgap of 3.88 eV and is stable under 270 °C. - Graphical abstract: A zero-dimensional alkaline tin halide compound, Na{sub 3}Sn{sub 2}F{sub 6}Cl, is synthesized by hydrothermal method. Interestingly, both the anions and cations coordinating polyhedra exhibit order arranged with the [SnF{sub 3}]{sup -} trigonal pyramids rotating along the c- axis.« less
Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.
1986-01-01
The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.
Study of defects in TlBr, InI as potential semiconductor radiation detectors
NASA Astrophysics Data System (ADS)
Biswas, Koushik; Du, Mao-Hua
2011-03-01
Group III-halides such as TlBr and InI are receiving considerable attention for application in room temperature radiation detector devices. It is however, essential that these detector materials have favorable defect properties which enable good carrier transport when operating under an external bias voltage. We have studied the properties of native defects of InI and Tlbr and several important results emerge: (1) Schottky defects are the dominant low-energy defects in both materials that can potentially pin the Fermi level close to midgap, leading to high resistivity; (2) native defects in TlBr are benign in terms of electron trapping. However, anion-vacancy in InI induces a deep electron trap similar to the F -centers in alkali halides. This can reduce electron mobility-lifetime product in InI; (3) low diffusion barriers of vacancies and ionic conductivity could be responsible for the observed polarization phenomenon in both materials at room temperature. U.S. DOE Office of Nonproliferation Research and Development NA22.
Synthesis of substantially monodispersed colloids
NASA Technical Reports Server (NTRS)
Stoeva, Savka (Inventor); Klabunde, Kenneth J. (Inventor); Sorensen, Christopher (Inventor)
2003-01-01
A method of forming ligated nanoparticles of the formula Y(Z).sub.x where Y is a nanoparticle selected from the group consisting of elemental metals having atomic numbers ranging from 21-34, 39-52, 57-83 and 89-102, all inclusive, the halides, oxides and sulfides of such metals, and the alkali metal and alkaline earth metal halides, and Z represents ligand moieties such as the alkyl thiols. In the method, a first colloidal dispersion is formed made up of nanoparticles solvated in a molar excess of a first solvent (preferably a ketone such as acetone), a second solvent different than the first solvent (preferably an organic aryl solvent such as toluene) and a quantity of ligand moieties; the first solvent is then removed under vacuum and the ligand moieties ligate to the nanoparticles to give a second colloidal dispersion of the ligated nanoparticles solvated in the second solvent. If substantially monodispersed nanoparticles are desired, the second dispersion is subjected to a digestive ripening process. Upon drying, the ligated nanoparticles may form a three-dimensional superlattice structure.
Electrochemical cell having cylindrical electrode elements
Nelson, Paul A.; Shimotake, Hiroshi
1982-01-01
A secondary, high temperature electrochemical cell especially adapted for lithium alloy negative electrodes, transition metal chalcogenide positive electrodes and alkali metal halide or alkaline earth metal halide electrolyte is disclosed. The cell is held within an elongated cylindrical container in which one of the active materials is filled around the outside surfaces of a plurality of perforate tubular current collectors along the length of the container. Each of the current collector tubes contain a concentric tubular layer of electrically insulative ceramic as an interelectrode separator. The active material of opposite polarity in elongated pin shape is positioned longitudinally within the separator layer. A second electrically conductive tube with perforate walls can be swagged or otherwise bonded to the outer surface of the pin as a current collector and the electrically insulative ceramic layer can be coated or otherwise layered onto the outer surface of this second current collector. Alternatively, the central pin electrode can include an axial core as a current collector.
Solubility of alkali metal halides in the ionic liquid [C4C1im][OTf].
Kuzmina, O; Bordes, E; Schmauck, J; Hunt, P A; Hallett, J P; Welton, T
2016-06-28
The solubilities of the metal halides LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbCl, CsCl, CsI, were measured at temperatures ranging from 298.15 to 378.15 K in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4C1im][OTf]). Li(+), Na(+) and K(+) salts with anions matching the ionic liquid have also been investigated to determine how well these cations dissolve in [C4C1im][OTf]. This study compares the influence of metal cation and halide anion on the solubility of salts within this ionic liquid. The highest solubility found was for iodide salts, and the lowest solubility for the three fluoride salts. There is no outstanding difference in the solubility of salts with matching anions in comparison to halide salts. The experimental data were correlated employing several phase equilibria models, including ideal mixtures, van't Hoff, the λh (Buchowski) equation, the modified Apelblat equation, and the non-random two-liquid model (NRTL). It was found that the van't Hoff model gave the best correlation results. On the basis of the experimental data the thermodynamic dissolution parameters (ΔH, ΔS, and ΔG) were determined for the studied systems together with computed gas phase metathesis parameters. Dissolution depends on the energy difference between enthalpies of fusion and dissolution of the solute salt. This demonstrates that overcoming the lattice energy of the solid matrix is the key to the solubility of inorganic salts in ionic liquids.
Mizuta, R.; Devos, J. M.; Webster, J.; Ling, W. L.; Narayanan, T.; Round, A.; Munnur, D.; Mossou, E.; Farahat, A. A.; Boykin, D. W.; Wilson, W. D.; Neidle, S.; Schweins, R.; Rannou, P.; Haertlein, M.; Forsyth, V. T.
2018-01-01
We describe a novel self-assembling supramolecular nanotube system formed by a heterocyclic cationic molecule which was originally designed for its potential as an antiparasitic and DNA sequence recognition agent. Our structural characterisation work indicates that the nanotubes form via a hierarchical assembly mechanism that can be triggered and tuned by well-defined concentrations of simple alkali halide salts in water. The nanotubes assembled in NaCl have inner and outer diameters of ca. 22 nm and 26 nm respectively, with lengths that reach into several microns. Our results suggest the tubes consist of DB921 molecules stacked along the direction of the nanotube long axis. The tubes are stabilised by face-to-face π–π stacking and ionic interactions between the charged amidinium groups of the ligand and the negative halide ions. The assembly process of the nanotubes was followed using small-angle X-ray and neutron scattering, transmission electron microscopy and ultraviolet/visible spectroscopy. Our data demonstrate that assembly occurs through the formation of intermediate ribbon-like structures that in turn form helices that tighten and compact to form the final stable filament. This assembly process was tested using different alkali–metal salts, showing a strong preference for chloride or bromide anions and with little dependency on the type of cation. Our data further demonstrates the existence of a critical anion concentration above which the rate of self-assembly is greatly enhanced. PMID:29517086
Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webster, R., E-mail: ross.webster07@imperial.ac.uk; Harrison, N. M.; Bernasconi, L.
2015-06-07
We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features ofmore » the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green’s function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional c{sub HF} and show that there exists one value of c{sub HF} (∼0.32) that reproduces at least semi-quantitatively the optical gap of this material.« less
Joung, In Suk; Luchko, Tyler; Case, David A.
2013-01-01
Using the dielectrically consistent reference interaction site model (DRISM) of molecular solvation, we have calculated structural and thermodynamic information of alkali-halide salts in aqueous solution, as a function of salt concentration. The impact of varying the closure relation used with DRISM is investigated using the partial series expansion of order-n (PSE-n) family of closures, which includes the commonly used hypernetted-chain equation (HNC) and Kovalenko-Hirata closures. Results are compared to explicit molecular dynamics (MD) simulations, using the same force fields, and to experiment. The mean activity coefficients of ions predicted by DRISM agree well with experimental values at concentrations below 0.5 m, especially when using the HNC closure. As individual ion activities (and the corresponding solvation free energies) are not known from experiment, only DRISM and MD results are directly compared and found to have reasonably good agreement. The activity of water directly estimated from DRISM is nearly consistent with values derived from the DRISM ion activities and the Gibbs-Duhem equation, but the changes in the computed pressure as a function of salt concentration dominate these comparisons. Good agreement with experiment is obtained if these pressure changes are ignored. Radial distribution functions of NaCl solution at three concentrations were compared between DRISM and MD simulations. DRISM shows comparable water distribution around the cation, but water structures around the anion deviate from the MD results; this may also be related to the high pressure of the system. Despite some problems, DRISM-PSE-n is an effective tool for investigating thermodynamic properties of simple electrolytes. PMID:23387564
Major signal suppression from metal ion clusters in SFC/ESI-MS - Cause and effects.
Haglind, Alfred; Hedeland, Mikael; Arvidsson, Torbjörn; Pettersson, Curt E
2018-05-01
The widening application area of SFC-MS with polar analytes and water-containing samples facilitates the use of quick and simple sample preparation techniques such as "dilute and shoot" and protein precipitation. This has also introduced new polar interfering components such as alkali metal ions naturally abundant in e.g. blood plasma and urine, which have shown to be retained using screening conditions in SFC/ESI-TOF-MS and causing areas of major ion suppression. Analytes co-eluting with these clusters will have a decreased signal intensity, which might have a major effect on both quantification and identification. When investigating the composition of the alkali metal clusters using accurate mass and isotopic pattern, it could be concluded that they were previously not described in the literature. Using NaCl and KCl standards and different chromatographic conditions, varying e.g. column and modifier, the clusters proved to be formed from the alkali metal ions in combination with the alcohol modifier and make-up solvent. Their compositions were [(XOCH 3 ) n + X] + , [(XOH) n + X] + , [(X 2 CO 3 ) n + X] + and [(XOOCOCH 3 ) n + X] + for X = Na + or K + in ESI+. In ESI-, the clusters depended more on modifier, with [(XCl) n + Cl] - and [(XOCH 3 ) n + OCH 3 ] - mainly formed in pure methanol and [(XOOCH) n + OOCH] - when 20 mM NH 4 Fa was added. To prevent the formation of the clusters by avoiding methanol as modifier might be difficult, as this is a widely used modifier providing good solubility when analyzing polar compounds in SFC. A sample preparation with e.g. LLE would remove the alkali ions, however also introducing a time consuming and discriminating step into the method. Since the alkali metal ions were retained and affected by chromatographic adjustments as e.g. mobile phase modifications, a way to avoid them could therefore be chromatographic tuning, when analyzing samples containing them. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Deventer, M. J.; Jiao, Y.; Rhew, R. C.
2017-12-01
Natural emissions of methyl bromide (CH3Br) and methyl chloride (CH3Cl) from terrestrial ecosystems might explain the missing source of these compounds to the atmosphere. Methyl halides are a major source for stratospheric halogens, which catalyzing ozone depletion. Real-world measurements of their exchange fluxes are limited, typically occurring at coarse time scales using intrusive measurement techniques (e.g., laboratory incubations of soil and vegetation samples). To improve the current understanding of the net budget and to provide a more solid foundation for up-scaling purposes, the surface-atmosphere exchange for both methyl halides has been studied during 2016/2017 in a year-long field campaign at Rush Ranch (38.2004 °N, 122.0265 °W), a 4.6 km2 large (natural) brackish saltmarsh in the San Francisco Bay National Estuarine in Suisun Bay (CA, United States), using the non-intrusive micrometeorological Relaxed Eddy Accumulation (REA) technique. With REA flux measurements, a large area of the salt marsh (on the order of multiple acres) can be studied without disturbance. Concurrently, static flux chamber incubations were conducted over different vegetation species, to identify their relevance in terms of methyl halide emissions. Our results confirm substantial emissions of methyl halides from the studied saltmarsh. A rough global extrapolation of these results yields yearly emissions of 52 Gg yr-1 (CH3Cl) and 8 Gg yr-1 for CH3Br, respectively, which is close to estimates based on chamber based observations from southern California saltmarshes. Chamber incubations at Rush Ranch revealed that the invasive species Lepidium latifolium (perennial pepperweed) emits a significant amount of methyl halides, less than the native alkali heath (Frankenia salina) but much more than the native pickleweed (Salicornia spp.) Due to aggressive invasiveness and it's capability to form dense monospecific patches, L. latifolium is the main driver of halide emissions at Rush Ranch. If L. latifolium. invasion of Salicornia-dominated marsh ecosystems continuous, natural emissions of ozone depleting substances may increase in the future.
NASA Astrophysics Data System (ADS)
Arcelus, Oier; Suaud, Nicolas; Katcho, Nebil A.; Carrasco, Javier
2017-05-01
Alkali-metal superoxides are gaining increasing interest as 2p magnetic materials for information and energy storage. Despite significant research efforts on bulk materials, gaps in our knowledge of the electronic and magnetic properties at the nanoscale still remain. Here, we focused on the role that structural details play in determining stability, electronic structure, and magnetic couplings of (MO2)n (M = Li, Na, and K, with n = 2-8) clusters. Using first-principles density functional theory based on the Perdew-Burke-Ernzerhof and Heyd-Scuseria-Ernzerhof functionals, we examined the effect of atomic structure on the relative stability of different polymorphs within each investigated cluster size. We found that small clusters prefer to form planar-ring structures, whereas non-planar geometries become more stable when increasing the cluster size. However, the crossover point depends on the nature of the alkali metal. Our analysis revealed that electrostatic interactions govern the highly ionic M-O2 bonding and ultimately control the relative stability between 2-D and 3-D geometries. In addition, we analyzed the weak magnetic couplings between superoxide molecules in (NaO2)4 clusters comparing model Hamiltonian methods based on Wannier function projections onto πg states with wave function-based multi-reference calculations.
NASA Astrophysics Data System (ADS)
Mykhalichko, B. M.; Temkin, Oleg N.; Mys'kiv, M. G.
2000-11-01
Characteristic features of the coordination chemistry of Cu(I) and mechanisms of catalytic conversions of alkynes in the CuCl-MCl-H2O-HC≡CR system (MCl is alkali metal or ammonium chloride or amine hydrochloride; R=H, CH2OH, CH=CH2, etc.) are analysed based on studies of the compositions and structures of copper(I) chloride (bromide) complexes, alkyne π-complexes and ethynyl organometallic polynuclear compounds formed in this system in solutions and in the crystalline state. The role of polynuclear complexes in various reactions of alkynes is discussed. The bibliography includes 149 references.
1994-09-21
nI131+ mixed nanocrystals containing a " magic " number of 14 metal cations and 13 iodide anions is examined. These nanocrystals were generated through...RbnK14-nl13J+ mixed nanocrystals containing a " magic " number of 14 metal cations and 13 iodide anions is examined. These nanocrystals were generated...deviations or "local maxima" occur at n= 14, 23, 38, and 63 . These n values are called the " magic numbers" and are attributed to the formation of relatively
Electrochemical synthesis of superconductive MgB 2 from molten salts
NASA Astrophysics Data System (ADS)
Yoshii, Kenji; Abe, Hideki
2003-05-01
We have found that superconductive MgB2 can be electrochemically synthesized from molten salts. The electrolysis was performed in an Ar flow at 600 °C on fused mixtures composed of MgCl2, MgB2O4, Na2B2O4 and alkali halides such as KCl, NaCl, and LiCl. Superconductivity was observed for a wide variety of electrolytes. It was also found that the magnetic and electrical transport properties are the most improved for samples prepared from MgCl2-NaCl-KCl-MgB2O4 electrolytes.
Process for forming epitaxial perovskite thin film layers using halide precursors
Clem, Paul G.; Rodriguez, Mark A.; Voigt, James A.; Ashley, Carol S.
2001-01-01
A process for forming an epitaxial perovskite-phase thin film on a substrate. This thin film can act as a buffer layer between a Ni substrate and a YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor layer. The process utilizes alkali or alkaline metal acetates dissolved in halogenated organic acid along with titanium isopropoxide to dip or spin-coat the substrate which is then heated to about 700.degree. C. in an inert gas atmosphere to form the epitaxial film on the substrate. The YBCO superconductor can then be deposited on the layer formed by this invention.
Thermally induced coloration of KBr at high pressures
NASA Astrophysics Data System (ADS)
Arveson, Sarah M.; Kiefer, Boris; Deng, Jie; Liu, Zhenxian; Lee, Kanani K. M.
2018-03-01
Laser-heated diamond-anvil cell (LHDAC) experiments reveal electronic changes in KBr at pressures between ˜13 -81 GPa when heated to high temperatures that cause runaway heating to temperatures in excess of ˜5000 K . The drastic changes in absorption behavior of KBr are interpreted as rapid formation of high-pressure F-center defects. The defects are localized to the heated region and thus do not change the long-range crystalline order of KBr. The results have significant consequences for temperature measurements in LHDAC experiments and extend the persistence of F centers in alkali halides to at least 81 GPa.
Extreme ultraviolet quantum efficiency of opaque alkali halide photocathodes on microchannel plates
NASA Technical Reports Server (NTRS)
Siegmund, O. H. W.; Everman, E.; Vallerga, J. V.; Lampton, M.
1988-01-01
Comprehensive measurements are presented for the quantum detection efficiency (QDE) of the microchannel plate materials CsI, KBr, KCl, and MgF2, over the 44-1800 A wavelength range. QDEs in excess of 40 percent are achieved by several materials in specific wavelength regions of the EUV. Structure is noted in the wavelength dependence of the QDE that is directly related to the valence-band/conduction-band gap energy and the onset of atomic-like resonant transitions. A simple photocathode model allows interpretation of these features, together with the QDE efficiency variation, as a function of illumination angle.
Microcellular carbon foam and method
Simandl, R.F.; Brown, J.D.
1993-12-07
A microcellular carbon foam is characterized by a density in the range of about 30 to 1000 mg/cm[sup 3], substantially uniform distribution of cell sizes of diameters less than 100 [mu]m with a majority of the cells being of a diameter of less than about 10 [mu]m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.
Microcellular carbon foam and method
Simandl, Ronald F.; Brown, John D.
1994-01-01
A microcellular carbon foam characterized by a density in the range of about 30 to 1000 mg/cm.sup.3, substantially uniform distribution of cell sizes of diameters less than 100 .mu.m with a majority of the cells being of a diameter of less than about 10 .mu.m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.
Microcellular carbon foam and method
Simandl, Ronald F.; Brown, John D.
1993-01-01
A microcellular carbon foam characterized by a density in the range of about 30 to 1000 mg/cm.sup.3, substantially uniform distribution of cell sizes of diameters less than 100 .mu.m with a majority of the cells being of a diameter of less than about 10 .mu.m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.
NASA Astrophysics Data System (ADS)
Jalloh, Fatmata
This work describes the development of alkali metals (Li and Na) encapsulated in silica and alumina gel (SG and AG), and their applications in organic syntheses. The methods elucidated involved the thermal incorporation of these metals into the pores of SG and AG, serving as solid-state reagents. The encapsulation method/approach addresses the problems associated with the high reactivity of these metals that limit their synthetic utility in research laboratories, pharmaceutical, and manufacturing industries. These problems include their sensitivity to air and moisture, pyrophoricity, difficulty in handling, non-commercial availability, and instability of some of the organoalkali metals reagents. Herein, we describe the developments to synthesize alkali metal precursor (Li-AG) in solid form that offer safer organolithium reagents. This precursor reduces or eliminates the danger associated with the traditional handling of organolithium reagents stored in flammable organic solvents. The use of Li-AG to prepare and deliver organolithium reagents from organic halides and ethers, as needed especially for those that are commercially not available is put forward. In addition, exploration of additional applications of Na-SG and Na-AG reagents in the demethoxylation of Weinreb amides to secondary amines, and Bouveault-Blanc type reduction of amides to amines are described.
Control of wavepacket dynamics in mixed alkali metal clusters by optimally shaped fs pulses
NASA Astrophysics Data System (ADS)
Bartelt, A.; Minemoto, S.; Lupulescu, C.; Vajda, Š.; Wöste, L.
We have performed adaptive feedback optimization of phase-shaped femtosecond laser pulses to control the wavepacket dynamics of small mixed alkali-metal clusters. An optimization algorithm based on Evolutionary Strategies was used to maximize the ion intensities. The optimized pulses for NaK and Na2K converged to pulse trains consisting of numerous peaks. The timing of the elements of the pulse trains corresponds to integer and half integer numbers of the vibrational periods of the molecules, reflecting the wavepacket dynamics in their excited states.
Boatner, Lynn A.; Comer, Eleanor P.; Wright, Gomez W.; ...
2017-02-21
Monovalent alkali halides such as NaI, CsI, and LiI are widely used as inorganic scintillators for radiation detection due to their light yield, the capability for the growth of large single crystals, relatively low cost, and other favorable characteristics. These materials are frequently activated through the addition of small amounts (e.g., a few hundred ppm) of elements such as thallium - or sodium in the case of CsI. The monovalent alkali halide scintillators can also be activated with low concentrations of Eu 2+, however Eu activation has previously not been widely employed due to the non-uniform segregation of the divalentmore » Eu dopant that leads to the formation of unwanted phases during Bridgman or other solidification crystal-growth methods. Specifically, for Eu concentrations near and above ~0.5%, Suzuki Phase precipitates form in the course of the melt-growth process, and these Suzuki Phase particles scatter the scintillation light. This adversely affects the scintillator performance via reduction in the optical transmission of the material, and depending on the crystal thickness and precipitated-particle concentration, this reduction can occur up to the point of opacity. Here we describe a post-growth process for the removal of Suzuki Phase precipitates from single crystals of the neutron scintillator LiI activated with Eu 2+ at concentrations up to and in excess of 3 wt.%, and we correlate the resulting neutron-detection performance with the thermal processing methods used to remove the Suzuki Phase particles. Furthermore, the resulting improved scintillator properties using increased Eu activator levels are applicable to neutron imaging and active interrogation systems, and pulse-height gamma-ray spectroscopy rather than pulse-shape discrimination can be used to discriminate between gamma ray and neutron interaction events.« less
NASA Astrophysics Data System (ADS)
Boatner, L. A.; Comer, E. P.; Wright, G. W.; Ramey, J. O.; Riedel, R. A.; Jellison, G. E.; Kolopus, J. A.
2017-05-01
Monovalent alkali halides such as NaI, CsI, and LiI are widely used as inorganic scintillators for radiation detection due to their light yield, the capability for the growth of large single crystals, relatively low cost, and other favorable characteristics. These materials are frequently activated through the addition of small amounts (e.g., a few hundred ppm) of elements such as thallium - or sodium in the case of CsI. The monovalent alkali halide scintillators can also be activated with low concentrations of Eu2+, however Eu activation has previously not been widely employed due to the non-uniform segregation of the divalent Eu dopant that leads to the formation of unwanted phases during Bridgman or other solidification crystal-growth methods. Specifically, for Eu concentrations near and above 0.5%, Suzuki Phase precipitates form in the course of the melt-growth process, and these Suzuki Phase particles scatter the scintillation light. This adversely affects the scintillator performance via reduction in the optical transmission of the material, and depending on the crystal thickness and precipitated-particle concentration, this reduction can occur up to the point of opacity. Here we describe a post-growth process for the removal of Suzuki Phase precipitates from single crystals of the neutron scintillator LiI activated with Eu2+ at concentrations up to and in excess of 3 wt%, and we correlate the resulting neutron-detection performance with the thermal processing methods used to remove the Suzuki Phase particles. The resulting improved scintillator properties using increased Eu activator levels are applicable to neutron imaging and active interrogation systems, and pulse-height gamma-ray spectroscopy rather than pulse-shape discrimination can be used to discriminate between gamma ray and neutron interaction events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boatner, Lynn A.; Comer, Eleanor P.; Wright, Gomez W.
Monovalent alkali halides such as NaI, CsI, and LiI are widely used as inorganic scintillators for radiation detection due to their light yield, the capability for the growth of large single crystals, relatively low cost, and other favorable characteristics. These materials are frequently activated through the addition of small amounts (e.g., a few hundred ppm) of elements such as thallium - or sodium in the case of CsI. The monovalent alkali halide scintillators can also be activated with low concentrations of Eu 2+, however Eu activation has previously not been widely employed due to the non-uniform segregation of the divalentmore » Eu dopant that leads to the formation of unwanted phases during Bridgman or other solidification crystal-growth methods. Specifically, for Eu concentrations near and above ~0.5%, Suzuki Phase precipitates form in the course of the melt-growth process, and these Suzuki Phase particles scatter the scintillation light. This adversely affects the scintillator performance via reduction in the optical transmission of the material, and depending on the crystal thickness and precipitated-particle concentration, this reduction can occur up to the point of opacity. Here we describe a post-growth process for the removal of Suzuki Phase precipitates from single crystals of the neutron scintillator LiI activated with Eu 2+ at concentrations up to and in excess of 3 wt.%, and we correlate the resulting neutron-detection performance with the thermal processing methods used to remove the Suzuki Phase particles. Furthermore, the resulting improved scintillator properties using increased Eu activator levels are applicable to neutron imaging and active interrogation systems, and pulse-height gamma-ray spectroscopy rather than pulse-shape discrimination can be used to discriminate between gamma ray and neutron interaction events.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton Davis; Gary Jacobs; Wenping Ma
2009-09-30
There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased.more » Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations.« less
NASA Astrophysics Data System (ADS)
Fischer, R.; Richardi, J.; Fries, P. H.; Krienke, H.
2002-11-01
Structural properties and energies of solvation are simulated for alkali and halide ions. The solvation structure is discussed in terms of various site-site distribution functions, of solvation numbers, and of orientational correlation functions of the solvent molecules around the ions. The solvent polarizability has notable effects which cannot be intuitively predicted. In particular, it is necessary to reproduce the experimental solvation numbers of small ions. The changes of solvation properties are investigated along the alkali and halide series. By comparing the solvation of ions in acetone to that in acetonitrile, it is shown that the spatial correlations among the solvent molecules around an ion result in a strong screening of the ion-solvent direct intermolecular potential and are essential to understand the changes in the solvation structures and energies between different solvents. The solvation properties derived from the simulations are compared to earlier predictions of the hypernetted chain (HNC) approximation of the molecular Ornstein-Zernike (MOZ) theory [J. Richardi, P. H. Fries, and H. Krienke, J. Chem. Phys. 108, 4079 (1998)]. The MOZ(HNC) formalism gives an overall qualitatively correct picture of the solvation and its various unexpected findings are corroborated. For the larger ions, its predictions become quantitative. The MOZ approach allows to calculate solvent-solvent and ion-solvent potentials of mean force, which shed light on the 3D labile molecular and ionic architectures in the solution. These potentials of mean force convey a unique information which is necessary to fully interpret the angle-averaged structural functions computed from the simulations. Finally, simulations of solutions at finite concentrations show that the solvent-solvent and ion-solvent spatial correlations at infinite dilution are marginally altered by the introduction of fair amounts of ions.
Wu, Zhenyue; Ji, Chengmin; Li, Lina; Kong, Jintao; Sun, Zhihua; Zhao, Sangen; Wang, Sasa; Hong, Maochun; Luo, Junhua
2018-05-11
Cesium-lead halide perovskites (e.g. CsPbBr 3 ) have gained attention because of their rich physical properties, but their bulk ferroelectricity remains unexplored. Herein, by alloying flexible organic cations into the cubic CsPbBr 3 , we design the first cesium-based two-dimensional (2D) perovskite ferroelectric material with both inorganic alkali metal and organic cations, (C 4 H 9 NH 3 ) 2 CsPb 2 Br 7 (1). Strikingly, 1 shows a high Curie temperature (T c =412 K) above that of BaTiO 3 (ca. 393 K) and notable spontaneous polarization (ca. 4.2 μC cm -2 ), triggered by not only the ordering of organic cations but also atomic displacement of inorganic Cs + ions. To our knowledge, such a 2D bilayered Cs + -based metal-halide perovskite ferroelectric material with inorganic and organic cations is unprecedented. 1 also shows photoelectric semiconducting behavior with large "on/off" ratios of photoconductivity (>10 3 ). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Molecular single-bond covalent radii for elements 1-118.
Pyykkö, Pekka; Atsumi, Michiko
2009-01-01
A self-consistent system of additive covalent radii, R(AB)=r(A) + r(B), is set up for the entire periodic table, Groups 1-18, Z=1-118. The primary bond lengths, R, are taken from experimental or theoretical data corresponding to chosen group valencies. All r(E) values are obtained from the same fit. Both E-E, E-H, and E-CH(3) data are incorporated for most elements, E. Many E-E' data inside the same group are included. For the late main groups, the system is close to that of Pauling. For other elements it is close to the methyl-based one of Suresh and Koga [J. Phys. Chem. A 2001, 105, 5940] and its predecessors. For the diatomic alkalis MM' and halides XX', separate fits give a very high accuracy. These primary data are then absorbed with the rest. The most notable exclusion are the transition-metal halides and chalcogenides which are regarded as partial multiple bonds. Other anomalies include H(2) and F(2). The standard deviation for the 410 included data points is 2.8 pm.
Electronic structure of semiconducting alkali-metal silicides and germanides
NASA Astrophysics Data System (ADS)
Tegze, M.; Hafner, J.
1989-11-01
We present self-consistent linearized-muffin-tin-orbital calculations of the electronic structure of three alkali-metal germanides and silicides (KGe, NaGe, and NaSi). Like the alkali-metal-lead compounds investigated in our earlier work [M. Tegze and J. Hafner, Phys. Rev. B 39, 8263 (1989)] the Ge and Si compounds of the alkali metals form complex structures based on the packing of tetrahedral Ge4 and Si4 clusters. Our calculations show that all three compounds are narrow-gap semiconductors. The width of the energy gap depends on two main factors: the ratio of the intracluster to the intercluster interactions between the group-IV elements (which increases from Pb to Si) and the strength of the interactions between the alkali-metal atoms (which varies with the size ratio).
Interactions of anions and cations in carbon nanotubes.
Mohammadzadeh, L; Quaino, P; Schmickler, W
2016-12-12
We consider the insertion of alkali-halide ion pairs into a narrow (5,5) carbon nanotube. In all cases considered, the insertion of a dimer is only slightly exothermic. While the image charge induced on the surface of the tube favors insertion, it simultaneously weakens the Coulomb attraction between the two ions. In addition, the anion experiences a sizable Pauli repulsion. For a one dimensional chain of NaCl embedded in the tube the most favorable position for the anion is at the center, and for the cation near the wall. The phonon spectrum of such chains shows both an acoustic and an optical branch.
Corrosion resistant positive electrode for high-temperature, secondary electrochemical cell
Otto, Neil C.; Warner, Barry T.; Smaga, John A.; Battles, James E.
1983-01-01
The corrosion rate of low carbon steel within a positive electrode of a high-temperature, secondary electrochemical cell that includes FeS as active material is substantially reduced by incorporating therein finely divided iron powder in stoichiometric excess to the amount required to form FeS in the fully charged electrode. The cell typically includes an alkali metal or alkaline earth metal as negative electrode active material and a molten metal halide salt as electrolyte. The excess iron permits use of inexpensive carbon steel alloys that are substantially free of the costly corrosion resistant elements chromium, nickel and molybdenum while avoiding shorten cell life resulting from high corrosion rates.
PREPARATION OF REFRACTORY OXIDE CRYSTALS
Grimes, W.R.; Shaffer, J.H.; Watson, G.M.
1962-11-13
A method is given for preparing uranium dioxide, thorium oxide, and beryllium oxide in the form of enlarged individual crystals. The surface of a fused alkali metal halide melt containing dissolved uranium, thorium, or beryllium values is contacted with a water-vapor-bearing inert gas stream at a rate of 5 to 10 cubic centimeters per minute per square centimeter of melt surface area. Growth of individual crystals is obtained by prolonged contact. Beryllium oxide-coated uranium dioxide crystals are prepared by disposing uranium dioxide crystals 5 to 20 microns in diameter in a beryllium-containing melt and contacting the melt with a water-vapor-bearing inert gas stream in the same manner. (AEC)
Corrosion resistant positive electrode for high-temperature, secondary electrochemical cell
Otto, N.C.; Warner, B.T.; Smaga, J.A.; Battles, J.E.
1982-07-07
The corrosion rate of low carbon steel within a positive electrode of a high-temperature, secondary electrochemical cell that includes FeS as active material is substantially reduced by incorporating therein finely divided iron powder in stoichiometric excess to the amount required to form FeS in the fully charged electrode. The cell typically includes an alkali metal or alkaline earth metal as negative electrode active material and a molten metal halide salt as electrolyte. The excess iron permits use of inexpensive carbon steel alloys that are substantially free of the costly corrosion resistant elements chromium, nickel and molybdenum while avoiding shorten cell life resulting from high corrosion rates.
Time Strengthening of Crystal Nanocontacts
NASA Astrophysics Data System (ADS)
Mazo, Juan J.; Dietzel, Dirk; Schirmeisen, Andre; Vilhena, J. G.; Gnecco, Enrico
2017-06-01
We demonstrate how an exponentially saturating increase of the contact area between a nanoasperity and a crystal surface, occurring on time scales governed by the Arrhenius equation, is consistent with measurements of the static friction and lateral contact stiffness on a model alkali-halide surface at different temperatures in ultrahigh vacuum. The "contact ageing" effect is attributed to atomic attrition and is eventually broken by thermally activated slip of the nanoasperity on the surface. The combination of the two effects also leads to regions of strengthening and weakening in the velocity dependence of the friction, which are well-reproduced by an extended version of the Prandtl-Tomlinson model.
Microcellular carbon foam and method
Simandl, R.F.; Brown, J.D.
1993-05-04
A microcellular carbon foam is characterized by a density in the range of about 30 to 1,000 mg/cm[sup 3], substantially uniform distribution of cell sizes of diameters less than 100 [mu]m with a majority of the cells being of a diameter of less than about 10 [mu]m. The foam has a well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.
Microcellular carbon foam and method
Simandl, R.F.; Brown, J.D.
1994-04-05
A microcellular carbon foam is described which is characterized by a density in the range of about 30 to 1000 mg/cm[sup 3], substantially uniform distribution of cell sizes of diameters less than 100 [mu]m with a majority of the cells being of a diameter of less than about 10 [mu]m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.
Chen, S.G.; Yang, R.T.
1997-01-01
From molecular orbital calculations, a unified mechanism is proposed for the gasification reactions of graphite by CO2 and H2O, both uncatalyzed and catalyzed by alkali and alkaline earth catalysts. In this mechanism, there are two types of oxygen intermediates that are bonded to the active edge carbon atoms: an in-plane semiquinone type, Cf(O), and an off-plane oxygen bonded to two saturated carbon atoms that are adjacent to the semiquinone species, C(O)Cf(O). The rate-limiting step is the decomposition of these intermediates by breaking the C-C bonds that are connected to Cf(O). A new rate equation is derived for the uncatalyzed reactions, and that for the catalyzed reactions is readily available from the proposed mechanism. The proposed mechanism can account for several unresolved experimental observations: TPD and TK (transient kinetics) desorption results of the catalyzed systems, the similar activation energies for the uncatalyzed and catalyzed reactions, and the relative activities of the alkali and alkaline earth elements. The net charge of the edge carbon active site is substantially changed by gaining electron density from the alkali or alkaline earth element (by forming C-O-M, where M stands for metal). The relative catalytic activities of these elements can be correlated with their abilities of donating electrons and changing the net charge of the edge carbon atom. As shown previously (Chen, S. G.; Yang, R. T. J. Catal. 1993, 141, 102), only clusters of the alkali compounds are active. This derives from the ability of the clusters to dissociate CO2 and H2O to form O atoms and the mobility of the dissociated O atoms facilitated by the clusters.
Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites
NASA Astrophysics Data System (ADS)
Bischak, Connor G.; Hetherington, Craig L.; Wu, Hao; Aloni, Shaul; Ogletree, D. Frank; Limmer, David T.; Ginsberg, Naomi S.
2017-02-01
Nonequilibrium processes occurring in functional materials can significantly impact device efficiencies and are often difficult to characterize due to the broad range of length and time scales involved. In particular, mixed halide hybrid perovskites are promising for optoelectronics, yet the halides reversibly phase separate when photo-excited, significantly altering device performance. By combining nanoscale imaging and multiscale modeling, we elucidate the mechanism underlying this phenomenon, demonstrating that local strain induced by photo-generated polarons promotes halide phase separation and leads to nucleation of light-stabilized iodide-rich clusters. This effect relies on the unique electromechanical properties of hybrid materials, characteristic of neither their organic nor inorganic constituents alone. Exploiting photo-induced phase separation and other nonequilibrium phenomena in hybrid materials, generally, could enable new opportunities for expanding the functional applications in sensing, photoswitching, optical memory, and energy storage.
Terry, Brandon C; Sippel, Travis R; Pfeil, Mark A; Gunduz, I Emre; Son, Steven F
2016-11-05
Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (ISP). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal ISP by ∼7s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5±4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption. Copyright © 2016 Elsevier B.V. All rights reserved.
Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites.
Bischak, Connor G; Hetherington, Craig L; Wu, Hao; Aloni, Shaul; Ogletree, D Frank; Limmer, David T; Ginsberg, Naomi S
2017-02-08
The distinct physical properties of hybrid organic-inorganic materials can lead to unexpected nonequilibrium phenomena that are difficult to characterize due to the broad range of length and time scales involved. For instance, mixed halide hybrid perovskites are promising materials for optoelectronics, yet bulk measurements suggest the halides reversibly phase separate upon photoexcitation. By combining nanoscale imaging and multiscale modeling, we find that the nature of halide demixing in these materials is distinct from macroscopic phase separation. We propose that the localized strain induced by a single photoexcited charge interacting with the soft, ionic lattice is sufficient to promote halide phase separation and nucleate a light-stabilized, low-bandgap, ∼8 nm iodide-rich cluster. The limited extent of this polaron is essential to promote demixing because by contrast bulk strain would simply be relaxed. Photoinduced phase separation is therefore a consequence of the unique electromechanical properties of this hybrid class of materials. Exploiting photoinduced phase separation and other nonequilibrium phenomena in hybrid materials more generally could expand applications in sensing, switching, memory, and energy storage.
Ahmed, Mohammed; Singh, Ajay K; Mondal, Jahur A; Sarkar, Sisir K
2013-08-22
Water in the presence of electrolytes plays an important role in biological and industrial processes. The properties of water, such as the intermolecular coupling, Fermi resonance (FR), hydrogen-bonding, and Raman cross section were investigated by measuring the Raman spectra in the OD and OH stretch regions in presence of alkali halides (NaX; X = F, Cl, Br, I). It is observed that the changes in spectral characteristics by the addition of NaX in D2O are similar to those obtained by the addition of H2O in D2O. The spectral width decreases significantly by the addition of NaX in D2O (H2O) than that in the isotopically diluted water. Quantitative estimation, on the basis of integrated Raman intensity, revealed that the relative Raman cross section, σ(H)/σ(b) (σ(H) and σ(b) are the average Raman cross section of water in the first hydration shell of X(-) and in bulk, respectively), in D2O and H2O is higher than those in the respective isotopically diluted water. These results suggest that water in the hydration shell has reduced FR and intermolecular coupling compared to those in bulk. In the isotopically diluted water, the relative Raman cross section increases with increase in size of the halide ions (σ(H)/σ(b) = 0.6, 1.1, 1.5, and 1.9 for F(-), Cl(-), Br(-), and I(-), respectively), which is assignable to the enhancement of Raman cross section by charge transfer from halide ions to the hydrating water. Nevertheless, the experimentally determined σ(H)/σ(b) is lower than the calculated values obtained on the basis of the energy of the charge transfer state of water. The weak enhancement of σ(H)/σ(b) signifies that the charge transfer transition in the hydration shell of halide ions causes little change in the OD (OH) bond lengths of hydrating water.
NASA Technical Reports Server (NTRS)
Green, A. K.
1973-01-01
The influence of substrate imperfections on the nucleation and growth of fcc metals on alkali halides is discussed. Films deposited on well characterized substrated under well defined vacuum evaporation conditions are investigated. The experimental results of this work are correlated with similar work by other investigators. Models which have been proposed by various authors to explain experimental results are critically examined and areas of difficulty are pointed out. The influence of defects on nucleation rate and the orientation of the film is emphasized. Specific examples of impurity effects, irradiation effects and the influence of amorphous layers are discussed in detail. Evidence is shown that the formation of multiply twinned particles is a result of coalescence and growth. The only consistent model for the orienting influence of impurities is shown to be a chemical reaction effect. It is demonstrated that an alkali metal impurity is very likely responsible for the orienting influence of both water vapor exposure and irradiation. A negative result is found for the reported possibility of an orienting influence being transmitted through an amorphous layer.
Alkali-ion microsolvation with benzene molecules.
Marques, J M C; Llanio-Trujillo, J L; Albertí, M; Aguilar, A; Pirani, F
2012-05-24
The target of this investigation is to characterize by a recently developed methodology, the main features of the first solvation shells of alkaline ions in nonpolar environments due to aromatic rings, which is of crucial relevance to understand the selectivity of several biochemical phenomena. We employ an evolutionary algorithm to obtain putative global minima of clusters formed with alkali-ions (M(+)) solvated with n benzene (Bz) molecules, i.e., M(+)-(Bz)(n). The global intermolecular interaction has been decomposed in Bz-Bz and in M(+)-Bz contributions, using a potential model based on different decompositions of the molecular polarizability of benzene. Specifically, we have studied the microsolvation of Na(+), K(+), and Cs(+) with benzene molecules. Microsolvation clusters up to n = 21 benzene molecules are involved in this work and the achieved global minimum structures are reported and discussed in detail. We observe that the number of benzene molecules allocated in the first solvation shell increases with the size of the cation, showing three molecules for Na(+) and four for both K(+) and Cs(+). The structure of this solvation shell keeps approximately unchanged as more benzene molecules are added to the cluster, which is independent of the ion. Particularly stable structures, so-called "magic numbers", arise for various nuclearities of the three alkali-ions. Strong "magic numbers" appear at n = 2, 3, and 4 for Na(+), K(+), and Cs(+), respectively. In addition, another set of weaker "magic numbers" (three per alkali-ion) are reported for larger nuclearities.
Gushchin, Pavel V; Kuznetsov, Maxim L; Wang, Qian; Karasik, Andrey A; Haukka, Matti; Starova, Galina L; Kukushkin, Vadim Yu
2012-06-21
The previously predicted ability of the methyl group of nitromethane to form hydrogen bonding with halides is now confirmed experimentally based on X-ray data of novel nitromethane solvates followed by theoretical ab initio calculations at the MP2 level of theory. The cationic (1,3,5-triazapentadiene)Pt(II) complexes [Pt{HN=C(NC(5)H(10))N(Ph)C(NH(2))=NPh}(2)](Cl)(2), [1](Hal)(2) (Hal = Cl, Br, I), and [Pt{HN=C(NC(4)H(8)O)N(Ph)C(NH(2))=NPh}(2)](Cl)(2), [2](Cl)(2), were crystallized from MeNO(2)-containing systems providing nitromethane solvates studied by X-ray diffraction. In the crystal structure of [1][(Hal)(2)(MeNO(2))(2)] (Hal = Cl, Br, I) and [2][(Cl)(2)(MeNO(2))(2)], the solvated MeNO(2) molecules occupy vacant spaces between lasagna-type layers and connect to the Hal(-) ion through a weak hydrogen bridge via the H atom of the methyl thus forming, by means of the Hal(-)···HCH(2)NO(2) contact, the halide-nitromethane cluster "filling". The quantum-chemical calculations demonstrated that the short distance between the Hal(-) anion and the hydrogen atom of nitromethane in clusters [1][(Hal)(2)(MeNO(2))(2)] and [2][(Cl)(2)(MeNO(2))(2)] is not just a consequence of the packing effect but a result of the moderately strong hydrogen bonding.
Structure and Energetics of Clusters Relevant to Thorium Tetrachloride Melts
NASA Astrophysics Data System (ADS)
Akdeniz, Z.; Tosi, M. P.
2000-10-01
We study within an ionic model the structure and energetics of neutral and charged molecular clusters which may be relevant to molten ThCl4 and to its liquid mixtures with alkali chlorides, with reference to Raman scattering experiments by Photiadis and Papatheodorou. As stressed by these authors, the most striking facts for ThCl4 in comparison to other tetrachloride compounds (and in particular to ZrCl4) are the appreciable ionic conductivity of the pure melt and the continuous structural changes which occur in the melt mixtures with varying composition. After adjusting our model to data on the isolated ThCl4 tetrahedral molecule, we evaluate (i) the Th2Cl8 dimer and the singly charged species obtained from it by chlorine-ion transfer between two such neutral dimers; (ii) the ThCl6 and ThCl7 clusters both as charged anions and as alkali-compensated species; and (iii) various oligomers carrying positive or negative double charges. Our study shows that the characteristic structural properties of the ThCl4 compound and of the alkali-Th chloride systems are the consequence of the relatively high ionic character of the binding, which is already evident in the isolated ThCl4 monomer.
Corrosion resistant ceramic materials
Kaun, Thomas D.
1995-01-01
Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.
Corrosion resistant ceramic materials
Kaun, Thomas D.
1996-01-01
Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.
Single ion dynamics in molten sodium bromide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alcaraz, O.; Trullas, J.; Demmel, F.
We present a study on the single ion dynamics in the molten alkali halide NaBr. Quasielastic neutron scattering was employed to extract the self-diffusion coefficient of the sodium ions at three temperatures. Molecular dynamics simulations using rigid and polarizable ion models have been performed in parallel to extract the sodium and bromide single dynamics and ionic conductivities. Two methods have been employed to derive the ion diffusion, calculating the mean squared displacements and the velocity autocorrelation functions, as well as analysing the increase of the line widths of the self-dynamic structure factors. The sodium diffusion coefficients show a remarkable goodmore » agreement between experiment and simulation utilising the polarisable potential.« less
Corrosion resistant ceramic materials
Kaun, T.D.
1996-07-23
Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.
Extraction of trace metals from fly ash
Blander, M.; Wai, C.M.; Nagy, Z.
1983-08-15
A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.
Extraction of trace metals from fly ash
Blander, Milton; Wai, Chien M.; Nagy, Zoltan
1984-01-01
A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.
Space processing of chalcogenide glasses
NASA Technical Reports Server (NTRS)
Larsen, D. C.; Ali, M. A.
1975-01-01
Chalcogenide glasses are discussed as good infrared transmitters, possessing the strength, corrosion resistance, and scale-up potential necessary for large 10.6-micron windows. The disadvantage of earth-produced chalcogenide glasses is shown to be an infrared absorption coefficient which is unacceptably high relative to alkali halides. This coefficient is traced to optical nonhomogeneities resulting from environmental and container contamination. Space processing is considered as a means of improving the infrared transmission quality of chalcogenides and of eliminating the following problems: optical inhomogeneities caused by thermal currents and density fluctuation in the l-g earth environment; contamination from the earth-melting crucible by oxygen and other elements deleterious to infrared transmission; and, heterogeneous nucleation at the earth-melting crucible-glass interface.
Optimization of the Negative Electrode in Organic Photovoltaic Devices
NASA Astrophysics Data System (ADS)
Reese, Matthew; White, Matthew; Rumbles, Garry; Ginley, David; Shaheen, Sean
2007-03-01
A blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) is used as the active layer in a series of bulk heterojunction organic solar cells. This polymer blend serves as a test-bed to explore the significant effects on device performance of using low work function metals and/or alkali metal halides as the top, negative electrode. Work function values reported in the literature are compared with those measured for our thin films. A series of contact materials are investigated including Al, Ca/Al, Ba/Al, LiF/Al; many devices are prepared with each contact type to validate the statistical significance of the results.
Vibron Solitons and Soliton-Induced Infrared Spectra of Crystalline Acetanilide
NASA Astrophysics Data System (ADS)
Takeno, S.
1986-01-01
Red-shifted infrared spectra at low temperatures of amide I (C=O stretching) vibrations of crystalline acetanilide measured by Careri et al. are shown to be due to vibron solitons, which are nonlinearity-induced localized modes of vibrons arising from their nonlinear interactions with optic-type phonons. A nonlinear eigenvalue equation giving the eigenfrequency of stationary solitons is solved approximately by introducing lattice Green's functions, and the obtained result is in good agreement with the experimental result. Inclusion of interactions with acoustic phonons yields the Debye-Waller factor in the zero-phonon line spectrum of vibron solitons, in a manner analogous to the case of impurity-induced localized harmonic phonon modes in alkali halides.
Volatile element chemistry in the solar nebula - Na, K, F, Cl, Br, and P
NASA Technical Reports Server (NTRS)
Fegley, B., Jr.; Lewis, J. S.
1980-01-01
The results of the most extensive set to date of thermodynamic calculations on the equilibrium chemistry of several hundred compounds of the elements Na, K, F, Cl, Br, and P in a solar composition system are reported. Two extreme models of accretion are investigated. In one extreme complete chemical equilibrium between condensates and gases is maintained because the time scale for accretion is long compared to the time scale for cooling or dissipation of the nebula. Condensates formed in this homogeneous accretion model include several phases such as whitlockite, alkali feldspars, and apatite minerals which are found in chondrites. In the other extreme complete isolation of newly formed condensates from prior condensates and gases occurs due to a time scale for accretion that is short relative to the time required for nebular cooling or dissipation. The condensates produced in this heterogeneous accretion model include alkali sulfides, ammonium halides, and ammonium phosphates. None of these phases are found in chondrites. Available observations of the Na, K, F, Cl, Br, and P elemental abundances in the terrestrial planets are found to be compatible with the predictions of the homogeneous accretion model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Phuong T.; Nguyen, Van T.; Annapureddy, Harsha V.
2012-12-03
To elevate our understanding of ion specific activity in biological systems, the potential of mean force approach was utilized to study solvent effects on interactions between two alkali cations (Na+ and K+) with a formate anion in water. A very complex free energy landscape was observed, much more so than alkali-halide ion pairs. Furthermore, stronger binding between the Na+-formate pair was found in comparison to the K+-formate pair in water, a finding that agrees with experimental and theoretical studies of these systems. The kinetics of ion-pair interconversions were studied using transition rate theory, along with a variety of theoretical approachesmore » such as the Kramers and Grote Hynes theories. These rate results were used to predict solvent effects on dynamical features of contact ion-pair association, in which faster dynamics were found for K+-formate pairs than for Na+-formate pairs. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for DOE by Battelle.« less
Al7CX (X=Li-Cs) clusters: Stability and the prospect for cluster materials
NASA Astrophysics Data System (ADS)
Ashman, C.; Khanna, S. N.; Pederson, M. R.; Kortus, J.
2000-12-01
Al7C clusters, recently found to have a high-electron affinity and exceptional stability, are shown to form ionic molecules when combined with alkali-metal atoms. Our studies, based on an ab initio gradient-corrected density-functional scheme, show that Al7CX (X=Li-Cs) clusters have a very low-electron affinity and a high-ionization potential. When combined, the two- and four-atom composite clusters of Al7CLi units leave the Al7C clusters almost intact. Preliminary studies indicate that Al7CLi may be suitable to form cluster-based materials.
Method of preparing corrosion resistant composite materials
Kaun, Thomas D.
1993-01-01
Method of manufacture of ceramic materials which require stability in severely-corrosive environment having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These surfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.
Unirradiated testing of the demonstration-scale ceramic waste form at ANL-West
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, K.M.; Simpson, M.F.; Bateman, K.J.
1997-12-01
The ceramic waste form is being developed by Argonne National Laboratory (ANL) as part of the demonstration of the electrometallurgical treatment of spent nuclear fuel for disposal. The alkali, alkaline earth, halide, and rare earth fission products are stabilized in zeolite, which is combined with glass and processed in a hot isostatic press (HIP) to form a ceramic composite. The transuranics, including plutonium, are also stabilized in this high-level waste. Most of the laboratory-scale development work is performed in the Chemical Technology Division of ANL in Illinois. At ANL-West in Idaho, this technology is being demonstrated on an engineering scalemore » before implementation with irradiated materials in a remote environment.« less
Positive electrode current collector for liquid metal cells
Shimotake, Hiroshi; Bartholme, Louis G.
1984-01-01
A current collector for the positive electrode of an electrochemical cell with a positive electrode including a sulfide. The cell also has a negative electrode and a molten salt electrolyte including halides of a metal selected from the alkali metals and the alkaline earth metals in contact with both the positive and negative electrodes. The current collector has a base metal of copper, silver, gold, aluminum or alloys thereof with a coating thereon of iron, nickel, chromium or alloys thereof. The current collector when subjected to cell voltage forms a sulfur-containing compound on the surface thereby substantially protecting the current collector from further attack by sulfur ions during cell operation. Both electroless and electrolytic processes may be used to deposit coatings.
NASA Technical Reports Server (NTRS)
Yacaman, M. J.; Heinemann, K.; Yang, C. Y.; Poppa, H.
1979-01-01
'Multiply-twinned' gold particles with hexagonal bright field TEM profile were determined to be icosahedra composed of 20 identical and twin-related tetrahedral building units that do not have an fcc structure. The crystal structure of these slightly deformed tetrahedra is rhombohedral. Experimental evidence supporting this particle model was obtained by selected-zone dark field and weak beam dark field electron microscopy. In conjunction with the results of part I, it has been concluded that multiply-twinned gold particles of pentagonal or hexagonal profile that are found during the early stages of the vapor deposition growth process on alkali halide surfaces do not have an fcc crystal structure, which is in obvious contrast to the structure of bulk gold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabacchi, G; Hutter, J; Mundy, C
2005-04-07
A combined linear response--frozen electron density model has been implemented in a molecular dynamics scheme derived from an extended Lagrangian formalism. This approach is based on a partition of the electronic charge distribution into a frozen region described by Kim-Gordon theory, and a response contribution determined by the instaneous ionic configuration of the system. The method is free from empirical pair-potentials and the parameterization protocol involves only calculations on properly chosen subsystems. They apply this method to a series of alkali halides in different physical phases and are able to reproduce experimental structural and thermodynamic properties with an accuracy comparablemore » to Kohn-Sham density functional calculations.« less
Metal carboxylates with open architectures.
Rao, C N R; Natarajan, Srinivasan; Vaidhyanathan, R
2004-03-12
The field of inorganic open-framework materials is dominated by aluminosilicates and phosphates. The metal carboxylates have emerged as an important family in the last few years. This family includes not only mono- and dicarboxylates of transition, rare-earth, and main-group metals, but also a variety of hybrid structures. Some of the carboxylates possess novel adsorption and magnetic properties. Dicarboxylates and related species provide an effective means of designing novel hybrid structures with porous and other properties. In some of these structures, the dicarboxylate acts as a linker between two inorganic units. Hybrid nanocomposites are also of particular note, for example, cadmium oxalate host lattices that can accommodate extended alkali-metal halide structures. This Review discusses the synthesis, structure, and properties of various types of open-framework metal carboxylates.
NASA Astrophysics Data System (ADS)
Bechtel, Jonathon S.; Van der Ven, Anton
2018-04-01
Halide substitution gives rise to a tunable band gap as a function of composition in halide perovskite materials. However, photoinduced phase segregation, observed at room temperature in mixed halide A Pb (IxBr1-x) 3 systems, limits open circuit voltages and decreases photovoltaic device efficiencies. We investigate equilibrium phase stability of orthorhombic P n m a γ -phase CsM (XxY1-x) 3 perovskites where M is Pb or Sn, and X and Y are Br, Cl, or I. Finite-temperature phase diagrams are constructed using a cluster expansion effective Hamiltonian parameterized from first-principles density-functional-theory calculations. Solid solution phases for CsM (IxBr1-x) 3 and CsM (BrxCl1-x) 3 are predicted to be stable well below room temperature while CsM (IxCl1-x) 3 systems have miscibility gaps that extend above 400 K. The height of the miscibility gap correlates with the difference in volume between end members. Also layered ground states are found on the convex hull at x =2 /3 for CsSnBr2Cl ,CsPbI2Br , and CsPbBrCl2. The impact of these ground states on the finite temperature phase diagram is discussed in the context of the experimentally observed photoinduced phase segregation.
Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusters.
Ni, Chengsheng; Hedley, Gordon; Payne, Julia; Svrcek, Vladimir; McDonald, Calum; Jagadamma, Lethy Krishnan; Edwards, Paul; Martin, Robert; Jain, Gunisha; Carolan, Darragh; Mariotti, Davide; Maguire, Paul; Samuel, Ifor; Irvine, John
2017-08-01
A metal-organic hybrid perovskite (CH 3 NH 3 PbI 3 ) with three-dimensional framework of metal-halide octahedra has been reported as a low-cost, solution-processable absorber for a thin-film solar cell with a power-conversion efficiency over 20%. Low-dimensional layered perovskites with metal halide slabs separated by the insulating organic layers are reported to show higher stability, but the efficiencies of the solar cells are limited by the confinement of excitons. In order to explore the confinement and transport of excitons in zero-dimensional metal-organic hybrid materials, a highly orientated film of (CH 3 NH 3 ) 3 Bi 2 I 9 with nanometre-sized core clusters of Bi 2 I 9 3- surrounded by insulating CH 3 NH 3 + was prepared via solution processing. The (CH 3 NH 3 ) 3 Bi 2 I 9 film shows highly anisotropic photoluminescence emission and excitation due to the large proportion of localised excitons coupled with delocalised excitons from intercluster energy transfer. The abrupt increase in photoluminescence quantum yield at excitation energy above twice band gap could indicate a quantum cutting due to the low dimensionality.Understanding the confinement and transport of excitons in low dimensional systems will aid the development of next generation photovoltaics. Via photophysical studies Ni et al. observe 'quantum cutting' in 0D metal-organic hybrid materials based on methylammonium bismuth halide (CH 3 NH 3 )3Bi 2 I 9 .
Ion beam induced defects in solids studied by optical techniques
NASA Astrophysics Data System (ADS)
Comins, J. D.; Amolo, G. O.; Derry, T. E.; Connell, S. H.; Erasmus, R. M.; Witcomb, M. J.
2009-08-01
Optical methods can provide important insights into the mechanisms and consequences of ion beam interactions with solids. This is illustrated by four distinctly different systems. X- and Y-cut LiNbO 3 crystals implanted with 8 MeV Au 3+ ions with a fluence of 1 × 10 17 ions/cm 2 result in gold nanoparticle formation during high temperature annealing. Optical extinction curves simulated by the Mie theory provide the average nanoparticle sizes. TEM studies are in reasonable agreement and confirm a near-spherical nanoparticle shape but with surface facets. Large temperature differences in the nanoparticle creation in the X- and Y-cut crystals are explained by recrystallisation of the initially amorphised regions so as to recreate the prior crystal structure and to result in anisotropic diffusion of the implanted gold. Defect formation in alkali halides using ion beam irradiation has provided new information. Radiation-hard CsI crystals bombarded with 1 MeV protons at 300 K successfully produce F-type centres and V-centres having the I3- structure as identified by optical absorption and Raman studies. The results are discussed in relation to the formation of interstitial iodine aggregates of various types in alkali iodides. Depth profiling of I3- and I5- aggregates created in RbI bombarded with 13.6 MeV/A argon ions at 300 K is discussed. The recrystallisation of an amorphous silicon layer created in crystalline silicon bombarded with 100 keV carbon ions with a fluence of 5 × 10 17 ions/cm 2 during subsequent high temperature annealing is studied by Raman and Brillouin light scattering. Irradiation of tin-doped indium oxide (ITO) films with 1 MeV protons with fluences from 1 × 10 15 to 250 × 10 15 ions/cm -2 induces visible darkening over a broad spectral region that shows three stages of development. This is attributed to the formation of defect clusters by a model of defect growth and also high fluence optical absorption studies. X-ray diffraction studies show evidence of a strained lattice after the proton bombardment and recovery after long period storage. The effects are attributed to the annealing of the defects produced.
New Scintillator Materials (K2CeBr5) and (Cs2CeBr5)
NASA Technical Reports Server (NTRS)
Hawrami, R.; Volz, M. P.; Batra, A. K.; Aggarwal, M. D.; Roy, U. N.; Groza, M.; Burger, A.; Cherepy, Nerine; Niedermayr, Thomas; Payne, Stephen A.
2008-01-01
Cesium cerium bromide (Cs2CeBr5) and potassium cerium bromide (K2CeBr5) are new scintillator materials for X-ray and gamma ray detector applications. Recently halide scintillator materials, such as Ce doped lanthanum bromide has been proved to be very important material for the same purpose. These materials are highly hygroscopic; a search for high light yield non-hygroscopic materials was highly desirable to advance the scintillator technology. In this paper, we are reporting the crystal growth of novel scintillator materials, cesium cerium bromide (Cs2CeBr5) and potassium cerium bromide (K2CeBr5). Crystals were successfully grown from the melt using the vertical Bridgman-Stockbarger technique, in a comparison with the high performance LaBr3 or LaCl3 crystals, cerium based alkali halides crystals, (Cs2CeBr5) and (K2CeBr5) have similar scintillation properties, while being much less hygroscopic. Furthermore, cesium based compounds will not suffer from the self-activity present in potassium and lanthanum compounds. However the Cs2CeBr5 crystals did not grow properly probably due to non-congruent melting or to some phase transition during cooling. Keywords." Scintillator materials; Ce3+; Energy resolution; Light yield; K2CeBr5
Stabilization of primary mobile radiation defects in MgF2 crystals
NASA Astrophysics Data System (ADS)
Lisitsyn, V. M.; Lisitsyna, L. A.; Popov, A. I.; Kotomin, E. A.; Abuova, F. U.; Akilbekov, A.; Maier, J.
2016-05-01
Non-radiative decay of the electronic excitations (excitons) into point defects (F-H pairs of Frenkel defects) is main radiation damage mechanism in many ionic (halide) solids. Typical time scale of the relaxation of the electronic excitation into a primary, short-lived defect pair is about 1-50 ps with the quantum yield up to 0.2-0.8. However, only a small fraction of these primary defects are spatially separated and survive after transformation into stable, long-lived defects. The survival probability (or stable defect accumulation efficiency) can differ by orders of magnitude, dependent on the material type; e.g. ∼10% in alkali halides with f.c.c. or b.c.c. structure, 0.1% in rutile MgF2 and <0.001% in fluorides MeF2 (Me: Ca, Sr, Ba). The key factor determining accumulation of stable radiation defects is stabilization of primary defects, first of all, highly mobile hole H centers, through their transformation into more complex immobile defects. In this talk, we present the results of theoretical calculations of the migration energies of the F and H centers in poorely studied MgF2 crystals with a focus on the H center stabilization in the form of the interstitial F2 molecules which is supported by presented experimental data.
Bruck, Andrea M; Yin, Jiefu; Tong, Xiao; Takeuchi, Esther S; Takeuchi, Kenneth J; Szczepura, Lisa F; Marschilok, Amy C
2018-05-07
The cluster-based material Re 6 Se 8 Cl 2 is a two-dimensional ternary material with cluster-cluster bonding across the a and b axes capable of multiple electron transfer accompanied by ion insertion across the c axis. The Li/Re 6 Se 8 Cl 2 system showed reversible electron transfer from 1 to 3 electron equivalents (ee) at high current densities (88 mA/g). Upon cycling to 4 ee, there was evidence of capacity degradation over 50 cycles associated with the formation of an organic solid-electrolyte interface (between 1.45 and 1 V vs Li/Li + ). This investigation highlights the ability of cluster-based materials with two-dimensional cluster bonding to be used in applications such as energy storage, showing structural stability and high rate capability.
Ge14 Br8 (PEt3 )4 : A Subhalide Cluster of Germanium.
Kunz, Tanja; Schrenk, Claudio; Schnepf, Andreas
2018-04-03
Heating a metastable solution of Ge I Br to room temperature led to the first structurally characterized metalloid subhalide cluster Ge 14 Br 8 (PEt 3 ) 4 (1). Furthermore 1 can be seen as the first isolated binary halide cluster on the way from Ge I Br to elemental germanium, giving insight into the complex reaction mechanism of its disproportionation reaction. Quantum chemical calculations further indicate that a classical bonding situation is realized within 1 and that the last step of the formation of 1 might include the trapping of GeBr 2 units. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conducting a thermal conductivity survey
NASA Technical Reports Server (NTRS)
Allen, P. B.
1985-01-01
A physically transparent approximate theory of phonon decay rates is presented starting from a pair potential model of the interatomic forces in an insulator or semiconductor. The theory applies in the classical regime and relates the 3-phonon decay rate to the third derivative of the pair potential. Phonon dispersion relations do not need to be calculated, as sum rules relate all the needed quantities directly to the pair potential. The Brillouin zone averaged phonon lifetime turns out to involve a dimensionless measure of the anharmonicity multiplied by an effective density of states for 3-phonon decay. Results are given for rare gas and alkali halide crystals. For rare gases, the results are in good agreement with more elaborate perturbation calculations. Comparison to experimental data on phonon linewidths and thermal conductivity are made.
Chen, Zhang-Gai; Huang, Xia; Zhuang, Rong-Chuan; Zhang, Yu; Liu, Xin; Shi, Tao; Wang, Shuai-Hua; Wu, Shao-Fan; Mi, Jin-Xiao; Huang, Ya-Xi
2017-09-12
Germanophosphates, in comparison with other metal phosphates, have been less studied but potentially exhibit more diverse structural chemistry with wide applications. Herein we applied a hydro-/solvo-fluorothermal route to make use of both the "tailor effect" of fluoride for the formation of low dimensional anionic clusters and the presence of alkali cations of different sizes to align the anionic clusters to control the overall crystal symmetries of germanophosphates. The synergetic effects of fluoride and alkali cations led to structural changes from chain-like structures to layered structures in a series of five novel fluorogermanophosphates: A 2 [GeF 2 (HPO 4 ) 2 ] (A = Na, K, Rb, NH 4 , and Cs, denoted as Na, K, Rb, NH4, and Cs). Although these fluorogermanophosphates have stoichiometrically equivalent formulas, they feature different anionic clusters, diverse structural dimensionalities, and contrasting crystal symmetries. Chain-like structures were observed for the compounds with the smaller sized alkali ions (Na + , K + , and Rb + ), whereas layered structures were found for those containing the larger sized cations ((NH 4 ) + and Cs + ). Specifically, monoclinic space groups were observed for the Na, K, Rb, and NH4 compounds, whereas a tetragonal space group P4/mbm was found for the Cs compound. These compounds provide new insights into the effects of cation sizes on the anionic clusters built from GeO 4 F 2 octahedra and HPO 4 tetrahedra as well as their influences on the overall structural symmetries in germanophosphates. Further characterization including IR spectroscopy and thermal analyses for all five compounds is also presented.
The Significance of Interfacial Water Structure in Soluble Salt Flotation Systems.
Hancer, M.; Celik, M. S.; Miller, J. D.
2001-03-01
Flotation of soluble salts with dodecyl amine hydrochloride (DAH) and sodium dodecyl sulfate (SDS) collectors has demonstrated that the interfacial water structure and hydration states of soluble salt surfaces together with the precipitation tendency of the corresponding collector salts are of considerable importance in explaining their flotation behavior. In particular, the high concentration of ions in these soluble salt brines and their hydration appear to modify the bulk and interfacial structure of water as revealed by contact angle measurements and this effect is shown to be an important feature in the flotation chemistry of soluble salt minerals including alkali halide and alkali oxyanion salts. Depending on characteristic chemical features (salt type), the salt can serve either as a structure maker, in which intermolecular hydrogen bonding between water molecules is facilitated, or as a structure breaker, in which intermolecular hydrogen bonding between water molecules is disrupted. For structure making salts the brine completely wets the salt surface and no contact angle can be measured. For structure breaking salts the brine does not completely wet the salt surface and a finite contact angle is measured. In this regard it has been found that soluble salt flotation either with the cationic DAH or anionic SDS collector is possible only if the salt is a structure breaker. Copyright 2001 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bang, Hyunjin; Kim, Youngmee; Kim, Seri
We found new synthetic routes to obtain 1-D quaternary thiophosphate compounds and a 0-D molecular complex containing a Nb{sub 2}S{sub 4} core from a 2-D ternary thiophosphate, Nb{sub 4}P{sub 2}S{sub 21}. When Nb{sub 4}P{sub 2}S{sub 21} was reacted with alkali metal halides (ACl; A=Na, K, Rb, Cs) or TlCl at 500-700 deg. C, the -S-S-S- bridges in 2-D Nb{sub 2}PS{sub 10}-S-S{sub 10}PNb{sub 2} were excised to form a 1-D chain, and cations were inserted between the chains to form ANb{sub 2}PS{sub 10} (A=Na, K, Rb, Cs, Tl). We also found that thallium chloride (TlCl) is an excellent reagent for furthermore » excision, and it substitutes chloride ligands for the sulfur ligands of 2-D Nb{sub 4}P{sub 2}S{sub 21} to form the molecular complex Tl{sub 5}[Nb{sub 2}S{sub 4}Cl{sub 8}]Cl. Crystal data for TlNb{sub 2}PS{sub 10}: monoclinic, Pn, a=6.9452(11) A, b=7.3761(12) A, 12.873(2) A, {beta}=104.472(3){sup o}, and Z=2. Crystal data for Tl{sub 5}[Nb{sub 2}S{sub 4}Cl{sub 8}]Cl: orthorhombic, Immm, a=7.001(5) A, b=9.509(7) A, c=15.546(11) A, and Z=2. - Graphical abstract: We developed new synthetic routes to obtain 1-D quaternary thiophosphate compounds and a molecular complex containing a Nb{sub 2}S{sub 4} core from a 2-D ternary thiophosphate, Nb{sub 4}P{sub 2}S{sub 21}. When Nb{sub 4}P{sub 2}S{sub 21} was reacted with alkali metal halides or TlCl, the -S-S-S- bridges in 2-D Nb{sub 2}PS{sub 10}-S-S{sub 10}PNb{sub 2} were excised to form a 1-D chain, and cations were inserted between the chains.« less
Choi, Young Cheol; Lee, Han Myoung; Kim, Woo Youn; Kwon, S K; Nautiyal, Tashi; Cheng, Da-Yong; Vishwanathan, K; Kim, Kwang S
2007-02-16
On the basis of first-principles calculations of clusters and one dimensional infinitely long subnanowires of the binary systems, we find that alkali-noble metal alloy wires show better linearity and stability than either pure alkali metal or noble metal wires. The enhanced alternating charge buildup on atoms by charge transfer helps the atoms line up straight. The cesium doped gold wires showing significant charge transfer from cesium to gold can be stabilized as linear or circular monoatomic chains.
Woodall, C.A.; Warner, K.L.; Oremland, R.S.; Murrell, J.C.; McDonald, I.R.
2001-01-01
Strain IMB-1, an aerobic methylotrophic member of the alpha subgroup of the Proteobacteria, can grow with methyl bromide as a sole carbon and energy source. A single cmu gene cluster was identified in IMB-1 that contained six open reading frames: cmuC, cmuA, orf146, paaE, hutI, and partial metF. CmuA from IMB-1 has high sequence homology to the methyltransferase CmuA from Methylobacterium chloromethanicum and Hyphomicrobium chloromethanicum and contains a C-terminal corrinoid-binding motif and an N-terminal methyl-transferase motif. However, cmuB, identified in M. chloromethanicum and H. chloromethanicum, was not detected in IMB-1.
NASA Astrophysics Data System (ADS)
Sellaiyan, S.; Uedono, A.; Sivaji, K.; Janet Priscilla, S.; Sivasankari, J.; Selvalakshmi, T.
2016-10-01
Pure and alkali metal ion (Li, Na, and K)-doped MgO nanocrystallites synthesized by solution combustion technique have been studied by positron lifetime and Doppler broadening spectroscopy methods. Positron lifetime analysis exhibits four characteristic lifetime components for all the samples. Doping reduces the Mg vacancy after annealing to 800 °C. It was observed that Li ion migrates to the vacancy site to recover Mg vacancy-type defects, reducing cluster vacancies and micropores. For Na- and K-doped MgO, the aforementioned defects are reduced and immobile at 800 °C. Coincidence Doppler broadening studies show the positron trapping sites as vacancy clusters. The decrease in the S parameter is due to the particle growth and reduction in the defect concentration at 800 °C. Photoluminescence study shows an emission peak at 445 nm and 498 nm, associated with F2 2+ and recombination of higher-order vacancy complexes. Further, annealing process is likely to dissociate F2 2+ to F+ and this F+ is converted into F centers at 416 nm.
Stegmaier, Saskia; Fässler, Thomas F
2011-12-14
The synthesis and crystal structure of the first ternary A-Cu-Sn intermetallic phases for the heavier alkali metals A = Na to Cs is reported. The title compounds A(12)Cu(12)Sn(21) show discrete 33-atom intermetalloid Cu-Sn clusters {Sn@Cu(12)@Sn(20)}, which are composed of {Sn(20)} pentagonal dodecahedra surrounding {Cu(12)} icosahedra with single Sn atoms at the center. Na(12)Cu(12)Sn(21) and K(12)Cu(12)Sn(21) were characterized by single-crystal XRD studies, and the successful synthesis of analogous A-Cu-Sn compounds with A = Rb and Cs is deduced from powder XRD data. The isotypic A(12)Cu(12)Sn(21) phases crystallize in the cubic space group Pn ̅3m (No. 224), with the Cu-Sn clusters adopting a face centered cubic arrangement. A formal charge of 12- can be assigned to the {Sn@Cu(12)@Sn(20)} cluster unit, and the interpretation of the title compounds as salt-like intermetallic phases featuring discrete anionic intermetalloid [Sn@Cu(12)@Sn(20)](12-) clusters separated by alkali metal cations is supported by electronic structure calculations. For both Na(12)Cu(12)Sn(21) and K(12)Cu(12)Sn(21), DFT band structure calculations (TB-LMTO-ASA) reveal a band gap. The discrete [Sn@Cu(12)@Sn(20)](12-) cluster is analyzed in consideration of the molecular orbitals obtained from hybrid DFT calculations (Gaussian 09) for the cluster anion. The [Sn@Cu(12)@Sn(20)](12-) cluster MOs can be classified with labels indicating the numbers of radial and angular nodes, in the style of spherical shell models of cluster bonding. © 2011 American Chemical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner
The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive.more » Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.« less
Attraction between like-charged monovalent ions.
Zangi, Ronen
2012-05-14
Ions with like-charges repel each other with a magnitude given by the Coulomb law. The repulsion is also known to persist in aqueous solutions albeit factored by the medium's dielectric constant. In this paper, we report results from molecular dynamics simulations of alkali halides salt solutions indicating an effective attraction between some of the like-charged monovalent ions. The attraction is observed between anions, as well as between cations, leading to the formation of dimers with lifetimes on the order of few picoseconds. Two mechanisms have been identified to drive this counterintuitive attraction. The first is exhibited by high-charge density ions, such as fluoride, at low salt concentrations, yielding effective attractions with magnitude up to the order of 1-2 kT. In this case, the stronger local electric field generated when the two ions are in contact augments the alignment of neighboring waters toward the ions. This results in a gain of substantial favorable ion-water interaction energy. For fluorides, this interaction constitutes the major change among the different energy components compensating for the anion-anion repulsion, and therefore, rendering like-charge association possible. The second mechanism involves mediation by counterions, the attractions increase with salt concentration and are characterized by small magnitudes. In particular, clusters of ion triplets, in which a counterion is either bridging the two like-charged ions or is paired to only one of them, are formed. Although these two mechanisms may not yield net attractions in many cases, they might still be operational and significant, explaining effective repulsions between like-charged ions with magnitudes much smaller than expected based on continuum electrostatics.
Adsorption of alkali and alkaline earth metal atoms and dimers on monolayer germanium carbide
NASA Astrophysics Data System (ADS)
Gökçe, Aytaç Gürhan; Ersan, Fatih
2017-01-01
First-principles plane wave calculations have been performed to study the adsorption of alkali and alkaline earth metals on monolayer germanium carbide (GeC). We found that the favourable adsorption sites on GeC sheet for single alkali and alkaline earth adatoms are generally different from graphene or germanene. Among them, Mg, Na and their dimers have weakly bounded to GeC due to their closed valence electron shells, so they may have high mobility on GeC. Two different levels of adatom coverage (? and ?) have been investigated and we concluded that different electronic structures and magnetic moments for both coverages owing to alkali and alkaline earth atoms have long range electrostatic interactions. Lithium atom prefers to adsorbed on hollow site similar to other group-IV monolayers and the adsorption results in metallisation of GeC instead of semiconducting behaviour. Na and K adsorption can induce 1 ? total magnetic moment on GeC structures and they have shown semiconductor property which may have potential use in spintronic devices. We also showed that alkali or alkaline earth metal atoms can form dimer on GeC sheet. Calculated adsorption energies suggest that clustering of alkali and alkaline earth atoms is energetically favourable. All dimer adsorbed GeC systems have nonmagnetic semiconductor property with varying band gaps from 0.391 to 1.311 eV which are very suitable values for various device applications.
Correlation of materials properties with the atomic density concept
NASA Technical Reports Server (NTRS)
1975-01-01
Based on the hypothesis that the number of atoms per unit volume, accurately calculable for any substance of known real density and chemical composition, various characterizing parameters (energy levels of electrons interacting among atoms of the same or different kinds, atomic mass, bond intensity) were chosen for study. A multiple exponential equation was derived to express the relationship. Various properties were examined, and correlated with the various parameters. Some of the properties considered were: (1) heat of atomization, (2) boiling point, (3) melting point, (4) shear elastic modulus of cubic crystals, (5) thermal conductivity, and (6) refractive index for transparent substances. The solid elements and alkali halides were the materials studied. It is concluded that the number of different properties can quantitively be described by a common group of parameters for the solid elements, and a wide variety of compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bragdon, Robert W.
1950-11-08
(1) A comprehensive investigation of methods for the preparation of hydrides of wolfram has been made. A wolfram (IV) hydride-aluminum hydride mixture has been prepared and its N{sub H} and thermal stability determined for its evaluation as a nuclear radiation shield material. Aluminum borohydride has been shown to reduce wolfram (VI) chloride to a subchloride. The alkali borohydrides also reduce hexavalent wolfram, but in no case has a wolfram borohydride been isolated. (2) An investigation of the chemical and physical properties of thorium borohydride, which pertain to its use as alow-temperature nuclear radiatin shield, is presented. Values are taken frommore » the literature when available and are supplemented where necessary by our experimental investigation.« less
Growth of fungi in NaCl-MgSO4 brines
NASA Technical Reports Server (NTRS)
Siegel, S. M.; Siegel, B. Z.
1978-01-01
Previous investigations have shown that common fungi of the Penicillium-Aspergillus group can be grown in a variety of brines or on moist salt crystals. This simulates salt flats as well as sizeable waterbodies stabilized as saturated brines such as Don Juan Pond (Antarctica), the Great Salt Lake of Utah, and the Dead Sea in the Jordan Valley. In general, salt media rich in KCl are favored over other alkali halides; the media become more selective as the salt concentration rises and nutrient requirements become more complex. In the present paper, it is shown that media which resemble the Dead Sea salt mix can, in fact, support the growth of selected fungal strains, even in the absence of reduced organic nutrients other than glucose. Such media may serve as models for localized microhabitats on Mars.
Solid-state NMR/NQR and first-principles study of two niobium halide cluster compounds.
Perić, Berislav; Gautier, Régis; Pickard, Chris J; Bosiočić, Marko; Grbić, Mihael S; Požek, Miroslav
2014-01-01
Two hexanuclear niobium halide cluster compounds with a [Nb6X12](2+) (X=Cl, Br) diamagnetic cluster core, have been studied by a combination of experimental solid-state NMR/NQR techniques and PAW/GIPAW calculations. For niobium sites the NMR parameters were determined by using variable Bo field static broadband NMR measurements and additional NQR measurements. It was found that they possess large positive chemical shifts, contrary to majority of niobium compounds studied so far by solid-state NMR, but in accordance with chemical shifts of (95)Mo nuclei in structurally related compounds containing [Mo6Br8](4+) cluster cores. Experimentally determined δiso((93)Nb) values are in the range from 2,400 to 3,000 ppm. A detailed analysis of geometrical relations between computed electric field gradient (EFG) and chemical shift (CS) tensors with respect to structural features of cluster units was carried out. These tensors on niobium sites are almost axially symmetric with parallel orientation of the largest EFG and the smallest CS principal axes (Vzz and δ33) coinciding with the molecular four-fold axis of the [Nb6X12](2+) unit. Bridging halogen sites are characterized by large asymmetry of EFG and CS tensors, the largest EFG principal axis (Vzz) is perpendicular to the X-Nb bonds, while intermediate EFG principal axis (Vyy) and the largest CS principal axis (δ11) are oriented in the radial direction with respect to the center of the cluster unit. For more symmetrical bromide compound the PAW predictions for EFG parameters are in better correspondence with the NMR/NQR measurements than in the less symmetrical chlorine compound. Theoretically predicted NMR parameters of bridging halogen sites were checked by (79/81)Br NQR and (35)Cl solid-state NMR measurements. Copyright © 2014 Elsevier Inc. All rights reserved.
Thermally stable solids based on endohedrally doped ZnS clusters.
Matxain, Jon M; Piris, Mario; Lopez, Xabier; Ugalde, Jesus M
2009-01-01
The existence of inorganic, hollow, fullerene-like ZnS clusters has been theoretically predicted and then recently confirmed experimentally. These clusters were observed to trap alkali metals and halogens because the ionization energies (IE) of alkali metals are very similar to the electron affinities (EA) of halogens. This opens the possibility of forming molecular solids composed of these fullerene building blocks because the energy released due to the difference between the IE and EA would be very small. Herein we have focused on assembling bare Zn(12)S(12) and endohedral X@Zn(12)S(12)-Y@Zn(12)S(12) dimers (X = Na, K; Y = Cl, Br) by considering the square-faces-square orientation of every two adjacent clusters, which leads to a fcc cubic crystal structure in the solid. The structures were fully optimized in all cases, and their thermal stability was confirmed by ab initio thermal molecular dynamics calculations. The optimum lattice parameter of the solids was found to be around 13.8 A, which corresponds to distances of about 2.5 A between monomers, which is typical of covalent Zn-S bonds. The resulting solids are nanoporous materials similar to B(12)N(12). Due to their nanoporous structure, these zeolite-shaped solids could be used in heterogeneous catalysis and as storage materials and molecular sieves.
Ultralow thermal conductivity in all-inorganic halide perovskites
Li, Huashan; Wong, Andrew B.; Zhang, Dandan; Lai, Minliang; Yu, Yi; Kong, Qiao; Lin, Elbert; Urban, Jeffrey J.; Grossman, Jeffrey C.; Yang, Peidong
2017-01-01
Controlling the flow of thermal energy is crucial to numerous applications ranging from microelectronic devices to energy storage and energy conversion devices. Here, we report ultralow lattice thermal conductivities of solution-synthesized, single-crystalline all-inorganic halide perovskite nanowires composed of CsPbI3 (0.45 ± 0.05 W·m−1·K−1), CsPbBr3 (0.42 ± 0.04 W·m−1·K−1), and CsSnI3 (0.38 ± 0.04 W·m−1·K−1). We attribute this ultralow thermal conductivity to the cluster rattling mechanism, wherein strong optical–acoustic phonon scatterings are driven by a mixture of 0D/1D/2D collective motions. Remarkably, CsSnI3 possesses a rare combination of ultralow thermal conductivity, high electrical conductivity (282 S·cm−1), and high hole mobility (394 cm2·V−1·s−1). The unique thermal transport properties in all-inorganic halide perovskites hold promise for diverse applications such as phononic and thermoelectric devices. Furthermore, the insights obtained from this work suggest an opportunity to discover low thermal conductivity materials among unexplored inorganic crystals beyond caged and layered structures. PMID:28760988
Ultralow thermal conductivity in all-inorganic halide perovskites
Lee, Woochul; Li, Huashan; Wong, Andrew B.; ...
2017-07-08
Controlling the flow of thermal energy is crucial to numerous applications ranging from microelectronic devices to energy storage and energy conversion devices. Here in this paper, we report ultralow lattice thermal conductivities of solution-synthesized, single-crystalline all-inorganic halide perovskite nanowires composed of CsPbI 3 (0.45 ± 0.05 W·m -1 ·K -1), CsPbBr 3 (0.42 ± 0.04 W·m -1·K -1), and CsSnI 3 (0.38 ± 0.04 W·m -1 ·K -1). We attribute this ultralow thermal conductivity to the cluster rattling mechanism, wherein strong optical–acoustic phonon scatterings are driven by a mixture of 0D/1D/2D collective motions. Remarkably, CsSnI 3 possesses a rare combinationmore » of ultralow thermal conductivity, high electrical conductivity (282 S·cm -1), and high hole mobility (394 cm 2 ·V -1 ·s -1). The unique thermal transport properties in all-inorganic halide perovskites hold promise for diverse applications such as phononic and thermoelectric devices. Furthermore, the insights obtained from this work suggest an opportunity to discover low thermal conductivity materials among unexplored inorganic crystals beyond caged and layered structures.« less
Ultralow thermal conductivity in all-inorganic halide perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Woochul; Li, Huashan; Wong, Andrew B.
Controlling the flow of thermal energy is crucial to numerous applications ranging from microelectronic devices to energy storage and energy conversion devices. Here in this paper, we report ultralow lattice thermal conductivities of solution-synthesized, single-crystalline all-inorganic halide perovskite nanowires composed of CsPbI 3 (0.45 ± 0.05 W·m -1 ·K -1), CsPbBr 3 (0.42 ± 0.04 W·m -1·K -1), and CsSnI 3 (0.38 ± 0.04 W·m -1 ·K -1). We attribute this ultralow thermal conductivity to the cluster rattling mechanism, wherein strong optical–acoustic phonon scatterings are driven by a mixture of 0D/1D/2D collective motions. Remarkably, CsSnI 3 possesses a rare combinationmore » of ultralow thermal conductivity, high electrical conductivity (282 S·cm -1), and high hole mobility (394 cm 2 ·V -1 ·s -1). The unique thermal transport properties in all-inorganic halide perovskites hold promise for diverse applications such as phononic and thermoelectric devices. Furthermore, the insights obtained from this work suggest an opportunity to discover low thermal conductivity materials among unexplored inorganic crystals beyond caged and layered structures.« less
Ultralow thermal conductivity in all-inorganic halide perovskites.
Lee, Woochul; Li, Huashan; Wong, Andrew B; Zhang, Dandan; Lai, Minliang; Yu, Yi; Kong, Qiao; Lin, Elbert; Urban, Jeffrey J; Grossman, Jeffrey C; Yang, Peidong
2017-08-15
Controlling the flow of thermal energy is crucial to numerous applications ranging from microelectronic devices to energy storage and energy conversion devices. Here, we report ultralow lattice thermal conductivities of solution-synthesized, single-crystalline all-inorganic halide perovskite nanowires composed of CsPbI 3 (0.45 ± 0.05 W·m -1 ·K -1 ), CsPbBr 3 (0.42 ± 0.04 W·m -1 ·K -1 ), and CsSnI 3 (0.38 ± 0.04 W·m -1 ·K -1 ). We attribute this ultralow thermal conductivity to the cluster rattling mechanism, wherein strong optical-acoustic phonon scatterings are driven by a mixture of 0D/1D/2D collective motions. Remarkably, CsSnI 3 possesses a rare combination of ultralow thermal conductivity, high electrical conductivity (282 S·cm -1 ), and high hole mobility (394 cm 2 ·V -1 ·s -1 ). The unique thermal transport properties in all-inorganic halide perovskites hold promise for diverse applications such as phononic and thermoelectric devices. Furthermore, the insights obtained from this work suggest an opportunity to discover low thermal conductivity materials among unexplored inorganic crystals beyond caged and layered structures.
Spiers Memorial Lecture. Ions at aqueous interfaces.
Jungwirth, Pavel
2009-01-01
Studies of aqueous interfaces and of the behavior of ions therein have been profiting from a recent remarkable progress in surface selective spectroscopies, as well as from developments in molecular simulations. Here, we summarize and place in context our investigations of ions at aqueous interfaces employing molecular dynamics simulations and electronic structure methods, performed in close contact with experiment. For the simplest of these interfaces, i.e. the open water surface, we demonstrate that the traditional picture of an ion-free surface is not valid for large, soft (polarizable) ions such as the heavier halides. Both simulations and spectroscopic measurements indicate that these ions can be present and even enhanced at surface of water. In addition we show that the ionic product of water exhibits a peculiar surface behavior with hydronium but not hydroxide accumulating at the air/water and alkane/water interfaces. This result is supported by surface-selective spectroscopic experiments and surface tension measurements. However, it contradicts the interpretation of electrophoretic and titration experiments in terms of strong surface adsorption of hydroxide; an issue which is further discussed here. The applicability of the observed behavior of ions at the water surface to investigations of their affinity for the interface between proteins and aqueous solutions is explored. Simulations show that for alkali cations the dominant mechanism of specific interactions with the surface of hydrated proteins is via ion pairing with negatively charged amino acid residues and with the backbone amide groups. As far as halide anions are concerned, the lighter ones tend to pair with positively charged amino acid residues, while heavier halides exhibit affinity to the amide group and to non-polar protein patches, the latter resembling their behavior at the air/water interface. These findings, together with results for more complex molecular ions, allow us to formulate a local model of interactions of ions with proteins with the aim to rationalize at the molecular level ion-specific Hofmeister effects, e.g. the salting out of proteins.
Pesavento, Russell P.; Berlinguette, Curtis P.; Holm, R. H.
2008-01-01
Recent work has shown that cyanide ligation increases the redox potentials of Fe4S4 clusters, enabling the isolation of [Fe4S4(CN)4]4−, the first synthetic Fe4S4 cluster obtained in the all-ferrous oxidation state (Scott, T. A.; Berlinguette, C. P.; Holm, R. H.; Zhou, H.-C., Proc. Natl. Acad. Sci. USA 2005, 102, 9741). The generality of reduced cluster stabilization has been examined with MoFe3S4 clusters. Reaction of single cubane [(Tp)MoFe3S4(PEt3)3]1+ and edge-bridged double cubane [(Tp)2Mo2Fe6S8(PEt3)4] with cyanide in acetonitrile affords [(Tp)MoFe3S4(CN)3]2− (2) and [(Tp)2Mo2Fe6S8(CN)4]4− (5), respectively. Reduction of 2 with KC14H10 yields [(Tp)MoFe3S4(CN)3]3− (3). Clusters were isolated in ca. 70–90% yields as Et4N+ or Bu4N+ salts; Clusters 3 and 5 contain all-ferrous cores; 3 is the first [MoFe3S4]1+ cluster isolated in substance. The structures of 2 and 3 are very similar; the volume of the reduced cluster core is slightly larger (2.5%), a usual effect upon reduction of cubane-type Fe4S4 and MFe3S4 clusters. Redox potentials and 57Fe isomer shifts of [(Tp)MoFe3S4L3]2−,3 and [(Tp)2Mo2Fe6S8L4]4−,3− clusters with L = CN, PhS, halide, and PEt3 are compared. Clusters with π-donor ligands (L = halide, PhS) exhibit larger isomer shifts and lower (more negative) redox potentials while π-acceptor ligands (L = CN, PEt3) induce smaller isomer shifts and higher (less negative) redox potentials. When potentials of 3/2 and [(Tp)MoFe3S4(SPh)3]3−/2− are compared, cyanide stabilizes 3 by 270 mV vs. the reduced thiolate cluster, commensurate with the 310 mV stabilization of [Fe4S4(CN)4]4− vs. [Fe4S4(SPh)4]4− where four ligands differ. These results demonstrate the efficacy of cyanide stabilization of lower cluster oxidation states. (Tp = hydrotris(pyrazolyl)borate(1−)). PMID:17279830
Pesavento, Russell P; Berlinguette, Curtis P; Holm, R H
2007-01-22
Recent work has shown that cyanide ligation increases the redox potentials of Fe(4)S(4) clusters, enabling the isolation of [Fe(4)S(4)(CN)4]4-, the first synthetic Fe(4)S(4) cluster obtained in the all-ferrous oxidation state (Scott, T. A.; Berlinguette, C. P.; Holm, R. H.; Zhou, H.-C. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 9741). The generality of reduced cluster stabilization has been examined with MoFe(3)S(4) clusters. Reaction of single-cubane [(Tp)MoFe(3)S(4)(PEt(3))3]1+ and edge-bridged double-cubane [(Tp)2Mo(2)Fe(6)S(8)(PEt(3))4] with cyanide in acetonitrile affords [(Tp)MoFe(3)S(4)(CN)3]2- (2) and [(Tp)2Mo(2)Fe(6)S(8)(CN)4]4- (5), respectively. Reduction of 2 with KC(14)H(10) yields [(Tp)MoFe(3)S(4)(CN)3]3- (3). Clusters were isolated in approximately 70-90% yields as Et(4)N+ or Bu(4)N+ salts; clusters 3 and 5 contain all-ferrous cores, and 3 is the first [MoFe(3)S(4)]1+ cluster isolated in substance. The structures of 2 and 3 are very similar; the volume of the reduced cluster core is slightly larger (2.5%), a usual effect upon reduction of cubane-type Fe(4)S(4) and MFe(3)S(4) clusters. Redox potentials and 57Fe isomer shifts of [(Tp)MoFe(3)S(4)L3]2-,3- and [(Tp)2Mo(2)Fe(6)S(8)L(4)]4-,3- clusters with L = CN-, PhS-, halide, and PEt3 are compared. Clusters with pi-donor ligands (L = halide, PhS) exhibit larger isomer shifts and lower (more negative) redox potentials, while pi-acceptor ligands (L = CN, PEt3) induce smaller isomer shifts and higher (less-negative) redox potentials. When the potentials of 3/2 and [(Tp)MoFe(3)S(4)(SPh)3]3-/2- are compared, cyanide stabilizes 3 by 270 mV versus the reduced thiolate cluster, commensurate with the 310 mV stabilization of [Fe(4)S(4)(CN)4]4- versus [Fe(4)S(4)(SPh)4]4- where four ligands differ. These results demonstrate the efficacy of cyanide stabilization of lower cluster oxidation states. (Tp = hydrotris(pyrazolyl)borate(1-)).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yourshaw, Ivan
1998-07-09
The diatomic halogen atom-rare gas diatomic complexes KrBr -, XeBr -, and KrCl - are studied in this work by zero electron kinetic energy (ZEKE) spectroscopy in order to characterize the weak intermolecular diatomic potentials of these species. Also, the ZEKE and threshold photodetachment spectra of the polyatomic clusters Ar nBr - (n = 2-9) and Ar nI - (n = 2-19) are studied to obtain information about the non-additive effects on the interactions among the atoms. This work is part of an ongoing effort to characterize the pair and many-body potentials of the complete series of rare gas halidemore » clusters. In these studies we obtain information about both the anionic and neutral clusters.« less
Alkali and Chlorine Photochemistry in a Volcanically Driven Atmosphere on Io
NASA Astrophysics Data System (ADS)
Moses, Julianne I.; Zolotov, Mikhail Yu.; Fegley, Bruce
2002-03-01
Observations of the Io plasma torus and neutral clouds indicate that the extended ionian atmosphere must contain sodium, potassium, and chlorine in atomic and/or molecular form. Models that consider sublimation of pure sulfur dioxide frost as the sole mechanism for generating an atmosphere on Io cannot explain the presence of alkali and halogen species in the atmosphere—active volcanoes or surface sputtering must also be considered, or the alkali and halide species must be discharged along with the SO 2 as the frost sublimates. To determine how volcanic outgassing can affect the chemistry of Io's atmosphere, we have developed a one-dimensional photochemical model in which active volcanoes release a rich suite of S-, O-, Na-, K-, and Cl-bearing vapor and in which photolysis, chemical reactions, condensation, and vertical eddy and molecular diffusion affect the subsequent evolution of the volcanic gases. Observations of Pele plume constituents, along with thermochemical equilibrium calculations of the composition of volcanic gases exsolved from high-temperature silicate magmas on Io, are used to constrain the composition of the volcanic vapor. We find that NaCl, Na, Cl, KCl, and K will be the dominant alkali and chlorine gases in atmospheres generated from Pele-like plume eruptions on Io. Although the relative abundances of these species will depend on uncertain model parameters and initial conditions, these five species remain dominant for a wide variety of realistic conditions. Other sodium and chlorine molecules such as NaS, NaO, Na 2, NaS 2, NaO 2, NaOS, NaSO 2, SCl, ClO, Cl 2, S 2Cl, and SO 2Cl 2 will be only minor constituents in the ionian atmosphere because of their low volcanic emission rates and their efficient photochemical destruction mechanisms. Our modeling has implications for the general appearance, properties, and variability of the neutral sodium clouds and jets observed near Io. The neutral NaCl molecules present at high altitudes in atmosph eres generated by active volcanoes might provide the NaX + ion needed to help explain the morphology of the high-velocity sodium "stream" feature observed near Io.
Coherent control of alkali cluster fragmentation dynamics
NASA Astrophysics Data System (ADS)
Lindinger, Albrecht; Lupulescu, Cosmin; Bartelt, Andreas; Vajda, Štefan; Wöste, Ludger
2003-06-01
Metal clusters exhibit extraordinary chemical and catalytic properties, which sensitively depend upon their size. This behavior makes them interesting candidates for the real-time analysis of ultrafast photo-induced processes—ultimately leading to coherent control scenarii. We have performed transient multi-photon ionization experiments on small alkali clusters of different size in order to probe their wave packet dynamics, structural reorientations, charge transfers and dissociative events in different vibrationally excited electronic states including their ground state. The observed processes were highly dependent on the irradiated pulse parameters, like its phase, amplitude and duration; an emphasis to employ a feedback control system for generating the optimum pulse shapes. Their spectral and temporal behavior reflects interesting properties about the investigated system and the irradiated photochemical process. We present first the vibrational dynamics of bound, dissociated, and pre-dissociated electronically excited states of alkali dimers and trimers. The scheme for observing the wave packet dynamics in the electronic ground state using stimulated Raman-pumping is shown. Since the employed pulse parameters significantly influence the efficiency of the irradiated dynamic pathways photo-induced fragmentation experiments on bifurcating reaction channels were carried out. In these experiments different branching ionization and fragmentation pathways of electronically excited Na 2K were investigated. By employing an evolutionary algorithm for optimizing the phase and amplitude of the applied laser field, the yield of the resulting parent or fragment ions could significantly be influenced and interesting features could be concluded from the obtained optimum pulse shapes revealing the characteristic molecular oscillation period. Moreover, the influence on the optimal pulse shape due to fragmentation from larger clusters into NaK is obtained. The substructure of the optimal pulse shape thereby offers new insight into the fragmentation channel during the control process. Characteristic motions of the involved wave packets are proposed, in order to explain the optimized dynamic dissociation pathways.
Structure and Chemistry in Halide Lead-Tellurite Glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCloy, John S.; Riley, Brian J.; Lipton, Andrew S.
2013-02-11
A series of TeO2-PbO glasses were fabricated with increasing fractions of mixed alkali, alkaline earth, and lanthanide chlorides. The glass and crystal structure was studied with Raman spectroscopy, nuclear magnetic resonance (NMR), X-ray diffraction, and electron microscopy. As the chloride fraction increased, the medium-range order in the glass decreased up to a critical point (~14 mass% of mixed chlorides), above which the glasses became phase-separated. Resulting phases are a TeO2/PbO-rich phase and a crystalline phase rich in alkali chlorides. The 125Te NMR indicates, contrary to previous studies, that Te site distribution did not change with increased concentrations of M+, M2+,more » and M3+ cations, but rather is controlled by the Te/Pb molar ratio. The 207Pb NMR shows that two Pb species exist and their relative concentration changes nearly linearly with addition of the mixed chlorides, indicating that the additives to the TeO2-PbO glass are accommodated by changing the Pb species. The 23Na and 35Cl NMR indicate that Na and Cl are distributed in the single-phase glass phase up to the critical point, and at higher concentrations partition to crystalline phases. Transmission electron microscopy shows that the sample at the critical point contains ~10 nm seed nuclei that increase in size and concentration with exposure to the electron beam.« less
Spin-driven structural effects in alkali doped (4)He clusters from quantum calculations.
Bovino, S; Coccia, E; Bodo, E; Lopez-Durán, D; Gianturco, F A
2009-06-14
In this paper, we carry out variational Monte Carlo and diffusion Monte Carlo (DMC) calculations for Li(2)((1)Sigma(g) (+))((4)He)(N) and Li(2)((3)Sigma(u) (+))((4)He)(N) with N up to 30 and discuss in detail the results of our computations. After a comparison between our DMC energies with the "exact" discrete variable representation values for the species with one (4)He, in order to test the quality of our computations at 0 K, we analyze the structural features of the whole range of doped clusters. We find that both species reside on the droplet surface, but that their orientation is spin driven, i.e., the singlet molecule is perpendicular and the triplet one is parallel to the droplet's surface. We have also computed quantum vibrational relaxation rates for both dimers in collision with a single (4)He and we find them to differ by orders of magnitude at the estimated surface temperature. Our results therefore confirm the findings from a great number of experimental data present in the current literature and provide one of the first attempts at giving an accurate, fully quantum picture for the nanoscopic properties of alkali dimers in (4)He clusters.
2013-01-01
Background The paper presents the evaluation of soil contamination with total, water-available, mobile, semi-mobile and non-mobile Hg fractions in the surroundings of a former chlor-alkali plant in connection with several chemical soil characteristics. Principal Component Analysis and Cluster Analysis were used to evaluate the chemical composition variability of soil and factors influencing the fate of Hg in such areas. The sequential extraction EPA 3200-Method and the determination technique based on capacitively coupled microplasma optical emission spectrometry were checked. Results A case study was conducted in the Turda town, Romania. The results revealed a high contamination with Hg in the area of the former chlor-alkali plant and waste landfills, where soils were categorized as hazardous waste. The weight of the Hg fractions decreased in the order semi-mobile > non-mobile > mobile > water leachable. Principal Component Analysis revealed 7 factors describing chemical composition variability of soil, of which 3 attributed to Hg species. Total Hg, semi-mobile, non-mobile and mobile fractions were observed to have a strong influence, while the water leachable fraction a weak influence. The two-dimensional plot of PCs highlighted 3 groups of sites according to the Hg contamination factor. The statistical approach has shown that the Hg fate in soil is dependent on pH, content of organic matter, Ca, Fe, Mn, Cu and SO42- rather than natural components, such as aluminosilicates. Cluster analysis of soil characteristics revealed 3 clusters, one of which including Hg species. Soil contamination with Cu as sulfate and Zn as nitrate was also observed. Conclusions The approach based on speciation and statistical interpretation of data developed in this study could be useful in the investigation of other chlor-alkali contaminated areas. According to the Bland and Altman test the 3-step sequential extraction scheme is suitable for Hg speciation in soil, while the used determination method of Hg is appropriate. PMID:24252185
The aluminum electrode in AlCl3-alkali-halide melts.
NASA Technical Reports Server (NTRS)
Holleck, G. L.; Giner, J.
1972-01-01
Passivation phenomena have been observed upon cathodic and anodic polarization of the Al electrode in AlCl3-KCl-NaCl melts between 100 and 160 C. They are caused by formation of a solid salt layer at the electrode surface resulting from concentration changes upon current flow. The anodic limiting currents increased with temperature and with decreasing AlCl3 content of the melt. Current voltage curves obtained on a rotating aluminum disk showed a linear relationship between the anodic limiting current and omega to the minus 1/2 power. Upon cathodic polarization, dendrite formation occurs at the Al electrode. The activation overvoltage in AlCl3-KCl-NaCl was determined by galvanostatic current step methods. An apparent exchange current density of 270 mA/sq cm at 130 C and a double layer capacity of 40 plus or minus 10 microfarad/sq cm were measured.
The rate of the exciton self-trapping in KI and RbI at different temperatures
NASA Astrophysics Data System (ADS)
Zhanturina, N.; Shunkeev, K.
2012-12-01
The article disclosed the theory of the kinetics of excitons self-trapping in alkali halide crystals. On the example of KI and RbI crystals the time of excitons self-trapping and the length of free path before self-trapping were calculated. Also, the theory of self-trapping rate was revealed. According to the Arrhenius law the dependence of excitons self-trapping rate on the temperature and the degree of depth and uniaxial compression was analyzed. The increase of the rate of excitons self-trapping by temperature increasing was shown; while increasing the degree of compression at the full rate of strain localization decreases under uniaxial - is increasing. These data are good agreed with the experimental fact of luminescencei increasing under uniaxial compression and allow to make a conclusion about weakening of the luminescence by applying hydrostatic pressure.
NASA Astrophysics Data System (ADS)
Chareev, D. A.; Volkova, O. S.; Geringer, N. V.; Koshelev, A. V.; Nekrasov, A. N.; Osadchii, V. O.; Osadchii, E. G.; Filimonova, O. N.
2016-07-01
Some examples of growing crystals of metals, alloys, chalcogenides, and pnictides in melts of halides of alkali metals and aluminum at a steady-state temperature gradient are described. Transport media are chosen to be salt melts of eutectic composition with the participation of LiCl, NaCl, KCl, RbCl, CsCl, AlCl3, AlBr3, KBr, and KI in a temperature range of 850-150°C. Some crystals have been synthesized only using a conducting contour. This technique of crystal growth is similar to the electrochemical method. In some cases, to exclude mutual influence, some elements have been isolated and forced to migrate to the crystal growth region through independent channels. As a result, crystals of desired quality have been obtained using no special equipment and with sizes sufficient for study under laboratory conditions.
Microchannel plate detector technology potential for LUVOIR and HabEx
NASA Astrophysics Data System (ADS)
Siegmund, O. H. W.; Ertley, C.; Vallerga, J. V.; Schindhelm, E. R.; Harwit, A.; Fleming, B. T.; France, K. C.; Green, J. C.; McCandliss, S. R.; Harris, W. M.
2017-08-01
Microchannel plate (MCP) detectors have been the detector of choice for ultraviolet (UV) instruments onboard many NASA missions. These detectors have many advantages, including high spatial resolution (<20 μm), photon counting, radiation hardness, large formats (up to 20 cm), and ability for curved focal plane matching. Novel borosilicate glass MCPs with atomic layer deposition combine extremely low backgrounds, high strength, and tunable secondary electron yield. GaN and combinations of bialkali/alkali halide photocathodes show promise for broadband, higher quantum efficiency. Cross-strip anodes combined with compact ASIC readout electronics enable high spatial resolution over large formats with high dynamic range. The technology readiness levels of these technologies are each being advanced through research grants for laboratory testing and rocket flights. Combining these capabilities would be ideal for UV instruments onboard the Large UV/Optical/IR Surveyor (LUVOIR) and the Habitable Exoplanet Imaging Mission (HABEX) concepts currently under study for NASA's Astrophysics Decadal Survey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yulaev, Alexander; Guo, Hongxuan; Strelcov, Evgheni
Atomic-scale thickness, molecular impermeability, low atomic number, and mechanical strength make graphene an ideal electron-transparent membrane for material characterization in liquids and gases with scanning electron microscopy and spectroscopy. Here in this paper, we present a novel sample platform made of an array of thousands of identical isolated graphene-capped microchannels with high aspect ratio. A combination of a global wide field of view with high resolution local imaging of the array allows for high throughput in situ studies as well as for combinatorial screening of solutions, liquid interfaces, and immersed samples. We demonstrate the capabilities of this platform by studyingmore » a pure water sample in comparison with alkali halide solutions, a model electrochemical plating process, and beam-induced crystal growth in liquid electrolyte. Spectroscopic characterization of liquid interfaces and immersed objects with Auger and X-ray fluorescence analysis through the graphene membrane are also demonstrated.« less
Solar cells with perovskite-based light sensitization layers
Kanatzidis, Mercouri G.; Chang, Robert P.H.; Stoumpos, Konstantinos; Lee, Byunghong
2018-05-08
Solar cells are provided which comprise an electron transporting layer and a light sensitizing layer of perovskite disposed over the surface of the electron transporting layer. The perovskite may have a formula selected from the group consisting of A2MX6, Z2MX6 or YMX6, wherein A is an alkali metal, M is a metal or a metalloid, X is a halide, Z is selected from the group consisting of a primary ammonium, an iminium, a secondary ammonium, a tertiary ammonium, and a quaternary ammonium, and Y has formula Mb(L)3, wherein Mb is a transition metal in the 2+ oxidation state L is an N--N neutral chelating ligand. Methods of making the solar cells are also provided, including methods based on electrospray deposition.
A study of Lux-Flood acid-base reactions in KBr melts at 800°C
NASA Astrophysics Data System (ADS)
Rebrova, T. P.; Cherginets, V. L.; Ponomarenko, T. V.
2009-11-01
The dissociation of CO{3/2-} (p K = 2.4 ± 0.2) and precipitation of MgO (p L MgO = 10.66 ± 0.1) in a KBr melt at 800°C were studied potentiometrically with the use of a Pt(O2)|ZrO2|(Y2O3) membrane oxygen electrode. The direct calibration of the electrochemical circuit allowed only the equilibrium concentration of O2- (of strong bases) to be determined in the melt. The total concentration of oxygen-containing impurities, including CO{3/2-} and CO{4/2-} weak bases, can be found by the potentiometric titration of a sample of KBr by adding MgCl2 (Mg2+), a strong Lux-Flood acid, which causes the decomposition of these oxygen-containing anions. This reaction can also be used to remove oxo anions from alkali metal halide melts.
Secondary Confinement of Water Observed in Eutectic Melting of Aqueous Salt Systems in Nanopores.
Meissner, Jens; Prause, Albert; Findenegg, Gerhard H
2016-05-19
Freezing and melting of aqueous solutions of alkali halides confined in the cylindrical nanopores of MCM-41 and SBA-15 silica was probed by differential scanning calorimetry (DSC). We find that the confinement-induced shift of the eutectic temperature in the pores can be significantly greater than the shift of the melting temperature of pure water. Greatest shifts of the eutectic temperature are found for salts that crystallize as oligohydrates at the eutectic point. This behavior is explained by the larger fraction of pore volume occupied by salt hydrates as compared to anhydrous salts, on the assumption that precipitated salt constitutes an additional confinement for ice/water in the pores. A model based on this secondary confinement effect gives a good representation of the experimental data. Salt-specific secondary confinement may play a role in a variety of fields, from salt-impregnated advanced adsorbents and catalysts to the thermal weathering of building materials.
The Pressure induced by salt crystallization in confinement.
Desarnaud, J; Bonn, D; Shahidzadeh, N
2016-08-05
Salt crystallization is a major cause of weathering of rocks, artworks and monuments. Damage can only occur if crystals continue to grow in confinement, i.e. within the pore space of these materials, thus generating mechanical stress. We report the direct measurement, at the microscale, of the force exerted by growing alkali halide salt crystals while visualizing their spontaneous nucleation and growth. The experiments reveal the crucial role of the wetting films between the growing crystal and the confining walls for the development of the pressure. Our results suggest that the measured force originates from repulsion between the similarly charged confining wall and the salt crystal separated by a ~1.5 nm liquid film. Indeed, if the walls are made hydrophobic, no film is observed and no repulsive forces are detected. We also show that the magnitude of the induced pressure is system specific explaining why different salts lead to different amounts of damage to porous materials.
Electron-trapping polycrystalline materials with negative electron affinity.
McKenna, Keith P; Shluger, Alexander L
2008-11-01
The trapping of electrons by grain boundaries in semiconducting and insulating materials is important for a wide range of physical problems, for example, relating to: electroceramic materials with applications as sensors, varistors and fuel cells, reliability issues for solar cell and semiconductor technologies and electromagnetic seismic phenomena in the Earth's crust. Surprisingly, considering their relevance for applications and abundance in the environment, there have been few experimental or theoretical studies of the electron trapping properties of grain boundaries in highly ionic materials such as the alkaline earth metal oxides and alkali halides. Here we demonstrate, by first-principles calculations on MgO, LiF and NaCl, a qualitatively new type of electron trapping at grain boundaries. This trapping is associated with the negative electron affinity of these materials and is unusual as the electron is confined in the empty space inside the dislocation cores.
Localized excitations in hydrogen-bonded molecular crystals
NASA Astrophysics Data System (ADS)
Alexander, D. M.; Krumhansl, J. A.
1986-05-01
Localized excitations analogous to the small Holstein polaron, to localized modes in alkali halides, and to localized excitonic states, are postulated for a set of internal vibrational modes in crystalline acetanilide. The theoretical framework in which one can describe the characteristics of the ir and Raman spectroscopy peaks associated with these localized states is adequately provided by the Davydov model (formally equivalent to the Holstein polaron model). The possible low-lying excitations arising from this model are determined using a variational approach. Hence, the contribution to the spectral function due to each type of excitation can be calculated. The internal modes of chief concern here are the amide-I (CO stretch) and the N-H stretch modes for which we demonstrate consistency of the theoretical model with the available ir data. Past theoretical approaches will be discussed and reasons why one should prefer one description over another will be examined.
Graphene Microcapsule Arrays for Combinatorial Electron Microscopy and Spectroscopy in Liquids
Yulaev, Alexander; Guo, Hongxuan; Strelcov, Evgheni; ...
2017-04-27
Atomic-scale thickness, molecular impermeability, low atomic number, and mechanical strength make graphene an ideal electron-transparent membrane for material characterization in liquids and gases with scanning electron microscopy and spectroscopy. Here in this paper, we present a novel sample platform made of an array of thousands of identical isolated graphene-capped microchannels with high aspect ratio. A combination of a global wide field of view with high resolution local imaging of the array allows for high throughput in situ studies as well as for combinatorial screening of solutions, liquid interfaces, and immersed samples. We demonstrate the capabilities of this platform by studyingmore » a pure water sample in comparison with alkali halide solutions, a model electrochemical plating process, and beam-induced crystal growth in liquid electrolyte. Spectroscopic characterization of liquid interfaces and immersed objects with Auger and X-ray fluorescence analysis through the graphene membrane are also demonstrated.« less
Low work function, stable compound clusters and generation process
Dinh, Long N.; Balooch, Mehdi; Schildbach, Marcus A.; Hamza, Alex V.; McLean, II, William
2000-01-01
Low work function, stable compound clusters are generated by co-evaporation of a solid semiconductor (i.e., Si) and alkali metal (i.e., Cs) elements in an oxygen environment. The compound clusters are easily patterned during deposition on substrate surfaces using a conventional photo-resist technique. The cluster size distribution is narrow, with a peak range of angstroms to nanometers depending on the oxygen pressure and the Si source temperature. Tests have shown that compound clusters when deposited on a carbon substrate contain the desired low work function property and are stable up to 600.degree. C. Using the patterned cluster containing plate as a cathode baseplate and a faceplate covered with phosphor as an anode, one can apply a positive bias to the faceplate to easily extract electrons and obtain illumination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Réal, Florent, E-mail: florent.real@univ-lille1.fr; Severo Pereira Gomes, André; Guerrero Martínez, Yansel Omar
2016-03-28
The properties of halides from the lightest, fluoride (F{sup −}), to the heaviest, astatide (At{sup −}), have been studied in water using a polarizable force-field approach based on molecular dynamics (MD) simulations at the 10 ns scale. The selected force-field explicitly treats the cooperativity within the halide-water hydrogen bond networks. The force-field parameters have been adjusted to ab initio data on anion/water clusters computed at the relativistic Möller-Plesset second-order perturbation theory level of theory. The anion static polarizabilities of the two heaviest halides, I{sup −} and At{sup −}, were computed in the gas phase using large and diffuse atomic basis sets,more » and taking into account both electron correlation and spin-orbit coupling within a four-component framework. Our MD simulation results show the solvation properties of I{sup −} and At{sup −} in aqueous phase to be very close. For instance, their first hydration shells are structured and encompass 9.2 and 9.1 water molecules at about 3.70 ± 0.05 Å, respectively. These values have to be compared to the F{sup −}, Cl{sup −}, and Br{sup −} ones, i.e., 6.3, 8.4, and 9.0 water molecules at 2.74, 3.38, and 3.55 Å, respectively. Moreover our computations predict the solvation free energy of At{sup −} in liquid water at ambient conditions to be 68 kcal mol{sup −1}, a value also close the I{sup −} one, about 70 kcal mol{sup −1}. In all, our simulation results for I{sup −} are in excellent agreement with the latest neutron- and X-ray diffraction studies. Those for the At{sup −} ion are predictive, as no theoretical or experimental data are available to date.« less
Electronic structure of clathrates Bax@AlySi46-y ; thermoelectric devices
NASA Astrophysics Data System (ADS)
Eguchi, Haruki; Nagano, Takatoshi; Takenaka, Hiroyuki; Tsumuraya, Kazuo
2002-03-01
Clathrates have received much attention as a candidate of high performance thermoelectric devices. This is because they have a) low thermal conductivity due to rattle effect of the alkali or heavy alkali-earth metals such as Ba atoms in the cages of clusters of the clathrates, and b) adjustablity of the Fermi levels through replacement of frame Si atoms with acceptor Al atoms and addition of the cage atoms as donors. We present the dispersion curves with LDA and GGA approximations for the exchange correlation of electrons using the planewave based pseudopotential methods and predict the electronic properties of the clathrates.
Long range intermolecular interactions between the alkali diatomics Na2, K2, and NaK
NASA Astrophysics Data System (ADS)
Zemke, Warren T.; Byrd, Jason N.; Michels, H. Harvey; Montgomery, John A.; Stwalley, William C.
2010-06-01
Long range interactions between the ground state alkali diatomics Na2-Na2, K2-K2, Na2-K2, and NaK-NaK are examined. Interaction energies are first determined from ab initio calculations at the coupled-cluster with singles, doubles, and perturbative triples [CCSD(T)] level of theory, including counterpoise corrections. Long range energies calculated from diatomic molecular properties (polarizabilities and dipole and quadrupole moments) are then compared with the ab initio energies. A simple asymptotic model potential ELR=Eelec+Edisp+Eind is shown to accurately represent the intermolecular interactions for these systems at long range.
Long range intermolecular interactions between the alkali diatomics Na(2), K(2), and NaK.
Zemke, Warren T; Byrd, Jason N; Michels, H Harvey; Montgomery, John A; Stwalley, William C
2010-06-28
Long range interactions between the ground state alkali diatomics Na(2)-Na(2), K(2)-K(2), Na(2)-K(2), and NaK-NaK are examined. Interaction energies are first determined from ab initio calculations at the coupled-cluster with singles, doubles, and perturbative triples [CCSD(T)] level of theory, including counterpoise corrections. Long range energies calculated from diatomic molecular properties (polarizabilities and dipole and quadrupole moments) are then compared with the ab initio energies. A simple asymptotic model potential E(LR)=E(elec)+E(disp)+E(ind) is shown to accurately represent the intermolecular interactions for these systems at long range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Michael Edward
1993-10-01
The thesis is divided into the following 4 chapters: synthesis, characterization, and reactivity of trinuclear pentamethylcyclopentadienyl cobalt and nickel clusters with triply-bridging methylidyne groups; chemical and physical properties of pentamethylcyclopentadienyl acetylacetonate complexes of Co(II) and Ni(II); synthesis, characterization, and reactivity of pentamethylcyclopentadienyl halide complexes of Co and Ni; and crystallographic studies of distortions in metallocenes with C 5-symmetrical cyclopentadienyl rings.
Effects of Halide Ions on the Carbamidocyclophane Biosynthesis in Nostoc sp. CAVN2
Preisitsch, Michael; Heiden, Stefan E.; Beerbaum, Monika; Niedermeyer, Timo H. J.; Schneefeld, Marie; Herrmann, Jennifer; Kumpfmüller, Jana; Thürmer, Andrea; Neidhardt, Inga; Wiesner, Christoph; Daniel, Rolf; Müller, Rolf; Bange, Franz-Christoph; Schmieder, Peter; Schweder, Thomas; Mundt, Sabine
2016-01-01
In this study, the influence of halide ions on [7.7]paracyclophane biosynthesis in the cyanobacterium Nostoc sp. CAVN2 was investigated. In contrast to KI and KF, supplementation of the culture medium with KCl or KBr resulted not only in an increase of growth but also in an up-regulation of carbamidocyclophane production. LC-MS analysis indicated the presence of chlorinated, brominated, but also non-halogenated derivatives. In addition to 22 known cylindrocyclophanes and carbamidocyclophanes, 27 putative congeners have been detected. Nine compounds, carbamidocyclophanes M−U, were isolated, and their structural elucidation by 1D and 2D NMR experiments in combination with HRMS and ECD analysis revealed that they are brominated analogues of chlorinated carbamidocyclophanes. Quantification of the carbamidocyclophanes showed that chloride is the preferably utilized halide, but incorporation is reduced in the presence of bromide. Evaluation of the antibacterial activity of 30 [7.7]paracyclophanes and related derivatives against selected pathogenic Gram-positive and Gram-negative bacteria exhibited remarkable effects especially against methicillin- and vancomycin-resistant staphylococci and Mycobacterium tuberculosis. For deeper insights into the mechanisms of biosynthesis, the carbamidocyclophane biosynthetic gene cluster in Nostoc sp. CAVN2 was studied. The gene putatively coding for the carbamoyltransferase has been identified. Based on bioinformatic analyses, a possible biosynthetic assembly is discussed. PMID:26805858
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton Davis; Gary Jacobs; Wenping Ma
2011-09-30
There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased.more » Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations. In the second and third years, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities at different concentration levels of added contaminant.« less
Noble metal superparticles and methods of preparation thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yugang; Hu, Yongxing
A method comprises heating an aqueous solution of colloidal silver particles. A soluble noble metal halide salt is added to the aqueous solution which undergoes a redox reaction on a surface of the silver particles to form noble metal/silver halide SPs, noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs on the surface of the silver particles. The heat is maintained for a predetermined time to consume the silver particles and release the noble metal/silver halide SPs, the noble metal halide/silver halide SPs or the noble metal oxide/silver halide SPs into the aqueous solution. The aqueous solution ismore » cooled. The noble metal/silver halide SPs, the noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs are separated from the aqueous solution. The method optionally includes adding a soluble halide salt to the aqueous solution.« less
Cohesive Energies of Some Transition Metal Compounds Using Embedded Clusters
NASA Astrophysics Data System (ADS)
Press, Mehernosh Rustom
The molecular-clusters approach to electronic structure calculation is especially well-suited to the study of properties that depend primarily on the local environment of a system, especially those with no translational symmetry, e.g. systems with defects and structural deformations. The presence of the rest of the crystal environment can be accounted for approximately by embedding the cluster in a self-consistent crystal potential. This thesis makes a contribution in the area of investigating the capability of embedded molecular-clusters to yield reliable bulk structural properties. To this end, an algorithm for calculating the cohesive energies of clusters within the discrete-variational X(,(alpha)) LCAO-MO formulation is set up and verified on simple solids: Li, Na, Cu and LiF. We then use this formulation to study transition metal compounds, for which the interesting physics lies in local lattice defects, foreign impurities and structural deformations. In a self -consistent calculation of the lattice energies and stability of defect clusters in wustite, Fe(,1-x)O, corner-sharing aggregates of the 4:1 defect are identified as the most stable defect configurations due to efficient compensation of the cluster charge. The intercalation properties of layered-transition-metal-dichalcogenides continues to be a fertile experimental working area, backed by comparatively little theoretical study. We find that intercalation of ZrS(,2) with Na perturbs the valence energy level structure sufficiently to induce a more ionic Zr-S bond, a narrowing of the optical gap and filling of the lowest unoccupied host lattice orbitals with the electron donated by Na. Fe - intercalation in ZrS(,2) is accommodated via a strong Fe-S bond, impurity-like band levels in the optical gap of the host and hybridization-driven compression and lowering of the conduction band energy levels. The piezoelectric cuprous halides, CuCl and CuBr, exhibit a host of intriguing properties due to a filled and very active d('10) shell at the Fermi energy. A self-consistent calculation via energy minimization of the internal strain in these compounds shows both Cu-halide bonds to be very rigid with little charge delocalization under strain. Piezoelectric response is calculated in terms of effective charges and quadrupolar moments, e(,T) and (DELTA)Q.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCall, Kyle M.; Stoumpos, Constantinos C.; Kostina, Svetlana S.
The optical and electronic properties of Bridgman grown single crystals of the wide-bandgap semiconducting defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb) have been investigated. Intense Raman scattering was observed at room temperature for each compound, indicating high polarizability and strong electron–phonon coupling. Both low-temperature and room-temperature photoluminescence (PL) were measured for each compound. Cs3Sb2I9 and Rb3Sb2I9 have broad PL emission bands between 1.75 and 2.05 eV with peaks at 1.96 and 1.92 eV, respectively. The Cs3Bi2I9 PL spectra showed broad emission consisting of several overlapping bands in the 1.65–2.2 eV range. Evidence of strong electron–phononmore » coupling comparable to that of the alkali halides was observed in phonon broadening of the PL emission. Effective phonon energies obtained from temperature-dependent PL measurements were in agreement with the Raman peak energies. A model is proposed whereby electron–phonon interactions in Cs3Sb2I9, Rb3Sb2I9, and Cs3Bi2I9 induce small polarons, resulting in trapping of excitons by the lattice. The recombination of these self-trapped excitons is responsible for the broad PL emission. Rb3Bi2I9, Rb3Sb2I9, and Cs3Bi2I9 exhibit high resistivity and photoconductivity response under laser photoexcitation, indicating that these compounds possess potential as semiconductor hard radiation detector materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorov, Dmitry A.; Varganov, Sergey A., E-mail: svarganov@unr.edu; Derevianko, Andrei
2014-05-14
We calculate the potential energy curves, the permanent dipole moment curves, and the lifetimes of the ground and excited vibrational states of the heteronuclear alkali dimers XY (X, Y = Li, Na, K, Rb, Cs) in the X{sup 1}Σ{sup +} electronic state using the coupled cluster with singles doubles and triples method. All-electron quadruple-ζ basis sets with additional core functions are used for Li and Na, and small-core relativistic effective core potentials with quadruple-ζ quality basis sets are used for K, Rb, and Cs. The inclusion of the coupled cluster non-perturbative triple excitations is shown to be crucial for obtainingmore » the accurate potential energy curves. A large one-electron basis set with additional core functions is needed for the accurate prediction of permanent dipole moments. The dissociation energies are overestimated by only 14 cm{sup −1} for LiNa and by no more than 114 cm{sup −1} for the other molecules. The discrepancies between the experimental and calculated harmonic vibrational frequencies are less than 1.7 cm{sup −1}, and the discrepancies for the anharmonic correction are less than 0.1 cm{sup −1}. We show that correlation between atomic electronegativity differences and permanent dipole moment of heteronuclear alkali dimers is not perfect. To obtain the vibrational energies and wave functions the vibrational Schrödinger equation is solved with the B-spline basis set method. The transition dipole moments between all vibrational states, the Einstein coefficients, and the lifetimes of the vibrational states are calculated. We analyze the decay rates of the vibrational states in terms of spontaneous emission, and stimulated emission and absorption induced by black body radiation. In all studied heteronuclear alkali dimers the ground vibrational states have much longer lifetimes than any excited states.« less
Shift Happens. How Halide Ion Defects Influence Photoinduced Segregation in Mixed Halide Perovskites
Yoon, Seog Joon; Kuno, Masaru; Kamat, Prashant V.
2017-06-01
Minimizing photoinduced segregation in mixed halide lead perovskites is important for achieving stable photovoltaic performance. The shift in the absorption and the rate of formation of iodide- and bromide-rich regions following visible excitation of mixed halide lead perovskites is found to strongly depend on the halide ion concentration. Slower formation and recovery rates observed in halide-deficient films indicate the involvement of defect sites in influencing halide phase segregation. At higher halide concentrations (in stoichiometric excess), segregation effects become less prominent, as evidenced by faster recovery kinetics. These results suggest that light-induced compositional segregation can be minimized in mixed halide perovskitemore » films by using excess halide ions. In conclusion, the findings from this study further reflect the importance of halide ion post-treatment of perovskite films to improve their solar cell performance.« less
Gunasekaran, Rajendra Kumar; Chinnadurai, Deviprasath; Selvaraj, Aravindha Raja; Rajendiran, Rajmohan; Senthil, Karuppanan; Prabakar, Kandasamy
2018-06-19
Organic-inorganic lead halide perovskite phases segregate (and their structures degrade) under illumination, exhibiting a poor stability with hysteresis and producing halide accumulation at the surface.In this work, we observed structural and interfacial dissociation in methylammonium lead iodide (CH 3 NH 3 PbI 3 ) perovskites even under dark and vacuum conditions. Here, we investigate the origin and consequences of self-degradation in CH 3 NH 3 PbI 3 perovskites stored in the dark under vacuum. Diffraction and photoelectron spectroscopic studies reveal the structural dissociation of perovskites into PbI 2 , which further dissociates into metallic lead (Pb 0 ) and I 2 - ions, collectively degrading the perovskite stability. Using TOF-SIMS analysis, AuI 2 - formation was directly observed, and it was found that an interplay between CH 3 NH 3 + , I 3 - , and mobile I - ions continuously regenerates more I 2 - ions, which diffuse to the surface even in the absence of light. Besides, halide diffusion causes a concentration gradient between Pb 0 and I 2 - and creates other ionic traps (PbI 2 - , PbI - ) that segregate as clusters at the perovskite/gold interface. A shift of the onset of the absorption band edge towards shorter wavelengths was also observed by absorption spectroscopy, indicating the formation of defect species upon aging in the dark under vacuum. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spectral staining of tumor tissue by fiber optic FTIR spectroscopy
NASA Astrophysics Data System (ADS)
Salzer, Reiner; Steiner, Gerald; Kano, Angelique; Richter, Tom; Bergmann, Ralf; Rodig, Heike; Johannsen, Bernd; Kobelke, Jens
2003-07-01
Infrared (IR) optical fiber have aroused great interest in recent years because of their potential in in-vivo spectroscopy. This potential includes the ability to be flexible, small and to guide IR light in a very large range of wavelengths. Two types - silver halide and chalcogenide - infrared transmitting fibers are investigated in the detection of a malignant tumor. As a test sample for all types of fibers we used a thin section of an entire rat brain with glioblastoma. The fibers were connected with a common infrared microscope. Maps across the whole tissue section with more than 200 spectra were recorded by moving the sample with an XY stage. Data evaluation was performed using fuzzy c-means cluster analysis (FCM). The silver halide fibers provided excellent results. The tumor was clearly discernible from healthy tissue. Chalcogenide fibers are not suitable to distinguish tumor from normal tissue because the fiber has a very low transmittance in the important fingerprint region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Yuya; Seino, Junji; Nakai, Hiromi, E-mail: nakai@waseda.jp
In this study, the analytical energy gradient for the spin-free infinite-order Douglas-Kroll-Hess (IODKH) method at the levels of the Hartree-Fock (HF), density functional theory (DFT), and second-order Møller-Plesset perturbation theory (MP2) is developed. Furthermore, adopting the local unitary transformation (LUT) scheme for the IODKH method improves the efficiency in computation of the analytical energy gradient. Numerical assessments of the present gradient method are performed at the HF, DFT, and MP2 levels for the IODKH with and without the LUT scheme. The accuracies are examined for diatomic molecules such as hydrogen halides, halogen dimers, coinage metal (Cu, Ag, and Au) halides,more » and coinage metal dimers, and 20 metal complexes, including the fourth–sixth row transition metals. In addition, the efficiencies are investigated for one-, two-, and three-dimensional silver clusters. The numerical results confirm the accuracy and efficiency of the present method.« less
NASA Astrophysics Data System (ADS)
Biswas, Santu; Pramanik, Anup; Sarkar, Pranab
2016-05-01
The role of alumina nanoclusters as a catalyst on the reactivity of alkyl halides has been explored. The thermochemical data obtained from Density Functional Theory (DFT) calculations and the analyses of the transition structures reveal that, between the two competing reactions, elimination (via E2) versus dissociative addition (via SN2), elimination is the kinetically controlled one and thus at room temperature, olefin is the major product. The results are in excellent agreement with the recent experimental observation where more than 97% of ethylene is formed at room temperature with the reaction of ethyl fluoride over an alumina surface, although the dissociative addition product is being thermodynamically more stable. We have tried to rationalize the fact by using alumina clusters of different sizes as well as different alkyl halides having β-H for elimination. It has been shown that, during the elimination (E2) pathway, the transition structure is oriented in such a way that the eliminating halogen and the β-H are in the interacting position with the three-centered Al and two-centered O atoms, respectively, where the Lewis acid/base interaction is the main guiding factor. We have also shown a possible pathway for regenerating the catalyst. Finally, the possibility of the reactions has been tested in the presence of H2O to mimic the same on the hydrated alumina surface.The role of alumina nanoclusters as a catalyst on the reactivity of alkyl halides has been explored. The thermochemical data obtained from Density Functional Theory (DFT) calculations and the analyses of the transition structures reveal that, between the two competing reactions, elimination (via E2) versus dissociative addition (via SN2), elimination is the kinetically controlled one and thus at room temperature, olefin is the major product. The results are in excellent agreement with the recent experimental observation where more than 97% of ethylene is formed at room temperature with the reaction of ethyl fluoride over an alumina surface, although the dissociative addition product is being thermodynamically more stable. We have tried to rationalize the fact by using alumina clusters of different sizes as well as different alkyl halides having β-H for elimination. It has been shown that, during the elimination (E2) pathway, the transition structure is oriented in such a way that the eliminating halogen and the β-H are in the interacting position with the three-centered Al and two-centered O atoms, respectively, where the Lewis acid/base interaction is the main guiding factor. We have also shown a possible pathway for regenerating the catalyst. Finally, the possibility of the reactions has been tested in the presence of H2O to mimic the same on the hydrated alumina surface. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR00841K
A study of the possible characteristics of a low-altitude electron layer in the Martian atmosphere
NASA Technical Reports Server (NTRS)
Wallio, H. A.
1974-01-01
The apparent diurnal Martian surface pressure variations, as deduced from radio occultation experiments, is discussed and explained as possibly arising from the effect of a low-altitude electron layer. Possible source and loss mechanisms for the low altitude electron layer are presented and discussed. Time dependent differential equations describing the electron layer are derived, and then integrated to investigate the electron distribution resulting from several processes that might occur in the atmosphere. It is concluded that the source mechanism is the sublimation of alkali atoms from a permanent dust layer, and that the dominant loss process must involve CO2 clustering about the alkali atoms. An electron layer is developed which explains the apparent diurnal surface pressure variation.
Biochemistry of Catabolic Reductive Dehalogenation.
Fincker, Maeva; Spormann, Alfred M
2017-06-20
A wide range of phylogenetically diverse microorganisms couple the reductive dehalogenation of organohalides to energy conservation. Key enzymes of such anaerobic catabolic pathways are corrinoid and Fe-S cluster-containing, membrane-associated reductive dehalogenases. These enzymes catalyze the reductive elimination of a halide and constitute the terminal reductases of a short electron transfer chain. Enzymatic and physiological studies revealed the existence of quinone-dependent and quinone-independent reductive dehalogenases that are distinguishable at the amino acid sequence level, implying different modes of energy conservation in the respective microorganisms. In this review, we summarize current knowledge about catabolic reductive dehalogenases and the electron transfer chain they are part of. We review reaction mechanisms and the role of the corrinoid and Fe-S cluster cofactors and discuss physiological implications.
Albertí, Margarita; Huarte-Larrañaga, Fermín; Aguilar, Antonio; Lucas, José M; Pirani, Fernando
2011-05-14
The specific influence of X(-) ions (X = F,Cl, Br, I) in the solvation process of halide-benzene (X(-)-Bz) ionic heterodimers by Ar atoms is investigated by means of molecular dynamic (MD) simulations. The gradual evolution from cluster rearrangement to solvation dynamics is discussed by considering ensembles of n (n = 1-15 and n = 30) Ar atoms around the X(-)-Bz stable ionic dimers. The potential energy surfaces employed are based on an atom/ion-atom and atom/ion-bond decomposition, which has been developed previously by some of the authors. The outcome of the dynamics is analyzed by employing radial distribution functions (RDF) and tridimensional (3D) probability densities.
Yang, Siwei; Sun, Jing; Zhu, Chong; He, Peng; Peng, Zheng; Ding, Guqiao
2016-02-07
The graphene quantum dot based fluorescent probe community needs unambiguous evidence about the control on the ion selectivity. In this paper, polyethylene glycol modified N-doped graphene quantum dots (PN-GQDs) were synthesized by alkylation reaction between graphene quantum dots and organic halides. We demonstrate the tunable selectivity and sensitivity by controlling the supramolecular recognition through the length and the end group size of the polyether chain on PN-GQDs. The relationship formulae between the selectivity/detection limit and polyether chains are experimentally deduced. The polyether chain length determines the interaction between the PN-GQDs and ions with different ratios of charge to radius, which in turn leads to a good selectivity control. Meanwhile the detection limit shows an exponential growth with the size of end groups of the polyether chain. The PN-GQDs can be used as ultrasensitive and selective fluorescent probes for Li(+), Na(+), K(+), Mg(2+), Ca(2+) and Sr(2+), respectively.
Formation of Stoichiometric CsFn Compounds
Zhu, Qiang; Oganov, Artem R.; Zeng, Qingfeng
2015-01-01
Alkali halides MX, have been viewed as typical ionic compounds, characterized by 1:1 ratio necessary for charge balance between M+ and X−. It was proposed that group I elements like Cs can be oxidized further under high pressure. Here we perform a comprehensive study for the CsF-F system at pressures up to 100 GPa, and find extremely versatile chemistry. A series of CsFn (n ≥ 1) compounds are predicted to be stable already at ambient pressure. Under pressure, 5p electrons of Cs atoms become active, with growing tendency to form Cs (III) and (V) valence states at fluorine-rich conditions. Although Cs (II) and (IV) are not energetically favoured, the interplay between two mechanisms (polyfluoride anions and polyvalent Cs cations) allows CsF2 and CsF4 compounds to be stable under pressure. The estimated defluorination temperatures of CsFn (n = 2,3,5) compounds at atmospheric pressure (218°C, 150°C, -15°C, respectively), are attractive for fluorine storage applications. PMID:25608669
FEL-FTIR spectroscopy of matrix-isolated formic acid
NASA Astrophysics Data System (ADS)
Henderson, Don O.; Mu, Richard; Silberman, Enrique; Berryman, Kenneth W.; Rella, Chris W.
1994-07-01
Infrared spectral hole burning studies have provided a wealth of information concerning site reorientation of defects in solids and vibrational relaxation dynamics. The most investigated systems appear to be impurities trapped in alkali halides. Limited studies on molecules trapped in noble gas matrices have demonstrated that these systems are good candidates for investigating persistent spectral holes. However, most infrared spectral hole burning studies have been limited by the tunability of commercially available infrared lasers which in turn restricts the spectral feature which can be burned. On the other hand, the tunability of Infrared Free Electron Lasers (IR-FELs) allows for targeting radiation into vibrational of the molecular system under study. We have used the Free Electron Laser-Fourier Transform Infrared Spectroscopy to investigate infrared hole burning of formic acid (HCOOD) isolated in an Ar matrix at a matrix/sample ratio of 4000/1. The results of the FEL radiation tuned to v2 mode of HCOOD are discussed together with matrix induced frequency shifts and matrix induced band splittings.
NASA Astrophysics Data System (ADS)
Bai, Zhangpeng; Ji, Yuan; Pi, Yiqun; Yang, Kaixiang; Wang, Li; Zhang, Yinqi; Zhai, Yadi; Yan, Zhengguang; Han, Xiaodong
2018-01-01
Investigating the hygroscopic behavior of haze aerosol particles is essential for understanding their physicochemical properties and their impacts on regional weather and visibility. An environmental scanning electron microscope equipped with a home-made transmission-scattering electron imaging setup and an energy dispersive spectrometer was used for in-situ observations of pure water-soluble (WS) salts and Beijing haze particles. This imaging setup showed obvious advantages for improving the resolution and acquiring internal information of mixed particles in hydrated environments. We measured the deliquescence relative humidity of pure NaCl, NH4NO3, and (NH4)2SO4 by deliquescence-crystallization processes with an accuracy of up to 0.3% RH. The mixed haze particles showed hygroscopic activation like water uptake and morphological changes when they included WS components such as nitrates, sulfates, halides, ammoniums, and alkali metal salts. In addition, the hygroscopic behavior provides complementary information for analyzing possible phases in mixed haze particles.
Wetting of a Charged Surface of Glassy Carbon by Molten Alkali-Metal Chlorides
NASA Astrophysics Data System (ADS)
Stepanov, V. P.
2018-03-01
Values of the contact angle of wetting of a surface of glassy carbon by molten chlorides of lithium, sodium, potassium, and cesium are measured by the meniscus weight method to determine the common factors of wettability of solid surfaces by ionic melts upon a change in the salt phase composition and a jump in electric potential. It is found that with a potential shift in the positive direction the shape of the curve of the contact angle's dependence on the potential varies upon substitution of one salt by another: the angle of wetting shrinks monotonously in lithium chloride but remains constant in molten cesium chloride. This phenomenon is explained by the hypothesis that the nature of the halide anion adsorption on the positively charged surface of an electrode is chemical and not electrostatic. It is shown that the adsorption process is accompanied by charge transfer through the interface, with covalent bonding between the adsorbent and adsorbate.
Thickness dependent band gap of Bi{sub 2-x}Sb{sub x}Te{sub 3} (x = 0, 0.05, 0.1) thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, M. M.; Soni, P. H., E-mail: phsoni-msu@yahoo.com; Desai, C. F.
2016-05-23
Thin films of Bi{sub 2}Te{sub 3}(Sb) were prepared on alkali halide crystal substrates. Sb content and the film thickness were varied. Bi{sub 2}Te{sub 3} is a narrow gap semiconductor. Bi-Sb is a continuous solid solution of substitutional type and Sb therefore was used to test its effect on the band gap. The film thickness variation was also taken up. The infra-red absorption spectra were used in the wave number range 400 cm{sup −1} to 4000 cm{sup −1}. The band gap obtained from the absorption data was found to increase with decreasing thickness since the thickness range used was from 30more » nm to 170 nm. This is a range corresponding to nanostructures and hence quantum size effect was observed as expected. The band gap also exhibited Sb content dependence. The detail results are have been reported and explained.« less
An interatomic pair potential for cadmium selenide
NASA Astrophysics Data System (ADS)
Rabani, Eran
2002-01-01
We have developed a set of interatomic pair potentials for cadmium selenide based on a form similar to the Born-Mayer model. We show that this simple form of the pair potential, which has been used to describe the properties of alkali halides in the sixfold-coordinate structure, provides a realistic description of the properties of cadmium selenide in all three crystal structures: wurtzite, zinc blende, and rocksalt. Using the new pair potential we have studied the pressure-induced phase transition from the fourfold-coordinate wurtzite structure to the sixfold-coordinate rocksalt structure. The pressure transformation and the equation of state are in good agreement with experimental observations. Using the dispersion term in our pair potential we have also calculated the Hamaker constant for cadmium selenide within the framework of the original microscopic approach due to Hamaker. The results indicate that for ionic materials many-body terms that are included in the Lifshitz theory are well captured by the simple pair potential.
Hybrid Lead Halide Layered Perovskites with Silsesquioxane Interlayers.
Kataoka, Sho; Kaburagi, Wako; Mochizuki, Hiroyuki; Kamimura, Yoshihiro; Sato, Kazuhiko; Endo, Akira
2018-01-01
Hybrid organic-lead halide perovskites exhibit remarkable properties as semiconductors and light absorbers. Here, we report the formation of silsesquioxane-lead halide hybrid layered perovskites. We prepared silsesquioxane with a cubic cage-like structure and fabricated hybrid silsesquioxane-lead halide layered perovskites in a self-assembled manner. It is demonstrated that the silsesquioxane maintain their cage-like structure between lead halide perovskite layers. The silsesquioxane-lead halide perovskites also show excitonic absorption and emission in the visible light region similar to typical lead halide layered perovskites.
Process for producing dimethyl ether from synthesis gas
Pierantozzi, R.
1985-06-04
This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.
Process for producing dimethyl ether form synthesis gas
Pierantozzi, Ronald
1985-01-01
This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Seog Joon; Kuno, Masaru; Kamat, Prashant V.
Minimizing photoinduced segregation in mixed halide lead perovskites is important for achieving stable photovoltaic performance. The shift in the absorption and the rate of formation of iodide- and bromide-rich regions following visible excitation of mixed halide lead perovskites is found to strongly depend on the halide ion concentration. Slower formation and recovery rates observed in halide-deficient films indicate the involvement of defect sites in influencing halide phase segregation. At higher halide concentrations (in stoichiometric excess), segregation effects become less prominent, as evidenced by faster recovery kinetics. These results suggest that light-induced compositional segregation can be minimized in mixed halide perovskitemore » films by using excess halide ions. In conclusion, the findings from this study further reflect the importance of halide ion post-treatment of perovskite films to improve their solar cell performance.« less
Methods for producing single crystal mixed halide perovskites
Zhu, Kai; Zhao, Yixin
2017-07-11
An aspect of the present invention is a method that includes contacting a metal halide and a first alkylammonium halide in a solvent to form a solution and maintaining the solution at a first temperature, resulting in the formation of at least one alkylammonium halide perovskite crystal, where the metal halide includes a first halogen and a metal, the first alkylammonium halide includes the first halogen, the at least one alkylammonium halide perovskite crystal includes the metal and the first halogen, and the first temperature is above about 21.degree. C.
Membrane Transport in Isolated Vesicles from Sugarbeet Taproot 1
Briskin, Donald P.; Thornley, W. Robert; Wyse, Roger E.
1985-01-01
Sealed membrane vesicles were isolated from homogenates of sugarbeet (Beta vulgaris L.) taproot by a combination of differential centrifugation, extraction with KI, and dextran gradient centrifugation. Relative to the KI-extracted microsomes, the content of plasma membranes, mitochondrial membranes, and Golgi membranes was much reduced in the final vesicle fraction. A component of ATPase activity that was inhibited by nitrate co-enriched with the capacity of the vesicles to form a steady state pH gradient during the purification procedure. This suggests that the nitrate-sensitive ATPase may be involved in driving H+-transport, and this is consistent with the observation that H+-transport, in the final vesicle fraction was inhibited by nitrate. Proton transport in the sugarbeet vesicles was substrate specific for ATP, insensitive to sodium vanadate and oligomycin but was inhibited by diethylstilbestrol and N,N′-dicyclohexylcarbodiimide. The formation of a pH gradient in the vesicles was enhanced by halide ions in the sequence I− > Br− > Cl− while F− was inhibitory. These stimulatory effects occur from both a direct stimulation of the ATPase by anions and a reduction in the vesicle membrane potential. In the presence of Cl−, alkali cations reduce the pH gradient relative to that observed with bis-tris-propane, possibly by H+/alkali cation exchange. Based upon the properties of the H+-transporting vesicles, it is proposed that they are most likely derived from the tonoplast so that this vesicle preparation would represent a convenient system for studying the mechanism of transport at this membrane boundary. PMID:16664342
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cortese, Anthony J.; Abeysinghe, Dileka; Smith, Mark D.
Single crystals of La{sub 0.516(3)}Na{sub 0.484(3)}MoO{sub 4}, Ce{sub 0.512(2)}Na{sub 0.488(2)}MoO{sub 4}, Pr{sub 0.502(2)}Na{sub 0.498(2)}MoO{sub 4,} Nd{sub 0.501(2)}Na{sub 0.499(2)}MoO{sub 4}, Sm{sub 0.509(2)}Na{sub 0.491(2)}MoO{sub 4}, and Eu{sub 0.603(2)}Na{sub 0.397(2)}MoO{sub 4} were grown for the first time out of an alkali metal halide eutectic flux. All compounds crystallize in the tetragonal space group I4{sub 1}/a. UV/Vis measurements show the presence of an absorption edge for all compounds except Eu{sub 0.603(2)}Na{sub 0.397(2)}MoO{sub 4}. The temperature dependence of the magnetic susceptibility was measured for all compounds and found to be paramagnetic across the entire 2–300 K temperature range measured. - Graphical abstract: Single crystals ofmore » La{sub 0.516(3)}Na{sub 0.484(3)}MoO{sub 4}, Ce{sub 0.512(2)}Na{sub 0.488(2)}MoO{sub 4}, Pr{sub 0.502(2)}Na{sub 0.498(2)}MoO{sub 4,} Nd{sub 0.501(2)}Na{sub 0.499(2)}MoO{sub 4}, Sm{sub 0.509(2)}Na{sub 0.491(2)}MoO{sub 4}, and Eu{sub 0.603(2)}Na{sub 0.397(2)}MoO{sub 4} were grown for the first time out of an alkali metal halide eutectic flux. All compounds crystallize in the tetragonal space group I4{sub 1}/a. Eu{sub 0.603(2)}Na{sub 0.397(2)}MoO{sub 4} was found to possess the highest Mo{sup 5+} content at 20.6%. UV/Vis, magnetic susceptibility, and a bond valence sum analysis were performed on all samples. Display Omitted - Highlights: • Six lanthanide sodium molybdates have been synthesized and characterized. • An in situ reduction was carried out using Mo as a metal reducing agent. • UV/Vis and magnetic susceptibility data were collected. • Eu{sub 0.603(2)}Na{sub 0.397(2)}MoO{sub 4} was found to possess the highest Mo{sup 5+} content at 20.6%.« less
NASA Astrophysics Data System (ADS)
Murakami, Shota; Hayashi, Tomohiko; Kinoshita, Masahiro
2017-02-01
The solubility of a nonpolar solute in water is changed upon addition of a salt or cosolvent. Hereafter, "solvent" is formed by water molecules for pure water, by water molecules, cations, and anions for water-salt solution, and by water and cosolvent molecules for water-cosolvent solution. Decrease and increase in the solubility, respectively, are ascribed to enhancement and reduction of the hydrophobic effect. Plenty of experimental data are available for the change in solubility of argon or methane arising from the addition. We show that the integral equation theory combined with a rigid-body model, in which the solute and solvent particles are modeled as hard spheres with different diameters, can reproduce the data for the following items: salting out by an alkali halide and salting in by tetramethylammonium bromide, increase in solubility by a monohydric alcohol, and decrease in solubility by sucrose or urea. The orders of cation or anion species in terms of the power of decreasing the solubility can also be reproduced for alkali halides. With the rigid-body model, the analyses are focused on the roles of entropy originating from the translational displacement of solvent particles. It is argued by decomposing the solvation entropy of a nonpolar solute into physically insightful constituents that the solvent crowding in the bulk is a pivotal factor of the hydrophobic effect: When the solvent crowding in the bulk becomes more serious, the effect is strengthened, and when it becomes less serious, the effect is weakened. It is experimentally known that the thermal stability of a protein is also influenced by the salt or cosolvent addition. The additions which decrease and increase the solubility of a nonpolar solute, respectively, usually enhance and lower the thermal stability. This suggests that the enhanced or reduced hydrophobic effect is also a principal factor governing the stability change. However, urea decreases the solubility but lowers the stability. Bromide and iodide ions decrease the solubility but lower the stability of a protein with a large, positive total charge. In these cases, the urea- or ion-protein van der Waals interaction energy as well as the hydrophobic effect needs to be taken into account in arguing the stability change. We also present a new view on the so-called Hofmeister series: We show how it is expressed when the change in hydrophobic effect dominates and how it is modified when other factors are also influential.
Sodium dopants in helium clusters: Structure, equilibrium and submersion kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvo, F.
Alkali impurities bind to helium nanodroplets very differently depending on their size and charge state, large neutral or charged dopants being wetted by the droplet whereas small neutral impurities prefer to reside aside. Using various computational modeling tools such as quantum Monte Carlo and path-integral molecular dynamics simulations, we have revisited some aspects of the physical chemistry of helium droplets interacting with sodium impurities, including the onset of snowball formation in presence of many-body polarization forces, the transition from non-wetted to wetted behavior in larger sodium clusters, and the kinetics of submersion of small dopants after sudden ionization.
Gorin, Everett
1979-01-01
In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst in a hydrocracking zone, thereafter separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide and thereafter regenerating the spent molten metal halide by incinerating the spent molten metal halide by combustion of carbon and sulfur compounds in the spent molten metal halide in an incineration zone, the improvement comprising: (a) contacting the heavy feedstocks and hydrogen in the presence of the molten metal halide in the hydrocracking zone at reaction conditions effective to convert from about 60 to about 90 weight percent of the feedstock to lighter hydrocarbon fuels; (b) separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide; (c) contacting the spent molten metal halide with oxygen in a liquid phase gasification zone at a temperature and pressure sufficient to vaporize from about 25 to about 75 weight percent of the spent metal halide, the oxygen being introduced in an amount sufficient to remove from about 60 to about 90 weight percent of the carbon contained in the spent molten metal halide to produce a fuel gas and regenerated metal halide; and (d) incinerating the spent molten metal halide by combusting carbon and sulfur compounds contained therein.
Kusche, Matthias; Bustillo, Karen; Agel, Friederike; ...
2015-01-29
Here, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid filmmore » of alkali hydroxide forms on the alumina surface, which increases the availability of H 2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H 2O partial pressures. In conclusion, TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5wt%.« less
Systematic analysis of the unique band gap modulation of mixed halide perovskites.
Kim, Jongseob; Lee, Sung-Hoon; Chung, Choong-Heui; Hong, Ki-Ha
2016-02-14
Solar cells based on organic-inorganic hybrid metal halide perovskites have been proven to be one of the most promising candidates for the next generation thin film photovoltaic cells. Mixing Br or Cl into I-based perovskites has been frequently tried to enhance the cell efficiency and stability. One of the advantages of mixed halides is the modulation of band gap by controlling the composition of the incorporated halides. However, the reported band gap transition behavior has not been resolved yet. Here a theoretical model is presented to understand the electronic structure variation of metal mixed-halide perovskites through hybrid density functional theory. Comparative calculations in this work suggest that the band gap correction including spin-orbit interaction is essential to describe the band gap changes of mixed halides. In our model, both the lattice variation and the orbital interactions between metal and halides play key roles to determine band gap changes and band alignments of mixed halides. It is also presented that the band gap of mixed halide thin films can be significantly affected by the distribution of halide composition.
How Does Boiling in the Earth's Crust Influence Metal Speciation and Transport?
NASA Astrophysics Data System (ADS)
Kam, K.; Lemke, K.
2014-12-01
The presence of large quantities of precious metals, such as gold and copper, near the Earth's surface (upper crust) is commonly attributed to transport in aqueous solution and precipitation upon variations in temperature and pressure. As a consequence, gold exploration is closely linked to solution chemistry, i.e. hydrothermal processes involving aqueous fluids with densities of around unity. However, as crustal fluids buoyantly ascend, boiling produces a coexisting low-density aqueous liquid with fundamentally different physical and chemical properties, and a, most importantly, a high affinity for coinage metals (Heinrich et al., Econ Geol., 1992, 87, 1566). From recent experimental studies of Au (Hurtig and Williams-Jones, 2014, Geochim. Cosmochim. Acta,, 127, 304), we know that metal speciation in this low-density phase differs fundamentally from that observed in bulk solution, clearly, with important implications for Au, and metal speciation in general, transport and ore concentrations processes (these processes would also be operable in industrial geothermal plants given the quite special solvent properties of steam). In brief, this study focuses on the speciation of select metal halides in bulk solution as well as in water vapor, and is driven by our need to understand the solvent properties of around 2.0x109 cubic kilometers of free water (or 2,500 times as much water as stored in all lakes and rivers) present in the Earth's crust. The scope of this study has particular applications in the geothermal and oil industries, as both deal with high temperature low-density aqueous fluids. Understanding how metal halide species behave upon boiling can also provide insight into how metals, such as copper and silver, coat turbine equipment and steam piping in geothermal plants, ultimately rendering these components inoperable. This study will also provide preliminary results from mass spectrometric experiments of transition metal halides, and will be augmented with results from molecular simulations of metal halides that are aimed at characterizing the nature (i.e. relativistic structures and energies) of metal clusters in water vapor.
NASA Astrophysics Data System (ADS)
Hauser, Reas W.; Filatov, Michael; Ernst, Wolfgang E.
2013-06-01
We predict He-droplet-induced changes of the isotropic HFS constant a_{HFS} of the alkali-metal atoms M = Li, Na, K and Rb on the basis of a model description. Optically detected electron spin resonance spectroscopy has allowed high resolution measurements that show the influence of the helium droplet and its size on the unpaired electron spin density at the alkali nucleus. Our theoretical approach to describe this dependence is based on a combination of two well established techniques: Results of relativistic coupled-cluster calculations on the alkali-He dimers (energy and HFS constant as functions of the binding length) are mapped onto the doped-droplet-situation with the help of helium-density functional theory. We simulate doped droplets He_{N} with N ranging from 50 to 10000, using the diatomic alkali-He-potential energy curves as input. From the obtained density profiles we evaluate average distances between the dopant atom and its direct helium neighborhood. The distances are then set in relation to the variation of the HFS constant with binding length in the simplified alkali-He-dimer model picture. This method yields reliable relative shifts but involves a systematic absolute error. Hence, the absolute values of the shifts are tied to one experimentally determined HFS constant for ^{85}Rb-He_{N = 2000}. With this parameter choice we obtain results in good agreement with the available experimental data for Rb and K^{a,b} confirming the predicted 1/N trend of the functional dependence^{c}. M. Koch, G. Auböck, C. Callegari, and W. E. Ernst, Phys. Rev. Lett. 103, 035302-1-4 (2009) M. Koch, C. Callegari, and W. E. Ernst, Mol. Phys. 108 (7), 1005-1011 (2010) A. W. Hauser, T. Gruber, M. Filatov, and W. E. Ernst, ChemPhysChem (2013) online DOI: 10.1002/cphc.201200697
Saito, Norio; Cordier, Stéphane; Lemoine, Pierric; Ohsawa, Takeo; Wada, Yoshiki; Grasset, Fabien; Cross, Jeffrey S; Ohashi, Naoki
2017-06-05
The electronic and crystal structures of Cs 2 [Mo 6 X 14 ] (X = Cl, Br, I) cluster-based compounds were investigated by density functional theory (DFT) simulations and experimental methods such as powder X-ray diffraction, ultraviolet-visible spectroscopy, and X-ray photoemission spectroscopy (XPS). The experimentally determined lattice parameters were in good agreement with theoretically optimized ones, indicating the usefulness of DFT calculations for the structural investigation of these clusters. The calculated band gaps of these compounds reproduced those experimentally determined by UV-vis reflectance within an error of a few tenths of an eV. Core-level XPS and effective charge analyses indicated bonding states of the halogens changed according to their sites. The XPS valence spectra were fairly well reproduced by simulations based on the projected electron density of states weighted with cross sections of Al K α , suggesting that DFT calculations can predict the electronic properties of metal-cluster-based crystals with good accuracy.
TRANSURANIC METAL HALIDES AND A PROCESS FOR THE PRODUCTION THEREOF
Fried, S.
1951-03-20
Halides of transuranic elements are prepared by contacting with aluminum and a halogen, or with an aluminum halide, a transuranic metal oxide, oxyhalide, halide, or mixture thereof at an elevated temperature.
Brander, Søren; Mikkelsen, Jørn D.; Kepp, Kasper P.
2014-01-01
The limitations of fungal laccases at higher pH and salt concentrations have intensified the search for new extremophilic bacterial laccases. We report the cloning, expression, and characterization of the bacterial cotA from Bacillus clausii, a supposed alkalophilic ortholog of cotA from B. subtilis. Both laccases were expressed in E. coli strain BL21(DE3) and characterized fully in parallel for strict benchmarking. We report activity on ABTS, SGZ, DMP, caffeic acid, promazine, phenyl hydrazine, tannic acid, and bilirubin at variable pH. Whereas ABTS, promazine, and phenyl hydrazine activities vs. pH were similar, the activity of B. clausii cotA was shifted upwards by ∼0.5–2 pH units for the simple phenolic substrates DMP, SGZ, and caffeic acid. This shift is not due to substrate affinity (KM) but to pH dependence of catalytic turnover: The kcat of B. clausii cotA was 1 s−1 at pH 6 and 5 s−1 at pH 8 in contrast to 6 s−1 at pH 6 and 2 s−1 at pH 8 for of B. subtilis cotA. Overall, kcat/KM was 10-fold higher for B. subtilis cotA at pHopt. While both proteins were heat activated, activation increased with pH and was larger in cotA from B. clausii. NaCl inhibited activity at acidic pH, but not up to 500–700 mM NaCl in alkaline pH, a further advantage of the alkali regime in laccase applications. The B. clausii cotA had ∼20 minutes half-life at 80°C, less than the ∼50 minutes at 80°C for cotA from B. subtilis. While cotA from B. subtilis had optimal stability at pH∼8, the cotA from B. clausii displayed higher combined salt- and alkali-resistance. This resistance is possibly caused by two substitutions (S427Q and V110E) that could repel anions to reduce anion-copper interactions at the expense of catalytic proficiency, a trade-off of potential relevance to laccase optimization. PMID:24915287
APPARATUS FOR THE PRODUCTION OF LITHIUM METAL
Baker, P.S.; Duncan, F.R.; Greene, H.B.
1961-08-22
Methods and apparatus for the production of high-purity lithium from lithium halides are described. The apparatus is provided for continuously contacting a molten lithium halide with molten barium, thereby forming lithium metal and a barium halide, establishing separate layers of these reaction products and unreacted barium and lithium halide, and continuously withdrawing lithium and barium halide from the reaction zone. (AEC)
Process and composition for drying of gaseous hydrogen halides
Tom, Glenn M.; Brown, Duncan W.
1989-08-01
A process for drying a gaseous hydrogen halide of the formula HX, wherein X is selected from the group consisting of bromine, chlorine, fluorine, and iodine, to remove water impurity therefrom, comprising: contacting the water impurity-containing gaseous hydrogen halide with a scavenger including a support having associated therewith one or more members of the group consisting of: (a) an active scavenging moiety selected from one or more members of the group consisting of: (i) metal halide compounds dispersed in the support, of the formula MX.sub.y ; and (ii) metal halide pendant functional groups of the formula -MX.sub.y-1 covalently bonded to the support, wherein M is a y-valent metal, and y is an integer whose value is from 1 to 3; (b) corresponding partially or fully alkylated compounds and/or pendant functional groups, of the metal halide compounds and/or pendant functional groups of (a); wherein the alkylated compounds and/or pendant functional groups, when present, are reactive with the gaseous hydrogen halide to form the corresponding halide compounds and/or pendant functional groups of (a); and M being selected such that the heat of formation, .DELTA.H.sub.f of its hydrated halide, MX.sub.y.(H.sub.2 O).sub.n, is governed by the relationship: .DELTA.H.sub.f .gtoreq.n.times.10.1 kilocalories/mole of such hydrated halide compound wherein n is the number of water molecules bound to the metal halide in the metal halide hydrate. Also disclosed is an appertaining scavenger composition and a contacting apparatus wherein the scavenger is deployed in a bed for contacting with the water impurity-containing gaseous hydrogen halide.
Triple Halide Bridges in Chiral MnII2MnIII6NaI2 Cages: Structural and Magnetic Characterization.
Mayans, Júlia; Font-Bardia, Mercè; Escuer, Albert
2018-02-05
A family of decanuclear chiral clusters with a Mn II 2 Mn III 6 Na I 2 core have been synthesized from enantiomerically pure Schiff bases. The new systems consist of two Mn II Mn III 3 Na I units linked by rare triple chloro or bromo bridges between the divalent Mn cations. Susceptibility measurements point out the weak antiferromagnetic interaction mediated by these kinds of bridges and afford the first magnetic measurements for the (μ-Br) 3 case.
Zgliczyński, J M; Stelmaszyńska, T; Olszowska, E; Krawczyk, A; Kwasnowska, E; Wróbel, J T
1983-01-01
It was found that all halides can compete with cyanide for binding with myeloperoxidase. The lower is the pH, the higher is the affinity of halides. The apparent dissociation constants (Kd) of myeloperoxidase-cyanide complex were determined in the presence of F-, Cl-, Br- and I- in the pH range of 4 to 7. In slightly acidic pH (4 - 6) fluoride and chloride exhibit a higher affinity towards the enzyme than bromide and iodide. Taking into account competition between cyanide and halides for binding with myeloperoxidase the dissociation constants of halide-myeloperoxidase complexes were calculated. All halides except fluoride can be oxidized by H2O2 in the presence of myeloperoxidase. However, since fluoride can bind with myeloperoxidase, it can competitively inhibit the oxidation of other halides. Fluoride was a competitive inhibitor with respect to other halides as well as to H2O2. Inhibition constants (Ki) for fluoride as a competitive inhibitor with respect to H2O2 increased from iodide oxidation through bromide to chloride oxidation.
Al4H7− is a resilient building block for aluminum hydrogen cluster materials
Roach, P. J.; Reber, A. C.; Woodward, W. H.; Khanna, S. N.; Castleman, A. W.
2007-01-01
The formation and oxygen etching of AlnHm− clusters are characterized in a flow reactor experiment with first-principles theoretical investigations to demonstrate the exceptional stability of Al4H7−. The origin of the preponderance of Al4H7− in the mass spectra of hydrogenated aluminum anions and its resistance to O2 etching are discussed. Al4H7− is shown to have the ability to bond with ionic partners to form stable hydrides through addition of an alkali atom [XAl4H7 (X = Li-Cs)]. An intuitive model that can predict the existence of stable hydrogenated cluster species is proposed. The potential synthetic utility of the superatom assemblies built on these units is addressed. PMID:17823245
RARE-EARTH METAL FISSION PRODUCTS FROM LIQUID U-Bi
Wiswall, R.H.
1960-05-10
Fission product metals can be removed from solution in liquid bismuth without removal of an appreciable quantity of uranium by contacting the liquid metal solution with fused halides, as for example, the halides of sodium, potassium, and lithium and by adding to the contacted phases a quantity of a halide which is unstable relative to the halides of the fission products, a specific unstable halide being MgCl/sub 3/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yunyi; Haso, Fadi; Szymanowski, Jennifer E. S.
2015-11-16
The precise guidance to different ions across the biological channels is essential for many biological processes. An artificial nanopore system will facilitate the study of the ion-transport mechanism through nanosized channels and offer new views for designing nanodevices. Herein we reveal that a 2.5 nm-sized, fullerene-shaped molecular cluster Li48+mK12(OH)m[UO2(O2)(OH)]60-(H2O)n (m≈20 and n≈310) (U60) shows selective permeability to different alkali ions. The subnanometer pores on the water–ligand-rich surface of U60 are able to block Rb+ and Cs+ ions from passing through, while allowing Na+ and K+ ions, which possess larger hydrated sizes, to enter the interior space of U60. An interestinglymore » high entropy gain during the binding process between U60 and alkali ions suggests that the hydration shells of Na+/K+ and U60 are damaged during the interaction. The ion selectivity of U60 is greatly influenced by both the morphologies of the surface nanopores and the dynamics of the hydration shells.« less
Regeneration of zinc halide catalyst used in the hydrocracking of polynuclear hydrocarbons
Gorin, Everett
1978-01-01
Improved recovery of spent molten zinc halide hydro-cracking catalyst is achieved in the oxidative vapor phase regeneration thereof by selective treatment of the zinc oxide carried over by the effluent vapors from the regeneration zone with hydrogen halide gas under conditions favoring the reaction of the zinc oxide with the hydrogen halide, whereby regenerated zinc halide is recovered in a solids-free state with little loss of zinc values.
NASA Astrophysics Data System (ADS)
Galownia, Jonathan M.
This thesis is composed of two separate and unrelated projects. The first part of this thesis outlines an investigation into the synthesis and characterization of a novel zeolite supported super-base capable of carbon-carbon olefin addition to alkyl aromatics. A zeolite supported basic material capable of such reactions would benefit many fine chemical syntheses, as well as vastly improve the economics associated with production of the high performance thermoplastic polyester polyethylene naphthalate. The thermal decomposition of alkali---metal azides impregnated in zeolite X is investigated as a novel route to the synthesis of a zeolite supported super-base. Impregnation of the alkali---metal azide precursor is shown to result in azide species occluded within the pores of the zeolite support by using high speed, solid-state 23Na MAS and 2D MQMAS NMR, FTIR, and TGA characterization methods. Addition of alkali---metal azides to the zeolite results in redistribution of the extra-lattice cations in the zeolite framework. Thermal decomposition of impregnated azide species produces further cation redistribution, but no neutral metallic clusters are detected by high speed, solid-state 23Na MAS NMR following thermal activation of the materials. Instead, it is possible that inactive ionic clusters are formed. The thermally activated materials do not promote base catalysis for the isomerization of 1-butene, the ethylation of toluene and o-xylene, and the alkenylation of o-xylene with 1,3-butadiene to produce 5-ortho-tolyl-pent-2-ene (5-OTP). The lack of catalytic activity in the materials is attributed to failure of the materials to form neutral metallic clusters during thermal treatment, possibly due to preferential formation of NMR silent ionic clusters. The formation of neutral metallic clusters is found to be insensitive to synthesis technique and activation procedure. It is concluded that the impregnation of alkali---metal azides in zeolite X does not provide a reliable precursor for the formation of zeolite supported super-basic materials. The second part of this thesis describes the oxidative dehydrogenation of ethane over partially reduced heteropolyanions. Niobium and pyridine exchanged salts of phosphomolybdic (NbPMo12Pyr) and phosphovanadomolybdic (NbPMo11VPyr) acids are investigated as catalyst precursors to prepare materials for catalyzing the oxidative dehydrogenation of ethane to ethylene and acetic acid at atmospheric pressure. The effects of feed composition, steam flow, temperature, and precursor composition on catalytic activity and selectivity are presented for both ethane and ethylene oxidation. Production of ethylene and acetic acid from ethane using the catalytic materials exceeds that reported in the literature for Mo-V-Nb-Ox systems under atmospheric or elevated pressure. Production of acetic acid from ethylene is also greater than that observed for Mo-V-Nb-Ox systems. Addition of vanadium reduces catalytic activity and selectivity to both ethylene and acetic acid while niobium is essential for the formation of acetic acid from ethane. Other metals such as antimony, iron, and gallium do not provide the same beneficial effect as niobium. Molybdenum in close proximity to niobium is the active site for ethane activation while niobium is directly involved in the transformation of ethylene to acetic acid. A balance of niobium and protonated pyridine is required to produce an active catalyst. Water is found to aid in desorption of acetic acid, thereby limiting deep oxidation to carbon oxides. A reaction scheme is proposed for the production of acetic acid from ethane over the catalytic materials.
NASA Astrophysics Data System (ADS)
Sen, Abhijit; Roy, Soumyabrata; Peter, Sebastian C.; Paul, Arpita; Waghmare, Umesh V.; Sundaresan, A.
2018-02-01
We report a detailed experimental and theoretical investigation of structural, optical, magnetic and magnetothermal properties of single crystals of a new organic-inorganic hybrid (C2H5NH3)2CoCl4. Grown by slow evaporation method at room temperature, the compound crystallizes in centrosymmetric orthorhombic structure (Pnma) which undergoes a reversible phase transition at 235/241 K (cooling/heating) to noncentrosymmetric P212121 space group symmetry associated with order-disorder transformation of carbon atoms of the ammonium cations as well as molecular rearrangement. Electronic absorption spectra of the compound are typical of geometrically distorted [CoCl4]2- tetrahedra having spin-orbit coupling effect. The isolated nature of [CoCl4]2- tetrahedra in the crystal reflect in paramagnetic behaviour of the compound. Interestingly, field induced spin flipping behaviour is observed at low temperature. First principles density functional calculations reveal weak magnetic interaction among cobalt spins with ferromagnetic state being the ground state. The entropy change associated with the spin flipping has been experimentally estimated by magnetic and heat capacity measurements which has a maximum value of 16 J Kg-1 K-1 at 2.5 K under 7 T magnetic field. To the best of our knowledge, this is the first report on magnetocaloric effect observed in an organic-inorganic halide compound. The estimated value is sizable and is comparable to that of well-known transition metal molecular cluster magnets Mn12 or Fe14. The overall findings promise to enlighten new routes to design and constitute multifunctional organic-inorganic halide materials.
Effects of Surface Treatments on Secondary Electron Emission from CVD Diamond Films
NASA Technical Reports Server (NTRS)
Mearini, G. T.; Krainsky, I. L.; Dayton, J. A., Jr.; Zorman, Christian; Wang, Yaxin; Lamouri, A.
1995-01-01
Secondary electron emission (SEE) properties of polycrystalline diamond films grown by chemical vapor deposition (CVD) were measured. The total secondary yield (sigma) from as-grown samples was observed to be as high as 20 at room temperature and 48 while heating at 700 K in vacuum. Electron-beam-activated, alkali-terminated diamond films have shown stable values of sigma as high as 60 when coated with CsI and similarly high values when coated with other alkali halides. Diamond coated with BaF2 had a stable sigma of 6, but no enhancement of the SEE properties was observed with coatings of Ti or Au. Hydrogen was identified to give rise to this effect in as-grown films. However, electron beam exposure led to a reduction in sigma values as low as 2. Exposure to a molecular hydrogen environment restored sigma to its original value after degradation, and enabled stable secondary emission during electron beam exposure. Atomic hydrogen and hydrogen plasma treatments were performed on diamond/Mo samples in an attempt to increase the near-surface hydrogen concentration which might lead to increased stability in the secondary emission. Raman scattering analysis, scanning electron microscopy, and Auger electron spectroscopy (AES) confirmed that hydrogen plasma and atomic hydrogen treatments improved the quality of the CVD diamond significantly. Elastic recoil detection (ERD) showed that heating as-grown diamond targets to 7OO K, which was correlated with an increase in sigma, removed contaminants from the surface but did not drive hydrogen from the diamond bulk. ERD showed that the hydrogen plasma treatment produced an increase in the hydrogen concentration in the near-surface region which did not decrease while heating in vacuum at 700 K, but no improvement in the SEE properties was observed.
Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals.
Chen, Kun; Tüysüz, Harun
2015-11-09
The booming development of organometal halide perovskites in recent years has prompted the exploration of morphology-control strategies to improve their performance in photovoltaic, photonic, and optoelectronic applications. However, the preparation of organometal halide perovskites with high hierarchical architecture is still highly challenging and a general morphology-control method for various organometal halide perovskites has not been achieved. A mild and scalable method to prepare organometal halide perovskites in inverse opal morphology is presented that uses a polystyrene-based artificial opal as hard template. Our method is flexible and compatible with different halides and organic ammonium compositions. Thus, the perovskite inverse opal maintains the advantage of straightforward structure and band gap engineering. Furthermore, optoelectronic investigations reveal that morphology exerted influence on the conducting nature of organometal halide perovskites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic–Inorganic Perovskites
Sutter-Fella, Carolin M.; Ngo, Quynh P.; Cefarin, Nicola; ...
2018-04-30
Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. In this paper, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH 2) 2CsPb-halide (FACsPb-) and CH 3NH 3Pb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials.more » However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Finally, because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.« less
Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic-Inorganic Perovskites.
Sutter-Fella, Carolin M; Ngo, Quynh P; Cefarin, Nicola; Gardner, Kira L; Tamura, Nobumichi; Stan, Camelia V; Drisdell, Walter S; Javey, Ali; Toma, Francesca M; Sharp, Ian D
2018-06-13
Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. Here, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH 2 ) 2 CsPb-halide (FACsPb-) and CH 3 NH 3 Pb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials. However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.
Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic–Inorganic Perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutter-Fella, Carolin M.; Ngo, Quynh P.; Cefarin, Nicola
Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. In this paper, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH 2) 2CsPb-halide (FACsPb-) and CH 3NH 3Pb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials.more » However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Finally, because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.« less
40 CFR 721.530 - Substituted aliphatic acid halide (generic name).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted aliphatic acid halide... Specific Chemical Substances § 721.530 Substituted aliphatic acid halide (generic name). (a) Chemical... acid halide (PMN P-84-491) is subject to reporting under this section for the significant new uses...
40 CFR 721.530 - Substituted aliphatic acid halide (generic name).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted aliphatic acid halide... Specific Chemical Substances § 721.530 Substituted aliphatic acid halide (generic name). (a) Chemical... acid halide (PMN P-84-491) is subject to reporting under this section for the significant new uses...
Sonochemical method for producing titanium metal powder.
Halalay, Ion C; Balogh, Michael P
2008-07-01
We demonstrate a sonochemical method for producing titanium metal powder. The method uses low intensity ultrasound in a hydrocarbon solvent at near-ambient temperatures to first create a colloidal suspension of liquid sodium-potassium alloy in the solvent and then to reduce liquid titanium tetrachloride to titanium metal under cavitation conditions. XRD data collected for the reaction products after the solvent removal show only NaCl and KCl, with no diffraction peaks attributable to titanium metal or other titanium compounds, indicating either the formation of amorphous metal or extremely small crystallite size. TEM micrographs show that hollow spheres formed of halide salts and titanium metal, with diameters with diameters ranging from 100 to 500 nm and a shell thickness of 20 to 40 nm form during the synthesis, suggesting that the sonochemical reaction occurs inside the liquid shell surrounding the cavitation bubbles. Metal particle sizes are estimated to be significantly smaller than 40 nm from TEM data. XRD data of the powder after annealing and prior to removal of the alkali chloride salts provides direct evidence that titanium metal was formed during the sonochemical synthesis.
NASA Astrophysics Data System (ADS)
Gómez Gómez, José María; Medina, Jesús; Rull, Fernando
2016-07-01
Biosaline formations (BSFs) are complex self-organized biomineral patterns formed by "hibernating" bacteria as the biofilm that contains them dries out. They were initially described in drying biofilms of Escherichia coli cells + NaCl. Due to their intricate 3-D morphology and anhydrobiosis, these biomineralogical structures are of great interest in astrobiology. Here we report experimental data obtained with various alkali halide salts (NaF, NaCl, NaBr, LiCl, KCl, CsCl) on BSF formation with E. coli and Bacillus subtilis bacteria at two saline concentrations: 9 and 18 mg/mL. Our results indicate that, except for LiCl, which is inactive, all the salts assayed are active during BSF formation and capable of promoting the generation of distinctive drying patterns at each salt concentration. Remarkably, the BSFs produced by these two bacterial species produce characteristic architectural hallmarks as the BSF dries. The potential biogenicity of these biosaline drying patterns is studied, and the astrobiological implications of these findings are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alptekin, Gokhan
2013-02-15
Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investingmore » in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H 2S, NH 3, HCN, AsH 3, PH 3, HCl, NaCl, KCl, AS 3, NH 4NO 3, NH 4OH, KNO 3, HBr, HF, and HNO 3) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts.« less
Facilities for studing radiation damage in nonmetals during irradiation
NASA Astrophysics Data System (ADS)
Levy, P. W.
1984-08-01
Two facilities were developed for making optical absorption, luminescence and other measurements on a single sample before, during and after irradiation. One facility uses Co-60 gamma rays and the other 0.5 to 3 MeV electrons from an accelerator. Optical relays function as spectrophotometers, luminescence detectors, etc. All radiation sensitive components are outside of walk-in irradiation chambers; all measurement control and data recording is computerized. Irradiations are made at controlled temperatures between 5 K and 900 C. The materials studied include glasses, quartz, alkali halides (especially natural rock salt), organic crystals, etc. As determined from color center measurements the damage formation rate in all materials studied at 25 C or above is strongly temperature dependent. The defect concentration during irradiation is usually much greater than that measured after irradiation. The fraction of defects annealing after irradiation and the annealing rate usually increases as the irradiation temperature increases. The completed studies demonstrate that, in most cases, the extent of maximum damage and the damage formation and annealing kinetics can be determined only by making measurements during irradiation.
Better band gaps with asymptotically corrected local exchange potentials
NASA Astrophysics Data System (ADS)
Singh, Prashant; Harbola, Manoj K.; Hemanadhan, M.; Mookerjee, Abhijit; Johnson, D. D.
2016-02-01
We formulate a spin-polarized van Leeuwen and Baerends (vLB) correction to the local density approximation (LDA) exchange potential [R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 (1994), 10.1103/PhysRevA.49.2421] that enforces the ionization potential (IP) theorem following T. Stein et al. [Phys. Rev. Lett. 105, 266802 (2010), 10.1103/PhysRevLett.105.266802]. For electronic-structure problems, the vLB correction replicates the behavior of exact-exchange potentials, with improved scaling and well-behaved asymptotics, but with the computational cost of semilocal functionals. The vLB + IP correction produces a large improvement in the eigenvalues over those from the LDA due to correct asymptotic behavior and atomic shell structures, as shown in rare-gas, alkaline-earth, zinc-based oxides, alkali halides, sulfides, and nitrides. In half-Heusler alloys, this asymptotically corrected LDA reproduces the spin-polarized properties correctly, including magnetism and half-metallicity. We also consider finite-sized systems [e.g., ringed boron nitride (B12N12 ) and graphene (C24)] to emphasize the wide applicability of the method.
NASA Astrophysics Data System (ADS)
Marcondes, Michel L.; Wentzcovitch, Renata M.; Assali, Lucy V. C.
2018-05-01
Thermal equations of state (EOS) are essential in several scientific domains. However, experimental determination of EOS parameters may be limited at extreme conditions, therefore, ab initio calculations have become an important method to obtain them. Density functional theory (DFT) and its extensions with various degrees of approximations for the exchange and correlation (XC) energy is the method of choice, but large errors in the EOS parameters are still common. The alkali halides have been problematic from the onset of this field and the quest for appropriate DFT functionals for such ionic and relatively weakly bonded systems has remained an active topic of research. Here we use DFT + van der Waals functionals to calculate vibrational properties, thermal EOS, thermodynamic properties, and the B1 to B2 phase boundary of NaCl with high precision. Our results reveal a remarkable improvement over the performance of standard local density approximation and generalized gradient approximation functionals for all these properties and phase transition boundary, as well as great sensitivity of anharmonic effects on the choice of XC functional.
Influence of Van der Waals interaction on the thermodynamics properties of NaCl
NASA Astrophysics Data System (ADS)
Marcondes, M. L.; Wentzcovitch, R. M.; Assali, L. V. C.
2016-12-01
Equations of state (EoS) are extremely important in several scientific domains. However, many applications require EoS parameters at high pressures and temperatures. Experimental determination of these parameters is limited in such conditions and ab initio calculations have become important in computing them. Density Functional Theory (DFT) with its various approximations for exchange and correlation energy is the method of choice, but lack of a good description of the exchange-correlation energy results in large errors in EoS parameters. It is well known that the alkali halides have been problematic from the onset and the quest for DFT functionals appropriate for such ionic and relatively weakly bonded systems has remained an active topic of research. Here we use DFT + van der Waals functionals to calculate the thermal equation of state and thermodynamic properties of the B1 NaCl phase. Our results show a remarkable improvement over the performance of standard the LDA and GGA functionals. This is hardly surprising given that ions in this system have nearly closed shell configurations.
Kann, Z R; Skinner, J L
2014-09-14
Non-polarizable models for ions and water quantitatively and qualitatively misrepresent the salt concentration dependence of water diffusion in electrolyte solutions. In particular, experiment shows that the water diffusion coefficient increases in the presence of salts of low charge density (e.g., CsI), whereas the results of simulations with non-polarizable models show a decrease of the water diffusion coefficient in all alkali halide solutions. We present a simple charge-scaling method based on the ratio of the solvent dielectric constants from simulation and experiment. Using an ion model that was developed independently of a solvent, i.e., in the crystalline solid, this method improves the water diffusion trends across a range of water models. When used with a good-quality water model, e.g., TIP4P/2005 or E3B, this method recovers the qualitative behaviour of the water diffusion trends. The model and method used were also shown to give good results for other structural and dynamic properties including solution density, radial distribution functions, and ion diffusion coefficients.
The role of electronic mechanisms in surface erosion and glow phenomena
NASA Technical Reports Server (NTRS)
Haglund, Richard F., Jr.
1987-01-01
Experimental studies of desorption induced by electronic transitions (DIET) are described. Such studies are producing an increasingly complete picture of the dynamical pathways through which incident electronic energy is absorbed and rechanneled to produce macroscopic erosion and glow. These mechanistic studies can determine rate constants for erosion and glow processes in model materials and provide valuable guidance in materials selection and development. Extensive experiments with electron, photon, and heavy particle irradiation of alkali halides and other simple model materials have produced evidence showing that: (1) surface erosion, consisting primarily in the ejection or desorption of ground-state neutral atoms, occurs with large efficiencies for all irradiated species; (2) surface glow, resulting from the radiative decay of desorbed atoms, likewise occurs for all irradiating species; (3) the typical mechanism for ground-state neutral desorption is exciton formation, followed by relaxation to a permanent, mobile electronic defect which is the precursor to bond-breaking in the surface or near-surface bulk of the material; and (4) the mechanisms for excited atom formation may include curve crossing in atomic collisions, interactions with surface defect or impurity states, or defect diffusion.
Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures
Coppari, F.; Smith, R. F.; Eggert, J. H.; ...
2013-09-22
Here, magnesium oxide, an important component of the Earth’s mantle, has been extensively studied in the pressure and temperature range found within the Earth. However,much less is known about its behavior under conditions appropriate for newly-discovered super-Earth planets, where pressures can exceed 1000 GPa (10 Mbar). It is widely believed that MgO will follow the rocksalt (B1) to cesium chloride (B2) transformation pathway commonly found for many alkali halides, alkaline earth oxides and various other ionic compounds. Static compression experiments have determined the structure of MgO to 250 GPa but have been unable to reach pressures necessary to induce themore » predicted transformation, resulting in large uncertainties regarding its properties under conditions relevant to super-Earths and other large planets. Here we report new dynamic x-ray diffraction measurements of ramp-compressed MgO to 900 GPa.We report evidence for the B2 phase beginning near 600 GPa, remaining stable on further compression to 900 GPa, the highest pressure diffraction data ever collected.« less
Better band gaps with asymptotically corrected local exchange potentials
Singh, Prashant; Harbola, Manoj K.; Hemanadhan, M.; ...
2016-02-22
In this study, we formulate a spin-polarized van Leeuwen and Baerends (vLB) correction to the local density approximation (LDA) exchange potential [R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 (1994)] that enforces the ionization potential (IP) theorem following T. Stein et al. [Phys. Rev. Lett. 105, 266802 (2010)]. For electronic-structure problems, the vLB correction replicates the behavior of exact-exchange potentials, with improved scaling and well-behaved asymptotics, but with the computational cost of semilocal functionals. The vLB + IP correction produces a large improvement in the eigenvalues over those from the LDA due to correct asymptotic behaviormore » and atomic shell structures, as shown in rare-gas, alkaline-earth, zinc-based oxides, alkali halides, sulfides, and nitrides. In half-Heusler alloys, this asymptotically corrected LDA reproduces the spin-polarized properties correctly, including magnetism and half-metallicity. We also consider finite-sized systems [e.g., ringed boron nitride (B 12N 12) and graphene (C 24)] to emphasize the wide applicability of the method.« less
NASA Astrophysics Data System (ADS)
Hsu, Jin-Cherng; Chiang, Yueh-Sheng; Ma, Yu-Sheng
2013-03-01
Cesium iodide (CsI) and sodium iodide (NaI) are good scintillators due to their high luminescence efficiency. These alkali halides can be excited by ultra-violet or by ionizing radiation. In this study, CsI and its Na-doped films about 8 μm thick were deposited by thermal evaporation boat without heating substrates at high deposition rates of 30, 50, 70, 90, and 110 nm/sec, respectively. The as-deposited films were sequentially deposited a silicon dioxide film to protect from deliquesce. And, the films were also post-annealed in vacuum at 150, 200, 250, and 300 °C, respectively. We calculated the packing densities of the samples according to the measurements of Fourier transform infrared spectroscopy (FTIR) and observed the luminescence properties by photoluminescence (PL) system. The surfaces and cross sections of the films were investigated by scanning electron microscope (SEM). From the above measurements we can find the optimal deposition rate of 90 nm/sec and post-annealing temperature of 250 °C in vacuum for the asdeposited cesium iodide and its sodium-doped films.
Cu-catalyzed Suzuki-Miyaura reactions of primary and secondary benzyl halides with arylboronates.
Sun, Yan-Yan; Yi, Jun; Lu, Xi; Zhang, Zhen-Qi; Xiao, Bin; Fu, Yao
2014-09-28
A copper-catalyzed Suzuki-Miyaura coupling of benzyl halides with arylboronates is described. Varieties of primary benzyl halides as well as more challenging secondary benzyl halides with β hydrogens or steric hindrance could be successfully converted into the corresponding products. Thus it provides access to diarylmethanes, diarylethanes and triarylmethanes.
Margheri, Maria C; Piccardi, Raffaella; Ventura, Stefano; Viti, Carlo; Giovannetti, Luciana
2003-05-01
Genotypic diversity of several cyanobacterial strains mostly isolated from marine or brackish waters, belonging to the genera Geitlerinema and Spirulina, was investigated by amplified 16S ribosomal DNA restriction analysis and compared with morphological features and response to salinity. Cluster analysis was performed on amplified 16S rDNA restriction profiles of these strains along with profiles obtained from sequence data of five Spirulina-like strains, including three representatives of the new genus Halospirulina. Our strains with tightly coiled trichomes from hypersaline waters could be assigned to the Halospirulina genus. Among the uncoiled strains, the two strains of hypersaline origin clustered together and were found to be distant from their counterparts of marine and freshwater habitat. Moreover, another cluster, formed by alkali-tolerant strains with tightly coiled trichomes, was well delineated.
NASA Technical Reports Server (NTRS)
Wallio, H. A.
1973-01-01
The apparent diurnal Martian surface pressure variation, as deduced from radio occultation experiments, is discussed and explained as possibly arising from the effect of a low altitude electron layer. Possible source and loss mechanisms for the low altitude electron layer are presented and discussed. Time-dependent differential equations describing the electron layer are derived and then integrated to investigate the electron distribution resulting from the several processes that might occur in the atmosphere. It is concluded that the source mechanism is the sublimation of alkali atoms from a permanent dust layer (a dust layer of 0.2 micron particles of density 9/cu cm is sufficient), and that the dominant loss process must involve CO2 clustering to the alkali atoms. Using these processes, an electron layer is developed which would explain the apparent diurnal surface pressure.
Keshri, Sonanki; Tembe, B L
2017-11-22
Constant temperature-constant pressure molecular dynamics simulations have been performed for aqueous alkaline earth metal chloride [M 2+ -Cl - (M = Mg, Ca, Sr, and Ba)] solutions over a wide range of concentrations (0.27-5.55 m) in supercritical (SC) and ambient conditions to investigate their structural and dynamical properties. A strong influence of the salt concentration is observed on the ion-ion pair correlation functions in both ambient and SC conditions. In SC conditions, significant clustering is observed in the 0.27 m solution, whereas the reverse situation is observed at room temperature and this is also supported by the residence times of the clusters. The concentration and ion size (cation size) seem to have opposite effects on the average number of hydrogen bonds. The simulation results show that the self-diffusion coefficients of water, cations, and the chloride ion increase with increasing temperature, whereas they decrease with increasing salt concentration. The cluster size distribution shows a strong density dependence in both ambient and SC conditions. In SC conditions, cluster sizes display a near-Gaussian distribution, whereas the distribution decays monotonically in ambient conditions.
Preparation of cerium halide solvate complexes
Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E
2013-08-06
Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.
METHOD OF MAKING ALLOYS OF BERYLLIUM WITH PLUTONIUM AND THE LIKE
Runnals, O.J.C.
1959-02-24
The production of alloys of beryllium with one or more of the metals uranium, plutonium, actinium, americium, curium, thorium, and cerium are described. A halide salt of the metal to be alloyed with the beryllium is heated at 1300 deg C in the presence of beryllium to reduce the halide to metal and cause the latter to alloy directly with the beryllium. Although the heavy metal halides are more stable, thermodynamically, than the beryllium halides, the reducing reaction proceeds to completion if the beryllium halide product is continuously removed by vacuum distillation.
NASA Astrophysics Data System (ADS)
Reif, Maria M.; Hünenberger, Philippe H.
2011-04-01
The raw single-ion solvation free energies computed from atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions and treatment of electrostatic interactions used during these simulations. However, as shown recently [M. A. Kastenholz and P. H. Hünenberger, J. Chem. Phys. 124, 224501 (2006), 10.1529/biophysj.106.083667; M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144103 (2010)], the application of appropriate correction terms permits to obtain methodology-independent results. The corrected values are then exclusively characteristic of the underlying molecular model including in particular the ion-solvent van der Waals interaction parameters, determining the effective ion size and the magnitude of its dispersion interactions. In the present study, the comparison of calculated (corrected) hydration free energies with experimental data (along with the consideration of ionic polarizabilities) is used to calibrate new sets of ion-solvent van der Waals (Lennard-Jones) interaction parameters for the alkali (Li+, Na+, K+, Rb+, Cs+) and halide (F-, Cl-, Br-, I-) ions along with either the SPC or the SPC/E water models. The experimental dataset is defined by conventional single-ion hydration free energies [Tissandier et al., J. Phys. Chem. A 102, 7787 (1998), 10.1021/jp982638r; Fawcett, J. Phys. Chem. B 103, 11181] along with three plausible choices for the (experimentally elusive) value of the absolute (intrinsic) hydration free energy of the proton, namely, Δ G_hyd^{ominus }[H+] = -1100, -1075 or -1050 kJ mol-1, resulting in three sets L, M, and H for the SPC water model and three sets LE, ME, and HE for the SPC/E water model (alternative sets can easily be interpolated to intermediate Δ G_hyd^{ominus }[H+] values). The residual sensitivity of the calculated (corrected) hydration free energies on the volume-pressure boundary conditions and on the effective ionic radius entering into the calculation of the correction terms is also evaluated and found to be very limited. Ultimately, it is expected that comparison with other experimental ionic properties (e.g., derivative single-ion solvation properties, as well as data concerning ionic crystals, melts, solutions at finite concentrations, or nonaqueous solutions) will permit to validate one specific set and thus, the associated Δ G_hyd^{ominus }[H+] value (atomistic consistency assumption). Preliminary results (first-peak positions in the ion-water radial distribution functions, partial molar volumes of ionic salts in water, and structural properties of ionic crystals) support a value of Δ G_hyd^{ominus }[H+] close to -1100 kJ.mol-1.
NASA Astrophysics Data System (ADS)
Hoque, Md. Najbul; Das, Gopal
2016-03-01
Anion complexation of benzene capped flexible tripodal receptor and solid state stabilization of discrete hybrid anion-water or infinite water clusters by various supramolecular interactions are reported here. The crystal structure of the receptor in protonated states shows all the three arms projected in one direction. We structurally demonstrate discrete fluoride-water cluster [F2-H2O]2- and square shaped chloride-water cluster [Cl2-(H2O)2]2- inside the cationic channel of the receptor. Structural analysis also reveals that these clusters are stabilized inside the channel through active participation of N/C/Ow‧H⋯Ow, N/C/Ow‧H⋯X- (X- = F-, Cl- and I-) H-bonds and electrostatic interactions. Moreover, C-H⋯π and π⋯π types weak intermolecular interactions appear to play crucial role in supramolecular assembly of receptor. Additionally, on treatment with hydroiodic acid (HI) L resulted zwitterionic iodide complex. Crystal structure reveals the presence of S···I halogen bonded dimer, I2···I halogen bond, 1D infinite water chain and neutral iodine molecules. It is comprehensible that ligand basal structure (benzene capped and N-bridge head in two tripodal) play crucial roles in the formation of diverse halide-water cluster. All structures were well examined by different techniques such as NMR, IR, TGA, DSC, PXRD and XRD.
Shallow halogen vacancies in halide optoelectronic materials
NASA Astrophysics Data System (ADS)
Shi, Hongliang; Du, Mao-Hua
2014-11-01
Halogen vacancies (VH ) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep VH contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., C H3N H3Pb I3 and TlBr. Both C H3N H3Pb I3 and TlBr have been found to have shallow VH , in contrast to commonly seen deep VH in halides. In this paper, several halide optoelectronic materials, i.e., C H3N H3Pb I3 , C H3N H3Sn I3 (photovoltaic materials), TlBr, and CsPbB r3 (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether VH is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of n s2 ions both play important roles in creating shallow VH in halides such as C H3N H3Pb I3 , C H3N H3Sn I3 , and TlBr. The key to identifying halides with shallow VH is to find the right crystal structures and compounds that suppress cation orbital hybridization at VH , such as those with large cation-cation distances and low anion coordination numbers and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at VH . The results of this paper provide insight and guidance to identifying halides with shallow VH as good electronic and optoelectronic materials.
A review of bacterial methyl halide degradation: biochemistry, genetics and molecular ecology
McDonald, I.R.; Warner, K.L.; McAnulla, C.; Woodall, C.A.; Oremland, R.S.; Murrell, J.C.
2002-01-01
Methyl halide-degrading bacteria are a diverse group of organisms that are found in both terrestrial and marine environments. They potentially play an important role in mitigating ozone depletion resulting from methyl chloride and methyl bromide emissions. The first step in the pathway(s) of methyl halide degradation involves a methyltransferase and, recently, the presence of this pathway has been studied in a number of bacteria. This paper reviews the biochemistry and genetics of methyl halide utilization in the aerobic bacteria Methylobacterium chloromethanicum CM4T, Hyphomicrobium chloromethanicum CM2T, Aminobacter strain IMB-1 and Aminobacter strain CC495. These bacteria are able to use methyl halides as a sole source of carbon and energy, are all members of the α-Proteobacteria and were isolated from a variety of polluted and pristine terrestrial environments. An understanding of the genetics of these bacteria identified a unique gene (cmuA) involved in the degradation of methyl halides, which codes for a protein (CmuA) with unique methyltransferase and corrinoid functions. This unique functional gene, cmuA, is being used to develop molecular ecology techniques to examine the diversity and distribution of methyl halide-utilizing bacteria in the environment and hopefully to understand their role in methyl halide degradation in different environments. These techniques will also enable the detection of potentially novel methyl halide-degrading bacteria.
10 CFR Appendix B to Subpart S to... - Certification Report for Metal Halide Lamp Ballasts
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Certification Report for Metal Halide Lamp Ballasts B... PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts and Fixtures Pt. 431, Subpt. S, App. B Appendix B to Subpart S to Part 431—Certification Report for Metal Halide Lamp Ballasts...
Method for recovering hydrocarbons from molten metal halides
Pell, Melvyn B.
1979-01-01
In a process for hydrocracking heavy carbonaceous materials by contacting such carbonaceous materials with hydrogen in the presence of a molten metal halide catalyst to produce hydrocarbons having lower molecular weights and thereafter recovering the hydrocarbons so produced from the molten metal halide, an improvement comprising injecting into the spent molten metal halide, a liquid low-boiling hydrocarbon stream is disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catalano, V.; Moore, A; Shearer, J
2009-01-01
The coordination chemistry of copper(I) halides to the homoleptic, N-heterocyclic carbene Au(I) complexes [Au(CH{sub 3}imCH{sub 2}quin){sub 2}]BF{sub 4} and [Au(CH{sub 3}imCH{sub 2}py){sub 2}]BF{sub 4} was explored. The reaction of CuX (X = Cl, Br, I) with either [Au(CH{sub 3}imCH{sub 2}quin){sub 2}]BF{sub 4} or [Au(CH{sub 3}imCH{sub 2}py){sub 2}]BF{sub 4} produces trimetallic complexes containing Cu{sub 2}X{sub 2}-butterfly copper clusters coordinated to the two imine moieties. The triangular arrangement of the metals places the gold(I) center in close proximity ({approx}2.5-2.6 {angstrom}) to the centroid of the Cu-Cu vector. The Cu-Cu separations vary as a function of bridging halide with the shortest Cu-Cu separationsmore » of {approx}2.5 {angstrom} found in the iodo-complexes and the longest separations of 2.9 {angstrom} found in the bridging chloride complexes. In all six complexes the Au-Cu separations range from {approx}2.8 to 3.0 {angstrom}. In the absence of halides, the dimetallic complex [AuCu(CH{sub 3}imCH{sub 2}py){sub 2}(NCCH{sub 3}){sub 2}](BF{sub 4}){sub 2}, containing a long Au-Cu distance of {approx}4.72 {angstrom} is formed. Additionally, as the byproduct of the reaction of CuBr with [Au(CH{sub 3}imCH{sub 2}quin){sub 2}]BF{sub 4} the deep-red, dimetallic compound, AuCuBr{sub 2}(CH{sub 3}imCH{sub 2}quin){sub 2}, was isolated in very low yield. All of these complexes were studied by NMR spectroscopy, mass spectrometry, and the copper containing species were additionally characterized by X-ray crystallography. In solution the copper centers dissociate from the gold complexes, but as shown by XANES and EXAFS spectroscopy, at low temperature the Cu-Cu linkage is broken, and the individual copper(I) halides reposition themselves to opposite sides of the gold complex while remaining coordinated to one imine moiety. In the solid state all of the complexes are photoluminescent, though the nature of the excited state was not determined.« less
Transition properties from the Hermitian formulation of the coupled cluster polarization propagator
NASA Astrophysics Data System (ADS)
Tucholska, Aleksandra M.; Modrzejewski, Marcin; Moszynski, Robert
2014-09-01
Theory of one-electron transition density matrices has been formulated within the time-independent coupled cluster method for the polarization propagator [R. Moszynski, P. S. Żuchowski, and B. Jeziorski, Coll. Czech. Chem. Commun. 70, 1109 (2005)]. Working expressions have been obtained and implemented with the coupled cluster method limited to single, double, and linear triple excitations (CC3). Selected dipole and quadrupole transition probabilities of the alkali earth atoms, computed with the new transition density matrices are compared to the experimental data. Good agreement between theory and experiment is found. The results obtained with the new approach are of the same quality as the results obtained with the linear response coupled cluster theory. The one-electron density matrices for the ground state in the CC3 approximation have also been implemented. The dipole moments for a few representative diatomic molecules have been computed with several variants of the new approach, and the results are discussed to choose the approximation with the best balance between the accuracy and computational efficiency.
Gao, Wei; Tian, Yong; Xuan, Xiaopeng
2015-07-01
The cation-cation π-π stacking is uncommon but it is essential for the understanding of some supramolecular structures. We explore theoretically the nature of non-covalent interaction occurring in the stacked structure within modeled clusters of 1,3-dimethylimidazolium and halide. The evidences of the energy decomposition analysis (EDA) and reduced density gradient (RDG) approach are different from those of common π-π interaction. Isosurfaces with RDG also illustrate the strength of the titled π-π interaction and their region. Additionally, we find that the occurrence of this interaction is attributed to a few C-H···X interactions, as depicted using atom in molecule (AIM) method. This work presents a clear picture of the typical cation-cation π-π interaction and can serve to advance the understanding of this uncommon interaction. Copyright © 2015 Elsevier Inc. All rights reserved.
Investigation of surface halide modification of nitrile butadiene rubber
NASA Astrophysics Data System (ADS)
Sukhareva, K. V.; Mikhailov, I. A.; Andriasyan, Yu O.; Mastalygina, E. E.; Popov, A. A.
2017-12-01
The investigation is devoted to the novel technology of surface halide modification of rubber samples based on nitrile butadiene rubber (NBR). 1,1,2-trifluoro-1,2,2-trichlorethane was used as halide modifier. The developed technology is characterized by production stages reduction to one by means of treating the rubber compound with a halide modifier. The surface halide modification of compounds based on nitrile butadiene rubber (NBR) was determined to result in increase of resistance to thermal oxidation and aggressive media. The conducted research revealed the influence of modification time on chemical resistance and physical-mechanical properties of rubbers under investigation.
Method of making alloys of beryllium with plutonium and the like
Runnals, O J.C.
1959-02-24
The production or alloys of beryllium with one or more of the metals uranium, plutonium, actinium, americium, curium, thorium, and cerium is described. A halide salt or the metal to be alloyed with the beryllium is heated at l3O0 deg C in the presence of beryllium to reduce the halide to metal and cause the latter to alloy directly with the beryllium. Although the heavy metal halides are more stable, thermodynamically, than the beryllium halides, the reducing reaction proceeds to completion if the beryllium halide product is continuously removed by vacuum distillation.
Gorin, Everett
1979-01-01
In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst, thereafter separating at least a substantial portion of the carbonaceous material associated with the reaction mixture from the spent molten metal halide and thereafter regenerating the metal halide catalyst, an improvement comprising contacting the spent molten metal halide catalyst after removal of a major portion of the carbonaceous material therefrom with an additional quantity of hydrogen is disclosed.
Cortés-Gutiérrez, Elva I; Dávila-Rodríguez, Martha I; López-Fernández, Carmen; Fernández, José Luis; Crespo, Francisco; Gosálvez, Jaime
2014-01-15
The presence of constitutive alkali-labile sites (ALS) has been investigated using a protocol of DNA breakage detection-fluorescence in situ hybridization and comet assay in spermatozoa of donkey (Equus asinus) and stallion (Equus caballus). These results were compared with those obtained using a similar experimental approach using somatic cells. The relative abundance of ALS was of the order of four times more in spermatozoa than in somatic cells. Alkali-labile sites showed a tendency to cluster localized at the equatorial-distal regions of the sperm. The amount of hybridized signal in the ALS in the sperm of donkey (Equus asinus) was 1.3 times greater than in stallion (Equus caballus), and the length of the comet tail obtained in donkey sperm was 1.6 times longer than that observed in stallion (P < 0.05); however, these differences were not appreciated in somatic cells. In conclusion, ALS localization in sperm is not a randomized event and a different pattern of ALS distribution occurs for each species. These results suggest that ALS represents a species-specific issue related to chromatin organization in sperm and somatic cells in mammalian species, and they might diverge even with very short phylogenetic distances. Copyright © 2014 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Emission Limits for Hydrogen Halide and... to Subpart FFFF of Part 63—Emission Limits for Hydrogen Halide and Halogen HAP Emissions or HAP... following table that applies to your process vents that contain hydrogen halide and halogen HAP emissions or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Emission Limits for Hydrogen Halide and... to Subpart FFFF of Part 63—Emission Limits for Hydrogen Halide and Halogen HAP Emissions or HAP... following table that applies to your process vents that contain hydrogen halide and halogen HAP emissions or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... Compliance Requirements § 63.2465 What requirements must I meet for process vents that emit hydrogen halide... section. (b) If any process vents within a process emit hydrogen halide and halogen HAP, you must...
Trumm, Michael; Martínez, Yansel Omar Guerrero; Réal, Florent; Masella, Michel; Vallet, Valérie; Schimmelpfennig, Bernd
2012-01-28
In this work, we investigate the hydration of the halide ions fluoride, chloride, and bromide using classical molecular dynamics simulations at the 10 ns scale and based on a polarizable force-field approach, which treats explicitly the cooperative bond character of strong hydrogen bond networks. We have carried out a thorough analysis of the ab initio data at the MP2 or CCSD(T) level concerning anion/water clusters in gas phase to adjust the force-field parameters. In particular, we consider the anion static polarizabilities computed in gas phase using large atomic basis sets including additional diffuse functions. The information extracted from trajectories in solution shows well structured first hydration shells formed of 6.7, 7.0, and 7.6 water molecules at about 2.78 Å, 3.15 Å, and 3.36 Å for fluoride, chloride, and bromide, respectively. These results are in excellent agreement with the latest neutron- and x-ray diffraction studies. In addition, our model reproduces several other properties of halide ions in solution, such as diffusion coefficients, description of hydration processes, and exchange reactions. Moreover, it is also able to reproduce the electrostatic properties of the anions in solution (in terms of anion dipole moment) as reported by recent ab initio quantum simulations. All the results show the ability of the proposed model in predicting data, as well as the need of accounting explicitly for the cooperative character of strong hydrogen bonds to reproduce ab initio potential energy surfaces in a mean square sense and to build up a reliable force field. © 2012 American Institute of Physics
Helium: lifting high-performance stencil kernels from stripped x86 binaries to halide DSL code
Mendis, Charith; Bosboom, Jeffrey; Wu, Kevin; ...
2015-06-03
Highly optimized programs are prone to bit rot, where performance quickly becomes suboptimal in the face of new hardware and compiler techniques. In this paper we show how to automatically lift performance-critical stencil kernels from a stripped x86 binary and generate the corresponding code in the high-level domain-specific language Halide. Using Halide's state-of-the-art optimizations targeting current hardware, we show that new optimized versions of these kernels can replace the originals to rejuvenate the application for newer hardware. The original optimized code for kernels in stripped binaries is nearly impossible to analyze statically. Instead, we rely on dynamic traces to regeneratemore » the kernels. We perform buffer structure reconstruction to identify input, intermediate and output buffer shapes. Here, we abstract from a forest of concrete dependency trees which contain absolute memory addresses to symbolic trees suitable for high-level code generation. This is done by canonicalizing trees, clustering them based on structure, inferring higher-dimensional buffer accesses and finally by solving a set of linear equations based on buffer accesses to lift them up to simple, high-level expressions. Helium can handle highly optimized, complex stencil kernels with input-dependent conditionals. We lift seven kernels from Adobe Photoshop giving a 75 % performance improvement, four kernels from Irfan View, leading to 4.97 x performance, and one stencil from the mini GMG multigrid benchmark netting a 4.25 x improvement in performance. We manually rejuvenated Photoshop by replacing eleven of Photoshop's filters with our lifted implementations, giving 1.12 x speedup without affecting the user experience.« less
Unraveling luminescence mechanisms in zero-dimensional halide perovskites
Han, Dan; Shi, Hongliang; Ming, Wenmei; ...
2018-01-01
Zero-dimensional (0D) halides perovskites, in which anionic metal-halide octahedra (MX 6 ) 4− are separated by organic or inorganic countercations, have recently shown promise as excellent luminescent materials.
Unraveling luminescence mechanisms in zero-dimensional halide perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Dan; Shi, Hongliang; Ming, Wenmei
Zero-dimensional (0D) halides perovskites, in which anionic metal-halide octahedra (MX 6 ) 4− are separated by organic or inorganic countercations, have recently shown promise as excellent luminescent materials.
Shallow halogen vacancies in halide optoelectronic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Hongliang; Du, Mao -Hua
2014-11-05
Halogen vacancies (V H) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep V H contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., CH 3NH 3PbI 3 and TlBr. Both CH 3NH 3PbI 3 and TlBr have been found to have shallow V H, in contrast to commonly seen deep V H in halides. In this paper, several halide optoelectronic materials, i.e., CH 3NH 3PbI 3, CH 3NH 3SnI 3 (photovoltaic materials), TlBr, and CsPbBrmore » 3, (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether V H is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of ns 2 ions both play important roles in creating shallow V H in halides such as CH 3NH 3PbI 3, CH 3NH 3SnI 3, and TlBr. The key to identifying halides with shallow V H is to find the right crystal structures and compounds that suppress cation orbital hybridization at V H, such as those with long cation-cation distances and low anion coordination numbers, and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at V H. Furthermore, the results of this paper provide insight and guidance to identifying halides with shallow V H as good electronic and optoelectronic materials.« less
Unraveling luminescence mechanisms in zero-dimensional halide perovskites
Han, Dan; Shi, Hongliang; Ming, Wenmei; ...
2018-05-18
Here, zero-dimensional (0D) halides perovskites, in which anionic metal-halide octahedra (MX 6) 4– are separated by organic or inorganic countercations, have recently shown promise as excellent luminescent materials.
Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency.
Zhou, Chenkun; Lin, Haoran; Tian, Yu; Yuan, Zhao; Clark, Ronald; Chen, Banghao; van de Burgt, Lambertus J; Wang, Jamie C; Zhou, Yan; Hanson, Kenneth; Meisner, Quinton J; Neu, Jennifer; Besara, Tiglet; Siegrist, Theo; Lambers, Eric; Djurovich, Peter; Ma, Biwu
2018-01-21
Single crystalline zero-dimensional (0D) organic-inorganic hybrid materials with perfect host-guest structures have been developed as a new generation of highly efficient light emitters. Here we report a series of lead-free organic metal halide hybrids with a 0D structure, (C 4 N 2 H 14 X) 4 SnX 6 (X = Br, I) and (C 9 NH 20 ) 2 SbX 5 (X = Cl), in which the individual metal halide octahedra (SnX 6 4- ) and quadrangular pyramids (SbX 5 2- ) are completely isolated from each other and surrounded by the organic ligands C 4 N 2 H 14 X + and C 9 NH 20 + , respectively. The isolation of the photoactive metal halide species by the wide band gap organic ligands leads to no interaction or electronic band formation between the metal halide species, allowing the bulk materials to exhibit the intrinsic properties of the individual metal halide species. These 0D organic metal halide hybrids can also be considered as perfect host-guest systems, with the metal halide species periodically doped in the wide band gap matrix. Highly luminescent, strongly Stokes shifted broadband emissions with photoluminescence quantum efficiencies (PLQEs) of close to unity were realized, as a result of excited state structural reorganization of the individual metal halide species. Our discovery of highly luminescent single crystalline 0D organic-inorganic hybrid materials as perfect host-guest systems opens up a new paradigm in functional materials design.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Emission Limits for Hydrogen Halide and..., Table 3 Table 3 to Subpart FFFF of Part 63—Emission Limits for Hydrogen Halide and Halogen HAP Emissions... limit in the following table that applies to your process vents that contain hydrogen halide and halogen...
Code of Federal Regulations, 2014 CFR
2014-07-01
... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... hydrogen halide and halogen HAP or HAP metals? (a) You must meet each emission limit in Table 3 to this...) of this section. (b) If any process vents within a process emit hydrogen halide and halogen HAP, you...
Code of Federal Regulations, 2013 CFR
2013-07-01
... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... hydrogen halide and halogen HAP or HAP metals? (a) You must meet each emission limit in Table 3 to this...) of this section. (b) If any process vents within a process emit hydrogen halide and halogen HAP, you...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Emission Limits for Hydrogen Halide.... FFFF, Table 3 Table 3 to Subpart FFFF of Part 63—Emission Limits for Hydrogen Halide and Halogen HAP... limit in the following table that applies to your process vents that contain hydrogen halide and halogen...
Code of Federal Regulations, 2012 CFR
2012-07-01
... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... hydrogen halide and halogen HAP or HAP metals? (a) You must meet each emission limit in Table 3 to this...) of this section. (b) If any process vents within a process emit hydrogen halide and halogen HAP, you...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Emission Limits for Hydrogen Halide.... FFFF, Table 3 Table 3 to Subpart FFFF of Part 63—Emission Limits for Hydrogen Halide and Halogen HAP... limit in the following table that applies to your process vents that contain hydrogen halide and halogen...
Deuterium separation by infrared-induced addition reaction
Marling, John B.
1977-01-01
A method for deuterium enrichment by the infrared-induced addition reaction of a deuterium halide with an unsaturated aliphatic compound. A gaseous mixture of a hydrogen halide feedstock and an unsaturated aliphatic compound, particularly an olefin, is irradiated to selectively vibrationally excite the deuterium halide contained therein. The excited deuterium halide preferentially reacts with the unsaturated aliphatic compound to produce a deuterated addition product which is removed from the reaction mixture.
Self-Organized Superlattice and Phase Coexistence inside Thin Film Organometal Halide Perovskite.
Kim, Tae Woong; Uchida, Satoshi; Matsushita, Tomonori; Cojocaru, Ludmila; Jono, Ryota; Kimura, Kohei; Matsubara, Daiki; Shirai, Manabu; Ito, Katsuji; Matsumoto, Hiroaki; Kondo, Takashi; Segawa, Hiroshi
2018-02-01
Organometal halide perovskites have attracted widespread attention as the most favorable prospective material for photovoltaic technology because of their high photoinduced charge separation and carrier transport performance. However, the microstructural aspects within the organometal halide perovskite are still unknown, even though it belongs to a crystal system. Here direct observation of the microstructure of the thin film organometal halide perovskite using transmission electron microscopy is reported. Unlike previous reports claiming each phase of the organometal halide perovskite solely exists at a given temperature range, it is identified that the tetragonal and cubic phases coexist at room temperature, and it is confirmed that superlattices composed of a mixture of tetragonal and cubic phases are self-organized without a compositional change. The organometal halide perovskite self-adjusts the configuration of phases and automatically organizes a buffer layer at boundaries by introducing a superlattice. This report shows the fundamental crystallographic information for the organometal halide perovskite and demonstrates new possibilities as promising materials for various applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of halide ions on the photodegradation of ibuprofen in aqueous environments.
Li, Fuhua; Kong, Qingqing; Chen, Ping; Chen, Min; Liu, Guoguang; Lv, Wenying; Yao, Kun
2017-01-01
Typically contained within ambient surface waters and certain industrial wastewaters, are plentiful halide ions, which possess varying degrees of photosensitivity. The effects of halide ions on the photodegradation of ibuprofen (IBP) were investigated under UV irradiation using a 500 W mercury lamp as a light source. Studies of the mechanism of halide ions were inclusive of both their light shielding effects and quenching experiments. The results indicated that chloride ion has a slight inhibition against IBP photodegradation under neutral condition, and significant inhibition is observed with bromide ions and iodide ions. In addition to the observed increased rate of IBP photodegradation in conjunction with elevated pH in solution, the inhibitory effect of halide ions was different. When the pH value of the IBP solution was 5, chloride ions were seen to facilitate the photodegradation of IBP. Halide ions can inhibit IBP photodegradation by means of a light attenuation effect. All of the halide ions significantly facilitated the generation of 1 O 2 . Copyright © 2016 Elsevier Ltd. All rights reserved.
10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... is produced by radiation of metal halides and their products of dissociation, possibly in combination... electromagnetic ballast that starts a pulse-start metal halide lamp with high voltage pulses, where lamps shall be...
Effects of Halides on Plasmid-Mediated Silver Resistance in Escherichia coli
Gupta, Amit; Maynes, Maria; Silver, Simon
1998-01-01
Silver resistance of sensitive Escherichia coli J53 and resistance plasmid-containing J53(pMG101) was affected by halides in the growth medium. The effects of halides on Ag+ resistance were measured with AgNO3 and silver sulfadiazine, both on agar and in liquid. Low concentrations of chloride made the differences in MICs between sensitive and resistant strains larger. High concentrations of halides increased the sensitivities of both strains to Ag+. PMID:9835606
Effects of halides on plasmid-mediated silver resistance in Escherichia coli.
Gupta, A; Maynes, M; Silver, S
1998-12-01
Silver resistance of sensitive Escherichia coli J53 and resistance plasmid-containing J53(pMG101) was affected by halides in the growth medium. The effects of halides on Ag+ resistance were measured with AgNO3 and silver sulfadiazine, both on agar and in liquid. Low concentrations of chloride made the differences in MICs between sensitive and resistant strains larger. High concentrations of halides increased the sensitivities of both strains to Ag+.
Doane, Tennyson L.; Ryan, Kayla L.; Pathade, Laxmikant; ...
2016-05-05
The ability of cesium lead halide (CsPbX 3; X = Cl –, Br –, I –) perovskite nanoparticles (P-NPs) to participate in halide exchange reactions, to catalyze Finkelstein organohalide substitution reactions, and to colorimetrically monitor chemical reactions and detect anions in real time is described. With the use of tetraoctylammonium halide salts as a starting point, halide exchange with the P-NPs was performed to calibrate reactivity, stability, and extent of ion exchange. Also, the exchange of CsPbI 3 with Cl – or Br – causes a significant blue-shift in absorption and photoluminescence, whereas reacting I – with CsPbBr 3 causesmore » a red-shift of similar magnitudes. With the high local halide concentrations and the facile nature of halide exchange in mind, we then explored the ability of P-NPs to catalyze organohalide exchange in Finkelstein like reactions. Results indicate that the P-NPs serve as excellent halide reservoirs for substitution of organohalides in nonpolar media, leading to not only different organohalide products, but also a complementary color change over the course of the reaction, which can be used to monitor kinetics in a precise manner. Finally, the merits of using P-NP as spectrochemical probes for real time assaying is then expanded to other anions which can react with, or result in unique, classes of perovskites.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... Metal Halide Lamp Ballasts and Fixtures Energy Conservation Standards § 431.329 Enforcement. Process for Metal Halide Lamp Ballasts. This section sets forth procedures DOE will follow in pursuing alleged... with the following statistical sampling procedures for metal halide lamp ballasts, with the methods...
Ohmiya, Hirohisa; Tsuji, Takashi; Yorimitsu, Hideki; Oshima, Koichiro
2004-11-05
Details of cobalt-catalyzed cross-coupling reactions of alkyl halides with allylic Grignard reagents are disclosed. A combination of cobalt(II) chloride and 1,2-bis(diphenylphosphino)ethane (DPPE) or 1,3-bis(diphenylphosphino)propane (DPPP) is suitable as a precatalyst and allows secondary and tertiary alkyl halides--as well as primary ones--to be employed as coupling partners for allyl Grignard reagents. The reaction offers a facile synthesis of quaternary carbon centers, which has practically never been possible with palladium, nickel, and copper catalysts. Benzyl, methallyl, and crotyl Grignard reagents can all couple with alkyl halides. The benzylation definitely requires DPPE or DPPP as a ligand. The reaction mechanism should include the generation of an alkyl radical from the parent alkyl halide. The mechanism can be interpreted in terms of a tandem radical cyclization/cross-coupling reaction. In addition, serendipitous tandem radical cyclization/cyclopropanation/carbonyl allylation of 5-alkoxy-6-halo-4-oxa-1-hexene derivatives is also described. The intermediacy of a carbon-centered radical results in the loss of the original stereochemistry of the parent alkyl halides, creating the potential for asymmetric cross-coupling of racemic alkyl halides.
Gorin, Everett
1981-01-01
A method for hydrocracking a heavy polynuclear hydrocarbonaceous feedstock to produce lighter hydrocarbon fuels by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, the method comprising: mixing the feedstock with a heavy naphtha fraction which has an initial boiling point from about 100.degree. to about 160.degree. C. with a boiling point difference between the initial boiling point and the final boiling point of no more than about 50.degree. C. to produce a mixture; thereafter contacting the mixture with partially spent molten metal halide and hydrogen under temperature and pressure conditions so that the temperature is near the critical temperature of the heavy naphtha fraction; separating at least a portion of the heavy naphtha fraction and lighter hydrocarbon fuels from the partially spent molten metal halide, unreacted feedstock and reaction products; thereafter contacting the partially spent molten metal halide, unreacted feedstock and reaction products with hydrogen and fresh molten metal halide in a hydrocracking zone to produce additional lighter hydrocarbon fuels and separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Yu, Fengxi; Chen, Lihong; Li, Jingfa
2018-06-01
Organic additives, such as the Lewis base thiophene, have been successfully applied to passivate halide perovskite surfaces, improving the stability and properties of perovskite devices based on CH3NH3PbI3. Yet, the detailed nanostructure of the perovskite surface passivated by additives and the mechanisms of such passivation are not well understood. This study presents a nanoscopic view on the interfacial structure of an additive/perovskite interface, consisting of a Lewis base thiophene molecular additive and a lead halide perovskite surface substrate, providing insights on the mechanisms that molecular additives can passivate the halide perovskite surfaces and enhance the perovskite-based device performance. Molecular dynamics study on the interactions between water molecules and the perovskite surfaces passivated by the investigated additive reveal the effectiveness of employing the molecular additives to improve the stability of the halide perovskite materials. The additive/perovskite surface system is further probed via molecular engineering the perovskite surfaces. This study reveals the nanoscopic structure-property relationships of the halide perovskite surface passivated by molecular additives, which helps the fundamental understanding of the surface/interface engineering strategies for the development of halide perovskite based devices.
Photoinduced electron transfer and solvation in iodide-doped acetonitrile clusters.
Ehrler, Oli T; Griffin, Graham B; Young, Ryan M; Neumark, Daniel M
2009-04-02
We have used ultrafast time-resolved photoelectron imaging to measure charge transfer dynamics in iodide-doped acetonitrile clusters I(-)(CH(3)CN)(n) with n = 5-10. Strong modulations of vertical detachment energies were observed following charge transfer from the halide, allowing interpretation of the ongoing dynamics. We observe a sharp drop in the vertical detachment energy (VDE) within 300-400 fs, followed by a biexponential increase that is complete by approximately 10 ps. Comparison to theory suggests that the iodide is internally solvated and that photodetachment results in formation of a diffuse electron cloud in a confined cavity. We interpret the initial drop in VDE as a combination of expansion of the cavity and localization of the excess electron on one or two solvent molecules. The subsequent increase in VDE is attributed to a combination of the I atom leaving the cavity and rearrangement of the acetonitrile molecules to solvate the electron. The n = 5-8 clusters then show a drop in VDE of around 50 meV on a much longer time scale. The long-time VDEs are consistent with those of (CH(3)CN)(n)(-) clusters with internally solvated electrons. Although the excited-state created by the pump pulse decays by emission of a slow electron, no such decay is seen by 200 ps.
Samu, Gergely F.; Janaky, Csaba; Kamat, Prashant V.
2017-07-24
Photoinduced segregation in mixed halide perovskites has a direct influence on decreasing the solar cell efficiency as segregated I-rich domains serve as charge recombination centers. Here, the changes in the external quantum efficiency mirror the spectral loss in the absorption; however, the time scale of the IPCE recovery in the dark is slower than the absorption recovery, showing the intricate nature of the photoinduced halide segregation and charge collection in solar cell devices.
NASA Astrophysics Data System (ADS)
Shibata, Mikihiro; Kandori, Hideki
2007-12-01
Bacteriorhodopsin (BR), a membrane protein found in Halobacterium salinarum, functions as a light-driven proton pump. The Schiff base region has a quadropolar structure with positive charges located at the protonated Schiff base and Arg82, and counterbalancing negative charges located at Asp85 and Asp212 (Figure 1A). It is known that BR lacks a proton-pumping activity if Asp85 or Asp212 is neutralized by mutation. On the other hand, binding of C1- brings different effects for pumping functions in mutants at D85 and D212 position. While C1--bound D85T and D85S pump C1-, photovoltage measurements suggested that C1--bound D212N pumps protons at low pH. In this study, we measured low-temperature FTIR spectra of D85S and D212N containing various halides to compare the halide binding site of both proteins. In the case of D85S, the N-D stretching vibrations of the Schiff base were halide-dependent. This result suggests that the halide is a hydrogen-bond acceptor of the Schiff base, being consistent with the X-ray crystal structure. On the other hand, no halide dependence was observed for vibrational bands of the retinal skeleton and the Schiff base in the D212N mutant. This result suggests that the halide does not form a hydrogen bond with the Schiff base directly, unlike the mutation at D85 position. Halide-dependent water bands in the Schiff base region also differ between D85S and D212N. From these results, halide binding site of both proteins and role of two negative charges in BR will be discussed.
Chen, Jing; Yang, Huan; Wang, Jing; Cheng, Shi-Bo
2018-05-30
We present an extensive density functional theory (DFT) calculations on the geometrical and electronic structures of the triatomic LaX 2 - (X=Al, Ga, In) clusters. Various trail structures and spin states have been attempted to determine the lowest-energy geometries of these La-doped metal clusters. The ground states of all three clusters are calculated to possess the trigonal structures with the singlet multiplicities. The calculations on molecular orbitals (MOs) and nucleus-independent chemical shift (NICS) values have been performed to examine the aromatic characteristics of the LaX 2 - (X=Al, Ga, In) clusters. The present calculations disclose that all these metal clusters are doubly aromatic, namely d-p hybridized σ and π aromaticity resulting from the effective overlap between the 5d atomic orbital of the La atom and the p orbitals of the IIIA group elements. Theoretical vertical detachment energies (VDEs) were also calculated to simulate the photoelectron spectra (PES) of the clusters. In addition, by adding the alkali cations (Li + and Na + ) into the LaX 2 - (X=Al, Ga, In) clusters, the geometries and electronic structures of the corresponding neutral salts have also been investigated to gain more insights in the potential of using these aromatic anions as building blocks. Copyright © 2018 Elsevier B.V. All rights reserved.
Applications of free-electron lasers to measurements of energy transfer in biopolymers and materials
NASA Astrophysics Data System (ADS)
Edwards, Glenn S.; Johnson, J. B.; Kozub, John A.; Tribble, Jerri A.; Wagner, Katrina
1992-08-01
Free-electron lasers (FELs) provide tunable, pulsed radiation in the infrared. Using the FEL as a pump beam, we are investigating the mechanisms for energy transfer between localized vibrational modes and between vibrational modes and lattice or phonon modes. Either a laser-Raman system or a Fourier transform infrared (FTIR) spectrometer will serve as the probe beam, with the attribute of placing the burden of detection on two conventional spectroscopic techniques that circumvent the limited response of infrared detectors. More specifically, the Raman effect inelastically shifts an exciting laser line, typically a visible frequency, by the energy of the vibrational mode; however, the shifted Raman lines also lie in the visible, allowing for detection with highly efficient visible detectors. With regards to FTIR spectroscopy, the multiplex advantage yields a distinct benefit for infrared detector response. Our group is investigating intramolecular and intermolecular energy transfer processes in both biopolymers and more traditional materials. For example, alkali halides contain a number of defect types that effectively transfer energy in an intermolecular process. Similarly, the functioning of biopolymers depends on efficient intramolecular energy transfer. Understanding these mechanisms will enhance our ability to modify biopolymers and materials with applications to biology, medecine, and materials science.
Differentiation of the matter of the moon
NASA Technical Reports Server (NTRS)
Vinogradov, A. P.
1977-01-01
The following facts were uncovered in comparing the basaltic surface rocks of the moon with terrestrial tholeiitic basalts and ordinary chondrites: (1) there is an excess of the so-called refractory chemical elements, including the group of truly refractory elements, the rare earths, U, and Th, in comparison with their content in primitive terrestrial basalts and chondrites; (2) the so-called siderophilic elements have lower contents in the lunar surface rocks than in terrestrial rocks; (3) the low alkali content (Na, K, Rb) in lunar rocks is established; (4) there is a low content of H2O and the ordinary gases CO2, halides, etc.; (5) the low content of metals with high vapor pressure, (In, Tl, etc.) has been established. It is proposed that U and Th were carried from the internal areas to the peripheral rocks of the moon during magmatic activity, i.e., up to 3 billion years ago. This redistribution of U and Th lead to their concentration in surface layers of the moon, and the heat which they generated was lost into surrounding space. The conclusion is then reached that in order to understand processes on the moon, the chondritic model cannot be used.
Deconstructing Free Energies in the Law of Matching Water Affinities.
Shi, Yu; Beck, Thomas
2017-03-09
The law of matching water affinities (LMWA) is explored in classical molecular dynamics simulations of several alkali halide ion pairs, spanning the size range from small kosmotropes to large chaotropes. The ion-ion potentials of mean force (PMFs) are computed using three methods: the local molecular field theory (LMFT), the weighted histogram analysis method (WHAM), and integration of the average force. All three methods produce the same total PMF for a given ion pair. In addition, LMFT-based partitioning into van der Waals and local and far-field electrostatic free energies and assessment of the enthalpic, entropic, and ion-water components yield insights into the origins of the observed free energy profiles in water. The results highlight the importance of local electrostatic interactions in determining the shape of the PMFs, while longer-ranged interactions enhance the overall ion-ion attraction, as expected in a dielectric continuum model. The association equilibrium constants are estimated from the smooth WHAM curves and compared to available experimental conductance data. By examining the variations in the average hydration numbers of ions with ion-ion distance, a correlation of the water structure in the hydration shells with the free energy features is found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demmel, F.; Mukhopadhyay, S.; Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ
2016-01-07
The ionic stochastic motions in the molten alkali halide NaF are investigated by quasielastic neutron scattering and first principles molecular dynamics simulation. Quasielastic neutron scattering was employed to extract the diffusion behavior of the sodium ions in the melt. An extensive first principles based simulation on a box of up to 512 particles has been performed to complement the experimental data. From that large box, a smaller 64-particle box has then been simulated over a runtime of 60 ps. A good agreement between calculated and neutron data on the level of spectral shape has been obtained. The obtained sodium diffusionmore » coefficients agree very well. The simulation predicts a fluorine diffusion coefficient similar to the sodium one. Applying the Nernst-Einstein equation, a remarkable large cross correlation between both ions can be deduced. The velocity cross correlations demonstrate a positive correlation between the ions over a period of 0.1 ps. That strong correlation is evidence that the unlike ions do not move completely statistically independent and have a strong association over a short period of time.« less
Rate Theory of Ion Pairing at the Water Liquid–Vapor Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dang, Liem X.; Schenter, Gregory K.; Wick, Collin D.
There is overwhelming evidence that certain ions are present near the vapor–liquid interface of aqueous salt solutions. Despite their importance in many chemical reactive phenomena, how ion–ion interactions are affected by interfaces and their influence on kinetic processes is not well understood. Molecular simulations were carried out to exam the thermodynamics and kinetics of small alkali halide ions in the bulk and near the water vapor–liquid interface. We calculated dissociation rates using classical transition state theory, and corrected them with transmission coefficients determined by the reactive flux method and Grote-Hynes theory. Our results show that, in addition to affecting themore » free energy of ions in solution, the interfacial environments significantly influence the kinetics of ion pairing. The results obtained from the reactive flux method and Grote-Hynes theory on the relaxation time present an unequivocal picture of the interface suppressing ion dissociation. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less
Dielectric breakdown induced by picosecond laser pulses
NASA Technical Reports Server (NTRS)
Smith, W. L.; Bechtel, J. H.; Bloembergen, N.
1976-01-01
The damage thresholds of transparent optical materials were investigated. Single picosecond pulses at 1.06 microns, 0.53 microns and 0.35 microns were obtained from a mode locked Nd-YAG oscillator-amplifier-frequency multiplier system. The pulses were Gaussian in space and time and permitted the determination of breakdown thresholds with a reproducibility of 15%. It was shown that the breakdown thresholds are characteristic of the bulk material, which included nine alkali halides, five different laser host materials, KDP, quartz, sapphire and calcium fluoride. The extension of the damage data to the ultraviolet is significant, because some indication was obtained that two- and three-photon absorption processes begin to play a role in determining the threshold. Throughout the visible region of the spectrum the threshold is still an increasing function of frequency, indicating that avalanche ionization is the dominant factor in determining the breakdown threshold. This was confirmed by a detailed study of the damage morphology with a high resolution microscope just above the threshold. The influence of self focusing is discussed, and evidence for beam distortion below the power threshold for complete self focusing is presented, confirming the theory of Marburger.
Epitaxial growth of pentacene on alkali halide surfaces studied by Kelvin probe force microscopy.
Neff, Julia L; Milde, Peter; León, Carmen Pérez; Kundrat, Matthew D; Eng, Lukas M; Jacob, Christoph R; Hoffmann-Vogel, Regina
2014-04-22
In the field of molecular electronics, thin films of molecules adsorbed on insulating surfaces are used as the functional building blocks of electronic devices. Control of the structural and electronic properties of the thin films is required for reliably operating devices. Here, noncontact atomic force and Kelvin probe force microscopies have been used to investigate the growth and electrostatic landscape of pentacene on KBr(001) and KCl(001) surfaces. We have found that, together with molecular islands of upright standing pentacene, a new phase of tilted molecules appears near step edges on KBr. Local contact potential differences (LCPD) have been studied with both Kelvin experiments and density functional theory calculations. Our images reveal that differently oriented molecules display different LCPD and that their value is independent of the number of molecular layers. These results point to the formation of an interface dipole, which may be explained by a partial charge transfer from the pentacene to the surface. Moreover, the monitoring of the evolution of the pentacene islands shows that they are strongly affected by dewetting: Multilayers build up at the expense of monolayers, and in the Kelvin images, previously unknown line defects appear, which reveal the epitaxial growth of pentacene crystals.
1990-12-01
3,4]. This work allowed us to view the ultrashort ( - 100 fs) pulses . While this laser was being temporal characteristics of the absorption spectrum...regions of high intensity in single water drop- lets (a = 60 Ant) following excita- tion by a single 7-ns, 532-nn laser pulse . Resonant 532-nm laser ...electronic properties of cluster ions of ion beam and the laser pulse , any desired mass range for simple metals (alkali metals). Our earlier efforts
Investigation of a light fixture fire
Jurney, James D.; Cournoyer, Michael E.; Trujillo, Stanley; ...
2016-04-16
Metal-halide lamps produce light by discharging an electric arc through a gaseous mixture of vaporized mercury and metal halides. Metal-halide lamps for use in spaces with lower mounting heights can produce excessive visual glare in the normal, higher field-of-view unless they are equipped with prismatic lenses. Should the bulb fail, high internal operating pressure of the arc tube can launch fragments of arc tube at high velocity in all directions, striking the outer bulb of the lamp with enough force to cause the outer bulb to break. This article reports an investigation of a light fixture fire and reviews amore » case study of a metal-halide lamp fire. We reported on causal analysis of the metal-halide lamp fire uncovered contributing factors that created the environment in which the incident occurred. Latent organizational conditions that created error-likely situations or weakened defenses were identified and controlled. Lastly, effective improvements that reduce the probability or consequence of similar metal-halide lamp fire incidents were implemented.« less
Investigation of a light fixture fire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jurney, James D.; Cournoyer, Michael E.; Trujillo, Stanley
Metal-halide lamps produce light by discharging an electric arc through a gaseous mixture of vaporized mercury and metal halides. Metal-halide lamps for use in spaces with lower mounting heights can produce excessive visual glare in the normal, higher field-of-view unless they are equipped with prismatic lenses. Should the bulb fail, high internal operating pressure of the arc tube can launch fragments of arc tube at high velocity in all directions, striking the outer bulb of the lamp with enough force to cause the outer bulb to break. This article reports an investigation of a light fixture fire and reviews amore » case study of a metal-halide lamp fire. We reported on causal analysis of the metal-halide lamp fire uncovered contributing factors that created the environment in which the incident occurred. Latent organizational conditions that created error-likely situations or weakened defenses were identified and controlled. Lastly, effective improvements that reduce the probability or consequence of similar metal-halide lamp fire incidents were implemented.« less
NASA Astrophysics Data System (ADS)
Jiao, Y.; Acdan, J.; Xu, R.; Deventer, M. J.; Rhew, R. C.
2017-12-01
A precise quantification of global methyl halide budgets is needed to evaluate the ozone depletion potential of these compounds and to predict future changes of stratospheric ozone. However, the global budgets of methyl halides are not balanced between currently identified and quantified sources and sinks. Our study re-evaluated the methyl bromide budget from global cultivated rapeseed (Brassica napus) through life-cycle flux measurements both in the greenhouse and in the field, yielding a methyl bromide emission rate that scales globally to 1.0 - 1.2 Gg yr-1. While this indicates a globally significant source, it is much smaller than the previously widely cited value of 5 - 6 Gg yr-1(Mead et al., 2008), even taking into account the near tripling of annual global yield of rapeseed since the previous evaluation was conducted. Our study also evaluated the methyl chloride and methyl iodide emission levels from rapeseed, yielding emission rates that scale to 5.4 Gg yr-1 for methyl chloride and 1.8 Gg yr-1 of methyl iodide. The concentrations of the methyl donor SAM (S-adenosyl methionine) and the resultant product SAH (S-Adenosyl-L-homocysteine) were also analyzed to explore their role in biogenic methyl halide formation. Halide gradient incubations showed that the magnitude of methyl halide emissions from rapeseed is highly correlated to soil halide levels, thus raising the concern that the heterogeneity of soil halide contents geographically should be considered when extrapolating to global budget.
THE DETERMINATION OF TOTAL ORGANIC HALIDE IN WATER: A COMPARATIVE STUDY OF TWO INSTRUMENTS
Total organic halide (TOX) analyzers are commonly used to measure the amount of dissolved halogenated organic byproducts in disinfected waters. ecause of the lack of information on the identity of disinfection byproducts, rigorous testing of the dissolved organic halide (DOX) pro...
10 CFR 431.327 - Submission of data.
Code of Federal Regulations, 2011 CFR
2011-01-01
... EQUIPMENT Metal Halide Lamp Ballasts and Fixtures Energy Conservation Standards § 431.327 Submission of data.... (2) Each manufacturer or private labeler of a basic model of metal halide lamp ballast shall file a... certification report for each of its metal halide lamp ballast basic models. The certification report (for which...
Total organic halide (TOX) analyzers are commonly used to measure the amount of dissolved halogenated organic byproducts in disinfected waters. Because of the lack of information on the identity of disinfection byproducts, rigorous testing of the dissolved organic halide (DOX) pr...
Silver-halide gelatin holograms
NASA Astrophysics Data System (ADS)
Chang, B. J.; Winick, K.
1980-05-01
The use of a silver-halide gelatin for volume phase holograms having a wide spectral response and lower exposure requirements than alternatives and using commercially available silver salts, is proposed. The main difference between the dichromated gelatin and silver-halide processes is the creation of a hologram latent image, which is given in the form of a hardness differential between exposed and unexposed regions in the silver halide hologram; the differential is in turn created by the reaction products of either tanning development or tanning bleach, which harden the gelatin with link-bonds between molecules.
Lignos, Ioannis; Stavrakis, Stavros; Nedelcu, Georgian; Protesescu, Loredana; deMello, Andrew J; Kovalenko, Maksym V
2016-03-09
Prior to this work, fully inorganic nanocrystals of cesium lead halide perovskite (CsPbX3, X = Br, I, Cl and Cl/Br and Br/I mixed halide systems), exhibiting bright and tunable photoluminescence, have been synthesized using conventional batch (flask-based) reactions. Unfortunately, our understanding of the parameters governing the formation of these nanocrystals is still very limited due to extremely fast reaction kinetics and multiple variables involved in ion-metathesis-based synthesis of such multinary halide systems. Herein, we report the use of a droplet-based microfluidic platform for the synthesis of CsPbX3 nanocrystals. The combination of online photoluminescence and absorption measurements and the fast mixing of reagents within such a platform allows the rigorous and rapid mapping of the reaction parameters, including molar ratios of Cs, Pb, and halide precursors, reaction temperatures, and reaction times. This translates into enormous savings in reagent usage and screening times when compared to analogous batch synthetic approaches. The early-stage insight into the mechanism of nucleation of metal halide nanocrystals suggests similarities with multinary metal chalcogenide systems, albeit with much faster reaction kinetics in the case of halides. Furthermore, we show that microfluidics-optimized synthesis parameters are also directly transferrable to the conventional flask-based reaction.
Thermodynamic Model of the Na-Al-Si-O-F Melts
NASA Astrophysics Data System (ADS)
Dolejs, D.; Baker, D. R.
2004-05-01
Fluorine is a common volatile element in magmatic-hydrothermal systems, but its solution mechanisms in highly polymerized silicate melts are poorly known. We have developed a thermodynamic model for fluorosilicate liquids which links experimentally determined phase equilibria and spectroscopic information on melt structure. The model is applicable to crystallization of fluoride minerals or fluoride-silicate immiscibility in natural felsic melts. Configurational properties of the liquid are defined by mixing of alkali fluoride, polyhedral aluminofluoride and silicofluoride species and non-bridging terminations of the silicate network. Abundances of individual structural species are described by a homogeneous equilibrium, representing melt depolymerization: F- (free) + O0 (bridging) = F0 (terminal) + O- (non-bridging), which is a replacement of one oxygen bridge, Si-O-Si, by two terminations, Si-F | Na-O-Si. In cryolite-bearing systems, the self-dissociation of octahedral aluminofluoride complexes: Na3[AlF6] = Na[AlF4] + 2 NaF, and the short-range order between (O,F)-corners and (Si,NaAl)-centers of tetrahedra: Si-O-Si + 2 [NaAl]-F = [NaAl]-O-[NaAl] + 2 Si-F, represent two additional interaction mechanisms. Portrayal of these equilibria in ternary Thompson reaction space allows to decrease the number of interaction mechanisms by linearly combining melt depolymerization with tetrahedral short-range order. In this formulation, the interaction parameters are incorporated directly in configurational properties, thus the complete melt speciation can be calculated, and the activities of any macroscopic species are readily derived. The model has been applied to subsystems of the Na2O-NaAlO2-SiO2-F2O-1 compositional space. Activity-composition relationships in the villiaumite-sodium silicate binaries require clustering of silicate tetrahedra in fluoride solvent. Phase-equilibria in cryolite-nepheline and cryolite-albite systems illustrate an overall increase of Na3AlF6 self-association in both joins. On the other hand, melt depolymerization by fluorine controls depression of silicate liquidi. The present model is useful for modeling the differentiation of peralkaline fluorine-bearing magmas and provides a starting point for predicting halide, carbonate, sulfide or sulfate saturation in natural melts.
2018-01-01
We propose here a new colloidal approach for the synthesis of both all-inorganic and hybrid organic–inorganic lead halide perovskite nanocrystals (NCs). The main limitation of the protocols that are currently in use, such as the hot injection and the ligand-assisted reprecipitation routes, is that they employ PbX2 (X = Cl, Br, or I) salts as both lead and halide precursors. This imposes restrictions on being able to precisely tune the amount of reaction species and, consequently, on being able to regulate the composition of the final NCs. In order to overcome this issue, we show here that benzoyl halides can be efficiently used as halide sources to be injected in a solution of metal cations (mainly in the form of metal carboxylates) for the synthesis of APbX3 NCs (in which A = Cs+, CH3NH3+, or CH(NH2)2+). In this way, it is possible to independently tune the amount of both cations and halide precursors in the synthesis. The APbX3 NCs that were prepared with our protocol show excellent optical properties, such as high photoluminescence quantum yields, low amplified spontaneous emission thresholds, and enhanced stability in air. It is noteworthy that CsPbI3 NCs, which crystallize in the cubic α phase, are stable in air for weeks without any postsynthesis treatment. The improved properties of our CsPbX3 perovskite NCs can be ascribed to the formation of lead halide terminated surfaces, in which Cs cations are replaced by alkylammonium ions. PMID:29378131
Imran, Muhammad; Caligiuri, Vincenzo; Wang, Mengjiao; Goldoni, Luca; Prato, Mirko; Krahne, Roman; De Trizio, Luca; Manna, Liberato
2018-02-21
We propose here a new colloidal approach for the synthesis of both all-inorganic and hybrid organic-inorganic lead halide perovskite nanocrystals (NCs). The main limitation of the protocols that are currently in use, such as the hot injection and the ligand-assisted reprecipitation routes, is that they employ PbX 2 (X = Cl, Br, or I) salts as both lead and halide precursors. This imposes restrictions on being able to precisely tune the amount of reaction species and, consequently, on being able to regulate the composition of the final NCs. In order to overcome this issue, we show here that benzoyl halides can be efficiently used as halide sources to be injected in a solution of metal cations (mainly in the form of metal carboxylates) for the synthesis of APbX 3 NCs (in which A = Cs + , CH 3 NH 3 + , or CH(NH 2 ) 2 + ). In this way, it is possible to independently tune the amount of both cations and halide precursors in the synthesis. The APbX 3 NCs that were prepared with our protocol show excellent optical properties, such as high photoluminescence quantum yields, low amplified spontaneous emission thresholds, and enhanced stability in air. It is noteworthy that CsPbI 3 NCs, which crystallize in the cubic α phase, are stable in air for weeks without any postsynthesis treatment. The improved properties of our CsPbX 3 perovskite NCs can be ascribed to the formation of lead halide terminated surfaces, in which Cs cations are replaced by alkylammonium ions.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-03
...-2009-BT-STD-0018] RIN 1904-AC00 Energy Conservation Program: Energy Conservation Standards for Metal... certain metal halide lamp fixtures. This document announces that the period for submitting comments on the... identify the Framework Document for energy conservation standards for metal halide lamp fixtures and...
PREPARATION OF HALIDES OF PLUTONIUM
Garner, C.S.; Johns, I.B.
1958-09-01
A dry chemical method is described for preparing plutonium halides, which consists in contacting plutonyl nitrate with dry gaseous HCl or HF at an elevated temperature. The addition to the reaction gas of a small quantity of an oxidizing gas or a reducing gas will cause formation of the tetra- or tri-halide of plutonium as desired.
Bulk assembly of organic metal halide nanotubes
Lin, Haoran; Zhou, Chenkun; Tian, Yu; ...
2017-10-16
The organic metal halide hybrids welcome a new member with a one-dimensional (1D) tubular structure. Herein we report the synthesis and characterization of a single crystalline bulk assembly of organic metal halide nanotubes, (C 6H 13N 4) 3Pb 2Br 7. In a metal halide nanotube, six face-sharing metal halide dimers (Pb 2Br 9 5–) connect at the corners to form rings that extend in one dimension, of which the inside and outside surfaces are coated with protonated hexamethylenetetramine (HMTA) cations (C 6H 13N 4 +). This unique 1D tubular structure possesses highly localized electronic states with strong quantum confinement, resultingmore » in the formation of self-trapped excitons that give strongly Stokes shifted broadband yellowish-white emission with a photoluminescence quantum efficiency (PLQE) of ~7%. Finally, having realized single crystalline bulk assemblies of two-dimensional (2D) wells, 1D wires, and now 1D tubes using organic metal halide hybrids, our work significantly advances the research on bulk assemblies of quantum-confined materials.« less
Genetic Control of Methyl Halide Production in Arabidopsis
NASA Astrophysics Data System (ADS)
Rhew, R. C.; Ostergaard, L.; Saltzman, E. S.; Yanofsky, M. F.
2003-12-01
Methyl chloride and methyl bromide are the primary carriers of natural chlorine and bromine to the stratosphere where they catalyze the destruction of ozone, whereas methyl iodide influences aerosol formation and ozone loss in the troposphere. Methyl bromide is also an agricultural fumigant whose use is scheduled to be phased out by international agreement. Despite the economic and environmental importance of these methyl halides, their natural sources and biological production mechanisms are poorly understood. Currently identified sources include oceans, biomass burning, industrial and agricultural use, fuel combustion, salt marshes, wetlands, rice paddies, certain terrestrial plants and fungi, and abiotic processes. We demonstrate that the model plant Arabidopsis thaliana produces and emits methyl halides and that the enzyme primarily responsible for the production is encoded by the HARMLESS TO OZONE LAYER (HOL) gene located on chromosome II. In mutant plants that have a disruption of the HOL gene, methyl halide production is largely eliminated. A phylogenetic analysis using the HOL gene suggests that the ability to produce methyl halides is widespread among vascular plants. This approach provides a genetic basis for understanding and predicting patterns of methyl halide production by plants.
Methods for improved growth of group III nitride semiconductor compounds
Melnik, Yuriy; Chen, Lu; Kojiri, Hidehiro
2015-03-17
Methods are disclosed for growing group III-nitride semiconductor compounds with advanced buffer layer technique. In an embodiment, a method includes providing a suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. The method includes forming an AlN buffer layer by flowing an ammonia gas into a growth zone of the processing chamber, flowing an aluminum halide containing precursor to the growth zone and at the same time flowing additional hydrogen halide or halogen gas into the growth zone of the processing chamber. The additional hydrogen halide or halogen gas that is flowed into the growth zone during buffer layer deposition suppresses homogeneous AlN particle formation. The hydrogen halide or halogen gas may continue flowing for a time period while the flow of the aluminum halide containing precursor is turned off.
Mixed-Halide Perovskites with Stabilized Bandgaps.
Xiao, Zhengguo; Zhao, Lianfeng; Tran, Nhu L; Lin, Yunhui Lisa; Silver, Scott H; Kerner, Ross A; Yao, Nan; Kahn, Antoine; Scholes, Gregory D; Rand, Barry P
2017-11-08
One merit of organic-inorganic hybrid perovskites is their tunable bandgap by adjusting the halide stoichiometry, an aspect critical to their application in tandem solar cells, wavelength-tunable light emitting diodes (LEDs), and lasers. However, the phase separation of mixed-halide perovskites caused by light or applied bias results in undesirable recombination at iodide-rich domains, meaning open-circuit voltage (V OC ) pinning in solar cells and infrared emission in LEDs. Here, we report an approach to suppress halide redistribution by self-assembled long-chain organic ammonium capping layers at nanometer-sized grain surfaces. Using the stable mixed-halide perovskite films, we are able to fabricate efficient and wavelength-tunable perovskite LEDs from infrared to green with high external quantum efficiencies of up to 5%, as well as linearly tuned V OC from 1.05 to 1.45 V in solar cells.
Potturi, Hima K; Gurung, Ras K; Hou, Yuqing
2012-01-06
Aliphatic or aromatic N,N-disubstituted nitrosamine was generated in fair to excellent yield from the reaction of a secondary or tertiary amine with o-iodoxybenzoic acid (IBX) or o-iodosylbenzoic acid (IBA)/R(4)NX (X = halide) and nitromethane. The product yield was strongly influenced by both the halide of R(4)NX and iodanes. IBX gave a higher yield than IBA, while the halides follow F(-) > Cl(-) > Br(-) ∼ I(-). Nitrous acid formed in situ from nitromethane and IBX (or IBA)/halides is likely responsible for the observed reaction.
Adsorption of halogens on metal surfaces
NASA Astrophysics Data System (ADS)
Andryushechkin, B. V.; Pavlova, T. V.; Eltsov, K. N.
2018-06-01
This paper presents a review of the experimental and theoretical investigations of halogen interaction with metal surfaces. The emphasis was placed on the recent measurements performed with a scanning tunneling microscope in combination with density functional theory calculations. The surface structures formed on metal surface after halogen interaction are classified into three groups: chemisorbed monolayer, surface halide, bulk-like halide. Formation of monolayer structures is described in terms of surface phase transitions. Surface halide phases are considered to be intermediates between chemisorbed halogen and bulk halide. The modern theoretical approaches in studying the dynamics of metal halogenation reactions are also presented.
Energetics of halogen impurities in thorium dioxide
NASA Astrophysics Data System (ADS)
Kuganathan, Navaratnarajah; Ghosh, Partha S.; Arya, Ashok K.; Dey, Gautam K.; Grimes, Robin W.
2017-11-01
Defect energies for halogen impurity atoms (Cl, Br and I) in thoria are calculated using the generalized gradient approximation and projector augmented plane wave potentials under the framework of density functional theory. The energy to place a halogen atom at a pre-existing lattice site is the incorporation energy. Seven sites are considered: octahedral interstitial, O vacancy, Th vacancy, Th-O di-vacancy cluster (DV) and the three O-Th-O tri-vacancy cluster (NTV) configurations. For point defects and vacancy clusters, neutral and all possible defect charge states up to full formal charge are considered. The most favourable incorporation site for Cl is the singly charged positive oxygen vacancy while for Br and I it is the NTV1 cluster. By considering the energy to form the defect sites, solution energies are generated. These show that in both ThO2-x and ThO2 the most favourable solution equilibrium site for halides is the single positively charged oxygen vacancy (although in ThO2, I demonstrates the same solubility in the NTV1 and DV clusters). Solution energies are much lower in ThO2-x than in ThO2 indicating that stoichiometry is a significant factor in determining solubility. In ThO2, all three halogens are highly insoluble and in ThO2-x Br and I remain insoluble. Although ½Cl2 is soluble in ThO2-x alternative phases such as ZrCl4 exist which are of lower energy.
Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator
Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT
2011-12-13
Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.
Code of Federal Regulations, 2010 CFR
2010-01-01
... efficiency of metal halide ballasts. 431.324 Section 431.324 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts and Fixtures Test Procedures § 431.324 Uniform test method for the measurement of energy efficiency of metal...
Continuous production of granular or powder Ti, Zr and Hf or their alloy products
White, Jack C.; Oden, Laurance L.
1993-01-01
A continuous process for producing a granular metal selected from the group consisting of Ti, Zr or Hf under conditions that provide orderly growth of the metal free of halide inclusions comprising: a) dissolving a reducing metal selected from the group consisting of Na, Mg, Li or K in their respective halide salts to produce a reducing molten salt stream; b) preparing a second molten salt stream containing the halide salt of Ti, Zr or Hf; c) mixing and reacting the two molten streams of steps a) and b) in a continuous stirred tank reactor; d) wherein steps a) through c) are conducted at a temperature range of from about 800.degree. C. to about 1100.degree. C. so that a weight percent of equilibrium solubility of the reducing metal in its respective halide salt varies from about 1.6 weight percent at about 900.degree. C. to about 14.4 weight percent at about 1062.degree. C.; and wherein a range of concentration of the halide salt of Ti, Zn or Hf in molten halides of Na, Mg, Li or K is from about 1 to about 5 times the concentration of Na, Mg, Li or K; e) placing the reacted molten stream from step c) in a solid-liquid separator to recover an impure granular metal product by decantation, centrifugation, or filtration; and f) removing residual halide salt impurity by vacuum evaporator or inert gas sweep at temperatures from about 850.degree. C. to 1000.degree. C. or cooling the impure granular metal product to ambient temperature and water leaching off the residual metal halide salt.
Non-hydrolytic metal oxide films for perovskite halide overcoating and stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinson, Alex B.; Kim, In Soo
A method of protecting a perovskite halide film from moisture and temperature includes positioning the perovskite halide film in a chamber. The chamber is maintained at a temperature of less than 200 degrees Celsius. An organo-metal compound is inserted into the chamber. A non-hydrolytic oxygen source is subsequently inserted into the chamber. The inserting of the organo-metal compound and subsequent inserting of the non-hydrolytic oxygen source into the chamber is repeated for a predetermined number of cycles. The non-hydrolytic oxygen source and the organo-metal compound interact in the chamber to deposit a non-hydrolytic metal oxide film on perovskite halide film.more » The non-hydrolytic metal oxide film protects the perovskite halide film from relative humidity of greater than 35% and a temperature of greater than 150 degrees Celsius, respectively.« less
Alkali metal ion battery with bimetallic electrode
Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli
2015-04-07
Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.
Carlsten, R.W.; Nissen, D.A.
1973-03-06
The patent describes an improved thermal battery whose novel design eliminates various disadvantages of previous such devices. Its major features include a halide cathode, a solid metal halide electrolyte which has a substantially greater electrical conductance after a phase transition at some temperature, and a means for heating its electrochemical cells to activation temperature.
Nuclear radiation-warning detector that measures impedance
Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven
2013-06-04
This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ALAM,TODD M.
Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.
Effect of Halide Composition on the Photochemical Stability of Perovskite Photovoltaic Materials.
Misra, Ravi K; Ciammaruchi, Laura; Aharon, Sigalit; Mogilyansky, Dmitry; Etgar, Lioz; Visoly-Fisher, Iris; Katz, Eugene A
2016-09-22
The photochemical stability of encapsulated films of mixed halide perovskites with a range of MAPb(I 1-x Br x ) 3 (MA=methylammonium) compositions (solid solutions) was investigated under accelerated stressing using concentrated sunlight. The relevance of accelerated testing to standard operational conditions of solar cells was confirmed by comparison to degradation experiments under outdoor sunlight exposure. We found that MAPbBr 3 films exhibited no degradation, while MAPbI 3 and mixed halide MAPb(I 1-x Br x ) 3 films decomposed yielding crystallization of inorganic PbI 2 accompanied by degradation of the perovskite solar light absorption, with faster absorption degradation in mixed halide films. The crystal coherence length was found to correlate with the stability of the films. We postulate that the introduction of Br into the mixed halide solid solution stressed its structure and induced more structural defects and/or grain boundaries compared to pure halide perovskites, which might be responsible for the accelerated degradation. Hence, the cause for accelerated degradation may be the increased defect density rather than the chemical composition of the perovskite materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Baesman, S.M.; Miller, L.G.
2005-01-01
Large carbon kinetic isotope effects (KIEs) were measured for reactions of methyl bromide (MeBr), methyl chloride (MeCl), and methyl iodide (MeI) with various nucleophiles at 287 and 306 K in aqueous solutions. Rates of reaction of MeBr and MeI with H2O (neutral hydrolysis) or Cl- (halide substitution) were consistent with previous measurements. Hydrolysis rates increased with increasing temperature or pH (base hydrolysis). KIEs for hydrolysis were 51 ?? 6??? for MeBr and 38 ?? 8??? for MeI. Rates of halide substitution increased with increasing temperature and greater reactivity of the attacking nucleophile, with the fastest reaction being that of MeI with Br-. KIEs for halide substitution were independent of temperature but varied with the reactant methyl halide and the attacking nucleophile. KIEs were similar for MeBr substitution with Cl- and MeCl substitution with Br- (57 ?? 5 and 60 ?? 9??? respectively). The KIE for halide exchange of MeI was lower overall (33 ?? 8??? and was greater for substitution with Br- (46 ?? 6???) than with Cl- (29 ?? 6???). ?? Springer Science + Business Media, Inc. 2005.
Rationalizing the light-induced phase separation of mixed halide organic-inorganic perovskites.
Draguta, Sergiu; Sharia, Onise; Yoon, Seog Joon; Brennan, Michael C; Morozov, Yurii V; Manser, Joseph S; Kamat, Prashant V; Schneider, William F; Kuno, Masaru
2017-08-04
Mixed halide hybrid perovskites, CH 3 NH 3 Pb(I 1-x Br x ) 3 , represent good candidates for low-cost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material's optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodide-rich phases. It additionally explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.Mixed halide hybrid perovskites possess tunable band gaps, however, under illumination they undergo phase separation. Using spectroscopic measurements and theoretical modelling, Draguta and Sharia et al. quantitatively rationalize the microscopic processes that occur during phase separation.
Hydrothermal alkali metal catalyst recovery process
Eakman, James M.; Clavenna, LeRoy R.
1979-01-01
In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.
Lopes, Pietro P.; Strmcnik, Dusan; Jirkovsky, Jakub S.; ...
2015-09-28
Oxygen reduction and ethanol oxidation reactions were studied on Au(111), Pt(111) and Ir(111) in alkaline solutions containing sodium and/or lithium cations. By keeping the same (111) surface orientation and exploring oxophilicity trends and non-covalent interactions between OH ad and alkali metal cations (AMC n+), we were able to gain deep insights into the multiple roles that OH ad plays in these important electrocatalytic reactions. Cyclic voltammetry experiments revealed that OH ad formation initiates at distinct electrode potentials, governed by the oxophilicity of the specific metal surface, with further OH ad adlayer stabilization by non-covalent alkali-cation interactions and affecting the formationmore » of a “true oxide” layer at higher electrode potentials. Although OH ad is a simple spectator for the ORR, it promotes the ethanol oxidation reaction (EOR) at lower potentials and act as spectator at high OHad coverages. By changing the alkali metal cation at the interface (Li +) on more oxophilic surfaces, it was possible to promote the EOR even more, relative to Na +, without changing the product distribution for the reaction. This cation effect suggests that OH ad—Li +(H 2O) x clusters can stabilize the ethoxide adlayer, thus improving the EOR activity. Finally, our results indicate the importance of the entire electrochemical interface in determining the electrocatalytic activity during reaction.« less
Huang, Guangguang; Wang, Chunlei; Xu, Shuhong; Zong, Shenfei; Lu, Ju; Wang, Zhuyuan; Lu, Changgui; Cui, Yiping
2017-08-01
Unlike widely used postsynthetic halide exchange for CsPbX 3 (X is halide) perovskite nanocrystals (NCs), cation exchange of Pb is of a great challenge due to the rigid nature of the Pb cationic sublattice. Actually, cation exchange has more potential for rendering NCs with peculiar properties. Herein, a novel halide exchange-driven cation exchange (HEDCE) strategy is developed to prepare dually emitting Mn-doped CsPb(Cl/Br) 3 NCs via postsynthetic replacement of partial Pb in preformed perovskite NCs. The basic idea for HEDCE is that the partial cation exchange of Pb by Mn has a large probability to occur as a concomitant result for opening the rigid halide octahedron structure around Pb during halide exchange. Compared to traditional ionic exchange, HEDCE is featured by proceeding of halide exchange and cation exchange at the same time and lattice site. The time and space requirements make only MnCl 2 molecules (rather than mixture of Mn and Cl ions) capable of doping into perovskite NCs. This special molecular doping nature results in a series of unusual phenomenon, including long reaction time, core-shell structured mid states with triple emission bands, and dopant molecules composition-dependent doping process. As-prepared dual-emitting Mn-doped CsPb(Cl/Br) 3 NCs are available for ratiometric temperature sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, John Howard; Alvare, Javier
Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte solution andmore » may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.« less
Veličković, S R; Đustebek, J B; Veljković, F M; Veljković, M V
2012-05-01
Clusters of the type Li(n)X (X = halides) can be considered as potential building blocks of cluster-assembly materials. In this work, Li(n)Br (n = 2-7) clusters were obtained by a thermal ionization source of modified design and selected by a magnetic sector mass spectrometer. Positive ions of the Li(n)Br (n = 4-7) cluster were detected for the first time. The order of ion intensities was Li(2)Br(+) > Li(4)Br(+) > Li(5)Br(+) > Li(6)Br(+) > Li(3)Br(+). The ionization energies (IEs) were measured and found to be 3.95 ± 0.20 eV for Li(2)Br, 3.92 ± 0.20 eV for Li(3)Br, 3.93 ± 0.20 eV for Li(4)Br, 4.08 ± 0.20 eV for Li(5)Br, 4.14 ± 0.20 eV for Li(6)Br and 4.19 ± 0.20 eV for Li(7)Br. All of these clusters have a much lower ionization potential than that of the lithium atom, so they belong to the superalkali class. The IEs of Li(n)Br (n = 2-4) are slightly lower than those in the corresponding small Li(n) or Li(n)H clusters, whereas the IEs of Li(n)Br are very similar to those of Li(n) or Li(n)H for n = 5 and 6. The thermal ionization source of modified design is an important means for simultaneously obtaining and measuring the IEs of Li(n)Br (n = 2-7) clusters (because their ions are hermodynamically stable with respect to the loss of lithium atoms in the gas phase) and increasingly contributes toward the development of clusters for practical applications. Copyright © 2012 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutter-Fella, Carolin M.; Li, Yanbo; Cefarin, Nicola
Organo-lead halide perovskites have recently attracted great interest for potential applications in thin-film photovoltaics and optoelectronics. Herein, we present a protocol for the fabrication of this material via the low-pressure vapor assisted solution process (LP-VASP) method, which yields ~19% power conversion efficiency in planar heterojunction perovskite solar cells. First, we report the synthesis of methylammonium iodide (CH 3NH 3I) and methylammonium bromide (CH 3NH 3Br) from methylamine and the corresponding halide acid (HI or HBr). Then, we describe the fabrication of pinhole-free, continuous methylammonium-lead halide perovskite (CH 3NH 3PbX 3 with X = I, Br, Cl and their mixture) filmsmore » with the LP-VASP. This process is based on two steps: i) spin-coating of a homogenous layer of lead halide precursor onto a substrate, and ii) conversion of this layer to CH 3NH 3PbI 3-xBr x by exposing the substrate to vapors of a mixture of CH 3NH 3I and CH 3NH 3Br at reduced pressure and 120 °C. Through slow diffusion of the methylammonium halide vapor into the lead halide precursor, we achieve slow and controlled growth of a continuous, pinhole-free perovskite film. The LP-VASP allows synthetic access to the full halide composition space in CH 3NH 3PbI 3-xBr x with 0 ≤ x ≤ 3. Depending on the composition of the vapor phase, the bandgap can be tuned between 1.6 eV ≤ E g ≤ 2.3 eV. In addition, by varying the composition of the halide precursor and of the vapor phase, we can also obtain CH 3NH 3PbI 3-xCl x. Films obtained from the LP-VASP are reproducible, phase pure as confirmed by X-ray diffraction measurements, and show high photoluminescence quantum yield. The process does not require the use of a glovebox.« less
Sutter-Fella, Carolin M.; Li, Yanbo; Cefarin, Nicola; ...
2017-09-08
Organo-lead halide perovskites have recently attracted great interest for potential applications in thin-film photovoltaics and optoelectronics. Herein, we present a protocol for the fabrication of this material via the low-pressure vapor assisted solution process (LP-VASP) method, which yields ~19% power conversion efficiency in planar heterojunction perovskite solar cells. First, we report the synthesis of methylammonium iodide (CH 3NH 3I) and methylammonium bromide (CH 3NH 3Br) from methylamine and the corresponding halide acid (HI or HBr). Then, we describe the fabrication of pinhole-free, continuous methylammonium-lead halide perovskite (CH 3NH 3PbX 3 with X = I, Br, Cl and their mixture) filmsmore » with the LP-VASP. This process is based on two steps: i) spin-coating of a homogenous layer of lead halide precursor onto a substrate, and ii) conversion of this layer to CH 3NH 3PbI 3-xBr x by exposing the substrate to vapors of a mixture of CH 3NH 3I and CH 3NH 3Br at reduced pressure and 120 °C. Through slow diffusion of the methylammonium halide vapor into the lead halide precursor, we achieve slow and controlled growth of a continuous, pinhole-free perovskite film. The LP-VASP allows synthetic access to the full halide composition space in CH 3NH 3PbI 3-xBr x with 0 ≤ x ≤ 3. Depending on the composition of the vapor phase, the bandgap can be tuned between 1.6 eV ≤ E g ≤ 2.3 eV. In addition, by varying the composition of the halide precursor and of the vapor phase, we can also obtain CH 3NH 3PbI 3-xCl x. Films obtained from the LP-VASP are reproducible, phase pure as confirmed by X-ray diffraction measurements, and show high photoluminescence quantum yield. The process does not require the use of a glovebox.« less
Improved catalytic properties of halohydrin dehalogenase by modification of the halide-binding site.
Tang, Lixia; Torres Pazmiño, Daniel E; Fraaije, Marco W; de Jong, René M; Dijkstra, Bauke W; Janssen, Dick B
2005-05-03
Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 catalyzes the dehalogenation of vicinal haloalcohols by an intramolecular substitution reaction, resulting in the formation of the corresponding epoxide, a halide ion, and a proton. Halide release is rate-limiting during the catalytic cycle of the conversion of (R)-p-nitro-2-bromo-1-phenylethanol by the enzyme. The recent elucidation of the X-ray structure of HheC showed that hydrogen bonds between the OH group of Tyr187 and between the Odelta1 atom of Asn176 and Nepsilon1 atom of Trp249 could play a role in stabilizing the conformation of the halide-binding site. The possibility that these hydrogen bonds are important for halide binding and release was studied using site-directed mutagenesis. Steady-state kinetic studies revealed that mutant Y187F, which has lost both hydrogen bonds, has a higher catalytic activity (k(cat)) with two of the three tested substrates compared to the wild-type enzyme. Mutant W249F also shows an enhanced k(cat) value with these two substrates, as well as a remarkable increase in enantiopreference for (R)-p-nitro-2-bromo-1-phenylethanol. In case of a mutation at position 176 (N176A and N176D), a 1000-fold lower catalytic efficiency (k(cat)/K(m)) was obtained, which is mainly due to an increase of the K(m) value of the enzyme. Pre-steady-state kinetic studies showed that a burst of product formation precedes the steady state, indicating that halide release is still rate-limiting for mutants Y187F and W249F. Stopped-flow fluorescence experiments revealed that the rate of halide release is 5.6-fold higher for the Y187F mutant than for the wild-type enzyme and even higher for the W249F enzyme. Taken together, these results show that the disruption of two hydrogen bonds around the halide-binding site increases the rate of halide release and can enhance the overall catalytic activity of HheC.
Adsorption of Bromine on Gold Nanoclusters
NASA Astrophysics Data System (ADS)
Salvo, Christopher; Keagy, Josiah; Yarmoff, Jory
Small metal nanoclusters are extremely effective as catalysts, with rates that rival those of enzymes in biological systems. The first step in a catalytic reaction is the adsorption of a precursor molecule. The neutralization of alkali projectiles during low energy ion scattering (LEIS), which is acutely sensitive to the local electrostatic potential a few Å's above the surface, is used here to probe Au nanoclusters grown on SiO2 as they are reacted with Br2. Previous work had demonstrated very efficient neutralization in scattering from small catalytically active Au clusters, which was interpreted as an indication that the bare clusters are negatively charged. X-ray photoelectron spectroscopy and LEIS show little or no Br signal after exposing SiO2 and Au foil to Br2, suggesting that adsorption does not occur because the Br-Br bond does not break. Dissociative adsorption occurs rapidly, however, when small Au nanoclusters are reacted with Br2. 1.5 keV Na+ ions scattered from the Au clusters show a decrease in the neutralization probability as Br is reacted, indicating that adsorption results in charge being transferred from the cluster to the Br adatom. This material is based upon work supported by the National Science Foundation under CHE - 1611563.
Sharp, David W.
1980-01-01
In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.
Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draguta, Sergiu; Sharia, Onise; Yoon, Seog Joon
Mixed halide hybrid perovskites, CH 3NH 3Pb(I 1-xBrx) 3' represent good candidates for lowcost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material’s optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodiderich phases. It additionallymore » explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.« less
Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites
Draguta, Sergiu; Sharia, Onise; Yoon, Seog Joon; ...
2017-08-04
Mixed halide hybrid perovskites, CH 3NH 3Pb(I 1-xBrx) 3' represent good candidates for lowcost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material’s optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodiderich phases. It additionallymore » explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.« less
METHOD OF PREPARING METAL HALIDES
Hendrickson, A.V.
1958-11-18
The conversion of plutonium halides from plutonium peroxide can be done by washing the peroxide with hydrogen peroxide, drying the peroxide, passing a dry gaseous hydrohalide over the surface of the peroxide at a temperature of about lOO icient laborato C until the reaction rate has stabillzed, and then ralsing the reaction temperature to between 400 and 600 icient laborato C until the conversion to plutonium halide is substantially complete.
Anti-perovskite solid electrolyte compositions
Zhao, Yusheng; Daemen, Luc Louis
2015-12-26
Solid electrolyte antiperovskite compositions for batteries, capacitors, and other electrochemical devices have chemical formula Li.sub.3OA, Li.sub.(3-x)M.sub.x/2OA, Li.sub.(3-x)N.sub.x/3OA, or LiCOX.sub.zY.sub.(1-z), wherein M and N are divalent and trivalent metals respectively and wherein A is a halide or mixture of halides, and X and Y are halides.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Determination Procedure for Metal Halide Lamp Ballasts C Appendix C to Subpart S of Part 431 Energy DEPARTMENT... EQUIPMENT Metal Halide Lamp Ballasts and Fixtures Pt. 431, Subpt. S, App. C Appendix C to Subpart S of Part..., and n1 is the total number of tests. (c) Compute the standard deviation (S1) of the measured energy...
Kempe, André; Lackner, Maximilian
2016-01-01
The influence of aqueous halide solutions on collagen coatings was tested. The effects on resistance against indentation/penetration on adhesion forces were measured by atomic force microscopy (AFM) and the change of Young's modulus of the coating was derived. Comparative measurements over time were conducted with halide solutions of various concentrations. Physical properties of the mesh-like coating generally showed large variability. Starting with a compact set of physical properties, data disperse after minutes. A trend of increase in elasticity and permeability was found for all halide solutions. These changes were largest in NaI, displaying a logical trend with ion size. However a correlation with concentration was not measured. Adhesion properties were found to be independent of mechanical properties. The paper also presents practical experience for AFM measurements of soft tissue under liquids, particularly related to data evaluation. The weakening in physical strength found after exposure to halide solutions may be interpreted as widening of the network structure or change in the chemical properties in part of the collagen fibres (swelling). In order to design customized surface coatings at optimized conditions also for medical applications, halide solutions might be used as agents with little impact on the safety of patients. PMID:27721994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Shi-Tu; Jiang, Shuai; Liu, Yi-Rong
2015-03-03
Although ammonium ion–water clusters are abundant in the biosphere, some information regarding these clusters, such as their growth route, the influence of temperature and humidity, and the concentrations of various hydrated clusters, is lacking. In this study, theoretical calculations are performed on ammonium ion–water clusters. These theoretical calculations are focused on determining the following characteristics: (1) the pattern of cluster growth; (2) the percentages of clusters of the same size at different temperatures and humidities; (3) the distributions of different isomers for the same size clusters at different temperatures; (4) the relative strengths of the noncovalent interactions for clusters ofmore » different sizes. The results suggest that the dipole moment may be very significant for the ammonium ion–water system, and some new stable isomers were found. The nucleation of ammonium ions and water molecules is favorable at low temperatures; thus, the clusters observed at high altitudes might not be present at low altitudes. High humidity can contribute to the formation of large ammonium ion–water clusters, whereas the formation of small clusters may be favorable under low-humidity conditions. The potential energy surfaces (PES) of these different sized clusters are complicated and differ according to the distribution of isomers at different temperatures. Some similar structures are observed between NH4+(H2O)n and M(H2O)n (where M represents an alkali metal ion or water molecule); when n = 8, the clusters begin to form the closed-cage geometry. As the cluster size increases, these interactions become progressively weaker. The successive binding energy at the DF-MP2-F12/VDZ-F12 level is better than that at the PW91PW91/6-311++G(3df, 3pd) level and is consistent with the experimentally determined values.« less
Pei, Shi-Tu; Jiang, Shuai; Liu, Yi-Rong; Huang, Teng; Xu, Kang-Ming; Wen, Hui; Zhu, Yu-Peng; Huang, Wei
2015-03-26
Although ammonium ion-water clusters are abundant in the biosphere, some information regarding these clusters, such as their growth route, the influence of temperature and humidity, and the concentrations of various hydrated clusters, is lacking. In this study, theoretical calculations are performed on ammonium ion-water clusters. These theoretical calculations are focused on determining the following characteristics: (1) the pattern of cluster growth; (2) the percentages of clusters of the same size at different temperatures and humidities; (3) the distributions of different isomers for the same size clusters at different temperatures; (4) the relative strengths of the noncovalent interactions for clusters of different sizes. The results suggest that the dipole moment may be very significant for the ammonium ion-water system, and some new stable isomers were found. The nucleation of ammonium ions and water molecules is favorable at low temperatures; thus, the clusters observed at high altitudes might not be present at low altitudes. High humidity can contribute to the formation of large ammonium ion-water clusters, whereas the formation of small clusters may be favorable under low-humidity conditions. The potential energy surfaces (PES) of these different sized clusters are complicated and differ according to the distribution of isomers at different temperatures. Some similar structures are observed between NH4(+)(H2O)n and M(H2O)n (where M represents an alkali metal ion or water molecule); when n = 8, the clusters begin to form the closed-cage geometry. As the cluster size increases, these interactions become progressively weaker. The successive binding energy at the DF-MP2-F12/VDZ-F12 level is better than that at the PW91PW91/6-311++G(3df, 3pd) level and is consistent with the experimentally determined values.
Alkali metal for ultraviolet band-pass filter
NASA Technical Reports Server (NTRS)
Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)
1993-01-01
An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.
The deformation stimulated luminescence in KCl, KBr and KI crystals
NASA Astrophysics Data System (ADS)
Shunkeyev, K.; Sergeyev, D.; Drozdowski, W.; Brylev, K.; Myasnikova, L.; Barmina, A.; Zhanturina, N.; Sagimbaeva, Sh; Aimaganbetova, Z.
2017-05-01
Currently, strengthening of the intensity of luminescence in alkali halide crystals (AHC) at lattice symmetry lowering is discussed as a promising direction for the development of scintillation detectors [1-3]. In this regard, for the study of anion excitons and radiation defects in the AHC anion sublattice at deformation, the crystals with the same sizes of cations and different sizes of anions were chosen. In the X-ray spectra of KCl at 10 K, the luminescence at 3.88 eV; 3.05 eV and 2.3 eV is clearly visible. The luminescence at 3.05 eV corresponds to the tunneling recharge [F*, H]. Luminescence at 3.88 eV is quenched in the region of thermal destruction of F‧-centers and characterizes tunneling recharge of F‧, VK-centers. In KCl at 90 K, the luminescence of self-trapped excitons (STE) is completely absent. In KBr at deformation not only STE luminescence, but also deformation stimulated luminescence at 3.58 eV were recorded, the last one corresponds to tunneling recharge of F‧, VK-centers. In KI crystal at 10 K and 90 K at deformation, only STE luminescence is enhanced. There are no deformation luminescence bands in KI compares with KBr and KCl crystals.
New Phenomena in High Temperature Nanofriction on Nonmelting Surfaces: NaCl(100)
NASA Astrophysics Data System (ADS)
Zykova-Timan, Tatyana; Ceresoli, Davide; Tosatti, Erio
2006-03-01
High temperature nanofriction is a difficult and so far unexplored area whwere we made an initial attack by means of simulation. Alkali halide (100) surfaces were chosen as they would not automatically liquefy under a sliding tip, even at temperatures very close to the melting point. We conducted sliding friction molecular dynamics simulations of hard tips on NaCl(100),both in the heavy ploughing, wear-dominated regime, and in the light grazing, wearless regime. Ploughing friction shows for increasing temperature a strong frictional drop near the melting point. Here the tip can be characterized as ``skating'' over the hot solid, its apex surrounded by a local liquid halo, which moves along with the tip as it ploughs on. At the opposite extreme, we find that grazing friction of a lightly pressed flat-ended tip behaves just the other way around. Starting with an initially very weak low temperature frictional force, there is a surge of friction just near the melting point, where the surface is still solid, but not too far from a vibrational instability. This frictional rise can be envisaged as an analog of the celebrated ``peak effect'' found close to Hc2 in the mixed state critical current of type II superconductors.
NASA Astrophysics Data System (ADS)
Li, Chen; Requist, Ryan; Gross, E. K. U.
2018-02-01
We perform model calculations for a stretched LiF molecule, demonstrating that nonadiabatic charge transfer effects can be accurately and seamlessly described within a density functional framework. In alkali halides like LiF, there is an abrupt change in the ground state electronic distribution due to an electron transfer at a critical bond length R = Rc, where an avoided crossing of the lowest adiabatic potential energy surfaces calls the validity of the Born-Oppenheimer approximation into doubt. Modeling the R-dependent electronic structure of LiF within a two-site Hubbard model, we find that nonadiabatic electron-nuclear coupling produces a sizable elongation of the critical Rc by 0.5 bohr. This effect is very accurately captured by a simple and rigorously derived correction, with an M-1 prefactor, to the exchange-correlation potential in density functional theory, M = reduced nuclear mass. Since this nonadiabatic term depends on gradients of the nuclear wave function and conditional electronic density, ∇Rχ(R) and ∇Rn(r, R), it couples the Kohn-Sham equations at neighboring R points. Motivated by an observed localization of nonadiabatic effects in nuclear configuration space, we propose a local conditional density approximation—an approximation that reduces the search for nonadiabatic density functionals to the search for a single function y(n).
NASA Technical Reports Server (NTRS)
Rubin, Alan E.; Zolensky, Michael E.; Bodnar, Robert J.
2002-01-01
Zag and Monahans (1998) are H-chondrite regolith breccias comprised mainly of lightcolored metamorphosed clasts, dark clasts that exhibit extensive silicate darkening, and a halite-bearing clastic matrix. These meteorites reflect a complex set of modification processes that occurred on the H-chondrite parent body. The light-colored clasts are thermally metamorphosed H5 and H6 rocks that were fragmented and deposited in the regolith. The dark clasts formed from light-colored clasts during shock events that melted and mobilized a significant fraction of their metallic Fe-Ni and troilite grains. The clastic matrices of these meteorites are rich in solar-wind gases. Parent-body water was required to cause leaching of chondri tic minerals and chondrule glass; the fluids became enriched in Na, K, CI, Br, AI, Ca, Mg and Fe. Evaporation of the fluids caused them to become brines as halides and alkalies became supersaturated; grains of halite (and, in the case of Monahans (1998), halite with sylvite inclusions) precipitated at low temperatures (less than or equal to 100 C) in the porous regolith. In both meteorites fluid inclusions were trapped inside the halite crystals. Primary fluid inclusions were trapped in the growing crystals; secondary inclusions formed subsequently from fluid trapped within healed fractures.
The Chemical Behavior of Fluids Released during Deep Subduction Based on Fluid Inclusions
NASA Astrophysics Data System (ADS)
Frezzotti, M. L.; Ferrando, S.
2014-12-01
We present a review of current research on fluid inclusions in (HP-) UHP metamorphic rocks that, combined with existing experimental research and thermodynamic models, allow us to investigate the chemical and physical properties of fluids released during deep subduction, their solvent and element transport capacity, and the subsequent implications for the element recycling in the mantle wedge. An impressive number of fluid inclusion studies indicate three main populations of fluid inclusions in HP and UHP metamorphic rocks: i) aqueous and/or non-polar gaseous fluid inclusions (FI), ii) multiphase solid inclusions (MSI), and iii) melt inclusions (MI). Chemical data from preserved fluid inclusions in rocks match with and implement "model" fluids by experiments and thermodynamics, revealing a continuity behind the extreme variations of physico-chemical properties of subduction-zone fluids. From fore-arc to sub-arc depths, fluids released by progressive devolatilization reactions from slab lithologies change from relatively diluted chloride-bearing aqueous solutions (± N2), mainly influenced by halide ligands, to (alkali) aluminosilicate-rich aqueous fluids, in which polymerization probably governs the solubility and transport of major (e.g., Si and Al) and trace elements (including C). Fluid inclusion data implement the petrological models explaining deep volatile liberation in subduction zones, and their flux into the mantle wedge.
NASA Astrophysics Data System (ADS)
Schimmel, Saskia; Koch, Martina; Macher, Philipp; Kimmel, Anna-Carina L.; Steigerwald, Thomas G.; Alt, Nicolas S. A.; Schlücker, Eberhard; Wellmann, Peter
2017-12-01
Solubility and dissolution kinetics of GaN are investigated, as they represent essential parameters for ammonothermal crystal growth of GaN. In situ X-ray imaging is applied to monitor the dissolving crystal. Both ammonoacidic and ammonobasic conditions are investigated. Compared to NH4F, the dissolution is generally much slower using NaN3 mineralizer, leading to a much longer time needed to establish a saturated solution. The solubility of GaN at 540 °C and 260 MPa in supercritical ammonia with a molar concentration of NaN3 of 0.72 mmol/ml is determined to be 0.15 ± 0.01 mol%. This suggest a severe refinement of raw gravimetric literature data also for alkali metal based mineralizers, as we reported previously for ammonium halide mineralizers. The order of magnitude is in good agreement with refined gravimetric solubility data (Griffiths et al., 2016). The apparent discrepancy between the literature and this work regarding the temperature range in which retrograde solubility occurs is discussed. A possible reason for the occurrence of retrograde solubility at high temperatures is described. The paper is complemented by a section pointing out and partially quantifying potential, reactor-material-dependent sources of errors.
Ishizuka, Shogo; Koida, Takashi; Taguchi, Noboru; Tanaka, Shingo; Fons, Paul; Shibata, Hajime
2017-09-13
We found that elemental Si-doped Cu(In,Ga)Se 2 (CIGS) polycrystalline thin films exhibit a distinctive morphology due to the formation of grain boundary layers several tens of nanometers thick. The use of Si-doped CIGS films as the photoabsorber layer in simplified structure buffer-free solar cell devices is found to be effective in enhancing energy conversion efficiency. The grain boundary layers formed in Si-doped CIGS films are expected to play an important role in passivating CIGS grain interfaces and improving carrier transport. The simplified structure solar cells, which nominally consist of only a CIGS photoabsorber layer and a front transparent and a back metal electrode layer, demonstrate practical application level solar cell efficiencies exceeding 15%. To date, the cell efficiencies demonstrated from this type of device have remained relatively low, with values of about 10%. Also, Si-doped CIGS solar cell devices exhibit similar properties to those of CIGS devices fabricated with post deposition alkali halide treatments such as KF or RbF, techniques known to boost CIGS device performance. The results obtained offer a new approach based on a new concept to control grain boundaries in polycrystalline CIGS and other polycrystalline chalcogenide materials for better device performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu
2015-12-28
The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicatemore » that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.« less
Alkali metal recovery from carbonaceous material conversion process
Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.
1980-01-01
In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.
Oriented xenon hydride molecules in the gas phase
NASA Astrophysics Data System (ADS)
Buck, Udo; Fárník, Michal
The production of the xenon hydride molecules HXeX with X = I and Cl in the gas phase is reviewed. These molecules are generated by the photolysis of the hydrogen halide HI and HCl molecules on the surface of large xenon Xen clusters. Molecular dynamics simulations show that the flexible H atoms react with the heavy XeX moiety and form the desired molecules with nearly no rotational motion. They are observed by photodissociation with subsequent detection of the kinetic energy of the H atom fragment. During the generating process, the cluster starts to evaporate and the hydride molecule is left essentially free. For further discrimination against the H atom fragments from HX, the HXeX molecules are oriented in a combined pulsed laser field and a weak electrostatic field. The three topics which represent the background of our experiments are briefly reviewed: the nature and generation of rare gas hydrides, the alignment and orientation of molecules in electric fields, and the photodissociation of selected molecules in rare gas clusters. The conditions for detecting them in the gas phase are discussed. This is the trade off between the stability, which requires high electron affinity, and the conditions for orientation, which necessitate large polarizability anisotropies and dipole moments. Finally the prospects of detecting other classes of molecules are discussed.
EXTINGUISHMENT OF ALKALI METAL FIRES
low O2 partial pressures on alkali metal fires Extinguishment of alkali metal fires using in organic salt mixtures Extinguishment of alkali metal ... fires using inorganic salt foams Alkali metal jet stream ignition at various pressure conditions Bibliography
Lanthanide doped strontium-barium cesium halide scintillators
Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew
2015-06-09
The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.
Self-Protection Mechanism of Hexagonal WO3-Based DeNOx Catalysts against Alkali Poisoning.
Zheng, Li; Zhou, Meijuan; Huang, Zhiwei; Chen, Yaxin; Gao, Jiayi; Ma, Zhen; Chen, Jianmin; Tang, Xingfu
2016-11-01
A good catalyst for efficiently controlling NO x emissions often demands strong resistance against alkali poisoning. Although the traditional ion-exchange model, based on acid-base reactions of alkalis with Brønsted acid sites, has been established over the past two decades, it is difficult to be used as a guideline to develop such an alkali-resistant catalyst. Here we establish a self-protection mechanism of deNO x catalysts against alkali poisoning by systematically studying the intrinsic nature of alkali resistance of V 2 O 5 /HWO (HWO = hexagonal WO 3 ) that shows excellent resistance to alkali poisoning in selective catalytic reduction of NO x with NH 3 (SCR). Synchrotron X-ray diffraction and absorption spectroscopies demonstrate that V 2 O 5 /HWO has spatially separated catalytically active sites (CASs) and alkali-trapping sites (ATSs). During the SCR process, ATSs spontaneously trap alkali ions such as K + , even if alkali ions initially block CASs, thus releasing CASs to realize the self-protection against alkali poisoning. X-ray photoelectron spectra coupled with theoretical calculations indicate that the electronic interaction between the alkali ions and ATSs with an energy saving is the driving force of the self-protection. This work provides a strategy to design alkali-resistant deNO x catalysts.
Refractories for high alkali environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rau, A.W.; Cloer, F.
1996-12-31
Information on refractories for high alkali environments is outlined. Information is presented on: product gallery; alkali attack; chemical reactions; basic layout of alkali cup test; criteria for rating alkali cup test samples; and basic layout of physical properties test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grande-Aztatzi, Rafael; Formoso, Elena; Matxain, Jon M.
The structural and optical properties of both the naked and passivated bimetallic Al{sub 5}Au{sub 5} nanoclusters have been analyzed based on data obtained from ab initio density functional theory and quantum molecular dynamics simulations. It has been found that the Al{sub 5}Au{sub 5} nanocluster possesses a hollow shaped minimum energy structure with segregated Al and Au layered domains, the former representing the electrophilic domain and the latter the nucleophilic domain. In particular, it has been shown that alkali metal cations attach in the nucleophilic domain and hop from one Au site to the next one in the picoseconds time scale,more » while anions are bound tightly to the Al atoms of the electrophilic domain. Simulating annealing studies are very suggestive of the proneness of the nanocluster towards coalescence into large cluster units, when the cluster is left unprotected by appropriate ligands. Further passivation studies with NaF salt suggest, nonetheless, the possibility of the isolation of the Al{sub 5}Au{sub 5} cluster in molten salts or ionic liquids.« less
Copper/amino acid catalyzed cross-couplings of aryl and vinyl halides with nucleophiles.
Ma, Dawei; Cai, Qian
2008-11-18
Copper-assisted Ullmann-type coupling reactions are valuable transformations for organic synthesis. Researchers have extensively applied these reactions in both academic and industrial settings. However, two important issues, the high reaction temperatures (normally above 150 degrees C) and the stoichiometric amounts of copper necessary, have greatly limited the reaction scope. To solve these problems, we and other groups have recently explored the use of special ligands to promote these coupling reactions. We first showed that the structure of alpha-amino acids can accelerate Cu-assisted Ullmann reactions, leading to the coupling reactions of aryl halides and alpha-amino acids at 80-90 degrees C. In response to these encouraging results, we also discovered that an l-proline ligand facilitated the following transformations: (1) coupling of aryl halides with primary amines, cyclic secondary amines, and N-containing heterocycles at 40-90 degrees C; (2) coupling of aryl halides with sulfinic acid salts at 80-95 degrees C; (3) azidation of aryl halides and vinyl halides with sodium azide at 40-95 degrees C; (4) coupling of aryl halides with activated methylene compounds at 25-50 degrees C. In addition, we found that N,N-dimethylglycine as a ligand facilitated Cu-catalyzed biaryl ether formation at 90 degrees C. Moreover, Sonogashira reactions worked in the absence of palladium and phosphine ligands, forming enamides from vinyl halides and amides at temperatures ranging from ambient temperature up to 80 degrees C. Furthermore, we discovered that an ortho-amide group can accelerate some Ullmann-type reactions. This functional group in combination with other ligand effects allowed for aryl amination or biaryl ether formation at ambient temperature. The coupling between aryl halides and activated methylene compounds even proceeded at -45 degrees C to enantioselectively form a quaternary carbon center. Taking advantage of these results, we developed several novel approaches for the synthesis of pharmaceutically important heterocycles: 1,2-disubstituted benzimidazoles, polysubstituted indoles, N-substituted 1,3-dihydrobenzimidazol-2-ones, and substituted 3-acyl oxindoles. Our results demonstrate that an l-proline or N,N-dimethylglycine ligand can facilitate most typical Ullmann-type reactions, with reactions occurring under relatively mild conditions and using only 2-20 mol % copper catalysts. These conveniently available and inexpensive catalytic systems not only accelerate the reactions but also tolerate many more functional groups. Thus, they should find considerable application in organic synthesis.
Balcerzyk, Anna; Schmidhammer, Uli; El Omar, Abdel Karim; Jeunesse, Pierre; Larbre, Jean-Philippe; Mostafavi, Mehran
2011-08-25
Recently we measured the amount of the single product, Br(3)(-), of steady-state radiolysis of highly concentrated Br(-) aqueous solutions, and we showed the effect of the direct ionization of Br(-) on the yield of Br(3)(-). Here, we report the first picosecond pulse-probe radiolysis measurements of ionization of highly concentrated Br(-) and Cl(-) aqueous solutions to describe the oxidation mechanism of the halide anions. The transient absorption spectra are reported from 350 to 750 nm on the picosecond range for halide solutions at different concentrations. In the highly concentrated halide solutions, we observed that, due to the presence of Na(+), the absorption band of the solvated electron is shifted to shorter wavelengths, but its decay, taking place during the spur reactions, is not affected within the first 4 ns. The kinetic measurements in the UV reveal the direct ionization of halide ions. The analysis of pulse-probe measurements show that after the electron pulse, the main reactions in solutions containing 1 M of Cl(-) and 2 M of Br(-) are the formation of ClOH(-•) and BrOH(-•), respectively. In contrast, in highly concentrated halide solutions, containing 5 M of Cl(-) and 6 M of Br(-), mainly Cl(2)(-•) and Br(2)(-•) are formed within the electron pulse without formation of ClOH(-•) and BrOH(-•). The results suggest that, not only Br(-) and Cl(-) are directly ionized into Br(•) and Cl(•) by the electron pulse, the halide atoms can also be rapidly generated through the reactions initiated by excitation and ionization of water, such as the prompt oxidation by the hole, H(2)O(+•), generated in the coordination sphere of the anion. © 2011 American Chemical Society
McNichols, Brett W.; Koubek, Joshua T.; Sellinger, Alan
2017-10-27
Here, we have developed a single step palladium-catalyzed Heck coupling of aryl halides with vinyl phosphonic acid to produce functionalized (E)-styryl phosphonic acids. This pathway utilizes a variety of commercially available aryl halides, vinyl phosphonic acid and Pd(P(tBu) 3) 2 as catalyst. These conditions produce a wide range of styryl phosphonic acids with high purities and good to excellent yields (31–80%).
Transfer Hydro-dehalogenation of Organic Halides Catalyzed by Ruthenium(II) Complex.
You, Tingjie; Wang, Zhenrong; Chen, Jiajia; Xia, Yuanzhi
2017-02-03
A simple and efficient Ru(II)-catalyzed transfer hydro-dehalogenation of organic halides using 2-propanol solvent as the hydride source was reported. This methodology is applicable for hydro-dehalogenation of a variety of aromatic halides and α-haloesters and amides without additional ligand, and quantitative yields were achieved in many cases. The potential synthetic application of this method was demonstrated by efficient gram-scale transformation with catalyst loading as low as 0.5 mol %.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNichols, Brett W.; Koubek, Joshua T.; Sellinger, Alan
Here, we have developed a single step palladium-catalyzed Heck coupling of aryl halides with vinyl phosphonic acid to produce functionalized (E)-styryl phosphonic acids. This pathway utilizes a variety of commercially available aryl halides, vinyl phosphonic acid and Pd(P(tBu) 3) 2 as catalyst. These conditions produce a wide range of styryl phosphonic acids with high purities and good to excellent yields (31–80%).
Synthesis and luminescence of Mn-doped Cs2AgInCl6 double perovskites.
K, Nila Nandha; Nag, Angshuman
2018-05-17
Metal halide double perovskites (DPs) are being explored as stable and non-toxic alternatives of Pb-halide perovskites. Typically DPs exhibit a wide (>2.5 eV) and/or indirect bandgap, limiting their applications in the visible region. Here we impart the visible-light emission property in direct bandgap Cs2AgInCl6 DPs by doping Mn2+ ions. Synthesis, characterization and luminescence of metal halide double perovskites are reported.
Miller, L. B.; Donohoe, S. P.; Jones, M. H.; ...
2015-04-22
This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 timesmore » better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.« less
Intermediate Temperature Fluids Life Tests - Theory
NASA Technical Reports Server (NTRS)
Tarau, Calin; Sarraf, David B.; Locci, Ivan E.; Anderson, William G.
2008-01-01
There are a number of different applications that could use heat pipes or loop heat pipes (LHPs) in the intermediate temperature range of 450 to 750 K, including space nuclear power system radiators, and high temperature electronics cooling. Potential working fluids include organic fluids, elements, and halides, with halides being the least understood, with only a few life tests conducted. Potential envelope materials for halide working fluids include pure aluminum, aluminum alloys, commercially pure (CP) titanium, titanium alloys, and corrosion resistant superalloys. Life tests were conducted with three halides (AlBr3, SbBr3, and TiCl4) and water in three different envelopes: two aluminum alloys (Al-5052, Al-6061) and Cp-2 titanium. The AlBr3 attacked the grain boundaries in the aluminum envelopes, and formed TiAl compounds in the titanium. The SbBr3 was incompatible with the only envelope material that it was tested with, Al-6061. TiCl4 and water were both compatible with CP2-titanium. A theoretical model was developed that uses electromotive force differences to predict the compatibility of halide working fluids with envelope materials. This theory predicts that iron, nickel, and molybdenum are good envelope materials, while aluminum and titanium halides are good working fluids. The model is in good agreement with results form previous life tests, as well as the current life tests.
Exhaustive thin-layer cyclic voltammetry for absolute multianalyte halide detection.
Cuartero, Maria; Crespo, Gastón A; Ghahraman Afshar, Majid; Bakker, Eric
2014-11-18
Water analysis is one of the greatest challenges in the field of environmental analysis. In particular, seawater analysis is often difficult because a large amount of NaCl may mask the determination of other ions, i.e., nutrients, halides, and carbonate species. We demonstrate here the use of thin-layer samples controlled by cyclic voltammetry to analyze water samples for chloride, bromide, and iodide. The fabrication of a microfluidic electrochemical cell based on a Ag/AgX wire (working electrode) inserted into a tubular Nafion membrane is described, which confines the sample solution layer to less than 15 μm. By increasing the applied potential, halide ions present in the thin-layer sample (X(-)) are electrodeposited on the working electrode as AgX, while their respective counterions are transported across the perm-selective membrane to an outer solution. Thin-layer cyclic voltammetry allows us to obtain separated peaks in mixed samples of these three halides, finding a linear relationship between the halide concentration and the corresponding peak area from about 10(-5) to 0.1 M for bromide and iodide and from 10(-4) to 0.6 M for chloride. This technique was successfully applied for the halide analysis in tap, mineral, and river water as well as seawater. The proposed methodology is absolute and potentially calibration-free, as evidenced by an observed 2.5% RSD cell to cell reproducibility and independence from the operating temperature.
Alkali silica reaction (ASR) in cement free alkali activated sustainable concrete.
DOT National Transportation Integrated Search
2016-12-19
This report summarizes the findings of an experimental evaluation into alkali silica : reaction (ASR) in cement free alkali-activated slag and fly ash binder concrete. The : susceptibility of alkali-activated fly ash and slag concrete binders to dele...
Uranyl peroxide enhanced nuclear fuel corrosion in seawater.
Armstrong, Christopher R; Nyman, May; Shvareva, Tatiana; Sigmon, Ginger E; Burns, Peter C; Navrotsky, Alexandra
2012-02-07
The Fukushima-Daiichi nuclear accident brought together compromised irradiated fuel and large amounts of seawater in a high radiation field. Based on newly acquired thermochemical data for a series of uranyl peroxide compounds containing charge-balancing alkali cations, here we show that nanoscale cage clusters containing as many as 60 uranyl ions, bonded through peroxide and hydroxide bridges, are likely to form in solution or as precipitates under such conditions. These species will enhance the corrosion of the damaged fuel and, being thermodynamically stable and kinetically persistent in the absence of peroxide, they can potentially transport uranium over long distances.
Uranyl peroxide enhanced nuclear fuel corrosion in seawater
Armstrong, Christopher R.; Nyman, May; Shvareva, Tatiana; Sigmon, Ginger E.; Burns, Peter C.; Navrotsky, Alexandra
2012-01-01
The Fukushima-Daiichi nuclear accident brought together compromised irradiated fuel and large amounts of seawater in a high radiation field. Based on newly acquired thermochemical data for a series of uranyl peroxide compounds containing charge-balancing alkali cations, here we show that nanoscale cage clusters containing as many as 60 uranyl ions, bonded through peroxide and hydroxide bridges, are likely to form in solution or as precipitates under such conditions. These species will enhance the corrosion of the damaged fuel and, being thermodynamically stable and kinetically persistent in the absence of peroxide, they can potentially transport uranium over long distances. PMID:22308442
Xiao, Zewen; Du, Ke-Zhao; Meng, Weiwei; Mitzi, David B; Yan, Yanfa
2017-09-25
Recently, Cu I - and Ag I -based halide double perovskites have been proposed as promising candidates for overcoming the toxicity and instability issues inherent within the emerging Pb-based halide perovskite absorbers. However, up to date, only Ag I -based halide double perovskites have been experimentally synthesized; there are no reports on successful synthesis of Cu I -based analogues. Here we show that, owing to the much higher energy level for the Cu 3d 10 orbitals than for the Ag 4d 10 orbitals, Cu I atoms energetically favor 4-fold coordination, forming [CuX 4 ] tetrahedra (X=halogen), but not 6-fold coordination as required for [CuX 6 ] octahedra. In contrast, Ag I atoms can have both 6- and 4-fold coordinations. Our density functional theory calculations reveal that the synthesis of Cu I halide double perovskites may instead lead to non-perovskites containing [CuX 4 ] tetrahedra, as confirmed by our material synthesis efforts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Meng, Weiwei; Wang, Xiaoming; Xiao, Zewen; Wang, Jianbo; Mitzi, David B; Yan, Yanfa
2017-07-06
Using density functional theory calculations, we analyze the optical absorption properties of lead (Pb)-free metal halide perovskites (AB 2+ X 3 ) and double perovskites (A 2 B + B 3+ X 6 ) (A = Cs or monovalent organic ion, B 2+ = non-Pb divalent metal, B + = monovalent metal, B 3+ = trivalent metal, X = halogen). We show that if B 2+ is not Sn or Ge, Pb-free metal halide perovskites exhibit poor optical absorptions because of their indirect band gap nature. Among the nine possible types of Pb-free metal halide double perovskites, six have direct band gaps. Of these six types, four show inversion symmetry-induced parity-forbidden or weak transitions between band edges, making them not ideal for thin-film solar cell applications. Only one type of Pb-free double perovskite shows optical absorption and electronic properties suitable for solar cell applications, namely, those with B + = In, Tl and B 3+ = Sb, Bi. Our results provide important insights for designing new metal halide perovskites and double perovskites for optoelectronic applications.
Chang, Wei; Sun, Chunyan; Pang, Xibin; Sheng, Hua; Li, Yue; Ji, Hongwei; Song, Wenjing; Chen, Chuncheng; Ma, Wanhong; Zhao, Jincai
2015-02-09
An efficient redox reaction between organic substrates in solution and photoinduced h(+) vb /e(-) cb on the surface of photocatalysts requires the substrates or solvent to be adsorbed onto the surface, and is consequentially marked by a normal kinetic solvent isotope effect (KSIE ≥ 1). Reported herein is a universal inverse KSIE (0.6-0.8 at 298 K) for the reductive dehalogenation of aromatic halides which cannot adsorb onto TiO2 in a [D0 ]methanol/[D4 ]methanol solution. Combined with in situ ATR-FTIR spectroscopy investigations, a previously unknown pathway for the transformation of these aromatic halides in TiO2 photocatalysis was identified: a proton adduct intermediate, induced by released H(+) /D(+) from solvent oxidation, accompanies a change in hybridization from sp(2) to sp(3) at a carbon atom of the aromatic halides. The protonation event leads these aromatic halides to adsorb onto the TiO2 surface and an ET reaction to form dehalogenated products follows. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Slavney, Adam H.; Leppert, Linn; Bartesaghi, Davide; ...
2017-03-29
In this study, halide double perovskites have recently been developed as less toxic analogs of the lead perovskite solar-cell absorbers APbX 3 (A = monovalent cation; X = Br or I). However, all known halide double perovskites have large bandgaps that afford weak visible-light absorption. The first halide double perovskite evaluated as an absorber, Cs 2AgBiBr 6 (1), has a bandgap of 1.95 eV. Here, we show that dilute alloying decreases 1’s bandgap by ca. 0.5 eV. Importantly, time-resolved photoconductivity measurements reveal long-lived carriers with microsecond lifetimes in the alloyed material, which is very promising for photovoltaic applications. The alloyedmore » perovskite described herein is the first double perovskite to show comparable bandgap energy and carrier lifetime to those of (CH 3NH 3)PbI 3. By describing how energy- and symmetry-matched impurity orbitals, at low concentrations, dramatically alter 1’s band edges, we open a potential pathway for the large and diverse family of halide double perovskites to compete with APbX 3 absorbers.« less
Miscellaneous Lasing Actions in Organo-Lead Halide Perovskite Films.
Duan, Zonghui; Wang, Shuai; Yi, Ningbo; Gu, Zhiyuan; Gao, Yisheng; Song, Qinghai; Xiao, Shumin
2017-06-21
Lasing actions in organo-lead halide perovskite films have been heavily studied in the past few years. However, due to the disordered nature of synthesized perovskite films, the lasing actions are usually understood as random lasers that are formed by multiple scattering. Herein, we demonstrate the miscellaneous lasing actions in organo-lead halide perovskite films. In addition to the random lasers, we show that a single or a few perovskite microparticles can generate laser emissions with their internal resonances instead of multiple scattering among them. We experimentally observed and numerically confirmed whispering gallery (WG)-like microlasers in polygon shaped and other deformed microparticles. Meanwhile, owing to the nature of total internal reflection and the novel shape of the nanoparticle, the size of the perovskite WG laser can be significantly decreased to a few hundred nanometers. Thus, wavelength-scale lead halide perovskite lasers were realized for the first time. All of these laser behaviors are complementary to typical random lasers in perovskite film and will help the understanding of lasing actions in complex lead halide perovskite systems.
Optimal control of multiphoton ionization dynamics of small alkali aggregates
NASA Astrophysics Data System (ADS)
Lindinger, A.; Bartelt, A.; Lupulescu, C.; Vajda, S.; Woste, Ludger
2003-11-01
We have performed transient multi-photon ionization experiments on small alkali clusters of different size in order to probe their wave packet dynamics, structural reorientations, charge transfers and dissociative events in different vibrationally excited electronic states including their ground state. The observed processes were highly dependent on the irradiated pulse parameters like wavelength range or its phase and amplitude; an emphasis to employ a feedback control system for generating the optimum pulse shapes. Their spectral and temporal behavior reflects interesting properties about the investigated system and the irradiated photo-chemical process. First, we present the vibrational dynamics of bound electronically excited states of alkali dimers and trimers. The scheme for observing the wave packet dynamics in the electronic ground state using stimulated Raman-pumping is shown. Since the employed pulse parameters significantly influence the efficiency of the irradiated dynamic pathways photo-induced ioniziation experiments were carried out. The controllability of 3-photon ionization pathways is investigated on the model-like systems NaK and K2. A closed learning loop for adaptive feedback control is used to find the optimal fs pulse shape. Sinusoidal parameterizations of the spectral phase modulation are investigated in regard to the obtained optimal field. By reducing the number of parameters and thereby the complexity of the phase moduation, optimal pulse shapes can be generated that carry fingerprints of the molecule's dynamical properties. This enables to find "understandable" optimal pulse forms and offers the possiblity to gain insight into the photo-induced control process. Characteristic motions of the involved wave packets are proposed to explain the optimized dynamic dissociation pathways.
Structure determination in 55-atom Li-Na and Na-K nanoalloys.
Aguado, Andrés; López, José M
2010-09-07
The structure of 55-atom Li-Na and Na-K nanoalloys is determined through combined empirical potential (EP) and density functional theory (DFT) calculations. The potential energy surface generated by the EP model is extensively sampled by using the basin hopping technique, and a wide diversity of structural motifs is reoptimized at the DFT level. A composition comparison technique is applied at the DFT level in order to make a final refinement of the global minimum structures. For dilute concentrations of one of the alkali atoms, the structure of the pure metal cluster, namely, a perfect Mackay icosahedron, remains stable, with the minority component atoms entering the host cluster as substitutional impurities. At intermediate concentrations, the nanoalloys adopt instead a core-shell polyicosahedral (p-Ih) packing, where the element with smaller atomic size and larger cohesive energy segregates to the cluster core. The p-Ih structures show a marked prolate deformation, in agreement with the predictions of jelliumlike models. The electronic preference for a prolate cluster shape, which is frustrated in the 55-atom pure clusters due to the icosahedral geometrical shell closing, is therefore realized only in the 55-atom nanoalloys. An analysis of the electronic densities of states suggests that photoelectron spectroscopy would be a sufficiently sensitive technique to assess the structures of nanoalloys with fixed size and varying compositions.
NASA Astrophysics Data System (ADS)
Katan, Claudine; Mohite, Aditya D.; Even, Jacky
2018-05-01
Claudine Katan, Aditya D. Mohite and Jacky Even discuss the possible impact of various entropy contributions (stochastic structural fluctuations, anharmonicity and lattice softness) on the optoelectronic properties of halide perovskite materials and devices.
Hydrothermal alkali metal recovery process
Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore
1980-01-01
In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.
METHOD OF ALLOYING REACTIVE METALS WITH ALUMINUM OR BERYLLIUM
Runnalls, O.J.C.
1957-10-15
A halide of one or more of the reactive metals, neptunium, cerium and americium, is mixed with aluminum or beryllium. The mass is heated at 700 to 1200 deg C, while maintaining a substantial vacuum of above 10/sup -3/ mm of mercury or better, until the halide of the reactive metal is reduced and the metal itself alloys with the reducing metal. The reaction proceeds efficiently due to the volatilization of the halides of the reducing metal, aluminum or beryllium.
THERMAL DECOMPOSITION OF URANIUM COMPOUNDS
Magel, T.T.; Brewer, L.
1959-02-10
A method is presented of preparing uranium metal of high purity consisting contacting impure U metal with halogen vapor at between 450 and 550 C to form uranium halide vapor, contacting the uranium halide vapor in the presence of H/sub 2/ with a refractory surface at about 1400 C to thermally decompose the uranium halides and deposit molten U on the refractory surface and collecting the molten U dripping from the surface. The entire operation is carried on at a sub-atmospheric pressure of below 1 mm mercury.
Metal halides vapor lasers with inner reactor and small active volume.
NASA Astrophysics Data System (ADS)
Shiyanov, D. V.; Sukhanov, V. B.; Evtushenko, G. S.
2018-04-01
Investigation of the energy characteristics of copper, manganese, lead halide vapor lasers with inner reactor and small active volume 90 cm3 was made. The optimal operating pulse repetition rates, temperatures, and buffer gas pressure for gas discharge tubes with internal and external electrodes are determined. Under identical pump conditions, such systems are not inferior in their characteristics to standard metal halide vapor lasers. It is shown that the use of a zeolite halogen generator provides lifetime laser operation.
Ultrafast time-resolved spectroscopy of lead halide perovskite films
NASA Astrophysics Data System (ADS)
Idowu, Mopelola A.; Yau, Sung H.; Varnavski, Oleg; Goodson, Theodore
2015-09-01
Recently, lead halide perovskites which are organic-inorganic hybrid structures, have been discovered to be highly efficient as light absorbers. Herein, we show the investigation of the excited state dynamics and emission properties of non-stoichiometric precursor formed lead halide perovskites grown by interdiffusion method using steady-state and time-resolved spectroscopic measurements. The influence of the different ratios of the non-stoichiometric precursor solution was examined. The observed photoluminescence properties were correlated with the femtosecond transient absorption measurements.
Unique properties of halide perovskites as possible origins of the superior solar cell performance.
Yin, Wan-Jian; Shi, Tingting; Yan, Yanfa
2014-07-16
Halide perovskites solar cells have the potential to exhibit higher energy conversion efficiencies with ultrathin films than conventional thin-film solar cells based on CdTe, CuInSe2 , and Cu2 ZnSnSe4 . The superior solar-cell performance of halide perovskites may originate from its high optical absorption, comparable electron and hole effective mass, and electrically clean defect properties, including point defects and grain boundaries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structure and stability of small Li2 +(X2Σ+ g )-Xen (n = 1-6) clusters
NASA Astrophysics Data System (ADS)
Saidi, Sameh; Ghanmi, Chedli; Berriche, Hamid
2014-04-01
We have studied the structure and stability of the Li2 +(X2Σ+ g )Xe n ( n = 1-6) clusters for special symmetry groups. The potential energy surfaces of these clusters, are described using an accurate ab initio approach based on non-empirical pseudopotential, parameterized l-dependent polarization potential and analytic potential forms for the Li+Xe and Xe-Xe interactions. The pseudopotential technique has reduced the number of active electrons of Li2 +(X2Σ+ g )-Xe n ( n = 1-6) clusters to only one electron, the Li valence electron. The core-core interactions for Li+Xe are included using accurate CCSD(T) potential fitted using the analytical form of Tang and Toennies. For the Xe-Xe potential interactions we have used the analytical form of Lennard Jones (LJ6 - 12). The potential energy surfaces of the Li2 +(X2Σ+ g )Xe n ( n = 1-6) clusters are performed for a fixed distance of the Li2 +(X2Σ+ g ) alkali dimer, its equilibrium distance. They are used to extract information on the stability of the Li2 +(X2Σ+ g Xe n ( n = 1-6) clusters. For each n, the stability of the different isomers is examined by comparing their potential energy surfaces. Moreover, we have determined the quantum energies ( D 0), the zero-point-energies (ZPE) and the ZPE%. To our best knowledge, there are neither experimental nor theoretical works realized for the Li2 +(X2Σ+ g Xe n ( n = 1-6) clusters, our results are presented for the first time.
NASA Astrophysics Data System (ADS)
Baesman, S. M.; Miller, L. G.; Oremland, R. S.
2003-12-01
Methyl bromide (MeBr), methyl chloride (MeCl) and methyl iodide (MeI) are reactive trace gases that are produced and released to the atmosphere at the Earths surface. These methyl halides have the potential to influence ozone levels in the stratosphere. Current estimates of the relative contributions of natural and anthropogenic sources of these methyl halides are the subject of considerable debate. In addition, there is uncertainty in the magnitude of some of the largest sinks for these compounds. Hence, the atmospheric budgets of MeBr, MeCl and MeI, while uncertain at present, may be better constrained using stable isotope ratio (13C/12C) mass balances of sources and sinks. Our work has focused on characterizing the effects upon δ 13C values of methyl halides released after reactions which discriminate in favor of 12C during removal processes. Previously, we determined very large fractionations of carbon isotopes by pure cultures of soil bacteria. Further, we have documented large fractionations (kinetic isotope effects or KIEs) of methyl halides in live soils. In the case of MeBr and MeI, substantial fractionation also occurred in heat-killed soil, suggesting that chemical degradation resulted in a shift in the stable isotopic composition. At elevated concentrations, for instance during agricultural soil fumigations, the δ 13C value of MeBr or MeI released from soil can be determined by flux measurements or soil profiles. However, more information is needed regarding the processes responsible for isotope fractionation to be able to extrapolate to areas where the concentration is low or direct measurement is not otherwise possible. We report here on measurements of the fractionation of carbon isotopes in methyl halides during degradation by chemical processes that are likely to occur in soil or seawater. These processes include aqueous hydrolysis and halide exchange and the methylation of organic matter using humic acid as the model methyl acceptor. Results are compared with fractionation achieved during the uptake of methyl halides by live and heat-killed soils.
Alkali metal nitrate purification
Fiorucci, Louis C.; Morgan, Michael J.
1986-02-04
A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.
Recovery of alkali metal constituents from catalytic coal conversion residues
Soung, W.Y.
In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.
[Diversity of uncultured actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor].
Li, Hai-yun; Niu, Shi-quan; Kong, Wei-bao; Yan, Wei-ru; Geng, Hui; Han, Cai-hong; Da, Wen-yan; Zhang, Ai-mei; Zhu, Xue-tai
2015-09-01
In order to more accurately understand community structure and diversity of actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor, the community structure and diversity from three kinds of soil samples (primary, secondary saline alkali soil and farmland soil) were analyzed using uncultured methods. The results showed that the 16S rDNA clone library of actinomycetales from the primary saline-alkali soil belonged to 19 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S r DNA clone library of actinomycetales from the secondary saline-alkali soil belonged to 14 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S rDNA clone library of farmland soil belonged to 7 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; Micrococcineae was the common population in the three soils, and also was the dominant population in primary saline alkali soil and farmland soil. The diversity index and rarefaction curves analysis showed that actinomycetes species richness was in order of primary saline-alkali soil > secondary saline-alkali soil > farmland soil. The dilution curves of primary saline-alkali soil and secondary saline-alkali soil were not leveled off, which indicated the actinomycetes diversity in saline-alkali soil was more enriched than the actual. The rich and diverse actinomycetes resources in saline-alkali soil from Jiuquan area of Hexi Corridor provide important data on the actinomycetes ecology distribution research, exploitation and utilization in saline-alkali soil.
NASA Astrophysics Data System (ADS)
Belfanti, S. A. D.; Gualda, G. A. R.
2017-12-01
Alkali-feldspar megacrysts (2-20 cm long) occur in many granitic rocks, providing extensive records of crystallization within magma bodies. We will use megacrysts from Yosemite National Park's Tuolumne Intrusive Suite to determine if and how megacrysts record recharge and eruption. Preliminary work has focused on 4 crystals. Based on BSE patterns, crystals can be divided into 3 zones: (1) the core, which represents the crystal's first growth and sometimes displays some resorption; (2) the interior, including a series of sub-zones that correspond to different growth periods; and (3) the rim, or outermost growth stage. Common BSE patterns include decreasing brightness from the inner portion of a growth period outward, increasing brightness towards either side of a boundary, and periods of constant brightness, for a full or partial period. Most mineral inclusions appear as single crystals ( 10-25%) or as groups of 2-4 crystals ( 60-75%). Large clusters of 10 or more individuals are less common ( 5-15%), and clusters of >20 crystals are rare ( 1-3%). Most crystals (85-95%) occur on growth boundaries or within the core. Magnetite is common in the more central parts of the interior zone, appearing only occasionally in the core and towards the rim. Accessories, amphibole, and biotite are more evenly distributed within the megacryst. Biotite and titanite grains large enough to display habit appear to be within 20 degrees of parallel with zone boundaries. Most other inclusions are small or not elongated enough to display clear alignment. The total volume of inclusions (excluding quartz and plagioclase, which have X-ray attenuation very similar to that of alkali feldspar) does not exceed 1% of megacryst volume. Plagioclase seems to be at least equal in volume to all other inclusions combined, but as noted above, its exact volume is currently indiscernible. Magnetite makes up about 1/6 of inclusion volume, zircon 1/3, and all others the remaining half. We will complement our dataset by performing XCT, BSE, EDS, and LA-ICP-MS analysis on the crystals, and continue to improve methods to better discern the zoning patterns. Identifying zoning patterns that are discernable from one another is an important first step towards understanding individual megacryst histories.
Halogen radicals contribute to photooxidation in coastal and estuarine waters
Parker, Kimberly M.; Mitch, William A.
2016-01-01
Although halogen radicals are recognized to form as products of hydroxyl radical (•OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM (3DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater •OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark •OH generation by gamma radiolysis demonstrates that halogen radical production via •OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl− and Br− by 3DOM*, an •OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters. PMID:27162335
NASA Technical Reports Server (NTRS)
Paula, S.; Volkov, A. G.; Deamer, D. W.
1998-01-01
Two alternative mechanisms are frequently used to describe ionic permeation of lipid bilayers. In the first, ions partition into the hydrophobic phase and then diffuse across (the solubility-diffusion mechanism). The second mechanism assumes that ions traverse the bilayer through transient hydrophilic defects caused by thermal fluctuations (the pore mechanism). The theoretical predictions made by both models were tested for halide anions by measuring the permeability coefficients for chloride, bromide, and iodide as a function of bilayer thickness, ionic radius, and sign of charge. To vary the bilayer thickness systematically, liposomes were prepared from monounsaturated phosphatidylcholines (PC) with chain lengths between 16 and 24 carbon atoms. The fluorescent dye MQAE (N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide) served as an indicator for halide concentration inside the liposomes and was used to follow the kinetics of halide flux across the bilayer membranes. The observed permeability coefficients ranged from 10(-9) to 10(-7) cm/s and increased as the bilayer thickness was reduced. Bromide was found to permeate approximately six times faster than chloride through bilayers of identical thickness, and iodide permeated three to four times faster than bromide. The dependence of the halide permeability coefficients on bilayer thickness and on ionic size were consistent with permeation of hydrated ions by a solubility-diffusion mechanism rather than through transient pores. Halide permeation therefore differs from that of a monovalent cation such as potassium, which has been accounted for by a combination of the two mechanisms depending on bilayer thickness.
FRACTIONAL DISTILLATION SEPARATION OF PLUTONIUM VALUES FROM LIGHT ELEMENT VALUES
Cunningham, B.B.
1957-12-17
A process is described for removing light element impurities from plutonium. It has been found that plutonium contaminated with impurities may be purified by converting the plutonium to a halide and purifying the halide by a fractional distillation whereby impurities may be distilled from the plutonium halide. A particularly effective method includes the step of forming a lower halide such as the trior tetrahalide and distilling the halide under conditions such that no decomposition of the halide occurs. Molecular distillation methods are particularly suitable for this process. The apparatus may comprise an evaporation plate with means for heating it and a condenser surface with means for cooling it. The condenser surface is placed at a distance from the evaporating surface less than the mean free path of molecular travel of the material being distilled at the pressure and temperature used. The entire evaporating system is evacuated until the pressure is about 10/sup -4/ millimeters of mercury. A high temperuture method is presented for sealing porous materials such as carbon or graphite that may be used as a support or a moderator in a nuclear reactor. The carbon body is subjected to two surface heats simultaneously in an inert atmosphere; the surface to be sealed is heated to 1500 degrees centigrade; and another surface is heated to 300 degrees centigrade, whereupon the carbon vaporizes and flows to the cooler surface where it is deposited to seal that surface. This method may be used to seal a nuclear fuel in the carbon structure.
NASA Astrophysics Data System (ADS)
Guo, Yaguang; Saidi, Wissam A.; Wang, Qian
2017-09-01
Halide perovskites and van der Waals (vdW) heterostructures are both of current interest owing to their novel properties and potential applications in nano-devices. Here, we show the great potential of 2D halide perovskite sheets (C4H9NH3)2PbX4 (X = Cl, Br and I) that were synthesized recently (Dou et al 2015 Science 349 1518-21) as the channel materials contacting with graphene and other 2D metallic sheets to form van der Waals heterostructures for field effect transistor (FET). Based on state-of-the-art theoretical simulations, we show that the intrinsic properties of the 2D halide perovskites are preserved in the heterojunction, which is different from the conventional contact with metal surfaces. The 2D halide perovskites form a p-type Schottky barrier (Φh) contact with graphene, where tunneling barrier exists, and a negative band bending occurs at the lateral interface. We demonstrate that the Schottky barrier can be turned from p-type to n-type by doping graphene with nitrogen atoms, and a low-Φh or an Ohmic contact can be realized by doping graphene with boron atoms or replacing graphene with other high-work-function 2D metallic sheets such as ZT-MoS2, ZT-MoSe2 and H-NbS2. This study not only predicts a 2D halide perovskite-based FETs, but also enhances the understanding of tuning Schottky barrier height in device applications.
The Key Role of U28 in the Aqueous Self-Assembly of Uranyl Peroxide Nanocages.
Falaise, Clément; Nyman, May
2016-10-04
For 11 years now, the structural diversity and aesthetic beauty of uranyl-peroxide capsules have fascinated researchers from the diverse fields of mineralogy, polyoxometalate chemistry, and nuclear fuel technologies. There is still much to be learned about the mechanisms of the self-assembly process, and the role of solution parameters including pH, alkali template, temperature, time, and others. Here we have exploited the high solubility of the UO2 (2+) /H2 O2 /LiOH aqueous system to address the effect of the hydroxide concentration. Important techniques of this study are single-crystal X-ray diffraction, small-angle X-ray scattering, and Raman spectroscopy. Three key phases dominate the solution speciation as a function of time and the LiOH/UO2 (2+) ratio: the uranyl-triperoxide monomer [UO2 (O2 )3 ](4-) and the two capsules [(UO2 )(O2 )(OH)]24 (24-) (U24 ) and [(UO2 )(O2 )1.5 ]28 (28-) (U28 ). When the LiOH/U ratio is around three, U28 forms rapidly and this cluster can be isolated in high yield and purity. This result was most surprising and challenges the hypothesis that alkali templating is the most important determinant in the cluster geometry. Moreover, analogous experiments with KOH, NH4 OH, and TEAOH (TEA=tetraethylammonium) also rapidly yield U28 , which suggests that U28 is the kinetically favored species. Complete mapping of the pH-time phase space reveals only a narrow window of the U28 dominance, which is why it was previously overlooked as an important kinetic species in this chemical system, as well as others with different counterions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Theoretical Study of Indium Compounds of Interest for Organometallic Chemical Vapor Deposition
NASA Technical Reports Server (NTRS)
Cardelino, B. H.; Moore, C. E.; Cardelino, C. A.; Frazier, D. O.; Backmann, K. J.
2000-01-01
The structural. electronic and therinochemical properties of indium compounds which are of interest in halide transport and organometallic chemical vapor deposition processes have been studied by ab initio and statistical mechanics methods. The compounds reported include: indium halides and hydrides (InF, InCl, InCl3, InH, InH2, InH3); indium clusters (In2, In3); methylindium, dimethylindium, and their hydrogen derivatives [In(CH3), In(CH3)H, In(CH3)H2, In(CH3)2, In(CH3)2H]; dimethyl-indium dimer [In2(CH3)4], trimethyl-indium [In(CH3)3]; dehydrogenated methyl, dimethyl and trimethylindium [In(CH3)2CH2, In(CH3)CH2, In(CH2)], trimethylindium adducts with ammonia, trimethylamine and hydrazine [(CH3)3In:NH3, (CH3)3In:N(CH3)3, (CH3)3In:N(H2)N(H2)]; dimethylamino-indium and methylimino-indium [In(CH3)2(NH2), In(CH3)(NH)]; indium nitride and indium nitride dimer (InN, In2N2), indium phosphide, arsenide and antimonide ([InP, InAs, InSb). The predicted electronic properties are based on density functional theory calculations; the calculated thermodynamic properties are reported following the format of the JANAF (Joint Army, Navy, NASA, Air Force) Tables. Equilibrium compositions at two temperatures (298 and 1000 K) have been analyzed for groups of competing simultaneous reactions.
Seino, Junji; Nakai, Hiromi
2012-06-28
An accurate and efficient scheme for two-component relativistic calculations at the spin-free infinite-order Douglas-Kroll-Hess (IODKH) level is presented. The present scheme, termed local unitary transformation (LUT), is based on the locality of the relativistic effect. Numerical assessments of the LUT scheme were performed in diatomic molecules such as HX and X(2) (X = F, Cl, Br, I, and At) and hydrogen halide clusters, (HX)(n) (X = F, Cl, Br, and I). Total energies obtained by the LUT method agree well with conventional IODKH results. The computational costs of the LUT method are drastically lower than those of conventional methods since in the former there is linear-scaling with respect to the system size and a small prefactor.
Phonon Speed, Not Scattering, Differentiates Thermal Transport in Lead Halide Perovskites.
Elbaz, Giselle A; Ong, Wee-Liat; Doud, Evan A; Kim, Philip; Paley, Daniel W; Roy, Xavier; Malen, Jonathan A
2017-09-13
Thermal management plays a critical role in the design of solid state materials for energy conversion. Lead halide perovskites have emerged as promising candidates for photovoltaic, thermoelectric, and optoelectronic applications, but their thermal properties are still poorly understood. Here, we report on the thermal conductivity, elastic modulus, and sound speed of a series of lead halide perovskites MAPbX 3 (X = Cl, Br, I), CsPbBr 3 , and FAPbBr 3 (MA = methylammonium, FA = formamidinium). Using frequency domain thermoreflectance, we find that the room temperature thermal conductivities of single crystal lead halide perovskites range from 0.34 to 0.73 W/m·K and scale with sound speed. These results indicate that regardless of composition, thermal transport arises from acoustic phonons having similar mean free path distributions. A modified Callaway model with Born von Karmen-based acoustic phonon dispersion predicts that at least ∼70% of thermal conductivity results from phonons having mean free paths shorter than 100 nm, regardless of whether resonant scattering is invoked. Hence, nanostructures or crystal grains with dimensions smaller than 100 nm will appreciably reduce thermal transport. These results are important design considerations to optimize future lead halide perovskite-based photovoltaic, optoelectronic, and thermoelectric devices.
Advancement on Lead-Free Organic-Inorganic Halide Perovskite Solar Cells: A Review.
Sani, Faruk; Shafie, Suhaidi; Lim, Hong Ngee; Musa, Abubakar Ohinoyi
2018-06-14
Remarkable attention has been committed to the recently discovered cost effective and solution processable lead-free organic-inorganic halide perovskite solar cells. Recent studies have reported that, within five years, the reported efficiency has reached 9.0%, which makes them an extremely promising and fast developing candidate to compete with conventional lead-based perovskite solar cells. The major challenge associated with the conventional perovskite solar cells is the toxic nature of lead (Pb) used in the active layer of perovskite material. If lead continues to be used in fabricating solar cells, negative health impacts will result in the environment due to the toxicity of lead. Alternatively, lead free perovskite solar cells could give a safe way by substituting low-cost, abundant and non toxic material. This review focuses on formability of lead-free organic-inorganic halide perovskite, alternative metal cations candidates to replace lead (Pb), and possible substitutions of organic cations, as well as halide anions in the lead-free organic-inorganic halide perovskite architecture. Furthermore, the review gives highlights on the impact of organic cations, metal cations and inorganic anions on stability and the overall performance of lead free perovskite solar cells.
Octahedral tilting instabilities in inorganic halide perovskites
NASA Astrophysics Data System (ADS)
Bechtel, Jonathon S.; Van der Ven, Anton
2018-02-01
Dynamic instabilities, stabilized by anharmonic interactions in cubic and tetragonal halide perovskites at high temperature, play a role in the electronic structure and optoelectronic properties of halide perovskites. In particular, inorganic and hybrid perovskite materials undergo structural phase transitions associated with octahedral tilts of the metal-halide octahedra. We investigate the structural instabilities present in inorganic Cs M X3 perovskites with Pb or Sn on the metal site and Br or I on the X site. Defining primary order parameters in terms of symmetry-adapted collective displacement modes and secondary order parameters in terms of symmetrized Hencky strain components, we unravel the coupling between octahedral tilt modes and macroscopic strains as well as the role of A -site displacements in perovskite phase stability. Symmetry-allowed secondary strain order parameters are enumerated for the 14 unique perovskite tilt systems. Using first-principles calculations to explore the Born-Oppenheimer energy surface in terms of symmetrized order parameters, we find coupling between octahedral tilting and A -site displacements is necessary to stabilize P n m a ground states. Additionally, we show that the relative stability of an inorganic halide perovskite tilt system correlates with the volume decrease from the high-symmetry cubic phase to the low-symmetry distorted phase.
NASA Astrophysics Data System (ADS)
Nepal, Niraj K.; Ruzsinszky, Adrienn; Bates, Jefferson E.
2018-03-01
The ground state structural and energetic properties for rocksalt and cesium chloride phases of the cesium halides were explored using the random phase approximation (RPA) and beyond-RPA methods to benchmark the nonempirical SCAN meta-GGA and its empirical dispersion corrections. The importance of nonadditivity and higher-order multipole moments of dispersion in these systems is discussed. RPA generally predicts the equilibrium volume for these halides within 2.4% of the experimental value, while beyond-RPA methods utilizing the renormalized adiabatic LDA (rALDA) exchange-correlation kernel are typically within 1.8%. The zero-point vibrational energy is small and shows that the stability of these halides is purely due to electronic correlation effects. The rAPBE kernel as a correction to RPA overestimates the equilibrium volume and could not predict the correct phase ordering in the case of cesium chloride, while the rALDA kernel consistently predicted results in agreement with the experiment for all of the halides. However, due to its reasonable accuracy with lower computational cost, SCAN+rVV10 proved to be a good alternative to the RPA-like methods for describing the properties of these ionic solids.
Shape Evolution and Single Particle Luminescence of Organometal Halide Perovskite Nanocrystals
Zhu, Feng; Men, Long; Guo, Yijun; ...
2015-02-09
Organometallic halide perovskites CH 3NH 3PbX 3 (X = I, Br, Cl) have quickly become one of the most promising semiconductors for solar cells, with photovoltaics made of these materials reaching power conversion efficiencies of near 20%. Improving our ability to harness the full potential of organometal halide perovskites will require more controllable syntheses that permit a detailed understanding of their fundamental chemistry and photophysics. In our manuscript, we systematically synthesize CH 3NH 3PbX 3 (X = I, Br) nanocrystals with different morphologies (dots, rods, plates or sheets) by using different solvents and capping ligands. CH 3NH 3PbX 3 nanowiresmore » and nanorods capped with octylammonium halides show relatively higher photoluminescence (PL) quantum yields and long PL lifetimes. CH 3NH 3PbI 3 nanowires monitored at the single particle level show shape-correlated PL emission across whole particles, with little photobleaching observed and very few off periods. Our work highlights the potential of low-dimensional organometal halide perovskite semiconductors in constructing new porous and nanostructured solar cell architectures, as well as in applying these materials to other fields such as light-emitting devices and single particle imaging and tracking.« less