Science.gov

Sample records for alkali halide clusters

  1. Solvation at nanoscale: Alkali-halides in water clusters

    SciTech Connect

    Partanen, Leena; Mikkelae, Mikko-Heikki; Huttula, Marko; Tchaplyguine, Maxim; Zhang Chaofan; Andersson, Tomas; Bjoerneholm, Olle

    2013-01-28

    The solvation of alkali-halides in water clusters at nanoscale is studied by photoelectron spectroscopy using synchrotron radiation. The Na 2p, K 3p, Cl 2p, Br 3d, and I 4d core level binding energies have been measured for salt-containing water clusters. The results have been compared to those of alkali halide clusters and the dilute aqueous salt solutions. It is found that the alkali halides dissolve in small water clusters as ions.

  2. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  3. Holding onto electrons in alkali metal halide clusters: decreasing polarizability with increasing coordination.

    PubMed

    Zhang, Chaofan; Andersson, Tomas; Svensson, Svante; Björneholm, Olle; Huttula, Marko; Mikkelä, Mikko-Heikki; Anin, Dmitri; Tchaplyguine, Maxim; Öhrwall, Gunnar

    2012-12-13

    The connection between the electronic polarizability and the decrease of the system size from macroscopic solid to nanoscale clusters has been addressed in a combined experimental and model-calculation study. A beam of free neutral potassium chloride clusters has been probed using synchrotron-radiation-based photoelectron spectroscopy. The introduction of "effective" polarizability for chlorine, lower than that in molecules and dimers and decreasing with increasing coordination, has allowed us to significantly improve the agreement between the experimental electron binding energies and the electrostatic model predictions. Using the calculated site-specific binding energies, we have been able to assign the spectral details of the cluster response to the ionizing X-ray radiation, and to explain its change with cluster size. From our assignments we find that the higher-coordination face-atom responses in the K 3p spectra increase significantly with increasing cluster size relative to that of the edge atoms. The reasons behind the decrease of polarizability predicted earlier by ab initio calculations are discussed in terms of the limited mobility of the electron clouds caused by the interaction with the neighboring ions.

  4. The Additive Coloration of Alkali Halides

    ERIC Educational Resources Information Center

    Jirgal, G. H.; and others

    1969-01-01

    Describes the construction and use of an inexpensive, vacuum furnace designed to produce F-centers in alkali halide crystals by additive coloration. The method described avoids corrosion or contamination during the coloration process. Examination of the resultant crystals is discussed and several experiments using additively colored crystals are…

  5. Infrared spectra of FHF - in alkali halides

    NASA Astrophysics Data System (ADS)

    Chunnilall, C. J.; Sherman, W. F.

    1982-03-01

    The bifluoride ion, FHF -, has been substitutionally isolated within single crystal samples of several different alkali halides. Infrared spectra of these crystals have been studied for sample temperatures down to 8K when half-bandwidths of less than 1 cm -1 have been observed. (Note that at room temperature ν 3 is observed to have a half-bandwidth of about 40 cm -1). The frequency shifts and half-bandwidth changes caused by cooling are considered together with the frequency shifts caused by pressures up to 10 k bar. The low temperature spectra clearly indicate that FHF - is a linear symmetrical ion when substitutionally isolated within alkali halides of either the NaCl or CsCl structure.

  6. Ionic alkali halide XUV laser feasibility study

    SciTech Connect

    Yang, T.T.; Gylys, V.T.; Bower, R.D.; Harris, D.G.; Blauer, J.A.; Turner, C.E.; Hindy, R.N.

    1989-11-10

    The objective of this work is to assess the feasibility of a select set of ionic alkali halide XUV laser concepts by obtaining the relevant kinetic and spectroscopic parameters required for a proof-of-principle and conceptual design. The proposed lasers operate in the 80--200 nm spectral region and do not require input from outside radiation sources for their operation. Frequency up-conversion and frequency mixing techniques and therefore not considered in the work to be described. An experimental and theoretical study of a new type of laser operating in the extreme ultraviolet wavelength region has been conducted. The lasing species are singly ionized alkali halide molecules such as Rb{sup 2+}F{sub {minus}}, Rb{sup 2+}Br{sup {minus}} and Cs{sup 2+}F{sup {minus}}. These species are similar in electronic structure to the rare gas halide excimers, such as XeF and Krf, except that the ionic molecules emit at wavelengths of 80--200 nm, much shorter than the conventional rare-gas halide excimer laser. The radiative lifetime of these molecules are typically near 1 ns, which is about an order of magnitude shorter than that for rare-gas halide systems. The values of the cross section for stimulated emission are on the order of 1 {times} 10{sup {minus}16}cm{sup 2}. Because of the fundamental similarity to existing UV lasers, these systems show promise as a high power, efficient XUV lasers. 55 refs., 50 figs., 5 tabs.

  7. A new polarizable force field for alkali and halide ions

    SciTech Connect

    Kiss, Péter T.; Baranyai, András

    2014-09-21

    We developed transferable potentials for alkali and halide ions which are consistent with our recent model of water [P. T. Kiss and A. Baranyai, J. Chem. Phys. 138, 204507 (2013)]. Following the approach used for the water potential, we applied Gaussian charge distributions, exponential repulsion, and r{sup −6} attraction. One of the two charges of the ions is fixed to the center of the particle, while the other is connected to this charge by a harmonic spring to express polarization. Polarizability is taken from quantum chemical calculations. The repulsion between different species is expressed by the combining rule of Kong [J. Chem. Phys. 59, 2464 (1972)]. Our primary target was the hydration free energy of ions which is correct within the error of calculations. We calculated water-ion clusters up to 6 water molecules, and, as a crosscheck, we determined the density and internal energy of alkali-halide crystals at ambient conditions with acceptable accuracy. The structure of hydrated ions was also discussed.

  8. Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

    SciTech Connect

    Bory, Benjamin F.; Wang, Jingxin; Janssen, René A. J.; Meskers, Stefan C. J.; Gomes, Henrique L.; De Leeuw, Dago M.

    2014-12-08

    Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 10{sup 25}/m{sup 3}. The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics.

  9. Classical trajectories studies of diet from alkali halides

    NASA Astrophysics Data System (ADS)

    Jedrzejek, C.; Ciepliński, L.

    1994-03-01

    Desorption of positive ions in alkali halides resulting from the repulsive environment created by core-hole Auger decay has been previously found not likely due to lattice rearrangement and trapping of the ion. We revisit the problem by studying ion trajectories using classical molecular dynamics in the crystalline (rather than cluster) geometry with careful account of the Madelung energy. We find that the previous findings remain unchanged. In contrast to previous works, we also assume that the positive ion gained substantial amount of kinetic energy at the onset of simulations, crudely mimicking ion-stimulated desorption. Then the ejection of the formed positive halogen ion occurs for initial kinetic energies of the order 2 eV for NaF and 0.65 eV for LiF. Implications for viability of the Knotek-Feibelman mechanism are discussed.

  10. Metal induced gap states at alkali halide/metal interface

    NASA Astrophysics Data System (ADS)

    Kiguchi, Manabu; Yoshikawa, Genki; Ikeda, Susumu; Saiki, Koichiro

    2004-10-01

    The electronic state of a KCl/Cu(0 0 1) interface was investigated using the Cl K-edge near-edge X-ray absorption fine structure (NEXAFS). A pre-peak observed on the bulk edge onset of thin KCl films has a similar feature to the peak at a LiCl/Cu(0 0 1) interface, which originates from the metal induced gap state (MIGS). The present result indicates that the MIGS is formed universally at alkali halide/metal interfaces. The decay length of MIGS to an insulator differs from each other, mainly due to the difference in the band gap energy of alkali halide.

  11. Infrared Laser-Induced Breakdown Spectroscopy of Alkali Metal Halides

    NASA Astrophysics Data System (ADS)

    Brown, Ei; Hommerich, Uwe; Yang, Clayton; Trivedi, Sudhir; Samuels, Alan; Snyder, Peter

    2008-10-01

    Laser-induced breakdown spectroscopy (LIBS) is a powerful diagnostic tool for detection of trace elements by monitoring the atomic and ionic emission from laser-induced plasmas. LIBS is a relatively simple technique and has been successfully employed in applications such as environmental monitoring, materials analysis, medical diagnostics, industrial process control, and homeland security. Most LIBS applications are limited to emission features in the ultraviolet-visible-near infrared (UV-VIS-NIR) region arising from atoms and simple molecular fragments. In the present work, we report on the observation of mid- infrared emission lines from alkali metal halides due to laser-induced breakdown processes. The studied alkali metal halides included LiCl, NaCl, NaBr, KCl, KBr, KF, RbCl, and RbBr. The laser-induced plasma was produced by focusing a 16 mJ pulsed Nd:YAG laser (1064 nm) on the target. The LIBS infrared emission from alkali halides showed intense and narrow bands located in the region from 2-8 μm. The observed emission features were assigned to atomic transitions between higher-lying Rydberg states of neutral alkali atoms. More detailed results of the performed IR LIBS studies on alkali metal halides will be discussed at the conference.

  12. Cohesive Energy-Lattice Constant and Bulk Modulus-Lattice Constant Relationships: Alkali Halides, Ag Halides, Tl Halides

    NASA Technical Reports Server (NTRS)

    Schlosser, Herbert

    1992-01-01

    In this note we present two expressions relating the cohesive energy, E(sub coh), and the zero pressure isothermal bulk modulus, B(sub 0), of the alkali halides. Ag halides and TI halides, with the nearest neighbor distances, d(sub nn). First, we show that the product E(sub coh)d(sub 0) within families of halide crystals with common crystal structure is to a good approximation constant, with maximum rms deviation of plus or minus 2%. Secondly, we demonstrate that within families of halide crystals with a common cation and common crystal structure the product B(sub 0)d(sup 3.5)(sub nn) is a good approximation constant, with maximum rms deviation of plus or minus 1.36%.

  13. Interfacial tension in immiscible mixtures of alkali halides.

    PubMed

    Lockett, Vera; Rukavishnikova, Irina V; Stepanov, Victor P; Tkachev, Nikolai K

    2010-02-01

    The interfacial tension of the liquid-phase interface in seven immiscible reciprocal ternary mixtures of lithium fluoride with the following alkali halides: CsCl, KBr, RbBr, CsBr, KI, RbI, and CsI was measured using the cylinder weighing method over a wide temperature range. It was shown that for all mixtures the interfacial tension gradually decreases with growing temperature. The interfacial tension of the reciprocal ternary mixtures at a given temperature increases both with the alkali cation radius (K(+) < Rb(+) < Cs(+)) and with the radius of the halogen anion (Cl(-) < Br(-) < I(-)). PMID:20094678

  14. Na+ and Rb+ tracer diffusion in alkali halides

    NASA Astrophysics Data System (ADS)

    Beniere, F.; Sen, S. K.

    1991-11-01

    We have undertaken a fundamental study of heterodiffusion of foreign ions in pure single crystals. The present work describes the measurements of the diffusion coefficient of monovalent cations in some alkali halides, namely Na+ and Rb+ into KCl, KBr, NaI and KI. The priority is given to the super-accuracy of the experimental data. The target is to test the validity of the existing theories for calculating the enthalpy and entropy of migration.

  15. Volcanic Origin of Alkali Halides on Io

    NASA Technical Reports Server (NTRS)

    Schaefer, L.; Fegley, B., Jr.

    2003-01-01

    The recent observation of NaCl (gas) on Io confirms our earlier prediction that NaCl is produced volcanically. Here we extend our calculations by modeling thermochemical equilibrium of O, S, Li, Na, K, Rb, Cs, F, Cl, Br, and I as a function of temperature and pressure in a Pele-like volcanic gas with O/S/Na/Cl/K = 1.518/1/0.05/0.04/0.005 and CI chondritic ratios of the other (as yet unobserved) alkalis and halogens. For reference, the nominal temperature and pressure for Pele is 1760 plus or minus 210 K and 0.01 bars based on Galileo data and modeling.

  16. Fabrication of alkali halide UV photocathodes by pulsed laser deposition

    SciTech Connect

    Brendel', V M; Bukin, V V; Garnov, Sergei V; Bagdasarov, V Kh; Denisov, N N; Garanin, Sergey G; Terekhin, V A; Trutnev, Yurii A

    2012-12-31

    A technique has been proposed for the fabrication of atmospheric corrosion resistant alkali halide UV photocathodes by pulsed laser deposition. We produced photocathodes with a highly homogeneous photoemissive layer well-adherent to the substrate. The photocathodes were mounted in a vacuum photodiode, and a tungsten grid was used as an anode. Using pulsed UV lasers, we carried out experiments aimed at evaluating the quantum efficiency of the photocathodes. With a dc voltage applied between the photocathode and anode grid, we measured a shunt signal proportional to the total charge emitted by the cathode exposed to UV laser light. The proposed deposition technique enables one to produce photocathodes with photoemissive layers highly uniform in quantum efficiency, which is its main advantage over thin film growth by resistive evaporation. (laser technologies)

  17. The Structure and Thermodynamics of Alkali Halide Vapors.

    NASA Astrophysics Data System (ADS)

    Hartley, John George

    A comprehensive set of electron diffraction experiments were performed on 16 of the alkali halides in the vapor phase. A 40kev electron beam was scattered from the vapor effusing out of the nozzle of a temperature controlled gas cell. The resulting data were analyzed at the University of Edinburgh with the program ED80. This resulted in values for the bond lengths of monomers and the dimers, the bond angle of the dimers and the monomer-dimer ratios. In several cases, it was possible to further refine the data to obtain information on the mean amplitudes of vibration. As a check on the accuracy of the results, the monomer bond distances obtained by electron diffraction were compared to values obtained previously by microwave spectroscopy. The average monomer bond length r_{a} is corrected to obtain the equilibrium bond distance r_{e}. This value is then compared to the value of r_{e } obtained from microwave spectroscopy and found to be in excellent agreement. The bond lengths and angles of the dimers were compared against model calculations. While no one model was found to accurately predict the dimer structure parameters of all of the alkali halides, the Rittner model of Gowda et al was found to accurately predict the structure of six of the dimers. Thermodynamical calculations were performed on the model data which resulted in theoretical curves of the monomer-dimer ratios. Comparison of these curves with the experimental monomer-dimer ratio permits an evaluation of the model vibration frequencies. The enthalpy of formation of the dimer, Delta H_sp{2}{f}(298) is examined with regard to the size of the variation necessary to bring about agreement of the experimental and model monomer-dimer ratios.

  18. Efficient destruction of CF4 through in situ generation of alkali metals from heated alkali halide reducing mixtures.

    PubMed

    Lee, Myung Churl; Choi, Wonyong

    2002-03-15

    Perfluorocarbons (PFCs) are the most potent green house gases that are very recalcitrant at destruction. An effective way of converting PFCs using hot solid reagents into safe products has been recently introduced. By investigating the thermal reductive destruction of tetrafluoromethane (CF4) we provided new insight and more physicochemical consideration on this novel process. The complete destruction of CF4was successfully achieved by flowing the gas through a heated reagent bed (400-950 degrees C) that contained powder mixtures of alkali halides, CaO, and Si. The silicon acted as a reducing agent of alkali halides for the in-situ production of alkali metals, and the calcium oxide played the role of a halide ion acceptor. The absence of any single component in this ternary mixture drastically reduced the destruction efficiency of CF4. The CF4 destruction efficiencies with the solid reagent containing the alkali halide, MX, increased in the order of Li approximately Na < K < Cs for alkali cations and I < Br < Cl < F for halide anions. This trend agreed with the endothermicity of the alkali metal generation reaction: the higher the endothermicity, the lower the destruction efficiency. Alkali metal generation was indirectly detected by monitoring H2 production from its reaction with water. The production of alkali metals increased with NaF, KF, and CsF in this order. The CsF/CaO/Si system exhibited the complete destruction of CF4 at as low as 600 degrees C. The solid product analysis by X-ray diffraction (XRD) showed the formation of CaF2 and the depletion of Si with black carbon particles formed in the solid reagent residue. No CO/CO2 and toxic HF and SiF4 formation were detected in the exhaust gas.

  19. Strong Turbulence in Alkali Halide Negative Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Sheehan, Daniel

    1999-11-01

    Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 <= fracm_+m- <= 20 are achievable. The source will allow tests of strong turbulence theory^2. 1 Sheehan, D.P., et al., Phys. Fluids B5, 1593 (1993). 2 Tsytovich, V. and Wharton, C.W., Comm. Plasma Phys. Cont. Fusion 4, 91 (1978).

  20. Graphitic cage transformation by electron-beam-induced catalysis with alkali-halide nanocrystals

    NASA Astrophysics Data System (ADS)

    Fujita, Jun-ichi; Tachi, Masashi; Ito, Naoto; Murakami, Katsuhisa; Takeguchi, Masaki

    2016-05-01

    We found that alkali-halide nanocrystals, such as KCl and NaCl, have strong catalytic capability to form graphitic carbon cages from amorphous carbon shells under electron beam irradiation. In addition to the electron beam irradiation strongly inducing the decomposition of alkali-halide nanocrystals, graphene fragments were formed and linked together to form the final product of thin graphitic carbon cages after the evaporation of alkali-halide nanocrystals. The required electron dose was approximately 1 to 20 C/cm2 at 120 keV at room temperature, which was about two orders of magnitude smaller than that required for conventional beam-induced graphitization. The “knock-on” effect of primary electrons strongly induced the decomposition of the alkali-halide crystal inside the amorphous carbon shell. However, the strong ionic cohesion quickly reformed the crystal into thin layers inside the amorphous shell. The bond excitation induced by the electron beam irradiation seemed to enhance strongly the graphitization at the interface between the outer amorphous carbon shell and the inner alkali-halide crystal.

  1. Study of alkali halide/FHF - systems at 10 - 290 K, 0 - 8 kBAR

    NASA Astrophysics Data System (ADS)

    Chunnilall, C. J.; Sherman, W. F.; Wilkinson, G. R.

    1984-03-01

    The bifluoride ion FHF -, (and FDF -), has been substitutionally isolated within single crystal samples of several alkali halides. Infrared and Raman spectra of these crystals have been studied at variable temperature and pressure. The infrared absorptions are strong, whereas the Raman is weak. At low temperatures the bands are very sharp with halfwidths less than 1 cm -1. On applying pressure, ν3 increases in frequency whereas ν2 decreases. On reducing temperature, ν3 decreases in frequency whereas ν2 increases. Hence the effect of volume contraction is overridden in the temperature dependent case. The deuterated spectra confirm that the bifluoride ion is well isolated within the alkali halide matrix.

  2. Electronic properties of metal-induced gap states formed at alkali-halide/metal interfaces

    NASA Astrophysics Data System (ADS)

    Kiguchi, Manabu; Yoshikawa, Genki; Ikeda, Susumu; Saiki, Koichiro

    2005-04-01

    The spatial distribution and site distribution of metal-induced gap states (MIGS) are studied by thickness-dependent near-edge x-ray absorption fine structure (NEXAFS) and by comparing the cation and anion-edge NEXAFS. The thickness-dependent NEXAFS shows that the decay length of MIGS depends on an alkali-halide rather than a metal, and it is larger for alkali-halides with smaller band gap energies. By comparing the Cl-edge and K-edge NEXAFS for KCl/Cu (001) , MIGS are found to be states localizing at anion sites.

  3. Reactions between cold methyl halide molecules and alkali-metal atoms

    SciTech Connect

    Lutz, Jesse J.; Hutson, Jeremy M.

    2014-01-07

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH{sub 3}X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH{sub 3}X + A → CH{sub 3} + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  4. Theory of metal atom-water interactions and alkali halide dimers

    NASA Technical Reports Server (NTRS)

    Jordan, K. D.; Kurtz, H. A.

    1982-01-01

    Theoretical studies of the interactions of metal atoms with water and some of its isoelectronic analogs, and of the properties of alkali halides and their aggregates are discussed. Results are presented of ab initio calculations of the heats of reaction of the metal-water adducts and hydroxyhydrides of Li, Be, B, Na, Mg, and Al, and of the bond lengths and angles an; the heats of reaction for the insertion of Al into HF, H2O, NH3, H2S and CH3OH, and Be and Mg into H2O. Calculations of the electron affinities and dipole moments and polarizabilities of selected gas phase alkali halide monomers and dimers are discussed, with particular attention given to results of calculations of the polarizability of LiF taking into account electron correlation effects, and the polarizability of the dimer (LiF)2.

  5. Temperature Dependence of Interatomic Separation and Bulk Modulus for Alkali Halides

    NASA Astrophysics Data System (ADS)

    Liu, Quan

    2016-07-01

    The values of interatomic separation r with the change of temperature T for seven alkali halides have been investigated with the help of an isobaric equation of state. The calculated results are used to predict the values of bulk modulus at different temperatures. The results are compared with the available experimental data and other theoretical results and are further discussed in view of recent research in the field of high temperature physics.

  6. Theoretical analysis of the kinetics of low-temperature defect recombination in alkali halide crystals

    NASA Astrophysics Data System (ADS)

    Kuzovkov, V. N.; Popov, A. I.; Kotomin, E. A.; Moskina, A. M.; Vasilchenko, E.; Lushchik, A.

    2016-07-01

    We analyzed carefully the experimental kinetics of the low-temperature diffusion-controlled F, H center recombination in a series of irradiated alkali halides and extracted the migration energies and pre-exponential parameters for the hole H centers. The migration energy for the complementary electronic F centers in NaCl was obtained from the colloid formation kinetics observed above room temperature. The obtained parameters were compared with data available from the literature.

  7. Development of processes for the production of solar grade silicon from halides and alkali metals

    NASA Technical Reports Server (NTRS)

    Dickson, C. R.; Gould, R. K.

    1980-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon in volume at low cost were studied. Experiments were performed to evaluate product separation and collection processes, measure heat release parameters for scaling purposes, determine the effects of reactants and/or products on materials of reactor construction, and make preliminary engineering and economic analyses of a scaled-up process.

  8. The change of the electronic structure of alkali halide films on W(110) under electron bombardment

    NASA Astrophysics Data System (ADS)

    Dieckhoff, S.; Maus-Friedrichs, W.; Kempter, V.

    1992-03-01

    NaCl and Csl films of up to four layers were deposited onto W(110) surfaces and investigated by metastable impact electron spectroscopy (MIES), UPS and AES. The electronic structure of the films under electron bombardment was then studied by MIES/UPS. The results are compared with the corresponding ones obtained by thermal desorption spectroscopy (TDS). An interpretation of the results is attempted on the basis of existing theories for desorption induced by electronic transitions (DIET) of alkali halides.

  9. Alkali metal/halide thermal energy storage systems performance evaluation

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Stearns, J. W.

    1986-01-01

    A pseudoheat-pipe heat transfer mechanism has been demonstrated effective in terms of both total heat removal efficiency and rate, on the one hand, and system isothermal characteristics, on the other, for solar thermal energy storage systems of the kind being contemplated for spacecraft. The selection of appropriate salt and alkali metal substances for the system renders it applicable to a wide temperature range. The rapid heat transfer rate obtainable makes possible the placing of the thermal energy storage system around the solar receiver canister, and the immersing of heat transfer fluid tubes in the phase change salt to obtain an isothermal heat source.

  10. Packing transition in alkali metallic clusters

    NASA Astrophysics Data System (ADS)

    Kawai, R.; Sung, Ming Wen; Weare, John H.

    1996-03-01

    Small metallic clusters form a local geometric configuration quite different from the bulk crystals. As the cluster size increases, several transitions in the local coordination take place before the bulk structure appears. These transitions involve change in the nature of chemical bonds. We have systematically investigated the structural transition of various alkali metal clusters including binary compounds using an ab initio molecular dynamics simulation. Among them, Li clusters exhibit unusual transition in their packing pattern. Small lithium clusters (N <= 21) form open structures based on a ``solvation shell''.(M. Sung, R. Kawai, and J. Weare, Phys. Rev. Lett. 73) (1994) 3552., which is quite different from other alkali metal clusters. The bonding of these small clusters is partially ionic. Above N=25, a close-packed structure is established. However, the local configuration still differ from that of the bulk crystal. As the size further increases, the ionic nature decreases and the system reaches another close-packed structure based on the Mackay icosahedron, which is similar to the bulk crystal structure.

  11. Calculation of the melting point of alkali halides by means of computer simulations

    NASA Astrophysics Data System (ADS)

    Aragones, J. L.; Sanz, E.; Valeriani, C.; Vega, C.

    2012-09-01

    In this paper, we study the liquid-solid coexistence of NaCl-type alkali halides, described by interaction potentials such as Tosi-Fumi (TF), Smith-Dang (SD), and Joung-Cheatham (JC), and compute their melting temperature (Tm) at 1 bar via three independent routes: (1) liquid/solid direct coexistence, (2) free-energy calculations, and (3) Hamiltonian Gibbs-Duhem integration. The melting points obtained by the three routes are consistent with each other. The calculated Tm of the Tosi-Fumi model of NaCl is in good agreement with the experimental value as well as with other numerical calculations. However, the other two models considered for NaCl, SD and JC, overestimate the melting temperature of NaCl by more than 200 K. We have also computed the melting temperature of other alkali halides using the Tosi-Fumi interaction potential and observed that the predictions are not always as close to the experimental values as they are for NaCl. It seems that there is still room for improvement in the area of force-fields for alkaline halides, given that so far most models are still unable to describe a simple yet important property such as the melting point.

  12. Metal Hydride and Alkali Halide Opacities in Extrasolar Giant Planets and Cool Stellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Weck, Philippe F.; Stancil, Phillip C.; Kirby, Kate; Schweitzer, Andreas; Hauschildt, Peter H.

    2006-01-01

    The lack of accurate and complete molecular line and continuum opacity data has been a serious limitation to developing atmospheric models of cool stars and Extrasolar Giant Planets (EGPs). We report our recent calculations of molecular opacities resulting from the presence of metal hydrides and alkali halides. The resulting data have been included in the PHOENIX stellar atmosphere code (Hauschildt & Baron 1999). The new models, calculated using spherical geometry for all gravities considered, also incorporate our latest database of nearly 670 million molecular lines, and updated equations of state.

  13. Molecular dispersion energy parameters for alkali and halide ions in aqueous solution

    SciTech Connect

    Reiser, S.; Deublein, S.; Hasse, H.; Vrabec, J.

    2014-01-28

    Thermodynamic properties of aqueous solutions containing alkali and halide ions are determined by molecular simulation. The following ions are studied: Li{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, Cs{sup +}, F{sup −}, Cl{sup −}, Br{sup −}, and I{sup −}. The employed ion force fields consist of one Lennard-Jones (LJ) site and one concentric point charge with a magnitude of ±1 e. The SPC/E model is used for water. The LJ size parameter of the ion models is taken from Deublein et al. [J. Chem. Phys. 136, 084501 (2012)], while the LJ energy parameter is determined in the present study based on experimental self-diffusion coefficient data of the alkali cations and the halide anions in aqueous solutions as well as the position of the first maximum of the radial distribution function of water around the ions. On the basis of these force field parameters, the electric conductivity, the hydration dynamics of water molecules around the ions, and the enthalpy of hydration is predicted. Considering a wide range of salinity, this study is conducted at temperatures of 293.15 and 298.15 K and a pressure of 1 bar.

  14. Alkali Halide Interfacial Behavior in a Sequence of Charged Slit Pores

    SciTech Connect

    Wander, Matthew C; Shuford, Kevin L

    2011-01-01

    In this paper, a variety of alkali halide, aqueous electrolyte solutions in contact with charged, planar-graphite slit-pores are simulated using classical molecular dynamics. Size trends in structure and transport properties are examined by varying the choice of ions among the alkali metal and halide series. As with the uncharged pores, system dynamics are driven by changes in water hydration behavior and specifically by variations in the number of hydrogen bonds per water molecule. Overall, the larger ions diffuse more rapidly under high surface charge conditions than the smaller ions. In particular, for the 1 nmslit, ion diffusivity increased by a factor of 4 compared to the uncharged case. Finally, a quantitative fit to the interfacial charge structure is presented, which confirms the presence of two distinct types of layers in an aqueous interface. This model indicates that the chemistry of the interface is able to create a small interfacial potential, and it shows how water molecules can rotate to increase charge separation in response to a surface potential.

  15. Alkali Metal Halide Salts as Interface Additives to Fabricate Hysteresis-Free Hybrid Perovskite-Based Photovoltaic Devices.

    PubMed

    Wang, Lili; Moghe, Dhanashree; Hafezian, Soroush; Chen, Pei; Young, Margaret; Elinski, Mark; Martinu, Ludvik; Kéna-Cohen, Stéphane; Lunt, Richard R

    2016-09-01

    A new method was developed for doping and fabricating hysteresis-free hybrid perovskite-based photovoltaic devices by using alkali metal halide salts as interface layer additives. Such salt layers introduced at the perovskite interface can provide excessive halide ions to fill vacancies formed during the deposition and annealing process. A range of solution-processed halide salts were investigated. The highest performance of methylammonium lead mixed-halide perovskite device was achieved with a NaI interlayer and showed a power conversion efficiency of 12.6% and a hysteresis of less than 2%. This represents a 90% improvement compared to control devices without this salt layer. Through depth-resolved mass spectrometry, optical modeling, and photoluminescence spectroscopy, this enhancement is attributed to the reduction of iodide vacancies, passivation of grain boundaries, and improved hole extraction. Our approach ultimately provides an alternative and facile route to high-performance and hysteresis-free perovskite solar cells. PMID:27532662

  16. Alkali Metal Halide Salts as Interface Additives to Fabricate Hysteresis-Free Hybrid Perovskite-Based Photovoltaic Devices.

    PubMed

    Wang, Lili; Moghe, Dhanashree; Hafezian, Soroush; Chen, Pei; Young, Margaret; Elinski, Mark; Martinu, Ludvik; Kéna-Cohen, Stéphane; Lunt, Richard R

    2016-09-01

    A new method was developed for doping and fabricating hysteresis-free hybrid perovskite-based photovoltaic devices by using alkali metal halide salts as interface layer additives. Such salt layers introduced at the perovskite interface can provide excessive halide ions to fill vacancies formed during the deposition and annealing process. A range of solution-processed halide salts were investigated. The highest performance of methylammonium lead mixed-halide perovskite device was achieved with a NaI interlayer and showed a power conversion efficiency of 12.6% and a hysteresis of less than 2%. This represents a 90% improvement compared to control devices without this salt layer. Through depth-resolved mass spectrometry, optical modeling, and photoluminescence spectroscopy, this enhancement is attributed to the reduction of iodide vacancies, passivation of grain boundaries, and improved hole extraction. Our approach ultimately provides an alternative and facile route to high-performance and hysteresis-free perovskite solar cells.

  17. Ion Segregation and Deliquescence of Alkali Halide Nanocrystals on SiO2

    SciTech Connect

    Arima, Kenta; Jiang, Peng; Lin, Deng-Sung; Verdaguer, Albert; Salmeron, Miquel

    2009-08-11

    The adsorption of water on alkali halide (KBr, KCl, KF, NaCl) nanocrystals on SiO{sub 2} and their deliquescence was investigated as a function of relative humidity (RH) from 8% to near saturation by scanning polarization force microscopy. At low humidity, water adsorption solvates ions at the surface of the crystals and increases their mobility. This results in a large increase in the dielectric constant, which is manifested in an increase in the electrostatic force and in an increase in the apparent height of the nanocrystals. Above 58% RH, the diffusion of ions leads to Ostwald ripening, where larger nanocrystals grow at the expense of the smaller ones. At the deliquescence point, droplets were formed. For KBr, KCl, and NaCl, the droplets exhibit a negative surface potential relative to the surrounding region, which is indicative of the preferential segregation of anions to the air/solution interface.

  18. Silicon Halide-alkali Metal Flames as a Source of Solar Grade Silicon

    NASA Technical Reports Server (NTRS)

    Olson, D. B.; Gould, R. K.

    1979-01-01

    A program is presented which was aimed at determining the feasibility of using high temperature reactions of alkali metals and silicon halides to produce low cost solar-grade silicon. Experiments are being conducted to evaluate product separation and collection processes, measure heat release parameters for scaling purposes, and determine the effects of the reactants and/or products on materials of reactor construction. During the current reporting period, the results of heat release experiments were used to design and construct a new type of thick-wall graphite reactor to produce larger quantities of silicon. A reactor test facility was constructed. Material compatibility tests were performed for Na in contact with graphite and several coated graphites. All samples were rapidly degraded at T = 1200K, while samples retained structural strength at 1700K. Pyrolytic graphite coatings cracked and separated from substances in all cases.

  19. Role of water in alkali halide heterogeneous chemistry relevant to the atmosphere: A surface science study

    NASA Astrophysics Data System (ADS)

    Ghosal, Sutapa

    2001-05-01

    Water is a ubiquitous atmospheric constituent. The interaction of water in its various forms (vapor, liquid, ice) with other atmospheric constituents has a significant impact on the chemistry of the atmosphere. Another class of compounds that are of considerable importance in atmospheric chemistry are alkali halide salts such as sea salt particles. Heterogeneous reactions of alkali halides with gas phase pollutants are believed to be an important source of halogens in the troposphere. There is an increasing amount of evidence that the presence of water plays an important role in the heterogeneous chemistry of alkali halide particles. It is the goal of this dissertation to contribute to the understanding of the interaction of water with alkali halide surfaces and its atmospheric implications. Surface processes are of fundamental importance in heterogeneous atmospheric chemistry, but they are often difficult to study because of their inherent complexity. As this dissertation shows, the use of modern surface science techniques offer valuable insights into these complex processes and as such offer complementary alternatives to the traditional atmospheric chemistry experiments. The surface science techniques used in this dissertation are X-ray photoelectron spectroscopy (XPS), scanning polarization force microscopy (SPFM) and scanning electron microscopy (SEM). Presented here are the results of the XPS and SEM studies undertaken to determine the nature and content of surface adsorbed water on NaCl as a function of surface defects. The details of HNO3 uptake on NaCl and the effect of surface adsorbed water on this uptake are also discussed. Our results show that the amount of ``strongly adsorbed water'' (SAW) on the surface of NaCl particles depends on the particle size and hence, on the concentration of surface defects. Unlike the (100) single crystal the more defective surfaces show dissociative water uptake at room temperature upon exposure to water vapor well below

  20. Transport coefficients and the Stokes-Einstein relation in molten alkali halides with polarisable ion model

    NASA Astrophysics Data System (ADS)

    Ishii, Yoshiki; Kasai, Satoshi; Salanne, Mathieu; Ohtori, Norikazu

    2015-09-01

    A polarisable ion model is parameterised for the whole series of molten alkali halides by using first-principles calculations based on density functional theory. Viscosity, electrical conductivity and thermal conductivity are determined using molecular dynamics simulations via the Green-Kubo formulae and confronted to experimental results. The calculated transport coefficients are generally in much better agreement than those obtained with the empirical Fumi-Tosi potentials. The inclusion of polarisation effects significantly decreases the viscosity and thermal conductivity, while it increases the electrical conductivity. The individual dynamics of the ions is analysed using the Stokes-Einstein relation. The anion behaviour is always well represented using the slip boundary condition, while for cations there is an apparent shift from slip to stick condition when the ionic radius decreases. This difference is interpreted by subtle changes in their coordinating environment, which are maximised in the case of Li+ cation.

  1. Ab initio perspective on the Mollwo-Ivey relation for F centers in alkali halides

    NASA Astrophysics Data System (ADS)

    Tiwald, Paul; Karsai, Ferenc; Laskowski, Robert; Gräfe, Stefanie; Blaha, Peter; Burgdörfer, Joachim; Wirtz, Ludger

    2015-10-01

    We revisit the well-known Mollwo-Ivey relation that describes the "universal" dependence of the absorption energies of F-type color centers on the lattice constant a of alkali-halide crystals, Eabs∝a-n. We perform both state-of-the-art ab initio quantum chemistry and post-DFT calculations of F-center absorption spectra. By "tuning" independently the lattice constant and the atomic species we show that the scaling with the lattice constant alone (keeping the elements fixed) would yield n =2 in agreement with the "particle-in-the-box" model. Keeping the lattice constant fixed and changing the atomic species enables us to quantify the ion-size effects which are shown to be responsible for the exponent n ≈1.8 .

  2. Silicon halide-alkali metal flames as a source of solar grade silicon. Final report

    SciTech Connect

    Olson, D.B.; Miller, W.J.; Gould, R.K.

    1980-01-01

    The object of this program was to determine the feasibility of using continuous high-temperature reactions of alkali metals and silicon halides to produce silicon in large quantities and of suitable purity for use in the production of photovoltaic solar cells. Equilibrium calculations showed that a range of conditions were available where silicon was produced as a condensed phase but the byproduct alkali metal salt was a vapor. A process was proposed using the vapor phase reaction of Na with SiCl/sub 4/. Low pressure experiments were performed demonstrating that free silicon was produced and providing experience with the construction of reactant vapor generators. Further experiments at higher reagent flow rates were performed in a low temperature flow tube configuration with co-axial injection of reagents. Relatively pure silicon was produced in these experiments. A high temperature graphite flow tube was built and continuous separation of Si from NaCl was demonstrated. A larger-scaled well-stirred reactor was built. Experiments were performed to investigate the compatibility of graphite-based reactor materials of construction with sodium. At 1100 to 1200 K none of these materials were found to be suitable. At 1700 K the graphites performed well with little damage except to coatings of pyrolytic graphite and silicon carbide which were damaged.

  3. Silicon halide-alkali metal flames as a source of solar grade silicon

    NASA Technical Reports Server (NTRS)

    Olsen, D. B.; Miller, W. J.

    1979-01-01

    The feasibility of using alkali metal-silicon halide diffusion flames to produce solar-grade silicon in large quantities and at low cost is demonstrated. Prior work shows that these flames are stable and that relatively high purity silicon can be produced using Na + SiCl4 flames. Silicon of similar purity is obtained from Na + SiF4 flames although yields are lower and product separation and collection are less thermochemically favored. Continuous separation of silicon from the byproduct alkali salt was demonstrated in a heated graphite reactor. The process was scaled up to reduce heat losses and to produce larger samples of silicon. Reagent delivery systems, scaled by a factor of 25, were built and operated at a production rate of 0.5 kg Si/h. Very rapid reactor heating rates are observed with wall temperatures reaching greater than 2000 K. Heat release parameters were measured using a cooled stainless steel reactor tube. A new reactor was designed.

  4. Atomic force microscopy studies of alkali halide surfaces nanostructured by DIET

    NASA Astrophysics Data System (ADS)

    Goryl, M.; Such, B.; Krok, F.; Meisel, K.; Kolodziej, J. J.; Szymonski, M.

    2005-11-01

    We report on surface topography modification of single crystal alkali halides due to creation of the excitonic states by keV electron irradiation. The DIET—structured surfaces have been studied with nanometer scale resolution by means of a dynamic (non-contact) atomic force microscopy (DFM) in UHV. The force microscopy studies reveal that randomly spread rectangular pits of monolayer depth in the topmost layer of the crystal are formed during irradiation. Growth and coalescence of the pits lead to almost layer-by-layer desorption mode. It is demonstrated that varying surface topography affects the yield of both the halogen and the alkali atom desorption component, as well as velocity spectrum of desorbing halogen atoms (thermal versus non-thermal ratio). We propose a model in which periodic changes of the surface topography with the increasing electron fluence (from initially flat to rough at about half monolayer desorbed, back to flat after a complete monolayer removal) are modulating the surface recombination probability for the excited F-centers. By controlling the population of traps in the bulk these surface processes are causing modulation of the diffusion range of mobile defects migrating from the bulk of the material towards its surface and the bulk recombination probabilities of F- and H-centres.

  5. Chemistry of alkali cation exchanged faujasite and mesoporous NaX using alkyl halides and phosphates

    NASA Astrophysics Data System (ADS)

    Lee, Min-Hong

    The purpose of this work was to increase the reactivity of Faujasite X (NaX) zeolite toward the reactive decontamination of materials subject to nucleophilic attack by means of zeolite cation optimization and by means of the synthesis of mesoporous Faujasite X. Primary alkyl halides and trialkyl phosphates have been the test materials on which the cation-optimized and mesoporous zeolites have been tested. In the alkali cation optimization work, reactions of methyl iodide and 1-chloropropane with alkali metal cation exchanged Faujasite zeolite X were investigated at room temperature. The reactivity of the framework and the product formation were shown to depend on zeolite framework counter-cation. A quantitative study of zeolite product formation has been carried out, primarily using solid-state NMR spectroscopy. Large alkali cations showed preference toward substitution chemistry. In contrast, alkyl halide exposed LiX and NaX zeolites underwent both substitution and elimination. Subsequently introduced water molecules led to hydrolysis of framework species that was sensitive to framework counter-cation. The mesoporous NaX zeolites work undertakes to test whether an improvement in surface chemical reactivity can be achieved by introducing mesopores into the already reactive nucleophilic microporous NaX zeolite. Incorporation of the polydiallyl dimethyl ammonium chloride (PDADMAC) template and the formation of mesopores in Faujasite X zeolite (NaX) were successful and well-characterized. The mesopores are proposed to have occurred from incorporation of the cationic PDADMAC polymer into the zeolite by compensating zeolite framework charge. Subsequent sodium cation exchange of calcined mesoporous NaX was shown to restore the chemical reactivity characteristic of as-synthesized NaX. Trialkyl organophosphorous compounds underwent substitution reactions. The reactivity of both microporous and mesoporous Faujasite zeolite X and the product formation was shown to depend on

  6. Reverse osmosis transport of alkali halides and nickel salts through cellulose triacetate membranes. Performance prediction from NaCl experiments

    SciTech Connect

    Nirmal, J.D.; Pandya, V.P.; Desai, N.V.; Rangarajan, R. )

    1992-10-01

    The separation of alkali metal halides, nickel chloride, and nickel sulfate was determined for cellulose triacetate reverse osmosis (CTA RO) membranes. From transport analysis, the relative free energy parameters for transport of these salts through CTA membranes were determined. From these relative free energy parameters of salts, the solute separation by CTA membranes could be predicted from RO experiment with NaCl solution. The transport analysis and an illustration of how the concept is useful are presented in this paper.

  7. Physics of solid and liquid alkali halide surfaces near the melting point.

    PubMed

    Zykova-Timan, T; Ceresoli, D; Tartaglino, U; Tosatti, E

    2005-10-22

    This paper presents a broad theoretical and simulation study of the high-temperature behavior of crystalline alkali halide surfaces typified by NaCl(100), of the liquid NaCl surface near freezing, and of the very unusual partial wetting of the solid surface by the melt. Simulations are conducted using two-body rigid-ion Born-Mayer-Huggins-Fumi-Tosi (BMHFT) potentials, with full treatment of long-range Coulomb forces. After a preliminary check of the description of bulk NaCl provided by these potentials, which seems generally good even at the melting point, we carry out a new investigation of solid and liquid surfaces. Solid NaCl(100) is found in this model to be very anharmonic and yet exceptionally stable when hot. It is predicted by a thermodynamic integration calculation of the surface free energy that NaCl(100) should be a well-ordered, nonmelting surface, metastable even well above the melting point. By contrast, the simulated liquid NaCl surface is found to exhibit large thermal fluctuations and no layering order. In spite of that, it is shown to possess a relatively large surface free energy. The latter is traced to a surface entropy deficit, reflecting some kind of surface short-range order. We show that the surface short-range order is most likely caused by the continuous transition of the bulk ionic melt into the vapor, made of NaCl molecules and dimers rather than of single ions. Finally, the solid-liquid interface free energy is derived through Young's equation from direct simulation of partial wetting of NaCl(100) by a liquid droplet. The resulting interface free energy is large, in line with the conspicuous solid-liquid 27% density difference. A partial wetting angle near 50 degrees close to the experimental value of 48 degrees is obtained in the process. It is concluded that three elements, namely, the exceptional anharmonic stability of the solid (100) surface, the molecular short-range order at the liquid surface, and the costly solid

  8. Silicon halide-alkali metal flames as a source of solar grade silicon

    NASA Technical Reports Server (NTRS)

    Olson, D. B.; Miller, W. J.; Gould, R. K.

    1980-01-01

    The feasibility of using continuous high-temperature reactions of alkali metals and silicon halides to produce silicon in large quantities and of suitable purity for use in the production of photovoltaic solar cells was demonstrated. Low pressure experiments were performed demonstrating the production of free silicon and providing experience with the construction of reactant vapor generators. Further experiments at higher reagent flow rates were performed in a low temperature flow tube configuration with co-axial injection of reagents and relatively pure silicon was produced. A high temperature graphite flow tube was built and continuous separation of Si from NaCl was demonstrated. A larger scaled well stirred reactor was built. Experiments were performed to investigate the compatability of graphite based reactor materials of construction with sodium. At 1100 to 1200 K none of these materials were found to be suitable. At 1700 K the graphites performed well with little damage except to coatings of pyrolytic graphite and silicon carbide which were damaged.

  9. Surface Spectroscopy Studies of the Reactive Uptake of Ozone on Alkali Halides

    NASA Astrophysics Data System (ADS)

    Newberg, J. T.; Hemminger, J. C.

    2003-12-01

    Heterogeneous reactions in the atmosphere have attracted a lot of attention. In particular, reactions involving sea-salt in the form of aerosol droplets, particles, and/or sea-ice have been implicated to significantly affect the chemistry and composition of the marine boundary layer. For example, highly reactive chlorine and bromine atoms resulting from the oxidation of sea-salt halides (Cl- and Br-) have been implicated in tropospheric ozone depletion in the arctic and in lower latitude marine regions, as well as the deposition of mercury. While the heterogeneous processing of sea-salt has been studied extensively in laboratory, field and model studies, the mechanistic details behind the release of gas-phase halogens remains unclear and has sparked some interests. Recently there has been attention focused on the interaction of important atmospheric oxidants (e.g., OH and O3) with halides that reside at the air-particle interface of sea-salt. Such chemical interactions at the surface of particles may lead to unique chemical transformations that can alter current views of known chemical processing of sea-salt particles. There are several laboratory investigations which have investigated the surface reactivity of salts by measuring the reactive loss and/or formation of gas-phase species, indicating that reactions at the interface likely play an important role in aerosol chemistry. The efficacy of such surface-phase chemistry has yet to be elucidated with surface spectroscopy studies. X-ray photoelectron spectroscopy (XPS) is a surface spectroscopy technique with submonolayer resolution. Using XPS, we have investigated changes in the surface chemistry of various alkali halide salts upon exposure to ozone in an ultra-high vacuum (UHV) instrument. Salt samples were either freshly cleaved single crystals which were prepared from a melt, or purified salt crystals/powders pressed into pellets. Upon exposure to ozone, oxygen on the salt surfaces was monitored by measuring

  10. First examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands

    SciTech Connect

    Wang Lamei; Fan Yong; Wang Yan; Xiao Lina; Hu Yangyang; Peng Yu; Wang Tiegang; Gao Zhongmin; Zheng Dafang; Cui Xiaobing; Xu Jiqing

    2012-07-15

    Two new organic-inorganic compounds based on polyoxometalates, metal halide clusters and organic ligands: [BW{sub 12}O{sub 40}]{sub 2}[Cu{sub 2}(Phen){sub 4}Cl](H{sub 2}4, 4 Prime -bpy){sub 4}{center_dot}H{sub 3}O{center_dot}5H{sub 2}O (1) and [HPW{sub 12}O{sub 40}][Cd{sub 2}(Phen){sub 4}Cl{sub 2}](4, 4 Prime -bpy) (2) (Phen=1, 10-phenanthroline, bpy=bipyridine), have been prepared and characterized by IR, UV-vis, XPS, XRD and single crystal X-ray diffraction analyses. Crystal structure analyses reveal that compound 1 is constructed from [BW{sub 12}O{sub 40}]{sup 5-}, metal halide clusters [Cu{sub 2}(Phen){sub 4}Cl]{sup +}and 4, 4 Prime -bpy ligands, while compound 2 is constructed from [PW{sub 12}O{sub 40}]{sup 3-}, metal halide cluster [Cd{sub 2}(Phen){sub 4}Cl{sub 2}]{sup 2+} and 4, 4 Prime -bpy ligands. Compound 1 and compound 2 are not common hybrids based on polyoxometalates and metal halide clusters, they also contain dissociated organic ligands, therefore, compound 1 and 2 are the first examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands. - Graphical Abstract: Two new compounds have been synthesized and characterized. Structure analyses revealed that the two compounds are the first examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands. Highlights: Black-Right-Pointing-Pointer First examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands. Black-Right-Pointing-Pointer Two different kinds of metal halide clusters. Black-Right-Pointing-Pointer Supramolecular structures based on polyoxometalates, metal halide clusters and organic ligands. Black-Right-Pointing-Pointer Hybridization of three different of building blocks.

  11. Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations

    SciTech Connect

    Webster, R. Harrison, N. M.; Bernasconi, L.

    2015-06-07

    We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features of the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green’s function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional c{sub HF} and show that there exists one value of c{sub HF} (∼0.32) that reproduces at least semi-quantitatively the optical gap of this material.

  12. Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations

    NASA Astrophysics Data System (ADS)

    Webster, R.; Bernasconi, L.; Harrison, N. M.

    2015-06-01

    We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features of the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green's function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional cHF and show that there exists one value of cHF (˜0.32) that reproduces at least semi-quantitatively the optical gap of this material.

  13. Universal scaling of potential energy functions describing intermolecular interactions. II. The halide-water and alkali metal-water interactions

    SciTech Connect

    Werhahn, Jasper C.; Akase, Dai; Xantheas, Sotiris S.

    2014-08-14

    The scaled versions of the newly introduced [S. S. Xantheas and J. C. Werhahn, J. Chem. Phys.141, 064117 (2014)] generalized forms of some popular potential energy functions (PEFs) describing intermolecular interactions – Mie, Lennard-Jones, Morse, and Buckingham exponential-6 – have been used to fit the ab initio relaxed approach paths and fixed approach paths for the halide-water, X-(H2O), X = F, Cl, Br, I, and alkali metal-water, M+(H2O), M = Li, Na, K, Rb, Cs, interactions. The generalized forms of those PEFs have an additional parameter with respect to the original forms and produce fits to the ab initio data that are between one and two orders of magnitude better in the χ2 than the original PEFs. They were found to describe both the long-range, minimum and repulsive wall of the respective potential energy surfaces quite accurately. Overall the 4-parameter extended Morse (eM) and generalized Buckingham exponential-6 (gBe-6) potentials were found to best fit the ab initio data for these two classes of ion-water interactions. Finally, the fitted values of the parameter of the (eM) and (gBe-6) PEFs that control the repulsive wall of the potential correlate remarkably well with the ionic radii of the halide and alkali metal ions.

  14. Electronic properties of metal-induced gap states at insulator/metal interfaces: Dependence on the alkali halide and the possibility of excitonic mechanism of superconductivity

    NASA Astrophysics Data System (ADS)

    Arita, Ryotaro; Tanida, Yoshiaki; Kuroki, Kazuhiko; Aoki, Hideo

    2004-03-01

    Motivated from the experimental observation of metal-induced gap states (MIGS) at insulator/metal interfaces by Kiguchi et al. [Phys. Rev. Lett. 90, 196803 (2003)], we have theoretically investigated the electronic properties of MIGS at interfaces between various alkali halides and a metal represented by a jellium with the first-principles density-functional method. We have found that, on top of the usual evanescent state, MIGS generally have appreciable amplitudes on halogen sites with a pz-like character, whose penetration depth (λ) is as large as half the lattice constant of bulk alkali halides. This implies that λ, while little dependent on the carrier density in the jellium, is dominated by the energy gap of the alkali halide, and is scaled by the lattice constant, where λLiF<λLiCl<λLiI. We also propose a possibility of the MIGS working favorably for the exciton-mediated superconductivity, especially in a system where ˜10 Å of metal is sandwiched by alkali halide substrates.

  15. Development of processes for the production of solar grade silicon from halides and alkali metals, phase 1 and phase 2

    NASA Astrophysics Data System (ADS)

    Dickson, C. R.; Gould, R. K.; Felder, W.

    1981-03-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon are described. Product separation and collection processes were evaluated, measure heat release parameters for scaling purposes and effects of reactants and/or products on materials of reactor construction were determined, and preliminary engineering and economic analysis of a scaled up process were made. The feasibility of the basic process to make and collect silicon was demonstrated. The jet impaction/separation process was demonstrated to be a purification process. The rate at which gas phase species from silicon particle precursors, the time required for silane decomposition to produce particles, and the competing rate of growth of silicon seed particles injected into a decomposing silane environment were determined. The extent of silane decomposition as a function of residence time, temperature, and pressure was measured by infrared absorption spectroscopy. A simplistic model is presented to explain the growth of silicon in a decomposing silane enviroment.

  16. Development of processes for the production of solar grade silicon from halides and alkali metals, phase 1 and phase 2

    NASA Technical Reports Server (NTRS)

    Dickson, C. R.; Gould, R. K.; Felder, W.

    1981-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon are described. Product separation and collection processes were evaluated, measure heat release parameters for scaling purposes and effects of reactants and/or products on materials of reactor construction were determined, and preliminary engineering and economic analysis of a scaled up process were made. The feasibility of the basic process to make and collect silicon was demonstrated. The jet impaction/separation process was demonstrated to be a purification process. The rate at which gas phase species from silicon particle precursors, the time required for silane decomposition to produce particles, and the competing rate of growth of silicon seed particles injected into a decomposing silane environment were determined. The extent of silane decomposition as a function of residence time, temperature, and pressure was measured by infrared absorption spectroscopy. A simplistic model is presented to explain the growth of silicon in a decomposing silane enviroment.

  17. Valence bond cluster studies of alkali metal/semiconductor bonding

    NASA Astrophysics Data System (ADS)

    Tatar, Robert C.; Messmer, Richard P.

    1986-12-01

    We present results of cluster studies of alkali metal/semiconductor bonding. Using the Generalized Valence Bond (GVB) method, we find a remarkable consistency in the behavoir of bonding orbitals for a variety of systems, including: LiH, CLi4, LiH4 and several hypervalent systems, such as SiH3Li2, SiH4Li2. Our results show that the metal-semiconductor bonding in these systems can be understood in terms of a pairing between McAdon-Goddard type metallic bonding orbitals and a set of equivalent orbitals of the non-metallic species. We propose that the results are relevant to the initial stages of alkali overlayer growth on semiconductor surfaces and lead to a simple picture of the bonding including the transition from a non-conducting to a conducting layer. We have considered numerous proposed hypervalent structures in light of the above results and find that they can be understood.

  18. Self-assembly of Alkali-uranyl-peroxide Clusters

    SciTech Connect

    Nyman, May; Rodriquez, Mark A.; Campana, Charles F.

    2010-08-11

    The hexavalent uranium specie, uranyl triperoxide, UO2(O2)34-, has been shown recently to behave like high oxidation-state d0 transition-metals, self-assembling into polyoxometalate-like clusters that contain up to 60 uranyl cations bridged by peroxide ligands. There has been much less focus on synthesis and structural characterization of salts of the monomeric UO2(O2)34- building block of these clusters. However, these could serve as water-soluble uranyl precursors for both clusters and materials, and also be used as simple models to study aqueous behavior by experiment and modeling. The countercation is of utmost importance to the assembly of these clusters, and Li+ has proven useful for the crystallization of many of the known cluster geometries to date. We present in this paper synthesis and structural characterization of two monomeric lithium uranyl-peroxide salts, Li4[UO2(O2)3]·10H2O (1) and [UO2(O2)3]12[(UO2(OH)4)Li16(H2O)28]3·Li6[H2O]26 (2). They were obtained from aqueous-alcohol solutions rather than the analogous aqueous solutions from which lithium uranyl-peroxide clusters are crystallized. Rapid introduction of the alcohol gives the structure of (1) whereas slow diffusion of alcohol results in crystallization of (2). (2) is an unusual structure featuring uranyl-centered alkali clusters that are linked into ring and spherical arrangements via [UO2(O2)3] anions. Furthermore, partial substitution of Rb or Cs into the synthesis results in formation of (2) with substitution of these larger alkalis into the uranyl-centered clusters. We surmise that the slow crystallization allows for direct bonding of alkali metals to the

  19. Solubility of alkali metal halides in the ionic liquid [C4C1im][OTf].

    PubMed

    Kuzmina, O; Bordes, E; Schmauck, J; Hunt, P A; Hallett, J P; Welton, T

    2016-06-28

    The solubilities of the metal halides LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbCl, CsCl, CsI, were measured at temperatures ranging from 298.15 to 378.15 K in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4C1im][OTf]). Li(+), Na(+) and K(+) salts with anions matching the ionic liquid have also been investigated to determine how well these cations dissolve in [C4C1im][OTf]. This study compares the influence of metal cation and halide anion on the solubility of salts within this ionic liquid. The highest solubility found was for iodide salts, and the lowest solubility for the three fluoride salts. There is no outstanding difference in the solubility of salts with matching anions in comparison to halide salts. The experimental data were correlated employing several phase equilibria models, including ideal mixtures, van't Hoff, the λh (Buchowski) equation, the modified Apelblat equation, and the non-random two-liquid model (NRTL). It was found that the van't Hoff model gave the best correlation results. On the basis of the experimental data the thermodynamic dissolution parameters (ΔH, ΔS, and ΔG) were determined for the studied systems together with computed gas phase metathesis parameters. Dissolution depends on the energy difference between enthalpies of fusion and dissolution of the solute salt. This demonstrates that overcoming the lattice energy of the solid matrix is the key to the solubility of inorganic salts in ionic liquids. PMID:27264676

  20. Solubility of alkali metal halides in the ionic liquid [C4C1im][OTf].

    PubMed

    Kuzmina, O; Bordes, E; Schmauck, J; Hunt, P A; Hallett, J P; Welton, T

    2016-06-28

    The solubilities of the metal halides LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbCl, CsCl, CsI, were measured at temperatures ranging from 298.15 to 378.15 K in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4C1im][OTf]). Li(+), Na(+) and K(+) salts with anions matching the ionic liquid have also been investigated to determine how well these cations dissolve in [C4C1im][OTf]. This study compares the influence of metal cation and halide anion on the solubility of salts within this ionic liquid. The highest solubility found was for iodide salts, and the lowest solubility for the three fluoride salts. There is no outstanding difference in the solubility of salts with matching anions in comparison to halide salts. The experimental data were correlated employing several phase equilibria models, including ideal mixtures, van't Hoff, the λh (Buchowski) equation, the modified Apelblat equation, and the non-random two-liquid model (NRTL). It was found that the van't Hoff model gave the best correlation results. On the basis of the experimental data the thermodynamic dissolution parameters (ΔH, ΔS, and ΔG) were determined for the studied systems together with computed gas phase metathesis parameters. Dissolution depends on the energy difference between enthalpies of fusion and dissolution of the solute salt. This demonstrates that overcoming the lattice energy of the solid matrix is the key to the solubility of inorganic salts in ionic liquids.

  1. Lattice model calculation of elastic and thermodynamic properties at high pressure and temperature. [for alkali halides in NaCl lattice

    NASA Technical Reports Server (NTRS)

    Demarest, H. H., Jr.

    1972-01-01

    The elastic constants and the entire frequency spectrum were calculated up to high pressure for the alkali halides in the NaCl lattice, based on an assumed functional form of the inter-atomic potential. The quasiharmonic approximation is used to calculate the vibrational contribution to the pressure and the elastic constants at arbitrary temperature. By explicitly accounting for the effect of thermal and zero point motion, the adjustable parameters in the potential are determined to a high degree of accuracy from the elastic constants and their pressure derivatives measured at zero pressure. The calculated Gruneisen parameter, the elastic constants and their pressure derivatives are in good agreement with experimental results up to about 600 K. The model predicts that for some alkali halides the Grunesen parameter may decrease monotonically with pressure, while for others it may increase with pressure, after an initial decrease.

  2. Ca-Fe and Alkali-Halide Alteration of an Allende Type B CAI: Aqueous Alteration in Nebular or Asteroidal Settings

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Simon, J. I.; Simon, S. B.; Grossman, L.

    2012-01-01

    Ca-Fe and alkali-halide alteration of CAIs is often attributed to aqueous alteration by fluids circulating on asteroidal parent bodies after the various chondritic components have been assembled, although debate continues about the roles of asteroidal vs. nebular modification processes [1-7]. Here we report de-tailed observations of alteration products in a large Type B2 CAI, TS4 from Allende, one of the oxidized subgroup of CV3s, and propose a speculative model for aqueous alteration of CAIs in a nebular setting. Ca-Fe alteration in this CAI consists predominantly of end-member hedenbergite, end-member andradite, and compositionally variable, magnesian high-Ca pyroxene. These phases are strongly concentrated in an unusual "nodule" enclosed within the interior of the CAI (Fig. 1). The Ca, Fe-rich nodule superficially resembles a clast that pre-dated and was engulfed by the CAI, but closer inspection shows that relic spinel grains are enclosed in the nodule, and corroded CAI primary phases interfinger with the Fe-rich phases at the nodule s margins. This CAI also contains abundant sodalite and nepheline (alkali-halide) alteration that occurs around the rims of the CAI, but also penetrates more deeply into the CAI. The two types of alteration (Ca-Fe and alkali-halide) are adjacent, and very fine-grained Fe-rich phases are associated with sodalite-rich regions. Both types of alteration appear to be replacive; if that is true, it would require substantial introduction of Fe, and transport of elements (Ti, Al and Mg) out of the nodule, and introduction of Na and Cl into alkali-halide rich zones. Parts of the CAI have been extensively metasomatized.

  3. Interaction of wide band gap single crystals with 248 nm excimer laser radiation. XII. The emission of negative atomic ions from alkali halides

    SciTech Connect

    Kimura, Kenichi; Langford, S. C.; Dickinson, J. T.

    2007-12-01

    Many wide band gap materials yield charged and neutral emissions when exposed to sub-band-gap laser radiation at power densities below the threshold for optical breakdown and plume formation. In this work, we report the observation of negative alkali ions from several alkali halides under comparable conditions. We observe no evidence for negative halogen ions, in spite of the high electron affinities of the halogens. Significantly, the positive and negative alkali ions show a high degree of spatial and temporal overlap. A detailed study of all the relevant particle emissions from potassium chloride (KCl) suggests that K{sup -} is formed by the sequential attachment of two electrons to K{sup +}.

  4. Molecular simulation of aqueous electrolyte solubility. 3. Alkali-halide salts and their mixtures in water and in hydrochloric acid.

    PubMed

    Moučka, Filip; Lísal, Martin; Smith, William R

    2012-05-10

    We extend the osmotic ensemble Monte Carlo (OEMC) molecular simulation method (Moučka et al. J. Phys Chem. B 2011, 115, 7849-7861) for directly calculating the aqueous solubility of electrolytes and for calculating their chemical potentials as functions of concentration to cases involving electrolyte hydrates and mixed electrolytes, including invariant points involving simultaneous precipitation of several solutes. The method utilizes a particular semigrand canonical ensemble, which performs simulations of the solution at a fixed number of solvent molecules, pressure, temperature, and specified overall electrolyte chemical potential. It avoids calculations for the solid phase, incorporating available solid chemical potential data from thermochemical tables, which are based on well-defined reference states, or from other sources. We apply the method to a range of alkali halides in water and to selected examples involving LiCl monohydrate, mixed electrolyte solutions involving water and hydrochloric acid, and invariant points in these solvents. The method uses several existing force-field models from the literature, and the results are compared with experiment. The calculated results agree qualitatively well with the experimental trends and are of reasonable accuracy. The accuracy of the calculated solubility is highly dependent on the solid chemical potential value and also on the force-field model used. Our results indicate that pairwise additive effective force-field models developed for the solution phase are unlikely to also be good models for the corresponding crystalline solid. We find that, in our OEMC simulations, each ionic force-field model is characterized by a limiting value of the total solution chemical potential and a corresponding aqueous concentration. For higher values of the imposed chemical potential, the solid phase in the simulation grows in size without limit.

  5. Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mester, Zoltan; Panagiotopoulos, Athanassios Z.

    2015-07-01

    The mean ionic activity coefficients of aqueous KCl, NaF, NaI, and NaCl solutions of varying concentrations have been obtained from molecular dynamics simulations following a recently developed methodology based on gradual insertions of salt molecules [Z. Mester and A. Z. Panagiotopoulos, J. Chem. Phys. 142, 044507 (2015)]. The non-polarizable ion models of Weerasinghe and Smith [J. Chem. Phys. 119, 11342 (2003)], Gee et al. [J. Chem. Theory Comput. 7, 1369 (2011)], Reiser et al. [J. Chem. Phys. 140, 044504 (2014)], and Joung and Cheatham [J. Phys. Chem. B 112, 9020 (2008)] were used along with the extended simple point charge (SPC/E) water model [Berendsen et al., J. Phys. Chem. 91, 6269 (1987)] in the simulations. In addition to the chemical potentials in solution used to obtain the activity coefficients, we also calculated the chemical potentials of salt crystals and used them to obtain the solubility of these alkali halide models in SPC/E water. The models of Weerasinghe and Smith [J. Chem. Phys. 119, 11342 (2003)] and Gee et al. [J. Chem. Theory Comput. 7, 1369 (2011)] provide excellent predictions of the mean ionic activity coefficients at 298.15 K and 1 bar, but significantly underpredict or overpredict the solubilities. The other two models generally predicted the mean ionic activity coefficients only qualitatively. With the exception of NaF for which the solubility is significantly overpredicted, the model of Joung and Cheatham predicts salt solubilities that are approximately 40%-60% of the experimental values. The models of Reiser et al. [J. Chem. Phys. 140, 044504 (2014)] make good predictions for the NaCl and NaI solubilities, but significantly underpredict the solubilities for KCl and NaF. We also tested the transferability of the models to temperatures much higher than were used to parametrize them by performing simulations for NaCl at 373.15 K and 1 bar, and at 473.15 K and 15.5 bar. All models overpredict the drop in the values of mean ionic

  6. Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters.

    PubMed

    Joung, In Suk; Cheatham, Thomas E

    2009-10-01

    The dynamic and energetic properties of the alkali and halide ions were calculated using molecular dynamics (MD) and free energy simulations with various different water and ion force fields including our recently developed water-model-specific ion parameters. The properties calculated were activity coefficients, diffusion coefficients, residence times of atomic pairs, association constants, and solubility. Through calculation of these properties, we can assess the validity and range of applicability of the simple pair potential models and better understand their limitations. Due to extreme computational demands, the activity coefficients were only calculated for a subset of the models. The results qualitatively agree with experiment. Calculated diffusion coefficients and residence times between cation-anion, water-cation, and water-anion showed differences depending on the choice of water and ion force field used. The calculated solubilities of the alkali-halide salts were generally lower than the true solubility of the salts. However, for both the TIP4P(EW) and SPC/E water-model-specific ion parameters, solubility was reasonably well-reproduced. Finally, the correlations among the various properties led to the following conclusions: (1) The reliability of the ion force fields is significantly affected by the specific choice of water model. (2) Ion-ion interactions are very important to accurately simulate the properties, especially solubility. (3) The SPC/E and TIP4P(EW) water-model-specific ion force fields are preferred for simulation in high salt environments compared to the other ion force fields.

  7. Interionic Force Model for Pentahalide Molecules and Higher Niobium-Based Halide Clusters

    NASA Astrophysics Data System (ADS)

    Önem, Z. Çiçek; Akdeniz, Z.; Tosi, M. P.

    2002-12-01

    Molecular bound states tend to become progressively more stable in the melts of polyvalent metal halides as the nominal valence of the metal increases. We examine in this work the case of pentavalent metal halides. First we propose a simple ionic model for the binding in several pentahalide clusters: the chlorides of Nb, Ta, Sb, and Mo and the bromides of Nb and Ta. The molecular monomers of these compounds have a D3h trigonal-bipyramidal structure in the ground state, and we make use of data on equatorial bond lengths and breathing mode frequencies in the vapour to determine the main force-law parameters of the metal ion. We also find that the C4v square-pyramidal structure is mechanically unstable against transformation into the D3h shape.We then consider higher molecular clusters, i. e. the dimers of Nb pentahalides and the bound states formed by NbCl5 with the chlorides of Cs, Al, Ga, and Sb. We propose structural models for all these stable clusters and compare their calculated vibrational frequencies with the available data from vibrational spectroscopy of mixed melts.

  8. Molecular Dynamics Simulations of the Dynamic and Energetic Properties of Alkali and Halide Ions Using Water-Model-Specific Ion Parameters

    PubMed Central

    2009-01-01

    The dynamic and energetic properties of the alkali and halide ions were calculated using molecular dynamics (MD) and free energy simulations with various different water and ion force fields including our recently developed water-model-specific ion parameters. The properties calculated were activity coefficients, diffusion coefficients, residence times of atomic pairs, association constants, and solubility. Through calculation of these properties, we can assess the validity and range of applicability of the simple pair potential models and better understand their limitations. Due to extreme computational demands, the activity coefficients were only calculated for a subset of the models. The results qualitatively agree with experiment. Calculated diffusion coefficients and residence times between cation−anion, water−cation, and water−anion showed differences depending on the choice of water and ion force field used. The calculated solubilities of the alkali−halide salts were generally lower than the true solubility of the salts. However, for both the TIP4PEW and SPC/E water-model-specific ion parameters, solubility was reasonably well-reproduced. Finally, the correlations among the various properties led to the following conclusions: (1) The reliability of the ion force fields is significantly affected by the specific choice of water model. (2) Ion−ion interactions are very important to accurately simulate the properties, especially solubility. (3) The SPC/E and TIP4PEW water-model-specific ion force fields are preferred for simulation in high salt environments compared to the other ion force fields. PMID:19757835

  9. Theoretical study of mixed LiLnX4 (Ln = La, Dy; X = F, Cl, Br, I) rare earth/alkali halide complexes.

    PubMed

    Groen, C P; Oskam, A; Kovács, A

    2000-12-25

    The structure, bonding and vibrational properties of the mixed LiLnX4 (Ln = La, Dy; X = F, Cl, Br, I) rare earth/alkali halide complexes were studied using various quantum chemical methods (HF, MP2 and the Becke3-Lee-Yang-Parr exchange-correlation density functional) in conjunction with polarized triple-zeta valence basis sets and quasi-relativistic effective core potentials for the heavy atoms. Our comparative study indicated the superiority of MP2 theory while the HF and B3-LYP methods as well as less sophisticated basis sets failed for the correct energetic relations. In particular, f polarization functions on Li and X proved to be important for the Li...X interaction in the complexes. From the three characteristic structures of such complexes, possessing 1-(C3v), 2-(C2v), or 3-fold coordination (C3v) between the alkali metal and the bridging halide atoms, the bi- and tridentate forms are located considerably lower on the potential energy surface then the monodentate isomer. Therefore only the bi- and tridentate isomers have chemical relevance. The monodentate isomer is only a high-lying local minimum in the case of X = F. For X = Cl, Br, and I this structure is found to be a second-order saddle point. The bidentate structure was found to be the global minimum for the systems with X = F, Cl, and Br. However, the relative stability with respect to the tridentate structure is very small (1-5 kJ/mol) for the heavier halide derivatives and the relative order is reversed in the case of the iodides. The energy difference between the three structures and the dissociation energy decrease in the row F to I. The ionic bonding in the complexes was characterized by natural charges and a topological analysis of the electron density distribution according to Bader's theorem. Variation of the geometrical and bonding characteristics between the lanthanum and dysprosium complexes reflects the effect of "lanthanide contraction". The calculated vibrational data indicate that

  10. Structure and photoabsorption properties of cationic alkali dimers solvated in neon clusters.

    PubMed

    Zanuttini, D; Douady, J; Jacquet, E; Giglio, E; Gervais, B

    2010-11-01

    We present a theoretical investigation of the structure and optical absorption of M(2)(+) alkali dimers (M=Li,Na,K) solvated in Ne(n) clusters for n=1 to a few tens Ne atoms. For all these alkali, the lowest-energy isomers are obtained by aggregation of the first Ne atoms at the extremity of the alkali molecule. This particular geometry, common to other M(2)(+)-rare gas clusters, is intimately related to the shape of the electronic density of the X  (2)Σ(g)(+) ground state of the bare M(2)(+) molecules. The structure of the first solvation shell presents equilateral Ne(3) and capped pentagonal Ne(6) motifs, which are characteristic of pure rare gas clusters. The size and geometry of the complete solvation shell depend on the alkali and were obtained at n=22 with a D(4h) symmetry for Li and at n=27 with a D(5h) symmetry for Na. For K, our study suggests that the closure of the first solvation shell occurs well beyond n=36. We show that the atomic arrangement of these clusters has a profound influence on their optical absorption spectrum. In particular, the XΣ transition from the X  (2)Σ(g)(+) ground state to the first excited (2)Σ(u)(+) state is strongly blueshifted in the Frank-Condon area.

  11. Optical spectra of hot alkali-metal clusters from the random-matrix model

    SciTech Connect

    Akulin, V.M.; Brechignac, C.; Sarfati, A.

    1997-01-01

    We show that the experimentally observed spectra of optical absorption of sodium cluster ions can be explained in the framework of the same random-matrix model, that has been employed earlier [Phys. Rev. Lett. {bold 75}, 220 (1995)] for the ground-state properties of alkali-metal clusters. This approach reveals the effect of cluster symmetry {open_quotes}on average{close_quotes} on the optical-absorption profiles, describes their temperature dependence, and predicts the line shapes of two-photon absorption. {copyright} {ital 1996} {ital The American Physical Society}

  12. A multi-frequency EPR and ENDOR study of Rh and Ir complexes in alkali and silver halides

    NASA Astrophysics Data System (ADS)

    Callens, F.; Vrielinck, H.; Matthys, P.

    2003-01-01

    Aliovalent Rh and Ir cations have been frequently used to influence the photographic properties of silver halide emulsions. The doping introduces several types of related defects with distinct trapping and recombination properties. EPR and ENDOR are, in principle, ideally suited for the determination of the microscopic structure of the individual centres but it will be demonstrated that well-chosen, sometimes sophisticated multi-frequency experiments are necessary in order to (partially) reach this goal. Model studies on single crystals of AgCl and NaCl also appeared indispensable for the unravelling of the spectra. In the review of Rh-centres in NaCl and AgCl special attention is paid to methods that allow to detect cation vacancies near Rh2+ complexes. An alternative explanation for the high temperature behaviour of the [RhCl6](4-) complexes in AgCl is presented.

  13. Complete-velocity-range description of negative-ion conversion of neutral atoms on an alkali-metal-halide surface under grazing geometry

    NASA Astrophysics Data System (ADS)

    Zhou, Hu; Zhou, Wang; Zhang, Meixiao; Zhou, Lihua; Ma, Yulong; Wang, Guangyi; Wu, Yong; Li, Bowen; Chen, Ximeng

    2016-06-01

    We propose a simple theoretical approach to consider negative-ion conversion of neutral atoms grazing on alkali-metal-halide crystal surfaces over the complete velocity range. The conversion process is viewed as a series of successive binary collisions between the projectile and the negatively charged sites on the surface along their trajectories due to localization of valence-band electrons at the anionic sites of the crystal. Conversion from F0 to F- via grazing scattering in LiF(100) and KI(100) is demonstrated with this model, which incorporates the key factors of image interaction and Mott-Littleton polarization interaction for electron capture. It also incorporates the decrease in the electron affinity due to Coulomb barrier tunneling of large-velocity negative ions to the vacuum level near surface anion sites. The pronounced differences in the efficiency of F- formation at LiF(100) and KI(100) surfaces are well explained by the proposed model. The relative efficiency and related saturation of the negative-ion formation for LiF and KI crystals compare well with experimental results.

  14. Band-structure calculations of noble-gas and alkali halide solids using accurate Kohn-Sham potentials with self-interaction correction

    SciTech Connect

    Li, Y.; Krieger, J.B. ); Norman, M.R. ); Iafrate, G.J. )

    1991-11-15

    The optimized-effective-potential (OEP) method and a method developed recently by Krieger, Li, and Iafrate (KLI) are applied to the band-structure calculations of noble-gas and alkali halide solids employing the self-interaction-corrected (SIC) local-spin-density (LSD) approximation for the exchange-correlation energy functional. The resulting band gaps from both calculations are found to be in fair agreement with the experimental values. The discrepancies are typically within a few percent with results that are nearly the same as those of previously published orbital-dependent multipotential SIC calculations, whereas the LSD results underestimate the band gaps by as much as 40%. As in the LSD---and it is believed to be the case even for the exact Kohn-Sham potential---both the OEP and KLI predict valence-band widths which are narrower than those of experiment. In all cases, the KLI method yields essentially the same results as the OEP.

  15. Halide binding and inhibition of laccase copper clusters: the role of reorganization energy.

    PubMed

    Kepp, Kasper P

    2015-01-20

    Laccase-like proteins are multicopper oxidases involved in several biological and industrial processes. Their application is commonly limited due to inhibition by fluoride and chloride, and as-isolated proteins are often substantially activated by heat, suggesting that multiple redox states can complicate characterization. Understanding these processes at the molecular level is thus desirable but theoretically unexplored. This paper reports systematic calculations of geometries, reorganization energies, and ionization energies for all partly oxidized states of the trinuclear copper clusters in realistic models with ∼200 atoms. Corrections for scalar-relativistic effects, dispersion, and thermal effects were estimated. Fluoride, chloride, hydroxide, or water was bound to the T2 copper site of the oxidized resting state, and the peroxo intermediate was also computed for reference. Antiferromagnetic coupling, assigned oxidation states, and general structures were consistent with known spectroscopic data. The computations show that (i) ligands bound to the T2 site substantially increase the reorganization energy of the second reduction of the resting state and reduce the redox potentials, providing a possible mechanism for inhibition; (ii) the reorganization energy is particularly large for F(-) but also high for Cl(-), consistent with the experimental tendency of inhibition; (iii) reduction leads to release of Cl(-) from the T2 site, suggesting a mechanism for heat/reduction activation of laccases by dissociation of inhibiting halides or hydroxide from T2. PMID:25532722

  16. Halide binding and inhibition of laccase copper clusters: the role of reorganization energy.

    PubMed

    Kepp, Kasper P

    2015-01-20

    Laccase-like proteins are multicopper oxidases involved in several biological and industrial processes. Their application is commonly limited due to inhibition by fluoride and chloride, and as-isolated proteins are often substantially activated by heat, suggesting that multiple redox states can complicate characterization. Understanding these processes at the molecular level is thus desirable but theoretically unexplored. This paper reports systematic calculations of geometries, reorganization energies, and ionization energies for all partly oxidized states of the trinuclear copper clusters in realistic models with ∼200 atoms. Corrections for scalar-relativistic effects, dispersion, and thermal effects were estimated. Fluoride, chloride, hydroxide, or water was bound to the T2 copper site of the oxidized resting state, and the peroxo intermediate was also computed for reference. Antiferromagnetic coupling, assigned oxidation states, and general structures were consistent with known spectroscopic data. The computations show that (i) ligands bound to the T2 site substantially increase the reorganization energy of the second reduction of the resting state and reduce the redox potentials, providing a possible mechanism for inhibition; (ii) the reorganization energy is particularly large for F(-) but also high for Cl(-), consistent with the experimental tendency of inhibition; (iii) reduction leads to release of Cl(-) from the T2 site, suggesting a mechanism for heat/reduction activation of laccases by dissociation of inhibiting halides or hydroxide from T2.

  17. Characterization of an Alkali- and Halide-Resistant Laccase Expressed in E. coli: CotA from Bacillus clausii

    PubMed Central

    Brander, Søren; Mikkelsen, Jørn D.; Kepp, Kasper P.

    2014-01-01

    The limitations of fungal laccases at higher pH and salt concentrations have intensified the search for new extremophilic bacterial laccases. We report the cloning, expression, and characterization of the bacterial cotA from Bacillus clausii, a supposed alkalophilic ortholog of cotA from B. subtilis. Both laccases were expressed in E. coli strain BL21(DE3) and characterized fully in parallel for strict benchmarking. We report activity on ABTS, SGZ, DMP, caffeic acid, promazine, phenyl hydrazine, tannic acid, and bilirubin at variable pH. Whereas ABTS, promazine, and phenyl hydrazine activities vs. pH were similar, the activity of B. clausii cotA was shifted upwards by ∼0.5–2 pH units for the simple phenolic substrates DMP, SGZ, and caffeic acid. This shift is not due to substrate affinity (KM) but to pH dependence of catalytic turnover: The kcat of B. clausii cotA was 1 s−1 at pH 6 and 5 s−1 at pH 8 in contrast to 6 s−1 at pH 6 and 2 s−1 at pH 8 for of B. subtilis cotA. Overall, kcat/KM was 10-fold higher for B. subtilis cotA at pHopt. While both proteins were heat activated, activation increased with pH and was larger in cotA from B. clausii. NaCl inhibited activity at acidic pH, but not up to 500–700 mM NaCl in alkaline pH, a further advantage of the alkali regime in laccase applications. The B. clausii cotA had ∼20 minutes half-life at 80°C, less than the ∼50 minutes at 80°C for cotA from B. subtilis. While cotA from B. subtilis had optimal stability at pH∼8, the cotA from B. clausii displayed higher combined salt- and alkali-resistance. This resistance is possibly caused by two substitutions (S427Q and V110E) that could repel anions to reduce anion-copper interactions at the expense of catalytic proficiency, a trade-off of potential relevance to laccase optimization. PMID:24915287

  18. Characterization of an alkali- and halide-resistant laccase expressed in E. coli: CotA from Bacillus clausii.

    PubMed

    Brander, Søren; Mikkelsen, Jørn D; Kepp, Kasper P

    2014-01-01

    The limitations of fungal laccases at higher pH and salt concentrations have intensified the search for new extremophilic bacterial laccases. We report the cloning, expression, and characterization of the bacterial cotA from Bacillus clausii, a supposed alkalophilic ortholog of cotA from B. subtilis. Both laccases were expressed in E. coli strain BL21(DE3) and characterized fully in parallel for strict benchmarking. We report activity on ABTS, SGZ, DMP, caffeic acid, promazine, phenyl hydrazine, tannic acid, and bilirubin at variable pH. Whereas ABTS, promazine, and phenyl hydrazine activities vs. pH were similar, the activity of B. clausii cotA was shifted upwards by ~0.5-2 pH units for the simple phenolic substrates DMP, SGZ, and caffeic acid. This shift is not due to substrate affinity (K(M)) but to pH dependence of catalytic turnover: The k(cat) of B. clausii cotA was 1 s⁻¹ at pH 6 and 5 s⁻¹ at pH 8 in contrast to 6 s⁻¹ at pH 6 and 2 s⁻¹ at pH 8 for of B. subtilis cotA. Overall, k(cat)/K(M) was 10-fold higher for B. subtilis cotA at pH(opt). While both proteins were heat activated, activation increased with pH and was larger in cotA from B. clausii. NaCl inhibited activity at acidic pH, but not up to 500-700 mM NaCl in alkaline pH, a further advantage of the alkali regime in laccase applications. The B. clausii cotA had ~20 minutes half-life at 80°C, less than the ~50 minutes at 80°C for cotA from B. subtilis. While cotA from B. subtilis had optimal stability at pH~8, the cotA from B. clausii displayed higher combined salt- and alkali-resistance. This resistance is possibly caused by two substitutions (S427Q and V110E) that could repel anions to reduce anion-copper interactions at the expense of catalytic proficiency, a trade-off of potential relevance to laccase optimization. PMID:24915287

  19. Pre- and initial stages of epitaxy in alkali halide systems. II. Interaction of molecular beams of CsCl with (100) surfaces of NaCl

    NASA Astrophysics Data System (ADS)

    Dabringhaus, H.; Haag, M.

    The interaction of molecular beams of CsCl with (100) surfaces of NaCl is studied for crystal temperatures between 560 and 620 K and for molecular beam fluxes between 2 × 10 7 and 2 × 10 13 cm -2 s -1 by measurements of transient and steady state desorption fluxes, by static SIMS, and by electron microscopy. Also for the large Cs + ions a fast cation exchange Cs + ⇌ Na + between CsCl molecules adsorbed on the terrace and the outermost surface layer of the NaCl crystal is observed. The results for undersaturation are interpreted by incorporation of Cs + ions in the outermost surface layer of the NaCl crystal and by adsorption of CsCl molecules at the monatomic steps on the surface. The outermost surface layer proves to have a maximum capacity for Cs + of 2.4 × 10 11 cm -2. The residence time of Cs + ions in the outermost surface layer is determined as τ0 = 1.6 × 10 -12 exp(1.49 (eV)/ kT), the time for desorption of CsCl molecules from the monatomic steps as τ1 = 2.9 × 10 -14 exp(1.60 (eV)/ kT). By experiments with an additional NaCl flux onto the surface it is shown that τ0 is the time for a back-exchange of Cs + ions from the outermost surface layer against Na + from NaCl admolecules. For supersaturation the growth of polymorphic CsCl islands is observed. In the first growth stages these islands show the NaCl-type structure, while for later growth stages the CsCl type structure is found. A comparative discussion of all studied alkali halide systems shows that the different results can be attributed to the different radii of guest and host cation and to lattice misfits, respectively.

  20. Chemical bonding topology of ternary transition metal-centered bismuth cluster halides: from molecules to metals.

    PubMed

    King, R Bruce

    2003-12-29

    The bismuth polyhedra in ternary transition metal-centered bismuth cluster halides may form discrete molecules or ions, infinite chains, and/or infinite layers. The chemical bonding in many of these diverse structures is related to that in deltahedral boranes exhibiting three-dimensional aromaticity by replacing the multicenter core bond in the boranes with two-center two-electron (2c-2e) bonds from the central transition metal to the nearest neighbor bismuth vertices. Examples of discrete molecules or ions include octahedral MBi(6)(micro-X)(12)(z)()(-) (X = Br, I; M = Rh, Ir, z = 3; M = Ru, z = 4) with exclusively 2c-2e bonds and pentagonal bipyramidal RhBi(7)Br(8) with a 5c-4e bond in the equatorial pentagonal plane indicative of Möbius aromaticity. The compound Ru(3)Bi(24)Br(20) contains a more complicated discrete bismuth cluster ion Ru(2)Bi(17)(micro-Br)(4)(5+), which can be dissected into a RuBi(5) closo octahedron and a RuBi(8) nido capped square antiprism bridged by a Ru(2)Bi(4)(micro-Br)(4) structural unit. In RuBi(4)X(2) (X = Br, I), the same Ru(2)Bi(4)(micro-Br)(4) structural unit bridges Bi(4) squares similar to those found in the known Zintl ion Bi(4)(2)(-) to give infinite chains of Ru(2)Bi(4) octahedra. The electron counts of the RuBi(5), RuBi(8), and Ru(2)Bi(4) polyhedra in these structures follow the Wade-Mingos rules. A different infinite chain structure is constructed from fused RhBi(7/2)Bi bicapped trigonal prisms in Rh(2)Bi(9)Br(3). This Rh(2)Bi(9)Br(3) structure can alternatively be derived from alternating Rh(2/2)Bi(4) octahedra and Rh(2/)(2)Bi(5) pentagonal bipyramids with electron counts obeying the Wade-Mingos rules. Related chemical bonding principles appear to apply to more complicated layer structures such as Pt(3)Bi(13)I(7) containing Kagomé nets of PtBi(8/2) cubes and Ni(4)Bi(12)X(3) containing linked chains of NiBi(6/3)Bi capped trigonal prisms.

  1. Electrolytic systems and methods for making metal halides and refining metals

    SciTech Connect

    Holland, Justin M.; Cecala, David M.

    2015-05-26

    Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.

  2. From T2,2@Bmmim to Alkali@T2,2@Bmmim Ivory Ball-like Clusters: Ionothermal Syntheses, Precise Doping, and Photocatalytic Properties.

    PubMed

    Du, Cheng-Feng; Li, Jian-Rong; Zhang, Bo; Shen, Nan-Nan; Huang, Xiao-Ying

    2015-06-15

    Presented here are the syntheses, structures, and properties of an In-Sn-Se compound based on a ternary super-supertetrahedral T2,2 cluster nested by Bmmim cations and two of its alkali-doped quaternary analogues. By means of a one-pot ionothermal method, an alkali metal ion (Cs(+) or Rb(+)) could be precisely doped into the central cavity of the cluster, forming an alkali@T2,2@Bmmim quaternary cluster. Remarkably, the undoped compound exhibited excellent stability and visible light photodegradation ability over a wide range of pH, especially in acidic conditions.

  3. Solid-state NMR/NQR and first-principles study of two niobium halide cluster compounds.

    PubMed

    Perić, Berislav; Gautier, Régis; Pickard, Chris J; Bosiočić, Marko; Grbić, Mihael S; Požek, Miroslav

    2014-01-01

    Two hexanuclear niobium halide cluster compounds with a [Nb6X12](2+) (X=Cl, Br) diamagnetic cluster core, have been studied by a combination of experimental solid-state NMR/NQR techniques and PAW/GIPAW calculations. For niobium sites the NMR parameters were determined by using variable Bo field static broadband NMR measurements and additional NQR measurements. It was found that they possess large positive chemical shifts, contrary to majority of niobium compounds studied so far by solid-state NMR, but in accordance with chemical shifts of (95)Mo nuclei in structurally related compounds containing [Mo6Br8](4+) cluster cores. Experimentally determined δiso((93)Nb) values are in the range from 2,400 to 3,000 ppm. A detailed analysis of geometrical relations between computed electric field gradient (EFG) and chemical shift (CS) tensors with respect to structural features of cluster units was carried out. These tensors on niobium sites are almost axially symmetric with parallel orientation of the largest EFG and the smallest CS principal axes (Vzz and δ33) coinciding with the molecular four-fold axis of the [Nb6X12](2+) unit. Bridging halogen sites are characterized by large asymmetry of EFG and CS tensors, the largest EFG principal axis (Vzz) is perpendicular to the X-Nb bonds, while intermediate EFG principal axis (Vyy) and the largest CS principal axis (δ11) are oriented in the radial direction with respect to the center of the cluster unit. For more symmetrical bromide compound the PAW predictions for EFG parameters are in better correspondence with the NMR/NQR measurements than in the less symmetrical chlorine compound. Theoretically predicted NMR parameters of bridging halogen sites were checked by (79/81)Br NQR and (35)Cl solid-state NMR measurements.

  4. Study of the stabilization energies of halide-water clusters: An application of first-principles interaction potentials based on a polarizable and flexible model

    SciTech Connect

    Ayala, Regla; Martinez, Jose M.; Pappalardo, Rafael R.; Sanchez Marcos, Enrique

    2004-10-15

    The aim of this work is to compute the stabilization energy E{sub stab}(n) of [X(H{sub 2}O){sub n}]{sup -} (X{identical_to}F, Br, and I for n=1-60) clusters from Monte Carlo simulations using first-principles ab initio potentials. Stabilization energy of [X(H{sub 2}O){sub n}]{sup -} clusters is defined as the difference between the vertical photodeachment energy of the cluster and the electron affinity of the isolated halide. On one hand, a study about the relation between cluster structure and the E{sub stab}(n) value, as well as the dependence of the latter with temperature is performed, on the other hand, a test on the reliability of our recently developed first-principles halide ion-water interaction potentials is carried out. Two different approximations were applied: (1) the Koopmans' theorem and (2) calculation of the difference between the interaction energy of [X(H{sub 2}O){sub n}]{sup -} and [X(H{sub 2}O){sub n}] clusters using the same ab initio interaction potentials. The developed methodology allows for using the same interaction potentials in the case of the ionic and neutral clusters with the proviso that the charge of the halide anion was switched off in the latter. That is, no specific parametrization of the interaction potentials to fit the magnitude under study was done. The good agreement between our predicted E{sub stab}(n) and experimental data allows us to validate the first-principles interaction potentials developed elsewhere and used in this study, and supports the fact that this magnitude is mainly determined by electrostatic factors, which can be described by our interaction potentials. No relation between the value of E{sub stab}(n) and the structure of clusters has been found. The diversity of E{sub stab}(n) values found for different clusters with similar interaction energy indicates the need for statistical information to properly estimate the stabilization energy of the halide anions. The effect of temperature in the prediction of

  5. Heat capacity of molten halides.

    PubMed

    Redkin, Alexander A; Zaikov, Yurii P; Korzun, Iraida V; Reznitskikh, Olga G; Yaroslavtseva, Tatiana V; Kumkov, Sergey I

    2015-01-15

    The heat capacities of molten salts are very important for their practical use. Experimental investigation of this property is challenging because of the high temperatures involved and the corrosive nature of these materials. It is preferable to combine experimental investigations with empirical relationships, which allows for the evaluation of the heat capacity of molten salt mixtures. The isobaric molar heat capacities of all molten alkali and alkaline-earth halides were found to be constant for each group of salts. The value depends on the number of atoms in the salt, and the molar heat capacity per atom is constant for all molten halide salts with the exception of the lithium halides. The molar heat capacities of molten halides do not change when the anions are changed.

  6. Heat capacity of molten halides.

    PubMed

    Redkin, Alexander A; Zaikov, Yurii P; Korzun, Iraida V; Reznitskikh, Olga G; Yaroslavtseva, Tatiana V; Kumkov, Sergey I

    2015-01-15

    The heat capacities of molten salts are very important for their practical use. Experimental investigation of this property is challenging because of the high temperatures involved and the corrosive nature of these materials. It is preferable to combine experimental investigations with empirical relationships, which allows for the evaluation of the heat capacity of molten salt mixtures. The isobaric molar heat capacities of all molten alkali and alkaline-earth halides were found to be constant for each group of salts. The value depends on the number of atoms in the salt, and the molar heat capacity per atom is constant for all molten halide salts with the exception of the lithium halides. The molar heat capacities of molten halides do not change when the anions are changed. PMID:25530462

  7. Tug of war between AO-hybridization and aromaticity in dictating structures of Li-doped alkali clusters

    NASA Astrophysics Data System (ADS)

    Alexandrova, Anastassia N.

    2012-04-01

    Hybridization of atomic orbitals is a widely appreciated phenomenon in organic chemistry. Here, we demonstrate that hybridization also can dramatically impact the shapes of small all-alkali metal clusters, and oppose σ-aromaticity in defining cluster shapes. The valence-iso-electronic LiNa4- and LiK4- clusters adopt different global minimum structures: LiNa4- is a planar C2v (1A1) species distorted from the perfect pentagon, and LiK4- is a planar square D4h (1A1g) species with Li being in the centre. This effect is rooted in the different degrees of the 2s-2p hybridization in Li in response to binding to Na versus K.

  8. Comparison of reactive nucleation of silver and alkali clusters in the presence of oxygen and water

    NASA Astrophysics Data System (ADS)

    Bréchignac, C.; Cahuzac, Ph.; Leygnier, J.; Tignères, I.

    The nucleation of silver-atom vapor in the presence of O2 and H2O molecules has been investigated by photoionization mass spectrometry and compared to the case of alkali-atom vapor. Relative intensities in mass spectra show that silver vapor does not react with H2O molecules, in contrast with sodium vapor. When O2 and H2O are simultaneously present, hydroxided products are observed. Results emphasize the role of stable units, (NaOH)2 or (KOH)2, for alkalies, and more complex hydrated or hydroxided systems, involving trimers, for silver. Similarities are found with water dissociative adsorption on an oxygen-predosed silver surface.

  9. Oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Rohrmann, Charles A.; Fullam, Harold T.

    1985-01-01

    A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.

  10. Accurate van der Waals coefficients between fullerenes and fullerene-alkali atoms and clusters: Modified single-frequency approximation

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Mo, Yuxiang; Tian, Guocai; Ruzsinszky, Adrienn

    2016-08-01

    Long-range van der Waals (vdW) interaction is critically important for intermolecular interactions in molecular complexes and solids. However, accurate modeling of vdW coefficients presents a great challenge for nanostructures, in particular for fullerene clusters, which have huge vdW coefficients but also display very strong nonadditivity. In this work, we calculate the coefficients between fullerenes, fullerene and sodium clusters, and fullerene and alkali atoms with the hollow-sphere model within the modified single-frequency approximation (MSFA). In the MSFA, we assume that the electron density is uniform in a molecule and that only valence electrons in the outmost subshell of atoms contribute. The input to the model is the static multipole polarizability, which provides a sharp cutoff for the plasmon contribution outside the effective vdW radius. We find that the model can generate C6 in excellent agreement with expensive wave-function-based ab initio calculations, with a mean absolute relative error of only 3 % , without suffering size-dependent error. We show that the nonadditivities of the coefficients C6 between fullerenes and C60 and sodium clusters Nan revealed by the model agree remarkably well with those based on the accurate reference values. The great flexibility, simplicity, and high accuracy make the model particularly suitable for the study of the nonadditivity of vdW coefficients between nanostructures, advancing the development of better vdW corrections to conventional density functional theory.

  11. Molecular compressibility of some halides in alcohols

    NASA Technical Reports Server (NTRS)

    Serban, C.; Auslaender, D.

    1974-01-01

    After measuring ultrasonic velocity and density, the molecular compressibility values from Wada's formula were calculated, for alkali metal halide solutions in methyl, ethyl, butyl, and glycol alcohol. The temperature and concentration dependence were studied, finding deviations due to the hydrogen bonds of the solvent.

  12. Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water

    SciTech Connect

    Reif, Maria M.; Huenenberger, Philippe H.

    2011-04-14

    The raw single-ion solvation free energies computed from atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions and treatment of electrostatic interactions used during these simulations. However, as shown recently [M. A. Kastenholz and P. H. Huenenberger, J. Chem. Phys. 124, 224501 (2006); M. M. Reif and P. H. Huenenberger, J. Chem. Phys. 134, 144103 (2010)], the application of appropriate correction terms permits to obtain methodology-independent results. The corrected values are then exclusively characteristic of the underlying molecular model including in particular the ion-solvent van der Waals interaction parameters, determining the effective ion size and the magnitude of its dispersion interactions. In the present study, the comparison of calculated (corrected) hydration free energies with experimental data (along with the consideration of ionic polarizabilities) is used to calibrate new sets of ion-solvent van der Waals (Lennard-Jones) interaction parameters for the alkali (Li{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, Cs{sup +}) and halide (F{sup -}, Cl{sup -}, Br{sup -}, I{sup -}) ions along with either the SPC or the SPC/E water models. The experimental dataset is defined by conventional single-ion hydration free energies [Tissandier et al., J. Phys. Chem. A 102, 7787 (1998); Fawcett, J. Phys. Chem. B 103, 11181] along with three plausible choices for the (experimentally elusive) value of the absolute (intrinsic) hydration free energy of the proton, namely, {Delta}G{sub hyd} {sup O-minus} [H{sup +}]=-1100, -1075 or -1050 kJ mol{sup -1}, resulting in three sets L, M, and H for the SPC water model and three sets L{sub E}, M{sub E}, and H{sub E} for the SPC/E water model (alternative sets can easily be interpolated to intermediate {Delta}G{sub hyd} {sup O-minus} [H{sup +}] values). The residual sensitivity of the calculated (corrected) hydration free energies on the volume-pressure boundary conditions and on the effective

  13. Prediction of the fate of Hg and other contaminants in soil around a former chlor-alkali plant using Fuzzy Hierarchical Cross-Clustering approach.

    PubMed

    Frenţiu, Tiberiu; Ponta, Michaela; Sârbu, Costel

    2015-11-01

    An associative simultaneous fuzzy divisive hierarchical algorithm was used to predict the fate of Hg and other contaminants in soil around a former chlor-alkali plant. The algorithm was applied on several natural and anthropogenic characteristics of soil including water leachable, mobile, semi-mobile, non-mobile fractions and total Hg, Al, Ba, Ca, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Sr, Zn, water leachable fraction of Cl(-), NO3(-) and SO4(2)(-), pH and total organic carbon. The cross-classification algorithm provided a divisive fuzzy partition of the soil samples and associated characteristics. Soils outside the perimeter of the former chlor-alkali plant were clustered based on the natural characteristics and total Hg. In contaminated zones Hg speciation becomes relevant and the assessment of species distribution is necessary. The descending order of concentration of Hg species in the test site was semi-mobile>mobile>non-mobile>water-leachable. Physico-chemical features responsible for similarities or differences between uncontaminated soil samples or contaminated with Hg, Cu, Zn, Ba and NO3(-) were also highlighted. Other characteristics of the contaminated soil were found to be Ca, sulfate, Na and chloride, some of which with influence on Hg fate. The presence of Ca and sulfate in soil induced a higher water leachability of Hg, while Cu had an opposite effect by forming amalgam. The used algorithm provided an in-deep understanding of processes involving Hg species and allowed to make prediction of the fate of Hg and contaminants linked to chlor-alkali-industry.

  14. Alkali Metal/Salt Thermal-Energy-Storage Systems

    NASA Technical Reports Server (NTRS)

    Phillips, Wayne W.; Stearns, John W.

    1987-01-01

    Proposed thermal-energy-storage system based on mixture of alkali metal and one of its halide salts; metal and salt form slurry of two immiscible melts. Use of slurry expected to prevent incrustations of solidified salts on heat-transfer surfaces that occur where salts alone used. Since incrustations impede heat transfer, system performance improved. In system, charging heat-exchanger surface immersed in lower liquid, rich in halide-salt, phase-charge material. Discharging heat exchanger surface immersed in upper liquid, rich in alkali metal.

  15. Alkali Metal Salts with Designable Aryltrifluoroborate Anions.

    PubMed

    Iwasaki, Kazuki; Yoshii, Kazuki; Tsuzuki, Seiji; Matsumoto, Hajime; Tsuda, Tetsuya; Kuwabata, Susumu

    2016-09-01

    Aryltrifluoroborate ([ArBF3](-)) has a designable basic anion structure. Various [ArBF3](-)-based anions were synthesized to create novel alkali metal salts using a simple and safe process. Nearly 40 novel alkali metal salts were successfully obtained, and their physicochemical characteristics, particularly their thermal properties, were elucidated. These salts have lower melting points than those of simple inorganic alkali halide salts, such as KCl and LiCl, because of the weaker interactions between the alkali metal cations and the [ArBF3](-) anions and the anions' larger entropy. Moreover, interestingly, potassium cations were electrochemically reduced in the potassium (meta-ethoxyphenyl)trifluoroborate (K[m-OEtC6H4BF3]) molten salt at 433 K. These findings contribute substantially to furthering molten salt chemistry, ionic liquid chemistry, and electrochemistry. PMID:27510799

  16. Vacancy defects and defect clusters in alkali metal ion-doped MgO nanocrystallites studied by positron annihilation and photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Sellaiyan, S.; Uedono, A.; Sivaji, K.; Janet Priscilla, S.; Sivasankari, J.; Selvalakshmi, T.

    2016-10-01

    Pure and alkali metal ion (Li, Na, and K)-doped MgO nanocrystallites synthesized by solution combustion technique have been studied by positron lifetime and Doppler broadening spectroscopy methods. Positron lifetime analysis exhibits four characteristic lifetime components for all the samples. Doping reduces the Mg vacancy after annealing to 800 °C. It was observed that Li ion migrates to the vacancy site to recover Mg vacancy-type defects, reducing cluster vacancies and micropores. For Na- and K-doped MgO, the aforementioned defects are reduced and immobile at 800 °C. Coincidence Doppler broadening studies show the positron trapping sites as vacancy clusters. The decrease in the S parameter is due to the particle growth and reduction in the defect concentration at 800 °C. Photoluminescence study shows an emission peak at 445 nm and 498 nm, associated with F2 2+ and recombination of higher-order vacancy complexes. Further, annealing process is likely to dissociate F2 2+ to F+ and this F+ is converted into F centers at 416 nm.

  17. Spin-orbit coupling in the dissociative excitation of alkali atoms at the surface of rare gas clusters: A theoretical study

    NASA Astrophysics Data System (ADS)

    Gervais, B.; Zanuttini, D.; Douady, J.

    2016-05-01

    We analyze the role of the spin-orbit (SO) coupling in the dissociative dynamics of excited alkali atoms at the surface of small rare gas clusters. The electronic structure of the whole system is deduced from a one-electron model based on core polarization pseudo-potentials. It allows us to obtain in the same footing the energy, forces, and non-adiabatic couplings used to simulate the dynamics by means of a surface hopping method. The fine structure state population is analyzed by considering the relative magnitude of the SO coupling ξ, with respect to the spin-free potential energy. We identify three regimes of ξ-values leading to different evolution of adiabatic state population after excitation of the system in the uppermost state of the lowest np 2P shell. For sufficiently small ξ, the final population of the J = /1 2 atomic states, P /1 2 , grows up linearly from P /1 2 = /1 3 at ξ = 0 after a diabatic dynamics. For large values of ξ, we observe a rather adiabatic dynamics with P /1 2 decreasing as ξ increases. For intermediate values of ξ, the coupling is extremely efficient and a complete transfer of population is observed for the set of parameters associated to NaAr3 and NaAr4 clusters.

  18. Charge transfer between alkali cluster ions and atoms in the 1 to 10 keV collisional energy range

    NASA Astrophysics Data System (ADS)

    Bréchignac, C.; Cahuzac, Ph.; Concina, B.; Leygnier, J.; Tignères, I.

    The cross-sections for collisional charge transfer between singly charged free clusters Mn+ (M = Li, Na; n=1...50) and atomic targets A (cesium, potassium) have been measured as a function of collisional relative velocity in laboratory energy range 1-10 keV. For each cluster size, the experimental values of the charge transfer cross-section are fitted with an universal parametric curve with two independent parameters and vm, the maximum cross-section and the corresponding velocity. For small size clusters ( ), the characteristic parameters show strong variations with the number of atoms in the cluster. Abrupt dips observed for n=10 and n=22 are attributed to electronic properties. Charge transfer patterns observed for various collisional systems present similarities, which appear more sensitive to cluster quantum size effects than to collision energy defects. In their whole, the and vm parameters show differences in both their size evolution and their absolute values discussed in term of projectile and target electronic structures.

  19. Ab Initio Study of KCl and NaCl Clusters

    NASA Astrophysics Data System (ADS)

    Brownrigg, Clifton; Hira, Ajit; Pacheco, Jose; Salazar, Justin

    2013-03-01

    We continue our interest in the theoretical study of molecular clusters to examine the chemical properties of small KnCln and NanCln clusters (n = 2 - 15). The potentially important role of these molecular species in biochemical and medicinal processes is well known. This work applies the hybrid ab initio methods of quantum chemistry to derive the different alkali-halide (MnHn) geometries. Of particular interest is the competition between hexagonal ring geometries and rock salt structures. Electronic energies, rotational constants, dipole moments, and vibrational frequencies for these geometries are calculated. Magic numbers for cluster stability are identified and are related to the property of cluster compactness. Mapping of the singlet, triplet, and quintet, potential energy surfaces is performed. Calculations have been performed to examine the interactions of these clusters with some atoms and molecules of biological interest, including O, O2, and Fe. The potential for design of new medicinal drugs is explored.

  20. Quantum Theoretical Study of KCl and LiCl Clusters

    NASA Astrophysics Data System (ADS)

    Koetter, Ted; Hira, Ajit; Salazar, Justin; Jaramillo, Danelle

    2014-03-01

    This research focuses on the theoretical study of molecular clusters to examine the chemical properties of small KnClnandLinCln clusters (n = 2 - 20). The potentially important role of these molecular species in biochemical and medicinal processes is well known. This work applies the hybrid ab initio methods of quantum chemistry to derive the different alkali-halide (MnHn) geometries. Of particular interest is the competition between hexagonal ring geometries and rock salt structures. Electronic energies, rotational constants, dipole moments, and vibrational frequencies for these geometries are calculated. Magic numbers for cluster stability are identified and are related to the property of cluster compactness. Mapping of the singlet, triplet, and quintet, potential energy surfaces is performed. Calculations were performed to examine the interactions of these clusters with some atoms and molecules of biological interest, including O, O2, and Fe. Potential design of new medicinal drugs is explored.

  1. Oxidation of hydrogen halides to elemental halogens with catalytic molten salt mixtures

    DOEpatents

    Rohrmann, Charles A.

    1978-01-01

    A process for oxidizing hydrogen halides by means of a catalytically active molten salt is disclosed. The subject hydrogen halide is contacted with a molten salt containing an oxygen compound of vanadium and alkali metal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen. The reduced vanadium which remains after this contacting is regenerated to the active higher valence state by contacting the spent molten salt with a stream of oxygen-bearing gas.

  2. Bio-conventional bleaching of kadam kraft-AQ pulp by thermo-alkali-tolerant xylanases from two strains of Coprinellus disseminatus for extenuating adsorbable organic halides and improving strength with optical properties and energy conservation.

    PubMed

    Lal, Mohan; Dutt, Dharm; Tyagi, C H

    2012-04-01

    Two novel thermo-alkali-tolerant crude xylanases namely MLK-01 (enzyme-A) and MLK-07 (enzyme-B) from Coprinellus disseminatus mitigated kappa numbers of Anthocephalus cadamba kraft-AQ pulps by 32.5 and 34.38%, improved brightness by 1.5 and 1.6% and viscosity by 5.75 and 6.47% after (A)XE(1) and (B)XE(1)-stages, respectively. The release of reducing sugars and chromophores was the highest during prebleaching of A. cadamba kraft-AQ pulp at enzyme doses of 5 and 10 IU/g, reaction times 90 and 120 min, reaction temperatures 75 and 65°C and consistency 10% for MLK-01 and MLK-07, respectively. MLK-07 was more efficient than MLK01 in terms of producing pulp brightness, improving mechanical strength properties and reducing pollution load. MLK-01 and MLK-07 reduced AOX by 19.51 and 42.77%, respectively at 4% chlorine demands with an increase in COD and colour due to removal of lignin carbohydrates complexes. A. cadamba kraft-AQ pulps treated with xylanases from MLK-01 to MLK-07 and followed by CEHH bleaching at half chlorine demand (2%) showed a drastic reduction in brightness with slight improvement in mechanical strength properties compared to pulp bleached at 4% chlorine demand. MLK-01 reduced AOX, COD and colour by 43.83, 39.03 and 27.71% and MLK-07 by 38.34, 40.48 and 30.77%, respectively at half chlorine demand compared to full chlorine demand (4%). pH variation during prebleaching of A. cadamba kraft-AQ pulps with strains MLK-01 and MLK-07 followed by CEHH bleaching sequences showed a decrease in pulp brightness, AOX, COD and colour with an increase in mechanical strength properties, pulp viscosity and PFI revolutions to get a beating level of 35 ± 1 °SR at full chlorine demand. PMID:22805918

  3. Optical and Spectral Studies on β Alanine Metal Halide Hybrid Crystals

    NASA Astrophysics Data System (ADS)

    Sweetlin, M. Daniel; Selvarajan, P.; Perumal, S.; Ramalingom, S.

    2011-10-01

    We have synthesized and grown β alanine metal halide hybrid crystals viz. β alanine cadmium chloride (BACC), an amino acid transition metal halide complex crystal and β alanine potassium chloride (BAPC), an amino acid alkali metal halide complex crystal by slow evaporation method. The grown crystals were found to be transparent and have well defined morphology. The optical characteristics of the grown crystals were carried out with the help of UV-Vis Spectroscopy. The optical transmittances of the spectrums show that BAPC is more transparent than BACC. The Photoluminescence of the materials were determined by the Photoluminescent Spectroscopy

  4. Correspondence between ion-cluster and bulk thermodynamics: on the validity of the cluster pair approximation

    SciTech Connect

    Vlcek, Lukas; Chialvo, Ariel; Simonson, J Michael {Mike}

    2013-01-01

    Molecular models and experimental estimates based on the cluster pair approximation (CPA) provide inconsistent predictions of absolute single-ion hydration properties. To understand the origin of this discrepancy we used molecular simulations to study the transition between hydration of alkali metal and halide ions in small aqueous clusters and bulk water. The results demonstrate that the assumptions underlying the CPA are not generally valid as a result of a significant shift in the ion hydration free energies (~15 kJ/mol) and enthalpies (~47 kJ/mol) in the intermediate range of cluster sizes. When this effect is accounted for, the systematic differences between models and experimental predictions disappear, and the value of absolute proton hydration enthalpy based on the CPA gets in closer agreement with other estimates.

  5. Application of Ion Mobility-Mass Spectrometry to the Study of Ionic Clusters: Investigation of Cluster Ions with Stable Sizes and Compositions

    PubMed Central

    Ohshimo, Keijiro; Komukai, Tatsuya; Takahashi, Tohru; Norimasa, Naoya; Wu, Jenna Wen Ju; Moriyama, Ryoichi; Koyasu, Kiichirou; Misaizu, Fuminori

    2014-01-01

    Stable cluster sizes and compositions have been investigated for cations and anions of ionic bond clusters such as alkali halides and transition metal oxides by ion mobility-mass spectrometry (IM-MS). Usually structural information of ions can be obtained from collision cross sections determined in IM-MS. In addition, we have found that stable ion sizes or compositions were predominantly produced in a total ion mass spectrum, which was constructed from the IM-MS measurement. These stable species were produced as a result of collision induced dissociations of the ions in a drift cell. We have confirmed this result in the sodium fluoride cluster ions, in which cuboid magic number cluster ions were predominantly observed. Next the stable compositions, which were obtained for the oxide systems of the first row transition metals, Ti, Fe, and Co, are characteristic for each of the metal oxide cluster ions. PMID:26819887

  6. Process for oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Lyke, Stephen E.

    1992-01-01

    An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

  7. Vitrification of IFR and MSBR halide salt reprocessing wastes

    SciTech Connect

    Siemer, D.D.

    2013-07-01

    Both of the genuinely sustainable (breeder) nuclear fuel cycles (IFR - Integral Fast Reactor - and MSBR - Molten Salt Breeder Reactor -) studied by the USA's national laboratories would generate high level reprocessing waste (HLRW) streams consisting of a relatively small amount ( about 4 mole %) of fission product halide (chloride or fluoride) salts in a matrix comprised primarily (about 95 mole %) of non radioactive alkali metal halide salts. Because leach resistant glasses cannot accommodate much of any of the halides, most of the treatment scenarios previously envisioned for such HLRW have assumed a monolithic waste form comprised of a synthetic analog of an insoluble crystalline halide mineral. In practice, this translates to making a 'substituted' sodalite ('Ceramic Waste Form') of the IFR's chloride salt-based wastes and fluoroapatite of the MSBR's fluoride salt-based wastes. This paper discusses my experimental studies of an alternative waste management scenario for both fuel cycles that would separate/recycle the waste's halide and immobilize everything else in iron phosphate (Fe-P) glass. It will describe both how the work was done and what its results indicate about how a treatment process for both of those wastes should be implemented (fluoride and chloride behave differently). In either case, this scenario's primary advantages include much higher waste loadings, much lower overall cost, and the generation of a product (glass) that is more consistent with current waste management practices. (author)

  8. Theoretical Study of NaCl and LiCl Clusters

    NASA Astrophysics Data System (ADS)

    Ortiz, Bridget; Hira, Ajit; McKeough, James; Koetter, Ted

    This research is a Quantum Mechanical study of molecular clusters that examines the chemical properties of small NanCln and LinCln clusters (n = 2 - 20). The potentially important role of these molecular species in biochemical and medicinal processes is well known. This work applies the hybrid ab initio methods to derive the different alkali-halide (MnHn) geometries. Of particular interest is the competition between hexagonal ring geometries and rock salt structures. Electronic energies, rotational constants, dipole moments, and vibrational frequencies for these geometries are calculated. Magic numbers for cluster stability are identified and are related to the property of cluster compactness. Mapping of the singlet, triplet, and quintet, potential energy surfaces is performed. Calculations were performed to examine the interactions of these clusters with some atoms and molecules of biological interest, including O, O2, and Fe. Potential design of new medicinal drugs is explored. We will also investigate model and material dependence of the results.

  9. Empty, filled, and condensed metal clusters

    NASA Astrophysics Data System (ADS)

    Simon, Arndt

    1985-03-01

    Aspects of structure, bonding, physical, and chemical properties are discussed for (a) compounds containing discrete empty clusters and clusters with interstitial H atoms: Nb 6I 11, HNb 6I 11, HCsNb 6I 11, (b) metal-rich lanthanide halides and halide carbides,-nitrides and -hydrides, focusing on the role of interstitial atoms: Gd 2Br 2C 2, Gd 2Br 2C, Gd 3Cl 3C, Gd 10Cl 18C 4, Gd 10Il 17C 4, Gd 10I 16C 4, GD 2Cl 3N, Gd XH n ( X=Cl, Br, I; 0.6< n<0.9), GdBrD 2; (c) metal-rich oxides of the alkali metals rubidium and cesium. Chemical bonding in the suboxide clusters Rb 9O 2 and Cs 11O 3 is discussed along the lines valid for (a) and (b) and covers recently described "hypervalent" species as Li 6C, Li 4O, etc.

  10. Cold ablation driven by localized forces in alkali halides.

    PubMed

    Hada, Masaki; Zhang, Dongfang; Pichugin, Kostyantyn; Hirscht, Julian; Kochman, Michał A; Hayes, Stuart A; Manz, Stephanie; Gengler, Regis Y N; Wann, Derek A; Seki, Toshio; Moriena, Gustavo; Morrison, Carole A; Matsuo, Jiro; Sciaini, Germán; Miller, R J Dwayne

    2014-01-01

    Laser ablation has been widely used for a variety of applications. Since the mechanisms for ablation are strongly dependent on the photoexcitation level, so called cold material processing has relied on the use of high-peak-power laser fluences for which nonthermal processes become dominant; often reaching the universal threshold for plasma formation of ~1 J cm(-2) in most solids. Here we show single-shot time-resolved femtosecond electron diffraction, femtosecond optical reflectivity and ion detection experiments to study the evolution of the ablation process that follows femtosecond 400 nm laser excitation in crystalline sodium chloride, caesium iodide and potassium iodide. The phenomenon in this class of materials occurs well below the threshold for plasma formation and even below the melting point. The results reveal fast electronic and localized structural changes that lead to the ejection of particulates and the formation of micron-deep craters, reflecting the very nature of the strong repulsive forces at play. PMID:24835317

  11. Skylab experiments on semiconductors and alkali halides. [single crystal growth

    NASA Technical Reports Server (NTRS)

    Lundquist, C. A.

    1974-01-01

    The space processing experiments performed during the Skylab missions included one on single crystal growth of germanium selenide and telluride, one on pure and doped germanium crystals, two on pure and doped indium antimonide, one on gallium-indium-antimony systems, and one on a sodium chloride-sodium fluoride eutectic. In each experiment, three ampoules of sample were processed in the multipurpose electric furnace within the Skylab Materials Processing Facility. All were successful in varying degrees and gave important information about crystal growth removed from the effects of earth surface gravity.

  12. High Biomass Specific Methyl Halide Production Rates of Selected Coastal Marsh Plants and its Relationship to Halide Content

    NASA Astrophysics Data System (ADS)

    Manley, S. L.; Wang, N.; Cicerone, R. J.

    2002-12-01

    Salt tolerant coastal marsh plants (halophytes) have previously been shown to be globally significant producers of methyl chloride (MeCl) and methyl bromide (MeBr). While halophytes are known for their high salt content, there are few reports of their halide content. Our studies have attempted to quantify biomass specific methyl halide (MeX) production from these plants and relate it to tissue halide levels. MeCl, MeBr and MeI production rates and tissue chloride, bromide and iodide concentrations from selected coastal marsh plants were measured for nearly a year. Certain halophyte species (i.e. Batis and Frankenia) have very high summer biomass specific production rates for MeX (e.g. Frankenia: 1 ug MeCl /gfwt/hr; 80 ng MeBr/gfwt/hr; 8 ng MeI/gfwt/hr). These rates of MeCl and MeBr production are much higher than those from other coastal marsh plants or seaweeds. Plant halide levels remain high throughout the year, while MeX production peaks at a high level in mid summer falling to low winter rates. This implies a linkage to plant growth. Higher levels of chloride and bromide were seen in the fleshy marsh plants such as Batis (saltwort, approximately 20 percent dry wt chloride, 0.4 percent dry wt bromide) and Salicornia (pickleweed) than in the others such as Frankenia (alkali heath) approx 7 percent dry wt chloride, 0.1 percent dry wt bromide) or Spartina (cordgrass). No such trend was seen for iodide, which ranged from 4 - 10 ppm. Calculations show the daily halide losses from MeX production are far less than the variability in tissue halide content. MeX production removes a small fraction of the total tissue halide from these plants suggesting that MeX production is not a mechanism used by these species to control internal halide levels. Saltwort cell-free extracts incubated with bromide or iodide in the presence of S-adenosyl-L-methionine (SAM) produced the corresponding MeX. MeBr production was inhibited by caffeic acid the substrate of lignin-specific O

  13. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  14. PREPARATION OF HALIDES OF PLUTONIUM

    DOEpatents

    Garner, C.S.; Johns, I.B.

    1958-09-01

    A dry chemical method is described for preparing plutonium halides, which consists in contacting plutonyl nitrate with dry gaseous HCl or HF at an elevated temperature. The addition to the reaction gas of a small quantity of an oxidizing gas or a reducing gas will cause formation of the tetra- or tri-halide of plutonium as desired.

  15. Contrasts in Structural and Bonding Representations among Polar Intermetallic Compounds. Strongly Differentiated Hamilton Populations for Three Related Condensed Cluster Halides of the Rare-Earth Elements

    SciTech Connect

    Gupta, Shalabh; Meyer, Gerd; Corbett, John D.

    2010-10-01

    The crystal and electronic structures of three related R{sub 3}TnX{sub 3} phases (R = rare-earth metal, Tn = transition metal, X = Cl, I) containing extended mixed-metal chains are compared and contrasted: (1) Pr{sub 3}RuI{sub 3} (P2{sub 1}/m), (2) Gd{sub 3}MnI{sub 3} (P2{sub 1}/m), and (3) Pr{sub 3}RuCl{sub 3} (Pnma). The structures all feature double chains built of pairs of condensed R{sub 6}(Tn) octahedral chains encased by halogen atoms. Pr{sub 3}RuI{sub 3} (1) lacks significant Ru-Ru bonding, evidently because of packing restrictions imposed by the large closed-shell size of iodine. However, the vertex Pr2 atoms on the chain exhibit a marked electronic differentiation. These are strongly bound to the central Ru (and to four I), but very little to four neighboring Pr in the cluster according to bond populations, in contrast to Pr2-Pr 'bond' distances that are very comparable to those elsewhere. In Gd{sub 3}MnI{sub 3} (2), the smaller metal atoms allow substantial distortions and Mn-Mn bonding. Pr{sub 3}RuCl{sub 3} (3), in contrast to the iodide (1), can be described in terms of a more tightly bound superstructure of (2) in which both substantial Ru-Ru bonding and an increased number of Pr-Cl contacts in very similar mixed-metal chains are favored by the smaller closed-shell contacts of chlorine. Local Spin Density Approximation (LSDA) Linearized Muffin-Tin Orbital (LMTO)-ASA calculations and Crystal Orbital Hamilton Population (COHP) analyses show that the customary structural descriptions in terms of condensed, Tn-stuffed, R-R bonded polyhedral frameworks are poor representations of the bonding in all. Hamilton bond populations (-ICOHP) for the polar mixed-metal R-Tn and the somewhat smaller R-X interactions account for 75-90% of the total populations in each of these phases, together with smaller contributions and variations for R-R and Tn-Tn interactions. The strength of such R-Tn contributions in polar intermetallics was first established or anticipated by

  16. Formation of tungsten monocarbide from a molten tungstate-halide phase by gas sparging

    SciTech Connect

    Gomes, J.M.; Raddatz, A.E.; Baglin, E.G.

    1988-02-23

    A process for preparation of tungsten monocarbide is described comprising: (a) providing a molten composition comprising an alkali metal halide and an oxygen compound of tungsten; (b) sparging the composition with a gas comprising a gaseous hydrocarbon which is selected from the group consisting of natural gas, methane, ethane, acetylene, propane, butane, mixtures thereof, and admixtures of these gases with H/sub 2/ or CO, at a temperature of about 900/sup 0/ to 1100/sup 0/C for a sufficient time for the tungsten compound to be substantially converted to tungsten carbide; and (c) decanting the molten halide from the tungsten carbide product.

  17. Actinide halide complexes

    SciTech Connect

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1991-02-07

    A compound of the formula MX{sub n}L{sub m} wherein M = Th, Pu, Np,or Am thorium, X = a halide atom, n = 3 or 4, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is 3 or 4 for monodentate ligands or is 2 for bidentate ligands, where n + m = 7 or 8 for monodentate ligands or 5 or 6 for bidentate ligands, a compound of the formula MX{sub n} wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  18. METHOD OF PREPARING METAL HALIDES

    DOEpatents

    Hendrickson, A.V.

    1958-11-18

    The conversion of plutonium halides from plutonium peroxide can be done by washing the peroxide with hydrogen peroxide, drying the peroxide, passing a dry gaseous hydrohalide over the surface of the peroxide at a temperature of about lOO icient laborato C until the reaction rate has stabillzed, and then ralsing the reaction temperature to between 400 and 600 icient laborato C until the conversion to plutonium halide is substantially complete.

  19. Analysis of genes involved in methyl halide degradation in Aminobacter lissarensis CC495.

    PubMed

    Warner, Karen L; Larkin, Michael J; Harper, David B; Murrell, J Colin; McDonald, Ian R

    2005-10-01

    Aminobacter lissarensis CC495 is an aerobic facultative methylotroph capable of growth on glucose, glycerol, pyruvate and methylamine as well as the methyl halides methyl chloride and methyl bromide. Previously, cells grown on methyl chloride have been shown to express two polypeptides with apparent molecular masses of 67 and 29 kDa. The 67 kDa protein was purified and identified as a halomethane:bisulfide/halide ion methyltransferase. This study describes a single gene cluster in A. lissarensis CC495 containing the methyl halide utilisation genes cmuB, cmuA, cmuC, orf 188, paaE and hutI. The genes correspond to the same order and have a high similarity to a gene cluster found in Aminobacter ciceronei IMB-1 and Hyphomicrobium chloromethanicum strain CM2 indicating that genes encoding methyl halide degradation are highly conserved in these strains. PMID:16102909

  20. Reactions of intermetallic clusters

    NASA Astrophysics Data System (ADS)

    Farley, R. W.; Castleman, A. W., Jr.

    1990-02-01

    Reaction of bismuth-alkali clusters with closed-shell HX acids provides insight into the structures, formation, and stabilities of these intermetallic species. HC1 and HI are observed to quantitatively strip BixNay and BixKy, respectively, of their alkali component, leaving bare bismuth clusters as the only bismuth-containing species detected. Product bismuth clusters exhibit the same distribution observed when pure bismuth is evaporated in the source. Though evaporated simultaneously from the same crucible, this suggests alkali atoms condense onto existing bismuth clusters and have negligible effect on their formation and consequent distribution. The indistinguishibility of reacted and pure bismuth cluster distributions further argues against the simple replacement of alkali atoms with hydrogen in these reactions. This is considered further evidence that the alkali atoms are external to the stable bismuth Zintl anionic structures. Reactivities of BixNay clusters with HC1 are estimated to lie between 3×10-13 for Bi4Na, to greater than 4×10-11 for clusters possessing large numbers of alkali atoms. Bare bismuth clusters are observed in separate experiments to react significantly more slowly with rates of 1-9×10-14 and exhibit little variation of reactivity with size. The bismuth clusters may thus be considered a relatively inert substrate upon which the alkali overlayer reacts.

  1. Methyl Halide Production by Fungi

    NASA Astrophysics Data System (ADS)

    Dailey, G. D.; Varner, R. K.; Blanchard, R. O.; Sive, B. C.; Crill, P. M.

    2005-12-01

    Methyl chloride (CH3Cl), methyl bromide (CH3Br) and methyl iodide (CH3I) are methyl halide gases that contribute significant amounts of halogen radicals to the atmosphere. In an effort to better understand the global budget of methyl halides and their impact on the atmosphere, we need to identify the natural sources in addition to the known anthropogenic sources of these compounds. We are investigating the role of fungi in the production of methyl halides in the soils and wetlands in southern New Hampshire, USA. Previous research has shown that wood decay fungi and ectomycorrhizal fungi, which are within a group of fungi called basidiomycetes, emit methyl halides. In our study, measurements of headspace gas extracted from flasks containing fungi grown in culture demonstrate that a variety of fungi, including basidiomycetes and non-basidiomycetes, emit methyl halides. Our research sites include four ecosystems: an agricultural field, a temperate forest, a fresh water wetland, and coastal salt marshes. We have collected and isolated fungi at each site by culturing tissue samples of fruiting bodies and plant material, by using wood baits, and from the direct culture of soil. We compared the rates of methyl halide emissions from the fungi in the four ecosystems. In addition, we measured emissions from previously assayed fungal isolates after reintroducing them to sterilized soils that were collected from their original environments. Fungal biomass was determined by substrate-induced respiration (SIR). The emission rate by the fungus was determined by a linear regression of the concentration of methyl halide in the sample headspace over time divided by the fungal biomass.

  2. Actinide halide complexes

    DOEpatents

    Avens, Larry R.; Zwick, Bill D.; Sattelberger, Alfred P.; Clark, David L.; Watkin, John G.

    1992-01-01

    A compound of the formula MX.sub.n L.sub.m wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands, a compound of the formula MX.sub.n wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  3. Actinide halide complexes

    DOEpatents

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1992-11-24

    A compound is described of the formula MX[sub n]L[sub m] wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands. A compound of the formula MX[sub n] wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds are described including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant.

  4. Preparation of cerium halide solvate complexes

    DOEpatents

    Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E

    2013-08-06

    Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.

  5. Raman and infrared spectroscopic investigations on aqueous alkali metal phosphate solutions and density functional theory calculations of phosphate-water clusters.

    PubMed

    Rudolph, Wolfram W; Irmer, Gert

    2007-12-01

    Phosphate (PO(4)(3-)) solutions in water and heavy water have been studied by Raman and infrared spectroscopy over a broad concentration range (0.0091-5.280 mol/L) including a hydrate melt at 23 degrees C. In the low wavenumber range, spectra in R-format have been constructed and the R normalization procedure has been briefly discussed. The vibrational modes of the tetrahedral PO(4)(3-)(aq) (T(d) symmetry) have been assigned and compared to the calculated values derived from the density functional theory (DFT) method for the unhydrated PO(4)(3-)(T(d)) and phosphate-water clusters: PO(4)(3-).H(2)O (C(2v)), PO(4)(3-).2H(2)O (D(2d)), PO(4)(3-).4H(2)O (D(2d)), PO(4)(3-).6H(2)O (T(d)), and PO(4)(3-).12H(2)O (T), a cluster with a complete first hydration sphere of water molecules. A cluster with a second hydration sphere of 12 water molecules and 6 in the first sphere, PO(4)(3-).18H(2)O (T), has also been calculated. Agreement between measured and calculated vibrational modes is best in the case of the PO(4)(3-).12H(2)O cluster and the PO(4)(3-).18H(2)O cluster but far less so in the case of the unhydrated PO(4)(3-) or phosphate-water cluster with a lower number of water molecules than 12. The asymmetric, broad band shape of v(1)(a(1)) PO(4)(3-) in aqueous solutions has been measured as a function of concentration and the asymmetric and broad band shape was explained. However, the same mode in heavy water has only half the full width at half-height compared to the mode in normal water. The PO(4)(3-) is strongly hydrated in aqueous solutions. This has been verified by Raman spectroscopy comparing v(2)(H(2)O), the deformation mode of water, and the stretching modes, the v(1)OH and v(3)OH of water, in K(3)PO(4) solutions as a function of concentration and comparison with the same modes in pure water. A mode at approximately 240 cm(-1) (isotropic R spectrum) has been detected and assigned to the restricted translational mode of the strong hydrogen bonds formed between

  6. Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal-organic ionic molten salts.

    PubMed

    Chen, Fangfang; Forsyth, Maria

    2016-07-28

    Mixed salts of Ionic Liquids (ILs) and alkali metal salts, developed as electrolytes for lithium and sodium batteries, have shown a remarkable ability to facilitate high rate capability for lithium and sodium electrochemical cycling. It has been suggested that this may be due to a high alkali metal ion transference number at concentrations approaching 50 mol% Li(+) or Na(+), relative to lower concentrations. Computational investigations for two IL systems illustrate the formation of extended alkali-anion aggregates as the alkali metal ion concentration increases. This tends to favor the diffusion of alkali metal ions compared with other ionic species in electrolyte solutions; behavior that has recently been reported for Li(+) in a phosphonium ionic liquid, thus an increasing alkali transference number. The mechanism of alkali metal ion diffusion via this extended coordination environment present at high concentrations is explained and compared to the dynamics at lower concentrations. Heterogeneous alkali metal ion dynamics are also evident and, somewhat counter-intuitively, it appears that the faster ions are those that are generally found clustered with the anions. Furthermore these fast alkali metal ions appear to correlate with fastest ionic liquid solvent ions. PMID:27375042

  7. Tetrahedral homonuclear organoelement clusters and subhalides of aluminium, gallium and indium

    NASA Astrophysics Data System (ADS)

    Uhl, Werner

    This review is focused on the synthesis and the reactivity of tetrahedral organoelement clusters of the heavier elements of third main-group aluminium, gallium, and indium, which have been known for about a decade. They possess the elements in an unusually low oxidation state of +1 and have direct element-element interactions between their four constituents. Each cluster atom is further attached to one terminal and in most cases a bulky organic substituent, which prevents disproportionation by steric shielding. The synthesis of these compounds succeeds by different methods such as the reduction of suitable organoelement(III) halides with alkali metals and magnesium or the treatment of element(I) halides with lithium organyls. They are deeply coloured, and their bonding situation may best be described by delocalized molecular orbitals. They show a singular chemical reactivity, which results in the formation of many secondary products possessing unprecedented structures and properties. The synthesis of organoelement subhalides still containing the elements in low oxidation states is discussed in more detail in the second part of this review. These compounds are easily accessible by the careful oxidation of the clusters with halogen donors such as hexachloroethane or with AlX3/X2 mixtures. They produce dimers via halogen bridges, but in certain cases monomers were observed even for the solid state. They are very effective starting compounds for secondary reactions and the generation of new products containing the elements in unusual oxidation states by salt-elimination reactions, for instance.

  8. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  9. Correspondence between cluster-ion and bulk solution thermodynamic properties: on the validity of the cluster-pair-based approximation.

    PubMed

    Vlcek, Lukas; Chialvo, Ariel A; Simonson, J Michael

    2013-11-01

    Since the single-ion thermodynamic properties of bulk solutions are not directly accessible from experiments, extrapolations have been devised to estimate them from experimental measurements on small-clusters. Extrapolations based on the cluster-pair-based approximation (CPA) technique (Tissandier et al. J. Phys. Chem. A 1998, 102, 7787-7794) and its variants are currently considered one of the most reliable source of single-ion hydration thermodynamic data and have been used as a benchmark for the development of molecular and continuum solvation models. Despite its importance, the CPA has not been thoroughly tested and recent studies have indicated inconsistencies with molecular simulations. The present work challenges the key CPA assumptions that the hydration properties of single cations and anions in growing clusters rapidly converge to each other following a monotonous trend. Using a combination of simulation techniques to study the transition between alkali halide ions in small clusters and bulk solution, we show that this convergence is rather slow and involves a surprising change in trends, which can result in significant errors in the original estimated single-ion properties. When these cluster-size-dependent effects are taken into account, the inconsistencies between molecular models and experimental predictions disappear, and the value of the proton hydration enthalpy based on the CPA aligns with estimates based on other principles.

  10. Atomic forces between noble gas atoms, alkali ions, and halogen ions for surface interactions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Outlaw, R. A.; Heinbockel, J. H.

    1988-01-01

    The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base developed from analysis of the two-body potential data, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas surfaces and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  11. Development of Halide and Oxy-Halides for Isotopic Separations

    SciTech Connect

    Leigh R. Martin; Aaron T. Johnson; Jana Pfeiffer; Martha R. Finck

    2014-10-01

    The goal of this project was to synthesize a volatile form of Np for introduction into mass spectrometers at INL. Volatile solids of the 5f elements are typically those of the halides (e.g. UF6), however fluorine is highly corrosive to the sensitive internal components of the mass separator, and the other volatile halides exist as several different stable isotopes in nature. However, iodide is both mono-isotopic and volatile, and as such presents an avenue for creation of a form of Np suitable for introduction into the mass separator. To accomplish this goal, the technical work in the project sought to establish a novel synthetic route for the conversion NpO2+ (dissolved in nitric acid) to NpI3 and NpI4.

  12. Correlation of structure and solid state emission properties of anionic copper(I) halide complexes

    NASA Astrophysics Data System (ADS)

    Nurtaeva, Aliya Kamidollovna

    The correlation of emission properties with structural characteristics of solid state copper (I) halide complexes, supported by ab initio calculations, has been the focus of this work. Twenty-four new anionic Cu (I)---iodide complexes with alkali and alkaline earth metals complexed crown ethers as cations have been synthesized and characterized by single crystal diffraction. The complexes belong to 4 different groups: (1) Cu2I 42-, (2) Cu4I6 2-, (3) polymeric CupIq-(q-p) species and (4) simple iodides. The first two groups emit at room temperature when excited in the ultraviolet. The wavelength of maximum emission varies with the symmetry elements present in the crystalline cluster. Four different Cu2I42-rhombs were seen: (1) flat with a center of symmetry---452--453 nm; (2) bent---675 nm (640 nm---shoulder); (3) 2/m symmetry---479 nm and (4) a mixture of flat and bent---474--478 (with long wavelength tail). Ab initio calculations identified the electronic transition, responsible for excitation of the centrosymmetric cluster Cu2I4 2- to be: 26 (Au) → 29 or 31 (Ag) followed by reemission to the ground state. For the bent cluster the corresponding electron transition are HOMO (26) → LUMO (27) for excitation and HOMO (26) → LUMO (27) for emission. The energy gap between these neighboring orbitals is smaller than that for complexes of type I, which explains the relative position of bands in luminescence spectra. Mixed complexes (type 4), containing both types of Cu2I42- units, possess an asymmetrical emission band comprised of both type 1 and type 2 bands. Three hexaiodotetracuprates(I), emitting at 519--524 nm, possess a crystallographic center of symmetry in the center of disordered cluster. While the disorder results in centrosymmetric species, the emitting tetrahedron Cu4I6 is not centrosymmetric. There are no forbidden transitions for this motif. Nine polymeric species (Cu2I3-, Cu 4I6-2 and Cu5I7 -2) are non-emitting at both ambient and low temperature

  13. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  14. The effect of low solubility organic acids on the hygroscopicity of sodium halide aerosols

    NASA Astrophysics Data System (ADS)

    Miñambres, L.; Méndez, E.; Sánchez, M. N.; Castaño, F.; Basterretxea, F. J.

    2014-10-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be investigated in this study. The hygroscopic properties of sodium halide sub-micrometre particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, scanning electron microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion, whereas the organic surfactant has little effect in NaBr particles, NaCl and NaI covered particles experience appreciable shifts in their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

  15. The effect of low solublility organic acids on the hygroscopicity of sodium halide aerosols

    NASA Astrophysics Data System (ADS)

    Miñambres, L.; Méndez, E.; Sánchez, M. N.; Castaño, F.; Basterretxea, F. J.

    2014-02-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be performed in this study. The hygroscopic properties of sodium halide submicrometer particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, Scanning Electron Microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion: whereas the organic covering has little effect in NaBr particles, NaCl and NaI covered particles change their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

  16. TRANSURANIC METAL HALIDES AND A PROCESS FOR THE PRODUCTION THEREOF

    DOEpatents

    Fried, S.

    1951-03-20

    Halides of transuranic elements are prepared by contacting with aluminum and a halogen, or with an aluminum halide, a transuranic metal oxide, oxyhalide, halide, or mixture thereof at an elevated temperature.

  17. Metal halide perovskite light emitters

    PubMed Central

    Kim, Young-Hoon; Cho, Himchan; Lee, Tae-Woo

    2016-01-01

    Twenty years after layer-type metal halide perovskites were successfully developed, 3D metal halide perovskites (shortly, perovskites) were recently rediscovered and are attracting multidisciplinary interest from physicists, chemists, and material engineers. Perovskites have a crystal structure composed of five atoms per unit cell (ABX3) with cation A positioned at a corner, metal cation B at the center, and halide anion X at the center of six planes and unique optoelectronic properties determined by the crystal structure. Because of very narrow spectra (full width at half-maximum ≤20 nm), which are insensitive to the crystallite/grain/particle dimension and wide wavelength range (400 nm ≤ λ ≤ 780 nm), perovskites are expected to be promising high-color purity light emitters that overcome inherent problems of conventional organic and inorganic quantum dot emitters. Within the last 2 y, perovskites have already demonstrated their great potential in light-emitting diodes by showing high electroluminescence efficiency comparable to those of organic and quantum dot light-emitting diodes. This article reviews the progress of perovskite emitters in two directions of bulk perovskite polycrystalline films and perovskite nanoparticles, describes current challenges, and suggests future research directions for researchers to encourage them to collaborate and to make a synergetic effect in this rapidly emerging multidisciplinary field. PMID:27679844

  18. Alkali metal ion battery with bimetallic electrode

    SciTech Connect

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  19. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  20. Chlor-Alkali Technology.

    ERIC Educational Resources Information Center

    Venkatesh, S.; Tilak, B. V.

    1983-01-01

    Chlor-alkali technology is one of the largest electrochemical industries in the world, the main products being chlorine and caustic soda (sodium hydroxide) generated simultaneously by the electrolysis of sodium chloride. This technology is reviewed in terms of electrochemical principles and manufacturing processes involved. (Author/JN)

  1. Stability diagrams for fourfold coordination of polyvalent metal ions in molten mixtures of halide salts

    SciTech Connect

    Akdeniz, Z. Istanbul Univ. . Dept. of Physics); Tosi, M.P. . Dipt. di Fisica Teorica Argonne National Lab., IL )

    1988-11-01

    The stability of local fourfold coordination for divalent and trivalent metal ions in liquid mixtures of polyvalent metal halides and alkali halides is classified by means of structural coordinates obtained from properties of the elements. In parallel with earlier classifications of compound crystal structures and molecular shapes, the elemental properties are taken from first-principles calculations of valence electron orbitals in atoms, in the form of (i) the nodal radii of Andreoni, Baldereschi and Guizzetti or (ii) the pseudopotential radii or Zunger and Cohen. As a third alternative a classification based on Pettifor's phenomenological chemical scale of the elements is also considered. The alternative structural classification schemes that are developed from these elemental properties are generally successfully in distinguishing molten mixtures in which the available experimental evidence indicates long-lived fourfold coordination of polyvalent metal ions. In addition, Pettifor's chemical scale scheme is useful in sorting out finer details of local coordination in the liquid state. 3 figs., 71 refs.

  2. Conversion of methyl halides to hydrocarbons on basic zeolites. A discovery by in situ NMR

    SciTech Connect

    Murray, D.K.; Chang, J.W.; Haw, J.F. )

    1993-06-02

    It is shown that methyl halides (I, Br, Cl) react to form ethylene and other hydrocarbons on basic, alkali metal-exchanged zeolites at low temperatures. For example, methyl iodide is converted to ethylene on CsX zeolite at ca. 500 K. The order of reactivity of various catalyst/adsorbate combinations is consistent with the predictions of elementary chemical principles. The order of reactivity of the methyl halides follows the expected leaving-group trend. The activity of the catalyst framework correlates with its basicity (or nucleophilicity). All reactions were performed in a batch mode in sealed magic angle spinning (MAS) rotors while the contents were continuously monitored by in situ [sup 13]C NMR. Methyl iodide reacts on CsX below room temperature to form a framework-bound methoxy species in high yield. An analogous ethoxy species readily formed from ethyliodide. These species were characterized in detail. The ethoxy species was quantitatively converted to ethylene below 500 K. [sup 133]Cs MAS NMR was used to characterize the interactions of methyl iodide and other adsorbates with the cation in zeolite CsZSM-5. Solvation of the alkali metal cation was reflected in large, loading-dependent chemical shifts for [sup 133]Cs. Interactions between the cation and adsorbates were also reflected in the [sup 13]C shifts of the alkyl halides and ethylene. The cumulative evidence suggests a mechanism for carbon-carbon bond formation analogous to one proposed by Chang and co-workers for methanol-to-gasoline chemistry on acidic zeolites (J. Chem. Soc., Chem. Commun, 1987, 1320) that involves framework-bound methoxy and ethoxy species. The mechanism for methyl halide conversion is proposed to include roles for the basicity of the zeolite framework as well as the Lewis acidity of the cation. 68 refs., 18 figs., 2 tabs.

  3. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  4. Multiple-Wavelength Metal/Halide Laser

    NASA Technical Reports Server (NTRS)

    Nerheim, N. M.

    1984-01-01

    Single device produces multiple lasing lines. Laser capable of producing many lasing lines has several reservoirs of halide lasant mixed with chlorides of copper, manganese and iron. Convection-control technique possible to rapidly change from one metal halide to another at maximum energy.

  5. Hygroscopicity Evaluation of Halide Scintillators

    SciTech Connect

    Zhuravleva, M; Stand, L; Wei, H; Hobbs, C. L.; Boatner, Lynn A; Ramey, Joanne Oxendine; Burger, Arnold; Rowe, E; Bhattacharya, P.; Tupitsyn, E; Melcher, Charles L

    2014-01-01

    A collaborative study of relative hygroscopicity of anhydrous halide scintillators grown at various laboratories is presented. We have developed a technique to evaluate moisture sensitivity of both raw materials and grown crystals, in which the moisture absorption rate is measured using a gravimetric analysis. Degradation of the scintillation performance was investigated by recording gamma-ray spectra and monitoring the photopeak position, count rate and energy resolution. The accompanying physical degradation of the samples exposed to ambient atmosphere was photographically recorded as well. The results were compared with ben

  6. Aluminum Pitting Corrosion in Halide Media: A Quantum Model and Empirical Evidence

    NASA Astrophysics Data System (ADS)

    Lashgari, Mohsen; Kianpour, Effat; Mohammadi, Esmaeil

    2013-12-01

    The phenomenon of localized damage of aluminum oxide surface in the presence of halide anions was scrutinized at an atomistic level, through the cluster approach and density functional theory. The phenomenon was also investigated empirically through Tafel polarization plots and scanning electron microscopy. A distinct behavior witnessed in the fluoride medium was justified through the hard-soft acid-base principle. The atomistic investigations revealed the greatest potency for chloride entrance into the metal oxide lattice and rationalized to the severity of damage. The interaction of halide anions with the oxide surface causing some displacements on the position of Al atoms provides a mechanistic insight of the phenomenon.

  7. Alkali-vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.; Krupke, W. F.

    2010-02-01

    We report on the results from several of our alkali laser systems. We show highly efficient performance from an alexandrite-pumped rubidium laser. Using a laser diode stack as a pump source, we demonstrate up to 145 W of average power from a CW system. We present a design for a transversely pumped demonstration system that will show all of the required laser physics for a high power system.

  8. Impurity segregation in zone-refined precursors for crystalline halide scintillators

    NASA Astrophysics Data System (ADS)

    Swider, S.; Lam, S.; Motakef, S.; Donohoe, E.; Coers, L.; Taylor, S.; Spencer, S.

    2015-06-01

    Successful growth of halide scintillator crystals depends on a supply of ultra-high purity (UHP) precursor materials. Metallic interstitials and substitutions may provide traps that quench luminescence. Oxygen impurities can create competing compounds within a matrix, such as oxyhalides, that disrupt crystallinity and nucleate cracks. Using mass spectroscopy and oxygen combustion analysis, we analyzed impurities in SrI2, EuI2, and YCl3 precursors before and after zone refining. The data show most alkali and alkali earth impurities segregated easily. However, with the exception of iron, many transition metals were incorporated into the solid. Reliable oxygen measurements proved difficult to achieve. Additional oxygen was measured in nitrates and sulfates, via ion chromatography. Zone refining reduced the overall impurity content, but levels remained above a 10 ppm target.

  9. Modification of alkali metals on silicon-based nanoclusters: An enhanced nonlinear optical response

    NASA Astrophysics Data System (ADS)

    Li, Xiaojun; Han, Quan; Yang, Xiaohui; Song, Ruijuan; Song, Limei

    2016-08-01

    Structures, chemical stabilities and nonlinear optical properties of alkali metals-adsorbed niobium-doped silicon (M@SinNb+) clusters are investigated using the DFT methods. The alkali metals prefer energetically to be attached as bridged bond rather than M-Si single bond in most of optimized structures. Adsorption of alkali metals on doped silicon clusters gradually enhances their chemical stabilities with increasing cluster size. Noteworthily, the first hyperpolarizabilities (βtot) of the M@SinNb+ clusters, obtained by using the long-range corrected CAM-B3LYP functional, are large enough to establish their strong nonlinear optical behavior, especially for M@Si9Nb+ (M = Li, Na, and K), and the enhanced βtot ordering by alkali metals is Na > K > Li.

  10. Shallow halogen vacancies in halide optoelectronic materials

    NASA Astrophysics Data System (ADS)

    Shi, Hongliang; Du, Mao-Hua

    2014-11-01

    Halogen vacancies (VH ) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep VH contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., C H3N H3Pb I3 and TlBr. Both C H3N H3Pb I3 and TlBr have been found to have shallow VH , in contrast to commonly seen deep VH in halides. In this paper, several halide optoelectronic materials, i.e., C H3N H3Pb I3 , C H3N H3Sn I3 (photovoltaic materials), TlBr, and CsPbB r3 (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether VH is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of n s2 ions both play important roles in creating shallow VH in halides such as C H3N H3Pb I3 , C H3N H3Sn I3 , and TlBr. The key to identifying halides with shallow VH is to find the right crystal structures and compounds that suppress cation orbital hybridization at VH , such as those with large cation-cation distances and low anion coordination numbers and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at VH . The results of this paper provide insight and guidance to identifying halides with shallow VH as good electronic and optoelectronic materials.

  11. Shallow halogen vacancies in halide optoelectronic materials

    DOE PAGES

    Shi, Hongliang; Du, Mao -Hua

    2014-11-05

    Halogen vacancies (VH) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep VH contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., CH3NH3PbI3 and TlBr. Both CH3NH3PbI3 and TlBr have been found to have shallow VH, in contrast to commonly seen deep VH in halides. In this paper, several halide optoelectronic materials, i.e., CH3NH3PbI3, CH3NH3SnI3 (photovoltaic materials), TlBr, and CsPbBr3, (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether VHmore » is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of ns2 ions both play important roles in creating shallow VH in halides such as CH3NH3PbI3, CH3NH3SnI3, and TlBr. The key to identifying halides with shallow VH is to find the right crystal structures and compounds that suppress cation orbital hybridization at VH, such as those with long cation-cation distances and low anion coordination numbers, and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at VH. Furthermore, the results of this paper provide insight and guidance to identifying halides with shallow VH as good electronic and optoelectronic materials.« less

  12. New halide-centered discrete Ag(I)(8) cubic clusters containing diselenophosphate ligands, [Ag(8)(X)[Se(2)P(OR)(2)](6)](PF(6)) (X = Cl, Br; R = Et, Pr, (i)Pr): syntheses, structures, and DFT calculations.

    PubMed

    Liu, C W; Haia, Hsien-Chung; Hung, Chiu-Mine; Santra, Bidyut Kumar; Liaw, Ben-Jie; Lin, Zhenyang; Wang, Ju-Chun

    2004-07-12

    Six clusters Ag(8)(micro(8)-X)[Se(2)P(OR)(2)](6)(PF(6)) (R = Et, X = Cl, 1a, X = Br, 1b; R = Pr, X = Cl, 2a, X = Br, 2b; R = (i)Pr, X = Cl, 3a, X = Br, 3b) were isolated from the reaction of [Ag(CH(3)CN)(4)](PF(6)), NH(4)[Se(2)P(OR)(2)], and Bu(4)NX in a molar ratio of 4:3:1 in CH(2)X(2). Positive FAB mass spectra show m/z peaks at 2573.2 for 1a, 2617.3 for 1b, 2740.9 for 2a, 2786.9 for 2b, 2742.3 for 3a, and 2787.0 for 3b due to respective molecular cation, (M - PF(6))(+). (31)P NMR spectra of 1a-3b display a singlet at delta 82.3, 81.5, 82.9, 81.7, 76.3, and 75.8 ppm with a set of satellites (J(PSe) = 661, 664, 652, 652, 656, and 656 Hz, respectively). The X-ray structure (1a-2b) consists of a discrete cationic cluster in which eight silver ions are linked by six diselenophosphate ligands and a central micro(8)-Cl or micro(8)-Br ion with a noncoordinating PF(6)(-) anion. The shape of the molecule is a halide-centered distorted Ag(8) cubic cluster. The dsep ligand exhibits a tetrametallic tetraconnective (micro(2), micro(2)) coordination pattern, and each caps on a square face of the cube. Each silver atom of the cube is coordinated by three selenium atoms and the central chloride or bromide ion. Additionally, molecular orbital calculations at the B3LYP level of the density functional theory have been carried out to study the Ag-micro(8)-X (X = Cl, Br) interactions for cluster cations [Ag(8)(micro(8)-X)[Se(2)P(OR)(2)](6)](+). Calculations show very weak bonding interactions exist between micro(8)-X and Ag atoms of the cube. PMID:15236560

  13. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  14. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  15. Ober Phaseniibergange von Ammonium-Alkali-Jodiden und verwandten Halogeniden / Phase Transitions of Ammonium-alkali Iodides and Related Halides

    NASA Astrophysics Data System (ADS)

    Brauer, Peter

    1981-03-01

    The investigation of the order-disorder transitions of the ammonium-chlorides and -bromides, in which some of the NH4+ are replaced by Cs+, Rb+ or K+, is extended to the corresponding iodides using birefringence and differential thermal analysis. As the temperature range of the martensitic transition (Pm 3 m↔Fm 3 m) is now overlapping the temperature range of the orderdisorder transitions, the former must be included in the measurements. The results allowing an overlook are discussed using the work of Garland, Lushington, and Leung [5

  16. Alkali hydrolysis of trinitrotoluene.

    PubMed

    Karasch, Christian; Popovic, Milan; Qasim, Mohamed; Bajpai, Rakesh K

    2002-01-01

    Data for alkali hydrolysis of 2,4,6-trinitrotoluene (TNT) in aqueous solution at pH 12.0 under static (pH-controlled) as well as dynamic (pH-uncontrolled) conditions are reported. The experiments were conducted at two different molar ratios of TNT to hydroxyl ions at room temperature. The TNT disappeared rapidly from the solution as a first-order reaction. The complete disappearance of aromatic structure from the aqueous solution within 24 h was confirmed by the ultraviolet-visible (UV-VIS) spectra of the samples. Cuvet experiments in a UV-VIS spectrophotometer demonstrated the formation of Meisenheimer complex, which slowly disappeared via formation of aromatic compounds with fewer nitro groups. The known metabolites of TNT were found to accumulate only in very small quantities in the liquid phase.

  17. Physiological Evaluation of Alkali-Salt Tolerance of Thirty Switchgrass (Panicum virgatum) Lines

    PubMed Central

    Hu, Guofu; Liu, Yiming; Zhang, Xunzhong; Yao, Fengjiao; Huang, Yan; Ervin, Erik H.; Zhao, Bingyu

    2015-01-01

    Soil salt-alkalization is a major limiting factor for crop production in many regions. Switchgrass (Panicum virgatum L.) is a warm-season C4 perennial rhizomatous bunchgrass and a target lignocellulosic biofuel species. The objective of this study was to evaluate relative alkali-salt tolerance among 30 switchgrass lines. Tillers of each switchgrass line were transplanted into pots filled with fine sand. Two months after transplanting, plants at E5 developmental stage were grown in either half strength Hoagland’s nutrient solution with 0 mM Na+ (control) or half strength Hoagland’s nutrient solution with 150 mM Na+ and pH of 9.5 (alkali-salt stress treatment) for 20 d. Alkali-salt stress damaged cell membranes [higher electrolyte leakage (EL) ], reduced leaf relative water content (RWC), net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr). An alkali-salt stress tolerance trait index (ASTTI) for each parameter was calculated based on the ratio of the value under alkali-salt stress and the value under non-stress conditions for each parameter of each line. Relative alkali-salt tolerance was determined based on principal components analysis and cluster analysis of the physiological parameters and their ASTTI values. Significant differences in alkali-salt stress tolerance were found among the 30 lines. Lowland lines TEM-SEC, Alamo, TEM-SLC and Kanlow were classified as alkali-salt tolerant. In contrast, three lowland lines (AM-314/MS-155, BN-13645-64) and two upland lines (Caddo and Blackwell-1) were classified as alkali-salt sensitive. The results suggest wide variations exist in alkali-salt stress tolerance among the 30 switchgrass lines. The approach of using a combination of principal components and cluster analysis of the physiological parameters and related ASTTI is feasible for evaluating alkali-salt tolerance in switchgrass. PMID:26146987

  18. Physiological Evaluation of Alkali-Salt Tolerance of Thirty Switchgrass (Panicum virgatum) Lines.

    PubMed

    Hu, Guofu; Liu, Yiming; Zhang, Xunzhong; Yao, Fengjiao; Huang, Yan; Ervin, Erik H; Zhao, Bingyu

    2015-01-01

    Soil salt-alkalization is a major limiting factor for crop production in many regions. Switchgrass (Panicum virgatum L.) is a warm-season C4 perennial rhizomatous bunchgrass and a target lignocellulosic biofuel species. The objective of this study was to evaluate relative alkali-salt tolerance among 30 switchgrass lines. Tillers of each switchgrass line were transplanted into pots filled with fine sand. Two months after transplanting, plants at E5 developmental stage were grown in either half strength Hoagland's nutrient solution with 0 mM Na+ (control) or half strength Hoagland's nutrient solution with 150 mM Na+ and pH of 9.5 (alkali-salt stress treatment) for 20 d. Alkali-salt stress damaged cell membranes [higher electrolyte leakage (EL)], reduced leaf relative water content (RWC), net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr). An alkali-salt stress tolerance trait index (ASTTI) for each parameter was calculated based on the ratio of the value under alkali-salt stress and the value under non-stress conditions for each parameter of each line. Relative alkali-salt tolerance was determined based on principal components analysis and cluster analysis of the physiological parameters and their ASTTI values. Significant differences in alkali-salt stress tolerance were found among the 30 lines. Lowland lines TEM-SEC, Alamo, TEM-SLC and Kanlow were classified as alkali-salt tolerant. In contrast, three lowland lines (AM-314/MS-155, BN-13645-64) and two upland lines (Caddo and Blackwell-1) were classified as alkali-salt sensitive. The results suggest wide variations exist in alkali-salt stress tolerance among the 30 switchgrass lines. The approach of using a combination of principal components and cluster analysis of the physiological parameters and related ASTTI is feasible for evaluating alkali-salt tolerance in switchgrass. PMID:26146987

  19. Sulfur-based redox reactions in Mo3S7(4+) and Mo3S4(4+) clusters bearing halide and 1,2-dithiolene ligands: a mass spectrometric and density functional theory study.

    PubMed

    Llusar, Rosa; Polo, Victor; Velez, Ederley; Vicent, Cristian

    2010-09-01

    The gas phase fragmentation reactions of sulfur-rich [Mo(3)S(7)Br(6)](2-) (1(2-)), [Mo(3)S(7)(bdt)(3)](2-) (2(2-)), and [Mo(3)S(4)(bdt)(3)](2-) (3(2-)) (bdt = benzenedithiolate) complexes have been investigated by electrospray ionization (ESI) tandem mass spectrometry and theoretical calculations at the density functional theory level. Upon collision induced dissociation (CID) conditions, the brominated 1(2-) dianion dissociates through two sequential steps that involves a heterolytic Mo-Br cleavage to give [Mo(3)S(7)Br(5)](-) plus Br(-) followed by a two-electron redox process that affords [Mo(3)S(5)Br(5)](-) and diatomic S(2) sulfur. Dianion [Mo(3)S(7)(bdt)(3)](2-) (2(2-)) dissociates through two sequential redox processes evolving diatomic S(2) sulfur and neutral bdt to yield [Mo(3)S(5)(bdt)(3)](2-) and [Mo(3)S(5)(bdt)(2)](2-), respectively. Conversely, dianion [Mo(3)S(4)(bdt)(3)](2-) (3(2-)), with sulfide instead of disulfide S(2)(2-) bridged ligands, remains intact under identical fragmentation conditions, thus highlighting the importance of disulfide ligands (S(2)(2-)) as electron reservoirs to trigger redox reactions. Regioselective incorporation of (34)S and Se at the equatorial position of the Mo(3)S(7) cluster core in 1(2-) and 2(2-) have been used to identify the product ions along the fragmentation pathways. Reaction mechanisms for the gas-phase dissociation pathways have been elucidated by means of B3LYP calculations, and a comparison with the solution reactivity of Mo(3)S(7) and Mo(3)S(4) clusters as well as closely related Mo/S/dithiolene systems is also discussed.

  20. Halide Ion Enhancement of Nitrate Ion Photolysis

    NASA Astrophysics Data System (ADS)

    Richards, N. K.; Wingen, L. M.; Callahan, K. M.; Tobias, D. J.; Finlayson-Pitts, B. J.

    2009-12-01

    Nitrate ion photochemistry is an important source of NOx in the polar regions. It is uncertain whether coexisting ions such as halides play a role in nitrate photochemistry. The effect of halides on NO3 photolysis was investigated using photolysis experiments in 230 L Teflon chambers that contain deliquesced aerosols of NaBr:NaNO3, KBr:KNO3 and ternary mixtures of NaCl:NaBr:NaNO3. Gas phase NO2 and gaseous halogen products were measured as a function of photolysis time using long path FTIR, NOx chemiluminescence and API-MS (atmospheric pressure ionization mass spectrometry). Experiments were conducted with NO3- held at a constant 0.5 M and with the amount of total halide concentration varying from 0.25 M to 4 M. Studies on NaBr:NaNO3 mixtures suggest that as the bromide ion to nitrate ion ratio increases, there is an enhancement in the rate of production of NO2 in the nitrate-bromide mixtures over that formed in the photolysis of NaNO3. Molecular dynamic (MD) simulations provide molecular level insight into the ions near the air-water interface in the aqueous halide-nitrate mixtures. These studies suggest that the presence of sodium halides at the air-water interface may encourage some nitrate ions to approach the top layers of water, allowing for more efficient escape of photoproducts than is seen in the absence of halides. Experiments on mixtures of KBr:KNO3 are being conducted to determine potential cation effects. In addition, ternary mixtures of NaCl:NaBr:NaNO3 are being examined to determine the effects of mixtures of halides on production of NO2 and gaseous halogen products. The implications of this photochemistry for tropospheric chemistry will be discussed.

  1. Mixed alkali effect in nonconventional alkali gallotitanate glasses

    SciTech Connect

    Miyaji, Fumiaki; Hasegawa, Shinya; Yoko, Toshinobu; Sakka, Sumio . Inst. for Chemical Research)

    1993-02-01

    The mixed alkali effect on electrical conductivity, that is, the reduction of conductivity due to alkali mixing, was observed in Na[sub 2]O-K[sub 2]O-Ga[sub 2]O[sub 3]-TiO[sub 2] glasses, which are nonconventional in the sense that glass-forming oxides defined by Zachariasen are not involved. The magnitude of the reduction in conductivity of the present glasses due to alkali mixing was similar to that of corresponding mixed alkali silicate and phosphate glasses. The activation energy for electrical conduction showed a maximum around the composition Na/(Na + K) = 0.5, where the conductivity was at a minimum.

  2. Dimming of metal halide lamps

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    We ran some tests on the effect of dimming of metal halide (MH) lamps upon the stability and the spectral quality of the light output. Lamps used were a new Philips lamp HPI-T 250W, a similar Philips lamp with a few thousand burning hours and a new Osram lamp HQI-T 250W/D. The ballast was a BBC type DJ 250/2KS, the starter a BAS TORGI type MZN 250 SE and the dimmer an Elstrom Control System type ERHQ-T 250. Power was derived from a Philips stabilizer, type PE 1602. Lamp output was monitored with a PAR meter. Spectra were taken at 100% and at 50% output as measured with the PAR meter. Lamps were allowed to stabilize at any setting for 30 minutes before measurements were made. Lamp manufacturers advise against dimming for fear of poor stability and intolerable changes of the spectrum. However, none of the lamps showed a decrease in stability, no flicker or wandering of the discharge, and the changes of the spectrum were not negligible, but certainly not dramatic. Lamps of either manufacture retain their white color, relative peak heights of spectral lines did shift, but no gaps in the spectrum occurred. Spectra taken at 50% with 30 minutes intervals coincided. Differences between the new and the older Philips lamp were noticeable, but not really significant.

  3. Shallow halogen vacancies in halide optoelectronic materials

    SciTech Connect

    Shi, Hongliang; Du, Mao -Hua

    2014-11-05

    Halogen vacancies (VH) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep VH contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., CH3NH3PbI3 and TlBr. Both CH3NH3PbI3 and TlBr have been found to have shallow VH, in contrast to commonly seen deep VH in halides. In this paper, several halide optoelectronic materials, i.e., CH3NH3PbI3, CH3NH3SnI3 (photovoltaic materials), TlBr, and CsPbBr3, (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether VH is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of ns2 ions both play important roles in creating shallow VH in halides such as CH3NH3PbI3, CH3NH3SnI3, and TlBr. The key to identifying halides with shallow VH is to find the right crystal structures and compounds that suppress cation orbital hybridization at VH, such as those with long cation-cation distances and low anion coordination numbers, and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at VH. Furthermore, the results of this paper provide insight and guidance to identifying halides with shallow VH as good electronic and optoelectronic materials.

  4. The Remarkable Reactivity of Aryl Halides with Nucleophiles

    ERIC Educational Resources Information Center

    Bunnett, Joseph F.

    1974-01-01

    Discusses the reactivity of aryl halides with nucleophilic or basic reagents, including nucleophilic attacks on carbon, hydrogen, halogen, and arynes. Suggestions are made concerning revisions of the sections on aryl halide chemistry courses and the corresponding chapters in textbooks. (CC)

  5. 40 CFR 721.4095 - Quaternary ammonium alkyltherpropyl trialkylamine halides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Quaternary ammonium alkyltherpropyl... Specific Chemical Substances § 721.4095 Quaternary ammonium alkyltherpropyl trialkylamine halides. (a... generically as quaternary ammonium alkyltherpropyl trialkylamine halides (PMNs...

  6. 40 CFR 721.4095 - Quaternary ammonium alkyltherpropyl trialkylamine halides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Quaternary ammonium alkyltherpropyl... Specific Chemical Substances § 721.4095 Quaternary ammonium alkyltherpropyl trialkylamine halides. (a... generically as quaternary ammonium alkyltherpropyl trialkylamine halides (PMNs...

  7. Photokeratitis Linked to Metal Halide Bulbs in Two Gymnasiums - Philadelphia, Pennsylvania, 2011 and 2013.

    PubMed

    Finn, Lauren E; Gutowski, Jennifer; Alles, Steve; Mirowitz, Naomi; Johnson, Caroline; Osterhoudt, Kevin C; Patel, Ami

    2016-01-01

    In December 2011 and December 2013, the Philadelphia Department of Public Health (PDPH) received separate reports of clusters of photokeratitis linked to gymnasium events. Photokeratitis, a painful eye condition resulting from unprotected exposure to ultraviolet radiation, has previously been linked to metal halide lamps with broken outer envelopes (1,2). To investigate the cause of these clusters and further characterize patients with photokeratitis, PDPH administered questionnaires to potentially exposed persons, established a case definition, and conducted environmental assessments of both gymnasiums. Because event attendee registration information was available, a cohort study was conducted to evaluate the 2011 cluster of 242 persons who met the photokeratitis case definition. A case-series investigation was conducted to evaluate the 2013 cluster of 20 persons who met the photokeratitis case definition for that event. These investigations indicated that Type R metal halide bulbs with broken outer envelopes found in both gymnasiums were the probable cause of the photokeratitis. The Food and Drug Administration has made a number of recommendations regarding the use of metal halide bulbs in facilities where bulbs are at elevated risk for breaking, such as schools and indoor sports facilities (3). Because Type R metal halide lamps do not self-extinguish once the outer envelope is broken, these bulbs should be removed from settings with a high risk for outer envelope rupture, such as gymnasiums, or should be placed within enclosed fixtures. In instances where these bulbs cannot be exchanged for self-extinguishing lamps, Type R lamps with a broken outer envelope should be replaced immediately to limit exposure to ultraviolet radiation. A broken outer envelope can be detected by the presence of glass on the floor, or visual examination of the bulb when the power is turned off. A broken outer envelope is difficult to detect when the lamp is emitting light. PMID

  8. Imaging of hydrogen halides photochemistry on argon and ice nanoparticles

    NASA Astrophysics Data System (ADS)

    Poterya, V.; Lengyel, J.; Pysanenko, A.; Svrčková, P.; Fárník, M.

    2014-08-01

    The photodissociation dynamics of HX (X = Cl, Br) molecules deposited on large ArN and (H2O)N, bar{N}≈ 102-103, clusters is investigated at 193 nm using velocity map imaging of H and Cl photofragments. In addition, time-of-flight mass spectrometry after electron ionization complemented by pickup cross section measurements provide information about the composition and structure of the clusters. The hydrogen halides coagulate efficiently to generate smaller (HX)n clusters on ArN upon multiple pickup conditions. This implies a high mobility of HX molecules on argon. On the other hand, the molecules remain isolated on (H2O)N. The photodissociation on ArN leads to strong H-fragment caging manifested by the fragment intensity peaking sharply at zero kinetic energy. Some of the Cl-fragments from HCl photodissociation on ArN are also caged, while some of the fragments escape the cluster directly without losing their kinetic energy. The images of H-fragments from HX on (H2O)N also exhibit a strong central intensity, however, with a different kinetic energy distribution which originates from different processes: the HX acidic dissociation followed by H3O neutral hydronium radical formation after the UV excitation, and the slow H-fragments stem from subsequent decay of the H3O. The corresponding Cl-cofragment from the photoexcitation of the HCl.(H2O)N is trapped in the ice nanoparticle.

  9. Upgrading platform using alkali metals

    SciTech Connect

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  10. An insight into liquid water networks through hydrogen bonding halide anion: Stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Wang, Shenghan; Fang, Wenhui; Li, Tianyu; Li, Fangfang; Sun, Chenglin; Li, Zuowei; Huang, Yuxin; Men, Zhiwei

    2016-04-01

    We have studied the interaction between water molecules and halide anions and acquired the influence of concentration by the spontaneous Raman spectrum. The results agreed well with the previous researches. To explore further, the stimulated Raman scattering of a halide-water binary solution is measured to study the nature of the hydrogen bonding between water molecules and halogen anions. Under the effect of laser-induced plasma, the OH stretching vibration spectra of aqueous solutions of halogen ions pretty exhibit different trend compared with that of spontaneous Raman spectrum. The frequency shifts of water OH vibration show different values and directions with adding different halide anions. The red shift of F-- and Cl--water molecule clusters is due to the process of charge transfer, whereas the blue shift of Br-- and I--water molecule cluster is due to polarization effect without charge transfer. The results demonstrate that F- and Cl- slightly weaken the hydrogen bond (HB), whereas Br- and I- enhance HB in the water cluster. The decrease of concentration of halogen ions aqueous solution can weaken the effect on the HB.

  11. Method for recovering hydrocarbons from molten metal halides

    DOEpatents

    Pell, Melvyn B.

    1979-01-01

    In a process for hydrocracking heavy carbonaceous materials by contacting such carbonaceous materials with hydrogen in the presence of a molten metal halide catalyst to produce hydrocarbons having lower molecular weights and thereafter recovering the hydrocarbons so produced from the molten metal halide, an improvement comprising injecting into the spent molten metal halide, a liquid low-boiling hydrocarbon stream is disclosed.

  12. 40 CFR 721.575 - Substituted alkyl halide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted alkyl halide. 721.575... Substances § 721.575 Substituted alkyl halide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted alkyl halide (PMN P-83-1222)...

  13. 40 CFR 721.575 - Substituted alkyl halide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted alkyl halide. 721.575... Substances § 721.575 Substituted alkyl halide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted alkyl halide (PMN P-83-1222)...

  14. 40 CFR 721.575 - Substituted alkyl halide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted alkyl halide. 721.575... Substances § 721.575 Substituted alkyl halide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted alkyl halide (PMN P-83-1222)...

  15. 40 CFR 721.10698 - Polyfluorinated alkyl halide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyfluorinated alkyl halide (generic... Specific Chemical Substances § 721.10698 Polyfluorinated alkyl halide (generic). (a) Chemical substance and... polyfluorinated alkyl halide (PMN P-11-527) is subject to reporting under this section for the significant...

  16. 40 CFR 721.575 - Substituted alkyl halide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkyl halide. 721.575... Substances § 721.575 Substituted alkyl halide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted alkyl halide (PMN P-83-1222)...

  17. 40 CFR 721.575 - Substituted alkyl halide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted alkyl halide. 721.575... Substances § 721.575 Substituted alkyl halide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted alkyl halide (PMN P-83-1222)...

  18. Recent advances in technetium halide chemistry.

    PubMed

    Poineau, Frederic; Johnstone, Erik V; Czerwinski, Kenneth R; Sattelberger, Alfred P

    2014-02-18

    Transition metal binary halides are fundamental compounds, and the study of their structure, bonding, and other properties gives chemists a better understanding of physicochemical trends across the periodic table. One transition metal whose halide chemistry is underdeveloped is technetium, the lightest radioelement. For half a century, the halide chemistry of technetium has been defined by three compounds: TcF6, TcF5, and TcCl4. The absence of Tc binary bromides and iodides in the literature was surprising considering the existence of such compounds for all of the elements surrounding technetium. The common synthetic routes that scientists use to obtain binary halides of the neighboring elements, such as sealed tube reactions between elements and flowing gas reactions between a molecular complex and HX gas (X = Cl, Br, or I), had not been reported for technetium. In this Account, we discuss how we used these routes to revisit the halide chemistry of technetium. We report seven new phases: TcBr4, TcBr3, α/β-TcCl3, α/β-TcCl2, and TcI3. Technetium tetrachloride and tetrabromide are isostructural to PtX4 (X = Cl or Br) and consist of infinite chains of edge-sharing TcX6 octahedra. Trivalent technetium halides are isostructural to ruthenium and molybdenum (β-TcCl3, TcBr3, and TcI3) and to rhenium (α-TcCl3). Technetium tribromide and triiodide exhibit the TiI3 structure-type and consist of infinite chains of face-sharing TcX6 (X = Br or I) octahedra. Concerning the trichlorides, β-TcCl3 crystallizes with the AlCl3 structure-type and consists of infinite layers of edge-sharing TcCl6 octahedra, while α-TcCl3 consists of infinite layers of Tc3Cl9 units. Both phases of technetium dichloride exhibit new structure-types that consist of infinite chains of [Tc2Cl8] units. For the technetium binary halides, we studied the metal-metal interaction by theoretical methods and magnetic measurements. The change of the electronic configuration of the metal atom from d(3) (Tc

  19. Recent advances in technetium halide chemistry.

    PubMed

    Poineau, Frederic; Johnstone, Erik V; Czerwinski, Kenneth R; Sattelberger, Alfred P

    2014-02-18

    Transition metal binary halides are fundamental compounds, and the study of their structure, bonding, and other properties gives chemists a better understanding of physicochemical trends across the periodic table. One transition metal whose halide chemistry is underdeveloped is technetium, the lightest radioelement. For half a century, the halide chemistry of technetium has been defined by three compounds: TcF6, TcF5, and TcCl4. The absence of Tc binary bromides and iodides in the literature was surprising considering the existence of such compounds for all of the elements surrounding technetium. The common synthetic routes that scientists use to obtain binary halides of the neighboring elements, such as sealed tube reactions between elements and flowing gas reactions between a molecular complex and HX gas (X = Cl, Br, or I), had not been reported for technetium. In this Account, we discuss how we used these routes to revisit the halide chemistry of technetium. We report seven new phases: TcBr4, TcBr3, α/β-TcCl3, α/β-TcCl2, and TcI3. Technetium tetrachloride and tetrabromide are isostructural to PtX4 (X = Cl or Br) and consist of infinite chains of edge-sharing TcX6 octahedra. Trivalent technetium halides are isostructural to ruthenium and molybdenum (β-TcCl3, TcBr3, and TcI3) and to rhenium (α-TcCl3). Technetium tribromide and triiodide exhibit the TiI3 structure-type and consist of infinite chains of face-sharing TcX6 (X = Br or I) octahedra. Concerning the trichlorides, β-TcCl3 crystallizes with the AlCl3 structure-type and consists of infinite layers of edge-sharing TcCl6 octahedra, while α-TcCl3 consists of infinite layers of Tc3Cl9 units. Both phases of technetium dichloride exhibit new structure-types that consist of infinite chains of [Tc2Cl8] units. For the technetium binary halides, we studied the metal-metal interaction by theoretical methods and magnetic measurements. The change of the electronic configuration of the metal atom from d(3) (Tc

  20. Shear viscosity of molten alkali halides from equilibrium and nonequilibrium molecular-dynamics simulations

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Nieto de Castro, C. A.; Ely, James F.

    2005-06-01

    The shear viscosity of molten NaCl and KCl was calculated through equilibrium (EMD) and nonequilibrium molecular-dynamics (NEMD) simulations in the canonical (N,V,T) ensemble. Two rigid-ion potentials were investigated, namely, the Born-Mayer-Huggins-Tosi-Fumi potential and the Michielsen-Woerlee-Graaf-Ketelaar potential with the parameters proposed by Ladd. The NEMD simulations were performed using the SLLOD equations of motion [D. J. Evans and G. P. Morriss, Phys. Rev. A 30, 1528 (1984)] with a Gaussian isokinetic thermostat and the results are compared with those obtained from Green-Kubo EMD (N,V,T) simulations and experimental shear viscosity data. The NEMD zero strain rate shear viscosity, η(0), was obtained by fitting a simplified Carreau-type equation and by application of mode-coupling theory, i.e., a η-γ1/2 linear relationship. The values obtained from the first method are found to be significantly lower than those predicted by the second. The agreement between the EMD and NEMD results with experimental data is satisfactory for the two potentials investigated. The ion-ion radial distribution functions obtained with the two rigid-ion potentials for both molten salts are discussed in terms of the differences between the two models.

  1. Long-lived submicrometric bubbles in very diluted alkali halide water solutions.

    PubMed

    Duval, Eugène; Adichtchev, Sergey; Sirotkin, Sergey; Mermet, Alain

    2012-03-28

    Solutions of LiCl and of NaCl in ultrapure water were studied through Rayleigh/Brillouin scattering as a function of the concentration (molarity, M) of dissolved salt from 0.2 M to extremely low concentration (2 × 10(-17) M). The Landau-Placzek ratio, R/B, of the Rayleigh scattering intensity over the total Brillouin was measured thanks to the dynamically controlled stability of the used Fabry-Perot interferometer. It was observed that the R/B ratio follows two stages as a function of increasing dilution rate: after a strong decrease between 0.2 M and 2 × 10(-5) M, it increases to reach a maximum between 10(-9) M and 10(-16) M. The first stage corresponds to the decrease of the Rayleigh scattering by the ion concentration fluctuations with the decrease of salt concentration. The second stage, at lower concentrations, is consistent with the increase of the Rayleigh scattering by long-lived sub-microscopic bubbles with the decrease of ion concentration. The origin of these sub-microscopic bubbles is the shaking of the solutions, which was carried out after each centesimal dilution. The very long lifetime of the sub-microscopic bubbles and the effects of aging originate in the electric charge of bubbles. The increase of R/B with the decrease of the low salt concentration corresponds to the increase of the sub-microscopic bubble size with the decrease of concentration, which is imposed by the bubble stability due to the covering of the surface bubble by negative ions.

  2. Epitaxial growth of pentacene on alkali halide surfaces studied by Kelvin probe force microscopy.

    PubMed

    Neff, Julia L; Milde, Peter; León, Carmen Pérez; Kundrat, Matthew D; Eng, Lukas M; Jacob, Christoph R; Hoffmann-Vogel, Regina

    2014-04-22

    In the field of molecular electronics, thin films of molecules adsorbed on insulating surfaces are used as the functional building blocks of electronic devices. Control of the structural and electronic properties of the thin films is required for reliably operating devices. Here, noncontact atomic force and Kelvin probe force microscopies have been used to investigate the growth and electrostatic landscape of pentacene on KBr(001) and KCl(001) surfaces. We have found that, together with molecular islands of upright standing pentacene, a new phase of tilted molecules appears near step edges on KBr. Local contact potential differences (LCPD) have been studied with both Kelvin experiments and density functional theory calculations. Our images reveal that differently oriented molecules display different LCPD and that their value is independent of the number of molecular layers. These results point to the formation of an interface dipole, which may be explained by a partial charge transfer from the pentacene to the surface. Moreover, the monitoring of the evolution of the pentacene islands shows that they are strongly affected by dewetting: Multilayers build up at the expense of monolayers, and in the Kelvin images, previously unknown line defects appear, which reveal the epitaxial growth of pentacene crystals.

  3. Is surface layering of aqueous alkali halides determined by ion pairing in the bulk solution?

    NASA Astrophysics Data System (ADS)

    Brandes, Eva; Stage, Christiane; Motschmann, Hubert; Rieder, Julian; Buchner, Richard

    2014-11-01

    This contribution aims to elucidate the connection between ion-ion-solvent interactions in the bulk of aqueous electrolyte solutions and the properties of their liquid-air interface. In particular, we were interested in the conditions under which ion pairs form at the surface and whether this is linked to ion pairing in the bulk. For this reason different combinations of hard (Cl-, Li+) and soft ions (I-, Cs+) were investigated. Ion hydration and possible ion association in the bulk was probed with dielectric relaxation spectroscopy. This technique monitors the cooperative reorientation of the dipolar solvent molecules and detects all ion-pair species possibly present in the solution. At the interface, the formation of contact ion pairs was investigated by infrared-visible-sum frequency spectroscopy (SFG). This nonlinear optical technique possesses an inherent surface specificity and can be used for the characterization of interfacial water. The intensity of the SFG-active vibrational stretching modes depends on the number of oriented water molecules. The electric field at the surface of a charged aqueous interface aligns the water dipoles, which in turn increases the SFG response. Hence, the enhancement of the oscillator strengths of the water vibrational modes can be used to draw some conclusions on the strengths and geometrical extension of the electric field. The formation of ion pairs at the interface reduces the intensity of the band associated with hydrogen-bonded water. The underlying theory is presented. The combined data show that there are no contact ion pairs in the bulk of the fluid and—at best—only small amounts of solvent shared ion pairs. On the other hand, the combination of hard/hard or soft/soft ions leads to the formation of ion pairs at the liquid-air interface.

  4. Metal-Induced Gap States at Well Defined Alkali-Halide/Metal Interfaces

    NASA Astrophysics Data System (ADS)

    Kiguchi, Manabu; Arita, Ryotaro; Yoshikawa, Genki; Tanida, Yoshiaki; Katayama, Masao; Saiki, Koichiro; Koma, Atsushi; Aoki, Hideo

    2003-05-01

    In order to search for states specific to insulator/metal interfaces, we have studied epitaxially grown interfaces with element-selective near edge x-ray absorption fine structure. An extra peak is observed below the bulk edge onset for LiCl films on Cu and Ag substrates. The nature of chemical bonds as probed by x-ray photoemission spectroscopy and Auger electron spectroscopy remains unchanged, so we regard this as evidence for metal-induced gap states (MIGS) formed by the proximity to a metal, rather than local bonds at the interface. The dependence on the film thickness shows that the MIGS are as thin as one monolayer. An ab initio electronic structure calculation supports the existence of the MIGS that are strongly localized at the interface.

  5. Metal-induced gap states at well defined alkali-halide/metal interfaces.

    PubMed

    Kiguchi, Manabu; Arita, Ryotaro; Yoshikawa, Genki; Tanida, Yoshiaki; Katayama, Masao; Saiki, Koichiro; Koma, Atsushi; Aoki, Hideo

    2003-05-16

    In order to search for states specific to insulator/metal interfaces, we have studied epitaxially grown interfaces with element-selective near edge x-ray absorption fine structure. An extra peak is observed below the bulk edge onset for LiCl films on Cu and Ag substrates. The nature of chemical bonds as probed by x-ray photoemission spectroscopy and Auger electron spectroscopy remains unchanged, so we regard this as evidence for metal-induced gap states (MIGS) formed by the proximity to a metal, rather than local bonds at the interface. The dependence on the film thickness shows that the MIGS are as thin as one monolayer. An ab initio electronic structure calculation supports the existence of the MIGS that are strongly localized at the interface.

  6. Elastic properties of alpha quartz and the alkali halides based on an interatomic force model.

    NASA Technical Reports Server (NTRS)

    Weidner, D. J.; Simmons, G.

    1972-01-01

    A two-body central-force atomic model can be used to describe accurately the elastic properties of alpha quartz if the nontetrahedral O:O forces are included. The strength of the Si:O interaction has little effect on the bulk modulus. The technique is sufficiently general to allow calculations of the elastic properties of a specified structure under arbitrary pressure from a complete description of the interatomic forces. The elastic constants for the NaCl structure and the CsCl structure are examined. Our model includes two-body, central, anion-anion, anion-cation, and electrostatic interactions.

  7. The aluminum electrode in AlCl3-alkali-halide melts

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.; Giner, J.

    1972-01-01

    Passivation phenomena were observed upon cathodic and anodic polarization of the Al electrode in AlCl3-KCl-NaCl melts between 100 and 160 C. They are caused by formation of a solid salt layer at the electrode surface resulting from concentration changes upon current flow. The anodic limiting currents increased with temperature and with decreasing AlCl3 content of the melt. Current voltage curves obtained on a rotating aluminum disk showed a linear relationship between the anodic limiting current and 1/sq root of 2 pi (rps). Upon cathodic polarization dentrite formation occurs at the Al electrode. The activation overvoltage in AlCl3-KCl-NaCl (57.5-12.5-20 mol%) was determined by galvanostatic current step methods. An apparent exchange current density of 270 mA/cm2 at 130 C and a double layer capacity of 40 plus or minus 10 microfarad/cm2 were measured.

  8. Preparation and use of electrodes in the electrolysis of alkali halides

    SciTech Connect

    Beaver, R.N.; Byrd, C.E.; Alexander, L.E.

    1986-02-25

    A process is described for electrolysis of aqueous solutions of sodium chloride in an electrolytic cell comprising an anolyte compartment and catholyte compartment separated by a diaphragm to produce an aqueous solution of sodium hydroxide in the catholyte compartment, and chlorine in the anolyte compartment. The cathode of the process is a low hydrogen overvoltage cathode made by applying to an electroconductive substrate a coating solution of nickel oxide and ruthenium oxide precursor compounds and an etchant capable of etching the surface of the substrate and/or any previously applied coating. Heating is done to remove volatiles from the so-coated substrate to cause the metal values of the precursor compounds and those etched from the substrate or previously applied coating. Further, heating is performed in the presence of oxygen, air or an oxidizing agent, to a temperature sufficient to oxidize the metal values, thereby obtaining on the substrate an electrocatalytically-active heaterogeneous metal oxide structure comprising RuO/sub 2/ and NiO.

  9. IR and XRD Study of the Tribochemical Reactions of Copper Sulfate with Alkali Halides

    NASA Astrophysics Data System (ADS)

    Fernández, J.; González, E.; de Oñate, J.; López, R.; Navarro, E.

    1993-12-01

    Tribochemical reactions of CuSO 4 · 5H 2O and CuSO 4 during milling with KCl, KBr, and KI have been studied by IR and XRD techniques. The reactions are rather similar for the hydrated and anhydrous salts, but proceed faster with the former. With KCl, the reaction leads directly to CuK 2SO 4Cl 2 also known as the mineral chlorothionite. With KBr, the mixed salts CuK 2(SO 4) 2 · 2H 2O and CuK 2 (SO 4) 2 · 6H 2O are first obtained which transform to a new compound upon further milling, that we postulate as CuK 2SO 4Br 2. With KI, there is a fast reaction to a mixture of CuK 2(SO 4) 2 · 6H 2O, γ-CuI, and I 2, later proceeding to K 2SO 4, γ-CuI, and I 2.

  10. Alkali Halide Opacity in Brown Dwarf and Cool Stellar Atmospheres: A Study of Lithium Chloride

    NASA Astrophysics Data System (ADS)

    Kirby, K.; Weck, P. F.; Schweitzer, A.; Stancil, P. C.; Hauschildt, P. H.

    2003-12-01

    Recent thermochemical equilibrium calculations have revealed the important role played by lithium chloride in the lithium chemistry of cool dwarf atmospheres (K. Lodders 1999, ApJ 519, 793). Indeed, LiCl appears to be the dominant Li-bearing gas over an extended domain of the (P,T) diagram, typically for temperatures below 1500 K. LiCl has a large dipole moment in its ground electronic state which can give rise to intense rovibrational line spectra. In addition, LiCl can make dipole transitions to several low-lying unbound excited states, causing dissociation of the molecule. For these reasons, LiCl may be a significant source of line and continuum opacity in brown dwarf and cool stellar atmospheres. In this work, we report calculations of complete lists of line oscillator strengths and photodissociation cross sections for the low-lying electronic states of LiCl. We have performed single- and double-excitation configuration interaction calculations using the ALCHEMY ab initio package (Mc Lean et al. 1991, MOTECC 91, Elsevier, Leiden) and obtained the potential curves and the corresponding dipole transition moment functions between the X 1Σ ^+ ground state and the B 1Σ ^+ and A 1Π excited states. The resulting line oscillator strengths and molecular photodissociation cross sections have been included in the PHOENIX stellar atmosphere code (Hauschildt & Baron 1999, J. Comput. App. Math. 102, 41). The new models, calculated using spherical geometry for all gravities considered, also incorporate our latest database of nearly 670 million molecular lines, and updated equations of state (EOS). This work was supported in part by NSF grants AST-9720704 and AST-0086246, NASA grants NAG5-8425, NAG5-9222, and NAG5-10551 as well as NASA/JPL grant 961582.

  11. Chemistry of alkali halide and ice surfaces: Characterization of reactions relevant to atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Zangmeister, Christopher Douglas

    Atmospherically-relevant surface reactions were studied. These reactions were investigated to provide insight into the products formed on sea salt atmospheric particle surfaces, the quantitative distribution of species on the surface of model sea salt particles, and the molecular environment of the interfacial region of HNO3/H2O ices. The reactions of model sea salt particles (NaCl) exposed to mineral acids (HNO3 and H2SO4) were studied using Raman spectroscopy and atomic force microscopy (AFM). The reaction of powdered NaCl with HNO3 was studied using Raman spectroscopy. NANO3 growth was monitored as a function of HNO3 exposure in a flow cell. Mode-specific changes in the NO3- vibrational mode intensities with HNO3 exposure suggest a rearrangement of the NaNO3 film with coverage. In the absence of H 2O, intensities of NaNO3 bands increase with HNO3 exposure until a capping layer of NaNO3 forms. The capping layer prevents subsequent HNO3 from reacting with the underlying. The reaction of NaCl with H2SO4 is investigated using Raman spectroscopy and atomic force microscopy (AFM). Raman spectra are consistent with the formation of NaHSO4 with no evidence for Na2SO4. The spectra indicate that the phase of NaHSO 4 varies with the amount of H2O in the H2SO 4. The reaction produces anhydrous β-NaHSO4 which undergoes a phase change to anhydrous α- NaHSO4. AFM measurements on NaCl (100) show the formation of two distinct types of NaHSO4 structures consistent in shape with α- NaHSO4 and β-NaHSO4 . Model sea salt particles were gown from solution to determine the surface Br/Cl of crystals grown from solution. These studies show surface Br concentration is 35 times that of the bulk concentration. This data is useful in the understanding of enhanced volatile Br compounds in the Arctic troposphere. Thin films of model polar stratospheric cloud (PSC) surfaces were studied in ultrahigh vacuum. Low temperature data show the preferential orientation of HNO3 on crystalline H2O ice. Thermodynamically-stable HNO3 . 3H2O is formed at ~170 K, and subsequently desorbs from the surface. These studies show the chemical specificity of Raman spectroscopy in this chemical system. Studies of ClONO2 adsorption onto crystalline H2O ice suggest that ClONO2 is weakly adsorbed.

  12. Hydrothermal alkali metal catalyst recovery process

    DOEpatents

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  13. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    SciTech Connect

    Joshi, Ashok V.; Balagopal, Shekar; Pendelton, Justin

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  14. Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides

    DOEpatents

    Gordon, John Howard; Alvare, Javier

    2016-10-25

    Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte solution and may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.

  15. Exfoliation of WS2 in the semiconducting phase using a group of lithium halides: a new method of Li intercalation.

    PubMed

    Ghorai, Arup; Midya, Anupam; Maiti, Rishi; Ray, Samit K

    2016-10-14

    Lithium halide assisted high yield synthesis of few layers of 2H phase semiconducting WS2 in organic solvents is reported. A group of lithium halides (LiCl, LiBr and LiI) has been employed for the first time to intercalate WS2 by using Li, followed by mild sonication to exfoliate in dispersive polar solvents. In contrast to the n-butyllithium (n-BuLi) assisted exfoliation method, which yields only the metallic 1T phase on prolonged reaction (3-7 days) at higher temperatures, the proposed exfoliation method produces only semiconducting 2H WS2 in a much shorter time (5 minute sonication). A very high yield of 19 mg ml(-1) has been obtained using LiI as an exfoliating agent due to its lower lattice energy compared to other alkali halides and the smaller size of the cation. Detailed microscopy and spectroscopic characterization reveals exfoliation of few layered WS2 with stoichiometric composition. Absorption and emission characteristics of the 2D WS2 layer exhibit a characteristic band edge and quantum confined transitions. As a proof-of-concept, we have successfully demonstrated photodetector devices comprising solution proccessed p-WS2/n-Si heterojunctions, which behave as diodes with a high rectification ratio (>10(2)) exhibiting a broad band photoresponse over the entire visible region. PMID:27560159

  16. Alkali and transition metal phospholides

    NASA Astrophysics Data System (ADS)

    Bezkishko, I. A.; Zagidullin, A. A.; Milyukov, V. A.; Sinyashin, O. G.

    2014-06-01

    Major tendencies in modern chemistry of alkali and transition metal phospholides (phosphacyclopentadienides) are systematized, analyzed and generalized. Basic methods of synthesis of these compounds are presented. Their chemical properties are considered with a special focus on their complexing ability. Potential applications of phospholides and their derivatives are discussed. The bibliography includes 184 references.

  17. Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals.

    PubMed

    Chen, Kun; Tüysüz, Harun

    2015-11-01

    The booming development of organometal halide perovskites in recent years has prompted the exploration of morphology-control strategies to improve their performance in photovoltaic, photonic, and optoelectronic applications. However, the preparation of organometal halide perovskites with high hierarchical architecture is still highly challenging and a general morphology-control method for various organometal halide perovskites has not been achieved. A mild and scalable method to prepare organometal halide perovskites in inverse opal morphology is presented that uses a polystyrene-based artificial opal as hard template. Our method is flexible and compatible with different halides and organic ammonium compositions. Thus, the perovskite inverse opal maintains the advantage of straightforward structure and band gap engineering. Furthermore, optoelectronic investigations reveal that morphology exerted influence on the conducting nature of organometal halide perovskites. PMID:26376773

  18. Flame inhibition by hydrogen halides - Some spectroscopic measurements

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.; Cagliostro, D. E.

    1973-01-01

    The far-ultraviolet absorption spectrum of an air-propane diffusion flame inhibited with hydrogen halides has been studied. Plots of the absorption of light by hydrogen halides as a function of position in the flame and also as a function of the amount of hydrogen halide added to the flame have been obtained. The hydrogen halides are shown to be more stable on the fuel side of the reaction zone than they are on the air side. Thermal diffusion is seen to be important in determining the concentration distribution of the heavier hydrogen halides in diffusion flames. The relationship between the concentration distribution of the hydrogen halides in the flame and the flame inhibition mechanism is discussed.

  19. Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals.

    PubMed

    Chen, Kun; Tüysüz, Harun

    2015-11-01

    The booming development of organometal halide perovskites in recent years has prompted the exploration of morphology-control strategies to improve their performance in photovoltaic, photonic, and optoelectronic applications. However, the preparation of organometal halide perovskites with high hierarchical architecture is still highly challenging and a general morphology-control method for various organometal halide perovskites has not been achieved. A mild and scalable method to prepare organometal halide perovskites in inverse opal morphology is presented that uses a polystyrene-based artificial opal as hard template. Our method is flexible and compatible with different halides and organic ammonium compositions. Thus, the perovskite inverse opal maintains the advantage of straightforward structure and band gap engineering. Furthermore, optoelectronic investigations reveal that morphology exerted influence on the conducting nature of organometal halide perovskites.

  20. Imaging of hydrogen halides photochemistry on argon and ice nanoparticles

    SciTech Connect

    Poterya, V. Lengyel, J.; Pysanenko, A.; Svrčková, P.; Fárník, M.

    2014-08-21

    The photodissociation dynamics of HX (X = Cl, Br) molecules deposited on large Ar{sub N} and (H{sub 2}O){sub N}, N{sup ¯}≈ 10{sup 2}–10{sup 3}, clusters is investigated at 193 nm using velocity map imaging of H and Cl photofragments. In addition, time-of-flight mass spectrometry after electron ionization complemented by pickup cross section measurements provide information about the composition and structure of the clusters. The hydrogen halides coagulate efficiently to generate smaller (HX){sub n} clusters on Ar{sub N} upon multiple pickup conditions. This implies a high mobility of HX molecules on argon. On the other hand, the molecules remain isolated on (H{sub 2}O){sub N}. The photodissociation on Ar{sub N} leads to strong H-fragment caging manifested by the fragment intensity peaking sharply at zero kinetic energy. Some of the Cl-fragments from HCl photodissociation on Ar{sub N} are also caged, while some of the fragments escape the cluster directly without losing their kinetic energy. The images of H-fragments from HX on (H{sub 2}O){sub N} also exhibit a strong central intensity, however, with a different kinetic energy distribution which originates from different processes: the HX acidic dissociation followed by H{sub 3}O neutral hydronium radical formation after the UV excitation, and the slow H-fragments stem from subsequent decay of the H{sub 3}O. The corresponding Cl-cofragment from the photoexcitation of the HCl·(H{sub 2}O){sub N} is trapped in the ice nanoparticle.

  1. Halide electroadsorption on single crystal surfaces

    SciTech Connect

    Ocko, B.M.; Wandlowski, T.

    1997-07-01

    The structure and phase behavior of halides have been investigated on single crystals of Ag and Au using synchrotron x-ray scattering techniques. The adlayer coverages are potential dependent. For all halides studied the authors found that with increasing potential, at a critical potential, a disordered adlayer transforms into an ordered structure. Often these ordered phases are incommensurate and exhibit potential-dependent lateral separations (electrocompression). The authors have analyzed the electrocompression in terms of a model which includes lateral interactions and partial charge. A continuous compression is not observed for Br on Ag(100). Rather, they find that the adsorption is site-specific (lattice gas) in both the ordered and disordered phases. The coverage increases with increasing potential and at a critical potential the disordered phase transforms to a well-ordered commensurate structure.

  2. Lanthanide-halide based humidity indicators

    DOEpatents

    Beitz, James V.; Williams, Clayton W.

    2008-01-01

    The present invention discloses a lanthanide-halide based humidity indicator and method of producing such indicator. The color of the present invention indicates the humidity of an atmosphere to which it is exposed. For example, impregnating an adsorbent support such as silica gel with an aqueous solution of the europium-containing reagent solution described herein, and dehydrating the support to dryness forms a substance with a yellow color. When this substance is exposed to a humid atmosphere the water vapor from the air is adsorbed into the coating on the pore surface of the silica gel. As the water content of the coating increases, the visual color of the coated silica gel changes from yellow to white. The color change is due to the water combining with the lanthanide-halide complex on the pores of the gel.

  3. Negative ion photoelectron spectroscopy of metal clusters, metal-organic clusters, metal oxides, and metal-doped silicon clusters

    NASA Astrophysics Data System (ADS)

    Zheng, Weijun

    The techniques of time-of-flight mass spectrometry and negative ion photoelectron spectroscopy were utilized to study metal clusters (Mgn -, Znn-, Can -, Mnn-, CuAln -, LiAln-, and NmSn n-), metal-organic complexes (Tin(benzene) m-, Fn(benzene)m- , Nin(benzene)m-), metal oxides(AuO-, PtO-, TaOn -, HfO2-, and MnnO -), and metal-doped semiconductor clusters (CrSin -, GdmSin- and HoSi n-). The study of magnesium and zinc cluster anions shows that they have magic numbers at size 9, 19 and 34, and the closures and reopenings of the s-p band gap are related to the mass spectra magic numbers. The evolution of electronic structure in Can clusters resembles that of Mgn - and Znn- with band gap closure and reopening. However, the electronic structures Can- clusters are more complicated and the magic numbers are different from those of Mgn- and Znn -. That might due to the involvement of calcium's empty d orbitals. In Mn clusters, a dramatic change of electronic structure was observed at Mn5-. The transition of metallic and magnetic properties is strongly related to the s-d hybridization. The photoelectron study of LiAln- is consistent with theoretical predictions, which described LiAl13 as alkali-halide-like ionic entity, Li+(Al13)-. The results of CuAln- show that copper atom might occupy interior position in these clusters. The results of Nam Snn- implied that Na4Sn 4 and NaSn5- could be described as (Na +)4Sn44- and (Na +)Sn52-, respectively. The formation of these species indicates the existence of Zintl phase structure in the gas phase. Tin(Bz)n+1- clusters have multiple-decker sandwich structures with each titanium atom located between two parallel benzene rings. The structures of Fen(Bz)m - and Nin(Bz)m- are characterized with a metal cluster core caged by benzene molecules. The information for the electronic states of PtO, AuO, and TaOn (n = 1--3) were obtained from the photoelectron spectra of their corresponding negative ions. The coincidence between electron

  4. Process and composition for drying of gaseous hydrogen halides

    DOEpatents

    Tom, Glenn M.; Brown, Duncan W.

    1989-08-01

    A process for drying a gaseous hydrogen halide of the formula HX, wherein X is selected from the group consisting of bromine, chlorine, fluorine, and iodine, to remove water impurity therefrom, comprising: contacting the water impurity-containing gaseous hydrogen halide with a scavenger including a support having associated therewith one or more members of the group consisting of: (a) an active scavenging moiety selected from one or more members of the group consisting of: (i) metal halide compounds dispersed in the support, of the formula MX.sub.y ; and (ii) metal halide pendant functional groups of the formula -MX.sub.y-1 covalently bonded to the support, wherein M is a y-valent metal, and y is an integer whose value is from 1 to 3; (b) corresponding partially or fully alkylated compounds and/or pendant functional groups, of the metal halide compounds and/or pendant functional groups of (a); wherein the alkylated compounds and/or pendant functional groups, when present, are reactive with the gaseous hydrogen halide to form the corresponding halide compounds and/or pendant functional groups of (a); and M being selected such that the heat of formation, .DELTA.H.sub.f of its hydrated halide, MX.sub.y.(H.sub.2 O).sub.n, is governed by the relationship: .DELTA.H.sub.f .gtoreq.n.times.10.1 kilocalories/mole of such hydrated halide compound wherein n is the number of water molecules bound to the metal halide in the metal halide hydrate. Also disclosed is an appertaining scavenger composition and a contacting apparatus wherein the scavenger is deployed in a bed for contacting with the water impurity-containing gaseous hydrogen halide.

  5. Lanthanide doped strontium-barium cesium halide scintillators

    SciTech Connect

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  6. Molecular dynamics simulations of the surface tension and structure of salt solutions and clusters.

    PubMed

    Sun, Lu; Li, Xin; Hede, Thomas; Tu, Yaoquan; Leck, Caroline; Ågren, Hans

    2012-03-15

    Sodium halides, which are abundant in sea salt aerosols, affect the optical properties of aerosols and are active in heterogeneous reactions that cause ozone depletion and acid rain problems. Interfacial properties, including surface tension and halide anion distributions, are crucial issues in the study of the aerosols. We present results from molecular dynamics simulations of water solutions and clusters containing sodium halides with the interatomic interactions described by a conventional force field. The simulations reproduce experimental observations that sodium halides increase the surface tension with respect to pure water and that iodide anions reach the outermost layer of water clusters or solutions. It is found that the van der Waals interactions have an impact on the distribution of the halide anions and that a conventional force field with optimized parameters can model the surface tension of the salt solutions with reasonable accuracy.

  7. Making and Breaking of Lead Halide Perovskites.

    PubMed

    Manser, Joseph S; Saidaminov, Makhsud I; Christians, Jeffrey A; Bakr, Osman M; Kamat, Prashant V

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  8. Mechanism and Selectivity in Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Halides with Alkyl Halides

    PubMed Central

    Biswas, Soumik; Weix, Daniel J.

    2013-01-01

    The direct cross-coupling of two different electrophiles, such as an aryl halide with an alkyl halide, offers many advantages over conventional cross-coupling methods that require a carbon nucleophile. Despite its promise as a versatile synthetic strategy, a limited understanding of the mechanism and origin of cross selectivity has hindered progress in reaction development and design. Herein, we shed light on the mechanism for the nickel-catalyzed cross-electrophile coupling of aryl halides with alkyl halides and demonstrate that the selectivity arises from an unusual catalytic cycle that combines both polar and radical steps to form the new C-C bond. PMID:23952217

  9. Regio- and enantiospecific rhodium-catalyzed allylic etherification reactions using copper(I) alkoxides: influence of the copper halide salt on selectivity.

    PubMed

    Evans, P Andrew; Leahy, David K

    2002-07-10

    The transition metal-catalyzed allylic etherification represents a fundamentally important cross-coupling reaction for the construction of allylic ethers. We have developed a new regio- and enantiospecific rhodium-catalyzed allylic etherification of acyclic unsymmetrical allylic alcohol derivatives using copper(I) alkoxides derived from primary, secondary and tertiary alcohols. This study demonstrates that the choice of copper(I) halide salt is crucial for obtaining excellent regio- and enantiospecificity, providing another example of the effect of halide ions in asymmetric transition metal-catalyzed reactions. Finally, the ability to alter the reactivity of the alkali metal alkoxides in this manner may provide a useful method for related metal-catalyzed cross-coupling reactions involving heteroatoms.

  10. Alkali metal/sulfur battery

    DOEpatents

    Anand, Joginder N.

    1978-01-01

    Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

  11. Intermolecular interactions and proton transfer in the hydrogen halide-superoxide anion complexes.

    PubMed

    Lee, Sebastian J R; Mullinax, J Wayne; Schaefer, Henry F

    2016-02-17

    The superoxide radical anion O2(-) is involved in many important chemical processes spanning different scientific disciplines (e.g., environmental and biological sciences). Characterizing its interaction with various substrates to help elucidate its rich chemistry may have far reaching implications. Herein, we investigate the interaction between O2(-) (X[combining tilde] (2)Πg) and the hydrogen halides (X[combining tilde] (1)Σ) with coupled-cluster theory. In contrast to the short (1.324 Å) hydrogen bond formed between the HF and O2(-) monomers, a barrierless proton transfer occurs for the heavier hydrogen halides with the resulting complexes characterized as long (>1.89 Å) hydrogen bonds between halide anions and the HO2 radical. The dissociation energy with harmonic zero-point vibrational energy (ZPVE) for FHO2(-) (X[combining tilde] (2)A'') → HF (X[combining tilde] (1)Σ) + O2(-) (X[combining tilde] (2)Πg) is 31.2 kcal mol(-1). The other dissociation energies with ZPVE for X(-)HO2 (X[combining tilde] (2)A'') → X(-) (X[combining tilde] (1)Σ) + HO2 (X[combining tilde] (2)A'') are 25.7 kcal mol(-1) for X = Cl, 21.9 kcal mol(-1) for X = Br, and 17.9 kcal mol(-1) for X = I. Additionally, the heavier hydrogen halides can form weak halogen bonds H-XO2(-) (X[combining tilde] (2)A'') with interaction energies including ZPVE of -2.3 kcal mol(-1) for HCl, -8.3 kcal mol(-1) for HBr, and -16.7 kcal mol(-1) for HI. PMID:26852733

  12. [Emissions of methyl halides from coastal salt marshes: A review].

    PubMed

    Xie, Wen-xia; Zhao, Quan-sheng; Cui, Yu-qian; Du, Hui-na; Ye, Si-yuan

    2015-11-01

    Methyl halides are the major carrier of halogens in the atmosphere, and they play an important role in tropospheric and stratospheric ozone depletion. Meanwhile, methyl halides can act as greenhouse gases in the atmosphere, and they are also environmentally significant because of their toxicity. Coastal salt marshes, the important intertidal ecosystems at the land-ocean interface, have been considered to be a large potential natural source of methyl halides. In this paper, the research status of the natural source or sink of methyl halides, the mechanisms of their emission from coastal salt marshes and affecting factors were summarized. In view of this, the following research fields need to be strengthened in the future: 1) Long time-scale and large region-range researches about the emission of methyl halides and the evaluation of their source and sink function, 2) Accurate quantification of contribution rates of different plant species and various biological types to fluxes of methyl halides, 3) Further researches on effects of the tidal fluctuation process and flooding duration on methyl halides emission, 4) Effects of the global change and human activities on methyl halides emission. PMID:26915215

  13. How specific halide adsorption varies hydrophobic interactions.

    PubMed

    Stock, Philipp; Müller, Melanie; Utzig, Thomas; Valtiner, Markus

    2016-03-11

    Hydrophobic interactions (HI) are driven by the water structure around hydrophobes in aqueous electrolytes. How water structures at hydrophobic interfaces and how this influences the HI was subject to numerous studies. However, the effect of specific ion adsorption on HI and hydrophobic interfaces remains largely unexplored or controversial. Here, the authors utilized atomic force microscopy force spectroscopy at well-defined nanoscopic hydrophobic interfaces to experimentally address how specific ion adsorption of halide ions as well as NH4 (+), Cs(+), and Na(+) cations alters interaction forces across hydrophobic interfaces. Our data demonstrate that iodide adsorption at hydrophobic interfaces profoundly varies the hydrophobic interaction potential. A long-range and strong hydration repulsion at distances D > 3 nm, is followed by an instability which could be explained by a subsequent rapid ejection of adsorbed iodides from approaching hydrophobic interfaces. In addition, the authors find only a weakly pronounced influence of bromide, and as expected no influence of chloride. Also, all tested cations do not have any significant influence on HI. Complementary, x-ray photoelectron spectroscopy and quartz-crystal-microbalance with dissipation monitoring showed a clear adsorption of large halide ions (Br(-)/I(-)) onto hydrophobic self-assembled monolayers (SAMs). Interestingly, iodide can even lead to a full disintegration of SAMs due to specific and strong interactions of iodide with gold. Our data suggest that hydrophobic surfaces are not intrinsically charged negatively by hydroxide adsorption, as it was generally believed. Hydrophobic surfaces rather interact strongly with negatively charged large halide ions, leading to a surface charging and significant variation of interaction forces.

  14. Chemiluminescence from excited c 2- -alkali cation complexes formed in alkali atom-halocarbon flames

    NASA Astrophysics Data System (ADS)

    Lin, K. K.; Balling, L. C.; Wright, J. J.

    1987-01-01

    Vapor phase reactions between alkali atoms and several halocarbon molecules containing C-C bonds have been observed to produce chemiluminescence which appears to originate from C 2-- (alkali) + complexes.

  15. Research Update: Luminescence in lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Srimath Kandada, Ajay Ram; Petrozza, Annamaria

    2016-09-01

    Efficiency and dynamics of radiative recombination of carriers are crucial figures of merit for optoelectronic materials. Following the recent success of lead halide perovskites in efficient photovoltaic and light emitting technologies, here we review some of the noted literature on the luminescence of this emerging class of materials. After outlining the theoretical formalism that is currently used to explain the carrier recombination dynamics, we review a few significant works which use photoluminescence as a tool to understand and optimize the operation of perovskite based optoelectronic devices.

  16. Nanoscale investigation of organic - inorganic halide perovskites

    NASA Astrophysics Data System (ADS)

    Cacovich, S.; Divitini, G.; Vrućinić, M.; Sadhanala, A.; Friend, R. H.; Sirringhaus, H.; Deschler, F.; Ducati, C.

    2015-10-01

    Over the last few years organic - inorganic halide perovskite-based solar cells have exhibited a rapid evolution, reaching certified power conversion efficiencies now surpassing 20%. Nevertheless the understanding of the optical and electronic properties of such systems on the nanoscale is still an open problem. In this work we investigate two model perovskite systems (based on iodine - CH3NH3PbI3 and bromine - CH3NH3PbBr3), analysing the local elemental composition and crystallinity and identifying chemical inhomogeneities.

  17. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  18. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  19. Alkali-Metal Spin Maser.

    PubMed

    Chalupczak, W; Josephs-Franks, P

    2015-07-17

    Quantum measurement is a combination of a read-out and a perturbation of the quantum system. We explore the nonlinear spin dynamics generated by a linearly polarized probe beam in a continuous measurement of the collective spin state in a thermal alkali-metal atomic sample. We demonstrate that the probe-beam-driven perturbation leads, in the presence of indirect pumping, to complete polarization of the sample and macroscopic coherent spin oscillations. As a consequence of the former we report observation of spectral profiles free from collisional broadening. Nonlinear dynamics is studied through exploring its effect on radio frequency as well as spin noise spectra. PMID:26230788

  20. Alkali-Metal Spin Maser

    NASA Astrophysics Data System (ADS)

    Chalupczak, W.; Josephs-Franks, P.

    2015-07-01

    Quantum measurement is a combination of a read-out and a perturbation of the quantum system. We explore the nonlinear spin dynamics generated by a linearly polarized probe beam in a continuous measurement of the collective spin state in a thermal alkali-metal atomic sample. We demonstrate that the probe-beam-driven perturbation leads, in the presence of indirect pumping, to complete polarization of the sample and macroscopic coherent spin oscillations. As a consequence of the former we report observation of spectral profiles free from collisional broadening. Nonlinear dynamics is studied through exploring its effect on radio frequency as well as spin noise spectra.

  1. Structural, dynamical, and transport properties of the hydrated halides: How do At(-) bulk properties compare with those of the other halides, from F(-) to I(-)?

    PubMed

    Réal, Florent; Gomes, André Severo Pereira; Guerrero Martínez, Yansel Omar; Ayed, Tahra; Galland, Nicolas; Masella, Michel; Vallet, Valérie

    2016-03-28

    The properties of halides from the lightest, fluoride (F(-)), to the heaviest, astatide (At(-)), have been studied in water using a polarizable force-field approach based on molecular dynamics (MD) simulations at the 10 ns scale. The selected force-field explicitly treats the cooperativity within the halide-water hydrogen bond networks. The force-field parameters have been adjusted to ab initio data on anion/water clusters computed at the relativistic Möller-Plesset second-order perturbation theory level of theory. The anion static polarizabilities of the two heaviest halides, I(-) and At(-), were computed in the gas phase using large and diffuse atomic basis sets, and taking into account both electron correlation and spin-orbit coupling within a four-component framework. Our MD simulation results show the solvation properties of I(-) and At(-) in aqueous phase to be very close. For instance, their first hydration shells are structured and encompass 9.2 and 9.1 water molecules at about 3.70 ± 0.05 Å, respectively. These values have to be compared to the F(-), Cl(-), and Br(-) ones, i.e., 6.3, 8.4, and 9.0 water molecules at 2.74, 3.38, and 3.55 Å, respectively. Moreover our computations predict the solvation free energy of At(-) in liquid water at ambient conditions to be 68 kcal mol(-1), a value also close the I(-) one, about 70 kcal mol(-1). In all, our simulation results for I(-) are in excellent agreement with the latest neutron- and X-ray diffraction studies. Those for the At(-) ion are predictive, as no theoretical or experimental data are available to date. PMID:27036467

  2. Structural, dynamical, and transport properties of the hydrated halides: How do At- bulk properties compare with those of the other halides, from F- to I-?

    NASA Astrophysics Data System (ADS)

    Réal, Florent; Severo Pereira Gomes, André; Guerrero Martínez, Yansel Omar; Ayed, Tahra; Galland, Nicolas; Masella, Michel; Vallet, Valérie

    2016-03-01

    The properties of halides from the lightest, fluoride (F-), to the heaviest, astatide (At-), have been studied in water using a polarizable force-field approach based on molecular dynamics (MD) simulations at the 10 ns scale. The selected force-field explicitly treats the cooperativity within the halide-water hydrogen bond networks. The force-field parameters have been adjusted to ab initio data on anion/water clusters computed at the relativistic Möller-Plesset second-order perturbation theory level of theory. The anion static polarizabilities of the two heaviest halides, I- and At-, were computed in the gas phase using large and diffuse atomic basis sets, and taking into account both electron correlation and spin-orbit coupling within a four-component framework. Our MD simulation results show the solvation properties of I- and At- in aqueous phase to be very close. For instance, their first hydration shells are structured and encompass 9.2 and 9.1 water molecules at about 3.70 ± 0.05 Å, respectively. These values have to be compared to the F-, Cl-, and Br- ones, i.e., 6.3, 8.4, and 9.0 water molecules at 2.74, 3.38, and 3.55 Å, respectively. Moreover our computations predict the solvation free energy of At- in liquid water at ambient conditions to be 68 kcal mol-1, a value also close the I- one, about 70 kcal mol-1. In all, our simulation results for I- are in excellent agreement with the latest neutron- and X-ray diffraction studies. Those for the At- ion are predictive, as no theoretical or experimental data are available to date.

  3. Finding New Perovskite Halides via Machine learning

    NASA Astrophysics Data System (ADS)

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-01

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning) via building a support vector machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  4. Methyl halide production associated with kelp

    NASA Technical Reports Server (NTRS)

    Dastoor, Minoo N.; Manley, Steven L.

    1985-01-01

    Methyl halides (MeX) are important trace constituents of the atmosphere because they, mostly MeCl, have a major impact on the atmospheric ozone layer. Also, MeCl may account for 5 pct. of the total Cl budget and MeI may have a central role in the biogeochemical cycling of iodine. High MeI concentrations were found in seawater from kelp beds and it has been suggested that MeI is produced by kelps and that MeI and MeBr along with numerous other halocarbons were released by non-kelp marine macroalgae. The objective was to determine if kelps (and other seaweeds) are sources of MeX and to assess their contribution to the estimated global source strength (EGSS) of MeX. Although the production of MeX appears to be associated with kelp, microbes involved with kelp degradation also produce MeX. Microbial MeX production may be of global significance. The microbial MeX production potential, assuming annual kelp production equals kelp degradation and 100 pct. conversion of kelp halides to MeX, is approx. 2 x the EGSS. This is not achieved but indicates that microbial production of MeX may be of global significance.

  5. Finding new perovskite halides via machine learning

    DOE PAGES

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-26

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach toward rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning, henceforth referred to as ML) via building a support vectormore » machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br, or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 185 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor, and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. As a result, the trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.« less

  6. The alkali metals: 200 years of surprises.

    PubMed

    Dye, James L

    2015-03-13

    Alkali metal compounds have been known since antiquity. In 1807, Sir Humphry Davy surprised everyone by electrolytically preparing (and naming) potassium and sodium metals. In 1808, he noted their interaction with ammonia, which, 100 years later, was attributed to solvated electrons. After 1960, pulse radiolysis of nearly any solvent produced solvated electrons, which became one of the most studied species in chemistry. In 1968, alkali metal solutions in amines and ethers were shown to contain alkali metal anions in addition to solvated electrons. The advent of crown ethers and cryptands as complexants for alkali cations greatly enhanced alkali metal solubilities. This permitted us to prepare a crystalline salt of Na(-) in 1974, followed by 30 other alkalides with Na(-), K(-), Rb(-) and Cs(-) anions. This firmly established the -1 oxidation state of alkali metals. The synthesis of alkalides led to the crystallization of electrides, with trapped electrons as the anions. Electrides have a variety of electronic and magnetic properties, depending on the geometries and connectivities of the trapping sites. In 2009, the final surprise was the experimental demonstration that alkali metals under high pressure lose their metallic character as the electrons are localized in voids between the alkali cations to become high-pressure electrides!

  7. The alkali metals: 200 years of surprises.

    PubMed

    Dye, James L

    2015-03-13

    Alkali metal compounds have been known since antiquity. In 1807, Sir Humphry Davy surprised everyone by electrolytically preparing (and naming) potassium and sodium metals. In 1808, he noted their interaction with ammonia, which, 100 years later, was attributed to solvated electrons. After 1960, pulse radiolysis of nearly any solvent produced solvated electrons, which became one of the most studied species in chemistry. In 1968, alkali metal solutions in amines and ethers were shown to contain alkali metal anions in addition to solvated electrons. The advent of crown ethers and cryptands as complexants for alkali cations greatly enhanced alkali metal solubilities. This permitted us to prepare a crystalline salt of Na(-) in 1974, followed by 30 other alkalides with Na(-), K(-), Rb(-) and Cs(-) anions. This firmly established the -1 oxidation state of alkali metals. The synthesis of alkalides led to the crystallization of electrides, with trapped electrons as the anions. Electrides have a variety of electronic and magnetic properties, depending on the geometries and connectivities of the trapping sites. In 2009, the final surprise was the experimental demonstration that alkali metals under high pressure lose their metallic character as the electrons are localized in voids between the alkali cations to become high-pressure electrides! PMID:25666067

  8. Process for the disposal of alkali metals

    DOEpatents

    Lewis, Leroy C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.

  9. Nickel-Catalyzed Borylation of Halides and Pseudo-Halides with Tetrahydroxydiboron [B2(OH)4

    PubMed Central

    Molander, Gary A.; Cavalcanti, Livia N.; García-García, Carolina

    2013-01-01

    Arylboronic acids are gaining increased importance as reagents and target structures in a variety of useful applications. Recently, the palladium-catalyzed synthesis of arylboronic acids employing the atom economical tetrahydroxydiboron (BBA) reagent has been reported. The high cost associated with palladium, combined with several limitations of both palladium and copper-catalyzed processes, prompted us to develop an alternative method. Thus, the nickel-catalyzed borylation of aryl and heteroaryl halides and pseudo-halides using tetrahydroxydiboron (BBA) has been formulated. The reaction proved to be widely functional group tolerant and applicable to a number of heterocyclic systems. To the best of our knowledge, the examples presented here represent the only effective Ni-catalyzed Miyaura borylations conducted at room temperature. PMID:23777538

  10. Tellurite glass as a waste form for mixed alkali-chloride waste streams: Candidate materials selection and initial testing

    NASA Astrophysics Data System (ADS)

    Riley, Brian J.; Rieck, Bennett T.; McCloy, John S.; Crum, Jarrod V.; Sundaram, S. K.; Vienna, John D.

    2012-05-01

    Tellurite glasses have historically been shown to host large concentrations of halides. They are here considered for the first time as a waste form for immobilizing chloride wastes, such as may be generated in the proposed molten alkali salt electrochemical separations step in nuclear fuel reprocessing. Key properties of several tellurite glasses are determined to assess acceptability as a chloride waste form. TeO2 glasses with other oxides (PbO, Al2O3 + B2O3, WO3, P2O5, or ZnO) were fabricated with and without 10 mass% of a simulated (non-radioactive) mixed alkali, alkaline-earth, and rare earth chloride waste. Measured chemical durability is compared for the glasses, as determined by the product consistency test (PCT), a common standardized chemical durability test often used to validate borosilicate glass waste forms. The glass with the most promise as a waste form is the TeO2-PbO system, as it offers good halide retention, a low sodium release (by PCT) comparable with high-level waste silicate glass waste forms, and a high storage density.

  11. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  12. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  13. Parameterization of Halogens for the Density-Functional Tight-Binding Description of Halide Hydration.

    PubMed

    Jahangiri, Soran; Dolgonos, Grygoriy; Frauenheim, Thomas; Peslherbe, Gilles H

    2013-08-13

    Parameter sets of the self-consistent-charge density-functional tight-binding model with and without its third-order extension have been developed to describe the interatomic interactions of halogen elements (X = Cl, Br, I) with hydrogen and oxygen, with the ultimate goal of investigating halide hydration with this approach. The reliability and accuracy of the model with these newly developed parameters has been evaluated by comparing the structural, energetic, and vibrational properties of small molecules containing halogen atoms with those obtained by means of standard density-functional theory. Furthermore, the newly parametrized model is found to predict equilibrium geometries, binding energies, and vibrational frequencies for small aqueous clusters containing halogen anions, X(-)(H2O)n (n = 1-4), in good agreement with those calculated with density-functional theory and high-level ab initio quantum chemistry and with available experimental data. This demonstrates that the newly parametrized models might be a method of choice for investigating halide hydration in larger clusters.

  14. Unraveling the Role of Monovalent Halides in Mixed-Halide Organic-Inorganic Perovskites.

    PubMed

    Deepa, Melepurath; Ramos, F Javier; Shivaprasad, S M; Ahmad, Shahzada

    2016-03-16

    The performance of perovskite solar cells is strongly influenced by the composition and microstructure of the perovskite. A recent approach to improve the power conversion efficiencies utilized mixed-halide perovskites, but the halide ions and their roles were not directly studied. Unraveling their precise location in the perovskite layer is of paramount importance. Here, we investigated four different perovskites by using X-ray photoelectron spectroscopy, and found that among the three studied mixed-halide perovskites, CH3 NH3 Pb(I0.74 Br0.26 )3 and CH3 NH3 PbBr3-x Clx show peaks that unambiguously demonstrate the presence of iodide and bromide in the former, and bromide and chloride in the latter. The CH3 NH3 PbI3-x Clx perovskite shows anomalous behavior, the iodide content far outweighs that of the chloride; a small proportion of chloride, in all likelihood, resides deep within the TiO2 /absorber layer. Our study reveals that there are many distinguishable structural differences between these perovskites, and that these directly impact the photovoltaic performances. PMID:26717046

  15. Halide-Substituted Electronic Properties of Organometal Halide Perovskite Films: Direct and Inverse Photoemission Studies.

    PubMed

    Li, Chi; Wei, Jian; Sato, Mikio; Koike, Harunobu; Xie, Zhong-Zhi; Li, Yan-Qing; Kanai, Kaname; Kera, Satoshi; Ueno, Nobuo; Tang, Jian-Xin

    2016-05-11

    Solution-processed perovskite solar cells are attracting increasing interest due to their potential in next-generation hybrid photovoltaic devices. Despite the morphological control over the perovskite films, quantitative information on electronic structures and interface energetics is of paramount importance to the optimal photovoltaic performance. Here, direct and inverse photoemission spectroscopies are used to determine the electronic structures and chemical compositions of various methylammonium lead halide perovskite films (MAPbX3, X = Cl, Br, and I), revealing the strong influence of halide substitution on the electronic properties of perovskite films. Precise control over halide compositions in MAPbX3 films causes the manipulation of the electronic properties, with a qualitatively blue shift along the I → Br → Cl series and showing the increase in ionization potentials from 5.96 to 7.04 eV and the change of transport band gaps in the range from 1.70 to 3.09 eV. The resulting light absorption of MAPbX3 films can cover the entire visible region from 420 to 800 nm. The results presented here provide a quantitative guide for the analysis of perovskite-based solar cell performance and the selection of optimal carrier-extraction materials for photogenerated electrons and holes. PMID:27101940

  16. Passive particle dosimetry. [silver halide crystal growth

    NASA Technical Reports Server (NTRS)

    Childs, C. B.

    1977-01-01

    Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.

  17. Metal halide perovskites for energy applications

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Eperon, Giles E.; Snaith, Henry J.

    2016-06-01

    Exploring prospective materials for energy production and storage is one of the biggest challenges of this century. Solar energy is one of the most important renewable energy resources, due to its wide availability and low environmental impact. Metal halide perovskites have emerged as a class of semiconductor materials with unique properties, including tunable bandgap, high absorption coefficient, broad absorption spectrum, high charge carrier mobility and long charge diffusion lengths, which enable a broad range of photovoltaic and optoelectronic applications. Since the first embodiment of perovskite solar cells showing a power conversion efficiency of 3.8%, the device performance has been boosted up to a certified 22.1% within a few years. In this Perspective, we discuss differing forms of perovskite materials produced via various deposition procedures. We focus on their energy-related applications and discuss current challenges and possible solutions, with the aim of stimulating potential new applications.

  18. X-ray-absorption spectroscopic investigation of alkali and alkaline earth catalysts in coal gasification. Final report, January 1987-September 1989

    SciTech Connect

    Huggins, F.E.; Shah, N.; Huffman, G.P.

    1990-04-01

    The structures of alkali and alkaline-earth metal catalyst species in lignite and polymer chars and during pyrolysis pretreatment and char gasification have been investigated using ambient and newly-developed, in situ XAFS spectroscopic techniques. The XAFS data, which were obtained at the Stanford Synchrotron Radiation Laboratory, were supplemented by char characterization and reactivity measurements made at the Pennsylvania State University. The findings of the investigation are as follows: (i) the catalytic species, as introduced to the char or lignite, is an atomically-dispersed, metal-ion-oxygen-anion complex, and remains a metal-oxygen complex throughout pyrolysis and gasification; (ii) the catalyst species transforms to a bulk oxide species during pyrolysis pretreatment; (iii) during gasification, the catalyst species rapidly transforms to bulk alkali carbonate in the case of the alkali-metal species and slowly to calcium oxide in the case of the calcium species; (iv) higher catalyst loadings results in an increased number of catalytic sites, rather than any structural variation of the catalyst site due to concentration effects; and (v) reaction of alkali with aluminosilicates (from clays) or silica is the major catalyst poisoning reaction, unless the coal is demineralized in which case the alkali may react with residual halide from HCl or HF used to clean the coal. Such poisoning reactions were not demonstrated for calcium-oxygen species.

  19. Electronic and Ionic Transport Dynamics in Organolead Halide Perovskites.

    PubMed

    Li, Dehui; Wu, Hao; Cheng, Hung-Chieh; Wang, Gongming; Huang, Yu; Duan, Xiangfeng

    2016-07-26

    Ion migration has been postulated as the underlying mechanism responsible for the hysteresis in organolead halide perovskite devices. However, the electronic and ionic transport dynamics and how they impact each other in organolead halide perovskites remain elusive to date. Here we report a systematic investigation of the electronic and ionic transport dynamics in organolead halide perovskite microplate crystals and thin films using temperature-dependent transient response measurements. Our study reveals that thermally activated ionic and electronic conduction coexist in perovskite devices. The extracted activation energies suggest that the electronic transport is easier, but ions migrate harder in microplates than in thin films, demonstrating that the crystalline quality and grain boundaries can fundamentally modify electronic and ionic transport in perovskites. These findings offer valuable insight on the electronic and ionic transport dynamics in organolead halide perovskites, which is critical for optimizing perovskite devices with reduced hysteresis and improved stability and efficiency.

  20. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1992-11-01

    This project supports the DOE/METC Fossil Energy Program for the development of PFBC technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an altemative to the on-line alkali analyzer for field application. As shown in Fig. 1, the RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no HTHP sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-leaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6M-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite [8]. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed.

  1. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1992-01-01

    This project supports the DOE/METC Fossil Energy Program for the development of PFBC technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an altemative to the on-line alkali analyzer for field application. As shown in Fig. 1, the RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no HTHP sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-leaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6M-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite [8]. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed.

  2. Magic wavelengths for the np-ns transitions in alkali-metal atoms

    SciTech Connect

    Arora, Bindiya; Safronova, M. S.; Clark, Charles W.

    2007-11-15

    Extensive calculations of the electric-dipole matrix elements in alkali-metal atoms are conducted using the relativistic all-order method. This approach is a linearized version of the coupled-cluster method, which sums infinite sets of many-body perturbation theory terms. All allowed transitions between the lowest ns, np{sub 1/2}, np{sub 3/2} states and a large number of excited states are considered in these calculations and their accuracy is evaluated. The resulting electric-dipole matrix elements are used for the high-precision calculation of frequency-dependent polarizabilities of the excited states of alkali-metal atoms. We find 'magic' wavelengths in alkali-metal atoms for which the ns and np{sub 1/2} and np{sub 3/2} atomic levels have the same ac Stark shifts, which facilitates state-insensitive optical cooling and trapping.

  3. Substrate inhibition competes with halide inhibition in polyphenol oxidase.

    PubMed

    Lim, Giselle Grace Fernando; Imura, Yuki; Yoshimura, Etsuro

    2012-10-01

    Polyphenol oxidase (PPO) is a ubiquitous enzyme important in the food industry. Although PPO activity followed Michaelis-Menten kinetics at catechol concentrations of up to 1 mM, it slowly decreased at catechol concentrations above 2 mM. This result indicated that in addition to the active site (site A), the enzyme possesses a second catechol-binding site (site B) that exerts an inhibitory effect on PPO activity. Halides inhibit PPO activity in such a way that substrate inhibition is lessened when halide concentration is increased. Furthermore, elevated concentrations of catechol diminished the degree of inhibition by halides. These findings suggest that halides also bind to site B to inhibit PPO activity. A steady-state kinetic analysis demonstrated that the dissociation constant between catechol and PPO depended on the binding of halides to site B. The dissociation constants were greatest when chloride bound to the site. Bromide and iodide yielded lower dissociation constants, in that order. These data indicate that the binding of halide to site B modulated the structure of site A, thereby exerting an inhibitory effect.

  4. Genetic control of methyl halide production in Arabidopsis.

    PubMed

    Rhew, Robert C; Østergaard, Lars; Saltzman, Eric S; Yanofsky, Martin F

    2003-10-14

    Methyl chloride (CH(3)Cl) and methyl bromide (CH(3)Br) are the primary carriers of natural chlorine and bromine, respectively, to the stratosphere, where they catalyze the destruction of ozone, whereas methyl iodide (CH(3)I) influences aerosol formation and ozone loss in the boundary layer. CH(3)Br is also an agricultural pesticide whose use is regulated by international agreement. Despite the economic and environmental importance of these methyl halides, their natural sources and biological production mechanisms are poorly understood. Besides CH(3)Br fumigation, important sources include oceans, biomass burning, tropical plants, salt marshes, and certain crops and fungi. Here, we demonstrate that the model plant Arabidopsis thaliana produces and emits methyl halides and that the enzyme primarily responsible for the production is encoded by the HARMLESS TO OZONE LAYER (HOL) gene. The encoded protein belongs to a group of methyltransferases capable of catalyzing the S-adenosyl-L-methionine (SAM)-dependent methylation of chloride (Cl(-)), bromide (Br(-)), and iodide (I(-)) to produce methyl halides. In mutant plants with the HOL gene disrupted, methyl halide production is largely eliminated. A phylogenetic analysis with the HOL gene suggests that the ability to produce methyl halides is widespread among vascular plants. This approach provides a genetic basis for understanding and predicting patterns of methyl halide production by plants.

  5. Synthesis of methyl halides from biomass using engineered microbes.

    PubMed

    Bayer, Travis S; Widmaier, Daniel M; Temme, Karsten; Mirsky, Ethan A; Santi, Daniel V; Voigt, Christopher A

    2009-05-13

    Methyl halides are used as agricultural fumigants and are precursor molecules that can be catalytically converted to chemicals and fuels. Plants and microorganisms naturally produce methyl halides, but these organisms produce very low yields or are not amenable to industrial production. A single methyl halide transferase (MHT) enzyme transfers the methyl group from the ubiquitous metabolite S-adenoyl methionine (SAM) to a halide ion. Using a synthetic metagenomic approach, we chemically synthesized all 89 putative MHT genes from plants, fungi, bacteria, and unidentified organisms present in the NCBI sequence database. The set was screened in Escherichia coli to identify the rates of CH(3)Cl, CH(3)Br, and CH(3)I production, with 56% of the library active on chloride, 85% on bromide, and 69% on iodide. Expression of the highest activity MHT and subsequent engineering in Saccharomyces cerevisiae results in productivity of 190 mg/L-h from glucose and sucrose. Using a symbiotic co-culture of the engineered yeast and the cellulolytic bacterium Actinotalea fermentans, we are able to achieve methyl halide production from unprocessed switchgrass (Panicum virgatum), corn stover, sugar cane bagasse, and poplar (Populus sp.). These results demonstrate the potential of producing methyl halides from non-food agricultural resources.

  6. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  7. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  8. Alkali Silicate Vehicle Forms Durable, Fireproof Paint

    NASA Technical Reports Server (NTRS)

    Schutt, John B.; Seindenberg, Benjamin

    1964-01-01

    The problem: To develop a paint for use on satellites or space vehicles that exhibits high resistance to cracking, peeling, or flaking when subjected to a wide range of temperatures. Organic coatings will partially meet the required specifications but have the inherent disadvantage of combustibility. Alkali-silicate binders, used in some industrial coatings and adhesives, show evidence of forming a fireproof paint, but the problem of high surface-tension, a characteristic of alkali silicates, has not been resolved. The solution: Use of a suitable non-ionic wetting agent combined with a paint incorporating alkali silicate as the binder.

  9. Advancements in flowing diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Pitz, Greg A.; Stalnaker, Donald M.; Guild, Eric M.; Oliker, Benjamin Q.; Moran, Paul J.; Townsend, Steven W.; Hostutler, David A.

    2016-03-01

    Multiple variants of the Diode Pumped Alkali Laser (DPAL) have recently been demonstrated at the Air Force Research Laboratory (AFRL). Highlights of this ongoing research effort include: a) a 571W rubidium (Rb) based Master Oscillator Power Amplifier (MOPA) with a gain (2α) of 0.48 cm-1, b) a rubidium-cesium (Cs) Multi-Alkali Multi-Line (MAML) laser that simultaneously lases at both 795 nm and 895 nm, and c) a 1.5 kW resonantly pumped potassium (K) DPAL with a slope efficiency of 50%. The common factor among these experiments is the use of a flowing alkali test bed.

  10. Search for improved-performance scintillator candidates among the electronic structures of mixed halides

    NASA Astrophysics Data System (ADS)

    Li, Qi; Williams, Richard T.; Burger, Arnold; Adhikari, Rajendra; Biswas, Koushik

    2014-09-01

    The application of advanced theory and modeling techniques has become an essential component to understand material properties and hasten the design and discovery of new ones. This is true for diverse applications. Therefore, current efforts aimed towards finding new scintillator materials are also aligned with this general predictive approach. The need for large scale deployment of efficient radiation detectors requires discovery and development of high-performance, yet low-cost, scintillators. While Tl-doped NaI and CsI are still some of the widely used scintillators, there are promising new developments, for example, Eu-doped SrI2 and Ce-doped LaBr3. The newer candidates have excellent light yield and good energy resolution, but challenges persist in the growth of large single crystals. We will discuss a theoretical basis for anticipating improved proportionality as well as light yield in solid solutions of certain systems, particularly alkali iodides, based on considerations of hot-electron group velocity and thermalization. Solid solutions based on NaI and similar alkali halides are attractive to consider in more detail because the end point compositions are inexpensive and easy to grow. If some of this quality can be preserved while reaping improved light yield and possibly improved proportionality of the mixture, the goal of better performance at the low price of NaI:Tl might be attainable by such a route. Within this context, we will discuss a density functional theory (DFT) based study of two prototype systems: mixed anion NaIxBr1-x and mixed cation NaxK1-xI. Results obtained from these two prototype candidates will lead to further targeted theoretical and experimental search and discovery of new scintillator hosts.

  11. Alkali metal for ultraviolet band-pass filter

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  12. Alkali Metal Handling Practices at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Salvail, Patrick G.; Carter, Robert R.

    2002-01-01

    NASA Marshall Space Flight Center (MSFC) is NASA s principle propulsion development center. Research and development is coordinated and carried out on not only the existing transportation systems, but also those that may be flown in the near future. Heat pipe cooled fast fission cores are among several concepts being considered for the Nuclear Systems Initiative. Marshall Space Flight Center has developed a capability to handle high-purity alkali metals for use in heat pipes or liquid metal heat transfer loops. This capability is a low budget prototype of an alkali metal handling system that would allow the production of flight qualified heat pipe modules or alkali metal loops. The processing approach used to introduce pure alkali metal into heat pipe modules and other test articles are described in this paper.

  13. High Pressure Electrochemistry: Application to silver halides

    NASA Astrophysics Data System (ADS)

    Havens, K.; Kavner, A.

    2007-12-01

    Electron and ion charge transfer processes help govern electrical conductivity and diffusive mass and heat transport properties in deep Earth minerals. In an attempt to understand how pressure influences charge transfer behavior, the halide silver bromide (AgBr) was studied under the influence of an electric potential difference applied across two electrodes in a diamond anvil cell. This study follows our previous work on AgI, which was found to dissociate to molecular iodine and silver metal due to pressure and voltage influences. We performed two sets of experiments on AgBr at high pressure in a diamond anvil cell: electrochemical dissociation and electrical resistance measurements. In our study, we were able to electrochemically dissociate AgBr at pressures of 0.25-1.6 GPa by applying a voltage across the electrodes in the diamond cell sample chamber. Ag metal grew visibly on the negatively-charged electrode when voltages varying from 0.1 V to 5 V were applied. Additionally, a dark blue color appeared in low pressure areas of the diamond cell and grew darker from both voltage application and light exposure, indicating photochemical effects. We found that the reaction area and growth rate of both metal and dark blue color strongly increased as voltage increased, but tended to decrease with greater pressure. The resistance across the cell was observed to be influenced by both pressure and light exposure. As the AgBr sample was exposed to visible light, the resistance dropped instantaneously, and after the light was turned off, the resistance increased on a timescale of 10's of seconds to minutes. Notably, at higher pressures, the AgBr showed less photosensitivity. Exploration of these metal halide systems has many potential applications. First, these experiments explore the pressure-dependence of photochemical and photovoltaic processes, and may spur development of pressure-tuned microscale electronic devices. Second, these experimental results can be used to

  14. Desulfurizing Coal With an Alkali Treatment

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kalvinskas, J. J.

    1987-01-01

    Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.

  15. Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1986-01-01

    The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  16. Post-grafting amination of alkyl halide-functionalized silica for applications in catalysis, adsorption, and 15N NMR spectroscopy.

    PubMed

    Moschetta, Eric G; Sakwa-Novak, Miles A; Greenfield, Jake L; Jones, Christopher W

    2015-02-24

    An anhydrous synthesis of aminosilica materials from alkyl halide-functionalized mesoporous SBA-15 silica by post-grafting amination is introduced for applications in CO2 adsorption, cooperative catalysis, and (15)N solid-state NMR spectroscopy. The synthesis is demonstrated to convert terminal alkyl halide-functionalized silica materials containing Cl, Br, and I to primary alkylamines using anhydrous ammonia in a high-pressure reactor. The benefits of the post-grafting amination procedure include (i) use of anhydrous isotopically labeled ammonia, (15)NH3, to create aminosilica materials that can be investigated using (15)N solid-state NMR to elucidate potential intermediates and surface species in CO2 adsorption processes and catalysis, (ii) similar CO2 uptake in experiments extracting CO2 from dry simulated air experiments, and (iii) improved activity in acid-base bifunctional catalysis compared to traditional amine-grafted materials. The effects of the type of halide, the initial halide loading, and the total reaction time on the conversion of the halides to primary amines are explored. Physical and chemical characterizations of the materials show that the textural properties of the silica are unaffected by the reaction conditions and that quantitative conversion to primary amines is achieved even at short reaction times and high initial alkyl halide loadings. Additionally, preliminary (15)N solid-state NMR experiments indicate formation of nitrogen-containing species and demonstrate that the synthesis can be used to create materials useful for investigating surface species by NMR spectroscopy. The differences between the materials prepared via post-grafting amination vs traditional aminosilane grafting are attributed to the slightly increased spacing of the amines synthesized by amination because the alkylhalosilanes are initially better spaced on the silica surface after grafting, whereas the aminosilanes likely cluster to a greater extent when grafted on the

  17. Optical properties of halide and oxide compounds including the excitonic effects

    NASA Astrophysics Data System (ADS)

    Shwetha, G.; Kanchana, V.

    2014-04-01

    We have studied the optical properties of alkali halide and alkaline-earth oxide compounds including the excitonic effects by using the newly developed bootstrap kernel approximation for the exchange-correlation kernel of the Time-Dependent Density Functional Theory (TD-DFT) implemented in Full-Potential Linearized Augmented Plane Wave (FP-LAPW) method in the elk code. The bootstrap calculations are computationally less expensive and give results the same quality as the Bethe-Salpeter equation. We found improved results when compared to normal Density Functional Theory calculations, and observed results are comparable with the experiments. The lower energy peak of imaginary part of dielectric spectra shifts to lower energy regions as we move from MgO to BaO indicating the decrease in the band gap of these compounds from MgO to BaO. In all the studied compounds, the lower energy peak of the imaginary part of dielectric function is due to the transition from halogen p or oxide p states to metal derived s/d states.

  18. Color silver halide hologram production and mastering

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.; Huang, Qiang

    1997-04-01

    Color reflection holograms recorded with the Denisyuk geometry have been demonstrated by the recently formed HOLOS Corporation in New Hampshire. The Slavich red-green-blue (RGB) sensitized ultra-high resolution silver halide emulsion was used for the hologram recording. The employed laser wavelengths were 647 nm, 532 nm, and 476 nm, generated by an argon ion, a frequency doubled Nd:YAG, and a krypton ion laser, respectively. A beam combination mechanism with dichroic filters enabled a simultaneous RGB exposure, which made the color balance and overall exposure energy easy to control as well as simplifying the recording procedure. HOLOS has been producing limited edition color holograms in various sizes from 4' X 5' to 12' X 16'. A 30 foot long optical table and high power lasers will enable HOLOS to record color holograms up to the size of one meter square in the near future. Various approaches have been investigated in generating color hologram masters which have sufficiently high diffraction efficiency to contact copy the color images onto photopolymer materials. A specially designed test object including the 1931 CIE chromaticity diagram, a rainbow ribbon cable, pure yellow dots, and a cloisonne elephant was used for color recording experiments. In addition, the Macbeth Color Checker chart was used. Both colorimetric evaluation and scattering noise measurements were performed using the PR-650 Photo Research SpectraScan SpectraCalorimeter.

  19. Charge carrier mobility in hybrid halide perovskites

    PubMed Central

    Motta, Carlo; El-Mellouhi, Fedwa; Sanvito, Stefano

    2015-01-01

    The charge transport properties of hybrid halide perovskites are investigated with a combination of density functional theory including van der Waals interaction and the Boltzmann theory for diffusive transport in the relaxation time approximation. We find the mobility of electrons to be in the range 5–10 cm2V−1s−1 and that for holes within 1–5 cm2V−1s−1, where the variations depend on the crystal structure investigated and the level of doping. Such results, in good agreement with recent experiments, set the relaxation time to about 1 ps, which is the time-scale for the molecular rotation at room temperature. For the room temperature tetragonal phase we explore two possible orientations of the organic cations and find that the mobility has a significant asymmetry depending on the direction of the current with respect to the molecular axis. This is due mostly to the way the PbI3 octahedral symmetry is broken. Interestingly we find that substituting I with Cl has minor effects on the mobilities. Our analysis suggests that the carrier mobility is probably not a key factor in determining the high solar-harvesting efficiency of this class of materials. PMID:26235910

  20. Effects of Halide Ions on the Carbamidocyclophane Biosynthesis in Nostoc sp. CAVN2

    PubMed Central

    Preisitsch, Michael; Heiden, Stefan E.; Beerbaum, Monika; Niedermeyer, Timo H. J.; Schneefeld, Marie; Herrmann, Jennifer; Kumpfmüller, Jana; Thürmer, Andrea; Neidhardt, Inga; Wiesner, Christoph; Daniel, Rolf; Müller, Rolf; Bange, Franz-Christoph; Schmieder, Peter; Schweder, Thomas; Mundt, Sabine

    2016-01-01

    In this study, the influence of halide ions on [7.7]paracyclophane biosynthesis in the cyanobacterium Nostoc sp. CAVN2 was investigated. In contrast to KI and KF, supplementation of the culture medium with KCl or KBr resulted not only in an increase of growth but also in an up-regulation of carbamidocyclophane production. LC-MS analysis indicated the presence of chlorinated, brominated, but also non-halogenated derivatives. In addition to 22 known cylindrocyclophanes and carbamidocyclophanes, 27 putative congeners have been detected. Nine compounds, carbamidocyclophanes M−U, were isolated, and their structural elucidation by 1D and 2D NMR experiments in combination with HRMS and ECD analysis revealed that they are brominated analogues of chlorinated carbamidocyclophanes. Quantification of the carbamidocyclophanes showed that chloride is the preferably utilized halide, but incorporation is reduced in the presence of bromide. Evaluation of the antibacterial activity of 30 [7.7]paracyclophanes and related derivatives against selected pathogenic Gram-positive and Gram-negative bacteria exhibited remarkable effects especially against methicillin- and vancomycin-resistant staphylococci and Mycobacterium tuberculosis. For deeper insights into the mechanisms of biosynthesis, the carbamidocyclophane biosynthetic gene cluster in Nostoc sp. CAVN2 was studied. The gene putatively coding for the carbamoyltransferase has been identified. Based on bioinformatic analyses, a possible biosynthetic assembly is discussed. PMID:26805858

  1. Multinuclear Alkali Metal Complexes of a Triphenylene-Based Hexamine and the Transmetalation to Tris(N-heterocyclic tetrylenes) (Ge, Sn, Pb).

    PubMed

    Zhong, Fei; Yang, Xiaodong; Shen, Lingyi; Zhao, Yanxia; Ma, Hongwei; Wu, Biao; Yang, Xiao-Juan

    2016-09-01

    A C3-symmetric hexamine (LH6) based on the triphenylene and ortho-phenylenediamine (PDAH2) skeletons has been synthesized, and was partially or fully deprotonated upon treatment with alkali metal agents to afford amino-amido or diamido coordination sites. Four alkali metal complexes, the dinuclear [Na2(LH4)(DME)5] (1) and [K2(LH4)(DME)4] (2), trinuclear [K3(LH3)(DME)6] (3), and hexanuclear [Li6(L)(DME)6] (4), were obtained and used in transmetalation/ligand exchange with other metals. The hexalithium salt of the fully deprotonated ligand, [Li6L], reacted with heavier group 14 element halides to yield three tris(N-heterocyclic tetrylenes), the germylene [Ge3(L)] (5), stannylene [Sn3(L)] (6), and plumbylene [Pb3(L)] (7). The synthesis and crystal and electronic structures of these compounds are reported. PMID:27525542

  2. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... is produced by radiation of metal halides and their products of dissociation, possibly in combination... electromagnetic ballast that starts a pulse-start metal halide lamp with high voltage pulses, where lamps shall...

  3. Halide Perovskites: Poor Man's High-Performance Semiconductors.

    PubMed

    Stoumpos, Constantinos C; Kanatzidis, Mercouri G

    2016-07-01

    Halide perovskites are a rapidly developing class of medium-bandgap semiconductors which, to date, have been popularized on account of their remarkable success in solid-state heterojunction solar cells raising the photovoltaic efficiency to 20% within the last 5 years. As the physical properties of the materials are being explored, it is becoming apparent that the photovoltaic performance of the halide perovskites is just but one aspect of the wealth of opportunities that these compounds offer as high-performance semiconductors. From unique optical and electrical properties stemming from their characteristic electronic structure to highly efficient real-life technological applications, halide perovskites constitute a brand new class of materials with exotic properties awaiting discovery. The nature of halide perovskites from the materials' viewpoint is discussed here, enlisting the most important classes of the compounds and describing their most exciting properties. The topics covered focus on the optical and electrical properties highlighting some of the milestone achievements reported to date but also addressing controversies in the vastly expanding halide perovskite literature. PMID:27174223

  4. Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties.

    PubMed

    Aharon, Sigalit; Etgar, Lioz

    2016-05-11

    Organo-metal halide perovskite is an efficient light harvester in photovoltaic solar cells. Organometal halide perovskite is used mainly in its "bulk" form in the solar cell. Confined perovskite nanostructures could be a promising candidate for efficient optoelectronic devices, taking advantage of the superior bulk properties of organo-metal halide perovskite, as well as the nanoscale properties. In this paper, we present facile low-temperature synthesis of two-dimensional (2D) lead halide perovskite nanorods (NRs). These NRs show a shift to higher energies in the absorbance and in the photoluminescence compared to the bulk material, which supports their 2D structure. X-ray diffraction (XRD) analysis of the NRs demonstrates their 2D nature combined with the tetragonal 3D perovskite structure. In addition, by alternating the halide composition, we were able to tune the optical properties of the NRs. Fast Fourier transform, and electron diffraction show the tetragonal structure of these NRs. By varying the ligands ratio (e.g., octylammonium to oleic acid) in the synthesis, we were able to provide the formation mechanism of these novel 2D perovskite NRs. The 2D perovskite NRs are promising candidates for a variety of optoelectronic applications, such as light-emitting diodes, lasing, solar cells, and sensors. PMID:27089497

  5. Halide Perovskites: Poor Man's High-Performance Semiconductors.

    PubMed

    Stoumpos, Constantinos C; Kanatzidis, Mercouri G

    2016-07-01

    Halide perovskites are a rapidly developing class of medium-bandgap semiconductors which, to date, have been popularized on account of their remarkable success in solid-state heterojunction solar cells raising the photovoltaic efficiency to 20% within the last 5 years. As the physical properties of the materials are being explored, it is becoming apparent that the photovoltaic performance of the halide perovskites is just but one aspect of the wealth of opportunities that these compounds offer as high-performance semiconductors. From unique optical and electrical properties stemming from their characteristic electronic structure to highly efficient real-life technological applications, halide perovskites constitute a brand new class of materials with exotic properties awaiting discovery. The nature of halide perovskites from the materials' viewpoint is discussed here, enlisting the most important classes of the compounds and describing their most exciting properties. The topics covered focus on the optical and electrical properties highlighting some of the milestone achievements reported to date but also addressing controversies in the vastly expanding halide perovskite literature.

  6. Regeneration of zinc halide catalyst used in the hydrocracking of polynuclear hydrocarbons

    DOEpatents

    Gorin, Everett

    1978-01-01

    Improved recovery of spent molten zinc halide hydro-cracking catalyst is achieved in the oxidative vapor phase regeneration thereof by selective treatment of the zinc oxide carried over by the effluent vapors from the regeneration zone with hydrogen halide gas under conditions favoring the reaction of the zinc oxide with the hydrogen halide, whereby regenerated zinc halide is recovered in a solids-free state with little loss of zinc values.

  7. High-spin multiplicities in ferromagnetic ground states of supramolecular halide complexes based on the gadolinium chloride

    NASA Astrophysics Data System (ADS)

    Paduani, C.

    2016-03-01

    Calculations using density functional theory are performed to study supramolecular assemblage of high spin halide complexes based on the gadolinium chloride. With the addition of Cl atoms to both Gd and B in number that exceeds their formal valence by 1 the calculated vertical detachment energy increases to 6.08 and 5.57 eV in GdCl4 and BCl4, respectively, indicating superhalogen behavior. By using BCl4 and GdCl4 clusters as building blocks to decorate the Gd atom the vertical detachment energy increases to 7.12 and 7.70 eV in the anionic clusters Gd(BCl4)4- and Gd(GdCl4)4-, respectively, which is indicative of hyperhalogen behavior. High spin multiplicities in the ferromagnetic state are observed for these clusters indicating therein outstanding paramagnetic response.

  8. Cu-catalyzed Suzuki-Miyaura reactions of primary and secondary benzyl halides with arylboronates.

    PubMed

    Sun, Yan-Yan; Yi, Jun; Lu, Xi; Zhang, Zhen-Qi; Xiao, Bin; Fu, Yao

    2014-09-28

    A copper-catalyzed Suzuki-Miyaura coupling of benzyl halides with arylboronates is described. Varieties of primary benzyl halides as well as more challenging secondary benzyl halides with β hydrogens or steric hindrance could be successfully converted into the corresponding products. Thus it provides access to diarylmethanes, diarylethanes and triarylmethanes. PMID:25102380

  9. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  10. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  11. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  12. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  13. DIET of alkali atoms from mineral surfaces

    NASA Astrophysics Data System (ADS)

    Yakshinskiy, B. V.; Madey, T. E.

    2003-03-01

    To investigate mechanisms for the origin of alkalis in the atmosphere of the Moon, we are studying the electron- and photon-stimulated desorption (ESD and PSD) of K atoms from model mineral surfaces (SiO 2 films), and ESD and PSD of Na atoms from a lunar basalt sample. X-ray photoelectron spectroscopy demonstrates the existence of traces of Na in the lunar sample. To obtain an increased signal for detailed measurements of desorption parameters (appearance thresholds, yields), a fractional monolayer of Na is deposited onto the lunar sample surface. An alkali atom detector based on surface ionization and a time-of-flight technique are used for DIET measurements, together with a pulsed electron gun, and a mechanically chopped and filtered mercury arc light source. We find that bombardment of the alkali covered surfaces by UV photons or by electrons with energies E>4 eV causes desorption of "hot" alkali atoms. The results are consistent with the model based on charge transfer from the substrate to adsorbate which was developed to explain our previous measurements of sodium desorption from a silica surface and desorption of K atoms from water ice. The data support the suggestion that PSD by UV solar photons is a dominant source process for alkalis in the tenuous lunar atmosphere.

  14. Refractories for high-alkali environments

    SciTech Connect

    Rau, A.W.; Cloer, F.

    1996-01-01

    There are two reliable and cost-effective tests for evaluating refractory materials. They are used to determine which refractory products allow greater variance in fuel type with respect to alkali environment for coal-fired applications. Preselection of a particular refractory is important because of down-time cost for premature failure. One test is a variation of the standard alkali cup test. The second involves reacting test specimens with the contaminant, followed by physical properties testing to determine degree of degradation and properties affected. The alkali cup test rates products using a relative numerical scale based upon visual appearance. This test indicates the presence and relative degree of chemical attack to the refractory. The physical properties test determines the specific properties affected by the given contaminant.

  15. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  16. Cocrystallization of certain 4f and 5f elements in the bivalent state with alkali metal halides

    SciTech Connect

    Mikheev, N.B.; Kamenskaya, A.M.; Veleshko, I.E.; Kulyukhin, S.A.

    1987-01-01

    The cocrystallization of Fm/sup 2 +/, Es/sup 2 +/, Cf/sup 2 +/, Am/sup 2 +/, Yb/sup 2 +/, Eu/sup 2 +/ and Sr/sup 2 +/ with NaCl, KCl and KBr in tetrahydrofuran (THF), hexamethylphosphorotriamide (HMPA), and ethanol has been studied. It is shown that in water-ethanol medium An/sup 2 +/ cocrystallize with KCl by the formation of anomalous mixed crystals and Ln/sup 2 +/ do not cocrystallize. In HMPA neither Ln/sup 2 +/ nor An/sup 2 +/ are observed to transfer into the KBr solid phase, while in THF both Ln/sup 2 +/ and An/sup 2 +/ cocrystallize with NaCl. The change in the behavior on Ln/sup 2 +/ and An/sup 2 +/ cocrystallize with a change from one solvent to another is caused by the difference in the effective ionic radii of these elements, which arises from the large nephelauxetic effect for An/sup 2 +/ as well as by the different solvating power of these solvents.

  17. Quantum efficiencies of imaging detectors with alkali halide photocathodes. I - Microchannel plates with separate and integral CsI photocathodes

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.

    1987-01-01

    Measurements and comparisons have been made of the quantum efficiencies of microchannel plate (MCP) detectors in the far-UV (below 2000-A) wavelength range using CsI photocathodes (a) deposited on the front surfaces of microchannel plates and (b) deposited on solid substrates as opaque photocathodes with the resulting photoelectrons input to microchannel plates. The efficiences were measured in both pulse-counting and photodiode modes of operation. Typical efficiencies are about 15 percent at 1216 A for a CsI-coated MCP compared with 65 percent for an opaque CsI photocathode MCP detector. Special processing has yielded an efficiency as high as 20 percent for a CsI-coated MCP. This may possibly be further improved by optimization of the tilt angle of the MCP channels relative to the front face of the MCP and incident radiation. However, at present there still remains a factor of at least 3 quantum efficiency advantage in the separate opaque CsI photocathode configuration.

  18. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  19. Preventing the accelerated low-temperature oxidation of MoSi{sub 2} (pesting) by the application of superficial alkali-salt layers

    SciTech Connect

    Cockeram, B.V.; Wang, G.; Rapp, R.A.

    1996-02-01

    Previous work showed that MoSi{sub 2} diffusion coatings formed by a NaF-activated pack cementation process did not pest. A Na-Al-oxide by-product layer resulting from the NaF activator formed a Na-silicate layer to passivate MoSi{sub 2}. Superficial NaF layers were then used to prevent the pesting of MoSi{sub 2} diffusion coatings that were otherwise susceptible to pest disintegration. In this study, the use of superficial alkali-salt layers to prevent the accelerated oxidation of bulk MoSi{sub 2} at 500{degrees}C is investigated more broadly. The application of Na-halide, KF, LiF, Na{sub 2}B{sub 4}O{sub 7}, or Na-silicate layers prior to oxidation prevented accelerated oxidation and pesting for at least 2000 hr at 500{degrees}C in air. The formation of a fast-growing, Na-silicate layer passivates MoSi{sub 2}. The MoO{sub 3} that forms during oxidation absorbs sodium by intercalation to form stable Na-molybdate precipitates. Na{sub 2}B{sub 4}O{sub 7}, Na-silicate, LiF, and KF prevented accelerated oxidation at 500{degrees}C by a similar mechanism. The application of alkali-halide salts is a simple, effective solution to prevent the accelerated oxidation and pesting of MoSi{sub 2}.

  20. Ab initio interaction potentials and scattering lengths for ultracold mixtures of metastable helium and alkali-metal atoms

    NASA Astrophysics Data System (ADS)

    Kedziera, Dariusz; Mentel, Łukasz; Żuchowski, Piotr S.; Knoop, Steven

    2015-06-01

    We have obtained accurate ab initio +4Σ quartet potentials for the diatomic metastable triplet helium+alkali-metal (Li, Na, K, Rb) systems, using all-electron restricted open-shell coupled cluster singles and doubles with noniterative triples corrections CCSD(T) calculations and accurate calculations of the long-range C6 coefficients. These potentials provide accurate ab initio quartet scattering lengths, which for these many-electron systems is possible, because of the small reduced masses and shallow potentials that result in a small amount of bound states. Our results are relevant for ultracold metastable triplet helium+alkali-metal mixture experiments.

  1. Salts of alkali metal anions and process of preparing same

    DOEpatents

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  2. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Cruz-Ramirez de Arellano, Daniel

    2013-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  3. On the Boiling Points of the Alkyl Halides.

    ERIC Educational Resources Information Center

    Correia, John

    1988-01-01

    Discusses the variety of explanations in organic chemistry textbooks of a physical property of organic compounds. Focuses on those concepts explaining attractive forces between molecules. Concludes that induction interactions play a major role in alkyl halides and other polar organic molecules and should be given wider exposure in chemistry texts.…

  4. Semiempirical and DFT Investigations of the Dissociation of Alkyl Halides

    ERIC Educational Resources Information Center

    Waas, Jack R.

    2006-01-01

    Enthalpy changes corresponding to the gas phase heats of dissociation of 12 organic halides were calculated using two semiempirical methods, the Hartree-Fock method, and two DFT methods. These calculated values were compared to experimental values where possible. All five methods agreed generally with the expected empirically known trends in the…

  5. Iron-catalysed Negishi coupling of benzyl halides and phosphates.

    PubMed

    Bedford, Robin B; Huwe, Michael; Wilkinson, Mark C

    2009-02-01

    Iron-based catalysts containing either 1,2-bis(diphenylphosphino)benzene or 1,3-bis(diphenylphosphino)propane give excellent activity and good selectivity in the Negishi coupling of aryl zinc reagents with a range of benzyl halides and phosphates.

  6. Kinetic Studies of the Solvolysis of Two Organic Halides

    ERIC Educational Resources Information Center

    Duncan, J. A.; Pasto, D. J.

    1975-01-01

    Describes an undergraduate organic chemistry laboratory experiment which utilizes the solvolysis of organic halides to demonstrate first and second order reaction kinetics. The experiment also investigates the effect of a change of solvent polarity on reaction rate, common-ion and noncommon-ion salt effects, and the activation parameters of a…

  7. Students' understanding of alkyl halide reactions in undergraduate organic chemistry

    NASA Astrophysics Data System (ADS)

    Cruz-Ramirez de Arellano, Daniel

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is studied in undergraduate organic chemistry courses, establishing a robust understanding of the concepts and reactions related to them can be beneficial in assuring students' success in organic chemistry courses. Therefore, the purpose of this study was to elucidate and describe students' understanding of alkyl halide reactions in an undergraduate organic chemistry course. Participants were interviewed using a think-aloud protocol in which they were given a set of exercises dealing with reactions and mechanisms of alkyl halide molecules in order to shed light on the students' understanding of these reactions and elucidate any gaps in understanding and incorrect warrants that may be present. These interviews were transcribed and analyzed using qualitative inquiry approaches. In general, the findings from this study show that the students exhibited gaps in understanding and incorrect warrants dealing with: (1) classifying substances as bases and/or nucleophiles, (2) assessing the basic or nucleophilic strength of substances, (3) accurately describing the electron movement of the steps that take place during alkyl halide reaction mechanisms, and (4) assessing the viability of their proposed reactive intermediates and breakage of covalent bonds. In addition, implications for teaching and future research are proposed.

  8. Method for calcining nuclear waste solutions containing zirconium and halides

    DOEpatents

    Newby, Billie J.

    1979-01-01

    A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.

  9. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  10. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  11. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  12. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  13. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  14. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  15. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  16. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  17. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  18. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  19. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  20. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  1. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  2. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  3. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  4. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  5. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  6. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  7. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  8. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    SciTech Connect

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  9. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries

    DOE PAGES

    Deng, Zhi; Mo, Yifei; Ong, Shyue Ping

    2016-03-25

    The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that aremore » currently of the most commercial interest.« less

  10. Ingestion of caustic alkali farm products.

    PubMed

    Neidich, G

    1993-01-01

    Since the Poison Prevention Packaging Act took effect, the number of ingestions of caustic alkali from household products has been significantly reduced. Commercial caustic alkalis used on farms, however, were not included in this legislation. Fourteen children over a 5 year period were seen after ingestion of commercial caustic alkalis used on farms. Seven of the children had ingested liquid pipeline cleaners and seven had ingested solid agents used for a variety of reasons. Six of seven children ingesting liquid agents did so from nonoriginal containers into which the caustic had been transferred for convenience. All seven children ingesting solid agents did so from the original container. Eight of the 14 children were found to have second-degree or worse esophageal involvement. Both solid and liquid caustic agents used commercially on farms can cause significant morbidity. Development of a child-resistant container for daily transfer of liquid pipeline agents could be helpful in preventing injuries from liquid pipeline cleaners. Pediatric gastroenterologists as well as primary care physicians in rural areas should be familiar with this type of injury and should take an active role in instructing parents of children living on farms to prevent such injuries. Extension of the Poison Prevention Packaging Act to caustic alkalis used on farms needs to be considered. PMID:8433244

  11. Terahertz radiation in alkali vapor plasmas

    SciTech Connect

    Sun, Xuan; Zhang, X.-C.

    2014-05-12

    By taking advantage of low ionization potentials of alkali atoms, we demonstrate terahertz wave generation from cesium and rubidium vapor plasmas with an amplitude nearly one order of magnitude larger than that from nitrogen gas at low pressure (0.02–0.5 Torr). The observed phenomena are explained by the numerical modeling based upon electron tunneling ionization.

  12. Ingestion of caustic alkali farm products.

    PubMed

    Neidich, G

    1993-01-01

    Since the Poison Prevention Packaging Act took effect, the number of ingestions of caustic alkali from household products has been significantly reduced. Commercial caustic alkalis used on farms, however, were not included in this legislation. Fourteen children over a 5 year period were seen after ingestion of commercial caustic alkalis used on farms. Seven of the children had ingested liquid pipeline cleaners and seven had ingested solid agents used for a variety of reasons. Six of seven children ingesting liquid agents did so from nonoriginal containers into which the caustic had been transferred for convenience. All seven children ingesting solid agents did so from the original container. Eight of the 14 children were found to have second-degree or worse esophageal involvement. Both solid and liquid caustic agents used commercially on farms can cause significant morbidity. Development of a child-resistant container for daily transfer of liquid pipeline agents could be helpful in preventing injuries from liquid pipeline cleaners. Pediatric gastroenterologists as well as primary care physicians in rural areas should be familiar with this type of injury and should take an active role in instructing parents of children living on farms to prevent such injuries. Extension of the Poison Prevention Packaging Act to caustic alkalis used on farms needs to be considered.

  13. Cohesive Energy of the Alkali Metals.

    ERIC Educational Resources Information Center

    Poole, R. T.

    1980-01-01

    Describes a method, considered appropriate for presentation to undergraduate students in materials science and related courses, for the calculation of cohesive energies of the alkali metals. Uses a description based on the free electron model and gives results to within 0.1 eV of the experimental values. (Author/GS)

  14. Gold/Palladium Alloy for Carbon-Halogen Bond Activation: An Unprecedented Halide Dependence.

    PubMed

    Dhital, Raghu Nath; Bobuatong, Karan; Ehara, Masahiro; Sakurai, Hidehiro

    2015-12-01

    New catalytic activity of gold/palladium alloy nanoclusters (NCs) for carbon-halogen bond activation is demonstrated. In the case of an aryl chloride, the inclusion of gold in a bimetallic catalyst is indispensable to achieve the coupling reactions. Gold has the unique effect of stabilizing palladium, such that Pd(2+) leached from clusters by means of spillover of chloride during oxidative addition. The thus-formed spillover intermediate further reacts heterogeneously in both Ullmann and Suzuki-type coupling reactions through a new type of mechanism. In the case of an aryl bromide, Ullmann coupling occurs through the spillover of bromide, similar to that of aryl chloride. However, a significant fraction of palladium also leached, which diminished the Ullmann coupling activity of the aryl bromide and, as a result, the order of reactivity was ArCl>ArBr. With regard to the activation of the C-Br bond towards a Suzuki-type reaction, the inclusion of a higher gold content in gold/palladium clusters stabilized palladium to prevent the leaching of Pd(2+) from the clusters by means of spillover of bromide. The spillover intermediate reacts heterogeneously with PhB(OH)2, palladium-rich gold/palladium, or pure palladium clusters; the oxidative addition of ArBr favors the extraction of palladium from the clusters, yielding Pd(2+) intermediates. The extracted intermediates react homogenously (Pd(2+/)Pd(0) catalysis) with PhB(OH)2, which results in the higher selectivity of the cross-coupling product. An initial step to observe such unprecedented halide dependency, together with the dynamic behavior of palladium on the surface of gold is the oxidative addition of Ar-X. A detailed insight into the first oxidative addition process was also examined by quantum chemical calculations.

  15. Alkali metal recovery from carbonaceous material conversion process

    DOEpatents

    Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  16. Alkali-Metal Atoms as Spin Labels on Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Koch, Markus; Ratschek, Martin; Callegari, Carlo; Ernst, Wolfgang E.

    2010-06-01

    We have recently achieved electron spin resonance (ESR) of single alkali-metal atoms isolated on helium (He) nanodroplets A two-laser pump/probe setup for optically detected magnetic resonance is applied, which is based on magnetic circular dichroism to selectively address spin states. The influence of the helium droplet on the alkali-metal valence-electron wave function is directly noticeable as a shift of the ESR transitions with respect to that of free atoms. This perturbation depends on the size of the droplets and can be modeled with an increase of the hyperfine constant, that is an increase of the Fermi contact interaction. After careful characterization of the Rb--He-droplet system the method is being developed into a more universal diagnostic tool to study spin dynamics. ESR silent species located inside the droplet can be investigated by utilizing the surface Rb atom as spin label, and the droplet size is a convenient handle to control the distance between the two. In case of species with a nuclear spin (e.g., 129Xe) spin exchange between the optically pumped Rb atom and the nuclear spin can be studied. We are also extending our method to study magnetically active materials of technological importance, such as Cr, Cu, and small clusters thereof, and we strive to present the first results at the meeting. M. Koch, G. Auböck, C. Callegari, and W.E. Ernst, Phys. Rev. Lett. 103, 035302 (2009) M. Koch, J. Lanzersdorfer, C. Callegari, J.S. Muenter, and W.E. Ernst, J. Phys. Chem. A 113, 13347 (2009) M. Koch, C. Callegari, and W.E. Ernst, Mol. Phys., in press.

  17. Matrix isolation infrared spectra of hydrogen halide and halogen complexes with nitrosyl halides

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.; Lucas, Donald; Pimentel, George C.

    1982-01-01

    Matrix isolation infrared spectra of nitrosyl halide (XNO) complexes with HX and X2 (X = Cl, Br) are presented. The relative frequency shifts of the HX mode are modest (ClNO H-Cl, delta-nu/nu = -0.045; BrNO H-Br, delta-nu/nu = -0.026), indicating weak hydrogen bonds 1-3 kcal/mol. These shifts are accompanied by significant shifts to higher frequencies in the XN-O stretching mode (CIN-O HCl, delta-nu/nu = +0.016; BrN-O HBr, delta-nu/nu = +0.011). Similar shifts were observed for the XN-O X2 complexes (ClN-O Cl2, delta-nu/nu = +0.009; BrN-O-Br2, delta-nu/nu = +0.013). In all four complexes, the X-NO stretching mode relative shift is opposite in sign and about 1.6 times that of the NO stretching mode. These four complexes are considered to be similar in structure and charge distribution. The XN-O frequency shift suggests that complex formation is accompanied by charge withdrawal from the NO bond ranging from about .04 to .07 electron charges. The HX and X2 molecules act as electron acceptors, drawing electrons out of the antibonding orbital of NO and strengthening the XN-O bond. The implications of the pattern of vibrational shifts concerning the structure of the complexes are discussed.

  18. Infrared and Raman spectroscopic studies on alkali borate glasses: evidence of mixed alkali effect.

    PubMed

    Padmaja, G; Kistaiah, P

    2009-03-19

    A lithium-potassium-borate glass system containing manganese and iron cations has been thoroughly investigated in order to obtain information about the mixed alkali effect and the structural role of both the manganese and iron in such glass hosts. Mixed alkali borate glasses of the (30 - x)Li(2)O - xK(2)O - 10CdO/ZnO - 59B(2)O(3) (x = 0, 10, 15, 20, and 30) doped with 1MnO(2)/1Fe(2)O(3) system were prepared by a melt quench technique. The amorphous phase of the prepared glass samples was confirmed from their X-ray diffraction. The spectroscopic properties of glass samples were studied using infrared (IR) and Raman spectroscopic techniques. The density of all the prepared glasses was measured using Archimedes principle. Molar volumes were estimated from the density data. IR spectra of these glasses revealed a dramatic variation of three- and four-coordinated boron structures as a function of mixed alkali concentration. The vibrations due to Li-O, K-O, and MnO(4)/FeO(4) arrangements are consistent in all the compositions and show a nonlinear variation in the intensity with alkali content. Raman spectra of different alkali combinations with CdO and ZnO present drastic changes in the intensity of various Raman bands. The observation of disappearance and reappearance of IR and Raman bands as a function of various alkali concentrations is an important result pertaining to the mixed alkali effect in borate glasses. Acting as complementary spectroscopic techniques, both types of measurements, IR and Raman, revealed that the network structure of the studied glasses is mainly based on BO(3) and BO(4) units placed in different structural groups, the BO(3) units being dominant. The measured IR and Raman spectra of different glasses are used to clarify the optical properties of the present glasses correlating them with their structure and composition. PMID:19235995

  19. Methods and Mechanisms for Cross-Electrophile Coupling of Csp2 Halides with Alkyl Electrophiles

    PubMed Central

    2016-01-01

    Conspectus Cross-electrophile coupling, the cross-coupling of two different electrophiles, avoids the need for preformed carbon nucleophiles, but development of general methods has lagged behind cross-coupling and C–H functionalization. A central reason for this slow development is the challenge of selectively coupling two substrates that are alike in reactivity. This Account describes the discovery of generally cross-selective reactions of aryl halides and acyl halides with alkyl halides, the mechanistic studies that illuminated the underlying principles of these reactions, and the use of these fundamental principles in the rational design of new cross-electrophile coupling reactions. Although the coupling of two different electrophiles under reducing conditions often leads primarily to symmetric dimers, the subtle differences in reactivity of aryl halides and alkyl halides with nickel catalysts allowed for generally cross-selective coupling reactions. These conditions could also be extended to the coupling of acyl halides with alkyl halides. These reactions are exceptionally functional group tolerant and can be assembled on the benchtop. A combination of stoichiometric and catalytic studies on the mechanism of these reactions revealed an unusual radical-chain mechanism and suggests that selectivity arises from (1) the preference of nickel(0) for oxidative addition to aryl halides and acyl halides over alkyl halides and (2) the greater propensity of alkyl halides to form free radicals. Bipyridine-ligated arylnickel intermediates react with alkyl radicals to efficiently form, after reductive elimination, new C–C bonds. Finally, the resulting nickel(I) species is proposed to regenerate an alkyl radical to carry the chain. Examples of new reactions designed using these principles include carbonylative coupling of aryl halides with alkyl halides to form ketones, arylation of epoxides to form β-aryl alcohols, and coupling of benzyl sulfonate esters with aryl

  20. Methods and Mechanisms for Cross-Electrophile Coupling of Csp(2) Halides with Alkyl Electrophiles.

    PubMed

    Weix, Daniel J

    2015-06-16

    Cross-electrophile coupling, the cross-coupling of two different electrophiles, avoids the need for preformed carbon nucleophiles, but development of general methods has lagged behind cross-coupling and C-H functionalization. A central reason for this slow development is the challenge of selectively coupling two substrates that are alike in reactivity. This Account describes the discovery of generally cross-selective reactions of aryl halides and acyl halides with alkyl halides, the mechanistic studies that illuminated the underlying principles of these reactions, and the use of these fundamental principles in the rational design of new cross-electrophile coupling reactions. Although the coupling of two different electrophiles under reducing conditions often leads primarily to symmetric dimers, the subtle differences in reactivity of aryl halides and alkyl halides with nickel catalysts allowed for generally cross-selective coupling reactions. These conditions could also be extended to the coupling of acyl halides with alkyl halides. These reactions are exceptionally functional group tolerant and can be assembled on the benchtop. A combination of stoichiometric and catalytic studies on the mechanism of these reactions revealed an unusual radical-chain mechanism and suggests that selectivity arises from (1) the preference of nickel(0) for oxidative addition to aryl halides and acyl halides over alkyl halides and (2) the greater propensity of alkyl halides to form free radicals. Bipyridine-ligated arylnickel intermediates react with alkyl radicals to efficiently form, after reductive elimination, new C-C bonds. Finally, the resulting nickel(I) species is proposed to regenerate an alkyl radical to carry the chain. Examples of new reactions designed using these principles include carbonylative coupling of aryl halides with alkyl halides to form ketones, arylation of epoxides to form β-aryl alcohols, and coupling of benzyl sulfonate esters with aryl halides to form

  1. Geopolymers and Related Alkali-Activated Materials

    NASA Astrophysics Data System (ADS)

    Provis, John L.; Bernal, Susan A.

    2014-07-01

    The development of new, sustainable, low-CO2 construction materials is essential if the global construction industry is to reduce the environmental footprint of its activities, which is incurred particularly through the production of Portland cement. One type of non-Portland cement that is attracting particular attention is based on alkali-aluminosilicate chemistry, including the class of binders that have become known as geopolymers. These materials offer technical properties comparable to those of Portland cement, but with a much lower CO2 footprint and with the potential for performance advantages over traditional cements in certain niche applications. This review discusses the synthesis of alkali-activated binders from blast furnace slag, calcined clay (metakaolin), and fly ash, including analysis of the chemical reaction mechanisms and binder phase assemblages that control the early-age and hardened properties of these materials, in particular initial setting and long-term durability. Perspectives for future research developments are also explored.

  2. Removal of Retired Alkali Metal Test Systems

    SciTech Connect

    Brehm, W. F.; Church, W. R.; Biglin, J. W.

    2003-02-26

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  3. Alkali Metal Heat Pipe Life Issues

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.

    2004-01-01

    One approach to space fission power system design is predicated on the use of alkali metal heat pipes, either as radiator elements, thermal management components, or as part of the core primary heat-transfer system. This synopsis characterizes long-life core heat pipes. References are included where more detailed information can be found. Specifics shown here are for demonstrational purposes and do not necessarily reflect current Project Prometheus point designs.

  4. Alkali Metal Heat Pipe Life Issues

    SciTech Connect

    Reid, Robert S.

    2004-07-01

    One approach to fission power system design uses alkali metal heat pipes for the core primary heat-transfer system. Heat pipes may also be used as radiator elements or auxiliary thermal control elements. This synopsis characterizes long-life core heat pipes. References are included where information that is more detailed can be found. Specifics shown here are for demonstration purposes and do not necessarily reflect current Nasa Project Prometheus point designs. (author)

  5. Phase holograms formed by silver halide /sensitized/ gelatin processing

    NASA Astrophysics Data System (ADS)

    Graver, W. R.; Gladden, J. W.; Eastes, J. W.

    1980-05-01

    A novel recording process for the formation of phase volume holograms at up to 1500 cycles/mm is described. The term silver halide (sensitized) gelatin or SHG denotes an all-gelatin phase material, which records the initial image information through photon absorption by the silver halide. Our process uses a reversal bleach that dissolves the developed silver image and cross-links the gelatin molecules in the vicinity of the developed image. Experiments have determined the stored image as refractive-index differences within the remaining gelatin. The major attributes of SHG holograms are (1) panchromatic response, (2) 100:1 greater light sensitivity than dichromate (sensitized) gelatin, and (3) elimination of darkening (printout) effects.

  6. Large methyl halide emissions from south Texas salt marshes

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Whelan, M. E.; Min, D.-H.

    2014-06-01

    Coastal salt marshes are natural sources of methyl chloride (CH3Cl) and methyl bromide (CH3Br) to the atmosphere, but measured emission rates vary widely by geography. Here we report large methyl halide fluxes from subtropical salt marshes of south Texas. Sites with the halophytic plant, Batis maritima, emitted methyl halides at rates that are orders of magnitude greater than sites containing other vascular plants or macroalgae. B. maritima emissions were generally highest at midday; however, diurnal variability was more pronounced for CH3Br than CH3Cl, and surprisingly high nighttime CH3Cl fluxes were observed in July. Seasonal and intra-site variability were large, even taking into account biomass differences. Overall, these subtropical salt marsh sites show much higher emission rates than temperate salt marshes at similar times of the year, supporting the contention that low-latitude salt marshes are significant sources of CH3Cl and CH3Br.

  7. Large methyl halide emissions from south Texas salt marshes

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Whelan, M. E.; Min, D.-H.

    2014-11-01

    Coastal salt marshes are natural sources of methyl chloride (CH3Cl) and methyl bromide (CH3Br) to the atmosphere, but measured emission rates vary widely by geography. Here we report large methyl halide fluxes from subtropical salt marshes of south Texas. Sites with the halophytic plant, Batis maritima, emitted methyl halides at rates that are orders of magnitude greater than sites containing other vascular plants or macroalgae. B. maritima emissions were generally highest at midday; however, diurnal variability was more pronounced for CH3Br than CH3Cl, and surprisingly high nighttime CH3Cl fluxes were observed in July. Seasonal and intra-site variability were large, even taking into account biomass differences. Overall, these subtropical salt marsh sites show much higher emission rates than temperate salt marshes at similar times of the year, supporting the contention that low-latitude salt marshes are significant sources of CH3Cl and CH3Br.

  8. Chemical Reactivity Perspective into the Group 2B Metals Halides.

    PubMed

    Özen, Alimet Sema; Akdeniz, Zehra

    2016-06-30

    Chemical reactivity descriptors within the conceptual density functional theory can be used to understand the nature of the interactions between two monomers of the Group 2B metal halides. This information might be valuable in the development of adequate force law parameters for simulations in the liquid state. In this study, MX2 monomers and dimers, where M = Zn, Cd, Hg and X = F, Cl, Br, I, were investigated in terms of chemical reactivity descriptors. Relativistic effects were taken into account using the effective core potential (ECP) approach. Correlations were produced between global and local reactivity descriptors and dimerization energies. Results presented in this work represent the first systematic investigation of Group 2B metal halides in the literature from a combined point of view of both relativistic effects and chemical reactivity descriptors. Steric effects were found to be responsible for the deviation from the chemical reactivity principles. They were introduced into the chemical reactivity descriptors such as local softness.

  9. Gaseous NH3 Confers Porous Pt Nanodendrites Assisted by Halides

    PubMed Central

    Lu, Shuanglong; Eid, Kamel; Li, Weifeng; Cao, Xueqin; Pan, Yue; Guo, Jun; Wang, Liang; Wang, Hongjing; Gu, Hongwei

    2016-01-01

    Tailoring the morphology of Pt nanocrystals (NCs) is of great concern for their enhancement in catalytic activity and durability. In this article, a novel synthetic strategy is developed to selectively prepare porous dendritic Pt NCs with different structures for oxygen reduction reaction (ORR) assisted by NH3 gas and halides (F−, Cl−, Br−). The NH3 gas plays critical roles on tuning the morphology. Previously, H2 and CO gas are reported to assist the shape control of metallic nanocrystals. This is the first demonstration that NH3 gas assists the Pt anisotropic growth. The halides also play important role in the synthetic strategy to regulate the formation of Pt NCs. As-made porous dendritic Pt NCs, especially when NH4F is used as a regulating reagent, show superior catalytic activity for ORR compared with commercial Pt/C catalyst and other previously reported Pt-based NCs. PMID:27184228

  10. Gaseous NH3 Confers Porous Pt Nanodendrites Assisted by Halides

    NASA Astrophysics Data System (ADS)

    Lu, Shuanglong; Eid, Kamel; Li, Weifeng; Cao, Xueqin; Pan, Yue; Guo, Jun; Wang, Liang; Wang, Hongjing; Gu, Hongwei

    2016-05-01

    Tailoring the morphology of Pt nanocrystals (NCs) is of great concern for their enhancement in catalytic activity and durability. In this article, a novel synthetic strategy is developed to selectively prepare porous dendritic Pt NCs with different structures for oxygen reduction reaction (ORR) assisted by NH3 gas and halides (F‑, Cl‑, Br‑). The NH3 gas plays critical roles on tuning the morphology. Previously, H2 and CO gas are reported to assist the shape control of metallic nanocrystals. This is the first demonstration that NH3 gas assists the Pt anisotropic growth. The halides also play important role in the synthetic strategy to regulate the formation of Pt NCs. As-made porous dendritic Pt NCs, especially when NH4F is used as a regulating reagent, show superior catalytic activity for ORR compared with commercial Pt/C catalyst and other previously reported Pt-based NCs.

  11. Enhanced Born Charge and Proximity to Ferroelectricity in Thallium Halides

    SciTech Connect

    Du, Mao-Hua; Singh, David J

    2010-01-01

    Electronic structure and lattice dynamics calculations on thallium halides show that the Born effective charges in these compounds are more than twice larger than the nominal ionic charges. This is a result of cross-band-gap hybridization between Tl-p and halogen-p states. The large Born charges cause giant splitting between longitudinal and transverse optic phonon modes, bringing the lattice close to ferroelectric instability. Our calculations indeed show spontaneous lattice polarization upon lattice expansion starting at 2%. It is remarkable that the apparently ionic thallium halides with a simple cubic CsCl structure and large differences in electronegativity between cations and anions can be very close to ferroelectricity. This can lead to effective screening of defects and impurities that would otherwise be strong carrier traps and may therefore contribute to the relatively good carrier transport properties in TlBr radiation detectors.

  12. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    PubMed

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 < NaNO3 < KNO3. Such results explain the salt activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities. PMID:26901167

  13. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    PubMed

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 < NaNO3 < KNO3. Such results explain the salt activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities.

  14. Transport properties of alkali metal doped fullerides

    SciTech Connect

    Yadav, Daluram Yadav, Nishchhal

    2015-07-31

    We have studied the intercage interactions between the adjacent C{sub 60} cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C{sub 60} phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, T{sub c}, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C{sub 60} phonons as 5 K, which is much lower as compared to reported T{sub c} (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  15. Copper-catalyzed arylation of alkyl halides with arylaluminum reagents

    PubMed Central

    Shrestha, Bijay

    2015-01-01

    Summary We report a Cu-catalyzed coupling between triarylaluminum reagents and alkyl halides to form arylalkanes. The reaction proceeds in the presence of N,N,N’,N’-tetramethyl-o-phenylenediamine (NN-1) as a ligand in combination with CuI as a catalyst. This catalyst system enables the coupling of primary alkyl iodides and bromides with electron-neutral and electron-rich triarylaluminum reagents and affords the cross-coupled products in good to excellent yields. PMID:26734088

  16. Oxidative alkoxylation of phosphine in alcohol solutions of copper halides

    NASA Astrophysics Data System (ADS)

    Polimbetova, G. S.; Borangazieva, A. K.; Ibraimova, Zh. U.; Bugubaeva, G. O.; Keynbay, S.

    2016-08-01

    The phosphine oxidation reaction with oxygen in alcohol solutions of copper (I, II) halides is studied. Kinetic parameters, intermediates, and by-products are studied by means of NMR 31Р-, IR-, UV-, and ESR- spectroscopy; and by magnetic susceptibility, redox potentiometry, gas chromatography, and elemental analysis. A reaction mechanism is proposed, and the optimum conditions are found for the reaction of oxidative alkoxylation phosphine.

  17. Oxidative alkoxylation of phosphine in alcohol solutions of copper halides

    NASA Astrophysics Data System (ADS)

    Polimbetova, G. S.; Borangazieva, A. K.; Ibraimova, Zh. U.; Bugubaeva, G. O.; Keynbay, S.

    2016-08-01

    The phosphine oxidation reaction with oxygen in alcohol solutions of copper (I, II) halides is studied. Kinetic parameters, intermediates, and by-products are studied by means of NMR 31P-, IR-, UV-, and ESR- spectroscopy; and by magnetic susceptibility, redox potentiometry, gas chromatography, and elemental analysis. A reaction mechanism is proposed, and the optimum conditions are found for the reaction of oxidative alkoxylation phosphine.

  18. Copper-catalyzed arylation of alkyl halides with arylaluminum reagents.

    PubMed

    Shrestha, Bijay; Giri, Ramesh

    2015-01-01

    We report a Cu-catalyzed coupling between triarylaluminum reagents and alkyl halides to form arylalkanes. The reaction proceeds in the presence of N,N,N',N'-tetramethyl-o-phenylenediamine (NN-1) as a ligand in combination with CuI as a catalyst. This catalyst system enables the coupling of primary alkyl iodides and bromides with electron-neutral and electron-rich triarylaluminum reagents and affords the cross-coupled products in good to excellent yields. PMID:26734088

  19. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth.

    PubMed

    Yang, Bin; Keum, Jong; Ovchinnikova, Olga S; Belianinov, Alex; Chen, Shiyou; Du, Mao-Hua; Ivanov, Ilia N; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2016-04-20

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films, a major unresolved question is the competition between multiple halide species (e.g., I(-), Cl(-), Br(-)) in the formation of the mixed-halide perovskite crystals. Whether Cl(-) ions are successfully incorporated into the perovskite crystal structure or, alternatively, where they are located is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br(-) or Cl(-) ions can promote crystal growth, yet reactive I(-) ions prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl(-) ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performing and cost-effective optoelectronic devices. PMID:26931634

  20. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth

    DOE PAGES

    Keum, Jong Kahk; Ovchinnikova, Olga S.; Chen, Shiyou; Du, Mao-Hua; Ivanov, Ilia N; Rouleau, Christopher; Geohegan, David B.; Xiao, Kai

    2016-03-01

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films a major unresolved question is the competition between multiple halide species (e.g. I-, Cl-, Br-) in the formation of the mixed halide perovskite crystals. Whether Cl- ions are successfully incorporated into the perovskite crystal structure or alternatively, where they are located, is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br- or Cl- ions can promote crystal growth, yet reactive I- ionsmore » prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl- ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites, and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performance and cost-effective optoelectronic devices.« less

  1. Lasing in robust cesium lead halide perovskite nanowires

    PubMed Central

    Eaton, Samuel W.; Lai, Minliang; Gibson, Natalie A.; Wong, Andrew B.; Dou, Letian; Ma, Jie; Wang, Lin-Wang; Leone, Stephen R.; Yang, Peidong

    2016-01-01

    The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic–inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored and handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry–Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 μJ cm−2 with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 109 excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication. PMID:26862172

  2. Iodomethane-Mediated Organometal Halide Perovskite with Record Photoluminescence Lifetime.

    PubMed

    Xu, Weidong; McLeod, John A; Yang, Yingguo; Wang, Yimeng; Wu, Zhongwei; Bai, Sai; Yuan, Zhongcheng; Song, Tao; Wang, Yusheng; Si, Junjie; Wang, Rongbin; Gao, Xingyu; Zhang, Xinping; Liu, Lijia; Sun, Baoquan

    2016-09-01

    Organometallic lead halide perovskites are excellent light harvesters for high-efficiency photovoltaic devices. However, as the key component in these devices, a perovskite thin film with good morphology and minimal trap states is still difficult to obtain. Herein we show that by incorporating a low boiling point alkyl halide such as iodomethane (CH3I) into the precursor solution, a perovskite (CH3NH3PbI3-xClx) film with improved grain size and orientation can be easily achieved. More importantly, these films exhibit a significantly reduced amount of trap states. Record photoluminescence lifetimes of more than 4 μs are achieved; these lifetimes are significantly longer than that of pristine CH3NH3PbI3-xClx films. Planar heterojunction solar cells incorporating these CH3I-mediated perovskites have demonstrated a dramatically increased power conversion efficiency compared to the ones using pristine CH3NH3PbI3-xClx. Photoluminescence, transient absorption, and microwave detected photoconductivity measurements all provide consistent evidence that CH3I addition increases the number of excitons generated and their diffusion length, both of which assist efficient carrier transport in the photovoltaic device. The simple incorporation of alkyl halide to enhance perovskite surface passivation introduces an important direction for future progress on high efficiency perovskite optoelectronic devices. PMID:27529636

  3. Methyl halide emissions from greenhouse-grown mangroves

    NASA Astrophysics Data System (ADS)

    Manley, Steven L.; Wang, Nun-Yii; Walser, Maggie L.; Cicerone, Ralph J.

    2007-01-01

    Two mangrove species, Avicennia germinans and Rhizophora mangle, were greenhouse grown for nearly 1.5 years from saplings. A single individual of each species was monitored for the emission of methyl halides from aerial tissue. During the first 240 days, salinity was incrementally increased with the addition of seawater, and was maintained between 18 and 28‰ for the duration of the study. Exponential growth occurred after 180 days. Methyl halide emissions normalized to leaf area were measured throughout the study and varied dramatically. Emission rates normalized to land area (mg m-2 y-1), assuming a LAI = 5, yielded 82 and 29 for CH3Cl, 10 and 1.6 for CH3Br, and 26 and 11 for CH3I, for A. germinans and R. mangle, respectively. From these preliminary determinations, only CH3I emissions emerge as being of possible global atmospheric significance. This study emphasizes the need for field studies of methyl halide emissions from mangrove forests.

  4. Secondary alkyl halides in transition-metal-catalyzed cross-coupling reactions.

    PubMed

    Rudolph, Alena; Lautens, Mark

    2009-01-01

    Enormous effort has gone into the development of metal-catalyzed cross-coupling reactions with alkyl halides as electrophilic coupling partners. Whereas a wide array of primary alkyl halides can now be used effectively in cross-coupling reactions, the synthetic potential of secondary alkyl halides is just beginning to be revealed. This Minireview summarizes selected examples of the use of secondary alkyl halides as electrophiles in cross-coupling reactions. Emphasis is placed on the transition metals employed, the mechanistic pathways involved, and implications in terms of the stereochemical outcome of reactions.

  5. Systematic analysis of the unique band gap modulation of mixed halide perovskites.

    PubMed

    Kim, Jongseob; Lee, Sung-Hoon; Chung, Choong-Heui; Hong, Ki-Ha

    2016-02-14

    Solar cells based on organic-inorganic hybrid metal halide perovskites have been proven to be one of the most promising candidates for the next generation thin film photovoltaic cells. Mixing Br or Cl into I-based perovskites has been frequently tried to enhance the cell efficiency and stability. One of the advantages of mixed halides is the modulation of band gap by controlling the composition of the incorporated halides. However, the reported band gap transition behavior has not been resolved yet. Here a theoretical model is presented to understand the electronic structure variation of metal mixed-halide perovskites through hybrid density functional theory. Comparative calculations in this work suggest that the band gap correction including spin-orbit interaction is essential to describe the band gap changes of mixed halides. In our model, both the lattice variation and the orbital interactions between metal and halides play key roles to determine band gap changes and band alignments of mixed halides. It is also presented that the band gap of mixed halide thin films can be significantly affected by the distribution of halide composition. PMID:26791587

  6. Absorption of inorganic halides produced from Freon 12 by calcium carbonate containing iron(III) oxide

    SciTech Connect

    Imamura, Seiichiro; Matsuba, Yoichi; Yamada, Etsu; Takai, Kenji; Utani, Kazunori

    1997-09-01

    Inorganic halides produced by the catalytic decomposition of Freon 12 were fixed by calcium carbonate, which is the main component of limestone. Iron(III) oxide, which is present as a contaminant in limestone, promoted the absorption of the halides by calcium carbonate at low temperatures. The supposed action of iron(III) oxide was to first react with inorganic halides, forming iron halides, and, then, transfer them to calcium carbonate to replace carbonate ion in a catalytic way. Thus, calcium carbonate containing iron oxides (limestone) can be used as an effective absorbent for the inorganic halogens produced during the decomposition of Freons.

  7. Method for producing hydrocarbon fuels from heavy polynuclear hydrocarbons by use of molten metal halide catalyst

    DOEpatents

    Gorin, Everett

    1979-01-01

    In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst, thereafter separating at least a substantial portion of the carbonaceous material associated with the reaction mixture from the spent molten metal halide and thereafter regenerating the metal halide catalyst, an improvement comprising contacting the spent molten metal halide catalyst after removal of a major portion of the carbonaceous material therefrom with an additional quantity of hydrogen is disclosed.

  8. Alteration of alkali reactive aggregates autoclaved in different alkali solutions and application to alkali-aggregate reaction in concrete (II) expansion and microstructure of concrete microbar

    SciTech Connect

    Lu Duyou . E-mail: duyoulu@njut.edu.cn; Mei Laibao; Xu Zhongzi; Tang Mingshu; Mo Xiangyin; Fournier, Benoit

    2006-06-15

    The effect of the type of alkalis on the expansion behavior of concrete microbars containing typical aggregate with alkali-silica reactivity and alkali-carbonate reactivity was studied. The results verified that: (1) at the same molar concentration, sodium has the strongest contribution to expansion due to both ASR and ACR, followed by potassium and lithium; (2) sufficient LiOH can completely suppress expansion due to ASR whereas it can induce expansion due to ACR. It is possible to use the duplex effect of LiOH on ASR and ACR to clarify the ACR contribution when ASR and ACR may coexist. It has been shown that a small amount of dolomite in the fine-grained siliceous Spratt limestone, which has always been used as a reference aggregate for high alkali-silica reactivity, might dedolomitize in alkaline environment and contribute to the expansion. That is to say, Spratt limestone may exhibit both alkali-silica and alkali-carbonate reactivity, although alkali-silica reactivity is predominant. Microstructural study suggested that the mechanism in which lithium controls ASR expansion is mainly due to the favorable formation of lithium-containing less-expansive product around aggregate particles and the protection of the reactive aggregate from further attack by alkalis by the lithium-containing product layer.

  9. Abiotic Formation of Methyl Halides in the Terrestrial Environment

    NASA Astrophysics Data System (ADS)

    Keppler, F.

    2011-12-01

    Methyl chloride and methyl bromide are the most abundant chlorine and bromine containing organic compounds in the atmosphere. Since both compounds have relatively long tropospheric lifetimes they can effectively transport halogen atoms from the Earth's surface, where they are released, to the stratosphere and following photolytic oxidation form reactive halogen gases that lead to the chemical destruction of ozone. Methyl chloride and methyl bromide account for more than 20% of the ozone-depleting halogens delivered to the stratosphere and are predicted to grow in importance as the chlorine contribution to the stratosphere from anthropogenic CFCs decline. Today methyl chloride and methyl bromide originate mainly from natural sources with only a minor fraction considered to be of anthropogenic origin. However, until as recently as 2000 most of the methyl chloride and methyl bromide input to the atmosphere was considered to originate from the oceans, but investigations in recent years have clearly demonstrated that terrestrial sources such as biomass burning, wood-rotting fungi, coastal salt marshes, tropical vegetation and organic matter degradation must dominate the atmospheric budgets of these trace gases. However, many uncertainties still exist regarding strengths of both sources and sinks, as well as the mechanisms of formation of these naturally occurring halogenated gases. A better understanding of the atmospheric budget of both methyl chloride and methyl bromide is therefore required for reliable prediction of future ozone depletion. Biotic and abiotic methylation processes of chloride and bromide ion are considered to be the dominant pathways of formation of these methyl halides in nature. In this presentation I will focus on abiotic formation processes in the terrestrial environment and the potential parameters that control their emissions. Recent advances in our understanding of the abiotic formation pathway of methyl halides will be discussed. This will

  10. Physical and electrochemical study of halide-modified activated carbons

    NASA Astrophysics Data System (ADS)

    Barpanda, Prabeer

    The current thesis aims to improve the electrochemical capacity of activated carbon electrodes, which enjoy prominent position in commercial electrochemical capacitors. Our approach was to develop electrochemical capacity by developing faradaic pseudocapacitance in carbon through a novel mechanochemical modification using iodine and bromine. Various commercial carbons were mechanochemically modified via solid-state iodation and vapour phase iodine-incorporation. The halidation-induced changes in the structure, composition, morphology, electrical and electrochemical properties of carbon materials were studied using different characterization techniques encompassing XRD, XRF, XPS, Raman spectroscopy, BET study, TEM, SAXS and electrochemical testing followed by an intensive battery of physical and electrochemical characterization. The introduction of iodine into carbon system led to the formation of polyiodide species that were preferentially reacted within the micropore voids within the carbon leading to the development of a faradaic reaction at 3.1V. In spite of the lower surface area of modified carbon, we observed manyfold increase in its electrochemical capacity. Parallel inception of non-faradaic development and faradaic pseudocapacitive reaction led to promising gravimetric, surface area normalized and volumetric capacity in iodated carbons. With promising electrochemical improvement post halidation process, the chemical halidation method was extended to different class of carbons and halides. Carbons ranging from amorphous (activated) carbons to crystalline carbons (graphites, fluorographites) were iodine-modified to gain further insight on the local graphite-iodine chemical interaction. In addition, the effect of pore size distribution on chemical iodation process was studied by using in-house fabricated microporous carbon. A comparative study of commercial mesoporous carbons and in-house fabricated microporous carbons showed higher iodine-uptake ability and

  11. Method for the safe disposal of alkali metal

    DOEpatents

    Johnson, Terry R.

    1977-01-01

    Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam-CO.sub.2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps.

  12. Symbolic clustering

    SciTech Connect

    Reinke, R.E.

    1991-01-01

    Clustering is the problem of finding a good organization for data. Because there are many kinds of clustering problems, and because there are many possible clusterings for any data set, clustering programs use knowledge and assumptions about individual problems to make clustering tractable. Cluster-analysis techniques allow knowledge to be expressed in the choice of a pairwise distance measure and in the choice of clustering algorithm. Conceptual clustering adds knowledge and preferences about cluster descriptions. In this study the author describes symbolic clustering, which adds representation choice to the set of ways a data analyst can use problem-specific knowledge. He develops an informal model for symbolic clustering, and uses it to suggest where and how knowledge can be expressed in clustering. A language for creating symbolic clusters, based on the model, was developed and tested on three real clustering problems. The study concludes with a discussion of the implications of the model and the results for clustering in general.

  13. Determination of the common and rare alkalies in mineral analysis

    USGS Publications Warehouse

    Wells, R.C.; Stevens, R.E.

    1934-01-01

    Methods are described which afford a determination of each member of the alkali group and are successful in dealing with the quantities of the rare alkalies found in rocks and minerals. The procedures are relatively rapid and based chiefly on the use of chloroplatinic acid, absolute alcohol and ether, and ammonium sulfate. The percentages of all the alkalies found in a number of minerals are given.

  14. Environmental mercury contamination around a chlor-alkali plant

    SciTech Connect

    Lodenius, M.; Tulisalo, E.

    1984-04-01

    The chlor-alkali industry is one of the most important emitters of mercury. This metal is effectively spread from chlor-alkali plants into the atmosphere and it has been reported that only a few percent of the mercury emissions are deposited locally the major part spreading over very large areas. The purpose of this investigation was to study the spreading of mercury up to 100 km from a chlor-alkali plant using three different biological indicators.

  15. Alkali cation specific adsorption onto fcc(111) transition metal electrodes.

    PubMed

    Mills, J N; McCrum, I T; Janik, M J

    2014-07-21

    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  16. High temperature alkali corrosion of ceramics in coal gas

    SciTech Connect

    Pickrell, G.R.; Sun, T.; Brown, J.J.

    1992-05-27

    High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and high efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, zirconia, and fireclay glass. The study consists of identification of the alkali reaction products (phase equilibria) and the kinetics of the alkali reactions as a function of temperature and time.

  17. High temperature alkali corrosion of ceramics in coal gas

    SciTech Connect

    Pickrell, G.R.; Sun, T.; Brown, J.J.

    1991-11-30

    High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and high efficiency heat engines. The objective of this program is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, zirconia, and fireclay glass. The study consists of identification of the alkali reaction products (phase equilibria) and the kinetics of the alkali reactions as a function of temperature and time.

  18. High temperature alkali corrosion of ceramics in coal gas

    SciTech Connect

    Pickrell, G.R.; Sun, T.; Brown, J.J.

    1992-08-29

    High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and high efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, zirconia, and fireclay glass. The study consists of identification of the alkali reaction products (phase equilibria) and the kinetics of the alkali reactions as a function of temperature and time.

  19. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.

    1985-07-10

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  20. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, David C.; Mailhe, Catherine C.; De Jonghe, Lutgard C.

    1986-01-01

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  1. Cathode architectures for alkali metal / oxygen batteries

    SciTech Connect

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  2. Electrodes For Alkali-Metal Thermoelectric Converters

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Wheeler, Bob L.; Jeffries-Nakamura, Barbara; Lamb, James L.; Bankston, C. Perry; Cole, Terry

    1989-01-01

    Combination of thin, porous electrode and overlying collector grid reduces internal resistance of alkali-metal thermoelectric converter cell. Low resistance of new electrode and grid boosts power density nearly to 1 W/cm2 of electrode area at typical operating temperatures of 1,000 to 1,300 K. Conductive grid encircles electrode film on alumina tube. Bus wire runs along tube to collect electrical current from grid. Such converters used to transform solar, nuclear, and waste heat into electric power.

  3. High power diode pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.

    2008-05-01

    Diode pumped alkali lasers have developed rapidly since their first demonstration. These lasers offer a path to convert highly efficient, but relatively low brightness, laser diodes into a single high power, high brightness beam. General Atomics has been engaged in the development of DPALs with scalable architectures. We have examined different species and pump characteristics. We show that high absorption can be achieved even when the pump source bandwidth is several times the absorption bandwidth. In addition, we present experimental results for both potassium and rubidium systems pumped with a 0.2 nm bandwidth alexandrite laser. These data show slope efficiencies of 67% and 72% respectively.

  4. (abstract) Fundamental Mechanisms of Electrode Kinetics and Alkali Metal Atom Transport at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kisor, A.; Kikkert, S. K.

    1993-01-01

    The mechanisms of electrode kinetics and mass transport of alkali metal oxidation and alkali metal cation reduction at the solid electrolyte/porous electrode boundary as well as alkali metal transport through porous metal electrodes has important applications in optimizing device performance in alkali metal thermal to electric converter (AMTEC) cells which are high temperature, high current density electrochemical cells. Basic studies of these processes also affords the opportunity to investigate a very basic electrochemical reaction over a wide range of conditions; and a variety of mass transport modes at high temperatures via electrochemical techniques. The temperature range of these investigations covers 700K to 1240K; the alkali metal vapor pressures range from about 10(sup -2) to 10(sup 2) Pa; and electrodes studied have included Mo, W, Mo/Na(sub 2)MoO(sub 4), W/Na(sub 2)WO(sub 4), WPt(sub x), and WRh(sub x) (1.0 < x < 6.0 ) with Na at Na-beta'-alumina, and Mo with K at K-beta'-alumina. Both liquid metal/solid electrolyte/alkali metal vapor and alkali metal vapor/solid electrolyte/vapor cells have been used to characterize the reaction and transport processes. We have previously reported evidence of ionic, free molecular flow, and surface transport of sodium in several types of AMTEC electrodes.

  5. X-ray Methods in High-Intensity Discharges and Metal-Halide Lamps: X-ray Induced Fluorescence

    SciTech Connect

    Curry, John J.; Lapatovich, Walter P.; Henins, Albert

    2011-12-09

    We describe the use of x-ray induced fluorescence to study metal-halide high-intensity discharge lamps and to measure equilibrium vapor pressures of metal-halide salts. The physical principles of metal-halide lamps, relevant aspects of x-ray-atom interactions, the experimental method using synchrotron radiation, and x-ray induced fluorescence measurements relevant to metal-halide lamps are covered.

  6. Artificial Synapses: Organometal Halide Perovskite Artificial Synapses (Adv. Mater. 28/2016).

    PubMed

    Xu, Wentao; Cho, Himchan; Kim, Young-Hoon; Kim, Young-Tae; Wolf, Christoph; Park, Chan-Gyung; Lee, Tae-Woo

    2016-07-01

    A synapse-emulating electronic device based on organometal halide perovskite thin films is described by T.-W. Lee and co-workers on page 5916. The device successfully emulates important characteristics of a biological synapse. This work extends the application of organometal halide perovskites to bioinspired electronic devices, and contributes to the development of neuromorphic electronics. PMID:27442971

  7. THE DETERMINATION OF TOTAL ORGANIC HALIDE IN WATER: AN INTERLABORATORY COMPARATIVE STUDY OF TWO METHODS

    EPA Science Inventory

    Total organic halide (TOX) analyzers are commonly used to measure the amount of dissolved halogenated organic byproducts in disinfected waters. Because of the lack of information on the identity of disinfection byproducts, rigorous testing of the dissolved organic halide (DOX) pr...

  8. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt of... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halide salt of an alkylamine (generic...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses...

  9. 75 FR 5544 - Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures: Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... public meeting and availability of the Framework Document in the Federal Register (74 FR 69036) for... for Metal Halide Lamp Fixtures: Public Meeting and Availability of the Framework Document AGENCY... conservation standards for certain metal halide lamp fixtures. This document announces that the period...

  10. Thermal battery. [solid metal halide electrolytes with enhanced electrical conductance after a phase transition

    DOEpatents

    Carlsten, R.W.; Nissen, D.A.

    1973-03-06

    The patent describes an improved thermal battery whose novel design eliminates various disadvantages of previous such devices. Its major features include a halide cathode, a solid metal halide electrolyte which has a substantially greater electrical conductance after a phase transition at some temperature, and a means for heating its electrochemical cells to activation temperature.

  11. Method for producing hydrocarbon fuels and fuel gas from heavy polynuclear hydrocarbons by the use of molten metal halide catalysts

    DOEpatents

    Gorin, Everett

    1979-01-01

    In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst in a hydrocracking zone, thereafter separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide and thereafter regenerating the spent molten metal halide by incinerating the spent molten metal halide by combustion of carbon and sulfur compounds in the spent molten metal halide in an incineration zone, the improvement comprising: (a) contacting the heavy feedstocks and hydrogen in the presence of the molten metal halide in the hydrocracking zone at reaction conditions effective to convert from about 60 to about 90 weight percent of the feedstock to lighter hydrocarbon fuels; (b) separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide; (c) contacting the spent molten metal halide with oxygen in a liquid phase gasification zone at a temperature and pressure sufficient to vaporize from about 25 to about 75 weight percent of the spent metal halide, the oxygen being introduced in an amount sufficient to remove from about 60 to about 90 weight percent of the carbon contained in the spent molten metal halide to produce a fuel gas and regenerated metal halide; and (d) incinerating the spent molten metal halide by combusting carbon and sulfur compounds contained therein.

  12. Calcium phosphate cements with strontium halides as radiopacifiers.

    PubMed

    López, Alejandro; Montazerolghaem, Maryam; Engqvist, Håkan; Ott, Marjam Karlsson; Persson, Cecilia

    2014-02-01

    High radiopacity is required to monitor the delivery and positioning of injectable implants. Inorganic nonsoluble radiopacifiers are typically used in nondegradable bone cements; however, their usefulness in resorbable cements is limited due to their low solubility. Strontium halides, except strontium fluoride, are ionic water-soluble compounds that possess potential as radiopacifiers. In this study, we compare the radiopacity, mechanical properties, composition, and cytotoxicity of radiopaque brushite cements prepared with strontium fluoride (SrF2 ), strontium chloride (SrCl2 ·6H2 O), strontium bromide (SrBr2 ), or strontium iodide (SrI2 ). Brushite cements containing 10 wt % SrCl2 ·6H2 O, SrBr2 , or SrI2 exhibited equal to or higher radiopacity than commercial radiopaque cements. Furthermore, the brushite crystal lattice in cements that contained the ionic radiopacifiers was larger than in unmodified cements and in cements that contained SrF2 , indicating strontium substitution. Despite the fact that the strontium halides increased the solubility of the cements and affected their mechanical properties, calcium phosphate cements containing SrCl2 ·6H2 O, SrBr2 , and SrI2 showed no significant differences in Saos-2 cell viability and proliferation with respect to the control. Strontium halides: SrCl2 ·6H2 O, SrBr2 , and SrI2 may be potential candidates as radiopacifiers in resorbable biomaterials although their in vivo biocompatibility, when incorporated into injectable implants, is yet to be assessed.

  13. Methyl Halide Production by Periphyton Mats from the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Raffel, A.; Jones, R. D.; Rice, A. L.; Scully, N. M.

    2012-12-01

    Methyl chloride and methyl bromide are trace gases with both natural and anthropogenic origins. Once generated these gases transport chlorine and bromine into the stratosphere, where they play an important role in atmospheric chemistry by participating in ozone depleting catalytic cycles. Coastal wetlands are one location where methyl halide emissions have been proposed to be elevated due to high primary production and ionic halogens. This region also provides a unique study environment due to salt water intrusions which occur during storm or low marsh water level-high tide events. The purpose of this research was to determine how varying concentrations of salinity affect methyl halide production originating from periphyton mats within the Florida Everglades. Florida Everglades periphyton (25 g/L) were exposed to continuous 12 hour dark/light cycles in varying concentrations of salt water (0, 0.1, 1.0, and 10‰). All water samples were analyzed to determine the concentration and production rate of methyl chloride and methyl bromide in periphyton samples using a gas chromatograph coupled with an electron capture detector. The concentration of methyl chloride increased by approximately 3.4 and 60 pM over a 0 to 72 hour range for 1‰ and 10 ‰ treatments respectively, and reached a steady state concentration after 24 hours. There was no significant production of methyl bromide for all treatments. These studies will be used to gain a better understanding of methyl halide production from periphyton mats in simulated natural conditions. This research was supported by the National Science Foundation Chemical Oceanography Program Award No. 1029710.

  14. Superconductivity in alkali metal intercalated iron selenides.

    PubMed

    Krzton-Maziopa, A; Svitlyk, V; Pomjakushina, E; Puzniak, R; Conder, K

    2016-07-27

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations. PMID:27248118

  15. Durability of Alkali Activated Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  16. Superconductivity in alkali metal intercalated iron selenides.

    PubMed

    Krzton-Maziopa, A; Svitlyk, V; Pomjakushina, E; Puzniak, R; Conder, K

    2016-07-27

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  17. Superconductivity in alkali metal intercalated iron selenides

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  18. Decalcification resistance of alkali-activated slag.

    PubMed

    Komljenović, Miroslav M; Baščarević, Zvezdana; Marjanović, Nataša; Nikolić, Violeta

    2012-09-30

    This paper analyses the effects of decalcification in concentrated 6M NH(4)NO(3) solution on mechanical and microstructural properties of alkali-activated slag (AAS). Portland-slag cement (CEM II/A-S 42.5 N) was used as a benchmark material. Decalcification process led to a decrease in strength, both in AAS and in CEM II, and this effect was more pronounced in CEM II. The decrease in strength was explicitly related to the decrease in Ca/Si atomic ratio of C-S-H gel. A very low ratio of Ca/Si ~0.3 in AAS was the consequence of coexistence of C-S-H(I) gel and silica gel. During decalcification of AAS almost complete leaching of sodium and tetrahedral aluminum from C-S-H(I) gel also took place. AAS showed significantly higher resistance to decalcification in relation to the benchmark CEM II due to the absence of portlandite, high level of polymerization of silicate chains, low level of aluminum for silicon substitution in the structure of C-S-H(I), and the formation of protective layer of polymerized silica gel during decalcification process. In stabilization/solidification processes alkali-activated slag represents a more promising solution than Portland-slag cement due to significantly higher resistance to decalcification. PMID:22818592

  19. Superconductivity in alkali metal intercalated iron selenides

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2‑y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  20. New generation of medium wattage metal halide lamps and spectroscopic tools for their diagnostics

    NASA Astrophysics Data System (ADS)

    Dunaevsky, A.; Tu, J.; Gibson, R.; Steere, T.; Graham, K.; van der Eyden, J.

    2010-11-01

    A new generation of ceramic metal halide high intensity discharge (HID) lamps has achieved high efficiencies by implementing new design concepts. The shape of the ceramic burner is optimized to withstand high temperatures with minimal thermal stress. Corrosion processes with the ceramic walls are slowed down via adoption of non-aggressive metal halide chemistry. Light losses over life due to tungsten deposition on the walls are minimized by maintaining a self-cleaning chemical process, known as tungsten cycle. All these advancements have made the new ceramic metal halide lamps comparable to high pressure sodium lamps for luminous efficacy, life, and maintenance while providing white light with high color rendering. Direct replacement of quartz metal halide lamps and systems results in the energy saving from 18 up to 50%. High resolution spectroscopy remains the major non-destructive tool for the ceramic metal halide lamps. Approaches to reliable measurements of relative partial pressures of the arc species are discussed.

  1. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    SciTech Connect

    Moore, David T.; Sai, Hiroaki; Wee Tan, Kwan; Estroff, Lara A.; Wiesner, Ulrich

    2014-08-01

    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material. Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt's anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films.

  2. Volatile species in halide-activated-diffusion coating packs

    NASA Technical Reports Server (NTRS)

    Bianco, Robert; Rapp, Robert A.; Jacobson, Nathan S.

    1992-01-01

    An atmospheric pressure sampling mass spectrometer was used to identify the vapor species generated in a halide-activated cementation pack. Pack powder mixtures containing a Cr-Al binary masteralloy powder, an NH4Cl activator salt, and either ZrO2 or Y2O3 (or neither) were analyzed at 1000 C. Both the equilibrium calculations for the pack and mass spectrometer results indicated that volatile AlCl(x) and CrCl(y) species were generated by the pack powder mixture; in packs containing the reactive element oxide, volatile ZrCl(z) and YCl(w) species were formed by the conversion of their oxide sources.

  3. Systematic investigation of the Cooper minimum for the hydrogen halides

    SciTech Connect

    Carlson, T.A.; Fahlman, A.; Krause, M.O.; Whitley, T.A.; Grimm, F.A.

    1984-12-15

    Angle-resolved photoelectron spectroscopy has been carried out on the two outermost molecular orbitals of HBr using synchrotron radiation from a photon energy of 14 to 110 eV. Both partial cross sections sigma and angular distribution parameters ..beta.. have been determined experimentally. For comparison, calculations were also carried out on sigma and ..beta.. using the multiple scattering X..cap alpha.. method. Both the experimental and calculated results are discussed in terms of the Cooper minimum. Comparison is made with earlier results on HCl and HI and with results on the rare gases, which are isoelectronic with the hydrogen halides.

  4. Dynamical simulations of superionicity in alkaline-earth halides

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.; Hardy, J. R.; Cao, H. Z.

    1996-04-01

    Superionicity in alkaline-earth halides CaF 2, SrF 2 and BaF 2 has been studied by molecular dynamical simulations using Gordon-Kim potentials. These dynamical simulations employ a novel technique to monitor the motion of ions which clearly demonstrates the nature of the superionic phases in these crystals. While in the superionic phase, the Ca 2+, Ba 2+, and Sr 2+ ions maintain ideal lattice positions, the F - ions flow between them in a correlated linear manner closely related to that proposed previously by Boyer.

  5. Optical Properties of Photovoltaic Organic-Inorganic Lead Halide Perovskites.

    PubMed

    Green, Martin A; Jiang, Yajie; Soufiani, Arman Mahboubi; Ho-Baillie, Anita

    2015-12-01

    Over the last several years, organic-inorganic lead halide perovskites have rapidly emerged as a new photovoltaic contender. Although energy conversion efficiency above 20% has now been certified, improved understanding of the material properties contributing to these high performance levels may allow the progression to even higher efficiency, stable cells. The optical properties of these new materials are important not only to device design but also because of the insight they provide into less directly accessible properties, including energy-band structures, binding energies, and likely impact of excitons, as well as into absorption and inverse radiative recombination processes.

  6. Formation of lysinoalanine in egg white under alkali treatment.

    PubMed

    Zhao, Yan; Luo, Xuying; Li, Jianke; Xu, Mingsheng; Tu, Yonggang

    2016-03-01

    To investigate the formation mechanism of lysinoalanine (LAL) in eggs during the alkali treatment process, NaOH was used for the direct alkali treatment of egg white, ovalbumin, and amino acids; in addition, the amount of LAL formed during the alkali treatment process was measured. The results showed that the alkali treatment resulted in the formation of LAL in the egg white. The LAL content increased with increasing pH and temperature, with the LAL content first increasing and then leveling off with increasing time. The amount of LAL formed in the ovalbumin under the alkali treatment condition accounted for approximately 50.51% to 58.68% of the amount of LAL formed in the egg white. Thus, the LAL formed in the ovalbumin was the main source for the LAL in the egg white during the alkali treatment process. Under the alkali treatment condition, free L-serine, L-cysteine, and L-cystine reacted with L-lysine to form LAL; therefore, they are the precursor amino acids of LAL formed in eggs during the alkali treatment process. PMID:26772660

  7. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  8. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  9. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  10. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  11. Self-discharge in bimetallic cells containing alkali metal

    NASA Technical Reports Server (NTRS)

    Foster, M. S.; Hesson, J. C.; Shimotake, H.

    1969-01-01

    Theoretical analysis of thermally regenerative bimetallic cells with alkali metal anodes shows a relation between the current drawn and the rate of discharge under open-circuit conditions. The self-discharge rate of the cell is due to the dissolution and ionization of alkali metal atoms in the fused-salt electrolyte

  12. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    DOEpatents

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  13. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, Wen Y.

    1984-01-01

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them (46, 53, 61, 69) with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide (63) to precipitate silicon constituents, the pH of the resultant solution is increased (81), preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated (84) to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process (86, 18, 17) where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  14. Performance of Straight Steel Fibres Reinforced Alkali Activated Concrete

    NASA Astrophysics Data System (ADS)

    Faris, Meor Ahmad; Bakri Abdullah, Mohd Mustafa Al; Nizar Ismail, Khairul; Muniandy, Ratnasamy; Putra Jaya, Ramadhansyah

    2016-06-01

    This paper focus on the performance of alkali activated concrete produced by using fly ash activated by sodium silicate and sodium hydroxide solutions. These alkali activated concrete were reinforced with straight steel fibres with different weight percentage starting from 0 % up to 5 %. Chemical composition of raw material in the production alkali activated concrete which is fly ash was first identified by using X-ray fluorescence. Results reveal there have an effect of straight steel fibres inclusion to the alkali activated concrete. Highest compressive strength of alkali activated concrete which is 67.72 MPa was obtained when 3 % of straight fibres were added. As well as flexural strength, highest flexural strength which is 6.78 MPa was obtained at 3 % of straight steel fibres inclusions.

  15. Effects of alkali treatments on Ag nanowire transparent conductive films

    NASA Astrophysics Data System (ADS)

    Kim, Sunho; Kang, Jun-gu; Eom, Tae-yil; Moon, Bongjin; Lee, Hoo-Jeong

    2016-06-01

    In this study, we employ various alkali materials (alkali metals with different base strengths, and ammonia gas and solution) to improve the conductivity of silver nanowire (Ag NW)-networked films. The alkali treatment appears to remove the surface oxide and improve the conductivity. When applied with TiO2 nanoparticles, the treatment appears more effective as the alkalis gather around wire junctions and help them weld to each other via heat emitted from the reduction reaction. The ammonia solution treatment is found to be quick and aggressive, damaging the wires severely in the case of excessive treatment. On the other hand, the ammonia gas treatment seems much less aggressive and does not damage the wires even after a long exposure. The results of this study highlight the effectiveness of the alkali treatment in improving of the conductivity of Ag NW-networked transparent conductive films.

  16. "XA6" octahedra influencing the arrangement of anionic groups and optical properties in inverse-perovskite [B6O10]XA3 (X = Cl, Br; A = alkali metal).

    PubMed

    Yang, Zhihua; Lei, Bing-Hua; Yang, Bin; Pan, Shilie

    2016-06-01

    Exploring the effect of microscopic units, which set up the perovsikte framework, is of importance for material design. In this study, a series of borate halides with inverse-perovskite structures [B6O10]XA3 (X = Cl, Br; A = alkali metal) have been studied. It was revealed that the distortion and volume of XA6 octahedra influence the arrangement of anionic groups, which leads to the flexibility of the perovskite-related framework and differences in optical properties. Under the structural control scheme, the structure of Rb3B6O10Cl was predicted. The stability of the predicted structure was confirmed by an ab initio density functional theory-based method. The calculation shows Rb3B6O10Cl has a short UV cutoff edge of less than 200 nm, a moderate birefringence and a large second harmonic generation response. PMID:27211304

  17. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O

    USGS Publications Warehouse

    Chen, S.G.; Yang, R.T.

    1997-01-01

    From molecular orbital calculations, a unified mechanism is proposed for the gasification reactions of graphite by CO2 and H2O, both uncatalyzed and catalyzed by alkali and alkaline earth catalysts. In this mechanism, there are two types of oxygen intermediates that are bonded to the active edge carbon atoms: an in-plane semiquinone type, Cf(O), and an off-plane oxygen bonded to two saturated carbon atoms that are adjacent to the semiquinone species, C(O)Cf(O). The rate-limiting step is the decomposition of these intermediates by breaking the C-C bonds that are connected to Cf(O). A new rate equation is derived for the uncatalyzed reactions, and that for the catalyzed reactions is readily available from the proposed mechanism. The proposed mechanism can account for several unresolved experimental observations: TPD and TK (transient kinetics) desorption results of the catalyzed systems, the similar activation energies for the uncatalyzed and catalyzed reactions, and the relative activities of the alkali and alkaline earth elements. The net charge of the edge carbon active site is substantially changed by gaining electron density from the alkali or alkaline earth element (by forming C-O-M, where M stands for metal). The relative catalytic activities of these elements can be correlated with their abilities of donating electrons and changing the net charge of the edge carbon atom. As shown previously (Chen, S. G.; Yang, R. T. J. Catal. 1993, 141, 102), only clusters of the alkali compounds are active. This derives from the ability of the clusters to dissociate CO2 and H2O to form O atoms and the mobility of the dissociated O atoms facilitated by the clusters.

  18. CLUSTER CHEMISTRY

    SciTech Connect

    Muetterties, Earl L.

    1980-05-01

    Metal cluster chemistry is one of the most rapidly developing areas of inorganic and organometallic chemistry. Prior to 1960 only a few metal clusters were well characterized. However, shortly after the early development of boron cluster chemistry, the field of metal cluster chemistry began to grow at a very rapid rate and a structural and a qualitative theoretical understanding of clusters came quickly. Analyzed here is the chemistry and the general significance of clusters with particular emphasis on the cluster research within my group. The importance of coordinately unsaturated, very reactive metal clusters is the major subject of discussion.

  19. Pd-catalyzed cross-coupling reactions of alkyl halides.

    PubMed

    Kambe, Nobuaki; Iwasaki, Takanori; Terao, Jun

    2011-10-01

    Cross-coupling reactions have become indispensable tools for creating carbon-carbon (or heteroatom) bonds in organic synthesis. Like in other important transition metal catalyzed reactions, such as metathesis, addition, and polymerization, unsaturated compounds are usually employed as substrates for cross-coupling reactions. However during the past decade, a great deal of effort has been devoted to the use of alkyl halides as saturated compounds in cross-coupling reactions, which has resulted in significant progress in this undeveloped area by introducing new effective ligands. Many useful catalytic systems are now available for synthetic transformations based on C(sp(3))-C(sp(3)), C(sp(3))-C(sp(2)) and C(sp(3))-C(sp) bond formation as complementary methods to conventional C(sp(2))-C(sp(2)), C(sp(2))-C(sp) and C(sp)-C(sp) coupling. This tutorial review summarizes recent advances in cross-coupling reactions of alkyl halides and pseudohalides catalyzed by a palladium complex.

  20. Interaction of 8-Hydroxyquinoline with Cadmium Halides in Solid State

    NASA Astrophysics Data System (ADS)

    Beg, M. A.; Ahmad, A.; Beg, Saba; Askari, Hasan

    1995-07-01

    The solid state reactions of 8-hydroxyquinoline (8-HQ) and cadmium halides (CdX2; X = Cl, Br, and I) have been studied. Each reaction follows the rate equation Xn = kt. The activation energies calculated from the progress of the reaction studied by the lateral diffusion technique are 74.55 ± 1.22, 84.65 ± 3.88, and 101.66 ± 0.93 kJ mole-1 for CdCl2-8-HQ CdBr2-8-HQ and Cdl2-8-HQ reactions, respectively. 8-HQ diffuses into cadmium halide grains by a defect mechanism; penetration to the grains is preceded by surface migration. The reactions were followed by chemical analysis, IR spectral studies, and thermal and conductivity measurements. A single addition product, [CdX2-(8-HQ)], was obtained for CdCl2 and CdBr2, whereas Cdl2 gave rise to two addition products, Cdl2-(8-HQ) and Cdl2-(8-HQ)2.

  1. Tunable Near-Infrared Luminescence in Tin Halide Perovskite Devices.

    PubMed

    Lai, May L; Tay, Timothy Y S; Sadhanala, Aditya; Dutton, Siân E; Li, Guangru; Friend, Richard H; Tan, Zhi-Kuang

    2016-07-21

    Infrared emitters are reasonably rare in solution-processed materials. Recently, research into hybrid organo-lead halide perovskite, originally popular in photovoltaics,1-3 has gained traction in light-emitting diodes (LED) due to their low-cost solution processing and good performance.4-9 The lead-based electroluminescent materials show strong colorful emission in the visible region, but lack emissive variants further in the infrared. The concerns with the toxicity of lead may, additionally, limit their wide-scale applications. Here, we demonstrate tunable near-infrared electroluminescence from a lead-free organo-tin halide perovskite, using an ITO/PEDOT:PSS/CH3NH3Sn(Br1-xIx)3/F8/Ca/Ag device architecture. In our tin iodide (CH3NH3SnI3) LEDs, we achieved a 945 nm near-infrared emission with a radiance of 3.4 W sr(-1) m(-2) and a maximum external quantum efficiency of 0.72%, comparable with earlier lead-based devices. Increasing the bromide content in these tin perovskite devices widens the semiconductor bandgap and leads to shorter wavelength emissions, tunable down to 667 nm. These near-infrared LEDs could find useful applications in a range of optical communication, sensing and medical device applications.

  2. Subsurface Ectomycorrhizal Fungi: A New Source of Atmospheric Methyl Halides?

    NASA Astrophysics Data System (ADS)

    Treseder, K. K.; Redeker, K. R.; Allen, M. F.

    2001-12-01

    Incomplete source budgets for methyl halides---compounds that release inorganic halogen radicals which, in turn, catalyze atmospheric ozone depletion---limit our abilities to predict the fate of the stratospheric ozone layer. We tested the ability ectomycorrhizal fungi to produce methyl bromide and methyl iodide. These fungi are abundant in temperate forests, where they colonize tree roots and provide nutrients to their symbiotic plants in exchange for carbon compounds. The observed range of emissions from seven different species in culture is 0.001- to 100-μ g g-1 fungi d-1 for methyl bromide, and 0.5- to 500-μ g g-1 fungi d-1 for methyl iodide. While methyl chloride was not specifically tested, large emissions were observed from several species with little to no emissions observed from others. Further analyses of the effects of substrate concentration, headspace concentration, and temperature were performed on the species Cenococcum geophilum, one of the most abundant ectomycorrhizal fungi. Our results suggest that subsurface fungal emissions may be a significant global source of methyl halides.

  3. Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects.

    PubMed

    Liu, Yuanyue; Xiao, Hai; Goddard, William A

    2016-05-11

    Two-dimensional (2D) halide perovskites are emerging as promising candidates for nanoelectronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g., transition metal dichalcogenides MX2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gap states. We show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX2. The donors tend to have high formation energies and the harmful defects are difficult to form at a low halide chemical potential. Thus, we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them.

  4. Sodium-metal halide and sodium-air batteries.

    PubMed

    Ha, Seongmin; Kim, Jae-Kwang; Choi, Aram; Kim, Youngsik; Lee, Kyu Tae

    2014-07-21

    Impressive developments have been made in the past a few years toward the establishment of Na-ion batteries as next-generation energy-storage devices and replacements for Li-ion batteries. Na-based cells have attracted increasing attention owing to low production costs due to abundant sodium resources. However, applications of Na-ion batteries are limited to large-scale energy-storage systems because of their lower energy density compared to Li-ion batteries and their potential safety problems. Recently, Na-metal cells such as Na-metal halide and Na-air batteries have been considered to be promising for use in electric vehicles owing to good safety and high energy density, although less attention is focused on Na-metal cells than on Na-ion cells. This Minireview provides an overview of the fundamentals and recent progress in the fields of Na-metal halide and Na-air batteries, with the aim of providing a better understanding of new electrochemical systems.

  5. Oxide Film Aging on Alloy 22 in Halide Containing Solutions

    SciTech Connect

    Rodriguez, Martin A.; Carranza, Ricardo M.; Rebak, Raul B.

    2007-07-01

    Passive and corrosion behaviors of Alloy 22 in chloride and fluoride containing solutions, changing the heat treatment of the alloy, the halide concentration and the pH of the solutions at 90 deg. C, was investigated. The study was implemented using electrochemical techniques, which included open circuit potential monitoring over time, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements carried out at open circuit and at passivity potentials. Corrosion rates obtained by EIS measurements after 24 h immersion in naturally aerated solutions were below 0.5 {mu}m/year. The corrosion rates were practically independent of solution pH, alloy heat treatment and halide ion nature and concentration. EIS low frequency resistance values increased with applied potential in the passive domain and with polarization time in pH 6 - 1 M NaCl at 90 deg. C. This effect was attributed to an increase in the oxide film thickness and oxide film aging. High frequency capacitance measurements indicated that passive oxide on Alloy 22 presented a double n-type/p-type semiconductor behavior in the passive potential range. (authors)

  6. Elastic properties of alkali-feldspars

    NASA Astrophysics Data System (ADS)

    Waeselmann, N.; Brown, J.; Angel, R. J.; Ross, N.; Kaminsky, W.

    2013-12-01

    New measurements of single crystal elastic moduli for a suite of the alkali feldspars are reported. In order to interpret Earth's seismic structure, knowledge of the elastic properties of constituent minerals is essential. The elasticity of feldspar minerals, despite being the most abundant phase in Earth's crust (estimated to be more than 60%), were previously poorly characterized. All prior seismic and petrologic studies have utilized 50-year-old results, of questionable quality, based on 1-bar measurements on pseudo-single crystals. Alkali-feldspars present a large experimental challenge associated with their structural complexity. In the K-end member (KAlSi3O8) the symmetry is governed by Al/Si ordering, in the Na-end member (NaAlSi3O8) the symmetry is governed by whether or not there is a displacive collapse of the framework independent of the Al/Si ordering. K-feldspars exhibit monoclinic (C2/m) symmetry (necessitating determination of 13 elastic moduli) if disordered and triclinic (C-1) symmetry (21 elastic moduli) if ordered. Exsolution of Na-rich and K-rich phases is ubiquitous in natural samples, making it difficult to find suitable single phase and untwinned samples for study. The small single domain samples selected for this study were previously characterized by x-ray diffraction and microprobe analysis to ensure adequate sample quality. Surface wave velocities were measured on oriented surfaces of natural and synthetic single crystals using impulsively stimulated light scattering. A surface corrugation with a spacing of about 2 microns was impulsively created by the overlap of 100 ps infrared light pulses. The time evolution of the stimulated standing elastic waves was detected by measuring the intensity of diffraction from the surface corrugation of a variably delayed probe pulse. This method allows accurate (better than 0.2%) determination of velocities on samples smaller than 100 microns. The combination of measured surface wave velocities and

  7. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    SciTech Connect

    Wang Zhiguo; Gao Fei; Kerisit, Sebastien; Xie Yulong; Campbell, Luke W.

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF{sub 2} and BaF{sub 2}. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF{sub 2}, BaF{sub 2}, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs{sup +} relative to Na{sup +}, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  8. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    SciTech Connect

    Wang, Zhiguo; Xie, YuLong; Campbell, Luke W.; Gao, Fei; Kerisit, Sebastien N.

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF2 and BaF2. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 {per_thousand}nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF2, BaF2, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs+ relative to Na+, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  9. Fission and dipole resonances in metal clusters

    SciTech Connect

    Martin, T. P.; Billas, I. M. L.; Branz, W.; Heinebrodt, M.; Tast, F.; Malinowski, N.

    1997-06-20

    It is not obvious that metal clusters should behave like atomic nuclei--but they do. Of course the energy and distance scales are quite different. But aside from this, the properties of these two forms of condensed matter are amazingly similar. The shell model developed by nuclear physicists describes very nicely the electronic properties of alkali metal clusters. The giant dipole resonances in the excitation spectra of nuclei have their analogue in the plasmon resonances of metal clusters. Finally, the droplet model describing the fission of unstable nuclei can be successively applied to the fragmentation of highly charged metal clusters. The similarity between clusters and nuclei is not accidental. Both systems consist of fermions moving, nearly freely, in a confined space.

  10. Alkali oxide-tantalum oxide and alkali oxide-niobium oxide ionic conductors

    NASA Technical Reports Server (NTRS)

    Roth, R. S.; Parker, H. S.; Brower, W. S.; Minor, D.

    1974-01-01

    A search was made for new cationic conducting phases in alkali-tantalate and niobate systems. The phase equilibrium diagrams were constructed for the six binary systems Nb2O5-LiNbO3, Nb2O5-NaNbO3, Nb2O5-KNbO3, Ta2O5-NaTaO3, Ta2O5-LiTaO3, and Ta2O5-KTaO3. Various other binary and ternary systems were also examined. Pellets of nineteen phases were evaluated (by the sponsoring agency) by dielectric loss measurements. Attempts were made to grow large crystals of eight different phases. The system Ta2O5-KTaO3 contains at least three phases which showed peaks in dielectric loss vs. temperature. All three contain structures related to the tungsten bronzes with alkali ions in non-stoichiometric crystallographic positions.

  11. Ion Partitioning at the liquid/vapor interface of a multi-component alkali halidesolution: A model for aqueous sea salt aerosols

    SciTech Connect

    Ghosal, Sutapa; Brown, Matthew A.; Bluhm, Hendrik; Krisch, Maria J.; Salmeron, Miquel; Jungwirth, Pavel; Hemminger, John C.

    2008-12-22

    The chemistry of Br species associated with sea salt ice and aerosols has been implicated in the episodes of ozone depletion reported at Arctic sunrise. However, Br{sup -} is only a minor component in sea salt, which has a Br{sup -}/Cl{sup -} molar ratio of {approx}0.0015. Sea salt is a complex mixture of many different species, with NaCl as the primary component. In recent years experimental and theoretical studies have reported enhancement of the large, more polarizable halide ion at the liquid/vapor interface of corresponding aqueous alkali halide solutions. The proposed enhancement is likely to influence the availability of sea salt Br{sup -} for heterogeneous reactions such as those involved in the ozone depletion episodes. We report here ambient pressure x-ray photoelectron spectroscopy studies and molecular dynamics simulations showing direct evidence of Br{sup -} enhancement at the interface of an aqueous NaCl solution doped with bromide. The experiments were carried out on samples with Br{sup -}/Cl{sup -} ratios in the range 0.1% to 10%, the latter being also the ratio for which simulations were carried out. This is the first direct measurement of interfacial enhancement of Br{sup -} in a multi-component solution with particular relevance to sea salt chemistry.

  12. Heat pipes containing alkali metal working fluid

    NASA Technical Reports Server (NTRS)

    Morris, J. F. (Inventor)

    1981-01-01

    A technique for improving high temperature evaporation-condensation heat-transfer devices which have important and unique advantage in terrestrial and space energy processing is described. The device is in the form of a heat pipe comprising a sealed container or envelope which contains a capillary wick. The temperature of one end of the heat pipe is raised by the input of heat from an external heat source which is extremely hot and corrosive. A working fluid of a corrosive alkali metal, such as lithium, sodium, or potassium transfers this heat to a heat receiver remote from the heat source. The container and wick are fabricated from a superalloy containing a small percentage of a corrosion inhibiting or gettering element. Lanthanum, scandium, yttrium, thorium, and hafnium are utilized as the alloying metal.

  13. Ultrasonic coal washing to leach alkali elements from coals.

    PubMed

    Balakrishnan, S; Reddy, V Midhun; Nagarajan, R

    2015-11-01

    Deposition of fly ash particles onto heat-transfer surfaces is often one of the reasons for unscheduled shut-downs of coal-fired boilers. Fouling deposits encountered in convective sections of a boiler are characterized by arrival of ash particles in solidified (solid) state. Fouling is most frequently caused by condensation and chemical reaction of alkali vapors with the deposited ash particles creating a wet surface conducive to collect impacting ash particles. Hence, the amount of alkali elements present in coals, which, in turn, is available in the flue gas as condensable vapors, determines the formation and growth of fouling deposits. In this context, removal of alkali elements becomes vital when inferior coals having high-ash content are utilized for power generation. With the concept of reducing alkali elements present in a coal entering the combustor, whereby the fouling deposits can either be minimized or be weakened due to absence of alkali gluing effect, the ultrasonic leaching of alkali elements from coals is investigated in this study. Ultrasonic water-washing and chemical-washing, in comparison with agitation, are studied in order to estimate the intensification of the alkali removal process by sonication. PMID:26186840

  14. Alkali-activated cementitious materials: Mechanisms, microstructure and properties

    NASA Astrophysics Data System (ADS)

    Jiang, Weimin

    The goal of this study was to examine the activation reaction, microstructure, properties, identify the mechanisms of activation, and achieve an enhanced understanding of activation processes occurring during the synthesis of alkali activated cementitious materials (AAC). The discussions classify the following categories. (1) alkali activated slag cement; (2) alkali activated portland-slag cement; (3) alkali activated fly ash-slag cement; (4) alkali activated pozzolana-lime cement; (5) alkali activated pozzolana cement. The activators involved are NaOH, KOH; Nasb2SOsb4;\\ Nasb2COsb3;\\ CaSOsb4, and soluble silicate of sodium and potassium. The effect of alkali activation on the microstructure of these materials were analyzed at the micro-nanometer scale by SEM, EDS, ESEM, and TEM. Also sp{29}Si and sp{27}Al MAS-NMR, IR, Raman, TGA, and DTA were performed to characterize the phase in these systems. Slag, fly ash, silica fume, as well as blended cements containing mixtures of these and other components were characterized. A set of ordinary portland cement paste samples served as a control. This study confirmed that AAC materials have great potential because they could generate very early high strength, greater durability and high performance. Among the benefits to be derived from this research is a better understanding of the factors that control concrete properties when using AAC materials, and by controlling the chemistry and processing to produce desired microstructures and properties, as well as their durability.

  15. Controlled in-situ dissolution of an alkali metal

    DOEpatents

    Jones, Jeffrey Donald; Dooley, Kirk John; Tolman, David Donald

    2012-09-11

    A method for the controllable dissolution of one or more alkali metals from a vessel containing a one or more alkali metals and/or one or more partially passivated alkali metals. The vessel preferably comprising a sodium, NaK or other alkali metal-cooled nuclear reactor that has been used. The alkali metal, preferably sodium, potassium or a combination thereof, in the vessel is exposed to a treatment liquid, preferably an acidic liquid, more preferably citric acid. Preferably, the treatment liquid is maintained in continuous motion relative to any surface of unreacted alkali metal with which the treatment liquid is in contact. The treatment liquid is preferably pumped into the vessel containing the one or more alkali metals and the resulting fluid is extracted and optionally further processed. Preferably, the resulting off-gases are processed by an off-gas treatment system and the resulting liquids are processed by a liquid disposal system. In one preferred embodiment, an inert gas is pumped into the vessel along with the treatment liquid.

  16. Alkali elemental and potassium isotopic compositions of Semarkona chondrules

    USGS Publications Warehouse

    Alexander, C.M. O'D.; Grossman, J.N.

    2005-01-01

    We report measurements of K isotope ratios in 28 Semarkona chondrules with a wide range of petrologic types and bulk compositions as well as the compositions of CPX-mesostasis pairs in 17 type I Semarkona chondrules, including two chondrules with radial alkali zonation and 19 type II chondrules. Despite the wide range in K/Al ratios, no systematic variations in K isotopic compositions were found. Semarkona chondrules do not record a simple history of Rayleigh-type loss of K. Experimentally determined evaporation rates suggest that considerable alkali evaporation would have occurred during chondrule formation. Nevertheless, based on Na CPX-mesostasis distribution coefficients, the alkali contents of the cores of most chondrules in Semarkona were probably established at the time of final crystallization. However, Na CPX-mesostasis distribution coefficients also show that alkali zonation in type I Semarkona chondrules was produced by entry of alkalis after solidification, probably during parent body alteration. This alkali metasomatism may have gone to completion in some chondrules. Our preferred explanation for the lack of systematic isotopic enrichments, even in alkali depleted type I chondrule cores, is that they exchanged with the ambient gas as they cooled. ?? The Meteoritical Society, 2005.

  17. Mild Palladium-Catalyzed Cyanation of (Hetero)aryl Halides and Triflates in Aqueous Media

    PubMed Central

    2016-01-01

    A mild, efficient, and low-temperature palladium-catalyzed cyanation of (hetero)aryl halides and triflates is reported. Previous palladium-catalyzed cyanations of (hetero)aryl halides have required higher temperatures to achieve good catalytic activity. This current reaction allows the cyanation of a general scope of (hetero)aryl halides and triflates at 2–5 mol % catalyst loadings with temperatures ranging from rt to 40 °C. This mild method was applied to the synthesis of lersivirine, a reverse transcriptase inhibitor. PMID:25555140

  18. i-TTM Model for Ab Initio-Based Ion-Water Interaction Potentials. 1. Halide-Water Potential Energy Functions.

    PubMed

    Arismendi-Arrieta, Daniel J; Riera, Marc; Bajaj, Pushp; Prosmiti, Rita; Paesani, Francesco

    2016-03-01

    New potential energy functions (i-TTM) describing the interactions between halide ions and water molecules are reported. The i-TTM potentials are derived from fits to electronic structure data and include an explicit treatment of two-body repulsion, electrostatics, and dispersion energy. Many-body effects are represented through classical polarization within an extended Thole-type model. By construction, the i-TTM potentials are compatible with the flexible and fully ab initio MB-pol potential, which has recently been shown to accurately predict the properties of water from the gas to the condensed phase. The accuracy of the i-TTM potentials is assessed through extensive comparisons with CCSD(T)-F12, DF-MP2, and DFT data as well as with results obtained with common polarizable force fields for X(-)(H2O)n clusters with X(-) = F(-), Cl(-), Br(-), and I(-), and n = 1-8. By construction, the new i-TTM potentials will enable direct simulations of vibrational spectra of halide-water systems from clusters to bulk and interfaces.

  19. Electrochemical cell utilizing molten alkali metal electrode-reactant

    DOEpatents

    Virkar, Anil V.; Miller, Gerald R.

    1983-11-04

    An improved electrochemical cell comprising an additive-modified molten alkali metal electrode-reactant and/or electrolyte is disclosed. Various electrochemical cells employing a molten alkali metal, e.g., sodium, electrode in contact with a cationically conductive ceramic membrane experience a lower resistance and a lower temperature coefficient of resistance whenever small amounts of selenium are present at the interface of the electrolyte and the molten alkali metal. Further, cells having small amounts of selenium present at the electrolyte-molten metal interface exhibit less degradation of the electrolyte under long term cycling conditions.

  20. Bilayer resist system utilizing alkali-developable organosilicon positive photoresist

    NASA Astrophysics Data System (ADS)

    Nate, Kazuo; Mizushima, Akiko; Sugiyama, Hisashi

    1991-06-01

    A bi-layer resist system utilizing an alkali-developable organosilicon positive photoresist (OSPR) has been developed. The composite prepared from an alkali-soluble organosilicon polymer, poly(p- hydroxybenzylsilsesquioxane) and naphthoquinone diazide becomes a alkali-developable positive photoresist which is sensitive to UV (i line - g line) region, and exhibited high oxygen reactive ion etching (O2 RIE) resistance. The sensitivity and the resolution of OSPR are almost the same as those of conventional novolac-based positive photoresists. The bi-layer resist system utilizing OSPR as the top imaging layer gave fine patterns of underlayers with high aspect ratio easily.

  1. High temperature alkali corrosion of ceramics in coal gas

    SciTech Connect

    Pickrell, G.R.; Sun, T.; Brown, J.J.

    1992-02-24

    The high temperature alkali corrosion kinetics of SiC have been systematically investigated from 950 to 1100[degrees]C at 0.63 vol % alkali vapor concentration. The corrosion rate in the presence of alkaliis approximately 10[sup 4] to 10[sup 5] times faster than the oxidation rate of SiC in air. The activation energy associated with the alkali corrosion is 406 kJ/mol, indicating a highly temperature-dependent reaction rate. The rate-controlling step of the overall reaction is likely to be the dissolution of silica in the sodium silicate liquid, based on the oxygen diffusivity data.

  2. Increasing Class C fly ash reduces alkali silica reactivity

    SciTech Connect

    Hicks, J.K.

    2007-07-01

    Contrary to earlier studies, it has been found that incremental additions of Class C fly ash do reduce alkali silica reactivity (ASR), in highly reactive, high alkali concrete mixes. AST can be further reduced by substituting 5% metakaolin or silica fume for the aggregate in concrete mixes with high (more than 30%) Class C fly ash substitution. The paper reports results of studies using Class C fly ash from the Labadie Station plant in Missouri which typically has between 1.3 and 1.45% available alkalis by ASTM C311. 7 figs.

  3. Vaporisation and thermal decomposition of dialkylimidazolium halide ion ionic liquids.

    PubMed

    Lovelock, Kevin R J; Armstrong, James P; Licence, Peter; Jones, Robert G

    2014-01-28

    Vaporisation and liquid phase thermal decomposition, TD, of two halide ion ionic liquids, 1-octyl-3-methylimidazolium chloride, [C8C1Im]Cl, and 1-octyl-3-methylimidazolium iodide, [C8C1Im]I, are investigated using temperature programmed desorption (TPD) line of sight mass spectrometry (LOSMS) at ultra-high vacuum (UHV). The ability to use MS to distinguish between vaporisation and TD allows the thermodynamics/kinetics of both vaporisation and TD to be investigated within the same experiments. Vaporisation of both halide ion ionic liquids is demonstrated. For both [C8C1Im]Cl and [C8C1Im]I the vapour is shown to be composed of neutral ion pairs (NIPs). The enthalpy of vaporisation at temperature T, ΔvapHT, was experimentally determined as ΔvapH455 = 151 ± 10 kJ mol(-1) for [C8C1Im]Cl and ΔvapH480 = 149 ± 8 kJ mol(-1) for [C8C1Im]I. Extrapolation of ΔvapHT to the reference temperature, 298 K, gave ΔvapH298 = 166 ± 10 kJ mol(-1) for [C8C1Im]Cl and ΔvapH298 = 167 ± 8 kJ mol(-1) for [C8C1Im]I, higher than most ΔvapH298 values measured to date for other [C8C1Im](+)-containing ionic liquids. In addition, predictions of ΔvapH298 for other halide ion ionic liquids are made. Liquid phase TD is shown to proceed via nucleophilic substitution to give two sets of products: 1-octylimidazole and methylhalide, and 1-methylimidazole and 1-octylhalide. The activation energy of TD at a temperature T, Ea,TD,T, is measured for the nucleophilic substitution of [C8C1Im]I to give methyliodide; Ea,TD,480 = 136 ± 15 kJ mol(-1). Ea,TD,T is measured for the nucleophilic substitution of [C8C1Im]Cl to give methylchloride; Ea,TD,455 = 132 ± 10 kJ mol(-1). The fact that ΔvapHT and Ea,TD,T are the same (within error) for both ionic liquids is commented upon, and conclusions are drawn as to the thermal stability of these ionic liquids.

  4. Vaporisation and thermal decomposition of dialkylimidazolium halide ion ionic liquids.

    PubMed

    Lovelock, Kevin R J; Armstrong, James P; Licence, Peter; Jones, Robert G

    2014-01-28

    Vaporisation and liquid phase thermal decomposition, TD, of two halide ion ionic liquids, 1-octyl-3-methylimidazolium chloride, [C8C1Im]Cl, and 1-octyl-3-methylimidazolium iodide, [C8C1Im]I, are investigated using temperature programmed desorption (TPD) line of sight mass spectrometry (LOSMS) at ultra-high vacuum (UHV). The ability to use MS to distinguish between vaporisation and TD allows the thermodynamics/kinetics of both vaporisation and TD to be investigated within the same experiments. Vaporisation of both halide ion ionic liquids is demonstrated. For both [C8C1Im]Cl and [C8C1Im]I the vapour is shown to be composed of neutral ion pairs (NIPs). The enthalpy of vaporisation at temperature T, ΔvapHT, was experimentally determined as ΔvapH455 = 151 ± 10 kJ mol(-1) for [C8C1Im]Cl and ΔvapH480 = 149 ± 8 kJ mol(-1) for [C8C1Im]I. Extrapolation of ΔvapHT to the reference temperature, 298 K, gave ΔvapH298 = 166 ± 10 kJ mol(-1) for [C8C1Im]Cl and ΔvapH298 = 167 ± 8 kJ mol(-1) for [C8C1Im]I, higher than most ΔvapH298 values measured to date for other [C8C1Im](+)-containing ionic liquids. In addition, predictions of ΔvapH298 for other halide ion ionic liquids are made. Liquid phase TD is shown to proceed via nucleophilic substitution to give two sets of products: 1-octylimidazole and methylhalide, and 1-methylimidazole and 1-octylhalide. The activation energy of TD at a temperature T, Ea,TD,T, is measured for the nucleophilic substitution of [C8C1Im]I to give methyliodide; Ea,TD,480 = 136 ± 15 kJ mol(-1). Ea,TD,T is measured for the nucleophilic substitution of [C8C1Im]Cl to give methylchloride; Ea,TD,455 = 132 ± 10 kJ mol(-1). The fact that ΔvapHT and Ea,TD,T are the same (within error) for both ionic liquids is commented upon, and conclusions are drawn as to the thermal stability of these ionic liquids. PMID:24105256

  5. Metal halide arc discharge lamp having short arc length

    NASA Technical Reports Server (NTRS)

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  6. Silver halide sensitized gelatin derived from BB-640 holographic emulsion.

    PubMed

    Neipp, C; Pascual, I; Beléndez, A

    1999-03-10

    Silver halide sensitized gelatin (SHSG) is one of the most interesting techniques for the production of holographic optical elements, achieving relatively high sensitivity of photographic material with a low scattering of dichromated gelatin. Here we present experimental results for SHSG derived from the novel BB-640, a red-sensitive ultra-fine-grain emulsion from Holographic Recording Technologies (Steinau, Germany). The material is characterized before recording and after processing, and information about the thickness, absorption, and refractive-index modulation of the final holograms is obtained. The influence of the developer is analyzed, and diffraction efficiencies as great as 96.2% (after allowing for reflections) with a transmission of 1% and absorption and scatter losses of 2.8% are obtained with AAC developer. Our investigations reveal that high-quality SHSG transmission holograms may be obtained with the new BB-640 plates.

  7. Material Innovation in Advancing Organometal Halide Perovskite Functionality.

    PubMed

    Zheng, Fan; Saldana-Greco, Diomedes; Liu, Shi; Rappe, Andrew M

    2015-12-01

    Organometal halide perovskites (OMHPs) have garnered much attention recently for their unprecedented rate of increasing power conversion efficiency (PCE), positioning them as a promising basis for the next-generation photovoltaic devices. However, the gap between the rapid increasing PCE and the incomplete understanding of the structure-property-performance relationship prevents the realization of the true potential of OMHPs. This Perspective aims to provide a concise overview of the current status of OMHP research, highlighting the unique properties of OMHPs that are critical for solar applications but still not adequately explained. Stability and performance challenges of OMHP solar cells are discussed, calling upon combined experimental and theoretical efforts to address these challenges for pioneering commercialization of OMHP solar cells. Various material innovation strategies for improving the performance and stability of OMHPs are surveyed, showing that the OMHP architecture can serve as a promising and robust platform for the design and optimization of materials with desired functionalities.

  8. Enhanced quantum efficiency from hybrid cesium halide/copper photocathodes

    SciTech Connect

    Kong, Lingmei; Joly, Alan G.; Droubay, Timothy C.; Gong, Yu; Hess, Wayne P.

    2014-04-28

    The quantum efficiency (QE) of Cu is found to increase dramatically when coated by a CsI film and then irradiated by a UV laser. Over three orders of magnitude quantum efficiency enhancement at 266 nm is observed in CsI/Cu(100), indicating potential application in future photocathode devices. Upon laser irradiation, a large work function reduction to a value less than 2 eV is also observed, significantly greater than for similarly treated CsBr/Cu(100). The initial QE enhancement, prior to laser irradiation, is attributed to interface interaction and the intrinsic properties of the Cs halide film. Further QE enhancement following activation is attributed to formation of inter-band states and Cs metal accumulation at the interface induced by laser irradiation.

  9. Theoretical study of the scandium and yttrium halides

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Partridge, Harry

    1988-01-01

    The X1Sigma(+) ground states and a3Delta excited states of the diatomic halides of Sc and Y are characterized theoretically, using the SDCI coupled-pair functional method and the state-averaged CASSCF method to determine the spectroscopic constants and related properties. The techniques employed are discussed, and the results are presented in extensive tables. The dissociation energies are given as D0 = 6.00 eV for ScF, 4.55 eV for ScCl, 3.90 eV for ScBr, 6.72 eV for YF, 5.36 eV for YCl, and 4.74 eV for YBr.

  10. Material Innovation in Advancing Organometal Halide Perovskite Functionality.

    PubMed

    Zheng, Fan; Saldana-Greco, Diomedes; Liu, Shi; Rappe, Andrew M

    2015-12-01

    Organometal halide perovskites (OMHPs) have garnered much attention recently for their unprecedented rate of increasing power conversion efficiency (PCE), positioning them as a promising basis for the next-generation photovoltaic devices. However, the gap between the rapid increasing PCE and the incomplete understanding of the structure-property-performance relationship prevents the realization of the true potential of OMHPs. This Perspective aims to provide a concise overview of the current status of OMHP research, highlighting the unique properties of OMHPs that are critical for solar applications but still not adequately explained. Stability and performance challenges of OMHP solar cells are discussed, calling upon combined experimental and theoretical efforts to address these challenges for pioneering commercialization of OMHP solar cells. Various material innovation strategies for improving the performance and stability of OMHPs are surveyed, showing that the OMHP architecture can serve as a promising and robust platform for the design and optimization of materials with desired functionalities. PMID:26631361

  11. Venus: halide cloud condensation and volatile element inventories.

    PubMed

    Lewis, J S; Fegley, B

    1982-06-11

    Several recently suggested Venus cloud condensates, including aluminum chloride and halides, oxides, and sulfides of arsenic and antimony, are assessed for their thermodynamic and geochemical plausibility. Aluminum chloride can confidently be ruled out, and condensation of arsenic sulfides on the surface will cause arsenic compounds to be too rare to produce the observed clouds. Antimony may be sufficiently volatile, but the expected molecular form is gaseous antimony sulfide, not the chloride. Arsenic and antimony compounds in the atmosphere will be regulated at very low levels by sulfide precipitation, irrespective of the planetary inventory of arsenic and antimony. Thus arguments for a volatile-deficient origin for Venus based on depletion of water and mercury (relative to the earth) cannot be tested by a search for atmospheric arsenic or antimony.

  12. Giant photostriction in organic-inorganic lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; You, Lu; Wang, Shiwei; Ku, Zhiliang; Fan, Hongjin; Schmidt, Daniel; Rusydi, Andrivo; Chang, Lei; Wang, Le; Ren, Peng; Chen, Liufang; Yuan, Guoliang; Chen, Lang; Wang, Junling

    2016-04-01

    Among the many materials investigated for next-generation photovoltaic cells, organic-inorganic lead halide perovskites have demonstrated great potential thanks to their high power conversion efficiency and solution processability. Within a short period of about 5 years, the efficiency of solar cells based on these materials has increased dramatically from 3.8 to over 20%. Despite the tremendous progress in device performance, much less is known about the underlying photophysics involving charge-orbital-lattice interactions and the role of the organic molecules in this hybrid material remains poorly understood. Here, we report a giant photostrictive response, that is, light-induced lattice change, of >1,200 p.p.m. in methylammonium lead iodide, which could be the key to understand its superior optical properties. The strong photon-lattice coupling also opens up the possibility of employing these materials in wireless opto-mechanical devices.

  13. Direct current ballast circuit for metal halide lamp

    NASA Technical Reports Server (NTRS)

    Lutus, P. (Inventor)

    1981-01-01

    A direct current ballast circuit for a two electrode metal halide lamp is described. Said direct current ballast circuit includes a low voltage DC input and a high frequency power amplifier and power transformer for developing a high voltage output. The output voltage is rectified by diodes and filtered by inductor and capacitor to provide a regulated DC output through commutating diodes to one terminal of the lamp at the output terminal. A feedback path from the output of the filter capacitor through the bias resistor to power the high frequency circuit which includes the power amplifier and the power transformer for sustaining circuit operations during low voltage transients on the input DC supply is described. A current sensor connected to the output of the lamp through terminal for stabilizing lamp current following breakdown of the lamp is described.

  14. Giant photostriction in organic–inorganic lead halide perovskites

    PubMed Central

    Zhou, Yang; You, Lu; Wang, Shiwei; Ku, Zhiliang; Fan, Hongjin; Schmidt, Daniel; Rusydi, Andrivo; Chang, Lei; Wang, Le; Ren, Peng; Chen, Liufang; Yuan, Guoliang; Chen, Lang; Wang, Junling

    2016-01-01

    Among the many materials investigated for next-generation photovoltaic cells, organic–inorganic lead halide perovskites have demonstrated great potential thanks to their high power conversion efficiency and solution processability. Within a short period of about 5 years, the efficiency of solar cells based on these materials has increased dramatically from 3.8 to over 20%. Despite the tremendous progress in device performance, much less is known about the underlying photophysics involving charge–orbital–lattice interactions and the role of the organic molecules in this hybrid material remains poorly understood. Here, we report a giant photostrictive response, that is, light-induced lattice change, of >1,200 p.p.m. in methylammonium lead iodide, which could be the key to understand its superior optical properties. The strong photon-lattice coupling also opens up the possibility of employing these materials in wireless opto-mechanical devices. PMID:27044485

  15. Phase stability and electronic properties of silver halides

    NASA Astrophysics Data System (ADS)

    Boukhtouta, M.; Lamraoui, S.; Touam, S.; Meradji, H.; Ghemid, S.; El Haj Hassan, F.

    2015-04-01

    In this work, we study the phase stability and electronic properties of silver halides ( AgBr, AgCl and AgI) using the full-potential linearized augmented plane wave method within the density functional theory. In this approach, the Wu-Cohen generalized gradient approximation was used for the exchange-correlation potential. Moreover, the modified Becke-Johnson approximation was also used for band-structure calculations. Various structural phase transitions were considered here in order to confirm the most stable structure and to predict the phase transition under hydrostatic pressure. In addition, we have studied the band structures of the stable phases of these compounds which reveal that the three compounds exhibit semiconducting behavior. The results obtained are compared with other calculations and experimental measurements.

  16. Venus: Halide cloud condensation and volatile element inventories

    NASA Technical Reports Server (NTRS)

    Lewis, J. S.; Fegley, B., Jr.

    1982-01-01

    Several Venus cloud condensates, including A12C16 as well as halides, oxides and sulfides of arsenic and antimony, are assessed for their thermodynamic and geochemical plausibility. Aluminum chloride can confidently be ruled out, and condensation of arsenic sulfides on the surface will cause arsenic compounds to be too rare to produce the observed clouds. Antimony may conceivably be sufficiently volatile, but the expected molecular form is gaseous SbS, not the chloride. Arsenic and antimony compounds in the atmosphere will be regulated at very low levels by sulfide precipitation, irrespective of the planetary inventory of As and Sb. Thus the arguments for a volatile-deficient origin for Venus based on the depletion of water and mercury (relative to Earth) cannot be tested by a search for atmospheric arsenic or antimony.

  17. Electric field-induced softening of alkali silicate glasses

    SciTech Connect

    McLaren, C.; Heffner, W.; Jain, H.; Tessarollo, R.; Raj, R.

    2015-11-02

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  18. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, M.M.; Ma, Y.; Visco, S.J.; DeJonghe, L.

    1995-08-22

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  19. Alkali activation of halloysite for adsorption and release of ofloxacin

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Zhang, Junping; Wang, Aiqin

    2013-12-01

    Halloysite nanotubes are promising vehicles for the controlled release of drug molecules. Here, we systematically investigated the effects of alkali activation on the physicochemical properties, structure and morphology of halloysite nanotubes by XRD, FTIR, SEM and TEM, etc. Afterwards, the adsorption and in vitro release properties of halloysite for cationic ofloxacin (OFL) were evaluated. The results indicate that alkali activation dissolves amorphous aluminosilicate, free silica and alumina, which results in the increase in pore volume and pore size. OFL is adsorbed onto halloysite via electrostatic interaction and complexation. Alkali activation could increase the adsorption capacity of halloysite for OFL and prolong release of the adsorbed OFL compared with the natural halloysite. Thus, alkali activation of halloysite is an effective protocol to improve the adsorption and prolong release for cationic drug molecules.

  20. Hall Determination of Atomic Radii of Alkali Metals

    ERIC Educational Resources Information Center

    Houari, Ahmed

    2008-01-01

    I will propose here an alternative method for determining atomic radii of alkali metals based on the Hall measurements of their free electron densities and the knowledge of their crystal structure. (Contains 2 figures.)

  1. Effect of cavitation on removal of alkali elements from coal

    NASA Astrophysics Data System (ADS)

    Srivalli, H.; Nirmal, L.; Nagarajan, R.

    2015-12-01

    The main impurities in coal are sulphur, ash and alkali. On combustion, the volatile forms of these impurities are either condensed on the boilers, or emitted in the form of potentially hazardous gases. The alkali elements present in coal help the fly ash particles adhere to boiler surfaces by providing a wet surface on which collection of these particles can take place. Use of ultrasonic techniques in cleaning of coal has stirred interest among researchers in recent times. Extraction of alkali elements by cavitation effect using low-frequency ultrasound, in the presence of reagents (HNO3 and H2O2) is reported in this paper. Powdered coal was dissolved with the reagent and exposed to ultrasonic fields of various frequencies at different time intervals. The treated solution is filtered and tested for alkali levels.

  2. The 4843 Alkali Metal Storage Facility Closure Plan

    SciTech Connect

    Not Available

    1991-06-01

    The 4843 AMSF has been used primarily to provide a centralized building to receive and store dangerous and mixed alkali metal waste, including sodium and lithium, which has been generated at the Fast Flux Test Facility and at various other Hanford Site operations that used alkali metals. Most of the dangerous and mixed alkali metal waste received consists of retired equipment from liquid sodium processes. The unit continues to store material. In general, only solid alkali metal waste that is water reactive is stored at the 4843 AMSF. The 4843 AMSF will be closed in a manner consistent with Ecology guidelines and regulations (WAC 173-303-610). The general closure procedure is detailed as follows.

  3. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1995-01-01

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  4. Methods for synthesizing alane without the formation of adducts and free of halides

    DOEpatents

    Zidan, Ragaiy; Knight, Douglas A; Dinh, Long V

    2013-02-19

    A process is provided to synthesize an alane without the formation of alane adducts as a precursor. The resulting product is a crystallized .alpha.-alane and is a highly stable product and is free of halides.

  5. Reactivity of halide and pseudohalide ligands in transition-metal complexes

    SciTech Connect

    Kukushkin, Yu.N.; Kukushkin, V.Yu.

    1985-10-01

    The experimental material on the reactions of coordinated halide ligands, as well as cyanide, azido, thiocyanato, and cyanato ligands, in transition-metal complexes has been generalized in this review.

  6. Alkali absorption and citrate excretion in calcium nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p < 0.001). In 11 patients with distal renal tubular acidosis (RTA), urinary citrate excretion was subnormal relative to net GI alkali absorption, with data from most patients residing outside the 95% confidence ellipse described for normal subjects. However, the normal relationship between urinary citrate and net absorbed alkali was maintained in 11 patients with chronic diarrheal syndrome (CDS) and in 124 stone-forming patients devoid of RTA or CDS, half of whom had "idiopathic" hypocitraturia. The 18 stone-forming patients without RTA or CDS received potassium citrate (30-60 mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p < 0.0001), with the slope indistinguishable from that of normal subjects. Thus, urinary citrate was normally dependent on the net GI absorption of alkali. This dependence was less marked in RTA, confirming the renal origin of hypocitraturia. However, the normal dependence was maintained in CDS and in idiopathic hypocitraturia, suggesting that reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  7. Electrochemical cell having an alkali-metal-nitrate electrode

    DOEpatents

    Roche, M.F.; Preto, S.K.

    1982-06-04

    A power-producing secondary electrochemical cell includes a molten alkali metal as the negative-electrode material and a molten-nitrate salt as the positive-electrode material. The molten material in the respective electrodes are separated by a solid barrier of alkali-metal-ion conducting material. A typical cell includes active materials of molten sodium separated from molten sodium nitrate and other nitrates in mixture by a layer of sodium ..beta..'' alumina.

  8. Alkali metal yttrium neo-pentoxide double alkoxide precursors to alkali metal yttrium oxide nanomaterials

    DOE PAGES

    Boyle, Timothy J.; Neville, Michael L.; Sears, Jeremiah Matthew; Cramer, Roger

    2016-03-15

    In this study, a series of alkali metal yttrium neo-pentoxide ([AY(ONep)4]) compounds were developed as precursors to alkali yttrium oxide (AYO2) nanomaterials. The reaction of yttrium amide ([Y(NR2)3] where R=Si(CH3)3) with four equivalents of H-ONep followed by addition of [A(NR2)] (A=Li, Na, K) or Ao (Ao=Rb, Cs) led to the formation of a complex series of AnY(ONep)3+n species, crystallographically identified as [Y2Li3(μ3-ONep)(μ3-HONep)(μ-ONep)5(ONep)3(HONep)2] (1), [YNa2(μ3-ONep)4(ONep)]2 (2), {[Y2K3(μ3-ONep)3(μ-ONep)4(ONep)2(ηξ-tol)2][Y4K2(μ4-O)(μ3-ONep)8(ONep)4]•ηx-tol]} (3), [Y4K2(μ4-O)(μ3-ONep)8(ONep)4] (3a), [Y2Rb3(μ4-ONep)3(μ-ONep)6] (4), and [Y2Cs4(μ6-O)(μ3-ONep)6(μ3-HONep)2(ONep)2(ηx-tol)4]•tol (5). Compounds 1–5 were investigated as single source precursors to AYOx nanomaterials following solvothermal routes (pyridine, 185 °C for 24h). The final products after thermal processing weremore » found by powder X-ray diffraction experiments to be Y2O3 with variable sized particles based on transmission electron diffraction. Energy dispersive X-ray spectroscopy studies indicated that the heavier alkali metal species were present in the isolated nanomaterials.« less

  9. Reduction of phosphorus and alkali levels in coking coals

    SciTech Connect

    Hoare, I.C.; Waugh, A.B.

    1995-12-31

    A number of coals, though exhibiting desirable coking properties, can have undesirable levels of alkalis and phosphorus. All the phosphorus in the coal will report to the coke, eventually to the iron and thence to the steel, with adverse effects on its metallurgical properties. Alkalis have damaging effects on the blast furnace operation and can be responsible for loss of heat, loss of production, efficiency loss and reduced furnace life. Buyers of coking coal commonly specify such parameters as phosphorus in coal and alkalis in ash, with penalties and rejection over certain limits. With the introduction of new direct reduction technologies such as COREX and HISMELT, and others such as PCI, it is anticipated that coal producers will have even tighter phosphorus and alkali specifications imposed on their products. Phosphorus is predominantly inorganic in origin occurring in a wide variety of minerals in coal, but its main source is apatite. It can be found mainly in the lower density fractions of the coal and intimately bound, so that conventional physical beneficiation techniques are relatively ineffective. CSIRO has developed a cost effective, selective chemical demineralization treatment, which can be applied to the problem of high alkali, high phosphorus coals. This particular technique makes use of unrefined organic acid, which also has the advantage of being low in cost and environmentally benign. In this paper, the effectiveness of acid demineralization of a number of coals is discussed, within the context of their phosphorus and alkali distributions throughout various size/density fractions.

  10. Two-phase alkali-metal experiments in reduced gravity

    SciTech Connect

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity.

  11. A combined metal-halide/metal flux synthetic route towards type-I clathrates: crystal structures and thermoelectric properties of A8Al8Si38 (A = K, Rb, and Cs).

    PubMed

    Baran, Volodymyr; Senyshyn, Anatoliy; Karttunen, Antti J; Fischer, Andreas; Scherer, Wolfgang; Raudaschl-Sieber, Gabriele; Fässler, Thomas F

    2014-11-10

    Single-phase samples of the compounds K8Al8Si38 (1), Rb8Al8Si38 (2), and Cs7.9Al7.9Si38.1 (3) were obtained with high crystallinity and in good quantities by using a novel flux method with two different flux materials, such as Al and the respective alkali-metal halide salt (KBr, RbCl, and CsCl). This approach facilitates the removal of the product mixture from the container and also allows convenient extraction of the flux media due to the good solubility of the halide salts in water. The products were analyzed by means of single-crystal X-ray structure determination, powder X-ray and neutron diffraction experiments, (27)Al-MAS NMR spectroscopy measurements, quantum chemical calculations, as well as magnetic and transport measurements (thermal conductivity, electrical resistivity, and Seebeck coefficient). Due to the excellent quality of the neutron diffraction data, the difference between the nuclear scattering factors of silicon and aluminum atoms was sufficient to refine their mixed occupancy at specific sites. The role of variable-range hopping for the interpretation of the resistivity and the Seebeck coefficient is discussed. PMID:25267571

  12. Conceptual design of an angular multiplexed rare gas halide laser fusion driver

    NASA Astrophysics Data System (ADS)

    Parks, J. H.

    1980-11-01

    A conceptual definition for angular multiplexed rare gas halide drivers was formulated and several design examples analyzed. Angular multiplexed rare gas halide lasers can be designed to meet inertial confinement fusion requirements. These lasers are scalable, emit at short wavelengths (KiF 250 nm), and through the use of optical angular multiplexing, produce the required high energy (approx. 1 to 5 MJ) in a short plse (approx. 10 nsec) with projected overall efficiency in the range of 5 to 7%.

  13. Bioinorganic Chemistry of the Alkali Metal Ions.

    PubMed

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced. PMID:26860297

  14. Superconductivity in alkali-doped fullerene nanowhiskers.

    PubMed

    Takeya, Hiroyuki; Konno, Toshio; Hirata, Chika; Wakahara, Takatsugu; Miyazawa, Kun'ichi; Yamaguchi, Takahide; Tanaka, Masashi; Takano, Yoshihiko

    2016-09-01

    Superconductivity in alkali metal-doped fullerene nanowhiskers (C60NWs) was observed in K3.3C60NWs, Rb3.0C60NWs and Cs2.0Rb1.0C60NWs with transition temperatures at 17, 25 and 26 K, respectively. Almost full shielding volume fraction (~80%) was observed in K3.3C60NWs when subjected to thermal treatment at 200 °C for a duration of 24 h. In contrast, the shielding fraction of Rb3.0C60NWs and Cs2.0Rb1.0C60NWs were calculated to be 8% and 6%, respectively. Here we report on an extensive investigation of the superconducting properties of these AC60NWs (A  =  K3.3, Rb3.0 and Cs2.0Rb1.0). These properties are compared to the ones reported on the corresponding conventional (single-crystal or powder) K-doped fullerene. We also evaluated the critical current densities of these C60NWs using the Bean model under an applied magnetic field up to 50 kOe. PMID:27385220

  15. Superconductivity in alkali-doped fullerene nanowhiskers.

    PubMed

    Takeya, Hiroyuki; Konno, Toshio; Hirata, Chika; Wakahara, Takatsugu; Miyazawa, Kun'ichi; Yamaguchi, Takahide; Tanaka, Masashi; Takano, Yoshihiko

    2016-09-01

    Superconductivity in alkali metal-doped fullerene nanowhiskers (C60NWs) was observed in K3.3C60NWs, Rb3.0C60NWs and Cs2.0Rb1.0C60NWs with transition temperatures at 17, 25 and 26 K, respectively. Almost full shielding volume fraction (~80%) was observed in K3.3C60NWs when subjected to thermal treatment at 200 °C for a duration of 24 h. In contrast, the shielding fraction of Rb3.0C60NWs and Cs2.0Rb1.0C60NWs were calculated to be 8% and 6%, respectively. Here we report on an extensive investigation of the superconducting properties of these AC60NWs (A  =  K3.3, Rb3.0 and Cs2.0Rb1.0). These properties are compared to the ones reported on the corresponding conventional (single-crystal or powder) K-doped fullerene. We also evaluated the critical current densities of these C60NWs using the Bean model under an applied magnetic field up to 50 kOe.

  16. Bioinorganic Chemistry of the Alkali Metal Ions.

    PubMed

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced.

  17. Superconductivity in alkali-doped fullerene nanowhiskers

    NASA Astrophysics Data System (ADS)

    Takeya, Hiroyuki; Konno, Toshio; Hirata, Chika; Wakahara, Takatsugu; Miyazawa, Kun'ichi; Yamaguchi, Takahide; Tanaka, Masashi; Takano, Yoshihiko

    2016-09-01

    Superconductivity in alkali metal-doped fullerene nanowhiskers (C60NWs) was observed in K3.3C60NWs, Rb3.0C60NWs and Cs2.0Rb1.0C60NWs with transition temperatures at 17, 25 and 26 K, respectively. Almost full shielding volume fraction (~80%) was observed in K3.3C60NWs when subjected to thermal treatment at 200 °C for a duration of 24 h. In contrast, the shielding fraction of Rb3.0C60NWs and Cs2.0Rb1.0C60NWs were calculated to be 8% and 6%, respectively. Here we report on an extensive investigation of the superconducting properties of these AC60NWs (A  =  K3.3, Rb3.0 and Cs2.0Rb1.0). These properties are compared to the ones reported on the corresponding conventional (single-crystal or powder) K-doped fullerene. We also evaluated the critical current densities of these C60NWs using the Bean model under an applied magnetic field up to 50 kOe.

  18. Cluster headache

    MedlinePlus

    Histamine headache; Headache - histamine; Migrainous neuralgia; Headache - cluster; Horton's headache; Vascular headache - cluster ... be related to the body's sudden release of histamine (chemical in the body released during an allergic ...

  19. Preliminary Study on Synthesis of Organolead Halide with Lead Derived from Solder Wire

    NASA Astrophysics Data System (ADS)

    Pratiwi, P.; Rahmi, G. N.; Aimon, A. H.; Iskandar, F.; Abdullah, M.; Nuryadin, B. W.

    2016-08-01

    Organolead halide has attracted great attention for application in perovskite solar cells due to its high power conversion efficiency (PCE) of up to 20.1%. One of the most common perovskite materials is lead based reagent. In this research, we have synthesized organolead halide with lead extracted from solder wire. In the preparation procedure, first PbCl2 and PbI2 are produced by reacting lead from the solder wire with NaCl and KI, which are used as the basic substance for the perovskite material. Then, in order to get perovskite solution, the powders are reacted with methylamine iodide (MAI) in dimethylformamide (DMF) using a solution based method. Further, the spin coating method is used to fabricate perovskite thin film. The XRD peak results agreed with JCPDS Powder Diffraction of PbCl2 and PbI2. Based on FTIR, the transmittance spectra of the organolead mixed halide that was prepared using solder wire lead exhibited absorption peaks identical to organolead mixed halide using commercial lead. The UV-Vis absorbance spectra of the organolead mixed halide from solder wire lead also exhibited the same absorption ability as from commercial lead. Morever, EDS measurement showed that the element composition of the perovskite thin film using lead from solder wire identical to that from commercial lead. This indicates that solder wire lead is suitable enough for organolead halide material synthesis.

  20. Mechanistic Aspects of Aryl-Halide Oxidative Addition, Coordination Chemistry, and Ring-Walking by Palladium.

    PubMed

    Zenkina, Olena V; Gidron, Ori; Shimon, Linda J W; Iron, Mark A; van der Boom, Milko E

    2015-11-01

    This contribution describes the reactivity of a zero-valent palladium phosphine complex with substrates that contain both an aryl halide moiety and an unsaturated carbon-carbon bond. Although η(2) -coordination of the metal center to a C=C or C≡C unit is kinetically favored, aryl halide bond activation is favored thermodynamically. These quantitative transformations proceed under mild reaction conditions in solution or in the solid state. Kinetic measurements indicate that formation of η(2) -coordination complexes are not nonproductive side-equilibria, but observable (and in several cases even isolated) intermediates en route to aryl halide bond cleavage. At the same time, DFT calculations show that the reaction with palladium may proceed through a dissociation-oxidative addition mechanism rather than through a haptotropic intramolecular process (i.e., ring walking). Furthermore, the transition state involves coordination of a third phosphine to the palladium center, which is lost during the oxidative addition as the C-halide bond is being broken. Interestingly, selective activation of aryl halides has been demonstrated by adding reactive aryl halides to the η(2) -coordination complexes. The product distribution can be controlled by the concentration of the reactants and/or the presence of excess phosphine.

  1. Meaningful Clusters

    SciTech Connect

    Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2004-05-26

    We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

  2. Abell Clusters

    NASA Astrophysics Data System (ADS)

    Katgert, P.; Murdin, P.

    2000-11-01

    Abell clusters are the most conspicuous groupings of galaxies identified by George Abell on the plates of the first photographic survey made with the SCHMIDT TELESCOPE at Mount Palomar in the 1950s. Sometimes, the term Abell clusters is used as a synonym of nearby, optically selected galaxy clusters....

  3. One-Pot Ketone Synthesis with Alkylzinc Halides Prepared from Alkyl Halides via a Single Electron Transfer (SET) Process: New Extension of Fukuyama Ketone Synthesis.

    PubMed

    Lee, Jung Hwa; Kishi, Yoshito

    2016-06-01

    One-pot ketone synthesis has been developed with in situ activation of alkyl halides to alkylzinc halides in the presence of thioesters and Pd-catalyst. The new method provides us with a reliable option for a coupling at a late stage in a convergent synthesis of complex molecules, with use of a near 1:1 molar ratio of coupling partners. First, two facile, orthogonal methods have been developed for preparation of alkylzinc halides: (1) direct insertion of zinc dust to 1°- and 2°-alkyl halides in the presence of LiI in DMI and (2) early transition-metal assisted activation of alkyl halides via a single electron transfer (SET) process. CrCl2 has been found as an unprecedented, inevitable mediator for preparation of alkylzinc halides from alkyl halides, where CrCl2 likely functions to trap R·, generated via a SET process, and transfer it to Zn(II) to form RZnX. In addition to a commonly used CoPc, a new radical initiator NbCpCl4 has been discovered through the study. Second, with use of the two orthogonal methods, three sets of coupling conditions have been developed to complete one-pot ketone synthesis, with Condition A (Pd2dba3, PR3, Zn, LiI, TESCl, DMI), Condition B (A + CrCl2), and Condition C (B + NbCpCl4 or CoPc) being useful for simple linear and α-substituted substrates, simple linear and β-substituted substrates, and complex substrates, respectively. Condition C is applicable to the broadest range of substrates. Overall, one-pot ketone synthesis gives excellent yields, with good functional group tolerance. Controlled formation of alkylzinc halides by a combination of CrCl2 and NbCpCl4 or CoPc is crucial for its application to complex substrates. Interestingly, one-pot ketone synthesis does not suffer from the chemical instability due to the inevitable radical pathway(s), for example a 1,5-H shift. Notably, even with the increase in molecular size, no significant decrease in coupling efficiency has been noticed. To illustrate the synthetic value at a late

  4. Observation of vapor pressure enhancement of rare-earth metal-halide salts in the temperature range relevant to metal-halide lamps

    SciTech Connect

    Curry, J. J.; Henins, A.; Hardis, J. E.; Estupinan, E. G.; Lapatovich, W. P.; Shastri, S. D.

    2012-02-20

    Total vapor-phase densities of Dy in equilibrium with a DyI{sub 3}/InI condensate and Tm in equilibrium with a TmI{sub 3}/TlI condensate have been measured for temperatures between 900 K and 1400 K. The measurements show strong enhancements in rare-earth vapor densities compared to vapors in equilibrium with the pure rare-earth metal-halides. The measurements were made with x-ray induced fluorescence on the sector 1-ID beam line at the Advanced Photon Source. The temperature range and salt mixtures are relevant to the operation of metal-halide high-intensity discharge lamps.

  5. Influence of halide flux on the crystallinity, microstructure and thermoluminescence properties of CdSiO{sub 3}:Co{sup 2+} nanophosphor

    SciTech Connect

    Manjunatha, C.; Nagabhushana, B.M.; Sunitha, D.V.; Nagabhushana, H.; Sharma, S.C.; Chakradhar, R.P.S.

    2013-01-15

    Graphical abstract: TL glow curves of CdSiO{sub 3}:Co{sup 2+} different alkali flux (inset without adding flux). Display Omitted Highlights: ► CdSiO{sub 3}:Co{sup 2+} (1–7 mol%) nanocrystalline phosphors synthesized by combustion route. ► Flux effect on thermoluminescence behavior of CdSiO{sub 3}:Co{sup 2+} reported for first time. ► Addition of 2 wt% of flux would drastically enhance the TL properties. ► Well resolved single glow peak at ∼170 °C was recorded for all the samples. ► Among all the alkali flux, NaCl shows highest TL peak intensity. -- Abstract: CdSiO{sub 3}:Co{sup 2+} (1–7 mol %) nanophosphors have been prepared via solution combustion method with post calcination at 800 °C for 2 h for the first time. The formation of expected monoclinic phase was investigated by Powder X-ray diffraction (PXRD) measurements. The effect of different fluxes like NaF, NaCl, NH{sub 4}F and NH{sub 4}Cl on the crystallinity, phase and morphology of CdSiO{sub 3} was investigated in detail. The crystallinity of the samples can be greatly enhanced by using fluxes rather than increasing the calcination temperature. Scanning electronic micrograph (SEM) image shows that the powder morphologies are highly influenced by flux addition. The addition of 2 wt% of fluxes would drastically enhance the crystallinity when NaCl, NH{sub 4}F and NH{sub 4}Cl fluxes are used. A well resolved single thermoluminescent glow peak at ∼170 °C was recorded for all the samples. Among all the halide fluxes, NaCl flux was found to be the potential one in enhancing the TL peak intensity along with crystallinity.

  6. Alkali-aggregate reactivity of typical siliceious glass and carbonate rocks in alkali-activated fly ash based geopolymers

    NASA Astrophysics Data System (ADS)

    Lu, Duyou; Liu, Yongdao; Zheng, Yanzeng; Xu, Zhongzi; Shen, Xiaodong

    2013-08-01

    For exploring the behaviour of alkali-aggregate reactivity (AAR) in alkali-activated geopolymeric materials and assessing the procedures for testing AAR in geopolymers, the expansion behaviour of fly ash based geopolymer mortars with pure silica glass and typical carbonate rocks were studied respectively by curing at various conditions, i.e. 23°C and 38°C with relative humidity over 95%, immersed in 1M NaOH solution at 80°C. Results show that, at various curing conditions, neither harmful ASR nor harmful ACR was observed in geopolymers with the criteria specified for OPC system. However, with the change of curing conditions, the geopolymer binder and reactive aggregates may experience different reaction processes leading to quite different dimensional changes, especially with additional alkalis and elevated temperatures. It suggests that high temperature with additional alkali for accelerating AAR in traditional OPC system may not appropriate for assessing the alkali-aggregate reactivity behaviour in geopolymers designed for normal conditions. On the other hand, it is hopeful to control the dimensional change of geopolymer mortar or concrete by selecting the type of aggregates and the appropriate curing conditions, thus changing the harmful AAR in OPC into beneficial AAR in geopolymers and other alkali-activated cementitious systems.

  7. Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Ramesh, B.; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    The mixed alkali and alkaline earth oxide borate glass with the composition xK2O - (25-x) Li2O-12.5BaO-12.5MgO-50B2O3 (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α02-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α02-), and (Λ) increases with increasing of K2O content and electronic polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K2O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).

  8. Water Content of Lunar Alkali Fedlspar

    NASA Technical Reports Server (NTRS)

    Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

    2016-01-01

    Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of < 1 ppm in urKREEP. Using these data, predict that the bulk water content of the magma ocean would have <10 ppm. In contrast, estimate water contents of 320 ppm for the bulk Moon and 1.4 wt % for urKREEP from plagioclase in ferroan anorthosites. Results and interpretation: NanoSIMS data from granitic clasts from Apollo sample 15405,78 show that alkali feldspar, a common mineral in K-enriched rocks, can have approx. 20 ppm of water, which implies magmatic water contents of approx. 1 wt % in the high-silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was

  9. Alkali content of alpine ultramafic rocks

    USGS Publications Warehouse

    Hamilton, W.; Mountjoy, W.

    1965-01-01

    The lower limit of abundance of sodium and potassium in ultramafic rocks is less than the threshold amount detectable by conventional analytical methods. By a dilutionaddition modification of the flame-spectrophotometric method, sodium and potassium have been determined in 40 specimens of alpine ultramafic rocks. Samples represent six regions in the United States and one in Australia, and include dunite, peridotite, pyroxenite, and their variably serpentinized and metamorphosed derivatives. The median value found for Na2O is 0.004 per cent, and the range of Na2O is 0.001-0.19. The median value for K2O is 0.0034 per cent and the range is 0.001-0.031 per cent. Alkali concentrations are below 0.01 per cent Na2O in 28 samples and below 0.01 per cent K2O in 35. Derivation of basalt magma from upper-mantle material similar to such ultramafic rocks, as has been postulated, is precluded by the relative amounts of sodium and potassium, which are from 200 to 600 times more abundant in basalt than in the ultramafic rocks. Similar factors apply to a number of other elements. No reasonable process could produce such concentrations in, for example, tens of thousands of cubic miles of uniform tholeiitic basalt. The ultramafic rocks might have originated either as magmatic crystal precipitates or as mantle residues left after fusion and removal of basaltic magma. Injection of ultramafic rocks to exposed positions is tectonic rather than magmatic. ?? 1965.

  10. Nucleophilic addition to a p-benzyne derived from an enediyne: a new mechanism for halide incorporation into biomolecules.

    PubMed

    Perrin, Charles L; Rodgers, Betsy L; O'Connor, Joseph M

    2007-04-18

    Biosynthesis of haloaromatics ordinarily occurs by electrophilic attack of an activated halogen species on an electron-rich aromatic ring. We now present the discovery of a new reaction whereby a nucleophilic halide anion can be attached even to an aromatic ring without activating substituents. We show that the enediyne cyclodeca-1,5-diyn-3-ene, in the presence of lithium halide and a weak acid, is converted to 1-halotetrahydronaphthalene. The kinetics are consistent with rate-limiting cyclization to a p-benzyne biradical that rapidly adds halide and is then protonated. This reaction has interesting mechanistic features and important implications for incorporation of halide into biomolecules.

  11. Photophysics of Hybrid Lead Halide Perovskites: The Role of Microstructure.

    PubMed

    Srimath Kandada, Ajay Ram; Petrozza, Annamaria

    2016-03-15

    Since the first reports on high efficiency, solution processed solar cells based on hybrid lead halide perovskites, there has been an explosion of activities on these materials. Researchers with interests spanning the full range from conventional inorganic to emerging organic and hybrid optoelectronic technologies have been contributing to the prolific research output. This has led to solar cell power conversion efficiencies now exceeding 20% and the demonstration of proofs of concept for electroluminescent and lasing devices. Hybrid perovskites can be self-assembled by a simple chemical deposition of the constituent units, with the possibility of integrating the useful properties of organic and inorganic compounds at the molecular scale within a single crystalline material, thus enabling a fine-tuning of the electronic properties. Tellingly, the fundamental properties of these materials may make us think of a new, solution processable, GaAs-like semiconductor. While this can be true to a first approximation, hybrid perovskites are intrinsically complex materials, where the presence of various types of interactions and structural disorder may strongly affect their properties. In particular, a clear understanding and control of the relative interactions between the organic and inorganic moieties is of paramount importance to properly disentangle their innate physics. In this Account we review our recent studies which aim to clarify the relationship between structural and electronic properties from a molecular to mesoscopic level. First we identify the markers for local disorder at the molecular level by using Raman spectroscopy as a probe. Then, we exploit such a tool to explore the role of microstructure on the absorption and luminescence properties of the semiconductor. Finally we address the controversy surrounding electron-hole interactions and excitonic effects. We show that in hybrid lead-halide perovskites dielectric screening also depends on the local

  12. Highly Effective Pt-Based Water–Gas Shift Catalysts by Surface Modification with Alkali Hydroxide Salts

    PubMed Central

    Kusche, Matthias; Bustillo, Karen; Agel, Friederike; Wasserscheid, Peter

    2015-01-01

    Herein, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid film of alkali hydroxide forms on the alumina surface, which increases the availability of H2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H2O partial pressures. TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240 h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5 wt %. PMID:26413174

  13. Highly Effective Pt-Based Water-Gas Shift Catalysts by Surface Modification with Alkali Hydroxide Salts

    SciTech Connect

    Kusche, Matthias; Bustillo, Karen; Agel, Friederike; Wasserscheid, Peter

    2015-01-29

    Here, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid film of alkali hydroxide forms on the alumina surface, which increases the availability of H2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H2O partial pressures. In conclusion, TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5wt%.

  14. Highly Effective Pt-Based Water-Gas Shift Catalysts by Surface Modification with Alkali Hydroxide Salts

    DOE PAGES

    Kusche, Matthias; Bustillo, Karen; Agel, Friederike; Wasserscheid, Peter

    2015-01-29

    Here, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid filmmore » of alkali hydroxide forms on the alumina surface, which increases the availability of H2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H2O partial pressures. In conclusion, TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5wt%.« less

  15. Multi-photon processes in alkali metal vapors

    NASA Astrophysics Data System (ADS)

    Gai, Baodong; Hu, Shu; Li, Hui; Shi, Zhe; Cai, Xianglong; Guo, Jingwei; Tan, Yannan; Liu, Wanfa; Jin, Yuqi; Sang, Fengting

    2015-02-01

    Achieving population inversion through multi-photon cascade pumping is almost always difficult, and most laser medium work under 1-photon excitation mechanism. But for alkali atoms such as cesium, relatively large absorption cross sections of several low, cascading energy levels enable them properties such as up conversion. Here we carried out research on two-photon excitation alkali fluorescence. Two photons of near infrared region are used to excite alkali atoms to n 2 D5/2, n 2 D3/2 or higher energy levels, then the blue fluorescence of (n+1) 2 P3/2,(n+1) 2 P1/2-->n 2 S1/2 are observed. Different pumping paths are tried and by the recorded spectra, transition routes of cesium are deducted and concluded. Finally the possibility of two-photon style DPALs (diode pumped alkali laser) are discussed, such alkali lasers can give output wavelengths in the shorter end of visual spectroscopy (400-460 nm) and are expected to get application in underwater communication and material laser processing.

  16. Data Clustering

    NASA Astrophysics Data System (ADS)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained

  17. Alternative translocation of protons and halide ions by bacteriorhodopsin

    SciTech Connect

    Der, A.; Szaraz, S.; Toth-Boconadi, R.; Tokaji, Z.; Keszthelyi, L.; Stoeckenius, W. )

    1991-06-01

    Bacteriorhodopsin (bR568) in purple membrane near pH 2 shifts its absorption maximum from 568 to 605 nm forming the blue protein bRacid605, which no longer transports protons and which shows no transient deprotonation of the Schiff base upon illumination. Continued acid titration with HCl or HBr but not H2SO4 restores the purple chromophore to yield bRHCl564 or bRHBr568. These acid purple forms also regain transmembrane charge transport, but no transient Schiff base deprotonation is observed. In contrast to bR568, no rate decrease of the bRacidpurple transport kinetics is detected in 2H2O; however, the transport rate decreases by a factor of {approximately} 2 in bRHBr568 compared with bRHCl564. The data indicate that in the acid purple form bR transports the halide anions instead of protons. The authors present a testable model for the transport mechanism, which should also be applicable to halorhodopsin.

  18. Emission Enhancement and Intermittency in Polycrystalline Organolead Halide Perovskite Films.

    PubMed

    Li, Cheng; Zhong, Yu; Luna, Carlos Andres Melo; Unger, Thomas; Deichsel, Konstantin; Gräser, Anna; Köhler, Jürgen; Köhler, Anna; Hildner, Richard; Huettner, Sven

    2016-01-01

    Inorganic-organic halide organometal perovskites have demonstrated very promising performance for opto-electronic applications, such as solar cells, light-emitting diodes, lasers, single-photon sources, etc. However, the little knowledge on the underlying photophysics, especially on a microscopic scale, hampers the further improvement of devices based on this material. In this communication, correlated conventional photoluminescence (PL) characterization and wide-field PL imaging as a function of time are employed to investigate the spatially- and temporally-resolved PL in CH₃NH₃PbI3-xClx perovskite films. Along with a continuous increase of the PL intensity during light soaking, we also observe PL blinking or PL intermittency behavior in individual grains of these films. Combined with significant suppression of PL blinking in perovskite films coated with a phenyl-C61-butyric acid methyl ester (PCBM) layer, it suggests that this PL intermittency is attributed to Auger recombination induced by photoionized defects/traps or mobile ions within grains. These defects/traps are detrimental for light conversion and can be effectively passivated by the PCBM layer. This finding paves the way to provide a guideline on the further improvement of perovskite opto-electronic devices. PMID:27548128

  19. Tallgrass Prairie as a Source and Sink of Methyl Halides

    NASA Astrophysics Data System (ADS)

    Abel, T.; Rhew, R. C.; Mazeas, O.; Atwood, A.; King, A. J.; Ma, L.; Whelan, M.

    2007-12-01

    Temperate grasslands are believed to be a globally significant sink for methyl bromide (CH3Br) and perhaps methyl chloride (CH3Cl), compounds which lead to stratospheric ozone destruction. Fluxes of these compounds were measured at Konza Prairie, a tallgrass prairie in the Flint Hills of Kansas, during June 2006 and August 2007. A stable isotope tracer technique was used to distinguish between simultaneous production and oxidation processes, allowing the first gross flux measurements of CH3Cl and CH3Br from a tallgrass prairie. Observed gross uptake rates of CH3Cl and CH3Br were similar to what we previously observed from the shortgrass steppe in Colorado and annual grasslands in California, but much lower than reported fluxes from a grassland in northeastern North America. A water manipulation experiment was performed both under controlled laboratory conditions, as well as in the field, demonstrating that uptake rates of both CH3Cl and CH3Br were strongly affected by soil moisture. On the production side, new sources of methyl halides were identified in association with certain plant species. Fluxes of these halogenated trace gases were compared to environmental variables, such as air temperature and volumetric water content. Net fluxes of methyl iodide (CH3I), carbon tetrachloride (CCl4), and other halogenated volatile organic compounds (HVOCs), were also measured.

  20. Elusive Presence of Chloride in Mixed Halide Perovskite Solar Cells.

    PubMed

    Colella, Silvia; Mosconi, Edoardo; Pellegrino, Giovanna; Alberti, Alessandra; Guerra, Valentino L P; Masi, Sofia; Listorti, Andrea; Rizzo, Aurora; Condorelli, Guglielmo Guido; De Angelis, Filippo; Gigli, Giuseppe

    2014-10-16

    The role of chloride in the MAPbI3-xClx perovskite is still limitedly understood, albeit subjected of much debate. Here, we present a combined angle-resolved X-ray photoelectron spectroscopy (AR-XPS) and first-principles DFT modeling to investigate the MAPbI3-xClx/TiO2 interface. AR-XPS analyses carried out on ad hoc designed bilayers of MAPbI3-xClx perovskite deposited onto a flat TiO2 substrate reveal that the chloride is preferentially located in close proximity to the perovskite/TiO2 interface. DFT calculations indicate the preferential location of chloride at the TiO2 interface compared to the bulk perovskite due to an increased chloride-TiO2 surface affinity. Furthermore, our calculations clearly demonstrate an interfacial chloride-induced band bending, creating a directional "electron funnel" that may improve the charge collection efficiency of the device and possibly affecting also recombination pathways. Our findings represent a step forward to the rationalization of the peculiar properties of mixed halide perovskite, allowing one to further address material and device design issues. PMID:26278605

  1. Experimental and theoretical optical properties of methylammonium lead halide perovskites.

    PubMed

    Leguy, Aurélien M A; Azarhoosh, Pooya; Alonso, M Isabel; Campoy-Quiles, Mariano; Weber, Oliver J; Yao, Jizhong; Bryant, Daniel; Weller, Mark T; Nelson, Jenny; Walsh, Aron; van Schilfgaarde, Mark; Barnes, Piers R F

    2016-03-28

    The optical constants of methylammonium lead halide single crystals CH3NH3PbX3 (X = I, Br, Cl) are interpreted with high level ab initio calculations using the relativistic quasiparticle self-consistent GW approximation (QSGW). Good agreement between the optical constants derived from QSGW and those obtained from spectroscopic ellipsometry enables the assignment of the spectral features to their respective inter-band transitions. We show that the transition from the highest valence band (VB) to the lowest conduction band (CB) is responsible for almost all the optical response of MAPbI3 between 1.2 and 5.5 eV (with minor contributions from the second highest VB and the second lowest CB). The calculations indicate that the orientation of [CH3NH3](+) cations has a significant influence on the position of the bandgap suggesting that collective orientation of the organic moieties could result in significant local variations of the optical properties. The optical constants and energy band diagram of CH3NH3PbI3 are then used to simulate the contributions from different optical transitions to a typical transient absorption spectrum (TAS). PMID:26477295

  2. High power metallic halide laser. [amplifying a copper chloride laser

    NASA Technical Reports Server (NTRS)

    Pivirotto, T. J. (Inventor)

    1982-01-01

    A laser amplification system is disclosed whereby a metallic halide vapor such as copper chloride is caused to flow through a laser amplifier and a heat exchanger in a closed loop system so that the flow rate is altered to control the temperature rise across the length of the laser amplifier. The copper atoms within the laser amplifier should not exceed a temperature of 3000 K, so that the number of copper atoms in the metastable state will not be high enough to prevent amplification in the amplifier. A molecular dissociation apparatus is provided at the input to the laser amplifier for dissociating the copper chloride into copper atoms and ions and chlorine atoms and ions. The dissociation apparatus includes a hollow cathode tube and an annular ring spaced apart from the tube end. A voltage differential is applied between the annular ring and the hollow cathode tube so that as the copper chloride flows through, it is dissociated into copper and chlorine ions and atoms.

  3. Calcium Phosphate: A potential host for halide contaminated plutonium wastes.

    SciTech Connect

    Metcalfe, Brian L.; Donald, Ian W.; Fong, Shirley K.; Gerrard, Lee A.; Strachan, Denis M.; Scheele, Randall D.

    2009-07-06

    The presence of significant quantities of fluoride and chloride in four types of legacy wastes from plutonium pyrochemical reprocessing required the development of a new wasteform which could adequately immobilize the halides in addition to the Pu and Am. Using a simulant chloride-based waste (Type I waste) and Sm as the surrogate for the Pu3+ and Am3+ present in the waste, AWE developed a process which utilised Ca3(PO4)2 as the host material. The waste was successfully incorporated into two crystalline phases, chlorapatite, [Ca5(PO4)3Cl], and spodiosite, [Ca2(PO4)Cl]. Radioactive studies performed at PNNL with 239Pu and 241Am confirmed the process. A slightly modified version of the process in which CaHPO4 was used as the host was successful in immobilizing a more complex multi-cation oxide–based waste (Type II) which contained significant concentrations of Cl and F in addition to 239Pu and 241Am. This waste resulted in the formation of cation-doped whitlockite, Ca3-xMgx(PO4)2, β-calcium phosphate, β-Ca2P2O7 and chlor-fluorapatite rather than the chlorapatite and spodiosite formed with Type I waste.

  4. The Oxidation State of Europium in Halide Glasses

    PubMed Central

    Weber, J.K.R.; Vu, M.; Paßlick, C.; Schweizer, S.; Brown, D.E.; Johnson, C.E.; Johnson, J.A.

    2012-01-01

    The luminescent properties of divalent europium ions can be exploited to produce storage phosphors for x-ray imaging applications. The relatively high cost and limited availability of divalent europium halides makes it desirable to synthesize them from the readily available trivalent salts. In this work, samples of pure EuCl3 and fluoride glass melts doped with EuCl3 were processed at 700-800 °C in an inert atmosphere furnace. The Eu oxidation state in the resulting materials was determined using fluorescence and Mössbauer spectroscopy. Heat treatment of pure EuCl3 for 10 minutes at 710 °C resulted in a material comprising approximately equal amounts of Eu2+ and Eu3+. Glasses made using mixtures of EuCl2 and EuCl3 in the starting material contained both oxidation states. This paper describes the sample preparation and analysis and discusses the results in the context of chemical equilibria in the melts. PMID:22101252

  5. Electron–phonon coupling in hybrid lead halide perovskites

    PubMed Central

    Wright, Adam D.; Verdi, Carla; Milot, Rebecca L.; Eperon, Giles E.; Pérez-Osorio, Miguel A.; Snaith, Henry J.; Giustino, Feliciano; Johnston, Michael B.; Herz, Laura M.

    2016-01-01

    Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3, CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron–phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Fröhlich coupling constants of ∼40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites. PMID:27225329

  6. Methyl Halide Emissions From Experimental Fires With Southern African Biofuels

    NASA Astrophysics Data System (ADS)

    Lobert, J. M.; Lobert, J. M.; Keene, W. C.; Crutzen, P. J.; Scharffe, D. H.; Maben, J. R.; Williams, J.

    2001-12-01

    Under the auspices of SAFARI 2000, biofuels (savanna grasses, shrubs, woody plants, litter, agricultural waste, and charcoal) were sampled in the savannah of Kruger National Park, the Kalahari of Etosha National Park and the Miombo woodlands in Zambia and Malawi. More than 50 sub-samples were burned in 60 experiments under semi-controlled conditions at the biomass burning facility of the Max Planck Institute for Chemistry in Mainz, Germany. Emissions were sampled with flasks and analyzed by GC-MS for gaseous CH3Br, CH3Cl, CH3I and other halogenated compounds. The elemental compositions of the fuel and ash from each burn were also measured. Molar emission ratios of these compounds relative to CO, CO2 and the elemental composition of the fuel as well as partial mass balances for carbon, nitrogen and halogens will be presented with emphasis on methyl halide emissions. These results will be compared to similar data in the literature and preliminary estimates for the impacts of biomass burning on regional and global budgets will be presented. Additional resources can be found at: http://jurgenlobert.org/projects/mpi_safari/ and http://safari.gecp.virginia.edu/

  7. Superconducting state in bromium halide at high pressure

    NASA Astrophysics Data System (ADS)

    Szczȩśniak, R.; Zemła, T. P.; Szczȩśniak, D.

    2016-08-01

    The thermodynamic properties of the superconducting state in bromium halide (HBr) compound have been analyzed in the framework of the Eliashberg formalism. In particular, for the range of the pressure (p) from 140 GPa to 200 GPa, it has been shown that the critical temperature increases significantly: TC(p) ∈ < 28.8 , 55.1 > K, whereas the Coulomb pseudopotential (μ⋆) is equal to 0.1. Together with the increase of p, the values of the thermodynamic parameters such as: the ratio of the energy gap at the temperature of zero Kelvin to the critical temperature (RΔ ≡ 2 Δ (0) /kB TC), the ratio of the specific heat jump at the critical temperature to the electronic specific heat of the normal state (RC ≡ ΔC (TC) /CN (TC)), and the ratio related to the thermodynamic critical field (RH ≡TC CN (TC) / HC2 (0)) increasingly deviate from the predictions of the BCS model: RΔ(p) ∈ < 3.79 , 4.05 >, RC(p) ∈ < 1.94 , 2.27 >, and RH(p) ∈ < 0.157 , 0.147 >. It should be noted that the increase of μ⋆ visibly lowers TC and significantly reduces the difference between the results of the Eliashberg and BCS theory.

  8. Hysteresis, Stability, and Ion Migration in Lead Halide Perovskite Photovoltaics.

    PubMed

    Miyano, Kenjiro; Yanagida, Masatoshi; Tripathi, Neeti; Shirai, Yasuhiro

    2016-06-16

    Ion migration has been suspected as the origin of various irreproducible and unstable properties, most notably the hysteresis, of lead halide perovskite photovoltaic (PV) cells since the early stage of the research. Although many evidence of ionic movement have been presented both numerically and experimentally, a coherent and quantitative picture that accounts for the observed irreproducible phenomena is still lacking. At the same time, however, it has been noticed that in certain types of PV cells, the hysteresis is absent or at least within the measurement reproducibility. We have previously shown that the electronic properties of hysteresis-free cells are well represented in terms of the conventional inorganic semiconductors. The reproducibility of these measurements was confirmed typically within tens of minutes under the biasing field of -1 V to +1.5 V. In order to probe the effect of ionic motion in the hysteresis-free cells, we extended the time scale and the biasing rage in the electronic measurements, from which we conclude the following: (1) From various evidence, it appears that ion migration is inevitable. However, it does not cause detrimental effects to the PV operation. (2) We propose, based on the quantitative characterization, that the degradation is more likely due to the chemical change at the interfaces between the carrier selective layers and perovskite rather than the compositional change of the lead iodide perovskite bulk. Together, they give much hope in the use of the lead iodide perovskite in the use of actual application.

  9. Coordination Chemistry Dictates the Structural Defects in Lead Halide Perovskites.

    PubMed

    Rahimnejad, Sara; Kovalenko, Alexander; Forés, Sergio Martí; Aranda, Clara; Guerrero, Antonio

    2016-09-19

    We show the influence of species present in precursor solution during formation of lead halide perovskite materials on the structural defects of the films. The coordination of lead by competing solvent molecules and iodide ions dictate the type of complexes present in the films. Depending on the processing conditions all PbIS5 (+) , PbI2 S4, PbI3 S3 (-) , PbI4 S2 (2-) , PbI5 S2 (3-) , PbI6 (4-) and 1D (Pb2 I4 )n chains are observed by absorption measurements. Different parameters are studied such as polarity of the solvent, concentration of iodide ions, concentration of solvent molecules and temperature. It is concluded that strongly coordinating solvents will preferentially form species with a low number of iodide ions and less coordinative solvents generate high concentration of PbI6 (-) . We furthermore propose that all these plumbate ions may act as structural defects determining electronic properties of the photovoltaic films.

  10. Hysteresis, Stability, and Ion Migration in Lead Halide Perovskite Photovoltaics.

    PubMed

    Miyano, Kenjiro; Yanagida, Masatoshi; Tripathi, Neeti; Shirai, Yasuhiro

    2016-06-16

    Ion migration has been suspected as the origin of various irreproducible and unstable properties, most notably the hysteresis, of lead halide perovskite photovoltaic (PV) cells since the early stage of the research. Although many evidence of ionic movement have been presented both numerically and experimentally, a coherent and quantitative picture that accounts for the observed irreproducible phenomena is still lacking. At the same time, however, it has been noticed that in certain types of PV cells, the hysteresis is absent or at least within the measurement reproducibility. We have previously shown that the electronic properties of hysteresis-free cells are well represented in terms of the conventional inorganic semiconductors. The reproducibility of these measurements was confirmed typically within tens of minutes under the biasing field of -1 V to +1.5 V. In order to probe the effect of ionic motion in the hysteresis-free cells, we extended the time scale and the biasing rage in the electronic measurements, from which we conclude the following: (1) From various evidence, it appears that ion migration is inevitable. However, it does not cause detrimental effects to the PV operation. (2) We propose, based on the quantitative characterization, that the degradation is more likely due to the chemical change at the interfaces between the carrier selective layers and perovskite rather than the compositional change of the lead iodide perovskite bulk. Together, they give much hope in the use of the lead iodide perovskite in the use of actual application. PMID:27227427

  11. Effects of halides on reaction of nucleosides with ozone.

    PubMed

    Suzuki, Toshinori; Kaya, Eriko; Inukai, Michiyo

    2012-01-01

    Ozone (O(3)), a major component of photochemical oxidants, is used recently as a deodorizer in living spaces. It has been reported that O(3) can directly react with DNA, causing mutagenesis in human cells and carcinogenesis in mice. However, little is known about the effects of coexistent ions in the reaction of O(3). In the present study, we analyzed the effects of halides on the reaction of O(3) with nucleosides using reversed-phase high-performance liquid chromatography with ultraviolet detection. When aqueous O(3) solution was added to a nucleoside mixture in potassium phosphate buffer (pH 7.3), the nucleosides were consumed with the following decreasing order of importance: dGuo > Thd > dCyd > dAdo. The effects of addition of fluoride and chloride in the system were slight. Bromide suppressed the reactions of dGuo, Thd, and dAdo but enhanced the reaction of dCyd. The major products were 5-hydroxy-2'-deoxycytidine, 5-bromo-2'-deoxycytidine, and 8-bromo-2'-deoxyguanosine. The time course and pH dependence of the product yield indicated formation of hypobromous acid as the reactive agent. Iodide suppressed all the reactions effectively. The results suggest that bromide may alter the mutation spectrum by O(3) in humans. PMID:22646086

  12. Understanding charge transport in organometal halide field effect transistors

    NASA Astrophysics Data System (ADS)

    Senanayak, Satyaprasad P.; Yang, Bingyan; Sadhanala, Aditya; Friend, Richard, Prof. _., Sir; Sirrnighaus, Henning, , Prof.

    Organometal halide based perovskite are emerging materials for wide range of electronic applications. A range of optoelectronic applications like high efficiency solar cells, color pure LEDs and optical pumped lasers have been demonstrated. Here, we report the demonstration of a high performance field effect transistor fabricated from iodide perovskite material at room temperature. The devices exhibit clean saturation behavior with electron μFET >3 cm2V-1s-1 and current modulation in the range of 106 - 107 which are till date the best performance achieved with these class of materials. This high performance is attributed to a combination of novel film fabrication technique and device engineering strategies. Detailed understanding of the observed band-like transport phenomenon is developed by tuning the different sources of dynamic and static disorder prevalent in the system. These finding are expected to pave way for developing next generation electronic application from perovskite materials. Authors acknowledge EPSRC for funding and SPS acknowledges Royal Society Newton Fellowship.

  13. Maternal exposure to alkali, alkali earth, transition and other metals: Concentrations and predictors of exposure.

    PubMed

    Hinwood, A L; Stasinska, A; Callan, A C; Heyworth, J; Ramalingam, M; Boyce, M; McCafferty, P; Odland, J Ø

    2015-09-01

    Most studies of metals exposure focus on the heavy metals. There are many other metals (the transition, alkali and alkaline earth metals in particular) in common use in electronics, defense industries, emitted via combustion and which are naturally present in the environment, that have received limited attention in terms of human exposure. We analysed samples of whole blood (172), urine (173) and drinking water (172) for antimony, beryllium, bismuth, cesium, gallium, rubidium, silver, strontium, thallium, thorium and vanadium using ICPMS. In general most metals concentrations were low and below the analytical limit of detection with some high concentrations observed. Few factors examined in regression models were shown to influence biological metals concentrations and explained little of the variation. Further study is required to establish the source of metals exposures at the high end of the ranges of concentrations measured and the potential for any adverse health impacts in children. PMID:25984984

  14. Maternal exposure to alkali, alkali earth, transition and other metals: Concentrations and predictors of exposure.

    PubMed

    Hinwood, A L; Stasinska, A; Callan, A C; Heyworth, J; Ramalingam, M; Boyce, M; McCafferty, P; Odland, J Ø

    2015-09-01

    Most studies of metals exposure focus on the heavy metals. There are many other metals (the transition, alkali and alkaline earth metals in particular) in common use in electronics, defense industries, emitted via combustion and which are naturally present in the environment, that have received limited attention in terms of human exposure. We analysed samples of whole blood (172), urine (173) and drinking water (172) for antimony, beryllium, bismuth, cesium, gallium, rubidium, silver, strontium, thallium, thorium and vanadium using ICPMS. In general most metals concentrations were low and below the analytical limit of detection with some high concentrations observed. Few factors examined in regression models were shown to influence biological metals concentrations and explained little of the variation. Further study is required to establish the source of metals exposures at the high end of the ranges of concentrations measured and the potential for any adverse health impacts in children.

  15. Neuropsychiatric manifestations of alkali metal deficiency and excess.

    PubMed

    Yung, C Y

    1984-01-01

    The alkali metals from the Group IA of the periodic table (lithium, sodium, potassium, rubidium, cesium and francium) are reviewed. The neuropsychiatric aspects of alkali metal deficiencies and excesses (intoxications) are described. Emphasis was placed on lithium due to its clinical uses. The signs and symptoms of these conditions are characterized by features of an organic brain syndrome with delirium and encephalopathy prevailing. There are no clinically distinctive features that could be reliably used for diagnoses. Sodium and potassium are two essential alkali metals in man. Lithium is used as therapeutic agent in bipolar affective disorders. Rubidium has been investigated for its antidepressant effect in a group of psychiatric disorders. Cesium is under laboratory investigation for its role in carcinogenesis and in depressive illness. Very little is known of francium due to its great instability for experimental study. PMID:6395136

  16. C-CAMP, A closed cycle alkali metal power system

    SciTech Connect

    Wichner, R.P.; Hoffman, H.W.

    1988-01-01

    A concept is presented for a Closed-Cycle Alkali Metal (C-CAMP) power systems which utilizes the heat of reaction of an alkali metal and halogen compound to vaporize an alkali metal turbine fluid for a Rankine cycle. Unique features of the concept are (1) direct contact (heat exchange) between the reaction products and turbine fluid, and (2) a flow-through chemical reactor/boiler. The principal feasibility issues of the concept relate to the degree of cross-mixing of product and turbine fluid streams within the reactor-boiler. If proven feasible, the concept may be adapted to a range of fuel and turbine fluids and ultimately lead to thermal efficiencies in excess of 35%.

  17. Alkali-induced enhancement of surface electronic polarizibility.

    PubMed

    Stolbov, Sergey; Rahman, Talat S

    2006-05-12

    From results of ab initio electronic structure calculations based on density functional theory for a set of prototype systems, we find alkali adsorbates to cause a dramatic enhancement of the electronic polarizability of the metal surface extending it several angstroms into the vacuum. This phenomenon is traceable to an unusual feature induced in the surface potential on alkali adsorption. The effect appears to be general, as we find it to be present on metals as varied as Pd and Cu, and helps explain the observed substantial decrease in the vibrational frequency of molecules when coadsorbed with alkalis on metal surfaces. Specifically, for two dissimilar molecules CO and O(2), we trace the softening of the frequencies of their stretching mode when coadsorbed with K on Pd(111) to the enhanced electronic polarizability.

  18. Neuropsychiatric manifestations of alkali metal deficiency and excess

    SciTech Connect

    Yung, C.Y.

    1984-01-01

    The alkali metals from the Group IA of the periodic table (lithium, sodium, potassium, rubidium, cesium and francium) are reviewed. The neuropsychiatric aspects of alkali metal deficiencies and excesses (intoxications) are described. Emphasis was placed on lithium due to its clinical uses. The signs and symptoms of these conditions are characterized by features of an organic brain syndrome with delirium and encephalopathy prevailing. There are no clinically distinctive features that could be reliably used for diagnoses. Sodium and potassium are two essential alkali metals in man. Lithium is used as therapeutic agent in bipolar affective disorders. Rubidium has been investigated for its antidepressant effect in a group of psychiatric disorders. Cesium is under laboratory investigation for its role in carcinogenesis and in depressive illness. Very little is known of francium due to its great instability for experimental study.

  19. Theoretical study of the alkali and alkaline-earth monosulfides

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.

    1988-01-01

    Ab initio calculations have been used to obtain accurate spectroscopic constants for the X2Pi and A2Sigma(+) states of the alkali sulfides and the X1Sigma(+), a3Pi, and A1Pi states of the alkaline-earth sulfides. In contrast to the alkali oxides, the alkali sulfides are found to have X2Pi ground states, due to the larger electrostatic interaction. Dissociation energies of 3.27 eV for BeS, 2.32 eV for MgS, 3.29 eV for CaS, and 3.41 eV for SrS have been obtained for the X1Sigma(+) states of the alkaline-earth sulfides, in good agreement with experimental results. Core correlation is shown to increase the Te values for the a3Pi and A1Pi states of MgS, CaS, and SrS.

  20. Influence of Halide Solutions on Collagen Networks: Measurements of Physical Properties by Atomic Force Microscopy

    PubMed Central

    Kempe, André; Lackner, Maximilian

    2016-01-01

    The influence of aqueous halide solutions on collagen coatings was tested. The effects on resistance against indentation/penetration on adhesion forces were measured by atomic force microscopy (AFM) and the change of Young's modulus of the coating was derived. Comparative measurements over time were conducted with halide solutions of various concentrations. Physical properties of the mesh-like coating generally showed large variability. Starting with a compact set of physical properties, data disperse after minutes. A trend of increase in elasticity and permeability was found for all halide solutions. These changes were largest in NaI, displaying a logical trend with ion size. However a correlation with concentration was not measured. Adhesion properties were found to be independent of mechanical properties. The paper also presents practical experience for AFM measurements of soft tissue under liquids, particularly related to data evaluation. The weakening in physical strength found after exposure to halide solutions may be interpreted as widening of the network structure or change in the chemical properties in part of the collagen fibres (swelling). In order to design customized surface coatings at optimized conditions also for medical applications, halide solutions might be used as agents with little impact on the safety of patients. PMID:27721994