Science.gov

Sample records for alkali halide solutions

  1. Sonoluminescing single bubble in concentrated alkali halide solutions.

    PubMed

    Hayashi, Shigeo; Nozaki, Kenji; Hatanaka, Shin-ichi

    2006-12-22

    Single-bubble sonoluminescence is generated in concentrated aqueous solutions of LiBr and LiCl. The moving-bubble state, a type of unstable state in which sonoluminescence is still emitted, is observed above the stable-sonoluminescence state similarly to that in aqueous solutions of NaCl and KCl. Luminosity is increased at similar magnitudes for LiBr, LiCl, NaCl and KCl of the same concentration.

  2. Molecular dispersion energy parameters for alkali and halide ions in aqueous solution

    SciTech Connect

    Reiser, S.; Deublein, S.; Hasse, H.; Vrabec, J.

    2014-01-28

    Thermodynamic properties of aqueous solutions containing alkali and halide ions are determined by molecular simulation. The following ions are studied: Li{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, Cs{sup +}, F{sup −}, Cl{sup −}, Br{sup −}, and I{sup −}. The employed ion force fields consist of one Lennard-Jones (LJ) site and one concentric point charge with a magnitude of ±1 e. The SPC/E model is used for water. The LJ size parameter of the ion models is taken from Deublein et al. [J. Chem. Phys. 136, 084501 (2012)], while the LJ energy parameter is determined in the present study based on experimental self-diffusion coefficient data of the alkali cations and the halide anions in aqueous solutions as well as the position of the first maximum of the radial distribution function of water around the ions. On the basis of these force field parameters, the electric conductivity, the hydration dynamics of water molecules around the ions, and the enthalpy of hydration is predicted. Considering a wide range of salinity, this study is conducted at temperatures of 293.15 and 298.15 K and a pressure of 1 bar.

  3. Simple electrolyte solutions: Comparison of DRISM and molecular dynamics results for alkali halide solutions

    PubMed Central

    Joung, In Suk; Luchko, Tyler; Case, David A.

    2013-01-01

    Using the dielectrically consistent reference interaction site model (DRISM) of molecular solvation, we have calculated structural and thermodynamic information of alkali-halide salts in aqueous solution, as a function of salt concentration. The impact of varying the closure relation used with DRISM is investigated using the partial series expansion of order-n (PSE-n) family of closures, which includes the commonly used hypernetted-chain equation (HNC) and Kovalenko-Hirata closures. Results are compared to explicit molecular dynamics (MD) simulations, using the same force fields, and to experiment. The mean activity coefficients of ions predicted by DRISM agree well with experimental values at concentrations below 0.5 m, especially when using the HNC closure. As individual ion activities (and the corresponding solvation free energies) are not known from experiment, only DRISM and MD results are directly compared and found to have reasonably good agreement. The activity of water directly estimated from DRISM is nearly consistent with values derived from the DRISM ion activities and the Gibbs-Duhem equation, but the changes in the computed pressure as a function of salt concentration dominate these comparisons. Good agreement with experiment is obtained if these pressure changes are ignored. Radial distribution functions of NaCl solution at three concentrations were compared between DRISM and MD simulations. DRISM shows comparable water distribution around the cation, but water structures around the anion deviate from the MD results; this may also be related to the high pressure of the system. Despite some problems, DRISM-PSE-n is an effective tool for investigating thermodynamic properties of simple electrolytes. PMID:23387564

  4. Molecular Modeling and Monte Carlo Simulation of Concentrated Aqueous Alkali Halide Solutions at 25 C.

    NASA Astrophysics Data System (ADS)

    Llano-Restrepo, Mario Andres

    A study of concentrated aqueous alkali halide solutions is made at the molecular level, through modeling and computer simulation of their structural and thermodynamic properties. It is found that the HNC approximation is the best integral equation theory to predict such properties within the framework of the primitive model (PM). The intrinsic limitations of the PM in describing ionic association and hydration effects are addressed and discussed in order to emphasize the need for explicitly including the water molecules in the treatment of aqueous electrolyte solutions by means of a civilized model (CM). As a step toward developing a CM as simple as possible, it is shown that a modified version of the SPC model of liquid water in which the Lennard-Jones interaction between intermolecular oxygen sites is replaced by a hard core interaction, is still successful enough to predict the degree of hydrogen bonding of real water. A simple civilized model (SCM) (in which the ions are treated as hard spheres interacting through Coulombic potentials and the water molecules are simulated using the simplified SPC model) is introduced in order to study the changes in the structural features of various aqueous alkali halide solutions upon varying both the concentration and the size of the ions. Both cations and anions are found to be solvated by the water molecules at expense of a breakdown in the hydrogen-bonded water network. Hydration numbers are reported for the first time for NaBr and KBr, and the first simulation -based estimates for LiBr, NaI and KI are also obtained. In several cases, values of the hydration numbers based on the SCM are found to be in excellent agreement with available experimental results obtained from x-ray diffraction measurements. Finally, it is shown that a neoprimitive model (NPM) can be developed by incorporating some of the structural features seen in the SCM into the short-range part of the PM interionic potential via a shielded square well whose

  5. Dependence of the density of solutions of alkali metal halides on the composition of methylpyrrolidone-water mixed solvents

    NASA Astrophysics Data System (ADS)

    Novikov, A. N.; Lenina, O. F.; Vasilev, V. A.

    2008-07-01

    The densities of solutions of alkali metal halides in methylpyrrolidone (MP)-water mixtures were measured at 298.15 K over the entire range of mixed solvent compositions. The standard partial molar volumes of the electrolytes overline {V_2^ circ } were calculated. The overline {V_2^ circ } values of alkali metal halides in MP-H2O mixtures were related linearly to the overline {V_2^ circ } values in aqueous solutions. These dependences were used to determine the standard partial molar volumes of ions overline {V_i^ circ } in the mixtures studied. The standard partial molar volumes of transfer of the ions from water into MP-water mixtures were calculated.

  6. Microwave irradiation affects ion pairing in aqueous solutions of alkali halide salts

    NASA Astrophysics Data System (ADS)

    Mohorič, Tomaž; Bren, Urban

    2017-01-01

    Using the molecular dynamics simulations with separate thermostats for translational and rotational degrees of freedom, we investigate the effects of water's rotational motion on the ion pairing of ionic solutes in aqueous solutions. The situation with rotational temperature higher than the translational one, Trot>Ttrs , is mimicking the non-equilibrium effects of microwaves on model solutions of alkali halide salts. The simulations reveal that an increase in the rotational temperature at constant translational temperature exerts significant changes in the structure of the solution. The latter are reflected in increased pairing of the oppositely charged ions, which can be explained by the weaker ability of rotationally excited water to screen and separate the opposite charges. It seems that Collins' law of matching water affinities retains its validity also in the non-equilibrium situation where the rotational temperature exceeds the translational one. On the other hand, the equilibrium effect (i.e., an increase in the solution's overall temperature T ≡Trot = Ttrs) favors the formation of small-small (NaCl), while it has a little effect on large-large (CsI) ion pairs. This is in accordance with water becoming less polar solvent upon a temperature increase. Furthermore, we investigated the effects of excited translational motion of water (and ions) on the ion pairing by increasing the translational temperature, while keeping the rotational one unchanged (i.e., Ttrs>Trot ). Interestingly, in certain cases the faster translational motion causes an increase in correlations. The temperature variations in the like-ion association constants, Kas++ and Kas-, are also examined. Here the situation is more complex but, in most cases, a decrease in the ion pairing is observed.

  7. IR spectroscopy of aqueous alkali halide solutions: Pure salt-solvated water spectra and hydration numbers

    NASA Astrophysics Data System (ADS)

    Max, Jean-Joseph; Chapados, Camille

    2001-08-01

    Extrapolation techniques were used to obtain pure salt-solvated water spectra from the attenuated total reflection infrared spectra (ATR-IR) of aqueous solutions of the nine alkali halide salts LiCl, NaCl, KCl, CsCl, NaBr, KBr, NaI, KI, and CsI and the alkaline-earth chloride salt MgCl2. These salts ionize completely in water. The ions by themselves do not absorb in the IR, but their interactions with water can be observed and analyzed. A pure salt-solvated water spectrum is easier to analyze than that of a combined solution of pure water and salt-solvated water. Although the salt-solvated water spectra examined have distinctive signatures, they can be classified in three categories: those similar to NaCl; those not similar to NaCl; and MgCl2, in a class by itself. Each of the pure salt-solvated water spectra differs from that of liquid water, though the number of bands is the same. From the Gaussian band fitting, we found that the positions of the bands were fairly constant, whereas their intensities differed. The salt hydration numbers were determined: for NaCl, KCl, NaBr, KBr, and CsI solutions it is 5; for KI and MgCL2 it is 4; for NaI it is 3.5; for CsCl it is 3; and for LiCl it is 2. From these results we found that each pair of ions (monoatomic ions) of the ten salt solutions studied are close bound and form a complex in a cluster organization with a fixed number of water molecules.

  8. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  9. An Investigation of Ion-Pairing of Alkali Metal Halides in Aqueous Solutions Using the Electrical Conductivity and the Monte Carlo Computer Simulation Methods

    PubMed Central

    Gujt, Jure; Bešter-Rogač, Marija; Hribar-Lee, Barbara

    2013-01-01

    The ion pairing is, in very dilute aqueous solutions, of rather small importance for solutions’ properties, which renders its precise quantification quite a laborious task. Here we studied the ion pairing of alkali halides in water by using the precise electric conductivity measurements in dilute solutions, and in a wide temperature range. The low-concentration chemical model was used to analyze the results, and to estimate the association constant of different alkali halide salts. It has been shown that the association constant is related to the solubility of salts in water and produces a ’volcano relationship’, when plotted against the difference between the free energy of hydration of the corresponding individual ions. The computer simulation, using the simple MB+dipole water model, were used to interprete the results, to find a microscopic basis for Collins’ law of matching water affinities. PMID:24526801

  10. The Additive Coloration of Alkali Halides

    ERIC Educational Resources Information Center

    Jirgal, G. H.; and others

    1969-01-01

    Describes the construction and use of an inexpensive, vacuum furnace designed to produce F-centers in alkali halide crystals by additive coloration. The method described avoids corrosion or contamination during the coloration process. Examination of the resultant crystals is discussed and several experiments using additively colored crystals are…

  11. Ionic alkali halide XUV laser feasibility study

    SciTech Connect

    Yang, T.T.; Gylys, V.T.; Bower, R.D.; Harris, D.G.; Blauer, J.A.; Turner, C.E.; Hindy, R.N.

    1989-11-10

    The objective of this work is to assess the feasibility of a select set of ionic alkali halide XUV laser concepts by obtaining the relevant kinetic and spectroscopic parameters required for a proof-of-principle and conceptual design. The proposed lasers operate in the 80--200 nm spectral region and do not require input from outside radiation sources for their operation. Frequency up-conversion and frequency mixing techniques and therefore not considered in the work to be described. An experimental and theoretical study of a new type of laser operating in the extreme ultraviolet wavelength region has been conducted. The lasing species are singly ionized alkali halide molecules such as Rb{sup 2+}F{sub {minus}}, Rb{sup 2+}Br{sup {minus}} and Cs{sup 2+}F{sup {minus}}. These species are similar in electronic structure to the rare gas halide excimers, such as XeF and Krf, except that the ionic molecules emit at wavelengths of 80--200 nm, much shorter than the conventional rare-gas halide excimer laser. The radiative lifetime of these molecules are typically near 1 ns, which is about an order of magnitude shorter than that for rare-gas halide systems. The values of the cross section for stimulated emission are on the order of 1 {times} 10{sup {minus}16}cm{sup 2}. Because of the fundamental similarity to existing UV lasers, these systems show promise as a high power, efficient XUV lasers. 55 refs., 50 figs., 5 tabs.

  12. Alkali Halide Nanotubes: Structure and Stability

    PubMed Central

    Fernandez-Lima, Francisco A.; Henkes, Aline Verônica; da Silveira, Enio F.; Nascimento, Marco Antonio Chaer

    2013-01-01

    Accurate density functional theory (DFT) and coupled-cluster (CCSD) calculations on a series of (LiF)n=2,36 neutral clusters suggest that nanotube structures with hexagonal and octagonal transversal cross sections show stability equal to or greater than that of the typical cubic form of large LiF crystals. The nanotube stability was further corroborated by quantum dynamic calculations at room temperature. The fact that stable nanotube structures were also found for other alkali halides (e.g., NaCl and KBr) suggests that this geometry may be widely implemented in material sciences. PMID:24376901

  13. Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

    SciTech Connect

    Bory, Benjamin F.; Wang, Jingxin; Janssen, René A. J.; Meskers, Stefan C. J.; Gomes, Henrique L.; De Leeuw, Dago M.

    2014-12-08

    Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 10{sup 25}/m{sup 3}. The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics.

  14. Cohesive Energy-Lattice Constant and Bulk Modulus-Lattice Constant Relationships: Alkali Halides, Ag Halides, Tl Halides

    NASA Technical Reports Server (NTRS)

    Schlosser, Herbert

    1992-01-01

    In this note we present two expressions relating the cohesive energy, E(sub coh), and the zero pressure isothermal bulk modulus, B(sub 0), of the alkali halides. Ag halides and TI halides, with the nearest neighbor distances, d(sub nn). First, we show that the product E(sub coh)d(sub 0) within families of halide crystals with common crystal structure is to a good approximation constant, with maximum rms deviation of plus or minus 2%. Secondly, we demonstrate that within families of halide crystals with a common cation and common crystal structure the product B(sub 0)d(sup 3.5)(sub nn) is a good approximation constant, with maximum rms deviation of plus or minus 1.36%.

  15. Alkali Halide Microstructured Optical Fiber for X-Ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, S. L.; Wincheski, R. A.; Albin, S.

    2014-01-01

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  16. Alkali halide microstructured optical fiber for X-ray detection

    SciTech Connect

    DeHaven, S. L. E-mail: russel.a.wincheski@nasa.gov; Wincheski, R. A. E-mail: russel.a.wincheski@nasa.gov; Albin, S.

    2015-03-31

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  17. Far Infrared Optical Spectroscopy of Alkali Halide-Polymer Composites

    NASA Astrophysics Data System (ADS)

    McWhirter, J. T.; Broderick, S. D.; Rodriguez, G. A.

    1998-03-01

    Composite samples of small (dimension < 10 =B5m) alkali halide crystallites in a polymer matrix (low density polyethylene and polytetrafluoroethylene) have been prepared. The far infrared optical spectra of these samples are presented, spanning a temperature range of 300 to <10 K, and a dominant absorption feature due to absorption by the transverse optic phonon of the alkali halide constituent is observed. An effective medium analysis of the samples, using the Maxwell-Garnett model, is shown to accurately reproduce the main absorption feature, but requires a shape factor for the inclusion geometry corresponding to flat, plate-like inclusions, and a plausible explanation for such a geometry is proposed. The temperature dependence of the frequency and linewidth of the absorption peak is presented. The temperature shift of the line-center-frequency is found to be adequately described by a quasiharmonic description of the transverse optic phonon energy shift of the alkali halide due to lattice thermal expansion, using published values for the mode Gruneisen parameter and the temperature dependence of the lattice thermal coefficient. In contrast, the linewidth (phonon lifetime) of the composite samples is roughly twice as large as that observed for thin film and bulk crystals, and has a much stronger temperature dependence as well.

  18. Volcanic Origin of Alkali Halides on Io

    NASA Technical Reports Server (NTRS)

    Schaefer, L.; Fegley, B., Jr.

    2003-01-01

    The recent observation of NaCl (gas) on Io confirms our earlier prediction that NaCl is produced volcanically. Here we extend our calculations by modeling thermochemical equilibrium of O, S, Li, Na, K, Rb, Cs, F, Cl, Br, and I as a function of temperature and pressure in a Pele-like volcanic gas with O/S/Na/Cl/K = 1.518/1/0.05/0.04/0.005 and CI chondritic ratios of the other (as yet unobserved) alkalis and halogens. For reference, the nominal temperature and pressure for Pele is 1760 plus or minus 210 K and 0.01 bars based on Galileo data and modeling.

  19. Dislocation unpinning model of acoustic emission from alkali halide crystals

    NASA Astrophysics Data System (ADS)

    Chandra, B. P.; Gour, Anubha S.; Chandra, Vivek K.; Patil, Yuvraj

    2004-06-01

    The present paper reports the dislocation unpinning model of acoustic emis- sion (AE) from alkali halide crystals. Equations are derived for the strain dependence of the transient AE pulse rate, peak value of the AE pulse rate and the total number of AE pulse emitted. It is found that the AE pulse rate should be maximum for a particular strain of the crystals. The peak value of the AE pulse rate should depend on the volume and strain rate of the crystals, and also on the pinning time of dislocations. Since the pinning time of dislocations decreases with increasing strain rate, the AE pulse rate should be weakly dependent on the strain rate of the crystals. The total number of AE should increase linearly with deformation and then it should attain a saturation value for the large deformation. By measuring the strain dependence of the AE pulse rate at a fixed strain rate, the time constant tau_{s} for surface annihilation of dislocations and the pinning time tau_{p} of the dislocations can be determined. A good agreement is found between the theoretical and experimental results related to the AE from alkali halide crystals.

  20. Pressure variation of melting temperatures of alkali halides

    NASA Astrophysics Data System (ADS)

    Arafin, Sayyadul; Singh, Ram N.

    2017-02-01

    The melting temperatures of alkali halides (LiCl, LiF, NaBr, NaCl, NaF, NaI, KBr, KCl, KF, KI, RbBr, RbCl, RbI and CsI) have been evaluated over a wide range of pressures. The solid-liquid transition of alkali halides is of considerable significance due to their huge industrial applications. Our formalism requires a priori knowledge of the bulk modulus and the Grüneisen parameter at ambient conditions to compute Tm at high pressures. The computed values are in very good agreement with the available experimental results. The formalism can satisfactorily be used to compute Tm at high pressures where the experimental data are scanty. Most of the melting curves (Tm versus P) exhibit nonlinear variation with increasing pressure having curvatures downward and exhibit a maximum in some cases like NaCl, RbBr, RbCl and RbI. The values of Tmmax and Pmax corresponding to the maxima of the curves are given.

  1. A new polarizable force field for alkali and halide ions

    SciTech Connect

    Kiss, Péter T.; Baranyai, András

    2014-09-21

    We developed transferable potentials for alkali and halide ions which are consistent with our recent model of water [P. T. Kiss and A. Baranyai, J. Chem. Phys. 138, 204507 (2013)]. Following the approach used for the water potential, we applied Gaussian charge distributions, exponential repulsion, and r{sup −6} attraction. One of the two charges of the ions is fixed to the center of the particle, while the other is connected to this charge by a harmonic spring to express polarization. Polarizability is taken from quantum chemical calculations. The repulsion between different species is expressed by the combining rule of Kong [J. Chem. Phys. 59, 2464 (1972)]. Our primary target was the hydration free energy of ions which is correct within the error of calculations. We calculated water-ion clusters up to 6 water molecules, and, as a crosscheck, we determined the density and internal energy of alkali-halide crystals at ambient conditions with acceptable accuracy. The structure of hydrated ions was also discussed.

  2. The Effect of Radiation "Memory" in Alkali-Halide Crystals

    NASA Astrophysics Data System (ADS)

    Korovkin, M. V.; Sal'nikov, V. N.

    2017-01-01

    The exposure of the alkali-halide crystals to ionizing radiation leads to the destruction of their structure, the emergence of radiation defects, and the formation of the electron and hole color centers. Destruction of the color centers upon heating is accompanied by the crystal bleaching, luminescence, and radio-frequency electromagnetic emission (REME). After complete thermal bleaching of the crystal, radiation defects are not completely annealed, as the electrons and holes released from the color centers by heating leave charged and locally uncompensated defects. Clusters of these "pre centers" lead to electric microheterogeneity of the crystal, the formation of a quasi-electret state, and the emergence of micro-discharges accompanied by radio emission. The generation of REME associated with residual defectiveness, is a manifestation of the effect of radiation "memory" in dielectrics.

  3. Potential function and dissociation energy of alkali halide

    NASA Astrophysics Data System (ADS)

    Srivastava, Abhay P.; Pandey, Anjani K.; Pandey, Brijesh K.

    2016-05-01

    Dissociation energy of some alkali halides have been calculated by using different interaction potential function such as Born-Mayer, Varshani-Shukla and L5 potential model. The theoretical calculation is compared with experimental values. The Result shows that the values of dissociation energy as calculated by using different potential models have an equal amount of deviation with experimental values. The above said deviation with experimental values can be explained by consideration of rotational-vibrational coupling between the constituents of molecules in the limelight of molecular spectroscopy. Findings of present work suggest that the existing potential model need to be reviewed in view of the correction factors solely depending on the rotational, vibrational and electronic coupling between the constituents of molecules.

  4. The entropies of the hard sphere alkali halide crystals

    NASA Astrophysics Data System (ADS)

    Cox, John W.; Beyerlein, Adolph L.

    1982-08-01

    An asymptotic expansion for the entropy of hard-sphere alkali halide crystals with N small and large particle pairs is obtained: SN/NkB ≃τ→13 ln(σls2e)/(λlλs) +3 ln(τ1/3-1)+3 ln ɛ-C-Dɛ-Eɛ2+ṡṡṡ, where kB is the Boltzman constant, e is the natural number, τ is the ratio of the system volume to its high compression limiting volume, λl and λs are the mean thermal de Broglie wavelengths [λ=(h2/2πmkBT)1/2, m being the mass] of the large and small particles, respectively, σls is the hard-sphere collision diameter of nearest neighbor large and small particles; C, D, E, etc. are well-defined parameters dependent on the small to large particle radius ratio and the lattice structure, and ɛ=[(τ1/3-1)+(1-σls/σls')], where σls' is the average distance between nearest neighbor large and small particles in the high compression limit. If the small to large particle radius ratio is less than √2-1 for the ''NaCl'' lattice and less than √3-1 for the ''CsCl'' lattice σls<σls'. For greater small to large particle radius ratios σls=σls'. The result differs from the asymptotic expansion for a crystal of N uniform spheres obtained by Salsburg, Stillinger, and co-workers [J. Chem. Phys. 49, 4857 (1968)] in that it contains the additional logarithmic term 3 ln ɛ and a smallness parameter ɛ that differs from τ1/3-1, used by the earlier workers. Estimates of the leading parameter C were made using the modified cell cluster expansion. The predicted entropies of the alkali metal fluoride salts approach the experimental values at temperatures approaching the melting point which is consistent with the contention that the hard sphere contribution to the entropy dominates other contributions at high temperatures. The predicted difference between the entropies of the two alkali halide lattices is also consistent with the experimental data at higher temperatures.

  5. Alkali Metal Halide Salts as Interface Additives to Fabricate Hysteresis-Free Hybrid Perovskite-Based Photovoltaic Devices.

    PubMed

    Wang, Lili; Moghe, Dhanashree; Hafezian, Soroush; Chen, Pei; Young, Margaret; Elinski, Mark; Martinu, Ludvik; Kéna-Cohen, Stéphane; Lunt, Richard R

    2016-09-07

    A new method was developed for doping and fabricating hysteresis-free hybrid perovskite-based photovoltaic devices by using alkali metal halide salts as interface layer additives. Such salt layers introduced at the perovskite interface can provide excessive halide ions to fill vacancies formed during the deposition and annealing process. A range of solution-processed halide salts were investigated. The highest performance of methylammonium lead mixed-halide perovskite device was achieved with a NaI interlayer and showed a power conversion efficiency of 12.6% and a hysteresis of less than 2%. This represents a 90% improvement compared to control devices without this salt layer. Through depth-resolved mass spectrometry, optical modeling, and photoluminescence spectroscopy, this enhancement is attributed to the reduction of iodide vacancies, passivation of grain boundaries, and improved hole extraction. Our approach ultimately provides an alternative and facile route to high-performance and hysteresis-free perovskite solar cells.

  6. Reverse osmosis transport of alkali halides and nickel salts through cellulose triacetate membranes. Performance prediction from NaCl experiments

    SciTech Connect

    Nirmal, J.D.; Pandya, V.P.; Desai, N.V.; Rangarajan, R. )

    1992-10-01

    The separation of alkali metal halides, nickel chloride, and nickel sulfate was determined for cellulose triacetate reverse osmosis (CTA RO) membranes. From transport analysis, the relative free energy parameters for transport of these salts through CTA membranes were determined. From these relative free energy parameters of salts, the solute separation by CTA membranes could be predicted from RO experiment with NaCl solution. The transport analysis and an illustration of how the concept is useful are presented in this paper.

  7. Efficient destruction of CF4 through in situ generation of alkali metals from heated alkali halide reducing mixtures.

    PubMed

    Lee, Myung Churl; Choi, Wonyong

    2002-03-15

    Perfluorocarbons (PFCs) are the most potent green house gases that are very recalcitrant at destruction. An effective way of converting PFCs using hot solid reagents into safe products has been recently introduced. By investigating the thermal reductive destruction of tetrafluoromethane (CF4) we provided new insight and more physicochemical consideration on this novel process. The complete destruction of CF4was successfully achieved by flowing the gas through a heated reagent bed (400-950 degrees C) that contained powder mixtures of alkali halides, CaO, and Si. The silicon acted as a reducing agent of alkali halides for the in-situ production of alkali metals, and the calcium oxide played the role of a halide ion acceptor. The absence of any single component in this ternary mixture drastically reduced the destruction efficiency of CF4. The CF4 destruction efficiencies with the solid reagent containing the alkali halide, MX, increased in the order of Li approximately Na < K < Cs for alkali cations and I < Br < Cl < F for halide anions. This trend agreed with the endothermicity of the alkali metal generation reaction: the higher the endothermicity, the lower the destruction efficiency. Alkali metal generation was indirectly detected by monitoring H2 production from its reaction with water. The production of alkali metals increased with NaF, KF, and CsF in this order. The CsF/CaO/Si system exhibited the complete destruction of CF4 at as low as 600 degrees C. The solid product analysis by X-ray diffraction (XRD) showed the formation of CaF2 and the depletion of Si with black carbon particles formed in the solid reagent residue. No CO/CO2 and toxic HF and SiF4 formation were detected in the exhaust gas.

  8. Strong Turbulence in Alkali Halide Negative Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Sheehan, Daniel

    1999-11-01

    Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 <= fracm_+m- <= 20 are achievable. The source will allow tests of strong turbulence theory^2. 1 Sheehan, D.P., et al., Phys. Fluids B5, 1593 (1993). 2 Tsytovich, V. and Wharton, C.W., Comm. Plasma Phys. Cont. Fusion 4, 91 (1978).

  9. Alkali Halide Interfacial Behavior in a Sequence of Charged Slit Pores

    SciTech Connect

    Wander, Matthew C; Shuford, Kevin L

    2011-01-01

    In this paper, a variety of alkali halide, aqueous electrolyte solutions in contact with charged, planar-graphite slit-pores are simulated using classical molecular dynamics. Size trends in structure and transport properties are examined by varying the choice of ions among the alkali metal and halide series. As with the uncharged pores, system dynamics are driven by changes in water hydration behavior and specifically by variations in the number of hydrogen bonds per water molecule. Overall, the larger ions diffuse more rapidly under high surface charge conditions than the smaller ions. In particular, for the 1 nmslit, ion diffusivity increased by a factor of 4 compared to the uncharged case. Finally, a quantitative fit to the interfacial charge structure is presented, which confirms the presence of two distinct types of layers in an aqueous interface. This model indicates that the chemistry of the interface is able to create a small interfacial potential, and it shows how water molecules can rotate to increase charge separation in response to a surface potential.

  10. FTIR study of matrix-isolated halides of dysprosium and thulium and their gaseous heterocomplexes with alkali halides

    SciTech Connect

    Feltrin, A.; Cesaro, S.N.

    1996-06-01

    Vibrational spectra of dysprosium and thulium chlorides, bromides, and iodides isolated in argon have been studied for the first time. The appearance of a single band, even in heavy deposits, suggested a planar geometry for all the samples examined. The complexity of Dy and Tm chlorides spectra, partly because of isotopic patterns, required a reinvestigation of NdCl{sub 3} isolated in argon and have been explained by comparison. Vapors in equilibrium over heated equimolar mixtures of a number of Dy, Tm, and Nd halides with alkali halides trapped in argon have been also investigated. FTIR measurements gave experimental evidence for the formation of gaseous heterocomplexes whose geometry is discussed.

  11. Ion Segregation and Deliquescence of Alkali Halide Nanocrystals on SiO2

    SciTech Connect

    Arima, Kenta; Jiang, Peng; Lin, Deng-Sung; Verdaguer, Albert; Salmeron, Miquel

    2009-08-11

    The adsorption of water on alkali halide (KBr, KCl, KF, NaCl) nanocrystals on SiO{sub 2} and their deliquescence was investigated as a function of relative humidity (RH) from 8% to near saturation by scanning polarization force microscopy. At low humidity, water adsorption solvates ions at the surface of the crystals and increases their mobility. This results in a large increase in the dielectric constant, which is manifested in an increase in the electrostatic force and in an increase in the apparent height of the nanocrystals. Above 58% RH, the diffusion of ions leads to Ostwald ripening, where larger nanocrystals grow at the expense of the smaller ones. At the deliquescence point, droplets were formed. For KBr, KCl, and NaCl, the droplets exhibit a negative surface potential relative to the surrounding region, which is indicative of the preferential segregation of anions to the air/solution interface.

  12. Laser induced irreversible absorption changes in alkali halides at 10.6 µm

    NASA Astrophysics Data System (ADS)

    Wu, S.-T.; Bass, M.

    1981-12-01

    Laser induced irreversible changes in the absorption of alkali halides has been observed by using repetitively pulsed laser calorimetry. These changes occur at intensities below that required for laser induced breakdown and necessitate a change in the definition of laser damage threshold. A simple model is proposed to explain these observations based on the accumulation of microscopic failures as a result of each pulse.

  13. CO/sub 2/ laser absorption and saturation studies of molecular impurities in alkali halide crystals

    SciTech Connect

    Sievers, A.J.

    1980-12-01

    The objective of this research program has been to explore the equilibrium and non-equilibrium dynamical properties of ReO/sub 4//sup -/ molecules embedded in alkali halide lattices using electromagnetic radiation. Both incoherent sources and CO/sub 2/ laser radiation have been used to explore the full dynamic range of the molecular vibrational modes. To achieve this objective stable molecular dopant - alkali halide combinations have been fabricated which have vibrational modes near the CO/sub 2/ laser frequencies. In order to uncouple the molecular modes from the lattice modes, to simplify the analysis as much as possible, low temperature spectroscopic measurements were required. In general, it was found that the molecular vibrational modes in the low temperature quiescent lattice had extremely narrow linewidths (less than 0.1 cm/sup -1/) so that most of the coincidences with the CO/sub 2/ laser lines were eliminated.

  14. Reactions between cold methyl halide molecules and alkali-metal atoms

    SciTech Connect

    Lutz, Jesse J.; Hutson, Jeremy M.

    2014-01-07

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH{sub 3}X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH{sub 3}X + A → CH{sub 3} + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  15. Development of processes for the production of solar grade silicon from halides and alkali metals

    NASA Technical Reports Server (NTRS)

    Dickson, C. R.; Gould, R. K.

    1980-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon in volume at low cost were studied. Experiments were performed to evaluate product separation and collection processes, measure heat release parameters for scaling purposes, determine the effects of reactants and/or products on materials of reactor construction, and make preliminary engineering and economic analyses of a scaled-up process.

  16. Effects of Alkali Cations and Halide Anions on the Self-Assembly of Phosphatidylcholine in Oils.

    PubMed

    Lin, Shih-Ting; Lin, Chen-Shin; Chang, Ya-Ying; Whitten, Andrew E; Sokolova, Anna; Wu, Chun-Ming; Ivanov, Viktor A; Khokhlov, Alexei R; Tung, Shih-Huang

    2016-11-22

    The interactions between ions and phospholipids are closely associated with the structures and functions of cell membrane. Instead of conventional aqueous systems, we systematically investigated the effects of inorganic ions on the self-assembly of lecithin, a zwitterionic phosphatidylcholine, in cyclohexane. Previous studies have shown that addition of inorganic salts with specific divalent and trivalent cations can transform lecithin organosols into organogels. In this study, we focused on the effect of monovalent alkali halides. Fourier transform infrared spectroscopy was used to demonstrate that the binding strength of the alkali cations with the phosphate of lecithin is in the order Li(+) > Na(+) > K(+). More importantly, the cation-phosphate interaction is affected by the paired halide anions, and the effect follows the series I(-) > Br(-) > Cl(-). The salts of stronger interactions with lecithin, including LiCl, LiBr, LiI, and NaI, were found to induce cylindrical micelles sufficiently long to form organogels, while others remain organosols. A mechanism based on the charge density of ions and the enthalpy change of the ion exchange between alkali halides and lecithin headgroup is provided to explain the contrasting interactions and the effectiveness of the salts to induce organogelation.

  17. Calculation of the melting point of alkali halides by means of computer simulations.

    PubMed

    Aragones, J L; Sanz, E; Valeriani, C; Vega, C

    2012-09-14

    In this paper, we study the liquid-solid coexistence of NaCl-type alkali halides, described by interaction potentials such as Tosi-Fumi (TF), Smith-Dang (SD), and Joung-Cheatham (JC), and compute their melting temperature (T(m)) at 1 bar via three independent routes: (1) liquid/solid direct coexistence, (2) free-energy calculations, and (3) Hamiltonian Gibbs-Duhem integration. The melting points obtained by the three routes are consistent with each other. The calculated T(m) of the Tosi-Fumi model of NaCl is in good agreement with the experimental value as well as with other numerical calculations. However, the other two models considered for NaCl, SD and JC, overestimate the melting temperature of NaCl by more than 200 K. We have also computed the melting temperature of other alkali halides using the Tosi-Fumi interaction potential and observed that the predictions are not always as close to the experimental values as they are for NaCl. It seems that there is still room for improvement in the area of force-fields for alkaline halides, given that so far most models are still unable to describe a simple yet important property such as the melting point.

  18. Crystal lattice properties fully determine short-range interaction parameters for alkali and halide ions

    NASA Astrophysics Data System (ADS)

    Mao, Albert H.; Pappu, Rohit V.

    2012-08-01

    Accurate models of alkali and halide ions in aqueous solution are necessary for computer simulations of a broad variety of systems. Previous efforts to develop ion force fields have generally focused on reproducing experimental measurements of aqueous solution properties such as hydration free energies and ion-water distribution functions. This dependency limits transferability of the resulting parameters because of the variety and known limitations of water models. We present a solvent-independent approach to calibrating ion parameters based exclusively on crystal lattice properties. Our procedure relies on minimization of lattice sums to calculate lattice energies and interionic distances instead of equilibrium ensemble simulations of dense fluids. The gain in computational efficiency enables simultaneous optimization of all parameters for Li+, Na+, K+, Rb+, Cs+, F-, Cl-, Br-, and I- subject to constraints that enforce consistency with periodic table trends. We demonstrate the method by presenting lattice-derived parameters for the primitive model and the Lennard-Jones model with Lorentz-Berthelot mixing rules. The resulting parameters successfully reproduce the lattice properties used to derive them and are free from the influence of any water model. To assess the transferability of the Lennard-Jones parameters to aqueous systems, we used them to estimate hydration free energies and found that the results were in quantitative agreement with experimentally measured values. These lattice-derived parameters are applicable in simulations where coupling of ion parameters to a particular solvent model is undesirable. The simplicity and low computational demands of the calibration procedure make it suitable for parametrization of crystallizable ions in a variety of force fields.

  19. Thermal neutron detection using alkali halide scintillators with Li-6 and pulse shape discrimination

    SciTech Connect

    Brubaker, Erik; Dibble, Dean C.; Mengesha, Wondwosen; Yang, Pin

    2013-09-01

    An ideal 3He detector replacement for the near- to medium-term future will use materials that are easy to produce and well understood, while maintaining thermal neutron detection efficiency and gamma rejection close to the 3He standard. Toward this end, we investigated the use of standard alkali halide scintillators interfaced with 6Li and read out with photomultiplier tubes (PMTs). Thermal neutrons are captured on 6Li with high efficiency, emitting high-energy and triton (3H) reaction products. These particles deposit energy in the scintillator, providing a thermal neutron signal; discrimination against gamma interactions is possible via pulse shape discrimination (PSD), since heavy particles produce faster pulses in alkali halide crystals. We constructed and tested two classes of detectors based on this concept. In one case 6Li is used as a dopant in polycrystalline NaI; in the other case a thin Li foil is used as a conversion layer. In the configurations studied here, these systems are sensitive to both gamma and neutron radiation, with discrimination between the two and good energy resolution for gamma spectroscopy. We present results from our investigations, including measurements of the neutron efficiency and gamma rejection for the two detector types. We also show a comparison with Cs2LiYCl6:Ce (CLYC), which is emerging as the standard scintillator for simultaneous gamma and thermal neutron detection, and also allows PSD. We conclude that 6Li foil with CsI scintillating crystals has near-term promise as a thermal neutron detector in applications previously dominated by 3He detectors. The other approach, 6Li-doped alkali halides, has some potential, but require more work to understand material properties and improve fabrication processes.

  20. Metal Hydride and Alkali Halide Opacities in Extrasolar Giant Planets and Cool Stellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Weck, Philippe F.; Stancil, Phillip C.; Kirby, Kate; Schweitzer, Andreas; Hauschildt, Peter H.

    2006-01-01

    The lack of accurate and complete molecular line and continuum opacity data has been a serious limitation to developing atmospheric models of cool stars and Extrasolar Giant Planets (EGPs). We report our recent calculations of molecular opacities resulting from the presence of metal hydrides and alkali halides. The resulting data have been included in the PHOENIX stellar atmosphere code (Hauschildt & Baron 1999). The new models, calculated using spherical geometry for all gravities considered, also incorporate our latest database of nearly 670 million molecular lines, and updated equations of state.

  1. Method for calcining nuclear waste solutions containing zirconium and halides

    DOEpatents

    Newby, Billie J.

    1979-01-01

    A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.

  2. Size distributions and geometries of alkali halide nanoclusters probed using ESI FT-ICR mass spectrometry and quantum chemistry

    NASA Astrophysics Data System (ADS)

    Lemke, K.; Sadjadi, S.; Seward, T.

    2010-12-01

    The structures and energetic properties of ionic alkali metal halide clusters play a significant role in our understanding of aqueous geochemical processes such as salt dissolution, precipitation and neutralization reactions. Mass spectrometric and quantum chemical studies of such systems offer new opportunities to study the size-dependent evolution of cluster structures, the occurrence of magic number species as well as their fundamental properties. The work here presents new results for the stability, abundance and structure of pure [Na(NaClm)]+ , [K(KCl)m]+ and mixed [Na(NaCl)p(KCl)q]+ metal halide clusters with m<23 and p+q<14, respectively, using ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS) in combination with the Gn and CBS-x multistep ab initio methods. Ion-cluster experiments were conducted on a modified 7T Bruker FT-ICR/MS equipped with electrospray ionization (ESI) sources and a custom-designed solvent gas inlet interface. In ESI FT-ICR/MS experiments performed with solutions containing NaCl and KCl salts (1mM; 80/20 CH3CN/H2O), singly and doubly charged salt clusters were generated up to a cluster size of [Na(NaCl)22]+, [K(KCl)17]+ and [K2(KCl)21,23]2+, respectively, including “magic number” clusters that correspond to the completed cluster cuboids with the dimensions 3x3x1 (m=4), 3x3x2+3 (m=10) 3x3x3 (m=13) and 3x3x5 (m=22) (see Figure). On the other hand, no pure clusters except [K(KCl)1-3]+ were generated when alkali halides were electrosprayed from 1mM NaCl/KCl solutions. Instead, mixed [Na(NaCl)p(KCl)q]+ clusters are generated up to p+q=14, which are the largest mixed alkali halide clusters yet generated in mass spectrometric experiments, including a suite of ionic species that are generated via CH3CN fragmentation and charge transfer in [Na(CH3CN)n]+ to yield the clusters [Na(NaCN)(CH3CN)n-1]+. We describe our ESI FT-ICR/MS experiments and discuss ion cluster abundances and extent of clustering

  3. Ab initio perspective on the Mollwo-Ivey relation for F centers in alkali halides

    NASA Astrophysics Data System (ADS)

    Tiwald, Paul; Karsai, Ferenc; Laskowski, Robert; Gräfe, Stefanie; Blaha, Peter; Burgdörfer, Joachim; Wirtz, Ludger

    2015-10-01

    We revisit the well-known Mollwo-Ivey relation that describes the "universal" dependence of the absorption energies of F-type color centers on the lattice constant a of alkali-halide crystals, Eabs∝a-n. We perform both state-of-the-art ab initio quantum chemistry and post-DFT calculations of F-center absorption spectra. By "tuning" independently the lattice constant and the atomic species we show that the scaling with the lattice constant alone (keeping the elements fixed) would yield n =2 in agreement with the "particle-in-the-box" model. Keeping the lattice constant fixed and changing the atomic species enables us to quantify the ion-size effects which are shown to be responsible for the exponent n ≈1.8 .

  4. Silicon Halide-alkali Metal Flames as a Source of Solar Grade Silicon

    NASA Technical Reports Server (NTRS)

    Olson, D. B.; Gould, R. K.

    1979-01-01

    A program is presented which was aimed at determining the feasibility of using high temperature reactions of alkali metals and silicon halides to produce low cost solar-grade silicon. Experiments are being conducted to evaluate product separation and collection processes, measure heat release parameters for scaling purposes, and determine the effects of the reactants and/or products on materials of reactor construction. During the current reporting period, the results of heat release experiments were used to design and construct a new type of thick-wall graphite reactor to produce larger quantities of silicon. A reactor test facility was constructed. Material compatibility tests were performed for Na in contact with graphite and several coated graphites. All samples were rapidly degraded at T = 1200K, while samples retained structural strength at 1700K. Pyrolytic graphite coatings cracked and separated from substances in all cases.

  5. Indirect NMR spin-spin coupling constants in diatomic alkali halides.

    PubMed

    Jaszuński, Michał; Antušek, Andrej; Demissie, Taye B; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2016-12-28

    We report the Nuclear Magnetic Resonance (NMR) spin-spin coupling constants for diatomic alkali halides MX, where M = Li, Na, K, Rb, or Cs and X = F, Cl, Br, or I. The coupling constants are determined by supplementing the non-relativistic coupled-cluster singles-and-doubles (CCSD) values with relativistic corrections evaluated at the four-component density-functional theory (DFT) level. These corrections are calculated as the differences between relativistic and non-relativistic values determined using the PBE0 functional with 50% exact-exchange admixture. The total coupling constants obtained in this approach are in much better agreement with experiment than the standard relativistic DFT values with 25% exact-exchange, and are also noticeably better than the relativistic PBE0 results obtained with 50% exact-exchange. Further improvement is achieved by adding rovibrational corrections, estimated using literature data.

  6. Silicon halide-alkali metal flames as a source of solar grade silicon

    NASA Technical Reports Server (NTRS)

    Olsen, D. B.; Miller, W. J.

    1979-01-01

    The feasibility of using alkali metal-silicon halide diffusion flames to produce solar-grade silicon in large quantities and at low cost is demonstrated. Prior work shows that these flames are stable and that relatively high purity silicon can be produced using Na + SiCl4 flames. Silicon of similar purity is obtained from Na + SiF4 flames although yields are lower and product separation and collection are less thermochemically favored. Continuous separation of silicon from the byproduct alkali salt was demonstrated in a heated graphite reactor. The process was scaled up to reduce heat losses and to produce larger samples of silicon. Reagent delivery systems, scaled by a factor of 25, were built and operated at a production rate of 0.5 kg Si/h. Very rapid reactor heating rates are observed with wall temperatures reaching greater than 2000 K. Heat release parameters were measured using a cooled stainless steel reactor tube. A new reactor was designed.

  7. Hemibonding of hydroxyl radical and halide anion in aqueous solution.

    PubMed

    Yamaguchi, Makoto

    2011-12-29

    Molecular geometries and properties of the possible reaction products between the hydroxyl radical and the halide anions in aqueous solution were investigated. The formation of two-center three-electron bonding (hemibonding) between the hydroxyl radical and halide anions (Cl, Br, I) was examined by density functional theory (DFT) calculation with a range-separated hybrid (RSH) exchange-correlation functional. The long-range corrected hybrid functional (LC-ωPBE), which have given quantitatively satisfactory results for odd electron systems and excited states, was examined by test calculations for dihalogen radical anions (X(2)(-); X = Cl, Br, I) and hydroxyl radical-water clusters. Equilibrium geometries with hemibonding between the hydroxyl radical and halide anions were located by including four hydrogen-bonded water molecules. Excitation energies and oscillator strengths of σ-σ* transitions calculated by the time-dependent DFT method showed good agreement with observed values. Calculated values of the free energy of reaction on the formation of hydroxyl halide radical anion from the hydroxyl radical and halide anion were endothermic for chloride but exothermic for bromide and iodide, which is consistent with experimental values of equilibrium constants.

  8. PRESSURE DEPENDENCE OF THE DIELECTRIC PROPERTIES OF SOME ORGANIC LIQUIDS AND OF FIFTEEN OF THE ALKALI HALIDES.

    DTIC Science & Technology

    eugenol , glycerol, diethyl ether, LiF, LiCl, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbBr, RbI, CsBr, CsI (single crystals). Temperature range 0-100...deg C., pressure range 1-4,000 kgf/sq. cm, frequency range 20-8 million Hz. Temperature dependence of the permittivity of alkali halides measured and dielectric dispersion in glycerol and eugenol investigated. (Author)

  9. Physics of solid and liquid alkali halide surfaces near the melting point

    NASA Astrophysics Data System (ADS)

    Zykova-Timan, T.; Ceresoli, D.; Tartaglino, U.; Tosatti, E.

    2005-10-01

    This paper presents a broad theoretical and simulation study of the high-temperature behavior of crystalline alkali halide surfaces typified by NaCl(100), of the liquid NaCl surface near freezing, and of the very unusual partial wetting of the solid surface by the melt. Simulations are conducted using two-body rigid-ion Born-Mayer-Huggins-Fumi-Tosi (BMHFT) potentials, with full treatment of long-range Coulomb forces. After a preliminary check of the description of bulk NaCl provided by these potentials, which seems generally good even at the melting point, we carry out a new investigation of solid and liquid surfaces. Solid NaCl(100) is found in this model to be very anharmonic and yet exceptionally stable when hot. It is predicted by a thermodynamic integration calculation of the surface free energy that NaCl(100) should be a well-ordered, nonmelting surface, metastable even well above the melting point. By contrast, the simulated liquid NaCl surface is found to exhibit large thermal fluctuations and no layering order. In spite of that, it is shown to possess a relatively large surface free energy. The latter is traced to a surface entropy deficit, reflecting some kind of surface short-range order. We show that the surface short-range order is most likely caused by the continuous transition of the bulk ionic melt into the vapor, made of NaCl molecules and dimers rather than of single ions. Finally, the solid-liquid interface free energy is derived through Young's equation from direct simulation of partial wetting of NaCl(100) by a liquid droplet. The resulting interface free energy is large, in line with the conspicuous solid-liquid 27% density difference. A partial wetting angle near 50° close to the experimental value of 48° is obtained in the process. It is concluded that three elements, namely, the exceptional anharmonic stability of the solid (100) surface, the molecular short-range order at the liquid surface, and the costly solid-liquid interface, all

  10. Silicon halide-alkali metal flames as a source of solar grade silicon

    NASA Technical Reports Server (NTRS)

    Olson, D. B.; Miller, W. J.; Gould, R. K.

    1980-01-01

    The feasibility of using continuous high-temperature reactions of alkali metals and silicon halides to produce silicon in large quantities and of suitable purity for use in the production of photovoltaic solar cells was demonstrated. Low pressure experiments were performed demonstrating the production of free silicon and providing experience with the construction of reactant vapor generators. Further experiments at higher reagent flow rates were performed in a low temperature flow tube configuration with co-axial injection of reagents and relatively pure silicon was produced. A high temperature graphite flow tube was built and continuous separation of Si from NaCl was demonstrated. A larger scaled well stirred reactor was built. Experiments were performed to investigate the compatability of graphite based reactor materials of construction with sodium. At 1100 to 1200 K none of these materials were found to be suitable. At 1700 K the graphites performed well with little damage except to coatings of pyrolytic graphite and silicon carbide which were damaged.

  11. Physics of solid and liquid alkali halide surfaces near the melting point

    NASA Astrophysics Data System (ADS)

    Zykova-Timan, Tatyana; Ceresoli, Davide; Tartaglino, Ugo; Tosatti, Erio

    2006-03-01

    NaCl (and other alkali halide) crystal surfaces have the peculiar property of repelling their own melt. As a result they let themselves be wetted only partially by their own liquid at the melting point TM. We recently investigated the physical reasons for this unusual behavior. We found them through theory and molecular dynamics simulation to stem from the conspiracy of three factors. First, the solid NaCl(100) surface is exceptionally anharmonic,but also exceptionally stable. It can in fact survive even well above the melting point, for unlike most other surfaces it does not spontaneously melt. Second, the solid-liquid interface is very costly, due to a 27% density difference between solid and liquid. Third, the surface tension of liquid NaCl is relatively high. This last feature is due to an unexpected entropy deficit, that can in turn be traced to incipient molecular charge order in the outermost regions of the molten salt surface[1,2].[1] T. Zykova-Timan, D. Ceresoli, U. Tartaglino, E. Tosatti, Phys. Rev. Lett. 94, 176105 (2005) [2] T. Zykova-Timan, D. Ceresoli, U. Tartaglino, E. Tosatti, J. Chem. Phys. 123, 164701 (2005)

  12. Solubility of alkali metal halides in the ionic liquid [C4C1im][OTf].

    PubMed

    Kuzmina, O; Bordes, E; Schmauck, J; Hunt, P A; Hallett, J P; Welton, T

    2016-06-28

    The solubilities of the metal halides LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbCl, CsCl, CsI, were measured at temperatures ranging from 298.15 to 378.15 K in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4C1im][OTf]). Li(+), Na(+) and K(+) salts with anions matching the ionic liquid have also been investigated to determine how well these cations dissolve in [C4C1im][OTf]. This study compares the influence of metal cation and halide anion on the solubility of salts within this ionic liquid. The highest solubility found was for iodide salts, and the lowest solubility for the three fluoride salts. There is no outstanding difference in the solubility of salts with matching anions in comparison to halide salts. The experimental data were correlated employing several phase equilibria models, including ideal mixtures, van't Hoff, the λh (Buchowski) equation, the modified Apelblat equation, and the non-random two-liquid model (NRTL). It was found that the van't Hoff model gave the best correlation results. On the basis of the experimental data the thermodynamic dissolution parameters (ΔH, ΔS, and ΔG) were determined for the studied systems together with computed gas phase metathesis parameters. Dissolution depends on the energy difference between enthalpies of fusion and dissolution of the solute salt. This demonstrates that overcoming the lattice energy of the solid matrix is the key to the solubility of inorganic salts in ionic liquids.

  13. Oxidative alkoxylation of phosphine in alcohol solutions of copper halides

    NASA Astrophysics Data System (ADS)

    Polimbetova, G. S.; Borangazieva, A. K.; Ibraimova, Zh. U.; Bugubaeva, G. O.; Keynbay, S.

    2016-08-01

    The phosphine oxidation reaction with oxygen in alcohol solutions of copper (I, II) halides is studied. Kinetic parameters, intermediates, and by-products are studied by means of NMR 31P-, IR-, UV-, and ESR- spectroscopy; and by magnetic susceptibility, redox potentiometry, gas chromatography, and elemental analysis. A reaction mechanism is proposed, and the optimum conditions are found for the reaction of oxidative alkoxylation phosphine.

  14. Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires.

    PubMed

    Zhang, Dandan; Eaton, Samuel W; Yu, Yi; Dou, Letian; Yang, Peidong

    2015-07-29

    Halide perovskites have attracted much attention over the past 5 years as a promising class of materials for optoelectronic applications. However, compared to hybrid organic-inorganic perovskites, the study of their pure inorganic counterparts, like cesium lead halides (CsPbX3), lags far behind. Here, a catalyst-free, solution-phase synthesis of CsPbX3 nanowires (NWs) is reported. These NWs are single-crystalline, with uniform growth direction, and crystallize in the orthorhombic phase. Both CsPbBr3 and CsPbI3 are photoluminescence active, with composition-dependent temperature and self-trapping behavior. These NWs with a well-defined morphology could serve as an ideal platform for the investigation of fundamental properties and the development of future applications in nanoscale optoelectronic devices based on all-inorganic perovskites.

  15. Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations

    SciTech Connect

    Webster, R. Harrison, N. M.; Bernasconi, L.

    2015-06-07

    We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features of the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green’s function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional c{sub HF} and show that there exists one value of c{sub HF} (∼0.32) that reproduces at least semi-quantitatively the optical gap of this material.

  16. Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations.

    PubMed

    Webster, R; Bernasconi, L; Harrison, N M

    2015-06-07

    We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features of the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green's function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional cHF and show that there exists one value of cHF (∼0.32) that reproduces at least semi-quantitatively the optical gap of this material.

  17. Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations

    NASA Astrophysics Data System (ADS)

    Webster, R.; Bernasconi, L.; Harrison, N. M.

    2015-06-01

    We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features of the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green's function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional cHF and show that there exists one value of cHF (˜0.32) that reproduces at least semi-quantitatively the optical gap of this material.

  18. Alteration of alkali reactive aggregates autoclaved in different alkali solutions and application to alkali-aggregate reaction in concrete

    SciTech Connect

    Lu Duyou; Xu Zhongzi; Tang Mingshu; Fournier, Benoit

    2006-06-15

    Surface alteration of typical aggregates with alkali-silica reactivity and alkali-carbonate reactivity, i.e. Spratt limestone (SL) and Pittsburg dolomitic limestone (PL), were studied by XRD and SEM/EDS after autoclaving in KOH, NaOH and LiOH solutions at 150 deg. C for 150 h. The results indicate that: (1) NaOH shows the strongest attack on both ASR and ACR aggregates, the weakest attack is with LiOH. For both aggregates autoclaved in different alkali media, the crystalline degree, morphology and distribution of products are quite different. More crystalline products are formed on rock surfaces in KOH than that in NaOH solution, while almost no amorphous product is formed in LiOH solution; (2) in addition to dedolomitization of PL in KOH, NaOH and LiOH solutions, cryptocrystalline quartz in PL involves in reaction with alkaline solution and forms typical alkali-silica product in NaOH and KOH solutions, but forms lithium silicate (Li{sub 2}SiO{sub 3}) in LiOH solution; (3) in addition to massive alkali-silica product formed in SL autoclaved in different alkaline solutions, a small amount of dolomite existing in SL may simultaneously dedolomitize and possibly contribute to expansion; (4) it is promising to use the duplex effect of LiOH on ASR and ACR to distinguish the alkali-silica reactivity and alkali-carbonate reactivity of aggregate when both ASR and ACR might coexist.

  19. The effects of halide anions on the dielectric response of potassium halide solutions in visible, UV and far UV region.

    PubMed

    Shagieva, F M; Boinovich, L B

    2013-06-07

    Based on the experimentally measured dispersion of refractive indices, we studied the effects of halide anions on the dielectric response of potassium halide solutions in the visible, UV and far UV regions. It was shown that a specific ion effect according to the Hofmeister series is clearly demonstrated for the visible range of spectra. For the near-, mid-, and far UV ranges of spectra, the specific ion effect essentially depends on solution concentration and temperature. The influence of ions on the behavior of dynamic dielectric permittivity of a solution is discussed on the basis of ion/water and ion/ion electrostatic and electrodynamic interactions and hydration shell structure.

  20. Low-Energy Grazing Ion-Scattering From Alkali-Halide Surfaces: A Novel Approach To C-14 Detection

    NASA Astrophysics Data System (ADS)

    Meyer, F. W.; Galutschek, E.; Hotchkis, M.

    2009-03-01

    Carbon-14 labeled compounds are widely used in the pharmaceutical industry, e.g., as tracers to determine the fate of these compounds in vivo. Conventional accelerator mass spectrometry (AMS) is one approach that offers sufficiently high sensitivity to avoid radiological waste and contamination issues in such studies, but requires large, expensive facilities that are usually not solely dedicated to this task. At the ORNL Multicharged Ion Research Facility (MIRF) we are exploring a small size, low cost alternative to AMS for biomedical 14C tracer studies that utilizes ECR-ion-source-generated keV-energy-range multicharged C beams grazingly incident on an alkali halide target, where efficient negative ion production by multiple electron capture takes place. By using C ion charge states of +3 or higher, the molecular isobar interference at mass 14, e.g. 12CH2 and 13CH, is eliminated. The negatively charged ions in the beam scattered from the alkali halide surface are separated from other scattered charge states by two large acceptance (˜15 msr) stages of electrostatic analysis. The N-14 isobar interference is thus removed, since N does not support a stable negative ion. Initial results for C-14 detection obtained using C-14 enriched CO2 from ANSTO will be described.

  1. Low-Energy Grazing Ion-Scattering from Alkali-Halide Surfaces: A Novel Approach to C-14 Detection

    SciTech Connect

    Meyer, Fred W; Galutschek, Ernst; Hotchkis, Michael

    2009-01-01

    Carbon-14 labeled compounds are widely used in the pharmaceutical industry, e.g., as tracers to determine the fate of these compounds in vivo. Conventional accelerator mass spectrometry (AMS) is one approach that offers sufficiently high sensitivity to avoid radiological waste and contamination issues in such studies, but requires large, expensive facilities that are usually not solely dedicated to this task. At the ORNL Multicharged Ion Research Facility (MIRF) we are exploring a small size, low cost alternative to AMS for biomedical 14C tracer studies that utilizes ECR-ion-source-generated keV-energy-range multicharged C beams grazingly incident on an alkali halide target, where efficient negative ion production by multiple electron capture takes place. By using C ion charge states of +3 or higher, the molecular isobar interference at mass 14, e.g. 12CH2 and 13CH, is eliminated. The negatively charged ions in the beam scattered from the alkali halide surface are separated from other scattered charge states by two large acceptance ({approx}15 msr) stages of electrostatic analysis. The N-14 isobar interference is thus removed, since N does not support a stable negative ion. Initial results for C-14 detection obtained using C-14 enriched CO2 from ANSTO will be described.

  2. Low-Energy Grazing Ion-Scattering From Alkali-Halide Surfaces: A Novel Approach To C-14 Detection

    SciTech Connect

    Meyer, F. W.; Galutschek, E.; Hotchkis, M.

    2009-03-10

    Carbon-14 labeled compounds are widely used in the pharmaceutical industry, e.g., as tracers to determine the fate of these compounds in vivo. Conventional accelerator mass spectrometry (AMS) is one approach that offers sufficiently high sensitivity to avoid radiological waste and contamination issues in such studies, but requires large, expensive facilities that are usually not solely dedicated to this task. At the ORNL Multicharged Ion Research Facility (MIRF) we are exploring a small size, low cost alternative to AMS for biomedical {sup 14}C tracer studies that utilizes ECR-ion-source-generated keV-energy-range multicharged C beams grazingly incident on an alkali halide target, where efficient negative ion production by multiple electron capture takes place. By using C ion charge states of +3 or higher, the molecular isobar interference at mass 14, e.g. {sup 12}CH{sub 2} and {sup 13}CH, is eliminated. The negatively charged ions in the beam scattered from the alkali halide surface are separated from other scattered charge states by two large acceptance ({approx}15 msr) stages of electrostatic analysis. The N-14 isobar interference is thus removed, since N does not support a stable negative ion. Initial results for C-14 detection obtained using C-14 enriched CO{sub 2} from ANSTO will be described.

  3. Universal scaling of potential energy functions describing intermolecular interactions. II. The halide-water and alkali metal-water interactions

    SciTech Connect

    Werhahn, Jasper C.; Akase, Dai; Xantheas, Sotiris S.

    2014-08-14

    The scaled versions of the newly introduced [S. S. Xantheas and J. C. Werhahn, J. Chem. Phys.141, 064117 (2014)] generalized forms of some popular potential energy functions (PEFs) describing intermolecular interactions – Mie, Lennard-Jones, Morse, and Buckingham exponential-6 – have been used to fit the ab initio relaxed approach paths and fixed approach paths for the halide-water, X-(H2O), X = F, Cl, Br, I, and alkali metal-water, M+(H2O), M = Li, Na, K, Rb, Cs, interactions. The generalized forms of those PEFs have an additional parameter with respect to the original forms and produce fits to the ab initio data that are between one and two orders of magnitude better in the χ2 than the original PEFs. They were found to describe both the long-range, minimum and repulsive wall of the respective potential energy surfaces quite accurately. Overall the 4-parameter extended Morse (eM) and generalized Buckingham exponential-6 (gBe-6) potentials were found to best fit the ab initio data for these two classes of ion-water interactions. Finally, the fitted values of the parameter of the (eM) and (gBe-6) PEFs that control the repulsive wall of the potential correlate remarkably well with the ionic radii of the halide and alkali metal ions.

  4. Development of processes for the production of solar grade silicon from halides and alkali metals, phase 1 and phase 2

    NASA Technical Reports Server (NTRS)

    Dickson, C. R.; Gould, R. K.; Felder, W.

    1981-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon are described. Product separation and collection processes were evaluated, measure heat release parameters for scaling purposes and effects of reactants and/or products on materials of reactor construction were determined, and preliminary engineering and economic analysis of a scaled up process were made. The feasibility of the basic process to make and collect silicon was demonstrated. The jet impaction/separation process was demonstrated to be a purification process. The rate at which gas phase species from silicon particle precursors, the time required for silane decomposition to produce particles, and the competing rate of growth of silicon seed particles injected into a decomposing silane environment were determined. The extent of silane decomposition as a function of residence time, temperature, and pressure was measured by infrared absorption spectroscopy. A simplistic model is presented to explain the growth of silicon in a decomposing silane enviroment.

  5. Processes that Intervene in the Generation of the Photoacoustic Effect in Alkali Halides with F-Centers

    NASA Astrophysics Data System (ADS)

    Da Silva, Luis F.

    2004-01-01

    The photoacoustic effect, produced by the F-center in alkali halide crystals, is analyzed using the configuration coordinate model. By using the configuration coordinate model it is possible to explain the temperature increase of the sample when the sample is illuminated and the F-centers absorb light. Also this model explains the piston effect upon the atmosphere that surrounds the sample when the sample is illuminated. The temperature increase and the piston effect, produced during the development of the photoacoustic effect, cause the sound wave generation in the atmosphere that surrounds the sample when the F-centers absorb light. Using this model, the temperature increase value for a KCl sample and the displacement of the faces of the crystal during the process for the following crystals: KCl, KBr, KI and NaCl, have been determined.

  6. Integrating 2-D position sensitive X-ray detectors with low-density alkali halide storage targets

    NASA Astrophysics Data System (ADS)

    Haubold, H.-G.; Hoheisel, W.; Hiller, P.

    1986-05-01

    For the use in scattering experiments with synchrotron radiation, integrating position sensitive X-ray detectors are discussed. These detectors store the photon number equivalent charge (PNEC) in low-density alkali halide targets. Performance tests are given for a detector which uses a Gd 2O 2S fluorescence screen for X-ray detection and the low-density KCl storage target of a television SEC vidicon tube for photon integration. Rather than directly by X-rays, this target is charged by 6 keV electrons from the image intensifier section of the vidicon. Its excellent storage capability allows measurements of extremely high-contrast, high-flux X-ray patterns with the same accuracy as achieved with any single photon detection system if the discussed readout techniques are applied.

  7. Lattice model calculation of elastic and thermodynamic properties at high pressure and temperature. [for alkali halides in NaCl lattice

    NASA Technical Reports Server (NTRS)

    Demarest, H. H., Jr.

    1972-01-01

    The elastic constants and the entire frequency spectrum were calculated up to high pressure for the alkali halides in the NaCl lattice, based on an assumed functional form of the inter-atomic potential. The quasiharmonic approximation is used to calculate the vibrational contribution to the pressure and the elastic constants at arbitrary temperature. By explicitly accounting for the effect of thermal and zero point motion, the adjustable parameters in the potential are determined to a high degree of accuracy from the elastic constants and their pressure derivatives measured at zero pressure. The calculated Gruneisen parameter, the elastic constants and their pressure derivatives are in good agreement with experimental results up to about 600 K. The model predicts that for some alkali halides the Grunesen parameter may decrease monotonically with pressure, while for others it may increase with pressure, after an initial decrease.

  8. Ca-Fe and Alkali-Halide Alteration of an Allende Type B CAI: Aqueous Alteration in Nebular or Asteroidal Settings

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Simon, J. I.; Simon, S. B.; Grossman, L.

    2012-01-01

    Ca-Fe and alkali-halide alteration of CAIs is often attributed to aqueous alteration by fluids circulating on asteroidal parent bodies after the various chondritic components have been assembled, although debate continues about the roles of asteroidal vs. nebular modification processes [1-7]. Here we report de-tailed observations of alteration products in a large Type B2 CAI, TS4 from Allende, one of the oxidized subgroup of CV3s, and propose a speculative model for aqueous alteration of CAIs in a nebular setting. Ca-Fe alteration in this CAI consists predominantly of end-member hedenbergite, end-member andradite, and compositionally variable, magnesian high-Ca pyroxene. These phases are strongly concentrated in an unusual "nodule" enclosed within the interior of the CAI (Fig. 1). The Ca, Fe-rich nodule superficially resembles a clast that pre-dated and was engulfed by the CAI, but closer inspection shows that relic spinel grains are enclosed in the nodule, and corroded CAI primary phases interfinger with the Fe-rich phases at the nodule s margins. This CAI also contains abundant sodalite and nepheline (alkali-halide) alteration that occurs around the rims of the CAI, but also penetrates more deeply into the CAI. The two types of alteration (Ca-Fe and alkali-halide) are adjacent, and very fine-grained Fe-rich phases are associated with sodalite-rich regions. Both types of alteration appear to be replacive; if that is true, it would require substantial introduction of Fe, and transport of elements (Ti, Al and Mg) out of the nodule, and introduction of Na and Cl into alkali-halide rich zones. Parts of the CAI have been extensively metasomatized.

  9. Influence of gallium and alkali halide addition on the optical and thermo mechanical properties of GeSe2-Ga2Se3 glass

    NASA Astrophysics Data System (ADS)

    Volk, Y. V.; Malyarevich, A. M.; Yumashev, K. V.; Matrosov, V. N.; Matrosova, T. A.; Kupchenko, M. I.

    2007-10-01

    A systematic compositional study of a new family of chalcogenide glasses, transparent from the visible range up to 16 μm has been performed. Numerous glass forming regions were explored in the GeSe2-Ga2Se3-MX system (MX = alkali halide) in order to understand the role of alkali halides and the effect of Ga substitution for Sb in the glass structure. To that avail, several ternary diagrams were investigated, and optical and thermo-mechanical measurements were performed. It is shown that the introduction of an alkali halide in the GeSe2-Ga2Se3 glasses increased the band-gap energy Eg by stabilizing electrons from the lone pairs of selenium. However, the glass hardness was lowered due to a decrease in the glass network reticulation. The chemical resistance was studied in a glass containing high CsCl content. Significant corrosion occurred when the glass was exposed to hot water for several hours. There is a great deal of interest in these glasses for use in thermal imaging devices, as they permit the alignment of infrared optical systems with visible red light. Furthermore, the low cost of raw materials and the possibility of shaping these glasses into lenses by molding could extend their utilization from defense to civilian applications.

  10. Influence of gallium and alkali halide addition on the optical and thermo-mechanical properties of GeSe2-Ga2Se3 glass

    NASA Astrophysics Data System (ADS)

    Calvez, L.; Lucas, P.; Rozé, M.; Ma, H. L.; Lucas, J.; Zhang, X. H.

    2007-10-01

    A systematic compositional study of a new family of chalcogenide glasses, transparent from the visible range up to 16 μm has been performed. Numerous glass forming regions were explored in the GeSe2-Ga2Se3-MX system (MX = alkali halide) in order to understand the role of alkali halides and the effect of Ga substitution for Sb in the glass structure. To that avail, several ternary diagrams were investigated, and optical and thermo-mechanical measurements were performed. It is shown that the introduction of an alkali halide in the GeSe2-Ga2Se3 glasses increased the band-gap energy Eg by stabilizing electrons from the lone pairs of selenium. However, the glass hardness was lowered due to a decrease in the glass network reticulation. The chemical resistance was studied in a glass containing high CsCl content. Significant corrosion occurred when the glass was exposed to hot water for several hours. There is a great deal of interest in these glasses for use in thermal imaging devices, as they permit the alignment of infrared optical systems with visible red light. Furthermore, the low cost of raw materials and the possibility of shaping these glasses into lenses by molding could extend their utilization from defense to civilian applications.

  11. Effect of radiation-induced emission of Schottky defects on the formation of colloids in alkali halides

    NASA Astrophysics Data System (ADS)

    Dubinko, V. I.; Vainshtein, D. I.; den Hartog, H. W.

    2003-10-01

    Formation of vacancy clusters in irradiated crystals is considered taking into account radiation-induced Schottky defect emission (RSDE) from extended defects. RSDE acts in the opposite direction compared with Frenkel pair production, and it results in the radiation-induced recovery processes. In the case of alkali halides, Schottky defects can be produced as a result of the interaction of extended defects with excitons , as has been suggested by Seitz in 1954. We consider a model that takes into account excitonic mechanisms for the creation of both Frenkel and Schottky defects, and which shows that although the contribution of the latter mechanism to the production of primary defects may be small, its role in the radiation-induced evolution of microstructure can be very significant. The model is applied to describe the evolution of sodium colloids and the formation of voids in NaCl, which is followed by a sudden fracture of the material, presenting a potential problem in rock salt-based nuclear waste repositories. The temperature, dose rate and dose dependence of colloid growth in NaCl doped with different types of impurities is analyzed. We have found that colloid growth may become negative below a threshold temperature (or above a threshold dose rate), or below a certain impurity concentration , which is determined by the RSDE, that depends strongly on the type and concentration of the impurities. The results obtained with the model are compared with experimental observations.

  12. Interaction of wide band gap single crystals with 248 nm excimer laser radiation. XII. The emission of negative atomic ions from alkali halides

    SciTech Connect

    Kimura, Kenichi; Langford, S. C.; Dickinson, J. T.

    2007-12-01

    Many wide band gap materials yield charged and neutral emissions when exposed to sub-band-gap laser radiation at power densities below the threshold for optical breakdown and plume formation. In this work, we report the observation of negative alkali ions from several alkali halides under comparable conditions. We observe no evidence for negative halogen ions, in spite of the high electron affinities of the halogens. Significantly, the positive and negative alkali ions show a high degree of spatial and temporal overlap. A detailed study of all the relevant particle emissions from potassium chloride (KCl) suggests that K{sup -} is formed by the sequential attachment of two electrons to K{sup +}.

  13. Influence of Halide Solutions on Collagen Networks: Measurements of Physical Properties by Atomic Force Microscopy

    PubMed Central

    Kempe, André; Lackner, Maximilian

    2016-01-01

    The influence of aqueous halide solutions on collagen coatings was tested. The effects on resistance against indentation/penetration on adhesion forces were measured by atomic force microscopy (AFM) and the change of Young's modulus of the coating was derived. Comparative measurements over time were conducted with halide solutions of various concentrations. Physical properties of the mesh-like coating generally showed large variability. Starting with a compact set of physical properties, data disperse after minutes. A trend of increase in elasticity and permeability was found for all halide solutions. These changes were largest in NaI, displaying a logical trend with ion size. However a correlation with concentration was not measured. Adhesion properties were found to be independent of mechanical properties. The paper also presents practical experience for AFM measurements of soft tissue under liquids, particularly related to data evaluation. The weakening in physical strength found after exposure to halide solutions may be interpreted as widening of the network structure or change in the chemical properties in part of the collagen fibres (swelling). In order to design customized surface coatings at optimized conditions also for medical applications, halide solutions might be used as agents with little impact on the safety of patients. PMID:27721994

  14. Molecular compressibility of some halides in alcohols

    NASA Technical Reports Server (NTRS)

    Serban, C.; Auslaender, D.

    1974-01-01

    After measuring ultrasonic velocity and density, the molecular compressibility values from Wada's formula were calculated, for alkali metal halide solutions in methyl, ethyl, butyl, and glycol alcohol. The temperature and concentration dependence were studied, finding deviations due to the hydrogen bonds of the solvent.

  15. Evidence for New Excess Electron Localization Sites in Na{sub {ital n}}F{sub {ital n}{minus}1 } Alkali-Halide Clusters

    SciTech Connect

    Durand, G.; Spiegelmann, F.; Labastie, P.; LHermite, J.; Poncharal, P.

    1997-07-01

    This Letter examines new types of localization sites for an excess electron in finite alkali-halide clusters resulting from defects on cuboidal structures, namely {open_quotes}edge states,{close_quotes} R center, and other surface defects. We present theoretical calculations on Na{sub n}F {sub n{minus}1} clusters with one excess electron. Comparisons with experimental results are presented for different cluster sizes (n=17 , 23, 28, and 29). Structures with edge or surface defects are relevant for n=23 , 28, and 29. {copyright} {ital 1997} {ital The American Physical Society}

  16. Preparation and use of electrodes in the electrolysis of alkali halides

    SciTech Connect

    Beaver, R.N.; Byrd, C.E.; Alexander, L.E.

    1986-02-25

    A process is described for electrolysis of aqueous solutions of sodium chloride in an electrolytic cell comprising an anolyte compartment and catholyte compartment separated by a diaphragm to produce an aqueous solution of sodium hydroxide in the catholyte compartment, and chlorine in the anolyte compartment. The cathode of the process is a low hydrogen overvoltage cathode made by applying to an electroconductive substrate a coating solution of nickel oxide and ruthenium oxide precursor compounds and an etchant capable of etching the surface of the substrate and/or any previously applied coating. Heating is done to remove volatiles from the so-coated substrate to cause the metal values of the precursor compounds and those etched from the substrate or previously applied coating. Further, heating is performed in the presence of oxygen, air or an oxidizing agent, to a temperature sufficient to oxidize the metal values, thereby obtaining on the substrate an electrocatalytically-active heaterogeneous metal oxide structure comprising RuO/sub 2/ and NiO.

  17. Measurement of the Electric Dipole Polarizabilities of Alkali Halide Dimers, and DOUBLET-P(1/2) Indium and Thallium.

    NASA Astrophysics Data System (ADS)

    Guella, Thomas Paul

    1985-12-01

    An electric field deflection technique has been used to obtain the average dimer polarizabilities of all the alkali halides, and the scalar ('2)P(, 1/2) polarizabilities of indium and thallium. The experimental procedure consisted of passing a well collimated effusive beam through a region of inhomogeneous electric field and analyzing the deflected beam pattern, with respect to the undeflected beam shape, at the detector. The beam deflections were analyzed in two ways. One method consisted of normalizing the deflections by comparing the experi- mental deflections to those obtained from atomic lithium, whose polarizability is known to within 2%. The normalization reduces the polarizability determination to the ratio of measured line slopes. This procedure lessens systematic errors resulting from a lack of detailed information concerning field variations along the beam path within the interaction region. A second method, employing a C.D.C. Cyber 360 computer, comprizes a quantitative analysis of the monomer and dimer deflections in which part of the actual deflected beam shape is used. Our results are compared with the polarizability values obtained from a simple 'mass-spring' model for the dimer which employs calculated (and experimental) vibrational frequencies and effective ionic polarizabilities from various dimer models. In addition to an electric deflection measurement, and E-H gradient balance technique was also employed for the indium and thallium ('2)P(, 1/2) measurements. This method consisted of balancing the magnetic dipole force for negative magnetic substates against the induced electric dipole force in a region where simultaneous and congruent inhomogeneous electric and magnetic fields are estab- lished. These measurements were normalized to an m = -3 substate of Cs whose polarizability is known to within (.5%). The results of our electric deflection and E-H gradient balance measurements for these atomic systems were (UNFORMATTED TABLE FOLLOWS). In Tl

  18. Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters.

    PubMed

    Joung, In Suk; Cheatham, Thomas E

    2009-10-08

    The dynamic and energetic properties of the alkali and halide ions were calculated using molecular dynamics (MD) and free energy simulations with various different water and ion force fields including our recently developed water-model-specific ion parameters. The properties calculated were activity coefficients, diffusion coefficients, residence times of atomic pairs, association constants, and solubility. Through calculation of these properties, we can assess the validity and range of applicability of the simple pair potential models and better understand their limitations. Due to extreme computational demands, the activity coefficients were only calculated for a subset of the models. The results qualitatively agree with experiment. Calculated diffusion coefficients and residence times between cation-anion, water-cation, and water-anion showed differences depending on the choice of water and ion force field used. The calculated solubilities of the alkali-halide salts were generally lower than the true solubility of the salts. However, for both the TIP4P(EW) and SPC/E water-model-specific ion parameters, solubility was reasonably well-reproduced. Finally, the correlations among the various properties led to the following conclusions: (1) The reliability of the ion force fields is significantly affected by the specific choice of water model. (2) Ion-ion interactions are very important to accurately simulate the properties, especially solubility. (3) The SPC/E and TIP4P(EW) water-model-specific ion force fields are preferred for simulation in high salt environments compared to the other ion force fields.

  19. Development of processes for the production of solar grade silicon from halides and alkali metals, Phase 1 and Phase 2. Final report, October 1979 - February 1981

    SciTech Connect

    Dickson, C.R.; Gould, R.K.; Felder, W.

    1981-03-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon are described. Product separation and collection processes were evaluated, measure heat release parameters for scaling purposes and effects of reactants and/or products on materials of reactor construction were determined, and preliminary engineering and economic analysis of a scaled up process were made. The feasibility of the basic process to make and collect silicon was demonstrated. The jet impaction/separation process was demonstrated to be a purification process. The rate at which gas phase species from silicon particle precursors, the time required for silane decomposition to produce particles, and the competing rate of growth of silicon seed particles injected into a decomposing silane environment were determined. The extent of silane decomposition as a function of residence time, temperature, and pressure was measured by infrared absorption spectroscopy. A simplistic model is presented to explain the growth of silicon in a decomposing silane enviroment.

  20. Precursor Luminescence near the Collapse of Laser-Induced Bubbles in Alkali-Salt Solutions

    PubMed Central

    Chu, Han-Ching; Vo, Sonny; Williams, Gary A.

    2014-01-01

    A precursor luminescence pulse consisting of atomic line emission is observed as much as 150 nanoseconds prior to the collapse point of laser-created bubbles in alkali-metal solutions. The timing of the emission from neutral Na, Li, and K atoms is strongly dependent on the salt concentration, which appears to result from resonant radiation trapping by the alkali atoms in the bubble. The alkali emission ends at the onset of the blackbody luminescence pulse at the bubble collapse point, and the duration of the blackbody pulse is found to be reduced by up to 30% as the alkali-salt concentration is increased. PMID:19519032

  1. Capacitance of the double electrical layer on the copper-group metals in molten alkali metal halides

    NASA Astrophysics Data System (ADS)

    Kirillova, E. V.; Stepanov, V. P.

    2016-08-01

    The electrochemical impedance is measured to study the capacitance of the double electrical layer of metallic Au, Ag, and Cu as a function of potential and temperature in nine molten salts, namely, the chlorides, bromides, and iodides of sodium, potassium, and cesium. The C- E curve of a gold electrode has an additional minimum in the anodic branch. This minimum for silver is less pronounced and is only observed at low ac signal frequencies in cesium halides. The additional minimum is not detected for copper in any salt under study. This phenomenon is explained on the assumption that the adsorption of halide anions on a positively charged electrode surface has a predominantly chemical rather than an electrostatic character. The specific adsorption in this case is accompanied by charge transfer through the interface and the formation of an adsorbent-adsorbate covalent bond.

  2. Band-structure calculations of noble-gas and alkali halide solids using accurate Kohn-Sham potentials with self-interaction correction

    SciTech Connect

    Li, Y.; Krieger, J.B. ); Norman, M.R. ); Iafrate, G.J. )

    1991-11-15

    The optimized-effective-potential (OEP) method and a method developed recently by Krieger, Li, and Iafrate (KLI) are applied to the band-structure calculations of noble-gas and alkali halide solids employing the self-interaction-corrected (SIC) local-spin-density (LSD) approximation for the exchange-correlation energy functional. The resulting band gaps from both calculations are found to be in fair agreement with the experimental values. The discrepancies are typically within a few percent with results that are nearly the same as those of previously published orbital-dependent multipotential SIC calculations, whereas the LSD results underestimate the band gaps by as much as 40%. As in the LSD---and it is believed to be the case even for the exact Kohn-Sham potential---both the OEP and KLI predict valence-band widths which are narrower than those of experiment. In all cases, the KLI method yields essentially the same results as the OEP.

  3. Implementation of Kunz-Klein Localization in Icecap and AN Application to the Problem of Off-Center Isovalent Substitutional Impurities in Alkali Halides.

    NASA Astrophysics Data System (ADS)

    Keegstra, Phillip Brooks

    Theoretical models of off-center isovalent substitutional impurities in alkali halides are examined. Calculations have been performed on Li('+) in KCl, a representative system known experimentally to exhibit off-center behavior. The potential seen by the Li('+) ion in the lattice has been calculated within the shell model using the computer program HADES and by means of an Unrestricted Hartree-Fock (UHF) cluster embedded in a shell model lattice using the computer program ICECAP. For the case using HADES, off-center behavior was predicted, and the resulting potential was used to predict the tunnelling splitting of the system and the Grueneisen parameter. The tunnelling splitting was calculated to be 1.19 meV for ('7)Li('+) and 1.26 meV for ('6)Li('+), compared to experimental results of 0.10 meV and 0.14 meV, respectively. The Grueneisen parameters were found to be 60 for ('7)Li('+) and 66 for ('6)Li('+), compared to experimental results of 150 for both isotopes. For the cases using ICECAP and UHF, off-center behavior was predicted, but the quantitative agreement with experimental barrier heights was not as good as that for HADES.

  4. Solvation structure around ruthenium(II) tris(bipyridine) in lithium halide solutions

    PubMed Central

    Josefsson, Ida; Eriksson, Susanna K.; Rensmo, Håkan; Odelius, Michael

    2016-01-01

    The solvation of the ruthenium(II) tris(bipyridine) ion ([Ru(bpy)3]2+) is investigated with molecular dynamics simulations of lithium halide solutions in polar solvents. The anion distribution around the [Ru(bpy)3]2+ complex exhibits a strong solvent dependence. In aqueous solution, the iodide ion forms a solvent shared complex with [Ru(bpy)3]2+, but not in the other solvents. Between Cl– and [Ru(bpy)3]2+, the strong hydration of the chloride ion results in a solvent separated complex where more than one solvent molecule separates the anion from the metal center. Hence, tailored solvation properties in electrolytes is a route to influence ion-ion interactions and related electron transfer processes. PMID:26798838

  5. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications.

    PubMed

    Fu, Yongping; Meng, Fei; Rowley, Matthew B; Thompson, Blaise J; Shearer, Melinda J; Ma, Dewei; Hamers, Robert J; Wright, John C; Jin, Song

    2015-05-06

    Understanding crystal growth and improving material quality is important for improving semiconductors for electronic, optoelectronic, and photovoltaic applications. Amidst the surging interest in solar cells based on hybrid organic-inorganic lead halide perovskites and the exciting progress in device performance, improved understanding and better control of the crystal growth of these perovskites could further boost their optoelectronic and photovoltaic performance. Here, we report new insights on the crystal growth of the perovskite materials, especially crystalline nanostructures. Specifically, single crystal nanowires, nanorods, and nanoplates of methylammonium lead halide perovskites (CH3NH3PbI3 and CH3NH3PbBr3) are successfully grown via a dissolution-recrystallization pathway in a solution synthesis from lead iodide (or lead acetate) films coated on substrates. These single crystal nanostructures display strong room-temperature photoluminescence and long carrier lifetime. We also report that a solid-liquid interfacial conversion reaction can create a highly crystalline, nanostructured MAPbI3 film with micrometer grain size and high surface coverage that enables photovoltaic devices with a power conversion efficiency of 10.6%. These results suggest that single-crystal perovskite nanostructures provide improved photophysical properties that are important for fundamental studies and future applications in nanoscale optoelectronic and photonic devices.

  6. [Sources of error in the European Pharmacopoeia assay of halide salts of organic bases by titration with alkali].

    PubMed

    Kószeginé, S H; Ráfliné, R Z; Paál, T; Török, I

    2000-01-01

    A short overview has been given by the authors on the titrimetric assay methods of halide salts of organic bases in the pharmacopoeias of greatest importance. The alternative procedures introduced by the European Pharmacopoeia Commission some years ago to replace the non-aqueous titration with perchloric acid in the presence of mercuric acetate have also been presented and evaluated. The authors investigated the limits of applicability and the sources of systematic errors (bias) of the strongly preferred titration with sodium hydroxide in an alcoholic medium. To assess the bias due to the differences between the results calculated from the two inflexion points of the titration curves and the two real endpoints corresponding to the strong and weak acids, respectively, the mathematical analysis of the titration curve function was carried out. This bias, generally negligible when the pH change near the endpoint of the titration is more than 1 unit, is the function of the concentration, the apparent pK of the analyte and the ionic product of water (ethanol) in the alcohol-water mixtures. Using the validation data gained for the method with the titration of ephedrine hydrochloride the authors analysed the impact of carbon dioxide in the titration medium on the additive and proportional systematic errors of the method. The newly introduced standardisation procedure of the European Pharmacopoeia for the sodium hydroxide titrant to decrease the systematic errors caused by carbon dioxide has also been evaluated.

  7. Laboratory determination of the carbon kinetic isotope effects (KIEs) for reactions of methyl halides with various nucleophiles in solution

    USGS Publications Warehouse

    Baesman, S.M.; Miller, L.G.

    2005-01-01

    Large carbon kinetic isotope effects (KIEs) were measured for reactions of methyl bromide (MeBr), methyl chloride (MeCl), and methyl iodide (MeI) with various nucleophiles at 287 and 306 K in aqueous solutions. Rates of reaction of MeBr and MeI with H2O (neutral hydrolysis) or Cl- (halide substitution) were consistent with previous measurements. Hydrolysis rates increased with increasing temperature or pH (base hydrolysis). KIEs for hydrolysis were 51 ?? 6??? for MeBr and 38 ?? 8??? for MeI. Rates of halide substitution increased with increasing temperature and greater reactivity of the attacking nucleophile, with the fastest reaction being that of MeI with Br-. KIEs for halide substitution were independent of temperature but varied with the reactant methyl halide and the attacking nucleophile. KIEs were similar for MeBr substitution with Cl- and MeCl substitution with Br- (57 ?? 5 and 60 ?? 9??? respectively). The KIE for halide exchange of MeI was lower overall (33 ?? 8??? and was greater for substitution with Br- (46 ?? 6???) than with Cl- (29 ?? 6???). ?? Springer Science + Business Media, Inc. 2005.

  8. Alkali-silica reaction and pore solution composition in mortars in sea water

    SciTech Connect

    Kawamura, Mitsunori; Takeuchi, Katsunobu

    1996-12-01

    The promotion of expansion of mortars containing a reactive aggregate in 1N NaCl solution at 38 C was attributed to a rise of OH{sup {minus}} ion concentration in the pore solution in the mortars. However, it is ambiguous whether the promotion of expansion of mortars in sea water at a room temperature can be explained in the same way as in NaCl solution at an elevated temperature. This study aims at pursuing the expansion behavior of mortars containing a reactive aggregate relating it to their pore solution composition and the extent of alkali-silica reaction occurring within reactive grains. The alkali-silica reaction in mortars in sea water and 0.5 1N NaCl solution at 20 C appears to progress differently from that in mortars in 1N NaCl solution at an elevated temperature of 38 C. The promotion of expansion of mortars in sea water at 20 C was found to be responsible for an effect of Cl{sup {minus}} ions in the alkali-silica reaction at early stages of immersion. Only when OH{sup {minus}} ion concentration in the pore solution was relatively high, NaCl and sea water could accelerate the alkali-silica reaction in mortars at 20 C.

  9. Characterization of an alkali- and halide-resistant laccase expressed in E. coli: CotA from Bacillus clausii.

    PubMed

    Brander, Søren; Mikkelsen, Jørn D; Kepp, Kasper P

    2014-01-01

    The limitations of fungal laccases at higher pH and salt concentrations have intensified the search for new extremophilic bacterial laccases. We report the cloning, expression, and characterization of the bacterial cotA from Bacillus clausii, a supposed alkalophilic ortholog of cotA from B. subtilis. Both laccases were expressed in E. coli strain BL21(DE3) and characterized fully in parallel for strict benchmarking. We report activity on ABTS, SGZ, DMP, caffeic acid, promazine, phenyl hydrazine, tannic acid, and bilirubin at variable pH. Whereas ABTS, promazine, and phenyl hydrazine activities vs. pH were similar, the activity of B. clausii cotA was shifted upwards by ~0.5-2 pH units for the simple phenolic substrates DMP, SGZ, and caffeic acid. This shift is not due to substrate affinity (K(M)) but to pH dependence of catalytic turnover: The k(cat) of B. clausii cotA was 1 s⁻¹ at pH 6 and 5 s⁻¹ at pH 8 in contrast to 6 s⁻¹ at pH 6 and 2 s⁻¹ at pH 8 for of B. subtilis cotA. Overall, k(cat)/K(M) was 10-fold higher for B. subtilis cotA at pH(opt). While both proteins were heat activated, activation increased with pH and was larger in cotA from B. clausii. NaCl inhibited activity at acidic pH, but not up to 500-700 mM NaCl in alkaline pH, a further advantage of the alkali regime in laccase applications. The B. clausii cotA had ~20 minutes half-life at 80°C, less than the ~50 minutes at 80°C for cotA from B. subtilis. While cotA from B. subtilis had optimal stability at pH~8, the cotA from B. clausii displayed higher combined salt- and alkali-resistance. This resistance is possibly caused by two substitutions (S427Q and V110E) that could repel anions to reduce anion-copper interactions at the expense of catalytic proficiency, a trade-off of potential relevance to laccase optimization.

  10. Characterization of an Alkali- and Halide-Resistant Laccase Expressed in E. coli: CotA from Bacillus clausii

    PubMed Central

    Brander, Søren; Mikkelsen, Jørn D.; Kepp, Kasper P.

    2014-01-01

    The limitations of fungal laccases at higher pH and salt concentrations have intensified the search for new extremophilic bacterial laccases. We report the cloning, expression, and characterization of the bacterial cotA from Bacillus clausii, a supposed alkalophilic ortholog of cotA from B. subtilis. Both laccases were expressed in E. coli strain BL21(DE3) and characterized fully in parallel for strict benchmarking. We report activity on ABTS, SGZ, DMP, caffeic acid, promazine, phenyl hydrazine, tannic acid, and bilirubin at variable pH. Whereas ABTS, promazine, and phenyl hydrazine activities vs. pH were similar, the activity of B. clausii cotA was shifted upwards by ∼0.5–2 pH units for the simple phenolic substrates DMP, SGZ, and caffeic acid. This shift is not due to substrate affinity (KM) but to pH dependence of catalytic turnover: The kcat of B. clausii cotA was 1 s−1 at pH 6 and 5 s−1 at pH 8 in contrast to 6 s−1 at pH 6 and 2 s−1 at pH 8 for of B. subtilis cotA. Overall, kcat/KM was 10-fold higher for B. subtilis cotA at pHopt. While both proteins were heat activated, activation increased with pH and was larger in cotA from B. clausii. NaCl inhibited activity at acidic pH, but not up to 500–700 mM NaCl in alkaline pH, a further advantage of the alkali regime in laccase applications. The B. clausii cotA had ∼20 minutes half-life at 80°C, less than the ∼50 minutes at 80°C for cotA from B. subtilis. While cotA from B. subtilis had optimal stability at pH∼8, the cotA from B. clausii displayed higher combined salt- and alkali-resistance. This resistance is possibly caused by two substitutions (S427Q and V110E) that could repel anions to reduce anion-copper interactions at the expense of catalytic proficiency, a trade-off of potential relevance to laccase optimization. PMID:24915287

  11. Thermal transport properties of halide solid solutions: Experiments vs equilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    Gheribi, Aïmen E.; Salanne, Mathieu; Chartrand, Patrice

    2015-03-01

    The composition dependence of thermal transport properties of the (Na,K)Cl rocksalt solid solution is investigated through equilibrium molecular dynamics (EMD) simulations in the entire range of composition and the results are compared with experiments published in recent work [Gheribi et al., J. Chem. phys. 141, 104508 (2014)]. The thermal diffusivity of the (Na,K)Cl solid solution has been measured from 473 K to 823 K using the laser flash technique, and the thermal conductivity was deduced from critically assessed data of heat capacity and density. The thermal conductivity was also predicted at 900 K in the entire range of composition by a series of EMD simulations in both NPT and NVT statistical ensembles using the Green-Kubo theory. The aim of the present paper is to provide an objective analysis of the capability of EMD simulations in predicting the composition dependence of the thermal transport properties of halide solid solutions. According to the Klemens-Callaway [P. G. Klemens, Phys. Rev. 119, 507 (1960) and J. Callaway and H. C. von Bayer, Phys. Rev. 120, 1149 (1960)] theory, the thermal conductivity degradation of the solid solution is explained by mass and strain field fluctuations upon the phonon scattering cross section. A rigorous analysis of the consistency between the theoretical approach and the EMD simulations is discussed in detail.

  12. Thermal transport properties of halide solid solutions: Experiments vs equilibrium molecular dynamics

    SciTech Connect

    Gheribi, Aïmen E. Chartrand, Patrice; Salanne, Mathieu

    2015-03-28

    The composition dependence of thermal transport properties of the (Na,K)Cl rocksalt solid solution is investigated through equilibrium molecular dynamics (EMD) simulations in the entire range of composition and the results are compared with experiments published in recent work [Gheribi et al., J. Chem. phys. 141, 104508 (2014)]. The thermal diffusivity of the (Na,K)Cl solid solution has been measured from 473 K to 823 K using the laser flash technique, and the thermal conductivity was deduced from critically assessed data of heat capacity and density. The thermal conductivity was also predicted at 900 K in the entire range of composition by a series of EMD simulations in both NPT and NVT statistical ensembles using the Green-Kubo theory. The aim of the present paper is to provide an objective analysis of the capability of EMD simulations in predicting the composition dependence of the thermal transport properties of halide solid solutions. According to the Klemens-Callaway [P. G. Klemens, Phys. Rev. 119, 507 (1960) and J. Callaway and H. C. von Bayer, Phys. Rev. 120, 1149 (1960)] theory, the thermal conductivity degradation of the solid solution is explained by mass and strain field fluctuations upon the phonon scattering cross section. A rigorous analysis of the consistency between the theoretical approach and the EMD simulations is discussed in detail.

  13. Freeze-induced formation of bromine/chlorine interhalogen species from aqueous halide ion solutions.

    PubMed

    O'Concubhair, Ruairí; Sodeau, John R

    2012-10-02

    Both gaseous bromine and bromine chloride have been monitored in polar environments and implicated in the destruction of tropospheric ozone. The formation mechanisms operating for these halogen compounds have been suggested previously. However, few laboratory studies have been performed using environmentally relevant concentrations of bromide and chloride ions in polar ice mimics. In aqueous solutions held at room temperature, previous studies have shown that the major product is the Cl(2)Br¯ trihalide ion when solutions of bromate, hydrochloric acid, and bromide ions are left to equilibrate. In contrast, the results of the cryochemical experiments presented here suggest that the dibromochloride ion (BrBrCl¯) is the major product when solutions of bromate, sulfuric acid, bromide, and chloride ions are frozen. Such a species would preferentially release bromine to the gas phase. Hence, similar halide starting materials form structurally different trihalide ions when frozen, which are capable of releasing differing active halogens, BrCl and Br(2), to the gas-phase. This is a potentially important finding because Br(2) is photolyzed more readily and to longer wavelengths than BrCl and therefore the efficiency in forming products that can lead to ozone destruction in the atmosphere would be increased. Evidence is provided for the mechanism to occur by means of both the freeze-concentration effect and the incorporation of ions into the growing ice phase.

  14. Infrared Spectra of Simple Inorganic Ion Pairs in Solid Solution: A Physical Inorganic Chemistry Experiment.

    ERIC Educational Resources Information Center

    Miller, Philip J.; Tong, William G.

    1980-01-01

    Presents a physical inorganic experiment in which large single crystals of the alkali halides doped with divalent ion impurities are prepared easily. Demonstrates the ion pairing of inorganic ions in solid solution. (CS)

  15. Using Perovskite Nanoparticles as Halide Reservoirs in Catalysis and as Spectrochemical Probes of Ions in Solution.

    PubMed

    Doane, Tennyson L; Ryan, Kayla L; Pathade, Laxmikant; Cruz, Kevin J; Zang, Huidong; Cotlet, Mircea; Maye, Mathew M

    2016-06-28

    The ability of cesium lead halide (CsPbX3; X = Cl(-), Br(-), I(-)) perovskite nanoparticles (P-NPs) to participate in halide exchange reactions, to catalyze Finkelstein organohalide substitution reactions, and to colorimetrically monitor chemical reactions and detect anions in real time is described. With the use of tetraoctylammonium halide salts as a starting point, halide exchange with the P-NPs was performed to calibrate reactivity, stability, and extent of ion exchange. The exchange of CsPbI3 with Cl(-) or Br(-) causes a significant blue-shift in absorption and photoluminescence, whereas reacting I(-) with CsPbBr3 causes a red-shift of similar magnitudes. With the high local halide concentrations and the facile nature of halide exchange in mind, we then explored the ability of P-NPs to catalyze organohalide exchange in Finkelstein like reactions. Results indicate that the P-NPs serve as excellent halide reservoirs for substitution of organohalides in nonpolar media, leading to not only different organohalide products, but also a complementary color change over the course of the reaction, which can be used to monitor kinetics in a precise manner. The merits of using P-NP as spectrochemical probes for real time assaying is then expanded to other anions which can react with, or result in unique, classes of perovskites.

  16. Using Perovskite Nanoparticles as Halide Reservoirs in Catalysis and as Spectrochemical Probes of Ions in Solution

    DOE PAGES

    Doane, Tennyson L.; Ryan, Kayla L.; Pathade, Laxmikant; ...

    2016-05-05

    The ability of cesium lead halide (CsPbX3; X = Cl–, Br–, I–) perovskite nanoparticles (P-NPs) to participate in halide exchange reactions, to catalyze Finkelstein organohalide substitution reactions, and to colorimetrically monitor chemical reactions and detect anions in real time is described. With the use of tetraoctylammonium halide salts as a starting point, halide exchange with the P-NPs was performed to calibrate reactivity, stability, and extent of ion exchange. Also, the exchange of CsPbI3 with Cl– or Br– causes a significant blue-shift in absorption and photoluminescence, whereas reacting I– with CsPbBr3 causes a red-shift of similar magnitudes. With the high localmore » halide concentrations and the facile nature of halide exchange in mind, we then explored the ability of P-NPs to catalyze organohalide exchange in Finkelstein like reactions. Results indicate that the P-NPs serve as excellent halide reservoirs for substitution of organohalides in nonpolar media, leading to not only different organohalide products, but also a complementary color change over the course of the reaction, which can be used to monitor kinetics in a precise manner. Finally, the merits of using P-NP as spectrochemical probes for real time assaying is then expanded to other anions which can react with, or result in unique, classes of perovskites.« less

  17. Cementitious binders from activated stainless steel refining slag and the effect of alkali solutions.

    PubMed

    Salman, Muhammad; Cizer, Özlem; Pontikes, Yiannis; Snellings, Ruben; Vandewalle, Lucie; Blanpain, Bart; Van Balen, Koen

    2015-04-09

    With an aim of producing high value cementitious binder, stainless steel refining slag containing a high amount of CaO in γ-dicalcium silicate form was activated with NaOH and Na-silicate as well as KOH and K-silicate solutions, followed by steam curing at 80 °C. Higher levels of alkali-silicate in the activating solution resulted in higher cumulative heat suggesting accelerated reaction kinetics. With respect to compressive strength, higher levels of alkali silicate resulted in higher strength and the mortars with Na activator were found to have higher early strength than the ones with K activator. The long term strength was found to be similar, regardless of the alkali metal. Thermogravimetric, QXRD and FTIR analyses showed an increase in the amount of reaction products (C-S-H type) over time, further confirming the reactivity of the crystalline slag. Batch leaching results showed lower leaching of heavy metals and metalloids with K activator compared to the Na activator. These results demonstrate that the alkali type and the ratio of hydroxide to silicates have a significant impact on the hydration and mechanical strength development of the stainless steel slag. The above findings can aid in the recycling and valorization of these type of slags which otherwise end up landfilled.

  18. High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors.

    PubMed

    Deschler, Felix; Price, Michael; Pathak, Sandeep; Klintberg, Lina E; Jarausch, David-Dominik; Higler, Ruben; Hüttner, Sven; Leijtens, Tomas; Stranks, Samuel D; Snaith, Henry J; Atatüre, Mete; Phillips, Richard T; Friend, Richard H

    2014-04-17

    The study of the photophysical properties of organic-metallic lead halide perovskites, which demonstrate excellent photovoltaic performance in devices with electron- and hole-accepting layers, helps to understand their charge photogeneration and recombination mechanism and unravels their potential for other optoelectronic applications. We report surprisingly high photoluminescence (PL) quantum efficiencies, up to 70%, in these solution-processed crystalline films. We find that photoexcitation in the pristine CH3NH3PbI3-xClx perovskite results in free charge carrier formation within 1 ps and that these free charge carriers undergo bimolecular recombination on time scales of 10s to 100s of ns. To exemplify the high luminescence yield of the CH3NH3PbI3-xClx perovskite, we construct and demonstrate the operation of an optically pumped vertical cavity laser comprising a layer of perovskite between a dielectric mirror and evaporated gold top mirrors. These long carrier lifetimes together with exceptionally high luminescence yield are unprecedented in such simply prepared inorganic semiconductors, and we note that these properties are ideally suited for photovoltaic diode operation.

  19. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Yakunin, Sergii; Dirin, Dmitry N.; Shynkarenko, Yevhen; Morad, Viktoriia; Cherniukh, Ihor; Nazarenko, Olga; Kreil, Dominik; Nauser, Thomas; Kovalenko, Maksym V.

    2016-09-01

    The decay of the majority of radioactive isotopes involves the emission of gamma (γ) photons with energies of ˜50 keV to 10 MeV. Detectors of such hard radiation that are low-cost, highly sensitive and operate at ambient temperatures are desired for numerous applications in defence and medicine, as well as in research. We demonstrate that 0.3-1 cm solution-grown single crystals (SCs) of semiconducting hybrid lead halide perovskites (MAPbI3, FAPbI3 and I-treated MAPbBr3, where MA = methylammonium and FA = formamidinium) can serve as solid-state gamma-detecting materials. This possibility arises from a high charge-carrier mobility-lifetime (μτ) product of 1.0-1.8 × 10-2 cm2 V-1, a low dark carrier density of 109-1011 cm-3 (refs 3,4), a low density of charge traps of 109-1010 cm-3 (refs 4,5) and a high absorptivity of hard radiation by the lead and iodine atoms. We demonstrate the utility of perovskite detectors for testing the radiopurity of medical radiotracer compounds such as 18F-fallypride. Energy-resolved sensing at room temperature is presented using FAPbI3 SCs and an 241Am source.

  20. Corrosion and corrosion inhibition of Al and some alloys in sulphate solutions containing halide ions investigated by an impedance technique

    NASA Astrophysics Data System (ADS)

    Rehim, Sayed S. Abdel; Hassan, Hamdi H.; Amin, Mohammed A.

    2002-02-01

    This paper reports the results of impedance measurements on the corrosion behaviour of pure Al, (Al+6%Cu) and (Al+6%Si) alloys in Na 2SO 4 solutions in the absence and presence of NaCl, NaBr and NaI under the influence of various experimental variables at the open circuit potential (OCP). We find that in the absence of halide ions the rates of corrosion of the three Al samples are enhanced with increasing concentration, acidity, and alkalinity of the Na 2SO 4 solution and in the presence of halide ions. The corrosion resistance increases in the order Al<(Al+6%Cu)<(Al+6%Si). The aggressiveness of the halide ions towards the corrosion of Al and its two alloys increases in the order: I -
    solution (except NO 3-) are to inhibit the corrosion of the three samples to an extent depending on the nature of the inhibitor.

  1. Alteration of alkali reactive aggregates autoclaved in different alkali solutions and application to alkali-aggregate reaction in concrete (II) expansion and microstructure of concrete microbar

    SciTech Connect

    Lu Duyou . E-mail: duyoulu@njut.edu.cn; Mei Laibao; Xu Zhongzi; Tang Mingshu; Mo Xiangyin; Fournier, Benoit

    2006-06-15

    The effect of the type of alkalis on the expansion behavior of concrete microbars containing typical aggregate with alkali-silica reactivity and alkali-carbonate reactivity was studied. The results verified that: (1) at the same molar concentration, sodium has the strongest contribution to expansion due to both ASR and ACR, followed by potassium and lithium; (2) sufficient LiOH can completely suppress expansion due to ASR whereas it can induce expansion due to ACR. It is possible to use the duplex effect of LiOH on ASR and ACR to clarify the ACR contribution when ASR and ACR may coexist. It has been shown that a small amount of dolomite in the fine-grained siliceous Spratt limestone, which has always been used as a reference aggregate for high alkali-silica reactivity, might dedolomitize in alkaline environment and contribute to the expansion. That is to say, Spratt limestone may exhibit both alkali-silica and alkali-carbonate reactivity, although alkali-silica reactivity is predominant. Microstructural study suggested that the mechanism in which lithium controls ASR expansion is mainly due to the favorable formation of lithium-containing less-expansive product around aggregate particles and the protection of the reactive aggregate from further attack by alkalis by the lithium-containing product layer.

  2. Blue-Green Color Tunable Solution Processable Organolead Chloride–Bromide Mixed Halide Perovskites for Optoelectronic Applications

    PubMed Central

    2015-01-01

    Solution-processed organo-lead halide perovskites are produced with sharp, color-pure electroluminescence that can be tuned from blue to green region of visible spectrum (425–570 nm). This was accomplished by controlling the halide composition of CH3NH3Pb(BrxCl1–x)3 [0 ≤ x ≤ 1] perovskites. The bandgap and lattice parameters change monotonically with composition. The films possess remarkably sharp band edges and a clean bandgap, with a single optically active phase. These chloride–bromide perovskites can potentially be used in optoelectronic devices like solar cells and light emitting diodes (LEDs). Here we demonstrate high color-purity, tunable LEDs with narrow emission full width at half maxima (FWHM) and low turn on voltages using thin-films of these perovskite materials, including a blue CH3NH3PbCl3 perovskite LED with a narrow emission FWHM of 5 nm. PMID:26236949

  3. Blue-Green Color Tunable Solution Processable Organolead Chloride-Bromide Mixed Halide Perovskites for Optoelectronic Applications.

    PubMed

    Sadhanala, Aditya; Ahmad, Shahab; Zhao, Baodan; Giesbrecht, Nadja; Pearce, Phoebe M; Deschler, Felix; Hoye, Robert L Z; Gödel, Karl C; Bein, Thomas; Docampo, Pablo; Dutton, Siân E; De Volder, Michael F L; Friend, Richard H

    2015-09-09

    Solution-processed organo-lead halide perovskites are produced with sharp, color-pure electroluminescence that can be tuned from blue to green region of visible spectrum (425-570 nm). This was accomplished by controlling the halide composition of CH3NH3Pb(BrxCl1-x)3 [0 ≤ x ≤ 1] perovskites. The bandgap and lattice parameters change monotonically with composition. The films possess remarkably sharp band edges and a clean bandgap, with a single optically active phase. These chloride-bromide perovskites can potentially be used in optoelectronic devices like solar cells and light emitting diodes (LEDs). Here we demonstrate high color-purity, tunable LEDs with narrow emission full width at half maxima (FWHM) and low turn on voltages using thin-films of these perovskite materials, including a blue CH3NH3PbCl3 perovskite LED with a narrow emission FWHM of 5 nm.

  4. Using Perovskite Nanoparticles as Halide Reservoirs in Catalysis and as Spectrochemical Probes of Ions in Solution

    SciTech Connect

    Doane, Tennyson L.; Ryan, Kayla L.; Pathade, Laxmikant; Cruz, Kevin J.; Zang, Huidong; Cotlet, Mircea; Maye, Mathew M.

    2016-05-05

    The ability of cesium lead halide (CsPbX3; X = Cl, Br, I) perovskite nanoparticles (P-NPs) to participate in halide exchange reactions, to catalyze Finkelstein organohalide substitution reactions, and to colorimetrically monitor chemical reactions and detect anions in real time is described. With the use of tetraoctylammonium halide salts as a starting point, halide exchange with the P-NPs was performed to calibrate reactivity, stability, and extent of ion exchange. Also, the exchange of CsPbI3 with Cl or Br causes a significant blue-shift in absorption and photoluminescence, whereas reacting I with CsPbBr3 causes a red-shift of similar magnitudes. With the high local halide concentrations and the facile nature of halide exchange in mind, we then explored the ability of P-NPs to catalyze organohalide exchange in Finkelstein like reactions. Results indicate that the P-NPs serve as excellent halide reservoirs for substitution of organohalides in nonpolar media, leading to not only different organohalide products, but also a complementary color change over the course of the reaction, which can be used to monitor kinetics in a precise manner. Finally, the merits of using P-NP as spectrochemical probes for real time assaying is then expanded to other anions which can react with, or result in unique, classes of perovskites.

  5. Electrolytic systems and methods for making metal halides and refining metals

    DOEpatents

    Holland, Justin M.; Cecala, David M.

    2015-05-26

    Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.

  6. Alkali Halide FLIR Lens Development

    DTIC Science & Technology

    1981-10-01

    testing. Also, an identification number is written on the edge. Then the sealant is cured at 70 to 800C for 15 minutes. Only the coated area is...3/PE/PPE failed beginning at isolated points, which presumably were due to imperfections in the coating. Thus, it was inferred that this coating...in isolated spots because of defects in the coating layers. To optimize the coating process, improvement of coating procedures leading toward defect

  7. Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water

    NASA Astrophysics Data System (ADS)

    Reif, Maria M.; Hünenberger, Philippe H.

    2011-04-01

    The raw single-ion solvation free energies computed from atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions and treatment of electrostatic interactions used during these simulations. However, as shown recently [M. A. Kastenholz and P. H. Hünenberger, J. Chem. Phys. 124, 224501 (2006), 10.1529/biophysj.106.083667; M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144103 (2010)], the application of appropriate correction terms permits to obtain methodology-independent results. The corrected values are then exclusively characteristic of the underlying molecular model including in particular the ion-solvent van der Waals interaction parameters, determining the effective ion size and the magnitude of its dispersion interactions. In the present study, the comparison of calculated (corrected) hydration free energies with experimental data (along with the consideration of ionic polarizabilities) is used to calibrate new sets of ion-solvent van der Waals (Lennard-Jones) interaction parameters for the alkali (Li+, Na+, K+, Rb+, Cs+) and halide (F-, Cl-, Br-, I-) ions along with either the SPC or the SPC/E water models. The experimental dataset is defined by conventional single-ion hydration free energies [Tissandier et al., J. Phys. Chem. A 102, 7787 (1998), 10.1021/jp982638r; Fawcett, J. Phys. Chem. B 103, 11181] along with three plausible choices for the (experimentally elusive) value of the absolute (intrinsic) hydration free energy of the proton, namely, Δ G_hyd^{ominus }[H+] = -1100, -1075 or -1050 kJ mol-1, resulting in three sets L, M, and H for the SPC water model and three sets LE, ME, and HE for the SPC/E water model (alternative sets can easily be interpolated to intermediate Δ G_hyd^{ominus }[H+] values). The residual sensitivity of the calculated (corrected) hydration free energies on the volume-pressure boundary conditions and on the effective ionic radius entering into the calculation of the correction terms is

  8. Electrochemical Doping of Halide Perovskites with Ion Intercalation.

    PubMed

    Jiang, Qinglong; Chen, Mingming; Li, Junqiang; Wang, Mingchao; Zeng, Xiaoqiao; Besara, Tiglet; Lu, Jun; Xin, Yan; Shan, Xin; Pan, Bicai; Wang, Changchun; Lin, Shangchao; Siegrist, Theo; Xiao, Qiangfeng; Yu, Zhibin

    2017-01-24

    Halide perovskites have recently been investigated for various solution-processed optoelectronic devices. The majority of studies have focused on using intrinsic halide perovskites, and the intentional incoporation of dopants has not been well explored. In this work, we discovered that small alkali ions, including lithium and sodium ions, could be electrochemically intercalated into a variety of halide and pseudohalide perovskites. The ion intercalation caused a lattice expansion of the perovskite crystals and resulted in an n-type doping of the perovskites. Such electrochemical doping improved the conductivity and changed the color of the perovskites, leading to an electrochromism with more than 40% reduction of transmittance in the 450-850 nm wavelength range. The doped perovskites exhibited improved electron injection efficiency into the pristine perovskite crystals, resulting in bright light-emitting diodes with a low turn-on voltage.

  9. Alkali Treatment of Acidic Solution from Hanford K Basin Sludge Dissolution

    SciTech Connect

    AA Bessonov; AB Yusov; AM Fedoseev; AV Gelis; AY Garnov; CH Delegard; GM Plavnik; LN Astafurova; MS Grigoriev; NA Budantseva; NN Krot; SI Nikitenko; TP Puraeva; VP Perminov; VP Shilov

    1998-12-22

    Nitric acid solutions will be created from the dissolution of Hanford K Basin sludge. These acidic dissolver solutions must be made alkaline by treatment with NaOH solution before they are disposed to ~ the Tank Waste Remediation System on the Hanford Site. During the alkali treatments, sodium diuranate, hydroxides of iron and aluminum, and radioelements (uranium, plutonium, and americium) will precipitate from the dissolver solution. Laboratory tests, discussed here, were pefiormed to provide information on these precipitates and their precipitation behavior that is important in designing the engineering flowsheet for the treatment process. Specifically, experiments were conducted to determine the optimum precipitation conditions; the completeness of uranium, plutonium, and americium precipitation; the rate of sedimentation; and the physico-chemical characteristics of the solids formed by alkali treatment of simulated acidic dissolver solutions. These experiments also determined the redistribution of uranium, plutonium, and americium flom the sodium di~ate and iron and al&inurn hydroxide precipitates upon contact with carbonate- and EDTA-bearing simulated waste solutions. Note: EDTA is the tetrasodium salt of ethylenediaminetetraacetate.

  10. Cavitation luminescence of argon-saturated alkali-metal solutions from a conical bubble

    NASA Astrophysics Data System (ADS)

    Jing, Ha; Jie He, Shou; Fang, Wang; Min, Song Jian

    2008-10-01

    In 1,2-propanediol solutions containing sodium chloride, spectra of luminescence from a collapsed conical bubble have been detected. Results show that the spectra consist of a broad continuum background, on which a resonance line arising from de-excitation of sodium atom at 589 nm and two satellite diffuse bands at ~554 nm and 620 nm respectively are superimposed. These are confirmed to be the emission from alkali-metal-argon exciplexes and are suggested to occur when the mixtures of alkali metal vapour and argon are rapidly compressed. The intracavity density of argon deduced from the line shift of Na resonance line data is estimated to be about 2 × 1026 m-3.

  11. Alkali solution extraction of rice residue protein isolates: Influence of alkali concentration on protein functional, structural properties and lysinoalanine formation.

    PubMed

    Hou, Furong; Ding, Wenhui; Qu, Wenjuan; Oladejo, Ayobami Olayemi; Xiong, Feng; Zhang, Weiwei; He, Ronghai; Ma, Haile

    2017-03-01

    This study evaluated the nutrient property and safety of the rice residue protein isolates (RRPI) product (extracted by different alkali concentrations) by exploring the protein functional, structural properties and lysinoalanine (LAL) formation. The results showed that with the rising of alkali concentration from 0.03M to 0.15M, the solubility, emulsifying and foaming properties of RRPI increased at first and then descended. When the alkali concentration was greater than 0.03M, the RRPI surface hydrophobicity decreased and the content of thiol and disulfide bond, Lys and Cys significantly reduced. By the analysis of HPLC, the content of LAL rose up from 276.08 to 15,198.07mg/kg and decreased to 1340.98mg/kg crude protein when the alkali concentration increased from 0.03 to 0.09M and until to 0.15M. These results indicated that RRPI alkaline extraction concentration above 0.03M may cause severe nutrient or safety problems of protein.

  12. Nonhydrolytic alkyl halide elimination reaction and its application in solution-processed zinc tin oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Yoo, Young Bum; Park, Jee Ho; Baik, Hong Koo; Song, Kie Moon

    2014-04-01

    In this study, we fabricated zinc tin oxide (ZTO) thin-film transistors (TFTs) using a sol-gel solution at an annealing temperature of 350 °C. We used a precursor combination of alkoxide and metal chloride to utilize the alkyl halide elimination reaction. Compared with transistor using chloride-only precursors, the resulting ZTO transistor showed improved performance. Solution-processed ZTO-TFTs prepared at 350 °C using an alkoxide-chloride precursor combination showed a field-effect mobility of 4.17 cm2 V-1 s-1, whereas that prepared using a chloride-only solution showed a mobility of 0.98 cm2 V-1 s-1. Thermal analysis showed that the alkoxide-chloride precursor was decomposed well at a given annealing temperature and formed oxide with few residual impurities compared with chloride-only precursors.

  13. A Study of the Hydration of the Alkali Metal Ions in Aqueous Solution

    PubMed Central

    2011-01-01

    The hydration of the alkali metal ions in aqueous solution has been studied by large angle X-ray scattering (LAXS) and double difference infrared spectroscopy (DDIR). The structures of the dimethyl sulfoxide solvated alkali metal ions in solution have been determined to support the studies in aqueous solution. The results of the LAXS and DDIR measurements show that the sodium, potassium, rubidium and cesium ions all are weakly hydrated with only a single shell of water molecules. The smaller lithium ion is more strongly hydrated, most probably with a second hydration shell present. The influence of the rubidium and cesium ions on the water structure was found to be very weak, and it was not possible to quantify this effect in a reliable way due to insufficient separation of the O–D stretching bands of partially deuterated water bound to these metal ions and the O–D stretching bands of the bulk water. Aqueous solutions of sodium, potassium and cesium iodide and cesium and lithium hydroxide have been studied by LAXS and M–O bond distances have been determined fairly accurately except for lithium. However, the number of water molecules binding to the alkali metal ions is very difficult to determine from the LAXS measurements as the number of distances and the temperature factor are strongly correlated. A thorough analysis of M–O bond distances in solid alkali metal compounds with ligands binding through oxygen has been made from available structure databases. There is relatively strong correlation between M–O bond distances and coordination numbers also for the alkali metal ions even though the M–O interactions are weak and the number of complexes of potassium, rubidium and cesium with well-defined coordination geometry is very small. The mean M–O bond distance in the hydrated sodium, potassium, rubidium and cesium ions in aqueous solution have been determined to be 2.43(2), 2.81(1), 2.98(1) and 3.07(1) Å, which corresponds to six-, seven-, eight- and

  14. Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites.

    PubMed

    Giovanni, David; Chong, Wee Kiang; Dewi, Herlina Arianita; Thirumal, Krishnamoorthy; Neogi, Ishita; Ramesh, Ramamoorthy; Mhaisalkar, Subodh; Mathews, Nripan; Sum, Tze Chien

    2016-06-01

    Ultrafast spin manipulation for opto-spin logic applications requires material systems that have strong spin-selective light-matter interaction. Conventional inorganic semiconductor nanostructures [for example, epitaxial II to VI quantum dots and III to V multiple quantum wells (MQWs)] are considered forerunners but encounter challenges such as lattice matching and cryogenic cooling requirements. Two-dimensional halide perovskite semiconductors, combining intrinsic tunable MQW structures and large oscillator strengths with facile solution processability, can offer breakthroughs in this area. We demonstrate novel room-temperature, strong ultrafast spin-selective optical Stark effect in solution-processed (C6H4FC2H4NH3)2PbI4 perovskite thin films. Exciton spin states are selectively tuned by ~6.3 meV using circularly polarized optical pulses without any external photonic cavity (that is, corresponding to a Rabi energy of ~55 meV and equivalent to applying a 70 T magnetic field), which is much larger than any conventional system. The facile halide and organic replacement in these perovskites affords control of the dielectric confinement and thus presents a straightforward strategy for tuning light-matter coupling strength.

  15. Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites

    PubMed Central

    Giovanni, David; Chong, Wee Kiang; Dewi, Herlina Arianita; Thirumal, Krishnamoorthy; Neogi, Ishita; Ramesh, Ramamoorthy; Mhaisalkar, Subodh; Mathews, Nripan; Sum, Tze Chien

    2016-01-01

    Ultrafast spin manipulation for opto–spin logic applications requires material systems that have strong spin-selective light-matter interaction. Conventional inorganic semiconductor nanostructures [for example, epitaxial II to VI quantum dots and III to V multiple quantum wells (MQWs)] are considered forerunners but encounter challenges such as lattice matching and cryogenic cooling requirements. Two-dimensional halide perovskite semiconductors, combining intrinsic tunable MQW structures and large oscillator strengths with facile solution processability, can offer breakthroughs in this area. We demonstrate novel room-temperature, strong ultrafast spin-selective optical Stark effect in solution-processed (C6H4FC2H4NH3)2PbI4 perovskite thin films. Exciton spin states are selectively tuned by ~6.3 meV using circularly polarized optical pulses without any external photonic cavity (that is, corresponding to a Rabi energy of ~55 meV and equivalent to applying a 70 T magnetic field), which is much larger than any conventional system. The facile halide and organic replacement in these perovskites affords control of the dielectric confinement and thus presents a straightforward strategy for tuning light-matter coupling strength. PMID:27386583

  16. Thermal gelation of chitosan in an aqueous alkali-urea solution.

    PubMed

    Li, Chong; Han, Qiuyan; Guan, Ying; Zhang, Yongjun

    2014-11-07

    Chitosan can readily dissolve in a precooled aqueous alkali-urea solution, a solvent that has previously been developed to dissolve cellulose. Upon heating, the resulting solutions quickly become a gel. The thermal gelling of the chitosan solutions was studied by rheology. Initially, a temperature ramp test was used to determine the gelation temperatures (Tgel). It was found that Tgel does not significantly change with chitosan concentration. The in situ formed gels liquefy on cooling, but the liquefication temperature (Tliq) is considerably lower than Tgel, indicating a large hysteresis in the cooling process. In addition, Tliq decreases with increasing polymer concentration. The kinetics of thermal gelation was then studied by isothermal curing. The solution gels were cured not only at temperatures above the Tgel, which was determined in the temperature ramp test, but also at temperatures far below the Tgel, provided that the solution is cured at the temperature for a long enough time. The solutions become gel faster when cured at higher temperatures. When cured at the same temperature, higher concentration solutions become gel faster. The apparent activation energy for the thermal gelation of the chitosan solutions was determined to be ∼200 kJ mol(-1). Physical gels of pure chitosan were obtained by repeated soaking the in situ formed gels in water. Preliminary test shows that new gels are highly biocompatible.

  17. Structure of Solvated Mercury(II) Halides in Liquid Ammonia, Triethyl Phosphite And Tri-N-Butylphosphine Solution

    SciTech Connect

    Nilsson, Kersti B.; Maliarik, Mikhail; Persson, Ingmar; Sandstrom, Magnus

    2009-05-22

    Liquid ammonia, trialkyl phosphites, and especially trialkylphosphines, are very powerful electron-pair donor solvents with soft bonding character. The solvent molecules act as strongly coordinating ligands towards mercury(ii), interacting strongly enough to displace halide ligands. In liquid ammonia mercury(ii) chloride solutions separate into two liquid phases; the upper contains tetraamminemercury(ii) complexes, [Hg(NH(3))(4)](2+), and chloride ions in low concentration, while the lower is a dense highly concentrated solution of [Hg(NH(3))(4)](2+) entities, ca. 1.4 mol dm(-3), probably ion-paired by hydrogen bonds to the chloride ions. Mercury(ii) bromide also dissociates to ionic complexes in liquid ammonia and forms a homogeneous solution for which (199)Hg NMR indicates weak bromide association with mercury(ii). When dissolving mercury(ii) iodide in liquid ammonia and triethyl phosphite solvated molecular complexes form in the solutions. The Raman nu(I-Hg-I) symmetric stretching frequency is 132 cm(-1) for the pseudo-tetrahedral [HgI(2)(NH(3))(2)] complex formed in liquid ammonia, corresponding to D(S) = 56 on the donor strength scale. For the Hg(ClO(4))(2)/NH(4)I system in liquid ammonia a (199)Hg NMR study showed [HgI(4)](2-) to be the dominating mercury(ii) complex for mole ratios n(I(-)) : n(Hg(2+)) > or = 6. A large angle X-ray scattering (LAXS) study of mercury(ii) iodide in triethyl phosphite solution showed a [HgI(2)(P(OC(4)H(9))(3))(2)] complex with the Hg-I and Hg-P bond distances 2.750(3) and 2.457(4) A, respectively, in near tetrahedral configuration. Trialkylphosphines generally form very strong bonds to mercury(ii), dissociating all mercury(ii) halides. Mercury(ii) chloride and bromide form solid solvated mercury(ii) halide salts when treated with tri-n-butylphosphine, because of the low permittivity of the solvent. A LAXS study of a melt of mercury(ii) iodide in tri-n-butylphosphine at 330 K resulted in the Hg-I and Hg-P distances 2.851(3) and 2

  18. The effects of lithium hydroxide solution on alkali silica reaction gels created with opal

    SciTech Connect

    Mitchell, Lyndon D.; Beaudoin, James J.; Grattan-Bellew, Patrick

    2004-04-01

    The reaction of Nevada opal with calcium hydroxide, potassium hydroxide and lithium hydroxide solutions was investigated. In addition, opal was exposed to a combined solution of these three hydroxides. The progress of the three reactions was followed using X-ray diffraction (XRD), {sup 29}Si nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). The XRD results indicated the presence of a low-angle peak exclusive to the lithium-based reactions. The NMR results suggested a change in the silicate structure in the presence of lithium. These techniques indicated that the reaction of the alkali with the opal starting material is inhibited and perhaps stopped in the presence of lithium hydroxide. SEM revealed that the morphology of the reaction products on the surface of the reacted opal grains is markedly different invariably. It was concluded that evidence to support the theory of a protective layer exists and that the nature of the layer varies with ion type.

  19. Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water

    SciTech Connect

    Reif, Maria M.; Huenenberger, Philippe H.

    2011-04-14

    The raw single-ion solvation free energies computed from atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions and treatment of electrostatic interactions used during these simulations. However, as shown recently [M. A. Kastenholz and P. H. Huenenberger, J. Chem. Phys. 124, 224501 (2006); M. M. Reif and P. H. Huenenberger, J. Chem. Phys. 134, 144103 (2010)], the application of appropriate correction terms permits to obtain methodology-independent results. The corrected values are then exclusively characteristic of the underlying molecular model including in particular the ion-solvent van der Waals interaction parameters, determining the effective ion size and the magnitude of its dispersion interactions. In the present study, the comparison of calculated (corrected) hydration free energies with experimental data (along with the consideration of ionic polarizabilities) is used to calibrate new sets of ion-solvent van der Waals (Lennard-Jones) interaction parameters for the alkali (Li{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, Cs{sup +}) and halide (F{sup -}, Cl{sup -}, Br{sup -}, I{sup -}) ions along with either the SPC or the SPC/E water models. The experimental dataset is defined by conventional single-ion hydration free energies [Tissandier et al., J. Phys. Chem. A 102, 7787 (1998); Fawcett, J. Phys. Chem. B 103, 11181] along with three plausible choices for the (experimentally elusive) value of the absolute (intrinsic) hydration free energy of the proton, namely, {Delta}G{sub hyd} {sup O-minus} [H{sup +}]=-1100, -1075 or -1050 kJ mol{sup -1}, resulting in three sets L, M, and H for the SPC water model and three sets L{sub E}, M{sub E}, and H{sub E} for the SPC/E water model (alternative sets can easily be interpolated to intermediate {Delta}G{sub hyd} {sup O-minus} [H{sup +}] values). The residual sensitivity of the calculated (corrected) hydration free energies on the volume-pressure boundary conditions and on the effective

  20. Speciation of phytate ion in aqueous solution. Alkali metal complex formation in different ionic media.

    PubMed

    De Stefano, Concetta; Milea, Demetrio; Pettignano, Alberto; Sammartano, Silvio

    2003-08-01

    The acid-base properties of phytic acid [ myo-inositol 1,2,3,4,5,6-hexakis(dihydrogen phosphate)] (H(12)Phy; Phy(12-)=phytate anion) were studied in aqueous solution by potentiometric measurements ([H+]-glass electrode) in lithium and potassium chloride aqueous media at different ionic strengths (0< I mol L(-1)< or =3) and at t=25 degrees C. The protonation of phytate proved strongly dependent on both ionic medium and ionic strength. The protonation constants obtained in alkali metal chlorides are considerably lower than the corresponding ones obtained in a previous paper in tetraethylammonium iodide (Et(4)NI; e.g., at I=0.5 mol L(-1), log K(3)(H)=11.7, 8.0, 9.1, and 9.1 in Et(4)NI, LiCl, NaCl and KCl, respectively; the protonation constants in Et(4)NI and NaCl were already reported), owing to the strong interactions occurring between the phytate and alkaline cations present in the background salt. We explained this in terms of complex formation between phytate and alkali metal ions. Experimental evidence allows us to consider the formation of 13 mixed proton-metal-ligand complexes, M(j)H(i)Phy((12-i-j)-), (M+ =Li+, Na+, K+), with j< or =7 and i< or =6, in the range 2.5< or =pH< or =10 (some measurements, at low ionic strength, were extended to pH=11). In particular, all the species formed are negatively charged: i+j-12=-5, -6. Very high formation percentages of M+-phytate species are observed in all the pH ranges investigated. The stability of alkali metal complexes follows the trend Li+ > or =Na+K+. Some measurements were also performed at constant ionic strength (I=0.5 mol L(-1)), using different mixtures of Et(4)NI and alkali metal chlorides, in order to confirm the formation of hypothesized and calculated metal-proton-ligand complex species and to obtain conditional protonation constants in these multi-component ionic media.

  1. [Fluorescence enhancement of flavoxate hydrochloride in alkali solution and its application in pharmaceutical analysis].

    PubMed

    Li, Wen-hong; Sun, Chong-mei; Wei, Yong-ju

    2015-10-01

    Fluorescence enhancement reaction of flavoxate hydrochloride (FX) in strong alkali solution was studied, the mechanism of the reaction was investigated, and a novel fluorimetric method for analysis of FX in drug sample was established. FX has no intrinsic fluorescence, but it can slowly produce fluorescence in strong alkali solution. Heating can promote the fluorescence enhancement reaction. In 3D fluorescence spectra of the decomposition product of FX, two fluorescence peaks, located respectively at excitation wavelengths λex/ emission wavelength λem =223/410 nm, and 302/410 nm, were observed. Using quinine sulfate as a reference, fluorescence quantum yield of the decomposition product was measured to be 0.50. The structural characteriza- tion and spectral analysis of the decomposition product reveal that ester bond hydrolysis reaction of FX is firstly occurred during heating process, forming 3-methylflavone-8-carboxylic acid (MFA), then a cleavage reaction of the γ-pyrone ring of MFA occurred, producing α, β-unsaturated ketone. This product includes adjacent hydroxyl benzoic acid group in its molecule, which can form intramolecular hydrogen bond under alkaline condition, so that increase the conjugate degree and enhance the rigidity of the molecule, and thereby cause fluorescence enhancement. Based on this fluorescence enhancement reaction, a fluorimetric method was proposed for the determination of FX. A linear calibration curve covered the concentration range 0.020 3-0.487 µg · mL. The regression equation was I(F) = 23.9 + 5357.3 c, with correlation coefficient r = 0.999 7 (n = 8), detection limit D = 1.1 ng · mL(-1). The method was applied to the analysis of FX tablets, with a spiked recovery rate of 100.2%. The reliability of the method was verified by a UV-spectrophotometric method.

  2. Properties of alkali-solubilized collagen solution crosslinked by N-hydroxysuccinimide activated adipic acid

    NASA Astrophysics Data System (ADS)

    Chen, Yihui; Zhang, Min; Liu, Wentao; Li, Guoying

    2011-03-01

    The effect of N-hydroxysuccinimide activated adipic acid (NHS-AA) on the properties of alkali-solubilized collagen solutions was examined. The residual amino group content in crosslinked collagen, determined by trinitrobenzensulfonic acid (TNBS) assay, was decreased with increasing NHS-AA concentration. The results from differential scanning calorimeter (DSC) indicated that the maximum denaturation temperature ( T d) of crosslinked collagen solution was about 4.2°C higher than that of un-crosslinked collagen solution (36.6°C). Moreover, the values of storage modulus ( G'), loss modulus ( G″) and complex viscosity ( η*), obtained by means of dynamic frequency sweeps, were increased as NHS-AA concentration added up to 1.5 mM, and then decreased slightly when further increased NHS-AA concentration. Besides, for collagen solution crosslinked with 1.5 mM NHS-AA, dynamic denaturation temperature ( T dd) was about 1.1°C lower than T d (40.8°C), and the Arrhenius-type time-temperature superposition (TTS) principle was applied to yield the activation energy to be 474.4 kJmol-1.

  3. Structural properties and adsorption capacity of holocellulose aerogels synthesized from an alkali hydroxide-urea solution

    NASA Astrophysics Data System (ADS)

    Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon

    2014-05-01

    A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution ( i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested (-2°C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.

  4. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  5. Release of gas-phase halogens by photolytic generation of OH in frozen halide-nitrate solutions: an active halogen formation mechanism?

    PubMed

    Abbatt, J; Oldridge, N; Symington, A; Chukalovskiy, V; McWhinney, R D; Sjostedt, S; Cox, R A

    2010-06-17

    To better define the mechanisms by which condensed-phase halides may be oxidized to form gas-phase halogens under polar conditions, experiments have been conducted whereby frozen solutions containing chloride (1 M), bromide (1.6 x 10(-3) to 5 x 10(-2) M), iodide (<1 x 10(-5) M), and nitrate (0.01 to 1 M) have been illuminated by ultraviolet light in a continually flushed cell. Gas-phase products are quantified using chemical ionization mass spectrometry, and experiments were conducted at both 248 and 263 K. Br(2) was the dominant product, along with smaller yields of IBr and trace BrCl and I(2). The Br(2) yields were largely independent of the Br(-)/Cl(-) ratio of the frozen solution, down to seawater composition. However, the yields of halogens were strongly dependent on the levels of NO(3)(-) and acidity in solution, consistent with a mechanism whereby NO(3)(-) photolysis yields OH that oxidizes the condensed-phase halides. In support, we observed the formation of gas-phase NO(2), formed simultaneously with OH. Gas-phase HONO was also observed, suggesting that halide oxidation by HONO in the condensed phase may also occur to some degree. By measuring the production rate of condensed-phase OH, using benzoic acid as a radical trap, we determine that the molar yield of Br(2) formation relative to OH generation is 0.6, consistent with each OH being involved in halide oxidation. These studies suggest that gas-phase halogen formation should occur simultaneously with NO(x) release from frozen sea ice and snow surfaces that contain sufficient halides and deposited nitrate.

  6. Radiochemical synthesis of pure anhydrous metal halides

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Marsik, S. J.; May, C. E.

    1973-01-01

    Method uses radiation chemistry as practical tool for inorganic preparations and in particular deposition of metals by irradiation of their aqueous metal salt solutions with high energy electrons. Higher valence metal halide is dissolved in organic liquid and exposed to high energy electrons. This causes metal halide to be reduced to a lower valence metal halide.

  7. X-ray photoelectron spectroscopy of fast-frozen hematite colloids in aqueous solutions. 5. Halide ion (F-, Cl-, Br-, I-) adsorption.

    PubMed

    Shimizu, Kenichi; Shchukarev, Andrey; Kozin, Philipp A; Boily, Jean-François

    2013-02-26

    Halide anion (F(-), Cl(-), Br(-), and I(-)) adsorption and its impact on sodium adsorption at the hematite/water interface were studied by cryogenic X-ray photoelectron spectroscopy (XPS). Measurements were carried out on frozen, centrifuged wet hematite pastes that were previously equilibrated in 50 mM electrolytic solutions in the pH 2-11 range. XPS-derived halide ion surface loadings decreased in the order F(-) > I(-) ≈ Cl(-) > Br(-), whereas sodium loadings were in the order Na(F) > Na(I) > Na(Br) > Na(Cl). The greater sodium loadings in NaF and in NaI resulted from larger anion loadings in these systems. Bromide ion had the lowest loading among all halide ions despite having a charge-to-size ratio that is intermediate between those of Cl(-) and I(-). This unexpected result may have arisen from specific properties of the hematite/water interface, such as water structure and electric double layer thickness. Fluoride ion adsorption proceeded via the formation of hydrogen bonds with the surface hydroxo groups (e.g., ≡Fe-OH(2)···F(-) or ≡Fe-OH···F(-)). Surface-bound fluoride ions exert a greater charge-screening effect than the other halide anions, as demonstrated by considerably small zeta potential values. Fe-F bond formation was excluded as a possible interfacial process as the F 1s peak binding energy (684.2 eV) was more comparable to that of NaF (684.6 eV) than FeF(3) (685.4 eV). Overall, these findings motivate further refinements of existing thermodynamic adsorption models for predicting the ionic composition of hematite particle surfaces contacted with sodium halide aqueous solutions.

  8. The molecular velocity of sound. [aqueous solutions

    NASA Technical Reports Server (NTRS)

    Auslaender, D.; Onitiu, L.

    1974-01-01

    The molecular velocity of sound was calculated according to Rao's formula and the temperature and concentration dependences of this value were studied in aqueous solutions of alkali and alkaline-earth halides. Study of relative association brought to light characteristic effects of ions. The variation of the relative association can be explained by a breaking of hydrogen bonds by ions and thermal agitation.

  9. Oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Rohrmann, Charles A.; Fullam, Harold T.

    1985-01-01

    A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.

  10. Thermodynamic characterization of halide-π interactions in solution using "two-wall" aryl extended calix[4]pyrroles as model system.

    PubMed

    Adriaenssens, Louis; Gil-Ramírez, Guzmán; Frontera, Antonio; Quiñonero, David; Escudero-Adán, Eduardo C; Ballester, Pablo

    2014-02-26

    Herein, we report our latest experimental investigations of halide-π interactions in solution. We base this research on the thermodynamic characterization of a series of 1:1 complexes formed between halides (Cl(-), Br(-), and I(-)) and several α,α-isomers of "two-wall" calix[4]pyrrole receptors bearing two six-membered aromatic rings in opposed meso positions. The installed aromatic systems feature a broad range of electron density as indicated by the calculated values for their electrostatic surface potentials at the center of the rings. We show that a correlation exists between the electronic nature of the aromatic walls and the thermodynamic stability of the X(-)⊂receptor complexes. We give evidence for the existence of both repulsive and attractive interactions between π systems and halide anions in solution (between 1 and -1 kcal/mol). We dissect the measured free energies of binding for chloride and bromide with the receptor series into their enthalpic and entropic thermodynamic quantities. In acetonitrile solution, the binding enthalpy values remain almost constant throughout the receptor series, and the differences in free energies are provoked exclusively by changes in the entropic term of the binding processes. Most likely, this unexpected behavior is owed to strong solvation effects that make up important components of the measured magnitudes for the enthalpies and entropies of binding. The use of chloroform, a much less polar solvent, limits the impact of solvation effects revealing the expected existence of a parallel trend between free energies and enthalpies of binding. This result indicates that halide-π interactions in organic solvents are mainly driven by enthalpy. However, the typical paradigm of enthalpy-entropy compensation is still not observed in this less polar solvent.

  11. Silver-Halide Gelatin Holograms.

    DTIC Science & Technology

    1980-02-01

    PREPARATION OF R-10 TYPE BLEACHES Stock Solution A: Distilled water - 500 ml Ammonium dichromate - 20g Concentrated sulfuric acid - 14 ml Distilled water to...for the preparation of a bleach solution 5 Rinse in running water for 15 seconds Red Light 6 Soak in 0.5% ammonium dichromate for 5 minutes Red Light...those of con- ventional dichromated gelatin holograms, can be formed employing commercial silver-halide films. Major advantages of silver-halide

  12. Dilute nitric or nitrous acid solution containing halide ions as effective media for pure gold dissolution.

    PubMed

    Hojo, Masashi; Yamamoto, Masahiko; Okamura, Kei

    2015-08-14

    The greatly enhanced oxidation ability of dilute aqueous nitric acid (0.10-2.0 mol L(-1)) containing bromide and iodide salts as well as chloride salts has been examined based on the dissolution kinetics of pure gold at 30-60 °C. It has been found that bromide salts are more effective than chloride salts in gaining the ability of dissolving gold in dilute aqueous nitric acid solution. At 60 °C, a piece of gold-wire (ca. 20 mg) is dissolved in 20 mL of as low as 0.10 mol L(-1) HNO3 solution containing 1.0-5.0 mol L(-1) NaBr and the dissolution rate constant, log(k/s(-1)), increases linearly (from -5.78 to -4.52) with the increasing NaBr concentration. The addition of organic solvents, such as acetonitrile and acetic acid, causes acceleration of gold dissolution in LiBr and NaBr solutions. With increasing MeCN contents, for instance, the log(k/s(-1)) value of 0.10 mol L(-1) HNO3 solution containing 2.0 mol L(-1) NaBr increases linearly from -5.30 to -4.61 at 30% (v/v) MeCN. The bromide salts affect the gold dissolution rate constant in the order of KBr < NaBr < LiBr < CaBr2. With increasing NaI concentration (0.20-3.0 mol L(-1)), some acceleration in log(k/s(-1)) of 0.50 or 1.0 mol L(-1) HNO3 solution has been observed; however, the slope of acceleration as the function of NaI concentration is much smaller than that of NaCl or NaBr. The gold dissolution ability has been examined also for nitrous acid containing chloride and bromide ions at 35 °C. The NaNO2 solution containing twice or more amounts of HX (X = Cl, Br) gives the maximum efficiency for gold dissolution, according to the log(k/s(-1)) values of the mixed solutions of NaNO2 (0.10-2.0 mol L(-1)) and HX of various concentrations. The influence of oxidation by dilute nitric and nitrous acids on the gold dissolution is discussed from the standpoint of the redox potentials in "modified" aqueous solutions and not of the changes in the activity coefficients of ions.

  13. Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures

    NASA Astrophysics Data System (ADS)

    Brenner, Philipp; Stulz, Mareike; Kapp, Dorothee; Abzieher, Tobias; Paetzold, Ulrich W.; Quintilla, Aina; Howard, Ian A.; Kalt, Heinz; Lemmer, Uli

    2016-10-01

    We report on the performance and stability of distributed feedback lasers based on the solution-processed methylammonium lead iodide perovskite (CH3NH3PbI3). The CH3NH3PbI3 layers are processed via solution-casting in ambient atmosphere onto nanoimprinted second order Bragg gratings. This way, we achieve highly polarized surface-emitted lasing at room temperature with a linewidth of less than 0.2 nm and a laser threshold of 120 kW/cm2. The lasing is stable; no change in the laser emission within 15 h of pulsed excitation with a repetition rate of 1 kHz (corresponding to >5 × 107 pulses) is observed, exceeding the stability achieved for solution processed organic semiconductor lasers. Furthermore, adjustment of the grating period allowed the lasing wavelength to be varied over the entire bandwidth of the amplified spontaneous emission (between 781 and 794 nm). The fabrication process of nanoimprinting followed by solution-casting of the gain material demonstrates that stable CH3NH3PbI3 lasers are compatible with scalable production technologies and offers a route towards electrically pumped diode architectures.

  14. Studies on extraction of beryllium from thiocyanate solutions by quaternary ammonium halides.

    PubMed

    El-Yamani, I S; El-Messieh, E N

    A 0.4M tricaprylmethylammonium chloride solution in n-hexane was used for the quantitative extraction of beryllium from hydrochloric acid (pH 3) and 5M potassium thiocyanate. Beryllium was stripped from the organic phase with 1M sodium hydroxide, then determined volumetrically with bismuthyl perchlorate and bromocresol green indicator. Beryllium was extracted in presence of a large number of elements which are usually associated with it in beryl and in fission products of nuclear fuel.

  15. Solution-processed highly bright and durable cesium lead halide perovskite light-emitting diodes.

    PubMed

    Wei, Zhanhua; Perumal, Ajay; Su, Rui; Sushant, Shendre; Xing, Jun; Zhang, Qing; Tan, Swee Tiam; Demir, Hilmi Volkan; Xiong, Qihua

    2016-10-27

    Recently, CsPbBr3 perovskites have been emerging as very promising green emission materials for light-emitting diodes (LEDs) due to their high color purity, low cost and high photoluminescence quantum yield (PLQY). However, the corresponding LED performance is still low and far behind CH3NH3PbBr3; it is due to the lack of proper perovskite film preparation methods and interfacial engineering. Herein, we report highly bright and durable CsPbBr3-based LEDs fabricated using a one-step solution method. The precursor solution is prepared by simply dissolving CsPbBr3 powder and a CsBr additive in dimethyl sulfoxide (DMSO). We find that the CsBr additive not only significantly enhances the PLQY but also induces directional crystal growth into micro-plates, forming a smooth perovskite film for LEDs. LEDs employing such high quality films show a high luminance of 7276 cd m(-2) and high color purity with a full width at half maximum of 18 nm. Furthermore, the as-fabricated LEDs reveal an outstanding ambient stability with a decent luminance output (>100 cd m(-2), steady increase without any degradation trend) for at least 15 h under a constant driving current density (66.7 mA cm(-2)). And we propose two reasons for this unique luminance increasing behavior: (1) the CsPbBr3 perovskite is thermally stable and can survive from joule heat; and (2) on the other hand, the joule heating will induce interface or crystalline film annealing, reduce device resistance and then enhance the luminance output.

  16. Water adsorption, solvation and deliquescence of alkali halide thin films on SiO2 studied by ambient pressure X-ray photoelectron spectroscopy

    SciTech Connect

    Arima, Kenta; Jiang, Peng; Deng, Xingyi; Bluhm, Henrik; Salmeron, Miquel

    2010-03-31

    The adsorption of water on KBr thin films evaporated onto SiO2 was investigated as a function of relative humidity (RH) by ambient pressure X-ray photoelectron spectroscopy. At 30percent RH adsorbed water reaches a coverage of approximately one monolayer. As the humidity continues to increase, the coverage of water remains constant or increases very slowly until 60percent RH, followed by a rapid increase up to 100percent RH. At low RH a significant number of the Br atoms are lost due to irradiation damage. With increasing humidity solvation increases ion mobility and gives rise to a partial recovery of the Br/K ratio. Above 60percent RH the increase of the Br/K ratio accelerates. Above the deliquescence point (85percent RH), the thickness of the water layer continues to increase and reaches more than three layers near saturation. The enhancement of the Br/K ratio at this stage is roughly a factor 2.3 on a 0.5 nm KBr film, indicating a strong preferential segregation of Br ions to the surface of the thin saline solution on SiO2.

  17. Calculating the thermodynamic properties of aqueous solutions of alkali metal nitrites using a modified Robinson-Stokes equation

    NASA Astrophysics Data System (ADS)

    Rudakov, A. M.; Sergievskii, V. V.

    2014-04-01

    A modified Robinson-Stokes equation that includes the contributions from 1-1 electrostatic interactions between ions to the nonideality of aqueous solutions of electrolytes in the Debye-Huckel theory and the mean ionic hydration in the cluster model is validated. The hydration numbers in the standard state and the dispersion of the distribution of hydration numbers with stoichiometric coefficients are selected as the principal empirical parameters of equations. The equations are tested using the example of concentrated aqueous solutions of alkali metal nitrites, produced from diluted to saturated solutions. It is found that the standard deviations from the descriptions in the literature data are within the range of experimental error and the calculated values of the mean ionic activity coefficients agree with the results from calculations performed with the Hummer-Woo equation.

  18. Process for obtaining molybdenum as a useful product from molybdeniferous solutions containing alkali metal carbonate, sulphate, hydroxide or hydrogen carbonate and possibly uranium

    SciTech Connect

    Maurel, P.

    1984-02-21

    A process is claimed for obtaining molybdenum as a useful product from aqueous solutions to be purified, according to claim 1 of French patent No. 2,404,601, which contain, besides molybdenum, alkali metal carbonate, sulphate, hydroxide or hydrogen carbonate and which may also contain uranium, and inorganic and/or organic impurities. These solutions are treated at a temperature which is at most equal to the boiling temperature by means of lime to convert the alkali metal carbonate into hydroxide and to precipitate the insoluble calcium salts formed, then separating and washing the first precipitate which essentially contains calcium carbonate, from an alkali metal hydroxide-enriched liquor, which is concentrated by evaporation at the same time as the washing liquor of the first precipitate, to produce an alkali metal hydroxide content which is at most equal to 50%, to produce a second precipitate formed by a mixture of alkali metal molybdate and sulphate, characterized in that said solid mixture is dispersed in an acid aqueous liquor which is heated at from 120/sup 0/C to 250/sup 0/C under pressure to cause precipitation of anhydrous Mo0/sub 3/ which is subsequently separated from the mother liquor which essentially contains alkali metal sulphate.

  19. Absorption Coefficient of Alkali Halides. Part I.

    DTIC Science & Technology

    1979-03-01

    442 LIAY OF ~:S42.~SON T111 ALiSON ,’FlON CU12rCIUNT OF .l~i~ FLUORIVIl: (iviunLvr Iiepcndcncu) (cort .i.j) S’t .~Ue Rne uhr~) ~clo Wvna,br n rt...al. [134j reported their results for the region from 0.170 to 0.197 um and Handi et al. [24] reported results for the range of 35 to 770 pm. Li (331...lection Spectra of Pure and Doped Potassium Iodide at Low Temperatures," Appl. Opt., 7(1), 161-5 (1968). L, __ 243 26. Vergnat, P., Claudel, J., Handi

  20. Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes.

    PubMed

    Ma, Jie; Yu, Fei; Zhou, Lu; Jin, Lu; Yang, Mingxuan; Luan, Jingshuai; Tang, Yuhang; Fan, Haibo; Yuan, Zhiwen; Chen, Junhong

    2012-11-01

    An alkali-acitvated method was explored to synthesize activated carbon nanotubes (CNTs-A) with a high specific surface area (SSA), and a large number of mesopores. The resulting CNTs-A were used as an adsorbent material for removal of anionic and cationic dyes in aqueous solutions. Experimental results indicated that CNTs-A have excellent adsorption capacity for methyl orange (149 mg/g) and methylene blue (399 mg/g). Alkali-activation treatment of CNTs increased the SSA and pore volume (PV), and introduced oxygen-containing functional groups on the surface of CNTs-A, which would be beneficial to improving the adsorption affinity of CNTs-A for removal of dyes. Kinetic regression results shown that the adsorption kinetic was more accurately represented by a pseudo second-order model. The overall adsorption process was jointly controlled by external mass transfer and intra-particle diffusion, and intra-particle diffusion played a dominant role. Freundlich isotherm model showed a better fit with adsorption data than Langmuir isotherm model. Adsorption interactions of dyes onto CNTs-A from aqueous solutions were investigated using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) method. The remarkable adsorption capacity of dye onto CNTs-A can be attributed to the multiple adsorption interaction mechanisms (hydrogen bonding, π-π electron-donor-acceptor interactions, electrostatic interactions, mesopore filling) on the CNTs-A. Results of this work are of great significance for environmental applications of activated CNTs as a promising adsorbent nanomaterial for organic pollutants from aqueous solutions.

  1. Cation effects on rotational dynamics of anions and water molecules in alkali (Li+, Na+, K+, Cs+) thiocyanate (SCN-) aqueous solutions.

    PubMed

    Bian, Hongtao; Chen, Hailong; Zhang, Qiang; Li, Jiebo; Wen, Xiewen; Zhuang, Wei; Zheng, Junrong

    2013-07-03

    Waiting time dependent rotational anisotropies of SCN(-) anions and water molecules in alkali thiocyanate (XSCN, X = Li, Na, K, Cs) aqueous solutions at various concentrations were measured with ultrafast infrared spectroscopy. It was found that cations can significantly affect the reorientational motions of both water molecules and SCN(-) anions. The dynamics are slower in a solution with a smaller cation. The reorientational time constants follow the order of Li(+) > Na(+) > K(+) ~/= Cs(+). The changes of rotational time constants of SCN(-) at various concentrations scale almost linearly with the changes of solution viscosity, but those of water molecules do not. In addition, the concentration-dependent amplitudes of dynamical changes are much more significant in the Li(+) and Na(+) solutions than those in the K(+) and Cs(+) solutions. Further investigations on the systems with the ultrafast vibrational energy exchange method and molecular dynamics simulations provide an explanation for the observations: the observed rotational dynamics are the balanced results of ion clustering and cation/anion/water direct interactions. In all the solutions at high concentrations (>5 M), substantial amounts of ions form clusters. The structural inhomogeneity in the solutions leads to distinct rotational dynamics of water and anions. The strong interactions of Li(+) and Na(+) because of their relatively large charge densities with water molecules and SCN(-) anions, in addition to the likely geometric confinements because of ion clustering, substantially slow down the rotations of SCN(-) anions and water molecules inside the ion clusters. The interactions of K(+) and Cs(+) with water or SCN(-) are much weaker. The rotations of water molecules inside ion clusters of K(+) and Cs(+) solutions are not significantly different from those of other water species so that the experimentally observed rotational relaxation dynamics are only slightly affected by the ion concentrations.

  2. Solution-Derived, Chloride-Containing Minerals as a Waste Form for Alkali Chlorides

    SciTech Connect

    Riley, Brian J.; Crum, Jarrod V.; Matyas, Josef; McCloy, John S.; Lepry, William C.

    2012-10-01

    Sodalite [Na8(AlSiO4)6Cl2] and cancrinite [(Na,K)6Ca2Al6Si6O24Cl4] are environmentally stable, chloride-containing minerals and are a logical waste form option for the mixed alkali chloride salt waste stream that is generated from a proposed electrochemical separations process during nuclear fuel reprocessing. Due to the volatility of chloride salts at moderate temperatures, the ideal processing route for these salts is a low-temperature approach such as the sol-gel process. The sodalite structure can be easily synthesized by the sol-gel process; however, it is produced in the form of a fine powder with particle sizes on the order of 1–10 µm. Due to the small particle size, these powders require additional treatment to form a monolith. In this study, the sol-gel powders were pressed into pellets and fired to achieve > 90% of theoretical density. The cancrinite structure, identified as the best candidate mineral form in terms of waste loading capacity, was only produced on a limited basis following the sol-gel process and converted to sodalite upon firing. Here we discuss the sol-gel process specifics, chemical durability of select waste forms, and the steps taken to maximize chloride-containing phases, decrease chloride loss during pellet firing, and increase pellet densities.

  3. The Silver Halides

    ERIC Educational Resources Information Center

    Sahyun, M. R. V.

    1977-01-01

    Illustrates the type of fractional bonding for solid silver halides. Treats the silver halides as electron excess compounds, and develops a model of a localized bonding unit that may be iterated in three dimensions to describe the bulk phase. (MLH)

  4. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    DOEpatents

    Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  5. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  6. X-ray and neutron scattering studies of the hydration structure of alkali ions in concentrated aqueous solutions.

    PubMed

    Ansell, S; Barnes, A C; Mason, P E; Neilson, G W; Ramos, S

    2006-12-01

    The presence of ions in water provides a rich and varied environment in which many natural processes occur with important consequences in biology, geology and chemistry. This article will focus on the structural properties of ions in water and it will be shown how the 'difference' methods of neutron diffraction with isotopic substitution (NDIS) and anomalous X-ray diffraction (AXD) can be used to obtain direct information regarding the radial pair distribution functions of many cations and anions in solution. This information can subsequently be used to calculate coordination numbers and to determine ion-water conformation in great detail. As well as enabling comparisons to be made amongst ions in particular groups in the periodic table, such information can also be contrasted with results provided by molecular dynamics (MD) simulation techniques. To illustrate the power of these 'difference' methods, reference will be made to the alkali group of ions, all of which have been successfully investigated by the above methods, with the exception of the radioactive element francium. Additional comments will be made on how NDIS measurements are currently being combined with MD simulations to determine the structure around complex ions and molecules, many of which are common in biological systems.

  7. Structural and optical characterization of Er-alkali-metals codoped MgO nanoparticles synthesized by solution combustion route

    NASA Astrophysics Data System (ADS)

    Sivasankari, J.; Selvakumar Sellaiyan, S.; Sankar, S.; Devi, L. Vimala; Sivaji, K.

    2017-01-01

    Pure MgO, rare-earth (Er) doped MgO (MgO:Er), and alkali metal ions (Li, Na and K) co-doped MgO:Er [i.e. MgO: Er+X (X=Li, Na, and K)] nanopowders were synthesized by solution combustion method and characterized. The XRD analysis reveals the cubic structure and the substitution of dopants and co-dopants in MgO. Annealing at 800 °C, increases the sizes of nano-crystallites of all samples appreciably, indicating the grain growth and the improvement in crystallinity of all the samples. Increase in lattice parameter, d spacing and band gap were observed after annealing. Structural and morphological analysis using scanning electron microscope (SEM) and transmission electron microscope (TEM) studies has shown that the samples contain structures like agglomerated clusters. FT-IR spectra confirm the stretching mode of hydroxyl groups, carbonate and presence of MgO bonding. The characteristic wavelength ranging from 2600 cm-1 to 3000 cm-1 were assigned to transition of 4S3/2→4I13/2 and 4I11/2→4I15/2 of Er3+.

  8. Alkali Metal Rankine Cycle Boiler Technology Challenges and Some Potential Solutions for Space Nuclear Power and Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Stone, James R.

    1994-01-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler

  9. Alkali metal Rankine cycle boiler technology challenges and some potential solutions for space nuclear power and propulsion applications

    NASA Astrophysics Data System (ADS)

    Stone, James R.

    1994-07-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler

  10. Alkali modified hydrochar of grape pomace as a perspective adsorbent of Pb(2+) from aqueous solution.

    PubMed

    Petrović, Jelena T; Stojanović, Mirjana D; Milojković, Jelena V; Petrović, Marija S; Šoštarić, Tatjana D; Laušević, Mila D; Mihajlović, Marija L

    2016-11-01

    Hydrochar produced via hydrothermal carbonization of grape pomace was considered as novel sorbent of Pb(2+) from aqueous solution. In order to enhance the adsorption capacity, hydrochar was chemically modified using 2 M KOH solution. Both materials were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction technique. Batch experiments were performed to examine the effect of sorbent dosage, pH and contact time. Obtained results showed that the KOH treatment increased the sorption capacity of hydrochar from 27.8 mg g(-1) up to 137 mg g(-1) at pH 5. Adsorption of lead on either of the materials was achieved through ion-exchange mechanism, chemisorption and Pb(2+)-π interaction. The Sips isotherm model gave the best fit with the experimental data obtained for Pb(2+) sorption using activated hydrochar. The adsorption kinetic followed a pseudo second-order model. Thermodynamic parameters implied that the Pb(2+) binding for hydrochar surface was spontaneous and exothermic process. Findings from this work suggest that the hydrothermal carbonization is a promising route for production of efficient Pb (2+) sorbents for wastewater treatment.

  11. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  12. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Alkali metal and alkali halide mixtures are identified which may be suitable for thermal energy storage at temperatures above 600 C. The use of metal-halides is appropriate because of their tendency to form two immiscible melts with a density difference, which reduces scale formation and solidification on heat transfer surfaces. Also, the accumulation of phase change material along the melt interface is avoided by the self-dispersing characteristic of some metal-halides, in particular Sr-SrCl2, Ba-BaCl2, and Ba-BaBr2 mixtures. Further advantages lie in their high thermal conductivities, ability to cope with thermal shock, corrosion inhibition, and possibly higher energy densities.

  13. Water and magmas: insights about the water solution mechanisms in alkali silicate melts from infrared, Raman, and 29Si solid-state NMR spectroscopies

    NASA Astrophysics Data System (ADS)

    Le Losq, Charles; Mysen, Bjorn O.; Cody, George D.

    2015-12-01

    Degassing of water during the ascent of hydrous magma in a volcanic edifice produces dramatic changes in the magma density and viscosity. This can profoundly affect the dynamics of volcanic eruptions. The water exsolution history, in turn, is driven by the water solubility and solution mechanisms in the silicate melt. Previous studies pointed to dissolved water in silicate glasses and melts existing as molecules (H2Omol species) and hydroxyl groups, OH. These latter OH groups commonly are considered bonded to Si4+ but may form other bonds, such as with alkali or alkaline-earth cations, for instance. Those forms of bonding influence the structure of hydrous melts in different ways and, therefore, their properties. As a result, exsolution of water from magmas may have different eruptive consequences depending on the initial bonding mechanisms of the dissolved water. However, despite their importance, the solution mechanisms of water in silicate melts are not clear. In particular, how chemical composition of melts affects water solubility and solution mechanism is not well understood. In the present experimental study, components of such information are reported via determination of how water interacts with the cationic network of alkali (Li, Na, and K) silicate quenched melts. Results from 29Si single-pulse magic-angle spinning nuclear magnetic resonance (29Si SP MAS NMR), infrared, and Raman spectroscopies show that decreasing the ionic radius of alkali metal cation in silicate melts results in decreasing fraction of water dissolved as OH groups. The nature of OH bonding also changes as the alkali ionic radius changes. Therefore, as the speciation and bonding of water controls the degree of polymerization of melts, water will have different effects on the transport properties of silicate melts depending on their chemical composition. This conclusion, in turn, may affect volcanic phenomena related to the viscous relaxation of hydrous magmas, such as for instance the

  14. Zero-dipole molecular organic cations in mixed organic-inorganic halide perovskites: possible chemical solution for the reported anomalous hysteresis in the current-voltage curve measurements.

    PubMed

    Giorgi, Giacomo; Yamashita, Koichi

    2015-11-06

    Starting from a brief description of the main architectures characterizing the novel solar technology of perovskite-based solar cells, we focus our attention on the anomalous hysteresis experimentally found to affect the measurement of the current-voltage curve of such devices. This detrimental effect, associated with slow dynamic reorganization processes, depends on several parameters; among them, the scan rate of the measurements, the architecture of the cell, and the perovskite deposition rate are crucial. Even if a conclusive explanation of the origin of the hysteresis has not been provided so far, several experimental findings ascribe its origin to ionic migration at an applied bias and dielectric polarization that occurs in the perovskite layer. Consistently, a dipole-moment-reduced cation such as formamidinium ion is experimentally reported to quantitatively reduce the hysteresis from perovskite-based devices. By means of a density-functional theory-based set of calculations, we have predicted and characterized guanidinium ion (GA = (+)[C(NH2)3], a zero-dipole moment cation by symmetry)-based organic-inorganic halide perovskite's structural and electronic properties, speculating that such a cation and the alloys it may form with other organic cations can represent a possible chemical solution for the puzzling issue of the hysteresis.

  15. Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides

    DOEpatents

    Gordon, John Howard; Alvare, Javier

    2016-10-25

    Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte solution and may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.

  16. Influence of PbCl{sub 2} content in PbI{sub 2} solution of DMF on the absorption, crystal phase, morphology of lead halide thin films and photovoltaic performance in planar perovskite solar cells

    SciTech Connect

    Wang, Mao; Shi, Chengwu Zhang, Jincheng; Wu, Ni; Ying, Chao

    2015-11-15

    In this paper, the influence of PbCl{sub 2} content in PbI{sub 2} solution of DMF on the absorption, crystal phase and morphology of lead halide thin films was systematically investigated and the photovoltaic performance of the corresponding planar perovskite solar cells was evaluated. The result revealed that the various thickness lead halide thin film with the small sheet-like, porous morphology and low crystallinity can be produced by adding PbCl{sub 2} powder into PbI{sub 2} solution of DMF as a precursor solution. The planar perovskite solar cell based on the 300-nm-thick CH{sub 3}NH{sub 3}PbI{sub 3−x}Cl{sub x} thin film by the precursor solution with the mixture of 0.80 M PbI{sub 2} and 0.20 M PbCl{sub 2} exhibited the optimum photoelectric conversion efficiency of 10.12% along with an open-circuit voltage of 0.93 V, a short-circuit photocurrent density of 15.70 mA cm{sup −2} and a fill factor of 0.69. - Graphical abstract: The figure showed the surface and cross-sectional SEM images of lead halide thin films using the precursor solutions: (a) 0.80 M PbI{sub 2}, (b) 0.80 M PbI{sub 2}+0.20 M PbCl{sub 2}, (c) 0.80 M PbI{sub 2}+0.40 M PbCl{sub 2}, and (d) 0.80 M PbI{sub 2}+0.60 M PbCl{sub 2}. With the increase of the PbCl{sub 2} content in precursor solution, the size of the lead halide nanosheet decreased and the corresponding thin films gradually turned to be porous with low crystallinity. - Highlights: • Influence of PbCl{sub 2} content on absorption, crystal phase and morphology of thin film. • Influence of perovskite film thickness on photovoltaic performance of solar cell. • Lead halide thin film with small sheet-like, porous morphology and low crystallinity. • Planar solar cell with 300 nm-thick perovskite thin film achieved PCE of 10.12%.

  17. Chiroptical Spectra of Tetrakis (+)-3-Heptafluorobutylrylcamphorate Ln(III) Complexes with an Encapsulated Alkali Metal Ion: Solution Structures as Revealed by Chiroptical Spectra

    PubMed Central

    Shirotani, Dai; Yamanari, Kazuaki; Kuroda, Reiko; Harada, Takunori; Lunkley, Jamie L.; Muller, Gilles; Sato, Hisako; Kaizaki, Sumio

    2012-01-01

    The preparation of tetrakis((+)-hfbc) lanthanide(III) complexes with an encapsulated alkali metal and ammonium ions M[Ln((+)-hfbc)4] (hereafter abbreviated as M-Ln : (+)-hfbc, (+)-heptafluorobutyrylcamphorate; M, ammonium or benzyl ammonium ions as well as alkali metal ions) was reported and discussed. The electronic circular dichroism (CD) spectra in the intraligand π–π* transition of M–Ln were examined in view of the solvent effect. Here, the concentration, alkali metal, and ammonium ion dependences are compared with the solid CD, 5D0 ← 7F0(Eu(III)) excitation spectra, circularly polarized luminescence, and vibrational circular dichroism. It has been revealed that the dodecahedral eight coordinate DD-8-M-Ln complexes in crystals are equilibrated between the diastereoselectively formed square antiprism eight coordinate SAPR-8-M-Ln and [Ln((+)-hfbc)3] in EtOH and CH3CN solutions or between the SAPR-8-M-Ln and DD-D2d(mmmm)-8-M-Ln complexes in CHCl3 solution. The observed CD couplets are found to reflect the exciton CD couplets which are useful to determine the four-bladed SAPR-(llll) absolute configuration around the lanthanide(III) ion. PMID:22945448

  18. CO2 Extraction from Ambient Air Using Alkali-Metal Hydroxide Solutions Derived from Concrete Waste and Steel Slag

    NASA Astrophysics Data System (ADS)

    Stolaroff, J. K.; Lowry, G. V.; Keith, D. W.

    2003-12-01

    To mitigate global climate change, deep reductions in CO2 emissions are required in the coming decades. Carbon sequestration will play a crucial role in this reduction. Early adoption of carbon sequestration in low-cost niche markets will help develop the technology and experience required for large-scale deployment. One such niche may be the use of alkali metals from industrial waste streams to form carbonate minerals, a safe and stable means of sequestering carbon. In this research, the potential of using two industrial waste streams---concrete and steel slag---for sequestering carbon is assessed. The scheme is outlined as follows: Ca and Mg are leached with water from a finely ground bed of steel slag or concrete. The resulting solution is sprayed through air, capturing CO2 and forming solid carbonates, and collected. The feasibility of this scheme is explored with a combination of experiments, theoretical calculations, cost accounting, and literature review. The dissolution kinetics of steel slag and concrete as a function of particle size and pH is examined. In stirred batch reactors, the majority of Ca which dissolved did so within the first hour, yielding between 50 and 250 (mg; Ca)/(g; slag) and between 10 and 30 (mg; Ca)/(g; concrete). The kinetics of dissolution are thus taken to be sufficiently fast to support the type of scheme described above. As proof-of-concept, further experiments were performed where water was dripped slowly through a stagnant column of slag or concrete and collected at the bottom. Leachate Ca concentrations in the range of 15 mM were achieved --- sufficient to support the scheme. Using basic physical principles and numerical methods, the quantity of CO2 captured by falling droplets is estimated. Proportion of water loss and required pumping energy is similarly estimated. The results indicate that sprays are capable of capturing CO2 from the air and that the water and energy requirements are tractable. An example system for

  19. Use of alkali metal salts to prepare high purity single-walled carbon nanotube solutions and thin films

    NASA Astrophysics Data System (ADS)

    Ashour, Rakan F.

    Single-walled carbon nanotubes (SWCNTs) display interesting electronic and optical properties desired for many advanced thin film applications, such as transparent conductive electrodes or thin-film transistors. Large-scale production of SWCNTs generally results in polydispersed mixtures of nanotube structures. Since SWCNT electronic character (conducting or semiconducting nature) depends on the nanotube structure, application performance is being held back by this inability to discretely control SWCNT synthesis. Although a number of post-production techniques are able to separate SWCNTs based on electronic character, diameter, or chirality, most still suffer from the disadvantage of high costs of materials, equipment, or labor intensity to be relevant for large-scale production. On the other hand, chromatographic separation has emerged as a method that is compatible with large scale separation of metallic and semiconducting SWCNTs. In this work, SWCNTs, in an aqueous surfactant suspension of sodium dodecyl sulfate (SDS), are separated by their electronic character using a gel chromatography process. Metallic SWCNTs (m-SWCNTs) are collected as initial fractions since they show minimum interaction with the gel medium, whereas, semiconducting SWCNTs (sc- SWCNTs) remain adsorbed to the gel. The process of sc-SWCNT retention in the gel is found to be driven by the packing density of SDS around the SWCNTs. Through a series of separation experiments, it is shown that sc-SWCNTs can be eluted from the gel simply by disturbing the configuration of the SDS/SWCNT micellar structure. This is achieved by either introducing a solution containing a co-surfactant, such as sodium cholate (SC), or solutions of alkali metal ionic salts. Analysis of SWCNT suspensions by optical absorption provides insights into the effect of changing the metal ion (M+ = Li+, Na+, and K+) in the eluting solution. Salts with smaller metal ions (e.g. Li+) require higher concentrations to achieve

  20. Alkali Metal/Salt Thermal-Energy-Storage Systems

    NASA Technical Reports Server (NTRS)

    Phillips, Wayne W.; Stearns, John W.

    1987-01-01

    Proposed thermal-energy-storage system based on mixture of alkali metal and one of its halide salts; metal and salt form slurry of two immiscible melts. Use of slurry expected to prevent incrustations of solidified salts on heat-transfer surfaces that occur where salts alone used. Since incrustations impede heat transfer, system performance improved. In system, charging heat-exchanger surface immersed in lower liquid, rich in halide-salt, phase-charge material. Discharging heat exchanger surface immersed in upper liquid, rich in alkali metal.

  1. Explicit-water molecular dynamics study of a short-chain 3,3 ionene in solutions with sodium halides

    NASA Astrophysics Data System (ADS)

    Druchok, M.; Vlachy, V.; Dill, K. A.

    2009-04-01

    Ionenes are alkyl polymer chains in which hydrophobic groups are separated by ionic charges. They are useful for studying the properties of water as a solvent because they demonstrate a sufficiently complex combination of hydrophobicity, charge interactions, and specific-ion effects that some properties cannot be predicted by implicit-solvation theories. On the other hand, they are simple enough that their molecular structures can be varied and controlled in systematic experiments. In particular, implicit-solvent models predict that all such solutes will have negative enthalpies of dilution, whereas experiments show that enthalpies of dilution are positive for the chaotropic counterions. Here, we study ionenes that are short chains (six monomer units) in solutions of different counterions, with sodium as the coion by molecular dynamics simulations in explicit water. We explore the pair distributions of various atoms within the system at three different temperatures: T =278, 298, and 318 K. We find (i) that the molecular dynamics simulations are consistent with the experimental trends for the osmotic coefficients and enthalpies of dilution, (ii) that the fluorine-nitrogen and fluorine-carbon correlations decrease with decreasing temperature, (iii) while the opposite behavior is found for iodine ions, and (iv) that in the counterion-Na+ pair distributions, too, fluorine ions behave oppositely to iodine ions upon temperature increase.

  2. Binding selectivity of dibenzo-18-crown-6 for alkali metal cations in aqueous solution: A density functional theory study using a continuum solvation model

    PubMed Central

    2012-01-01

    Background Dibenzo-18-crown-6 (DB18C6) exhibits the binding selectivity for alkali metal cations in solution phase. In this study, we investigate the main forces that determine the binding selectivity of DB18C6 for the metal cations in aqueous solution using the density functional theory (DFT) and the conductor-like polarizable continuum model (CPCM). Results The bond dissociation free energies (BDFE) of DB18C6 complexes with alkali metal cations (M+-DB18C6, M = Li, Na, K, Rb, and Cs) in aqueous solution are calculated at the B3LYP/6-311++G(d,p)//B3LYP/6-31 + G(d) level using the CPCM. It is found that the theoretical BDFE is the largest for K+-DB18C6 and decreases as the size of the metal cation gets larger or smaller than that of K+, which agrees well with previous experimental results. Conclusion The solvation energy of M+-DB18C6 in aqueous solution plays a key role in determining the binding selectivity of DB18C6. In particular, the non-electrostatic dispersion interaction between the solute and solvent, which depends strongly on the complex structure, is largely responsible for the different solvation energies of M+-DB18C6. This study shows that the implicit solvation model like the CPCM works reasonably well in predicting the binding selectivity of DB18C6 in aqueous solution. PMID:22873431

  3. Influence of PbCl2 content in PbI2 solution of DMF on the absorption, crystal phase, morphology of lead halide thin films and photovoltaic performance in planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Mao; Shi, Chengwu; Zhang, Jincheng; Wu, Ni; Ying, Chao

    2015-11-01

    In this paper, the influence of PbCl2 content in PbI2 solution of DMF on the absorption, crystal phase and morphology of lead halide thin films was systematically investigated and the photovoltaic performance of the corresponding planar perovskite solar cells was evaluated. The result revealed that the various thickness lead halide thin film with the small sheet-like, porous morphology and low crystallinity can be produced by adding PbCl2 powder into PbI2 solution of DMF as a precursor solution. The planar perovskite solar cell based on the 300-nm-thick CH3NH3PbI3-xClx thin film by the precursor solution with the mixture of 0.80 M PbI2 and 0.20 M PbCl2 exhibited the optimum photoelectric conversion efficiency of 10.12% along with an open-circuit voltage of 0.93 V, a short-circuit photocurrent density of 15.70 mA cm-2 and a fill factor of 0.69.

  4. Hydrothermal alkali metal catalyst recovery process

    DOEpatents

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  5. Optimum conditions to prepare high yield, phase pure α-Ni(OH) 2 nanoparticles by urea hydrolysis and electrochemical ageing in alkali solutions

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, M.; Venugopal, N.; Reddy, B. Ramachandra; Rao, M. Mohan

    Phase pure alpha nickel hydroxide (α-Ni(OH) 2) is synthesized by a hydrothermal method using urea and nickel nitrate in an autoclave. Optimum conditions to obtain high yield and phase pure α-Ni(OH) 2 are identified by varying experimental parameters such as urea concentration, ramp time, and temperature. In a typical experiment, a 94% yield of phase pure α-Ni(OH) 2 is successfully prepared. The nickel content, analyzed by means of atomic absorption spectroscopy, is 44% in all samples. The α-Ni(OH) 2 nanoparticles are characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The BET surface area and tap density of the nickel hydroxide nanoparticles are also determined. Electrochemical characterization is undertaken via cyclic voltammetry for which the nanoparticles are immobilized on the surface of paraffin impregnated graphite electrodes in 1.0 M alkali solutions. The ageing of the alpha phase occurs within 27 min (30 cycles) of exposure in alkali solutions.

  6. Oxidation of hydrogen halides to elemental halogens with catalytic molten salt mixtures

    DOEpatents

    Rohrmann, Charles A.

    1978-01-01

    A process for oxidizing hydrogen halides by means of a catalytically active molten salt is disclosed. The subject hydrogen halide is contacted with a molten salt containing an oxygen compound of vanadium and alkali metal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen. The reduced vanadium which remains after this contacting is regenerated to the active higher valence state by contacting the spent molten salt with a stream of oxygen-bearing gas.

  7. Exfoliation of WS2 in the semiconducting phase using a group of lithium halides: a new method of Li intercalation.

    PubMed

    Ghorai, Arup; Midya, Anupam; Maiti, Rishi; Ray, Samit K

    2016-10-14

    Lithium halide assisted high yield synthesis of few layers of 2H phase semiconducting WS2 in organic solvents is reported. A group of lithium halides (LiCl, LiBr and LiI) has been employed for the first time to intercalate WS2 by using Li, followed by mild sonication to exfoliate in dispersive polar solvents. In contrast to the n-butyllithium (n-BuLi) assisted exfoliation method, which yields only the metallic 1T phase on prolonged reaction (3-7 days) at higher temperatures, the proposed exfoliation method produces only semiconducting 2H WS2 in a much shorter time (5 minute sonication). A very high yield of 19 mg ml(-1) has been obtained using LiI as an exfoliating agent due to its lower lattice energy compared to other alkali halides and the smaller size of the cation. Detailed microscopy and spectroscopic characterization reveals exfoliation of few layered WS2 with stoichiometric composition. Absorption and emission characteristics of the 2D WS2 layer exhibit a characteristic band edge and quantum confined transitions. As a proof-of-concept, we have successfully demonstrated photodetector devices comprising solution proccessed p-WS2/n-Si heterojunctions, which behave as diodes with a high rectification ratio (>10(2)) exhibiting a broad band photoresponse over the entire visible region.

  8. Comparison studies of surface cleaning methods for PAN-based carbon fibers with acetone, supercritical acetone and subcritical alkali aqueous solutions

    NASA Astrophysics Data System (ADS)

    Meng, Linghui; Fan, Dapeng; Huang, Yudong; Jiang, Zaixing; Zhang, Chunhua

    2012-11-01

    Four kinds of polyacrylonitrile-based carbon fibers were cleaned by three methods and were characterized by X-ray photoelectron spectroscopy, monofilament tensile strength test and atomic force microscopy (AFM). Experimental results of these tests reveal that the method using supercritical acetone or subcritical potassium hydroxide aqueous solution act as the processing medium shows a better cleaning effect compared to the traditional method, Soxhlet extraction with acetone. The method using supercritical acetone is more appropriate to wipe off the oxygenated contaminants on carbon fibers' surfaces and causes a relatively smaller damage to the bulk strength of each carbon fiber. As far as treating method using the subcritical alkali aqueous solution, it can thoroughly remove silicious contaminants on the surfaces of treated fibers.

  9. Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution.

    PubMed

    Crea, Francesco; De Stefano, Concetta; Foti, Claudia; Lando, Gabriele; Milea, Demetrio; Sammartano, Silvio

    2016-01-01

    Alkali metal ions play very important roles in all biological systems, some of them are essential for life. Their concentration depends on several physiological factors and is very variable. For example, sodium concentrations in human fluids vary from quite low (e.g., 8.2 mmol dm(-3) in mature maternal milk) to high values (0.14 mol dm(-3) in blood plasma). While many data on the concentration of Na(+) and K(+) in various fluids are available, the information on other alkali metal cations is scarce. Since many vital functions depend on the network of interactions occurring in various biofluids, this chapter reviews their complex formation with phosphates, nucleotides, amino acids, and related ligands of biological relevance. Literature data on this topic are quite rare if compared to other cations. Generally, the stability of alkali metal ion complexes of organic and inorganic ligands is rather low (usually log K < 2) and depends on the charge of the ligand, owing to the ionic nature of the interactions. At the same time, the size of the cation is an important factor that influences the stability: very often, but not always (e.g., for sulfate), it follows the trend Li(+) > Na(+) > K(+) > Rb(+) > Cs(+). For example, for citrate it is: log K ML = 0.88, 0.80, 0.48, 0.38, and 0.13 at 25 °C and infinite dilution. Some considerations are made on the main aspects related to the difficulties in the determination of weak complexes. The importance of the alkali metal ion complexes was also studied in the light of modelling natural fluids and in the use of these cations as probes for different processes. Some empirical relationships are proposed for the dependence of the stability constants of Na(+) complexes on the ligand charge, as well as for correlations among log K values of NaL, KL or LiL species (L = generic ligand).

  10. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Some candidates for alkali metal and alkali halide mixtures suitable for thermal energy storage at temperatures 600 C are identified. A solar thermal system application which offer advantages such as precipitation of salt crystals away from heat transfer surfaces, increased thermal conductivity of phase change materials, corrosion inhibition, and a constant monotectic temperature, independent of mixture concentrations. By using the lighters, metal rich phase as a heat transfer medium and the denser, salt rich phase as a phase change material for latent heat storage, undesirable solidification on the heat transfer surface may be prevented, is presented.

  11. Optical and Spectral Studies on β Alanine Metal Halide Hybrid Crystals

    NASA Astrophysics Data System (ADS)

    Sweetlin, M. Daniel; Selvarajan, P.; Perumal, S.; Ramalingom, S.

    2011-10-01

    We have synthesized and grown β alanine metal halide hybrid crystals viz. β alanine cadmium chloride (BACC), an amino acid transition metal halide complex crystal and β alanine potassium chloride (BAPC), an amino acid alkali metal halide complex crystal by slow evaporation method. The grown crystals were found to be transparent and have well defined morphology. The optical characteristics of the grown crystals were carried out with the help of UV-Vis Spectroscopy. The optical transmittances of the spectrums show that BAPC is more transparent than BACC. The Photoluminescence of the materials were determined by the Photoluminescent Spectroscopy

  12. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  13. Binary technetium halides

    NASA Astrophysics Data System (ADS)

    Johnstone, Erik Vaughan

    In this work, the synthetic and coordination chemistry as well as the physico-chemical properties of binary technetium (Tc) chlorides, bromides, and iodides were investigated. Resulting from these studies was the discovery of five new binary Tc halide phases: alpha/beta-TcCl3, alpha/beta-TcCl 2, and TcI3, and the reinvestigation of the chemistries of TcBr3 and TcX4 (X = Cl, Br). Prior to 2009, the chemistry of binary Tc halides was poorly studied and defined by only three compounds, i.e., TcF6, TcF5, and TcCl4. Today, ten phases are known (i.e., TcF6, TcF5, TcCl4, TcBr 4, TcBr3, TcI3, alpha/beta-TcCl3 and alpha/beta-TcCl2) making the binary halide system of Tc comparable to those of its neighboring elements. Technetium binary halides were synthesized using three methods: reactions of the elements in sealed tubes, reactions of flowing HX(g) (X = Cl, Br, and I) with Tc2(O2CCH3)4Cl2, and thermal decompositions of TcX4 (X = Cl, Br) and alpha-TcCl 3 in sealed tubes under vacuum. Binary Tc halides can be found in various dimensionalities such as molecular solids (TcF6), extended chains (TcF5, TcCl4, alpha/beta-TcCl2, TcBr 3, TcI3), infinite layers (beta-TcCl3), and bidimensional networks of clusters (alpha-TcCl3); eight structure-types with varying degrees of metal-metal interactions are now known. The coordination chemistry of Tc binary halides can resemble that of the adjacent elements: molybdenum and ruthenium (beta-TcCl3, TcBr3, TcI 3), rhenium (TcF5, alpha-TcCl3), platinum (TcCl 4, TcBr4), or can be unique (alpha-TcCl2 and beta-TcCl 2) in respect to other known transition metal binary halides. Technetium binary halides display a range of interesting physical properties that are manifested from their electronic and structural configurations. The thermochemistry of binary Tc halides is extensive. These compounds can selectively volatilize, decompose, disproportionate, or convert to other phases. Ultimately, binary Tc halides may find application in the nuclear fuel

  14. The transition from dilute electrolyte aqueous solution to molten salt in geologic fluids: evidence from calcite solubility measurement in Na-halide solutions at 8 kbar and 700 °C

    NASA Astrophysics Data System (ADS)

    Galvez, M.; Manning, C. E.

    2014-12-01

    Fluids are major agents of mass and heat transport in the Earth crust and in subduction zones. Fluid inclusions, metasomatic field relations and experimental evidence suggest that these fluids can contain important ligands, including halogens, sulfates, sulfides, etc. The ligands participate in the complexation of rock-forming elements during mineral dissolution to high-T and P. Although models of high- element metasomatism typically assume that H2O dominates the fluid's solvent properties, however, H2O may be a relatively minor component in the high-PT brines that are increasingly recognized in the lower crust and mantle. Understanding the evolution of solubility mechanisms as fluids change from dilute aqueous solutions to salt-rich brines is hindered by the absence of experimental investigation of this transition. To address this problem, we conducted experiments on the solubility of calcite in sodium-halide solutions at 8 kbar and 700 °C using hydrothermal piston-cylinder weight-loss methods. Investigated salts were NaL , where L=F, Cl, Br, I, at concentrations ranging from 0.15 molal to 20 molal (XNaL ~ 0.3). At these conditions, the fluid is a single supercritical fluid phase . Run durations were 4 to 20 hours. Results demonstrate systematic trends with ligand ionic size, and locate a major mechanistic transition in the vicinity of XNaL~ 0.1 for all calcite-H2O-NaL systems. At lower than this critical composition (Xcrit), calcite solubility displays a pronounced concave shape indicating involvement of water during the dissolution process. At XNaL> Xcrit , the shape becomes convex with no apparent effect of decreased H2O activity in the fluid. The solubility patterns suggest that the solvent properties are dominated by those of H2O at XNaL< Xcrit, but at XNaL> Xcrit, H2O is a solute in a solution behaving as a molten salt. Geological evidence suggests that salt concentrations may reach values similar to or greater than Xcrit in a range of metamorphic and

  15. Process for the disposal of alkali metals

    DOEpatents

    Lewis, Leroy C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.

  16. Vitrification of IFR and MSBR halide salt reprocessing wastes

    SciTech Connect

    Siemer, D.D.

    2013-07-01

    Both of the genuinely sustainable (breeder) nuclear fuel cycles (IFR - Integral Fast Reactor - and MSBR - Molten Salt Breeder Reactor -) studied by the USA's national laboratories would generate high level reprocessing waste (HLRW) streams consisting of a relatively small amount ( about 4 mole %) of fission product halide (chloride or fluoride) salts in a matrix comprised primarily (about 95 mole %) of non radioactive alkali metal halide salts. Because leach resistant glasses cannot accommodate much of any of the halides, most of the treatment scenarios previously envisioned for such HLRW have assumed a monolithic waste form comprised of a synthetic analog of an insoluble crystalline halide mineral. In practice, this translates to making a 'substituted' sodalite ('Ceramic Waste Form') of the IFR's chloride salt-based wastes and fluoroapatite of the MSBR's fluoride salt-based wastes. This paper discusses my experimental studies of an alternative waste management scenario for both fuel cycles that would separate/recycle the waste's halide and immobilize everything else in iron phosphate (Fe-P) glass. It will describe both how the work was done and what its results indicate about how a treatment process for both of those wastes should be implemented (fluoride and chloride behave differently). In either case, this scenario's primary advantages include much higher waste loadings, much lower overall cost, and the generation of a product (glass) that is more consistent with current waste management practices. (author)

  17. Process for oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Lyke, Stephen E.

    1992-01-01

    An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

  18. Effects of temperature and alkali concentration on the dynamic interfacial tension between heavy oil and alkaline solutions

    SciTech Connect

    Chiwetelu, C.I.; Neale, G.H.; Hornof, V. ); George, A.E. )

    1992-01-01

    This paper deals with the screening of a number of alkaline reagents for potential application in the waterflooding of heavy oil reservoirs at moderate temperatures. Sodium hydroxide, sodium metasilicate and sodium orthosilicate were all screened in accordance with a novel methodology that is based on physical and interfacial property measurements for selecting the most appropriate alkali for a target crude. The experimental oil was a Saskatchewan crude with an acid number of 1.88 mg KOH/g oil and a viscosity of 475 mPa.s at 25{degrees} C. The interfacial tension between this oil and distilled water was measured at various temperatures ranging from 25{degrees} C to 75{degrees} C. These tension values were relatively unaffected by changes in temperature as well as by the contact time between the two phases. However, the viscosity of the oil decreased by 87% when the temperature was raised from 35{degrees} C to 75{degrees} C. The addition of small quantities of the alkaline reagents (up to a maximum concentration of 500 mM in salt-free water) resulted in significant reductions in the interfacial tension.

  19. Enthalpies of formation of CaAl4O7 and CaAl12O19 (hibonite) by high temperature, alkali borate solution calorimetry

    NASA Technical Reports Server (NTRS)

    Geiger, C. A.; Kleppa, O. J.; Grossman, L.; Mysen, B. O.; Lattimer, J. M.

    1988-01-01

    Enthalpies of formation were determined for two calcium aluminate phases, CaAl4O7 and CaAl12O19, using high-temperature alkali borate solution calorimetry. The aluminates were synthesized by multiple-cycle heating and grinding stoichiometric mixtures of CaCO3 and Al2O3, and the products were characteized by X-ray diffraction and SEM microbeam analysis. The data on impurities (CaAl4O7 was found to be about 89.00 percent pure by weight and the CaAl12O19 samples about 91.48 percent pure) were used to correct the heat of solution values of the synthetic products. The enthalpies of formation, at 1063 K, from oxides, were found to be equal to -(25.6 + or - 4.7) kJ/g.f.w. for CaAl4O7 and -(33.0 + or - 9.7) kJ/g.f.w. for CaAl12O19; the respective standard enthalpies of formation from elements, at 298 K, were estimated to be -4007 + or - 5.2 kJ/g.f.w. and -10,722 + or - 12 kJ/g.f.w.

  20. Changes in the shape of atomic lines of alkali metals in sonoluminescence spectra of solutions of surfactants and halogenides

    NASA Astrophysics Data System (ADS)

    Kazachek, M. V.; Gordeychuk, T. V.

    2013-11-01

    The multibubble sonoluminescence spectra of aqueous solutions of sodium dodecyl sulfate, of the mixture of sodium dodecyl sulfate with lithium and potassium chlorides, and of sodium and potassium halogenides were measured near the lines of metals at an ultrasonic frequency of 20 kHz. The Na, Li, and K lines in spectra of surfactant solutions are noticeably narrower than those obtained in solutions of metal chlorides. The width of Na lines in spectra of metal fluorides, chlorides, and iodides remains constant, while that of the K line increases with increasing atomic weight of a halogen. The results are discussed in the context of the effect that the bonding strength of an atom possibly has on the formation of metal lines in sonoluminescence spectra.

  1. Lanthanide-halide based humidity indicators

    DOEpatents

    Beitz, James V.; Williams, Clayton W.

    2008-01-01

    The present invention discloses a lanthanide-halide based humidity indicator and method of producing such indicator. The color of the present invention indicates the humidity of an atmosphere to which it is exposed. For example, impregnating an adsorbent support such as silica gel with an aqueous solution of the europium-containing reagent solution described herein, and dehydrating the support to dryness forms a substance with a yellow color. When this substance is exposed to a humid atmosphere the water vapor from the air is adsorbed into the coating on the pore surface of the silica gel. As the water content of the coating increases, the visual color of the coated silica gel changes from yellow to white. The color change is due to the water combining with the lanthanide-halide complex on the pores of the gel.

  2. Skylab experiments on semiconductors and alkali halides. [single crystal growth

    NASA Technical Reports Server (NTRS)

    Lundquist, C. A.

    1974-01-01

    The space processing experiments performed during the Skylab missions included one on single crystal growth of germanium selenide and telluride, one on pure and doped germanium crystals, two on pure and doped indium antimonide, one on gallium-indium-antimony systems, and one on a sodium chloride-sodium fluoride eutectic. In each experiment, three ampoules of sample were processed in the multipurpose electric furnace within the Skylab Materials Processing Facility. All were successful in varying degrees and gave important information about crystal growth removed from the effects of earth surface gravity.

  3. IONIC THERMOCURRENTS IN ALKALI HALIDE CRYSTALS CONTAINING SUBSTITUTIONAL BERYLLIUM IONS.

    DTIC Science & Technology

    omega - 3 and omega-4); (3) the activation energy for the diffusion of Be ions is .5 eV for NaCl and .45 eV for KCl. In discussing the results, the possibility that the Be ions occupy off-center positions is considered. (Author)

  4. Cold ablation driven by localized forces in alkali halides

    NASA Astrophysics Data System (ADS)

    Hada, Masaki; Zhang, Dongfang; Pichugin, Kostyantyn; Hirscht, Julian; Kochman, Michał A.; Hayes, Stuart A.; Manz, Stephanie; Gengler, Regis Y. N.; Wann, Derek A.; Seki, Toshio; Moriena, Gustavo; Morrison, Carole A.; Matsuo, Jiro; Sciaini, Germán; Miller, R. J. Dwayne

    2014-05-01

    Laser ablation has been widely used for a variety of applications. Since the mechanisms for ablation are strongly dependent on the photoexcitation level, so called cold material processing has relied on the use of high-peak-power laser fluences for which nonthermal processes become dominant; often reaching the universal threshold for plasma formation of ~1 J cm-2 in most solids. Here we show single-shot time-resolved femtosecond electron diffraction, femtosecond optical reflectivity and ion detection experiments to study the evolution of the ablation process that follows femtosecond 400 nm laser excitation in crystalline sodium chloride, caesium iodide and potassium iodide. The phenomenon in this class of materials occurs well below the threshold for plasma formation and even below the melting point. The results reveal fast electronic and localized structural changes that lead to the ejection of particulates and the formation of micron-deep craters, reflecting the very nature of the strong repulsive forces at play.

  5. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    PubMed Central

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-01-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition. PMID:27222322

  6. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    NASA Astrophysics Data System (ADS)

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-05-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition.

  7. Chemical equilibrium model for interfacial activity of crude oil in aqueous alkaline solution: the effects of pH, alkali and salt

    SciTech Connect

    Chan, M.; Yen, T.F.

    1980-11-01

    A chemical equilibrium model for interfacial activity of crude in aqueous alkaline solution is proposed. The model predicts the observed effects of pH and concentrations of alkali and salt on the interfacial tension (IFT). The model proposed was shown to describe the observed effects of acid content, pH, and sodium ions on the interfacial activity of crude oil in water. Once the pH of the interface reaches the pKa of the acids, sometimes with the help of addition of some salt, the IFT experiences a sudden steep drop to the range of 10/sup -2/ dynes/cm. After that, further addition of sodium either in the form of NaOH or NaCl is going to increase the IFT due to a shift of equilibriumn to the formation of undissociated soap. This was confirmed by the difference in the observed effect of sodium on the IFT of the extracted soap molecules which are dissociated easily and those which are associated highly and precipitated easily. These soap molecules have dissociation constant values ranging from below 10/sup -2/ to above one. 13 references.

  8. Salts of alkali metal anions and process of preparing same

    DOEpatents

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  9. EPR, ELDOR, and ENDOR studies of alkali metal- o-dimesitoylbenzene radical complexes in solution. II. The lithium and sodium complexes

    NASA Astrophysics Data System (ADS)

    van der Drift, E.; Smidt, J.

    A combined EPR-ELDOR-ENDOR study on ion pairs of o-dimesitoylbenzene anions with Li or Na cations provides a unique description of the alkali relaxation pattern in terms of dipolar and quadrupolar relaxation resulting from molecular tumbling. Internal motions in the chelating ring structure appear to be of minor importance. From the EPR and ELDOR results a variety of structural information is obtained: spectral densities, rotational correlation time of the complex, and anisotropic magnetic interactions of the alkali nucleus.

  10. PREPARATION OF HALIDES OF PLUTONIUM

    DOEpatents

    Garner, C.S.; Johns, I.B.

    1958-09-01

    A dry chemical method is described for preparing plutonium halides, which consists in contacting plutonyl nitrate with dry gaseous HCl or HF at an elevated temperature. The addition to the reaction gas of a small quantity of an oxidizing gas or a reducing gas will cause formation of the tetra- or tri-halide of plutonium as desired.

  11. Halide laser glasses

    SciTech Connect

    Weber, M.J.

    1982-01-14

    Energy storage and energy extraction are of prime importance for efficient laser action and are affected by the line strengths and linewidths of optical transitions, excited-state lifetimes, nonradiative decay processes, spectroscopic inhomogeneities, nonlinear refractive index, and damage threshold. These properties are all host dependent. To illustrate this, the spectroscopic properties of Nd/sup 3 +/ have been measured in numerous oxide, oxyhalide, and halide glasses. A table summarizes the reported ranges of stimulated emission cross sections, peak wavelengths, linewidths, and radiative lifetimes associated with the /sup 4/F/sub 3/2/ ..-->.. /sup 4/I/sub 11/2/ lasing transition.

  12. Milk-alkali syndrome

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000332.htm Milk-alkali syndrome To use the sharing features on this page, please enable JavaScript. Milk-alkali syndrome is a condition in which there ...

  13. Alkali metal recovery from carbonaceous material conversion process

    DOEpatents

    Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  14. Search for improved-performance scintillator candidates among the electronic structures of mixed halides

    NASA Astrophysics Data System (ADS)

    Li, Qi; Williams, Richard T.; Burger, Arnold; Adhikari, Rajendra; Biswas, Koushik

    2014-09-01

    The application of advanced theory and modeling techniques has become an essential component to understand material properties and hasten the design and discovery of new ones. This is true for diverse applications. Therefore, current efforts aimed towards finding new scintillator materials are also aligned with this general predictive approach. The need for large scale deployment of efficient radiation detectors requires discovery and development of high-performance, yet low-cost, scintillators. While Tl-doped NaI and CsI are still some of the widely used scintillators, there are promising new developments, for example, Eu-doped SrI2 and Ce-doped LaBr3. The newer candidates have excellent light yield and good energy resolution, but challenges persist in the growth of large single crystals. We will discuss a theoretical basis for anticipating improved proportionality as well as light yield in solid solutions of certain systems, particularly alkali iodides, based on considerations of hot-electron group velocity and thermalization. Solid solutions based on NaI and similar alkali halides are attractive to consider in more detail because the end point compositions are inexpensive and easy to grow. If some of this quality can be preserved while reaping improved light yield and possibly improved proportionality of the mixture, the goal of better performance at the low price of NaI:Tl might be attainable by such a route. Within this context, we will discuss a density functional theory (DFT) based study of two prototype systems: mixed anion NaIxBr1-x and mixed cation NaxK1-xI. Results obtained from these two prototype candidates will lead to further targeted theoretical and experimental search and discovery of new scintillator hosts.

  15. Silver-halide gelatin holograms

    NASA Astrophysics Data System (ADS)

    Chang, B. J.; Winick, K.

    1980-05-01

    The use of a silver-halide gelatin for volume phase holograms having a wide spectral response and lower exposure requirements than alternatives and using commercially available silver salts, is proposed. The main difference between the dichromated gelatin and silver-halide processes is the creation of a hologram latent image, which is given in the form of a hardness differential between exposed and unexposed regions in the silver halide hologram; the differential is in turn created by the reaction products of either tanning development or tanning bleach, which harden the gelatin with link-bonds between molecules.

  16. Making and Breaking of Lead Halide Perovskites.

    PubMed

    Manser, Joseph S; Saidaminov, Makhsud I; Christians, Jeffrey A; Bakr, Osman M; Kamat, Prashant V

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  17. Actinide halide complexes

    SciTech Connect

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1991-02-07

    A compound of the formula MX{sub n}L{sub m} wherein M = Th, Pu, Np,or Am thorium, X = a halide atom, n = 3 or 4, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is 3 or 4 for monodentate ligands or is 2 for bidentate ligands, where n + m = 7 or 8 for monodentate ligands or 5 or 6 for bidentate ligands, a compound of the formula MX{sub n} wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  18. METHOD OF PREPARING METAL HALIDES

    DOEpatents

    Hendrickson, A.V.

    1958-11-18

    The conversion of plutonium halides from plutonium peroxide can be done by washing the peroxide with hydrogen peroxide, drying the peroxide, passing a dry gaseous hydrohalide over the surface of the peroxide at a temperature of about lOO icient laborato C until the reaction rate has stabillzed, and then ralsing the reaction temperature to between 400 and 600 icient laborato C until the conversion to plutonium halide is substantially complete.

  19. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Schmalzer, D.K.; Steindler, M.J.; Lee, S.H.D.; Swift, W.M.

    1992-12-01

    This project supports the DOE/METC Fossil Energy Program for the development of Pressurized fluidized bed combustion (PFBC) technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an alternative to the on-line alkali analyzer for field application. RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no high temperature/high pressure (HTHP) sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-reaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial-grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6{und M}-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed in the following.

  20. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Schmalzer, D.K.; Steindler, M.J.; Lee, S.H.D.; Swift, W.M.

    1992-01-01

    This project supports the DOE/METC Fossil Energy Program for the development of Pressurized fluidized bed combustion (PFBC) technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an alternative to the on-line alkali analyzer for field application. RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no high temperature/high pressure (HTHP) sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-reaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial-grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6[und M]-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed in the following.

  1. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1992-01-01

    This project supports the DOE/METC Fossil Energy Program for the development of PFBC technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an altemative to the on-line alkali analyzer for field application. As shown in Fig. 1, the RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no HTHP sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-leaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6M-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite [8]. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed.

  2. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1992-11-01

    This project supports the DOE/METC Fossil Energy Program for the development of PFBC technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an altemative to the on-line alkali analyzer for field application. As shown in Fig. 1, the RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no HTHP sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-leaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6M-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite [8]. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed.

  3. Alkali cation specific adsorption onto fcc(111) transition metal electrodes.

    PubMed

    Mills, J N; McCrum, I T; Janik, M J

    2014-07-21

    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  4. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    SciTech Connect

    Moore, David T.; Sai, Hiroaki; Wee Tan, Kwan; Estroff, Lara A.; Wiesner, Ulrich

    2014-08-01

    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material. Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt's anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films.

  5. Methyl Halide Production by Fungi

    NASA Astrophysics Data System (ADS)

    Dailey, G. D.; Varner, R. K.; Blanchard, R. O.; Sive, B. C.; Crill, P. M.

    2005-12-01

    Methyl chloride (CH3Cl), methyl bromide (CH3Br) and methyl iodide (CH3I) are methyl halide gases that contribute significant amounts of halogen radicals to the atmosphere. In an effort to better understand the global budget of methyl halides and their impact on the atmosphere, we need to identify the natural sources in addition to the known anthropogenic sources of these compounds. We are investigating the role of fungi in the production of methyl halides in the soils and wetlands in southern New Hampshire, USA. Previous research has shown that wood decay fungi and ectomycorrhizal fungi, which are within a group of fungi called basidiomycetes, emit methyl halides. In our study, measurements of headspace gas extracted from flasks containing fungi grown in culture demonstrate that a variety of fungi, including basidiomycetes and non-basidiomycetes, emit methyl halides. Our research sites include four ecosystems: an agricultural field, a temperate forest, a fresh water wetland, and coastal salt marshes. We have collected and isolated fungi at each site by culturing tissue samples of fruiting bodies and plant material, by using wood baits, and from the direct culture of soil. We compared the rates of methyl halide emissions from the fungi in the four ecosystems. In addition, we measured emissions from previously assayed fungal isolates after reintroducing them to sterilized soils that were collected from their original environments. Fungal biomass was determined by substrate-induced respiration (SIR). The emission rate by the fungus was determined by a linear regression of the concentration of methyl halide in the sample headspace over time divided by the fungal biomass.

  6. A high-performance liquid chromatography method for determination 2-(n-(N,N,N-trimethyl)-n-alkyl)-5-alkylfuryl halides in dipalmitoylphosphatidilcholine liposome solutions.

    PubMed

    Morales, Javier; Zanocco, Antonio L; Günther, Germán; Lemp, Else

    2006-08-25

    A high-performance liquid chromatography (HPLC) method for the determination of 2-(4-(N,N,N-trimethyl)-butyl)-5-dodecylfuryl bromide (DFTA) in dipalmitoylphophatidil-choline (DPPC) liposome solutions has been developed. Lipid-soluble furan derivatives, 2,5-disubstituted with different n-alkyl chains and a terminal trimethylammonium group are useful probes for studying singlet oxygen dynamics and equilibria in microcompartmentalized systems. The actual HPLC method uses a gradient elution and DAD detection. The chromatographic separation of these components is achieved using a C18 analytical column with a 10mM solution of 1-heptanesulfonic acid (PIC-7)-methanol (10:90, v/v) as initial mobile phase. Both DFTA peaks are well resolved and free of interference from matrix components and reaction products. The method has been found to be linear (r > 0.999) over a wide concentration range and reliable to perform kinetic experiments in which the time dependent consumption of a tetraalkylammonium surfactant in a microorganized systems composed by lipidic surfactants is followed.

  7. Alkali-treated penicillin G solution is a better option than penicillin G as an alternative source of minor determinants for penicillin skin test.

    PubMed

    Wangrattanasopon, Pongsak; Ruxrungtham, Kiat; Chantaphakul, Hiroshi; Buranapraditkun, Supranee; Klaewsongkram, Jettanong

    2012-01-01

    Both benzylpenicilloyl-polylysine (PPL) and minor determinant mixture (MDM) are the recommended standard reagents for penicillin skin testing. However, penicillin G is commonly suggested as an alternative source of minor determinants. This study evaluated the accuracy of penicillin G and alkali-treated penicillin G compared with the standardized MDM for skin testing. Sixty-eight patients with histories of allergies to penicillin or semisynthetic penicillins were skin tested with commercial Kit penicillin allergenic determinants (DAP) (PPL and DAP-MDM; Diater Laboratorios, Madrid, Spain). The in-house MDM (IH-MDM), prepared by alkali-treated aged penicillin, and fresh penicillin G sodium (PGs) were tested alongside DAP-MDM. Positive penicillin skin test results were identified in 22 patients (32.4%) using commercial reagents (PPL+ DAP-MDM) and 19 of them reacted to DAP-MDM alone or together with PPL. The accuracy of IH-MDM and PGs compared with DAP-MDM was 89.7 and 76.5%, respectively. Our study shows that alkali-treated penicillin G is a better option than penicillin G as an alternative source of MDM for skin testing in case the commercialized MDM is not available. Minor determinants play a significant role for penicillin allergy in Thailand and should be included in the penicillin skin test panel to verify suspected cases of penicillin allergy. (ClinicalTrials.gov number: NCT00789217).

  8. Actinide halide complexes

    DOEpatents

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1992-11-24

    A compound is described of the formula MX[sub n]L[sub m] wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands. A compound of the formula MX[sub n] wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds are described including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant.

  9. Actinide halide complexes

    DOEpatents

    Avens, Larry R.; Zwick, Bill D.; Sattelberger, Alfred P.; Clark, David L.; Watkin, John G.

    1992-01-01

    A compound of the formula MX.sub.n L.sub.m wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands, a compound of the formula MX.sub.n wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  10. Hydrogen bonding Part 54. NMR study of the effects of anesthetics on hydration of choline, acetylcholine and tetraethylammonium halides in aqueous solution

    NASA Astrophysics Data System (ADS)

    Akin, Anne C.; Harmon, Kenneth M.

    1994-03-01

    The onset and development of 14N to CH coupling on sequential dilution of saturated solutions of the chloride and bromide salts of choline, acetylcholine and tetraethylammonium cations were used to determine the effect of the anesthetic substances chloroform, methane, argon and diethyl ether on the formation of primary and secondary hydration structures. The addition of anesthetics tends to reduce the number of H 2O molecules required to form the primary structure. Anesthetics reduce the number of H 2O molecules in the secondary structures of salts that form secondary structures in the absence of anesthetics, and promote the formation of secondary structures for salts that do not form secondary structures in the absence of anesthetics. These phenomena are discussed in terms of competition between salt and anesthetic substance as structure formers. Anesthetics appear to disrupt the "iceberg" water of hydration of acetylcholine; this effect might play some role in their action in anesthesia.

  11. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, Wen Y.

    1984-01-01

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them (46, 53, 61, 69) with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide (63) to precipitate silicon constituents, the pH of the resultant solution is increased (81), preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated (84) to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process (86, 18, 17) where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  12. Ion Partitioning at the liquid/vapor interface of a multi-component alkali halidesolution: A model for aqueous sea salt aerosols

    SciTech Connect

    Ghosal, Sutapa; Brown, Matthew A.; Bluhm, Hendrik; Krisch, Maria J.; Salmeron, Miquel; Jungwirth, Pavel; Hemminger, John C.

    2008-12-22

    The chemistry of Br species associated with sea salt ice and aerosols has been implicated in the episodes of ozone depletion reported at Arctic sunrise. However, Br{sup -} is only a minor component in sea salt, which has a Br{sup -}/Cl{sup -} molar ratio of {approx}0.0015. Sea salt is a complex mixture of many different species, with NaCl as the primary component. In recent years experimental and theoretical studies have reported enhancement of the large, more polarizable halide ion at the liquid/vapor interface of corresponding aqueous alkali halide solutions. The proposed enhancement is likely to influence the availability of sea salt Br{sup -} for heterogeneous reactions such as those involved in the ozone depletion episodes. We report here ambient pressure x-ray photoelectron spectroscopy studies and molecular dynamics simulations showing direct evidence of Br{sup -} enhancement at the interface of an aqueous NaCl solution doped with bromide. The experiments were carried out on samples with Br{sup -}/Cl{sup -} ratios in the range 0.1% to 10%, the latter being also the ratio for which simulations were carried out. This is the first direct measurement of interfacial enhancement of Br{sup -} in a multi-component solution with particular relevance to sea salt chemistry.

  13. Preparation of cerium halide solvate complexes

    SciTech Connect

    Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E

    2013-08-06

    Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.

  14. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    DOEpatents

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  15. Intriguing Optoelectronic Properties of Metal Halide Perovskites.

    PubMed

    Manser, Joseph S; Christians, Jeffrey A; Kamat, Prashant V

    2016-11-09

    A new chapter in the long and distinguished history of perovskites is being written with the breakthrough success of metal halide perovskites (MHPs) as solution-processed photovoltaic (PV) absorbers. The current surge in MHP research has largely arisen out of their rapid progress in PV devices; however, these materials are potentially suitable for a diverse array of optoelectronic applications. Like oxide perovskites, MHPs have ABX3 stoichiometry, where A and B are cations and X is a halide anion. Here, the underlying physical and photophysical properties of inorganic (A = inorganic) and hybrid organic-inorganic (A = organic) MHPs are reviewed with an eye toward their potential application in emerging optoelectronic technologies. Significant attention is given to the prototypical compound methylammonium lead iodide (CH3NH3PbI3) due to the preponderance of experimental and theoretical studies surrounding this material. We also discuss other salient MHP systems, including 2-dimensional compounds, where relevant. More specifically, this review is a critical account of the interrelation between MHP electronic structure, absorption, emission, carrier dynamics and transport, and other relevant photophysical processes that have propelled these materials to the forefront of modern optoelectronics research.

  16. Organometal Halide Perovskite Artificial Synapses.

    PubMed

    Xu, Wentao; Cho, Himchan; Kim, Young-Hoon; Kim, Young-Tae; Wolf, Christoph; Park, Chan-Gyung; Lee, Tae-Woo

    2016-07-01

    Organometal halide perovskite synaptic devices are fabricated; they emulate important working principles of a biological synapse, including excitatory postsynaptic current, paired-pulse facilitation, short-term plasticity, long-term plasticity, and spike-timing dependent plasticity. These properties originate from possible ion migration in the ion-rich perovskite matrix. This work has extensive applicability and practical significance in neuromorphic electronics.

  17. Spectroelectrochemical Investigations of Molten Halide Solutions

    DTIC Science & Technology

    1994-06-16

    Degree C. This anion intermediate had not been detected in this melt previously, since cyclic voltammetry shows only one wave which had previously been attributed to a single two electron reduction to the dianion.

  18. Effects of alkali treatments on Ag nanowire transparent conductive films

    NASA Astrophysics Data System (ADS)

    Kim, Sunho; Kang, Jun-gu; Eom, Tae-yil; Moon, Bongjin; Lee, Hoo-Jeong

    2016-06-01

    In this study, we employ various alkali materials (alkali metals with different base strengths, and ammonia gas and solution) to improve the conductivity of silver nanowire (Ag NW)-networked films. The alkali treatment appears to remove the surface oxide and improve the conductivity. When applied with TiO2 nanoparticles, the treatment appears more effective as the alkalis gather around wire junctions and help them weld to each other via heat emitted from the reduction reaction. The ammonia solution treatment is found to be quick and aggressive, damaging the wires severely in the case of excessive treatment. On the other hand, the ammonia gas treatment seems much less aggressive and does not damage the wires even after a long exposure. The results of this study highlight the effectiveness of the alkali treatment in improving of the conductivity of Ag NW-networked transparent conductive films.

  19. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  20. Development of Halide and Oxy-Halides for Isotopic Separations

    SciTech Connect

    Martin, Leigh R.; Johnson, Aaron T.; Pfeiffer, Jana; Finck, Martha R.

    2014-10-01

    The goal of this project was to synthesize a volatile form of Np for introduction into mass spectrometers at INL. Volatile solids of the 5f elements are typically those of the halides (e.g. UF6), however fluorine is highly corrosive to the sensitive internal components of the mass separator, and the other volatile halides exist as several different stable isotopes in nature. However, iodide is both mono-isotopic and volatile, and as such presents an avenue for creation of a form of Np suitable for introduction into the mass separator. To accomplish this goal, the technical work in the project sought to establish a novel synthetic route for the conversion NpO2+ (dissolved in nitric acid) to NpI3 and NpI4.

  1. Metal halide perovskites for energy applications

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Eperon, Giles E.; Snaith, Henry J.

    2016-06-01

    Exploring prospective materials for energy production and storage is one of the biggest challenges of this century. Solar energy is one of the most important renewable energy resources, due to its wide availability and low environmental impact. Metal halide perovskites have emerged as a class of semiconductor materials with unique properties, including tunable bandgap, high absorption coefficient, broad absorption spectrum, high charge carrier mobility and long charge diffusion lengths, which enable a broad range of photovoltaic and optoelectronic applications. Since the first embodiment of perovskite solar cells showing a power conversion efficiency of 3.8%, the device performance has been boosted up to a certified 22.1% within a few years. In this Perspective, we discuss differing forms of perovskite materials produced via various deposition procedures. We focus on their energy-related applications and discuss current challenges and possible solutions, with the aim of stimulating potential new applications.

  2. Atomic forces between noble gas atoms, alkali ions, and halogen ions for surface interactions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Outlaw, R. A.; Heinbockel, J. H.

    1988-01-01

    The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base developed from analysis of the two-body potential data, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas surfaces and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  3. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    DOEpatents

    Sharp, David W.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  4. TRANSURANIC METAL HALIDES AND A PROCESS FOR THE PRODUCTION THEREOF

    DOEpatents

    Fried, S.

    1951-03-20

    Halides of transuranic elements are prepared by contacting with aluminum and a halogen, or with an aluminum halide, a transuranic metal oxide, oxyhalide, halide, or mixture thereof at an elevated temperature.

  5. From unexpected reactions to a new family of ionic co-crystals: the case of barbituric acid with alkali bromides and caesium iodide.

    PubMed

    Braga, Dario; Grepioni, Fabrizia; Maini, Lucia; Prosperi, Susanna; Gobetto, Roberto; Chierotti, Michele R

    2010-11-07

    Pressing solid barbituric acid with KBr to prepare samples for IR spectroscopy leads to the formation of an ionic co-crystal, in which the co-former is a classical ionic salt; co-crystal formation is also obtained with the other alkali bromides (LiBr, NaBr, RbBr and CsBr) and with caesium iodide. The simultaneous presence of alkali and halide ions affects the dissolution properties of barbituric acid in water.

  6. Metal halide perovskite light emitters

    PubMed Central

    Kim, Young-Hoon; Cho, Himchan; Lee, Tae-Woo

    2016-01-01

    Twenty years after layer-type metal halide perovskites were successfully developed, 3D metal halide perovskites (shortly, perovskites) were recently rediscovered and are attracting multidisciplinary interest from physicists, chemists, and material engineers. Perovskites have a crystal structure composed of five atoms per unit cell (ABX3) with cation A positioned at a corner, metal cation B at the center, and halide anion X at the center of six planes and unique optoelectronic properties determined by the crystal structure. Because of very narrow spectra (full width at half-maximum ≤20 nm), which are insensitive to the crystallite/grain/particle dimension and wide wavelength range (400 nm ≤ λ ≤ 780 nm), perovskites are expected to be promising high-color purity light emitters that overcome inherent problems of conventional organic and inorganic quantum dot emitters. Within the last 2 y, perovskites have already demonstrated their great potential in light-emitting diodes by showing high electroluminescence efficiency comparable to those of organic and quantum dot light-emitting diodes. This article reviews the progress of perovskite emitters in two directions of bulk perovskite polycrystalline films and perovskite nanoparticles, describes current challenges, and suggests future research directions for researchers to encourage them to collaborate and to make a synergetic effect in this rapidly emerging multidisciplinary field. PMID:27679844

  7. Preliminary Study on Synthesis of Organolead Halide with Lead Derived from Solder Wire

    NASA Astrophysics Data System (ADS)

    Pratiwi, P.; Rahmi, G. N.; Aimon, A. H.; Iskandar, F.; Abdullah, M.; Nuryadin, B. W.

    2016-08-01

    Organolead halide has attracted great attention for application in perovskite solar cells due to its high power conversion efficiency (PCE) of up to 20.1%. One of the most common perovskite materials is lead based reagent. In this research, we have synthesized organolead halide with lead extracted from solder wire. In the preparation procedure, first PbCl2 and PbI2 are produced by reacting lead from the solder wire with NaCl and KI, which are used as the basic substance for the perovskite material. Then, in order to get perovskite solution, the powders are reacted with methylamine iodide (MAI) in dimethylformamide (DMF) using a solution based method. Further, the spin coating method is used to fabricate perovskite thin film. The XRD peak results agreed with JCPDS Powder Diffraction of PbCl2 and PbI2. Based on FTIR, the transmittance spectra of the organolead mixed halide that was prepared using solder wire lead exhibited absorption peaks identical to organolead mixed halide using commercial lead. The UV-Vis absorbance spectra of the organolead mixed halide from solder wire lead also exhibited the same absorption ability as from commercial lead. Morever, EDS measurement showed that the element composition of the perovskite thin film using lead from solder wire identical to that from commercial lead. This indicates that solder wire lead is suitable enough for organolead halide material synthesis.

  8. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  9. Performance of Straight Steel Fibres Reinforced Alkali Activated Concrete

    NASA Astrophysics Data System (ADS)

    Faris, Meor Ahmad; Bakri Abdullah, Mohd Mustafa Al; Nizar Ismail, Khairul; Muniandy, Ratnasamy; Putra Jaya, Ramadhansyah

    2016-06-01

    This paper focus on the performance of alkali activated concrete produced by using fly ash activated by sodium silicate and sodium hydroxide solutions. These alkali activated concrete were reinforced with straight steel fibres with different weight percentage starting from 0 % up to 5 %. Chemical composition of raw material in the production alkali activated concrete which is fly ash was first identified by using X-ray fluorescence. Results reveal there have an effect of straight steel fibres inclusion to the alkali activated concrete. Highest compressive strength of alkali activated concrete which is 67.72 MPa was obtained when 3 % of straight fibres were added. As well as flexural strength, highest flexural strength which is 6.78 MPa was obtained at 3 % of straight steel fibres inclusions.

  10. Alkali metal ion battery with bimetallic electrode

    DOEpatents

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  11. Ideas about Acids and Alkalis.

    ERIC Educational Resources Information Center

    Toplis, Rob

    1998-01-01

    Investigates students' ideas, conceptions, and misconceptions about acids and alkalis before and after a teaching sequence in a small-scale research project. Concludes that student understanding of acids and alkalis is lacking. (DDR)

  12. Kinetic study of the α-tocopherol-regeneration reaction of ubiquinol-10 in methanol and acetonitrile solutions: notable effect of the alkali and alkaline earth metal salts on the reaction rates.

    PubMed

    Mukai, Kazuo; Oi, Masanori; Ouchi, Aya; Nagaoka, Shin-ichi

    2012-03-01

    A kinetic study of regeneration reaction of α-tocopherol (α-TocH) by ubiquinol-10 has been performed in the presence of four kinds of alkali and alkaline earth metal salts (LiClO(4), NaClO(4), NaI, and Mg(ClO(4))(2)) in methanol and acetonitrile solutions, using double-mixing stopped-flow spectrophotometry. The second-order rate constants (k(r)'s) for the reaction of α-tocopheroxyl (α-Toc•) radical with ubiquinol-10 increased and decreased notably with increasing concentrations of metal salts in methanol and acetonitrile, respectively. The k(r) values increased in the order of no metal salt < NaClO(4) ~ NaI < LiClO(4) < Mg(ClO(4))(2) at the same concentration of metal salts in methanol. On the other hand, in acetonitrile, the k(r) values decreased in the order of no metal salt > NaClO(4) ~ NaI > LiClO(4) > Mg(ClO(4))(2) at the same concentration of metal salts. The metal salts having a smaller ionic radius of cation and a larger charge of cation gave a larger k(r) value in methanol, and a smaller k(r) value in acetonitrile. The effect of anion was almost negligible in both the solvents. Notable effects of metal cations on the UV-vis absorption spectrum of α-Toc• radical were observed in aprotic acetonitrile solution, suggesting complex formation between α-Toc• and metal cations. On the other hand, effects of metal cations were negligible in protic methanol, suggesting that the complex formation between α-Toc• and metal cations is hindered by the hydrogen bond between α-Toc• and methanol molecules. The difference between the reaction mechanisms in methanol and acetonitrile solutions was discussed on the basis of the results obtained. High concentrations of alkali and alkaline earth metal salts coexist with α-TocH and ubiquinol-10 in plasma, blood, and many tissues, suggesting the contribution of the metal salts to the above regeneration reaction in biological systems.

  13. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  14. Ionic molecular interactions in solutions of alkali metal iodides in N-methylpyrrolidone at 298.15 K according to calorimetry and densimetry data

    NASA Astrophysics Data System (ADS)

    Novikov, A. N.; Rassokhina, L. Yu.

    2015-12-01

    The heat capacity and density of the ternary solutions of NaI-KI- N-methylpyrrolidone (MP), NaI-RbI-MP, KI-RbI-MP, and KI-BaI2-MP at 298.15 K were studied by calorimetry and densimetry. The changes in the heat capacity and volume during the formation of the ternary systems from binary solutions were calculated and discussed. Ion association was found to dominate during the mixing of electrolyte solutions of this type in MP, with ion resolvation occasionally producing a significant effect on ion association.

  15. Synthesis of aryl halides via organoborane chemistry

    SciTech Connect

    Kabalka, G.W.; Sastry, K.A.R.; Sastry, U.; Somayaji, V.

    1982-01-01

    A method for the rapid synthesis of a variety of substituted aryl halides by the reaction of organoboranes with halide ions in the presence of chloramine-T is described in detail. The products were purified by column chromatography on silica gel using a mixture of petroleum ether-ethyl acetate as eluent.

  16. Chlor-Alkali Technology.

    ERIC Educational Resources Information Center

    Venkatesh, S.; Tilak, B. V.

    1983-01-01

    Chlor-alkali technology is one of the largest electrochemical industries in the world, the main products being chlorine and caustic soda (sodium hydroxide) generated simultaneously by the electrolysis of sodium chloride. This technology is reviewed in terms of electrochemical principles and manufacturing processes involved. (Author/JN)

  17. Freeze Enhanced Halate Halide Reactions

    NASA Astrophysics Data System (ADS)

    Newberg, J. T.; Weaver, K.; Broderick, A.

    2014-12-01

    Relatively little is known about halate ion species (XO3-; X = I, Br, Cl) in atmospheric condensed phases. It was initial thought that iodate was a terminal stable species upon iodide oxidation. However, it is becoming increasingly recognized that reactions involving iodate can lead to reactive iodine, and this chemistry is accelerated under acidic conditions. The environmental concentrations and chemistry of bromate and chlorate are largely unexplored in environmental ices. We present results from a series of aqueous phase halate ion reactions with halides under acidic conditions, showing that the kinetics are strongly enhanced upon freezing. The products of these reactions are reactive halogens, which have important implications to marine boundary layer chemistry.

  18. Hygroscopicity Evaluation of Halide Scintillators

    SciTech Connect

    Zhuravleva, M; Stand, L; Wei, H; Hobbs, C. L.; Boatner, Lynn A; Ramey, Joanne Oxendine; Burger, Arnold; Rowe, E; Bhattacharya, P.; Tupitsyn, E; Melcher, Charles L

    2014-01-01

    A collaborative study of relative hygroscopicity of anhydrous halide scintillators grown at various laboratories is presented. We have developed a technique to evaluate moisture sensitivity of both raw materials and grown crystals, in which the moisture absorption rate is measured using a gravimetric analysis. Degradation of the scintillation performance was investigated by recording gamma-ray spectra and monitoring the photopeak position, count rate and energy resolution. The accompanying physical degradation of the samples exposed to ambient atmosphere was photographically recorded as well. The results were compared with ben

  19. Reversible Halide Exchange Reaction of Organometal Trihalide Perovskite Colloidal Nanocrystals for Full-Range Band Gap Tuning.

    PubMed

    Jang, Dong Myung; Park, Kidong; Kim, Duk Hwan; Park, Jeunghee; Shojaei, Fazel; Kang, Hong Seok; Ahn, Jae-Pyung; Lee, Jong Woon; Song, Jae Kyu

    2015-08-12

    In recent years, methylammonium lead halide (MAPbX3, where X = Cl, Br, and I) perovskites have attracted tremendous interest caused by their outstanding photovoltaic performance. Mixed halides have been frequently used as the active layer of solar cells, as a result of their superior physical properties as compared to those of traditionally used pure iodide. Herein, we report a remarkable finding of reversible halide-exchange reactions of MAPbX3, which facilitates the synthesis of a series of mixed halide perovskites. We synthesized MAPbBr3 plate-type nanocrystals (NCs) as a starting material by a novel solution reaction using octylamine as the capping ligand. The synthesis of MAPbBr(3-x)Clx and MAPbBr(3-x)Ix NCs was achieved by the halide exchange reaction of MAPbBr3 with MACl and MAI, respectively, in an isopropyl alcohol solution, demonstrating full-range band gap tuning over a wide range (1.6-3 eV). Moreover, photodetectors were fabricated using these composition-tuned NCs; a strong correlation was observed between the photocurrent and photoluminescence decay time. Among the two mixed halide perovskite series, those with I-rich composition (x = 2), where a sole tetragonal phase exists without the incorporation of a cubic phase, exhibited the highest photoconversion efficiency. To understand the composition-dependent photoconversion efficiency, first-principles density-functional theory calculations were carried out, which predicted many plausible configurations for cubic and tetragonal phase mixed halides.

  20. Impurity segregation in zone-refined precursors for crystalline halide scintillators

    NASA Astrophysics Data System (ADS)

    Swider, S.; Lam, S.; Motakef, S.; Donohoe, E.; Coers, L.; Taylor, S.; Spencer, S.

    2015-06-01

    Successful growth of halide scintillator crystals depends on a supply of ultra-high purity (UHP) precursor materials. Metallic interstitials and substitutions may provide traps that quench luminescence. Oxygen impurities can create competing compounds within a matrix, such as oxyhalides, that disrupt crystallinity and nucleate cracks. Using mass spectroscopy and oxygen combustion analysis, we analyzed impurities in SrI2, EuI2, and YCl3 precursors before and after zone refining. The data show most alkali and alkali earth impurities segregated easily. However, with the exception of iron, many transition metals were incorporated into the solid. Reliable oxygen measurements proved difficult to achieve. Additional oxygen was measured in nitrates and sulfates, via ion chromatography. Zone refining reduced the overall impurity content, but levels remained above a 10 ppm target.

  1. Lasing in robust cesium lead halide perovskite nanowires

    PubMed Central

    Eaton, Samuel W.; Lai, Minliang; Gibson, Natalie A.; Wong, Andrew B.; Dou, Letian; Ma, Jie; Wang, Lin-Wang; Leone, Stephen R.; Yang, Peidong

    2016-01-01

    The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic–inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored and handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry–Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 μJ cm−2 with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 109 excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication. PMID:26862172

  2. Lasing in robust cesium lead halide perovskite nanowires.

    PubMed

    Eaton, Samuel W; Lai, Minliang; Gibson, Natalie A; Wong, Andrew B; Dou, Letian; Ma, Jie; Wang, Lin-Wang; Leone, Stephen R; Yang, Peidong

    2016-02-23

    The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic-inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored and handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry-Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 μJ cm(-2) with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 10(9) excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication.

  3. Transcriptome Analysis of Alkali Shock and Alkali Adaptation in Listeria monocytogenes 10403S

    PubMed Central

    Giotis, Efstathios S.; Muthaiyan, Arunachalam; Natesan, Senthil; Wilkinson, Brian J.; Blair, Ian S.

    2010-01-01

    Abstract Alkali stress is an important means of inactivating undesirable pathogens in a wide range of situations. Unfortunately, Listeria monocytogenes can launch an alkaline tolerance response, significantly increasing persistence of the pathogen in such environments. This study compared transcriptome patterns of alkali and nonalkali-stressed L. monocytogenes 10403S cells, to elucidate the mechanisms by which Listeria adapts and/or grows during short- or long-term alkali stress. Transcription profiles associated with alkali shock (AS) were obtained by DNA microarray analysis of midexponential cells suspended in pH 9 media for 15, 30, or 60 min. Transcription profiles associated with alkali adaptation (AA) were obtained similarly from cells grown to midexponential phase at pH 9. Comparison of AS and AA transcription profiles with control cell profiles identified a high number of differentially regulated open-reading frames in all tested conditions. Rapid (15 min) changes in expression included upregulation of genes encoding for multiple metabolic pathways (including those associated with Na+/H+ antiporters), ATP-binding cassette transporters of functional compatible solutes, motility, and virulence-associated genes as well as the σB controlled stress resistance network. Slower (30 min and more) responses to AS and adaptation during growth in alkaline conditions (AA) involved a different pattern of changes in mRNA concentrations, and genes involved in proton export. PMID:20677981

  4. Shallow halogen vacancies in halide optoelectronic materials

    DOE PAGES

    Shi, Hongliang; Du, Mao -Hua

    2014-11-05

    Halogen vacancies (VH) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep VH contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., CH3NH3PbI3 and TlBr. Both CH3NH3PbI3 and TlBr have been found to have shallow VH, in contrast to commonly seen deep VH in halides. In this paper, several halide optoelectronic materials, i.e., CH3NH3PbI3, CH3NH3SnI3 (photovoltaic materials), TlBr, and CsPbBr3, (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether VHmore » is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of ns2 ions both play important roles in creating shallow VH in halides such as CH3NH3PbI3, CH3NH3SnI3, and TlBr. The key to identifying halides with shallow VH is to find the right crystal structures and compounds that suppress cation orbital hybridization at VH, such as those with long cation-cation distances and low anion coordination numbers, and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at VH. Furthermore, the results of this paper provide insight and guidance to identifying halides with shallow VH as good electronic and optoelectronic materials.« less

  5. Shallow halogen vacancies in halide optoelectronic materials

    NASA Astrophysics Data System (ADS)

    Shi, Hongliang; Du, Mao-Hua

    2014-11-01

    Halogen vacancies (VH ) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep VH contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., C H3N H3Pb I3 and TlBr. Both C H3N H3Pb I3 and TlBr have been found to have shallow VH , in contrast to commonly seen deep VH in halides. In this paper, several halide optoelectronic materials, i.e., C H3N H3Pb I3 , C H3N H3Sn I3 (photovoltaic materials), TlBr, and CsPbB r3 (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether VH is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of n s2 ions both play important roles in creating shallow VH in halides such as C H3N H3Pb I3 , C H3N H3Sn I3 , and TlBr. The key to identifying halides with shallow VH is to find the right crystal structures and compounds that suppress cation orbital hybridization at VH , such as those with large cation-cation distances and low anion coordination numbers and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at VH . The results of this paper provide insight and guidance to identifying halides with shallow VH as good electronic and optoelectronic materials.

  6. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions

    PubMed Central

    2015-01-01

    We demonstrate that, via controlled anion exchange reactions using a range of different halide precursors, we can finely tune the chemical composition and the optical properties of presynthesized colloidal cesium lead halide perovskite nanocrystals (NCs), from green emitting CsPbBr3 to bright emitters in any other region of the visible spectrum, and back, by displacement of Cl– or I– ions and reinsertion of Br– ions. This approach gives access to perovskite semiconductor NCs with both structural and optical qualities comparable to those of directly synthesized NCs. We also show that anion exchange is a dynamic process that takes place in solution between NCs. Therefore, by mixing solutions containing perovskite NCs emitting in different spectral ranges (due to different halide compositions) their mutual fast exchange dynamics leads to homogenization in their composition, resulting in NCs emitting in a narrow spectral region that is intermediate between those of the parent nanoparticles. PMID:26214734

  7. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions.

    PubMed

    Akkerman, Quinten A; D'Innocenzo, Valerio; Accornero, Sara; Scarpellini, Alice; Petrozza, Annamaria; Prato, Mirko; Manna, Liberato

    2015-08-19

    We demonstrate that, via controlled anion exchange reactions using a range of different halide precursors, we can finely tune the chemical composition and the optical properties of presynthesized colloidal cesium lead halide perovskite nanocrystals (NCs), from green emitting CsPbBr3 to bright emitters in any other region of the visible spectrum, and back, by displacement of Cl(-) or I(-) ions and reinsertion of Br(-) ions. This approach gives access to perovskite semiconductor NCs with both structural and optical qualities comparable to those of directly synthesized NCs. We also show that anion exchange is a dynamic process that takes place in solution between NCs. Therefore, by mixing solutions containing perovskite NCs emitting in different spectral ranges (due to different halide compositions) their mutual fast exchange dynamics leads to homogenization in their composition, resulting in NCs emitting in a narrow spectral region that is intermediate between those of the parent nanoparticles.

  8. Alkalis in alternative biofuels

    SciTech Connect

    Miles, T.R.; Miles, T.R. Jr.; Bryers, R.W.; Baxter, L.L.; Jenkins, B.M.; Oden, L.L.

    1994-12-31

    The alkali content and behavior of inorganic material of annually produced biofuels severely limits their use for generating electrical power in conventional furnaces. A recent eighteen-month investigation of the chemistry and firing characteristics of 26 different biofuels has been conducted. Firing conditions were simulated in the laboratory for eleven biofuels. This paper describes some results from the investigation including fuel properties, deposits, deposition mechanisms, and implications for biomass boiler design, fuel sampling and characterizations. Urban wood fuel, agricultural residues, energy crops, and other potential alternate fuels are included in the study. Conventional methods for establishing fuel alkali content and determining ash sticky temperatures were deceptive. The crux of the problem was found to be the high concentration of potassium in biofuels and its reactions with other fuel constituents which lower the ``sticky temperature`` of the ash to the 650 C to 760 C (1,200 F-1,400 F).

  9. Alkali-vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.; Krupke, W. F.

    2010-02-01

    We report on the results from several of our alkali laser systems. We show highly efficient performance from an alexandrite-pumped rubidium laser. Using a laser diode stack as a pump source, we demonstrate up to 145 W of average power from a CW system. We present a design for a transversely pumped demonstration system that will show all of the required laser physics for a high power system.

  10. Reactive scattering of electronically excited alkali atoms with molecules

    SciTech Connect

    Mestdagh, J.M.; Balko, B.A.; Covinsky, M.H.; Weiss, P.S.; Vernon, M.F.; Schmidt, H.; Lee, Y.T.

    1987-06-01

    Representative families of excited alkali atom reactions have been studied using a crossed beam apparatus. For those alkali-molecule systems in which reactions are also known for ground state alkali and involve an early electron transfer step, no large differences are observed in the reactivity as Na is excited. More interesting are the reactions with hydrogen halides (HCl): it was found that adding electronic energy into Na changes the reaction mechanism. Early electron transfer is responsible of Na(5S, 4D) reactions, but not of Na(3P) reactions. Moreover, the NaCl product scattering is dominated by the HCl/sup -/ repulsion in Na(5S, 4D) reactions, and by the NaCl-H repulsion in the case of Na(3P). The reaction of Na with O/sub 2/ is of particular interest since it was found to be state specific. Only Na(4D) reacts, and the reaction requires restrictive constraints on the impact parameter and the reactants' relative orientation. The reaction with NO/sub 2/ is even more complex since Na(4D) leads to the formation of NaO by two different pathways. It must be mentioned however, that the identification of NaO as product in these reactions has yet to be confirmed.

  11. Exhaustive thin-layer cyclic voltammetry for absolute multianalyte halide detection.

    PubMed

    Cuartero, Maria; Crespo, Gastón A; Ghahraman Afshar, Majid; Bakker, Eric

    2014-11-18

    Water analysis is one of the greatest challenges in the field of environmental analysis. In particular, seawater analysis is often difficult because a large amount of NaCl may mask the determination of other ions, i.e., nutrients, halides, and carbonate species. We demonstrate here the use of thin-layer samples controlled by cyclic voltammetry to analyze water samples for chloride, bromide, and iodide. The fabrication of a microfluidic electrochemical cell based on a Ag/AgX wire (working electrode) inserted into a tubular Nafion membrane is described, which confines the sample solution layer to less than 15 μm. By increasing the applied potential, halide ions present in the thin-layer sample (X(-)) are electrodeposited on the working electrode as AgX, while their respective counterions are transported across the perm-selective membrane to an outer solution. Thin-layer cyclic voltammetry allows us to obtain separated peaks in mixed samples of these three halides, finding a linear relationship between the halide concentration and the corresponding peak area from about 10(-5) to 0.1 M for bromide and iodide and from 10(-4) to 0.6 M for chloride. This technique was successfully applied for the halide analysis in tap, mineral, and river water as well as seawater. The proposed methodology is absolute and potentially calibration-free, as evidenced by an observed 2.5% RSD cell to cell reproducibility and independence from the operating temperature.

  12. Simulating Monovalent and Divalent Ions in Aqueous Solution Using a Drude Polarizable Force Field

    PubMed Central

    Yu, Haibo; Whitfield, Troy W.; Harder, Edward; Lamoureux, Guillaume; Vorobyov, Igor; Anisimov, Victor M.; MacKerell, Alexander D.; Roux, Benoît

    2010-01-01

    An accurate representation of ion solvation in aqueous solution is critical for meaningful computer simulations of a broad range of physical and biological processes. Polarizable models based on classical Drude oscillators are introduced and parametrized for a large set of monoatomic ions including cations of the alkali metals (Li+, Na+, K+, Rb+ and Cs+) and alkaline earth elements (Mg2+, Ca2+, Sr2+ and Ba2+) along with Zn2+ and halide anions (F−, Cl−, Br− and I−). The models are parameterized, in conjunction with the polarizable SWM4-NDP water model [Lamoureux et al., Chem. Phys. Lett. 418, 245 (2006)], to be consistent with a wide assortment of experimentally measured aqueous bulk thermodynamic properties and the energetics of small ion-water clusters. Structural and dynamic properties of the resulting ion models in aqueous solutions at infinite dilution are presented. PMID:20300554

  13. Reflection silver-halide gelatin holograms

    NASA Astrophysics Data System (ADS)

    Usanov, Yuri E.; Vavilova, Ye. A.; Kosobokova, N. L.; Shevtsov, Michail K.

    1991-02-01

    A new principle of reflection silverhalide gelatin (SHG) holograms generation is presented. The formation mechanism of the micro-cavity structure of holographic gratings is investigated. Based on the principle discussed here three methods of processing are suggested for making highly efficient SHG reflection holograms in the blue the green and the red regions of spectra with properties similar to those of conventional dichromated gelatin (DCG) holograms. 2. SHG HOLOGRAMS AND ANALYSIS OF THE PRINCIPAL OF THEIR FABRICATION Optical properties of DCG holograms and high light sensitivity of silver halide materials in the whole visible spectrum range can be combined in SHG holograms in which light field interference pattern recording is realized on silver halide grains while the light diffraction during the reconstruction takes place on a gelatin layer similar to DCG layer having a refractive index modulation. There exist a number of methods for transforming a ''silver'' structure into refracted index modulation structure. They are based on selective hardening of silver-halide layer gelatin. According to Pennington et. al. [1] selective hardening takes place as a result of the effect of laser or UV light on a silver halide developed fixed bleached and ammonium dichromate sensitized. A gelatin in isophase grating planes is hardened to a less degree that between planes due to high adsorption of a halide silver. After the removal of halide silver from the layer during the next fixing process

  14. Epitaxial Halide Perovskite Lateral Double Heterostructure.

    PubMed

    Wang, Yiping; Chen, Zhizhong; Deschler, Felix; Sun, Xin; Lu, Toh-Ming; Wertz, Esther A; Hu, Jia-Mian; Shi, Jian

    2017-03-28

    Epitaxial III-V semiconductor heterostructures are key components in modern microelectronics, electro-optics, and optoelectronics. With superior semiconducting properties, halide perovskite materials are rising as promising candidates for coherent heterostructure devices. In this report, spinodal decomposition is proposed and experimentally implemented to produce epitaxial double heterostructures in halide perovskite system. Pristine epitaxial mixed halide perovskites rods and films were synthesized via van der Waals epitaxy by chemical vapor deposition method. At room temperature, photon was applied as a knob to regulate the kinetics of spinodal decomposition and classic coarsening. By this approach, halide perovskite double heterostructures were created carrying epitaxial interfaces and outstanding optical properties. Reduced Fröhlich electron-phonon coupling was discovered in coherent halide double heterostructure, which is hypothetically attributed to the classic phonon confinement effect widely existing in III-V double heterostructures. As a proof-of-concept, our results suggest that halide perovskite-based epitaxial heterostructures may be promising for high-performance and low-cost optoelectronics, electro-optics, and microelectronics. Thus, ultimately, for practical device applications, it may be worthy to pursue these heterostructures via conventional vapor phase epitaxy approaches widely practised in III-V field.

  15. Effect of cavitation on removal of alkali elements from coal

    NASA Astrophysics Data System (ADS)

    Srivalli, H.; Nirmal, L.; Nagarajan, R.

    2015-12-01

    The main impurities in coal are sulphur, ash and alkali. On combustion, the volatile forms of these impurities are either condensed on the boilers, or emitted in the form of potentially hazardous gases. The alkali elements present in coal help the fly ash particles adhere to boiler surfaces by providing a wet surface on which collection of these particles can take place. Use of ultrasonic techniques in cleaning of coal has stirred interest among researchers in recent times. Extraction of alkali elements by cavitation effect using low-frequency ultrasound, in the presence of reagents (HNO3 and H2O2) is reported in this paper. Powdered coal was dissolved with the reagent and exposed to ultrasonic fields of various frequencies at different time intervals. The treated solution is filtered and tested for alkali levels.

  16. High-Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites.

    PubMed

    Wang, Yuming; Bai, Sai; Cheng, Lu; Wang, Nana; Wang, Jianpu; Gao, Feng; Huang, Wei

    2016-06-01

    Flexible and light-weight solar cells are important because they not only supply power to wearable and portable devices, but also reduce the transportation and installation cost of solar panels. High-efficiency organometal halide perovskite solar cells can be fabricated by a low-temperature solution process, and hence are promising for flexible-solar-cell applications. Here, the development of perovskite solar cells is briefly discussed, followed by the merits of organometal halide perovskites as promising candidates as high-efficiency, flexible, and light-weight photovoltaic materials. Afterward, recent developments of flexible solar cells based on perovskites are reviewed.

  17. Influence of halide flux on the crystallinity, microstructure and thermoluminescence properties of CdSiO{sub 3}:Co{sup 2+} nanophosphor

    SciTech Connect

    Manjunatha, C.; Nagabhushana, B.M.; Sunitha, D.V.; Nagabhushana, H.; Sharma, S.C.; Chakradhar, R.P.S.

    2013-01-15

    Graphical abstract: TL glow curves of CdSiO{sub 3}:Co{sup 2+} different alkali flux (inset without adding flux). Display Omitted Highlights: ► CdSiO{sub 3}:Co{sup 2+} (1–7 mol%) nanocrystalline phosphors synthesized by combustion route. ► Flux effect on thermoluminescence behavior of CdSiO{sub 3}:Co{sup 2+} reported for first time. ► Addition of 2 wt% of flux would drastically enhance the TL properties. ► Well resolved single glow peak at ∼170 °C was recorded for all the samples. ► Among all the alkali flux, NaCl shows highest TL peak intensity. -- Abstract: CdSiO{sub 3}:Co{sup 2+} (1–7 mol %) nanophosphors have been prepared via solution combustion method with post calcination at 800 °C for 2 h for the first time. The formation of expected monoclinic phase was investigated by Powder X-ray diffraction (PXRD) measurements. The effect of different fluxes like NaF, NaCl, NH{sub 4}F and NH{sub 4}Cl on the crystallinity, phase and morphology of CdSiO{sub 3} was investigated in detail. The crystallinity of the samples can be greatly enhanced by using fluxes rather than increasing the calcination temperature. Scanning electronic micrograph (SEM) image shows that the powder morphologies are highly influenced by flux addition. The addition of 2 wt% of fluxes would drastically enhance the crystallinity when NaCl, NH{sub 4}F and NH{sub 4}Cl fluxes are used. A well resolved single thermoluminescent glow peak at ∼170 °C was recorded for all the samples. Among all the halide fluxes, NaCl flux was found to be the potential one in enhancing the TL peak intensity along with crystallinity.

  18. Preparation of alkali metal dispersions

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Landel, R. F. (Inventor)

    1968-01-01

    A method is described for producing alkali metal dispersions of high purity. The dispersions are prepared by varying the equilibrium solubility of the alkali metal in a suitable organic solvent in the presence of aromatic hydrocarbons. The equilibrium variation is produced by temperature change. The size of the particles is controlled by controlling the rate of temperature change.

  19. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  20. Dimming of metal halide lamps

    NASA Astrophysics Data System (ADS)

    Schurer, Kees

    1994-03-01

    We ran some tests on the effect of dimming of metal halide (MH) lamps upon the stability and the spectral quality of the light output. Lamps used were a new Philips lamp HPI-T 250W, a similar Philips lamp with a few thousand burning hours and a new Osram lamp HQI-T 250W/D. The ballast was a BBC type DJ 250/2KS, the starter a BAS TORGI type MZN 250 SE and the dimmer an Elstrom Control System type ERHQ-T 250. Power was derived from a Philips stabilizer, type PE 1602. Lamp output was monitored with a PAR meter. Spectra were taken at 100% and at 50% output as measured with the PAR meter. Lamps were allowed to stabilize at any setting for 30 minutes before measurements were made. Lamp manufacturers advise against dimming for fear of poor stability and intolerable changes of the spectrum. However, none of the lamps showed a decrease in stability, no flicker or wandering of the discharge, and the changes of the spectrum were not negligible, but certainly not dramatic. Lamps of either manufacture retain their white color, relative peak heights of spectral lines did shift, but no gaps in the spectrum occurred. Spectra taken at 50% with 30 minutes intervals coincided. Differences between the new and the older Philips lamp were noticeable, but not really significant.

  1. Dimming of metal halide lamps

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    We ran some tests on the effect of dimming of metal halide (MH) lamps upon the stability and the spectral quality of the light output. Lamps used were a new Philips lamp HPI-T 250W, a similar Philips lamp with a few thousand burning hours and a new Osram lamp HQI-T 250W/D. The ballast was a BBC type DJ 250/2KS, the starter a BAS TORGI type MZN 250 SE and the dimmer an Elstrom Control System type ERHQ-T 250. Power was derived from a Philips stabilizer, type PE 1602. Lamp output was monitored with a PAR meter. Spectra were taken at 100% and at 50% output as measured with the PAR meter. Lamps were allowed to stabilize at any setting for 30 minutes before measurements were made. Lamp manufacturers advise against dimming for fear of poor stability and intolerable changes of the spectrum. However, none of the lamps showed a decrease in stability, no flicker or wandering of the discharge, and the changes of the spectrum were not negligible, but certainly not dramatic. Lamps of either manufacture retain their white color, relative peak heights of spectral lines did shift, but no gaps in the spectrum occurred. Spectra taken at 50% with 30 minutes intervals coincided. Differences between the new and the older Philips lamp were noticeable, but not really significant.

  2. Structural effects in molecular metal halides.

    PubMed

    Hargittai, Magdolna

    2009-03-17

    Metal halides are a relatively large class of inorganic compounds that participate in many industrial processes, from halogen metallurgy to the production of semiconductors. Because most metal halides are ionic crystals at ambient conditions, the term "molecular metal halides" usually refers to vapor-phase species. These gas-phase molecules have a special place in basic research because they exhibit the widest range of chemical bonding from the purely ionic to mostly covalent bonding through to weakly interacting systems. Although our focus is basic research, knowledge of the structural and thermodynamic properties of gas-phase metal halides is also important in industrial processes. In this Account, we review our most recent work on metal halide molecular structures. Our studies are based on electron diffraction and vibrational spectroscopy, and increasingly, we have augmented our experimental work with quantum chemical computations. Using both experimental and computational techniques has enabled us to determine intriguing structural effects with better accuracy than using either technique alone. We loosely group our discussion based on structural effects including "floppiness", relativistic effects, vibronic interactions, and finally, undiscovered molecules with computational thermodynamic stability. Floppiness, or serious "nonrigidity", is a typical characteristic of metal halides and makes their study challenging for both experimentalists and theoreticians. Relativistic effects are mostly responsible for the unique structure of gold and mercury halides. These molecules have shorter-than-expected bonds and often have unusual geometrical configurations. The gold monohalide and mercury dihalide dimers and the molecular-type crystal structure of HgCl(2) are examples. We also examined spin-orbit coupling and the possible effect of the 4f electrons on the structure of lanthanide trihalides. Unexpectedly, we found that the geometry of their dimers depends on the f

  3. Shallow halogen vacancies in halide optoelectronic materials

    SciTech Connect

    Shi, Hongliang; Du, Mao -Hua

    2014-11-05

    Halogen vacancies (VH) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep VH contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., CH3NH3PbI3 and TlBr. Both CH3NH3PbI3 and TlBr have been found to have shallow VH, in contrast to commonly seen deep VH in halides. In this paper, several halide optoelectronic materials, i.e., CH3NH3PbI3, CH3NH3SnI3 (photovoltaic materials), TlBr, and CsPbBr3, (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether VH is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of ns2 ions both play important roles in creating shallow VH in halides such as CH3NH3PbI3, CH3NH3SnI3, and TlBr. The key to identifying halides with shallow VH is to find the right crystal structures and compounds that suppress cation orbital hybridization at VH, such as those with long cation-cation distances and low anion coordination numbers, and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at VH. Furthermore, the results of this paper provide insight and guidance to identifying halides with shallow VH as good electronic and optoelectronic materials.

  4. The Remarkable Reactivity of Aryl Halides with Nucleophiles

    ERIC Educational Resources Information Center

    Bunnett, Joseph F.

    1974-01-01

    Discusses the reactivity of aryl halides with nucleophilic or basic reagents, including nucleophilic attacks on carbon, hydrogen, halogen, and arynes. Suggestions are made concerning revisions of the sections on aryl halide chemistry courses and the corresponding chapters in textbooks. (CC)

  5. Tunable Near-Infrared Luminescence in Tin Halide Perovskite Devices.

    PubMed

    Lai, May L; Tay, Timothy Y S; Sadhanala, Aditya; Dutton, Siân E; Li, Guangru; Friend, Richard H; Tan, Zhi-Kuang

    2016-07-21

    Infrared emitters are reasonably rare in solution-processed materials. Recently, research into hybrid organo-lead halide perovskite, originally popular in photovoltaics,1-3 has gained traction in light-emitting diodes (LED) due to their low-cost solution processing and good performance.4-9 The lead-based electroluminescent materials show strong colorful emission in the visible region, but lack emissive variants further in the infrared. The concerns with the toxicity of lead may, additionally, limit their wide-scale applications. Here, we demonstrate tunable near-infrared electroluminescence from a lead-free organo-tin halide perovskite, using an ITO/PEDOT:PSS/CH3NH3Sn(Br1-xIx)3/F8/Ca/Ag device architecture. In our tin iodide (CH3NH3SnI3) LEDs, we achieved a 945 nm near-infrared emission with a radiance of 3.4 W sr(-1) m(-2) and a maximum external quantum efficiency of 0.72%, comparable with earlier lead-based devices. Increasing the bromide content in these tin perovskite devices widens the semiconductor bandgap and leads to shorter wavelength emissions, tunable down to 667 nm. These near-infrared LEDs could find useful applications in a range of optical communication, sensing and medical device applications.

  6. Method for recovering hydrocarbons from molten metal halides

    DOEpatents

    Pell, Melvyn B.

    1979-01-01

    In a process for hydrocracking heavy carbonaceous materials by contacting such carbonaceous materials with hydrogen in the presence of a molten metal halide catalyst to produce hydrocarbons having lower molecular weights and thereafter recovering the hydrocarbons so produced from the molten metal halide, an improvement comprising injecting into the spent molten metal halide, a liquid low-boiling hydrocarbon stream is disclosed.

  7. Alkali-aggregate reactivity of typical siliceious glass and carbonate rocks in alkali-activated fly ash based geopolymers

    NASA Astrophysics Data System (ADS)

    Lu, Duyou; Liu, Yongdao; Zheng, Yanzeng; Xu, Zhongzi; Shen, Xiaodong

    2013-08-01

    For exploring the behaviour of alkali-aggregate reactivity (AAR) in alkali-activated geopolymeric materials and assessing the procedures for testing AAR in geopolymers, the expansion behaviour of fly ash based geopolymer mortars with pure silica glass and typical carbonate rocks were studied respectively by curing at various conditions, i.e. 23°C and 38°C with relative humidity over 95%, immersed in 1M NaOH solution at 80°C. Results show that, at various curing conditions, neither harmful ASR nor harmful ACR was observed in geopolymers with the criteria specified for OPC system. However, with the change of curing conditions, the geopolymer binder and reactive aggregates may experience different reaction processes leading to quite different dimensional changes, especially with additional alkalis and elevated temperatures. It suggests that high temperature with additional alkali for accelerating AAR in traditional OPC system may not appropriate for assessing the alkali-aggregate reactivity behaviour in geopolymers designed for normal conditions. On the other hand, it is hopeful to control the dimensional change of geopolymer mortar or concrete by selecting the type of aggregates and the appropriate curing conditions, thus changing the harmful AAR in OPC into beneficial AAR in geopolymers and other alkali-activated cementitious systems.

  8. Atomic Resolution Imaging of Halide Perovskites.

    PubMed

    Yu, Yi; Zhang, Dandan; Kisielowski, Christian; Dou, Letian; Kornienko, Nikolay; Bekenstein, Yehonadav; Wong, Andrew B; Alivisatos, A Paul; Yang, Peidong

    2016-12-14

    The radiation-sensitive nature of halide perovskites has hindered structural studies at the atomic scale. We overcome this obstacle by applying low dose-rate in-line holography, which combines aberration-corrected high-resolution transmission electron microscopy with exit-wave reconstruction. This technique successfully yields the genuine atomic structure of ultrathin two-dimensional CsPbBr3 halide perovskites, and a quantitative structure determination was achieved atom column by atom column using the phase information of the reconstructed exit-wave function without causing electron beam-induced sample alterations. An extraordinarily high image quality enables an unambiguous structural analysis of coexisting high-temperature and low-temperature phases of CsPbBr3 in single particles. On a broader level, our approach offers unprecedented opportunities to better understand halide perovskites at the atomic level as well as other radiation-sensitive materials.

  9. Recent advances in technetium halide chemistry.

    PubMed

    Poineau, Frederic; Johnstone, Erik V; Czerwinski, Kenneth R; Sattelberger, Alfred P

    2014-02-18

    Transition metal binary halides are fundamental compounds, and the study of their structure, bonding, and other properties gives chemists a better understanding of physicochemical trends across the periodic table. One transition metal whose halide chemistry is underdeveloped is technetium, the lightest radioelement. For half a century, the halide chemistry of technetium has been defined by three compounds: TcF6, TcF5, and TcCl4. The absence of Tc binary bromides and iodides in the literature was surprising considering the existence of such compounds for all of the elements surrounding technetium. The common synthetic routes that scientists use to obtain binary halides of the neighboring elements, such as sealed tube reactions between elements and flowing gas reactions between a molecular complex and HX gas (X = Cl, Br, or I), had not been reported for technetium. In this Account, we discuss how we used these routes to revisit the halide chemistry of technetium. We report seven new phases: TcBr4, TcBr3, α/β-TcCl3, α/β-TcCl2, and TcI3. Technetium tetrachloride and tetrabromide are isostructural to PtX4 (X = Cl or Br) and consist of infinite chains of edge-sharing TcX6 octahedra. Trivalent technetium halides are isostructural to ruthenium and molybdenum (β-TcCl3, TcBr3, and TcI3) and to rhenium (α-TcCl3). Technetium tribromide and triiodide exhibit the TiI3 structure-type and consist of infinite chains of face-sharing TcX6 (X = Br or I) octahedra. Concerning the trichlorides, β-TcCl3 crystallizes with the AlCl3 structure-type and consists of infinite layers of edge-sharing TcCl6 octahedra, while α-TcCl3 consists of infinite layers of Tc3Cl9 units. Both phases of technetium dichloride exhibit new structure-types that consist of infinite chains of [Tc2Cl8] units. For the technetium binary halides, we studied the metal-metal interaction by theoretical methods and magnetic measurements. The change of the electronic configuration of the metal atom from d(3) (Tc

  10. Multiline operation of mercury halide lasers

    SciTech Connect

    Kushawaha, M.; Mahmood, M.

    1988-01-01

    Emission spectrum of the (B-X) band system of HgX radicals (X=chlorine, bromine, iodine) was observed by passing electrical discharge through flowing vapors of mercury halides. The emission intensity of the most intense band of the (B-X) system of these radicals was observed to decrease in the presence of other mercury halide vapors at temperatures higher than 130C. Laser action was observed from the (B-X) transition of mercurous chloride, mercurous bromide, and mercurous iodide radicals by electrical discharge pumping of mercuric chloride, mercuric bromide and mercuric iodide vapors individually.

  11. Enhancement of Exciton Emission in Lead Halide-Based Layered Perovskites by Cation Mixing.

    PubMed

    Era, Masanao; Komatsu, Yumeko; Sakamoto, Naotaka

    2016-04-01

    Spin-coated films of a lead halide, PbX: X = I and Br, layered perovskites having cyclohexenylethyl ammonium molecule as an organic layer, which were mixed with other metal halide-based layered perovskites consisting of various divalent metal halides (for example, Ca2, Cdl2, FeI2, SnBr2 and so on), were prepared. The results of X-ray diffraction measurements exhibited that solid solution formation between PbX-based layered perovskite and other divalent metal halide-based layered perovskites was observed up to very high molar concentration of 50 molar% in the mixed film samples when divalent cations having ionic radius close to that of Pb2+ were employed. In the solid solution films, the exciton emission was much enhanced at room temperature. Exciton emission intensity of Pbl-based layered perovskite mixed with Cal-based layered perovskite (20 molar%) is about 5 times large that of the pristine Pbl-based layered perovskite, and that of PbBr-based layered perovskite mixed with SnBr-based layered perovskite (20 molar%) was also about 5 times large that of the pristine PbBr-based layered perovskite at room temperature.

  12. Inorganic Halide Perovskites for Efficient Light-Emitting Diodes.

    PubMed

    Yantara, Natalia; Bhaumik, Saikat; Yan, Fei; Sabba, Dharani; Dewi, Herlina A; Mathews, Nripan; Boix, Pablo P; Demir, Hilmi Volkan; Mhaisalkar, Subodh

    2015-11-05

    Lead-halide perovskites have transcended photovoltaics. Perovskite light-emitting diodes (PeLEDs) emerge as a new field to leverage on these fascinating semiconductors. Here, we report the first use of completely inorganic CsPbBr3 thin films for enhanced light emission through controlled modulation of the trap density by varying the CsBr-PbBr2 precursor concentration. Although pure CsPbBr3 films can be deposited from equimolar CsBr-PbBr2 and CsBr-rich solutions, strikingly narrow emission line (17 nm), accompanied by elongated radiative lifetimes (3.9 ns) and increased photoluminescence quantum yield (16%), was achieved with the latter. This is translated into the enhanced performance of the resulting PeLED devices, with lower turn-on voltage (3 V), narrow electroluminescence spectra (18 nm) and higher electroluminescence intensity (407 Cd/m(2)) achieved from the CsBr-rich solutions.

  13. Upgrading platform using alkali metals

    DOEpatents

    Gordon, John Howard

    2017-01-17

    A method for removing sulfur, nitrogen or metals from an oil feedstock. The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  14. Upgrading platform using alkali metals

    SciTech Connect

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  15. ELECTROLYTIC REDUCTION OF NITRIC ACID SOLUTIONS

    DOEpatents

    Alter, H.W.; Barney, D.L.

    1958-09-30

    A process is presented for the treatment of radioactivc waste nitric acid solutions. The nitric acid solution is neutralized with an alkali metal hydroxide in an amount sufficient to precipitate insoluble hydroxides, and after separation of the precipitate the solution is electrolyzed to convert the alkali nitrate formed, to alkali hydroxide, gaseous ammonla and oxygen. The solution is then reusable after reducing the volume by evaporating the water and dissolved ammonia.

  16. X-ray Scintillation in Lead Halide Perovskite Crystals

    PubMed Central

    Birowosuto, M. D.; Cortecchia, D.; Drozdowski, W.; Brylew, K.; Lachmanski, W.; Bruno, A.; Soci, C.

    2016-01-01

    Current technologies for X-ray detection rely on scintillation from expensive inorganic crystals grown at high-temperature, which so far has hindered the development of large-area scintillator arrays. Thanks to the presence of heavy atoms, solution-grown hybrid lead halide perovskite single crystals exhibit short X-ray absorption length and excellent detection efficiency. Here we compare X-ray scintillator characteristics of three-dimensional (3D) MAPbI3 and MAPbBr3 and two-dimensional (2D) (EDBE)PbCl4 hybrid perovskite crystals. X-ray excited thermoluminescence measurements indicate the absence of deep traps and a very small density of shallow trap states, which lessens after-glow effects. All perovskite single crystals exhibit high X-ray excited luminescence yields of >120,000 photons/MeV at low temperature. Although thermal quenching is significant at room temperature, the large exciton binding energy of 2D (EDBE)PbCl4 significantly reduces thermal effects compared to 3D perovskites, and moderate light yield of 9,000 photons/MeV can be achieved even at room temperature. This highlights the potential of 2D metal halide perovskites for large-area and low-cost scintillator devices for medical, security and scientific applications. PMID:27849019

  17. X-ray Scintillation in Lead Halide Perovskite Crystals

    NASA Astrophysics Data System (ADS)

    Birowosuto, M. D.; Cortecchia, D.; Drozdowski, W.; Brylew, K.; Lachmanski, W.; Bruno, A.; Soci, C.

    2016-11-01

    Current technologies for X-ray detection rely on scintillation from expensive inorganic crystals grown at high-temperature, which so far has hindered the development of large-area scintillator arrays. Thanks to the presence of heavy atoms, solution-grown hybrid lead halide perovskite single crystals exhibit short X-ray absorption length and excellent detection efficiency. Here we compare X-ray scintillator characteristics of three-dimensional (3D) MAPbI3 and MAPbBr3 and two-dimensional (2D) (EDBE)PbCl4 hybrid perovskite crystals. X-ray excited thermoluminescence measurements indicate the absence of deep traps and a very small density of shallow trap states, which lessens after-glow effects. All perovskite single crystals exhibit high X-ray excited luminescence yields of >120,000 photons/MeV at low temperature. Although thermal quenching is significant at room temperature, the large exciton binding energy of 2D (EDBE)PbCl4 significantly reduces thermal effects compared to 3D perovskites, and moderate light yield of 9,000 photons/MeV can be achieved even at room temperature. This highlights the potential of 2D metal halide perovskites for large-area and low-cost scintillator devices for medical, security and scientific applications.

  18. An AFM study of calcite dissolution in concentrated electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Ruiz Agudo, E.; Putnis, C. V.; Putnis, A.; Rodriguez-Navarro, C.

    2009-04-01

    Calcite-solution interactions are of a paramount importance in a range of processes such as the removal of heavy metals, carbon dioxide sequestration, landscape modeling, weathering of building stone and biomineralization. Water in contact with minerals often carries significant amounts of solutes; additionally, their concentration may vary due to evaporation and condensation. It is well known that calcite dissolution is affected dramatically by the presence of such solutes. Here we present investigations on the dissolution of calcite in the presence of different electrolytes. Both bulk (batch reactors) experiments and nanoscale (in situ AFM) techniques are used to study the dissolution of calcite in a range of solutions containing alkaly cations balanced by halide anions. Previous works have indicated that the ionic strength has little influence in calcite dissolution rates measured from bulk experiments (Pokrovsky et al. 2005; Glendhill and Morse, 2004). Contrary to these results, our quantitative analyses of AFM observations show an enhancement of the calcite dissolution rate with increasing electrolyte concentration. Such an effect is concentration-dependent and it is most evident in concentrated solutions. AFM experiments have been carried out in a fluid cell using calcite cleavage surfaces in contact with solutions of simple salts of the alkaly metals and halides at different undersaturations with respect to calcite to try to specify the effect of the ionic strength on etch pit spreading rate and calcite dissolution rate. These results show that the presence of soluble salts may critically affect the weathering of carbonate rocks in nature as well as the decay of carbonate stone in built cultural heritage. References: Pokrosky, O.S.; Golubev, S.V.; Schott, J. Dissolution kinetics of calcite, dolomite and magnesite at 25°C and 0 to 50 atm pCO2. Chemical Geology, 2005, 217 (3-4) 239-255. Glendhill, D.K.; Morse, J.W. Dissolution kinetics of calcite in Na

  19. Mechanical resistance of silver halide infrared fibers

    NASA Astrophysics Data System (ADS)

    Barkay, Nitzan; Katzir, Abraham

    1992-01-01

    Flexibility resistance of silver-halide infrared fibers was investigated in the plastic bending regime, which is especially useful for internal medical applications. The CO2 laser transmission of the fibers was measured in several positions while being bent. The fibers have been found to operate even after large plastic deformations, and values for various fibers and bending conditions are reported.

  20. Localized corrosion in halides other than chlorides

    SciTech Connect

    Koch, G.H.

    1995-12-31

    This literature survey characterizes the effects of non-chloride halides on localized corrosion. It includes published material and unpublished data obtained through a questionnaire. Chapters cover Stainless Steels, Nickel, Titanium, and Zirconium. The engineer can use this information for material selection.

  1. Physiological Evaluation of Alkali-Salt Tolerance of Thirty Switchgrass (Panicum virgatum) Lines.

    PubMed

    Hu, Guofu; Liu, Yiming; Zhang, Xunzhong; Yao, Fengjiao; Huang, Yan; Ervin, Erik H; Zhao, Bingyu

    2015-01-01

    Soil salt-alkalization is a major limiting factor for crop production in many regions. Switchgrass (Panicum virgatum L.) is a warm-season C4 perennial rhizomatous bunchgrass and a target lignocellulosic biofuel species. The objective of this study was to evaluate relative alkali-salt tolerance among 30 switchgrass lines. Tillers of each switchgrass line were transplanted into pots filled with fine sand. Two months after transplanting, plants at E5 developmental stage were grown in either half strength Hoagland's nutrient solution with 0 mM Na+ (control) or half strength Hoagland's nutrient solution with 150 mM Na+ and pH of 9.5 (alkali-salt stress treatment) for 20 d. Alkali-salt stress damaged cell membranes [higher electrolyte leakage (EL)], reduced leaf relative water content (RWC), net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr). An alkali-salt stress tolerance trait index (ASTTI) for each parameter was calculated based on the ratio of the value under alkali-salt stress and the value under non-stress conditions for each parameter of each line. Relative alkali-salt tolerance was determined based on principal components analysis and cluster analysis of the physiological parameters and their ASTTI values. Significant differences in alkali-salt stress tolerance were found among the 30 lines. Lowland lines TEM-SEC, Alamo, TEM-SLC and Kanlow were classified as alkali-salt tolerant. In contrast, three lowland lines (AM-314/MS-155, BN-13645-64) and two upland lines (Caddo and Blackwell-1) were classified as alkali-salt sensitive. The results suggest wide variations exist in alkali-salt stress tolerance among the 30 switchgrass lines. The approach of using a combination of principal components and cluster analysis of the physiological parameters and related ASTTI is feasible for evaluating alkali-salt tolerance in switchgrass.

  2. Persistent dopants and phase segregation in organolead mixed-halide perovskites

    SciTech Connect

    Rosales, Bryan A.; Men, Long; Cady, Sarah D.; Hanrahan, Michael P.; Rossini, Aaron J.; Vela, Javier

    2016-07-25

    Organolead mixed-halide perovskites such as CH3NH3PbX3–aX'a (X, X' = I, Br, Cl) are interesting semiconductors because of their low cost, high photovoltaic power conversion efficiencies, enhanced moisture stability, and band gap tunability. Using a combination of optical absorption spectroscopy, powder X-ray diffraction (XRD), and, for the first time, 207Pb solid state nuclear magnetic resonance (ssNMR), we probe the extent of alloying and phase segregation in these materials. Because 207Pb ssNMR chemical shifts are highly sensitive to local coordination and electronic structure, and vary linearly with halogen electronegativity and band gap, this technique can provide the true chemical speciation and composition of organolead mixed-halide perovskites. We specifically investigate samples made by three different preparative methods: solution phase synthesis, thermal annealing, and solid phase synthesis. 207Pb ssNMR reveals that nonstoichiometric dopants and semicrystalline phases are prevalent in samples made by solution phase synthesis. We show that these nanodomains are persistent after thermal annealing up to 200 °C. Further, a novel solid phase synthesis that starts from the parent, single-halide perovskites can suppress phase segregation but not the formation of dopants. Our observations are consistent with the presence of miscibility gaps and spontaneous spinodal decomposition of the mixed-halide perovskites at room temperature. This underscores how strongly different synthetic procedures impact the nanostructuring and composition of organolead halide perovskites. In conclusion, better optoelectronic properties and improved device stability and performance may be achieved through careful manipulation of the different phases and nanodomains present in these materials.

  3. Persistent dopants and phase segregation in organolead mixed-halide perovskites

    DOE PAGES

    Rosales, Bryan A.; Men, Long; Cady, Sarah D.; ...

    2016-07-25

    Organolead mixed-halide perovskites such as CH3NH3PbX3–aX'a (X, X' = I, Br, Cl) are interesting semiconductors because of their low cost, high photovoltaic power conversion efficiencies, enhanced moisture stability, and band gap tunability. Using a combination of optical absorption spectroscopy, powder X-ray diffraction (XRD), and, for the first time, 207Pb solid state nuclear magnetic resonance (ssNMR), we probe the extent of alloying and phase segregation in these materials. Because 207Pb ssNMR chemical shifts are highly sensitive to local coordination and electronic structure, and vary linearly with halogen electronegativity and band gap, this technique can provide the true chemical speciation and compositionmore » of organolead mixed-halide perovskites. We specifically investigate samples made by three different preparative methods: solution phase synthesis, thermal annealing, and solid phase synthesis. 207Pb ssNMR reveals that nonstoichiometric dopants and semicrystalline phases are prevalent in samples made by solution phase synthesis. We show that these nanodomains are persistent after thermal annealing up to 200 °C. Further, a novel solid phase synthesis that starts from the parent, single-halide perovskites can suppress phase segregation but not the formation of dopants. Our observations are consistent with the presence of miscibility gaps and spontaneous spinodal decomposition of the mixed-halide perovskites at room temperature. This underscores how strongly different synthetic procedures impact the nanostructuring and composition of organolead halide perovskites. In conclusion, better optoelectronic properties and improved device stability and performance may be achieved through careful manipulation of the different phases and nanodomains present in these materials.« less

  4. Durability of Alkali Activated Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  5. Non-conventional halide oxidation pathways : oxidation by imidazole triplet and surface specific oxidation by ozone

    NASA Astrophysics Data System (ADS)

    Ammann, Markus; Corral-Arroyo, Pablo; Aellig, Raphael; Orlando, Fabrizio; Lee, Ming-Tao; Artiglia, Luca

    2016-04-01

    Oxidation of halide ions (chloride, bromide, iodide) are the starting point of halogen release mechanisms out of sea water, marine aerosol or other halide containing continental aerosols. Slow oxidation of chloride and bromide by ozone in the bulk aqueous phase is of limited relevance. Faster surface specific oxidation has been suggested based on heterogeneous kinetics experiments. We provide first insight into very efficient bromide oxidation by ozone at the aqueous solution - air interface by surface sensitive X-ray photoelectron spectroscopy indicating significant build-up of an oxidized intermediate at the surface within millisecond time scales. The second source of oxidants in the condensed we have considered is the absorption of light by triplet forming photosensitizers at wavelengths longer than needed for direct photolysis and radical formation. We have performed coated wall flow tube experiments with mixtures of citric acid (CA) and imidazole-2-carboxaldehyde (IC) to represent secondary organic material rich marine aerosol. The halide ions bromide and iodide have been observed to act as efficient electron donors leading to their oxidation, HO2 formation and finally release of molecular halogen compounds. The photosensitization of imidazole-2-carboxaldehyde (IC) involves a well-known mechanism where the triplet excited state of IC is reduced by citric acid to a reduced ketyl radical that reacts with halide ions. A competition kinetics approach has been used to evaluate the rate limiting steps and to assess the significance of this source of halogens to the gas phase.

  6. Behavior of Alkali Halides as Materials for Optical Components of High Power Lasers,

    DTIC Science & Technology

    1979-03-30

    proas- SO- (V= 188) 4.5.1o-8 pit). (v = 1150) 4.5- 10 - 1 ) (v = 1083) 2.9- 10- 8 2 Cristale KCI /2-) 1.6 10-’ 1.9.5-10 import din URSS nu S-au masurat...probability that the destruction appears after n consecutive pulses of a certain power, is given by P. -(I - P) ’PI, (3.4) where P is the probability

  7. IR and Visible Wavelength Obscuration by Pyrotechnically Generated Alkali-Halide Smokes

    DTIC Science & Technology

    1983-01-01

    is coated with a fluoroepoxy type urethane (developed at the Naval Research Laboratory, Washington, DC) which has surface energy and reactivity...The spectral resolution of this filter is two percent over the wave - 4length interval from 2.5-14 LIm. Data acquisition and reduction is computer...assure the attainment and maintanance of critical flow through the orifice, 3both upstream and downstream vacuums were monitored. Additionally, a flow

  8. Alkali Halide Opacity in Brown Dwarf and Cool Stellar Atmospheres: A Study of Lithium Chloride

    NASA Astrophysics Data System (ADS)

    Kirby, K.; Weck, P. F.; Schweitzer, A.; Stancil, P. C.; Hauschildt, P. H.

    2003-12-01

    Recent thermochemical equilibrium calculations have revealed the important role played by lithium chloride in the lithium chemistry of cool dwarf atmospheres (K. Lodders 1999, ApJ 519, 793). Indeed, LiCl appears to be the dominant Li-bearing gas over an extended domain of the (P,T) diagram, typically for temperatures below 1500 K. LiCl has a large dipole moment in its ground electronic state which can give rise to intense rovibrational line spectra. In addition, LiCl can make dipole transitions to several low-lying unbound excited states, causing dissociation of the molecule. For these reasons, LiCl may be a significant source of line and continuum opacity in brown dwarf and cool stellar atmospheres. In this work, we report calculations of complete lists of line oscillator strengths and photodissociation cross sections for the low-lying electronic states of LiCl. We have performed single- and double-excitation configuration interaction calculations using the ALCHEMY ab initio package (Mc Lean et al. 1991, MOTECC 91, Elsevier, Leiden) and obtained the potential curves and the corresponding dipole transition moment functions between the X 1Σ ^+ ground state and the B 1Σ ^+ and A 1Π excited states. The resulting line oscillator strengths and molecular photodissociation cross sections have been included in the PHOENIX stellar atmosphere code (Hauschildt & Baron 1999, J. Comput. App. Math. 102, 41). The new models, calculated using spherical geometry for all gravities considered, also incorporate our latest database of nearly 670 million molecular lines, and updated equations of state (EOS). This work was supported in part by NSF grants AST-9720704 and AST-0086246, NASA grants NAG5-8425, NAG5-9222, and NAG5-10551 as well as NASA/JPL grant 961582.

  9. Optical/IR Characteristics of Alkali Halide Aerosol Clouds over the Ocean.

    DTIC Science & Technology

    2014-09-26

    formed if the burn took place while the ship was in motion relative to the surrounding air. When the wind speed was less than the ship’s speed, it was...INDIVIDUAL 22b TELEPHONE (Include Arta Code) 22c. OFFICE SYMBOL S. G. Gathman (202) 767-2022 Code 4117 DO FORM 1473, 84 MAR 83 APR edition may be used until...important but eventually there will be a resupply of the water molecules in the form of vapor to the air surrounding the now larger droplets. The growth and

  10. Elastic properties of alpha quartz and the alkali halides based on an interatomic force model.

    NASA Technical Reports Server (NTRS)

    Weidner, D. J.; Simmons, G.

    1972-01-01

    A two-body central-force atomic model can be used to describe accurately the elastic properties of alpha quartz if the nontetrahedral O:O forces are included. The strength of the Si:O interaction has little effect on the bulk modulus. The technique is sufficiently general to allow calculations of the elastic properties of a specified structure under arbitrary pressure from a complete description of the interatomic forces. The elastic constants for the NaCl structure and the CsCl structure are examined. Our model includes two-body, central, anion-anion, anion-cation, and electrostatic interactions.

  11. Extreme ultraviolet quantum efficiency of opaque alkali halide photocathodes on microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Everman, E.; Vallerga, J. V.; Lampton, M.

    1988-01-01

    Comprehensive measurements are presented for the quantum detection efficiency (QDE) of the microchannel plate materials CsI, KBr, KCl, and MgF2, over the 44-1800 A wavelength range. QDEs in excess of 40 percent are achieved by several materials in specific wavelength regions of the EUV. Structure is noted in the wavelength dependence of the QDE that is directly related to the valence-band/conduction-band gap energy and the onset of atomic-like resonant transitions. A simple photocathode model allows interpretation of these features, together with the QDE efficiency variation, as a function of illumination angle.

  12. Surface Structure and Lattice Dynamics of Alkali Halide Crystals Studied by High-Resolution Ion Scattering

    NASA Astrophysics Data System (ADS)

    Kido, Yoshiaki; Okazawa, Tetsuaki

    The rumpled surface structure and thermal lattice vibrations of KI(001) and RbI(001) were measured directly by high-resolution medium energy ion scattering (MEIS). The relaxation of interlayer distance between the top and second layer and the rumpling of the top and second layers were determined using the ion shadowing effect with an accuracy of 0.01 Å. From the displaced lattice positions determined above, we derived the dipole moments of the top- and second-layer ions self-consistently employing the polarizabilities estimated from the optical refractive index combined with the Clausius Mossotti relation. The balance between a short-range force and a long-range Coulombic one made it possible to judge the applicability of the short-range pair potentials proposed so far. We also determined the root-mean-square (rms) thermal vibration amplitudes of the bulk and the top-layer ions together with the correlations of the ions in the [001] and [101] strings by taking various kinds of scattering geometries. The results obtained were compared with those calculated from the molecular dynamics (MD) simulations based on a classical model using the dipole moments determined above and the Born Mayer type pair potential. The present MEIS results are in overall agreement with the MD simulations.

  13. Lithium and Sodium Resistance of Alkali Metal Vapor Resistant Glasses

    NASA Astrophysics Data System (ADS)

    Kishinevski, Anatoly; Hall, Matthew

    2014-05-01

    A common challenge in atomic physics is that of containing an alkali metal vapor at an elevated temperature and concurrently being able to excite and probe atomic transitions within. Typically glass is used as the material to construct the container, as it is easy to manipulate into any geometry and offers thermal, mechanical, and optical properties that no other material is capable. Unfortunately it has been well established that alkali metal gasses/vapors react readily with silica containing glass and results in a progressive darkening of the material. As the darkening reaction progresses, the optical transmission properties of the glass progressively degrade to an eventual point of uselessness. Alkali metals have been used extensively in frequency standards and magnetometers. The finite life of these alkali metal vapor-containing devices has been accepted despite varying attempts by different teams to solve this problem. As a viable solution, it has been identified there exist a family of glass compositions that contain a marginal amount of silica, may be lampworked using traditional glassblowing techniques, and that offer substantially better alkali vapor resistance. The evaluation of these glasses and their resistance to sodium and lithium vapor at varying pressures and temperatures are discussed.

  14. Detection of alkali-silica reaction swelling in concrete by staining

    DOEpatents

    Guthrie, Jr., George D.; Carey, J. William

    1998-01-01

    A method using concentrated aqueous solutions of sodium cobaltinitrite and rhodamine B is described which can be used to identify concrete that contains gels formed by the alkali-silica reaction (ASR). These solutions present little health or environmental risk, are readily applied, and rapidly discriminate between two chemically distinct gels; K-rich, Na--K--Ca--Si gels are identified by yellow staining, and alkali-poor, Ca--Si gels are identified by pink staining.

  15. Detection of alkali-silica reaction swelling in concrete by staining

    DOEpatents

    Guthrie, G.D. Jr.; Carey, J.W.

    1998-04-14

    A method using concentrated aqueous solutions of sodium cobalt nitrite and rhodamine B is described which can be used to identify concrete that contains gels formed by the alkali-silica reaction (ASR). These solutions present little health or environmental risk, are readily applied, and rapidly discriminate between two chemically distinct gels; K-rich, Na-K-Ca-Si gels are identified by yellow staining, and alkali-poor, Ca-Si gels are identified by pink staining.

  16. Structural Characterization of Methanol Substituted Lanthanum Halides

    PubMed Central

    Boyle, Timothy J.; Ottley, Leigh Anna M.; Alam, Todd M.; Rodriguez, Mark A.; Yang, Pin; Mcintyre, Sarah K.

    2010-01-01

    The first study into the alcohol solvation of lanthanum halide [LaX3] derivatives as a means to lower the processing temperature for the production of the LaBr3 scintillators was undertaken using methanol (MeOH). Initially the de-hydration of {[La(µ-Br)(H2O)7](Br)2}2 (1) was investigated through the simple room temperature dissolution of 1 in MeOH. The mixed solvate monomeric [La(H2O)7(MeOH)2](Br)3 (2) compound was isolated where the La metal center retains its original 9-coordination through the binding of two additional MeOH solvents but necessitates the transfer of the innersphere Br to the outersphere. In an attempt to in situ dry the reaction mixture of 1 in MeOH over CaH2, crystals of [Ca(MeOH)6](Br)2 (3) were isolated. Compound 1 dissolved in MeOH at reflux temperatures led to the isolation of an unusual arrangement identified as the salt derivative {[LaBr2.75•5.25(MeOH)]+0.25 [LaBr3.25•4.75(MeOH)]−0.25} (4). The fully substituted species was ultimately isolated through the dissolution of dried LaBr3 in MeOH forming the 8-coordinated [LaBr3(MeOH)5] (5) complex. It was determined that the concentration of the crystallization solution directed the structure isolated (4 concentrated; 5 dilute) The other LaX3 derivatives were isolated as [(MeOH)4(Cl)2La(µ-Cl)]2 (6) and [La(MeOH)9](I)3•MeOH (7). Beryllium Dome XRD analysis indicated that the bulk material for 5 appear to have multiple solvated species, 6 is consistent with the single crystal, and 7 was too broad to elucidate structural aspects. Multinuclear NMR (139La) indicated that these compounds do not retain their structure in MeOD. TGA/DTA data revealed that the de-solvation temperatures of the MeOH derivatives 4 – 6 were slightly higher in comparison to their hydrated counterparts. PMID:20514349

  17. Transversely diode-pumped alkali metal vapour laser

    SciTech Connect

    Parkhomenko, A I; Shalagin, A M

    2015-09-30

    We have studied theoretically the operation of a transversely diode-pumped alkali metal vapour laser. For the case of high-intensity laser radiation, we have obtained an analytical solution to a complex system of differential equations describing the laser. This solution allows one to exhaustively determine all the energy characteristics of the laser and to find optimal parameters of the working medium and pump radiation (temperature, buffer gas pressure, and intensity and width of the pump spectrum). (lasers)

  18. Theoretical characterization of dihydrogen adducts with halide anions

    SciTech Connect

    Vitillo, Jenny G.; Damin, Alessandro; Zecchina, Adriano; Ricchiardi, Gabriele

    2006-06-14

    The interaction between a hydrogen molecule and the halide anions F{sup -}, Cl{sup -}, Br{sup -}, and I{sup -} has been studied at different levels of theory and with different basis sets. The most stable configurations of the complexes have a linear geometry, while the t-shaped complexes are saddle points on the potential energy surface, opposite to what is observed for alkali cations. An electrostatic analysis conducted on the resulting adducts has highlighted the predominance of the electrostatic term in the complexation energy and, in particular, of the quadrupole- and dipole-polarizability dependent contributions. Another striking difference with respect to the positive ions, is the fact that although the binding energies have similar values (ranging between 25 and 3 kJ/mol for F{sup -} and I{sup -}, respectively), the vibrational shift of the {nu}-tilde{sub H-H} and in general the perturbation of the hydrogen molecule in complexes are much greater in the complexes with anions ({delta}{nu}-tilde{sub H-H} ranges between -720 and -65 cm{sup -1}). Another difference with respect to the interaction with cations is a larger charge transfer from the anion to the hydrogen molecule. The {delta}{nu}-tilde is the result of the cooperative role of the electrostatics and of the charge transfer in the interaction. The correlation between binding energies and vibrational shift is far from linear, contrary to what is observed for cation complexes, in accordance with the higher polarizability and dynamic polarizability of the molecule along the molecular axis. The observed correlation may be valuable in the interpretation of spectra and thermodynamic properties of adsorbed H{sub 2} in storage materials.

  19. Recent progress and challenges of organometal halide perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Liyan; Barrows, Alexander T.; Lidzey, David G.; Wang, Tao

    2016-02-01

    We review recent progress in the development of organometal halide perovskite solar cells. We discuss different compounds used to construct perovskite photoactive layers, as well as the optoelectronic properties of this system. The factors that affect the morphology of the perovskite active layer are explored, e.g. material composition, film deposition methods, casting solvent and various post-treatments. Different strategies are reviewed that have recently emerged to prepare high performing perovskite films, creating polycrystalline films having either large or small grain size. Devices that are constructed using meso-superstructured and planar architectures are summarized and the impact of the fabrication process on operational efficiency is discussed. Finally, important research challenges (hysteresis, thermal and moisture instability, mechanical flexibility, as well as the development of lead-free materials) in the development of perovskite solar cells are outlined and their potential solutions are discussed.

  20. Recent progress and challenges of organometal halide perovskite solar cells.

    PubMed

    Yang, Liyan; Barrows, Alexander T; Lidzey, David G; Wang, Tao

    2016-02-01

    We review recent progress in the development of organometal halide perovskite solar cells. We discuss different compounds used to construct perovskite photoactive layers, as well as the optoelectronic properties of this system. The factors that affect the morphology of the perovskite active layer are explored, e.g. material composition, film deposition methods, casting solvent and various post-treatments. Different strategies are reviewed that have recently emerged to prepare high performing perovskite films, creating polycrystalline films having either large or small grain size. Devices that are constructed using meso-superstructured and planar architectures are summarized and the impact of the fabrication process on operational efficiency is discussed. Finally, important research challenges (hysteresis, thermal and moisture instability, mechanical flexibility, as well as the development of lead-free materials) in the development of perovskite solar cells are outlined and their potential solutions are discussed.

  1. Giant photostriction in organic–inorganic lead halide perovskites

    PubMed Central

    Zhou, Yang; You, Lu; Wang, Shiwei; Ku, Zhiliang; Fan, Hongjin; Schmidt, Daniel; Rusydi, Andrivo; Chang, Lei; Wang, Le; Ren, Peng; Chen, Liufang; Yuan, Guoliang; Chen, Lang; Wang, Junling

    2016-01-01

    Among the many materials investigated for next-generation photovoltaic cells, organic–inorganic lead halide perovskites have demonstrated great potential thanks to their high power conversion efficiency and solution processability. Within a short period of about 5 years, the efficiency of solar cells based on these materials has increased dramatically from 3.8 to over 20%. Despite the tremendous progress in device performance, much less is known about the underlying photophysics involving charge–orbital–lattice interactions and the role of the organic molecules in this hybrid material remains poorly understood. Here, we report a giant photostrictive response, that is, light-induced lattice change, of >1,200 p.p.m. in methylammonium lead iodide, which could be the key to understand its superior optical properties. The strong photon-lattice coupling also opens up the possibility of employing these materials in wireless opto-mechanical devices. PMID:27044485

  2. Giant photostriction in organic-inorganic lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; You, Lu; Wang, Shiwei; Ku, Zhiliang; Fan, Hongjin; Schmidt, Daniel; Rusydi, Andrivo; Chang, Lei; Wang, Le; Ren, Peng; Chen, Liufang; Yuan, Guoliang; Chen, Lang; Wang, Junling

    2016-04-01

    Among the many materials investigated for next-generation photovoltaic cells, organic-inorganic lead halide perovskites have demonstrated great potential thanks to their high power conversion efficiency and solution processability. Within a short period of about 5 years, the efficiency of solar cells based on these materials has increased dramatically from 3.8 to over 20%. Despite the tremendous progress in device performance, much less is known about the underlying photophysics involving charge-orbital-lattice interactions and the role of the organic molecules in this hybrid material remains poorly understood. Here, we report a giant photostrictive response, that is, light-induced lattice change, of >1,200 p.p.m. in methylammonium lead iodide, which could be the key to understand its superior optical properties. The strong photon-lattice coupling also opens up the possibility of employing these materials in wireless opto-mechanical devices.

  3. Alkali Metal Cluster Theory.

    NASA Astrophysics Data System (ADS)

    Chen, Jian

    Available from UMI in association with The British Library. Requires signed TDF. In this thesis, we apply the tight-binding Hubbard model to alkali metal clusters with Hartree-Fock self-consistent methods and perturbation methods for the numerical calculations. We have studied the relation between the equilibrium structures and the range of the hopping matrix elements in the Hubbard Hamiltonian. The results show that the structures are not sensitive to the interaction range but are determined by the number of valence electrons each atom has. Inertia tensors are used to analyse the symmetries of the clusters. The principal axes of the clusters are determined and they are the axes of rotational symmetries of clusters if the clusters have any. The eigenvalues of inertia tensors which are the indication of the deformation of clusters are compared between our model and the ellipsoidal jellium model. The agreement is good for large clusters. At a finite temperature, the thermal motion fluctuates the structures. We defined a fluctuation function with the distance matrix of a cluster. The fluctuation has been studied with the Monte-Carlo simulation method. Our studies show that the clusters remain in the solid state when temperature is low. The small values of fluctuation functions indicates the thermal vibration of atoms around their equilibrium positions. If the temperature is high, the atoms are delocalized. The cluster melts and enters the liquid region. The cluster melting is simulated by the Monte-Carlo simulation with the fluctuation function we defined. Energy levels of clusters are calculated from the Hubbard model. Ionization potentials and magic numbers are also obtained from these energy levels. The results confirm that the Hubbard model is a good approximation for a small cluster. The excitation energy is presented by the difference between the original level and excited level, and the electron-hole interactions. We also have studied cooling of clusters

  4. Transport of Soil Halides through Rice Paddies: A Viable Mechanism for Rapid Dispersion of the Soil Halide Reservoir

    NASA Astrophysics Data System (ADS)

    Redeker, K. R.; Manley, S.; Wang, N.; Cicerone, R.

    2002-05-01

    On short time scales (1-10 years) soil halide concentrations have been assumed to be primarily driven by leaching and deposition processes. Recent results however, have shown that terrestrial plants volatilize soil halides in the form of methyl halides. Emissions of methyl chloride, methyl bromide and methyl iodide represent major pathways for delivery of inorganic halogen radicals to the atmosphere. Inorganic halogen radicals destroy ozone in the stratosphere and modify the oxidative capacity of the lower atmosphere. We have previously shown that rice paddies emit methyl halides and that emissions depend on growth stage of the rice plant as well as field water management. We show here that rice grown in a greenhouse at UCI is capable of volatilizing and/or storing up to 30%, 5%, and 10% of the available chloride, bromide and iodide within the top meter of soil. The percent of plant tissue halide volatilized as methyl halide over the course of the season is calculated to be 0.05%, 0.25% and 85.0% for chloride, bromide and iodide. We compare our greenhouse soil halide concentrations to other commercial rice fields around the world and estimate the e-folding time for soil halides within each region. We suggest that rice agriculture is the driving removal mechanism for halides within rice paddies and that terrestrial plants play a larger role in global cycling of halides than previously estimated.

  5. Growth and Studies of Halides doped Zinc Tris-Thiourea Sulphate(HZTS) Crystals

    NASA Astrophysics Data System (ADS)

    Suveetha, P.; Sathya, T.; Sudha, S.; Raj, M. B. Jessie

    2012-10-01

    Single crystals of Sodium chloride and Potassium iodide (Halides) doped Zinc tris-thiourea sulphate (ZTS) were grown from low temperature solution growth technique by slow evaporation method using water as solvent. The powder X-Ray diffraction pattern were recorded and indexed. The UV transmittance spectrum has been recorded. The optical band gap was estimated using Taucís plot. The TGA/DTA studies show the thermal properties of the crystals.

  6. Recovery of Ga(III) by Raw and Alkali Treated Citrus limetta Peels

    PubMed Central

    2014-01-01

    Alkali treated Citrus limetta peels were used for recovery of Ga(III) from its aqueous solution. The raw and alkali treated peels were characterized for functional groups. The efficiency of adsorption increased from 47.62 mg/g for raw peels to 83.33 mg/g for alkali treated peels. Between pH 1 and 3, the adsorption increased and thereafter decreased drastically. The adsorption followed pseudosecond order kinetics and Langmuir isotherm gave the best fit for the experimental data. Desorption studies showed 95.28% desorption after 3 cycles for raw peels while it was 89.51% for alkali treated peels. Simulated Bayer liquor showed 39.57% adsorption for gallium ions on raw peels which was enhanced to 41.13% for alkali treated peels. PMID:27382624

  7. Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals.

    PubMed

    Chen, Kun; Tüysüz, Harun

    2015-11-09

    The booming development of organometal halide perovskites in recent years has prompted the exploration of morphology-control strategies to improve their performance in photovoltaic, photonic, and optoelectronic applications. However, the preparation of organometal halide perovskites with high hierarchical architecture is still highly challenging and a general morphology-control method for various organometal halide perovskites has not been achieved. A mild and scalable method to prepare organometal halide perovskites in inverse opal morphology is presented that uses a polystyrene-based artificial opal as hard template. Our method is flexible and compatible with different halides and organic ammonium compositions. Thus, the perovskite inverse opal maintains the advantage of straightforward structure and band gap engineering. Furthermore, optoelectronic investigations reveal that morphology exerted influence on the conducting nature of organometal halide perovskites.

  8. Flame inhibition by hydrogen halides - Some spectroscopic measurements

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.; Cagliostro, D. E.

    1973-01-01

    The far-ultraviolet absorption spectrum of an air-propane diffusion flame inhibited with hydrogen halides has been studied. Plots of the absorption of light by hydrogen halides as a function of position in the flame and also as a function of the amount of hydrogen halide added to the flame have been obtained. The hydrogen halides are shown to be more stable on the fuel side of the reaction zone than they are on the air side. Thermal diffusion is seen to be important in determining the concentration distribution of the heavier hydrogen halides in diffusion flames. The relationship between the concentration distribution of the hydrogen halides in the flame and the flame inhibition mechanism is discussed.

  9. Chiral Alkyl Halides: Underexplored Motifs in Medicine

    PubMed Central

    Gál, Bálint; Bucher, Cyril; Burns, Noah Z.

    2016-01-01

    While alkyl halides are valuable intermediates in synthetic organic chemistry, their use as bioactive motifs in drug discovery and medicinal chemistry is rare in comparison. This is likely attributable to the common misconception that these compounds are merely non-specific alkylators in biological systems. A number of chlorinated compounds in the pharmaceutical and food industries, as well as a growing number of halogenated marine natural products showing unique bioactivity, illustrate the role that chiral alkyl halides can play in drug discovery. Through a series of case studies, we demonstrate in this review that these motifs can indeed be stable under physiological conditions, and that halogenation can enhance bioactivity through both steric and electronic effects. Our hope is that, by placing such compounds in the minds of the chemical community, they may gain more traction in drug discovery and inspire more synthetic chemists to develop methods for selective halogenation. PMID:27827902

  10. Spectroscopic and structural study of proton and halide ion cooperative binding to gfp.

    PubMed

    Arosio, Daniele; Garau, Gianpiero; Ricci, Fernanda; Marchetti, Laura; Bizzarri, Ranieri; Nifosì, Riccardo; Beltram, Fabio

    2007-07-01

    This study reports the influence of halogens on fluorescence properties of the Aequorea victoria Green Fluorescent Protein variant S65T/T203Y (E(2)GFP). Halide binding forms a specific nonfluorescent complex generating a substantial drop of the fluorescence via static quenching. Spectroscopic analysis under different solution conditions reveals high halogen affinity, which is strongly dependent on the pH. This evidences the presence in E(2)GFP of interacting binding sites for halide ions and for protons. Thermodynamic link and cooperative interaction are assessed demonstrating that binding of one halide ion is associated with the binding of one proton in a cooperative fashion with the formation, in the pH range 4.5-10, of a single fully protonated E(2)GFP.halogen complex. To resolve the structural determinants of E(2)GFP sensitivity to halogens, high-resolution crystallographic structures were obtained for the halide-free and I(-), Br(-), and Cl(-) bound E(2)GFP. Remarkably the first high-resolution (1.4 A) crystallographic structure of a chloride-bound GFP is reported. The chloride ion occupies a specific and unique binding pocket in direct contact (3.4 A) with the chromophore imidazolidinone aromatic ring. Unanticipated flexibility, strongly modulated by halide ion interactions, is observed in the region surrounding the chromophore. Furthermore molecular dynamics simulations identified E222 residue (along with the chromophore Y66 residue) being in the protonated state when E(2)GFP.halogen complex is formed. The impact of these results on high-sensitivity biosensor design will be discussed.

  11. Research Update: Challenges for high-efficiency hybrid lead-halide perovskite LEDs and the path towards electrically pumped lasing

    NASA Astrophysics Data System (ADS)

    Li, Guangru; Price, Michael; Deschler, Felix

    2016-09-01

    Hybrid lead-halide perovskites have emerged as promising solution-processed semiconductor materials for thin-film optoelectronics. In this review, we discuss current challenges in perovskite LED performance, using thin-film and nano-crystalline perovskite as emitter layers, and look at device performance and stability. Fabrication of electrically pumped, optical-feedback devices with hybrid lead halide perovskites as gain medium is a future challenge, initiated by the demonstration of optically pumped lasing structures with low gain thresholds. We explain the material parameters affecting optical gain in perovskites and discuss the challenges towards electrically pumped perovskite lasers.

  12. Process and composition for drying of gaseous hydrogen halides

    DOEpatents

    Tom, Glenn M.; Brown, Duncan W.

    1989-08-01

    A process for drying a gaseous hydrogen halide of the formula HX, wherein X is selected from the group consisting of bromine, chlorine, fluorine, and iodine, to remove water impurity therefrom, comprising: contacting the water impurity-containing gaseous hydrogen halide with a scavenger including a support having associated therewith one or more members of the group consisting of: (a) an active scavenging moiety selected from one or more members of the group consisting of: (i) metal halide compounds dispersed in the support, of the formula MX.sub.y ; and (ii) metal halide pendant functional groups of the formula -MX.sub.y-1 covalently bonded to the support, wherein M is a y-valent metal, and y is an integer whose value is from 1 to 3; (b) corresponding partially or fully alkylated compounds and/or pendant functional groups, of the metal halide compounds and/or pendant functional groups of (a); wherein the alkylated compounds and/or pendant functional groups, when present, are reactive with the gaseous hydrogen halide to form the corresponding halide compounds and/or pendant functional groups of (a); and M being selected such that the heat of formation, .DELTA.H.sub.f of its hydrated halide, MX.sub.y.(H.sub.2 O).sub.n, is governed by the relationship: .DELTA.H.sub.f .gtoreq.n.times.10.1 kilocalories/mole of such hydrated halide compound wherein n is the number of water molecules bound to the metal halide in the metal halide hydrate. Also disclosed is an appertaining scavenger composition and a contacting apparatus wherein the scavenger is deployed in a bed for contacting with the water impurity-containing gaseous hydrogen halide.

  13. Interpulse kinetics in copper and copper halide lasers

    NASA Technical Reports Server (NTRS)

    Harstad, K. G.

    1983-01-01

    The various rate processes that govern the interpulse relaxation in metal vapor and metal halide vapor lasers are considered. Computer calculations indicate that the rapid metastable levels relaxation observed in copper and copper halide laser experiments requires the existence of a relatively small resonance in the cross section for metastable excitation or deexcitation near threshold. The accurate calculation of interpulse relaxation requires knowledge of rate constants presently not well known; this is especially so for metal halide lasers.

  14. An insight into liquid water networks through hydrogen bonding halide anion: Stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Wang, Shenghan; Fang, Wenhui; Li, Tianyu; Li, Fangfang; Sun, Chenglin; Li, Zuowei; Huang, Yuxin; Men, Zhiwei

    2016-04-01

    We have studied the interaction between water molecules and halide anions and acquired the influence of concentration by the spontaneous Raman spectrum. The results agreed well with the previous researches. To explore further, the stimulated Raman scattering of a halide-water binary solution is measured to study the nature of the hydrogen bonding between water molecules and halogen anions. Under the effect of laser-induced plasma, the OH stretching vibration spectra of aqueous solutions of halogen ions pretty exhibit different trend compared with that of spontaneous Raman spectrum. The frequency shifts of water OH vibration show different values and directions with adding different halide anions. The red shift of F-- and Cl--water molecule clusters is due to the process of charge transfer, whereas the blue shift of Br-- and I--water molecule cluster is due to polarization effect without charge transfer. The results demonstrate that F- and Cl- slightly weaken the hydrogen bond (HB), whereas Br- and I- enhance HB in the water cluster. The decrease of concentration of halogen ions aqueous solution can weaken the effect on the HB.

  15. Chemistry of Halide Window Growth

    DTIC Science & Technology

    1976-02-01

    found that the minimum-melting solid solution of NaBr and KBr prepared under RAP conditions does not retain phase homogeneity below the melting point...Canyon Road, Malibu. California 90265, during the period 1 April 1974 through 30 September 1975, under Contract F33615-74-C- 5115. Project...earth fluorides 17 3 Temperature dependence of the decay constant (k) for the depolymerization of TFE under various atmospheres 20 4 Infrared

  16. Lanthanide doped strontium-barium cesium halide scintillators

    DOEpatents

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  17. Electrical Resistivity of Alkali Elements.

    DTIC Science & Technology

    1976-01-01

    rubidium, cesium, and francium ) and contains recommended reference values (or provisional or typical values). The compiled data include all the...and information on the electrical resistivity of alkali elements (lithium, sodium, potassium, rubidium, cesium, and francium ) and contains...107Ic. Magnetic Flux Density Dependence o.. .. ... .... 112 4.6. Francium ..........................115j a. Temperature Dependence

  18. Mechanism and Selectivity in Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Halides with Alkyl Halides

    PubMed Central

    Biswas, Soumik; Weix, Daniel J.

    2013-01-01

    The direct cross-coupling of two different electrophiles, such as an aryl halide with an alkyl halide, offers many advantages over conventional cross-coupling methods that require a carbon nucleophile. Despite its promise as a versatile synthetic strategy, a limited understanding of the mechanism and origin of cross selectivity has hindered progress in reaction development and design. Herein, we shed light on the mechanism for the nickel-catalyzed cross-electrophile coupling of aryl halides with alkyl halides and demonstrate that the selectivity arises from an unusual catalytic cycle that combines both polar and radical steps to form the new C-C bond. PMID:23952217

  19. Acid and alkali doped PBI electrolyte in electrochemical system

    NASA Astrophysics Data System (ADS)

    Xing, Baozhong

    In this work the conductivity of blank PBI membrane, acid doped PBI and alkaline doped PBI was systematically studied. A new methodology for sorption kinetics study in electrolyte solution has been established by monitoring the conductivity change during the sorption process. The model of the doping process and mechanism of conductivity are proposed. The performance of PBI (doped under optimum conditions) in fuel cell as PEM was evaluated. The experimental results show that the blank PBI in acid solution is an ionic insulator. It clarified the long time confusion in this area. The acid doped PBI membrane is an ionic conductor. The conductivity increases with the concentration of the acid solution. In high concentration acid solution, the conductivity increases with the type of acid in the order: H2SO 4 > H3PO4 > HClO4 > HNO3 > HCl. The kinetics of the doping process was studied, by a continuous method. The ionic conductivity mechanism was established. The PBI membranes doped with H2SO4 and H3PO4 exhibit better performance than NafionRTM. The doped FBI has more resistance to CO poison. 3% CO in H2 has little effect on the H3PO 4 doped PBI membrane at 185°C. The conductivity of the alkali doped PBI membrane changes with the concentration of the alkaline solution and the type of the alkalis. The conductivity has a maximum in KOH and NaOH solution. The maximum conductivity in KOH is higher than in NaOH and LiOH. It is about 5 times of that of NafionRTM in alkaline solution. The two-step sorption process in alkaline solution was observed. The first step is the permeation process of the alkalis in the PBI membrane. The permeation is the results of diffusion and interaction. It is concluded that the permeation process is controlled by the rate of interaction between the alkali and PBI molecule. The second step is the relaxation process in the membrane. This step contributes more to the conductivity for the membrane than the first step. The ionic conductivity mechanism

  20. Bright light-emitting diodes based on organometal halide perovskite.

    PubMed

    Tan, Zhi-Kuang; Moghaddam, Reza Saberi; Lai, May Ling; Docampo, Pablo; Higler, Ruben; Deschler, Felix; Price, Michael; Sadhanala, Aditya; Pazos, Luis M; Credgington, Dan; Hanusch, Fabian; Bein, Thomas; Snaith, Henry J; Friend, Richard H

    2014-09-01

    Solid-state light-emitting devices based on direct-bandgap semiconductors have, over the past two decades, been utilized as energy-efficient sources of lighting. However, fabrication of these devices typically relies on expensive high-temperature and high-vacuum processes, rendering them uneconomical for use in large-area displays. Here, we report high-brightness light-emitting diodes based on solution-processed organometal halide perovskites. We demonstrate electroluminescence in the near-infrared, green and red by tuning the halide compositions in the perovskite. In our infrared device, a thin 15 nm layer of CH3NH3PbI(3-x)Cl(x) perovskite emitter is sandwiched between larger-bandgap titanium dioxide (TiO2) and poly(9,9'-dioctylfluorene) (F8) layers, effectively confining electrons and holes in the perovskite layer for radiative recombination. We report an infrared radiance of 13.2 W sr(-1) m(-2) at a current density of 363 mA cm(-2), with highest external and internal quantum efficiencies of 0.76% and 3.4%, respectively. In our green light-emitting device with an ITO/PEDOT:PSS/CH3NH3PbBr3/F8/Ca/Ag structure, we achieved a luminance of 364 cd m(-2) at a current density of 123 mA cm(-2), giving external and internal quantum efficiencies of 0.1% and 0.4%, respectively. We show, using photoluminescence studies, that radiative bimolecular recombination is dominant at higher excitation densities. Hence, the quantum efficiencies of the perovskite light-emitting diodes increase at higher current densities. This demonstration of effective perovskite electroluminescence offers scope for developing this unique class of materials into efficient and colour-tunable light emitters for low-cost display, lighting and optical communication applications.

  1. Communication: Dopant-induced solvation of alkalis in liquid helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Renzler, Michael; Daxner, Matthias; Kranabetter, Lorenz; Kaiser, Alexander; Hauser, Andreas W.; Ernst, Wolfgang E.; Lindinger, Albrecht; Zillich, Robert; Scheier, Paul; Ellis, Andrew M.

    2016-11-01

    Alkali metal atoms and small alkali clusters are classic heliophobes and when in contact with liquid helium they reside in a dimple on the surface. Here we show that alkalis can be induced to submerge into liquid helium when a highly polarizable co-solute, C60, is added to a helium nanodroplet. Evidence is presented that shows that all sodium clusters, and probably single Na atoms, enter the helium droplet in the presence of C60. Even clusters of cesium, an extreme heliophobe, dissolve in liquid helium when C60 is added. The sole exception is atomic Cs, which remains at the surface.

  2. Carrier-phonon interactions in hybrid halide perovskites probed with ultrafast anisotropy studies

    NASA Astrophysics Data System (ADS)

    Rivett, Jasmine P. H.; Richter, Johannes M.; Price, Michael B.; Credgington, Dan; Deschler, Felix

    2016-09-01

    Hybrid halide perovskites are at the frontier of optoelectronic research due to their excellent semiconductor properties and solution processability. For this reason, much attention has recently been focused on understanding photoexcited charge-carrier generation and recombination in these materials. Conversely, very few studies have so far been devoted to understanding carrier-carrier and carrier-phonon scattering mechanisms in these materials. This is surprising given that carrier scattering mechanisms fundamentally limit charge-carrier motilities and therefore the performance of photovoltaic devices. We apply linear polarization selective transient absorption measurements to polycrystalline CH3NH3PbBr3 hybrid halide perovskite films as an effective way of studying the scattering processes in these materials. Comparison of the photo induced bleach signals obtained when the linear polarizations of the pump and probe are aligned either parallel or perpendicular to one another, reveal a significant difference in spectral intensity and shape within the first few hundred femtoseconds after photoexcitation.

  3. Bimolecular gas-phase exchange of alkali metals between cationized biomolecules and neutral crown ethers

    SciTech Connect

    Pope, M.; Dearden, D.V.; Hofstadler, S.

    1995-12-31

    Electrospray ionization of polypeptides and nucleic acids often yields ions containing sodium or potassium charge carriers. These alkali adducts are frequently the residue of ionic buffers used to preserve protein conformation in solution or artifacts of a natural matrix such as blood plasma. Measures taken in solution to desalinate these samples are hindered by the desire to maintain native conformation. The authors here show that ion-molecule chemistry is an alternate means of removing alkali metal ions from multiply-charged biomolecules. Ion-molecule reactions of multiply charged polypeptides with crown ethers result in adduction of the crown if protons are the only charge bearing species, or desalting if alkali metals are among the charge carriers. Both product ions, the desalted peptide and the crown/alkali metal complex, are observed in the latter case.

  4. Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment.

    PubMed

    Saha, Prosenjit; Manna, Suvendu; Chowdhury, Sougata Roy; Sen, Ramkrishna; Roy, Debasis; Adhikari, Basudam

    2010-05-01

    The physico-chemical properties of jute fibers treated with alkali (NaOH) solution have been investigated in this study. The treatments were applied under ambient and elevated temperatures and high pressure steaming conditions. To the knowledge of these authors the influence of alkali-steam treatment on the uniaxial tensile strength of natural ligno-cellulosic fibers, such as jute, has not been investigated earlier. The results from this investigation indicate that a 30 min dipping of the fibers in 0.5% alkali solution followed by 30 min alkali-steam treatment leads to an increase in the tensile strength of up to 65%. The increase appears to be due to fiber separation and removal of non-cellulosic materials, which, in turn, resulted in an increased crystallinity.

  5. [Emissions of methyl halides from coastal salt marshes: A review].

    PubMed

    Xie, Wen-xia; Zhao, Quan-sheng; Cui, Yu-qian; Du, Hui-na; Ye, Si-yuan

    2015-11-01

    Methyl halides are the major carrier of halogens in the atmosphere, and they play an important role in tropospheric and stratospheric ozone depletion. Meanwhile, methyl halides can act as greenhouse gases in the atmosphere, and they are also environmentally significant because of their toxicity. Coastal salt marshes, the important intertidal ecosystems at the land-ocean interface, have been considered to be a large potential natural source of methyl halides. In this paper, the research status of the natural source or sink of methyl halides, the mechanisms of their emission from coastal salt marshes and affecting factors were summarized. In view of this, the following research fields need to be strengthened in the future: 1) Long time-scale and large region-range researches about the emission of methyl halides and the evaluation of their source and sink function, 2) Accurate quantification of contribution rates of different plant species and various biological types to fluxes of methyl halides, 3) Further researches on effects of the tidal fluctuation process and flooding duration on methyl halides emission, 4) Effects of the global change and human activities on methyl halides emission.

  6. Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability.

    PubMed

    Fu, Yongping; Zhu, Haiming; Schrader, Alex W; Liang, Dong; Ding, Qi; Joshi, Prakriti; Hwang, Leekyoung; Zhu, X-Y; Jin, Song

    2016-02-10

    The excellent intrinsic optoelectronic properties of methylammonium lead halide perovskites (MAPbX3, X = Br, I), such as high photoluminescence quantum efficiency, long carrier lifetime, and high gain coupled with the facile solution growth of nanowires make them promising new materials for ultralow-threshold nanowire lasers. However, their photo and thermal stabilities need to be improved for practical applications. Herein, we report a low-temperature solution growth of single crystal nanowires of formamidinium lead halide perovskites (FAPbX3) that feature red-shifted emission and better thermal stability compared to MAPbX3. We demonstrate optically pumped room-temperature near-infrared (∼820 nm) and green lasing (∼560 nm) from FAPbI3 (and MABr-stabilized FAPbI3) and FAPbBr3 nanowires with low lasing thresholds of several microjoules per square centimeter and high quality factors of about 1500-2300. More remarkably, the FAPbI3 and MABr-stabilized FAPbI3 nanowires display durable room-temperature lasing under ∼10(8) shots of sustained illumination of 402 nm pulsed laser excitation (150 fs, 250 kHz), substantially exceeding the stability of MAPbI3 (∼10(7) laser shots). We further demonstrate tunable nanowire lasers in wider wavelength region from FA-based lead halide perovskite alloys (FA,MA)PbI3 and (FA,MA)Pb(I,Br)3 through cation and anion substitutions. The results suggest that formamidinium lead halide perovskite nanostructures could be more promising and stable materials for the development of light-emitting diodes and continuous-wave lasers.

  7. In-Situ Investigation of Tomato Plants as Methyl Halide Sources

    NASA Astrophysics Data System (ADS)

    King, D. B.; Butler, J. H.; Mondeel, D. J.

    2002-05-01

    Natural halocarbons contribute significantly to the destruction of stratospheric ozone. Methyl bromide and methyl chloride, both of which come primarily from natural sources, supply about one-quarter of the equivalent chlorine to the stratosphere. Other halogenated compounds, such as dibromomethane, bromoform, and methyl iodide, might be significant halogen sources to the stratosphere as well. The budgets of these compounds, and the mechanisms responsible for their production and destruction, generally are poorly understood. For example, known sources of both methyl bromide and methyl chloride outweigh their known sinks by 50-100%, making it difficult to predict future atmospheric concentrations of these compounds. As the global climate changes, atmospheric halocarbon concentrations are likely to respond to changes in sea surface temperature, biological productivity on land and in water, and global wind patterns. Terrestrial plants are a potentially significant source of many light halocarbons. As a first cut to assess this potential, we measured the production of about 20 halocarbons by tomato plants in a hydroponic greenhouse in Northern California. This enabled us to investigate production directly from the plants, without the interference of soils, which have been shown to remove some of these compounds from the atmosphere. Results differed for the methyl halides and the polyhalogenated compounds. Methyl halide production was small or zero during initial experiments. However, the addition of a halide ion solution (KBr, KCl, and KI) to the plants' nutrient mixture appeared to increase production of methyl bromide (by a factor of three) and methyl iodide (by a factor of seven) significantly. In contrast, several polyhalogenated compounds (e.g., bromoform and bromochloromethane) were produced during all experiments, with increases on the order of 50% to 600%. The addition of the halide solution did not affect the production of these compounds. The results from

  8. Alkali-activated binders by use of industrial by-products

    SciTech Connect

    Buchwald, A.; Schulz, M

    2005-05-01

    Cement kiln dust (CKD) materials are used as alkaline accelerators for latent hydraulic substances and as alkali activators for different alumosilicate materials, including ground-granulated blast furnace slag, low-calcium fly ash and metakaolin. The dusts differ in their phase composition, especially in the amount of reactive phases and the kind and amount of alkali salts. The quantitative phase composition, pore solution composition and strength behavior of the activated blends is reported.

  9. Assesment of Alkali Resistance of Basalt Used as Concrete Aggregates

    NASA Astrophysics Data System (ADS)

    al-Swaidani, Aref M.; Baddoura, Mohammad K.; Aliyan, Samira D.; Choeb, Walid

    2015-11-01

    The objective of this paper is to report a part of an ongoing research on the influence of using crushed basalt as aggregates on one of durability-related properties of concrete (i.e. alkali-silica reaction which is the most common form of Alkali-Aggregate Reaction). Alkali resistance has been assessed through several methods specified in the American Standards. Results of petrographic examination, chemical test (ASTM C289) and accelerated mortar bar test (ASTM C1260) have particularly been reported. In addition, the weight change and compressive strength of 28 days cured concrete containing basaltic aggregates were also reported after 90 days of exposure to 10% NaOH solution. Dolomite aggregate were used in the latter test for comparison. The experimental results revealed that basaltic rocks quarried from As-Swaida'a region were suitable for production of aggregates for concrete. According to the test results, the studied basalt aggregates can be classified as innocuous with regard to alkali-silica reaction. Further, the 10% sodium hydroxide attack did not affect the compressive strength of concrete.

  10. How specific halide adsorption varies hydrophobic interactions.

    PubMed

    Stock, Philipp; Müller, Melanie; Utzig, Thomas; Valtiner, Markus

    2016-03-11

    Hydrophobic interactions (HI) are driven by the water structure around hydrophobes in aqueous electrolytes. How water structures at hydrophobic interfaces and how this influences the HI was subject to numerous studies. However, the effect of specific ion adsorption on HI and hydrophobic interfaces remains largely unexplored or controversial. Here, the authors utilized atomic force microscopy force spectroscopy at well-defined nanoscopic hydrophobic interfaces to experimentally address how specific ion adsorption of halide ions as well as NH4 (+), Cs(+), and Na(+) cations alters interaction forces across hydrophobic interfaces. Our data demonstrate that iodide adsorption at hydrophobic interfaces profoundly varies the hydrophobic interaction potential. A long-range and strong hydration repulsion at distances D > 3 nm, is followed by an instability which could be explained by a subsequent rapid ejection of adsorbed iodides from approaching hydrophobic interfaces. In addition, the authors find only a weakly pronounced influence of bromide, and as expected no influence of chloride. Also, all tested cations do not have any significant influence on HI. Complementary, x-ray photoelectron spectroscopy and quartz-crystal-microbalance with dissipation monitoring showed a clear adsorption of large halide ions (Br(-)/I(-)) onto hydrophobic self-assembled monolayers (SAMs). Interestingly, iodide can even lead to a full disintegration of SAMs due to specific and strong interactions of iodide with gold. Our data suggest that hydrophobic surfaces are not intrinsically charged negatively by hydroxide adsorption, as it was generally believed. Hydrophobic surfaces rather interact strongly with negatively charged large halide ions, leading to a surface charging and significant variation of interaction forces.

  11. Complex dynamical aspects of organic electrolyte solutions.

    PubMed

    Palombo, Francesca; Sassi, Paola; Paolantoni, Marco; Barontini, Chiara; Morresi, Assunta; Giorgini, Maria Grazia

    2014-01-09

    Molecular dynamics of acetone-alkali metal halide (LiBr, LiI) solutions were investigated using depolarized Rayleigh scattering (DRS) and low-frequency Raman spectroscopy in the frequency range from ~0.5 to 200 cm(-1) (~20 GHz to 6 THz). These experiments probe fast dynamical fluctuations of the polarizability anisotropy at picosecond and sub-picosecond time scales that are mainly driven by acetone orientational dynamics. Two distinct contributions were revealed: a fast process (units of picosecond, ps) related to the essentially unperturbed bulk solvent and a slow one (tens of ps) assigned to acetone molecules forming Li(+) solvation shells, decelerated by the motional constraint imposed by the cation. The increase of LiBr and LiI concentration significantly slows down the overall solvent relaxation as a consequence of the increased fraction of acetone molecules involved in the ion solvation shells. The global retardation is larger in LiI than LiBr solutions consistently with viscosity trends. This is explained in terms of ion association (at least ion pairing) more favorably promoted by Br(-) than I(-), with reduced Li(+)-acetone interactions in LiBr than LiI solutions. Anion-induced modulation of the Li(+)···O═C contacts, largely responsible for electrostriction phenomena, also affects the reduced THz-Raman spectral density, ascribed to ultrafast librational motions of acetone molecules. Overall, these findings enlighten the interplay between ion-dipole and ion-ion interactions on the fast solvation dynamics in electrolyte solutions of a typical polar aprotic solvent.

  12. Development of novel growth methods for halide single crystals

    NASA Astrophysics Data System (ADS)

    Yokota, Yuui; Kurosawa, Shunsuke; Shoji, Yasuhiro; Ohashi, Yuji; Kamada, Kei; Yoshikawa, Akira

    2017-03-01

    We developed novel growth methods for halide scintillator single crystals with hygroscopic nature, Halide micro-pulling-down [H-μ-PD] method and Halide Vertical Bridgman [H-VB] method. The H-μ-PD method with a removable chamber system can grow a single crystal of halide scintillator material with hygroscopicity at faster growth rate than the conventional methods. On the other hand, the H-VB method can grow a large bulk single crystal of halide scintillator without a quartz ampule. CeCl3, LaBr3, Ce:LaBr3 and Eu:SrI2 fiber single crystals could be grown by the H-μ-PD method and Eu:SrI2 bulk single crystals of 1 and 1.5 inch in diameter could be grown by the H-VB method. The grown fiber and bulk single crystals showed comparable scintillation properties to the previous reports using the conventional methods.

  13. Nanoscale investigation of organic - inorganic halide perovskites

    NASA Astrophysics Data System (ADS)

    Cacovich, S.; Divitini, G.; Vrućinić, M.; Sadhanala, A.; Friend, R. H.; Sirringhaus, H.; Deschler, F.; Ducati, C.

    2015-10-01

    Over the last few years organic - inorganic halide perovskite-based solar cells have exhibited a rapid evolution, reaching certified power conversion efficiencies now surpassing 20%. Nevertheless the understanding of the optical and electronic properties of such systems on the nanoscale is still an open problem. In this work we investigate two model perovskite systems (based on iodine - CH3NH3PbI3 and bromine - CH3NH3PbBr3), analysing the local elemental composition and crystallinity and identifying chemical inhomogeneities.

  14. Research Update: Luminescence in lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Srimath Kandada, Ajay Ram; Petrozza, Annamaria

    2016-09-01

    Efficiency and dynamics of radiative recombination of carriers are crucial figures of merit for optoelectronic materials. Following the recent success of lead halide perovskites in efficient photovoltaic and light emitting technologies, here we review some of the noted literature on the luminescence of this emerging class of materials. After outlining the theoretical formalism that is currently used to explain the carrier recombination dynamics, we review a few significant works which use photoluminescence as a tool to understand and optimize the operation of perovskite based optoelectronic devices.

  15. Improved processing for silver halide pulse holography

    NASA Astrophysics Data System (ADS)

    Mikhailov, Viktor N.; Son, Jung-Young; Grinevitskaya, Olga V.; Lee, Hyuk-Soo; Choi, Yong-Jin

    1996-04-01

    Using of an improved developer with optical latensification allowed to significantly increase exposure sensitivity of currently in use silver halide materials. Transmission large-scale holograms (30 X 40 cm2) of diffused objects have been recorded under pulse exposure of about 6.5 X 10-6 J/cm2 for VRP and of about 2 X 10-6 J/cm2 for Agfa-Gavaert 8E56HD, in both cases without appreciable contrast deterioration. Results of the first experiments on pulse reflection holography are also discussed.

  16. Synthesis of lithium cobaltate in halide melts

    NASA Astrophysics Data System (ADS)

    Modenov, D. V.; Dokutovich, V. N.; Khokhlov, V. A.; Antonov, B. D.; Kochedykov, V. A.; Zakir'yanova, I. D.

    2013-02-01

    A new method for the synthesis of lithium cobaltate LiCoo2 in salt melts is proposed and tested. The method is based on the oxidation of halide ions with molecular oxygen in Li X-CoCl2 mixtures ( X = Cl, Br, I). The chemical and phase compositions of the prepared powders and the crystal structure of the synthesized compound are studied by Fourier transform infrared spectroscopy and X-ray diffraction analysis. The average size of LiCoO2 crystallites is estimated from the X-ray diffraction data.

  17. Positron-alkali atom scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.; Ward, S. J.

    1990-01-01

    Positron-alkali atom scattering was recently investigated both theoretically and experimentally in the energy range from a few eV up to 100 eV. On the theoretical side calculations of the integrated elastic and excitation cross sections as well as total cross sections for Li, Na and K were based upon either the close-coupling method or the modified Glauber approximation. These theoretical results are in good agreement with experimental measurements of the total cross section for both Na and K. Resonance structures were also found in the L = 0, 1 and 2 partial waves for positron scattering from the alkalis. The structure of these resonances appears to be quite complex and, as expected, they occur in conjunction with the atomic excitation thresholds. Currently both theoretical and experimental work is in progress on positron-Rb scattering in the same energy range.

  18. Alkali metal/sulfur battery

    DOEpatents

    Anand, Joginder N.

    1978-01-01

    Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

  19. Spectral Features and Charge Dynamics of Lead Halide Perovskites: Origins and Interpretations.

    PubMed

    Sum, Tze Chien; Mathews, Nripan; Xing, Guichuan; Lim, Swee Sien; Chong, Wee Kiang; Giovanni, David; Dewi, Herlina Arianita

    2016-02-16

    Lead halide perovskite solar cells are presently the forerunner among the third generation solution-processed photovoltaic technologies. With efficiencies exceeding 20% and low production costs, they are prime candidates for commercialization. Critical insights into their light harvesting, charge transport, and loss mechanisms have been gained through time-resolved optical probes such as femtosecond transient absorption spectroscopy (fs-TAS), transient photoluminescence spectroscopy, and time-resolved terahertz spectroscopy. Specifically, the discoveries of long balanced electron-hole diffusion lengths and gain properties in halide perovskites underpin their significant roles in uncovering structure-function relations and providing essential feedback for materials development and device optimization. In particular, fs-TAS is becoming increasingly popular in perovskite characterization studies, with commercial one-box pump-probe systems readily available as part of a researcher's toolkit. Although TAS is a powerful probe in the study of charge dynamics and recombination mechanisms, its instrumentation and data interpretation can be daunting even for experienced researchers. This issue is exacerbated by the sensitive nature of halide perovskites where the kinetics are especially susceptible to pump fluence, sample preparation and handling and even degradation effects that could lead to disparate conclusions. Nonetheless, with end-users having a clear understanding of TAS's capabilities, subtleties, and limitations, cutting-edge work with deep insights can still be performed using commercial setups as has been the trend for ubiquitous spectroscopy instruments like absorption, fluorescence, and transient photoluminescence spectrometers. Herein, we will first briefly examine the photophysical processes in lead halide perovskites, highlighting their novel properties. Next, we proceed to give a succinct overview of the fundamentals of pump-probe spectroscopy in relation

  20. A computational approach to calculate the heat of transport of aqueous solutions

    NASA Astrophysics Data System (ADS)

    di Lecce, Silvia; Albrecht, Tim; Bresme, Fernando

    2017-03-01

    Thermal gradients induce concentration gradients in alkali halide solutions, and the salt migrates towards hot or cold regions depending on the average temperature of the solution. This effect has been interpreted using the heat of transport, which provides a route to rationalize thermophoretic phenomena. Early theories provide estimates of the heat of transport at infinite dilution. These values are used to interpret thermodiffusion (Soret) and thermoelectric (Seebeck) effects. However, accessing heats of transport of individual ions at finite concentration remains an outstanding question both theoretically and experimentally. Here we discuss a computational approach to calculate heats of transport of aqueous solutions at finite concentrations, and apply our method to study lithium chloride solutions at concentrations >0.5 M. The heats of transport are significantly different for Li+ and Cl‑ ions, unlike what is expected at infinite dilution. We find theoretical evidence for the existence of minima in the Soret coefficient of LiCl, where the magnitude of the heat of transport is maximized. The Seebeck coefficient obtained from the ionic heats of transport varies significantly with temperature and concentration. We identify thermodynamic conditions leading to a maximization of the thermoelectric response of aqueous solutions.

  1. A computational approach to calculate the heat of transport of aqueous solutions

    PubMed Central

    Di Lecce, Silvia; Albrecht, Tim; Bresme, Fernando

    2017-01-01

    Thermal gradients induce concentration gradients in alkali halide solutions, and the salt migrates towards hot or cold regions depending on the average temperature of the solution. This effect has been interpreted using the heat of transport, which provides a route to rationalize thermophoretic phenomena. Early theories provide estimates of the heat of transport at infinite dilution. These values are used to interpret thermodiffusion (Soret) and thermoelectric (Seebeck) effects. However, accessing heats of transport of individual ions at finite concentration remains an outstanding question both theoretically and experimentally. Here we discuss a computational approach to calculate heats of transport of aqueous solutions at finite concentrations, and apply our method to study lithium chloride solutions at concentrations >0.5 M. The heats of transport are significantly different for Li+ and Cl− ions, unlike what is expected at infinite dilution. We find theoretical evidence for the existence of minima in the Soret coefficient of LiCl, where the magnitude of the heat of transport is maximized. The Seebeck coefficient obtained from the ionic heats of transport varies significantly with temperature and concentration. We identify thermodynamic conditions leading to a maximization of the thermoelectric response of aqueous solutions. PMID:28322266

  2. 10 CFR 429.54 - Metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Metal halide lamp ballasts and fixtures. 429.54 Section... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.54 Metal halide lamp ballasts... are applicable to metal halide lamp ballasts; and (2) For each basic model of metal halide...

  3. 10 CFR 429.54 - Metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Metal halide lamp ballasts and fixtures. 429.54 Section... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.54 Metal halide lamp ballasts... are applicable to metal halide lamp ballasts; and (2) For each basic model of metal halide...

  4. 10 CFR 429.54 - Metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Metal halide lamp ballasts and fixtures. 429.54 Section... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.54 Metal halide lamp ballasts... are applicable to metal halide lamp ballasts; and (2) For each basic model of metal halide...

  5. Finding New Perovskite Halides via Machine learning

    NASA Astrophysics Data System (ADS)

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-01

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning) via building a support vector machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  6. Finding new perovskite halides via machine learning

    SciTech Connect

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-26

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach toward rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning, henceforth referred to as ML) via building a support vector machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br, or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 185 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor, and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. As a result, the trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  7. Methyl halide production associated with kelp

    NASA Technical Reports Server (NTRS)

    Dastoor, Minoo N.; Manley, Steven L.

    1985-01-01

    Methyl halides (MeX) are important trace constituents of the atmosphere because they, mostly MeCl, have a major impact on the atmospheric ozone layer. Also, MeCl may account for 5 pct. of the total Cl budget and MeI may have a central role in the biogeochemical cycling of iodine. High MeI concentrations were found in seawater from kelp beds and it has been suggested that MeI is produced by kelps and that MeI and MeBr along with numerous other halocarbons were released by non-kelp marine macroalgae. The objective was to determine if kelps (and other seaweeds) are sources of MeX and to assess their contribution to the estimated global source strength (EGSS) of MeX. Although the production of MeX appears to be associated with kelp, microbes involved with kelp degradation also produce MeX. Microbial MeX production may be of global significance. The microbial MeX production potential, assuming annual kelp production equals kelp degradation and 100 pct. conversion of kelp halides to MeX, is approx. 2 x the EGSS. This is not achieved but indicates that microbial production of MeX may be of global significance.

  8. Finding new perovskite halides via machine learning

    DOE PAGES

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; ...

    2016-04-26

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach toward rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning, henceforth referred to as ML) via building a support vectormore » machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br, or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 185 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor, and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. As a result, the trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.« less

  9. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  10. Regenerable activated bauxite adsorbent alkali monitor probe

    SciTech Connect

    Lee, S.H.D.

    1991-01-22

    This invention relates to a regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor 5 concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC 10 exhaust gases.

  11. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  12. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence

    PubMed Central

    Xing, Guichuan; Wu, Bo; Wu, Xiangyang; Li, Mingjie; Du, Bin; Wei, Qi; Guo, Jia; Yeow, Edwin K. L.; Sum, Tze Chien; Huang, Wei

    2017-01-01

    The slow bimolecular recombination that drives three-dimensional lead-halide perovskites' outstanding photovoltaic performance is conversely a fundamental limitation for electroluminescence. Under electroluminescence working conditions with typical charge densities lower than 1015 cm−3, defect-states trapping in three-dimensional perovskites competes effectively with the bimolecular radiative recombination. Herein, we overcome this limitation using van-der-Waals-coupled Ruddlesden-Popper perovskite multi-quantum-wells. Injected charge carriers are rapidly localized from adjacent thin few layer (n≤4) multi-quantum-wells to the thick (n≥5) multi-quantum-wells with extremely high efficiency (over 85%) through quantum coupling. Light emission originates from excitonic recombination in the thick multi-quantum-wells at much higher decay rate and efficiency than bimolecular recombination in three-dimensional perovskites. These multi-quantum-wells retain the simple solution processability and high charge carrier mobility of two-dimensional lead-halide perovskites. Importantly, these Ruddlesden-Popper perovskites offer new functionalities unavailable in single phase constituents, permitting the transcendence of the slow bimolecular recombination bottleneck in lead-halide perovskites for efficient electroluminescence. PMID:28239146

  13. Defects in perovskite-halides and their effects in solar cells

    NASA Astrophysics Data System (ADS)

    Ball, James M.; Petrozza, Annamaria

    2016-11-01

    Solar cells based on perovskite-halide light absorbers have a unique set of characteristics that could help alleviate the global dependence on fossil fuels for energy generation. They efficiently convert sunlight into electricity using Earth-abundant raw materials processed from solution at low temperature. Thus, they offer potential for cost reductions compared with or in combination with other photovoltaic technologies. Nevertheless, to fully exploit the potential of perovskite-halides, several important challenges must be overcome. Given the nature of the materials — relatively soft ionic solids — one of these challenges is the understanding and control of their defect structures. Currently, such understanding is limited, restricting the power conversion efficiencies of these solar cells from reaching their thermodynamic limit. This Review describes the state of the art in the understanding of the origin and nature of defects in perovskite-halides and their impact on carrier recombination, charge-transport, band alignment, and electrical instability, and provides a perspective on how to make further progress.

  14. Analysis of the Focar-type silver-halide heterogeneous media

    NASA Astrophysics Data System (ADS)

    Andreeva, Olga V.

    1991-02-01

    An analysis of Focar-S a new material for 3-D holograms recording is carried out. The new material comprises a heterogeneous medium based on porous glass and silver halide as a light sensitive substratum. There are some characteristics of obtained holograms for both non-developed and developed samples. INTRODUCTION. FOCAR-S -MEDIUM FOR 3-D HOLOGRAMS RECORDING Focar-S volume medium comprises a heterogeneous system which is composed of porous quartzlike frame (porous glas) on the walls of inner cavities of which stiffphase cover of silver halide subfine-dispersed suspension in gelatin has been formed. The inner cavities which are not filled with light sensitive substratum form the net of open4hrough capillaries providing a possibility of medium post-exposure processing. It is the possibility of post-exposure processing largely reinforcing a latent image that results in high sensitivity of a silver halide photographical materials as compared to other light sensitive stuffs. However when recording 3-D holograms on homogeneous media of nearly 1 mm thick these two-stage processes could not find application owing at least to two reasons. 1. The restricted permeability of light sensitive material for developing substance and for soluble reaction products has to result in inhibition of development and to disastrous growth of its duration up to the value which is unsuitable for practical application. 2. Swelling of light sensitive medium in developing solution and subsequent non-uniform shrinking of it while the sample is being dried results

  15. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence.

    PubMed

    Xing, Guichuan; Wu, Bo; Wu, Xiangyang; Li, Mingjie; Du, Bin; Wei, Qi; Guo, Jia; Yeow, Edwin K L; Sum, Tze Chien; Huang, Wei

    2017-02-27

    The slow bimolecular recombination that drives three-dimensional lead-halide perovskites' outstanding photovoltaic performance is conversely a fundamental limitation for electroluminescence. Under electroluminescence working conditions with typical charge densities lower than 10(15) cm(-3), defect-states trapping in three-dimensional perovskites competes effectively with the bimolecular radiative recombination. Herein, we overcome this limitation using van-der-Waals-coupled Ruddlesden-Popper perovskite multi-quantum-wells. Injected charge carriers are rapidly localized from adjacent thin few layer (n≤4) multi-quantum-wells to the thick (n≥5) multi-quantum-wells with extremely high efficiency (over 85%) through quantum coupling. Light emission originates from excitonic recombination in the thick multi-quantum-wells at much higher decay rate and efficiency than bimolecular recombination in three-dimensional perovskites. These multi-quantum-wells retain the simple solution processability and high charge carrier mobility of two-dimensional lead-halide perovskites. Importantly, these Ruddlesden-Popper perovskites offer new functionalities unavailable in single phase constituents, permitting the transcendence of the slow bimolecular recombination bottleneck in lead-halide perovskites for efficient electroluminescence.

  16. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence

    NASA Astrophysics Data System (ADS)

    Xing, Guichuan; Wu, Bo; Wu, Xiangyang; Li, Mingjie; Du, Bin; Wei, Qi; Guo, Jia; Yeow, Edwin K. L.; Sum, Tze Chien; Huang, Wei

    2017-02-01

    The slow bimolecular recombination that drives three-dimensional lead-halide perovskites' outstanding photovoltaic performance is conversely a fundamental limitation for electroluminescence. Under electroluminescence working conditions with typical charge densities lower than 1015 cm-3, defect-states trapping in three-dimensional perovskites competes effectively with the bimolecular radiative recombination. Herein, we overcome this limitation using van-der-Waals-coupled Ruddlesden-Popper perovskite multi-quantum-wells. Injected charge carriers are rapidly localized from adjacent thin few layer (n<=4) multi-quantum-wells to the thick (n>=5) multi-quantum-wells with extremely high efficiency (over 85%) through quantum coupling. Light emission originates from excitonic recombination in the thick multi-quantum-wells at much higher decay rate and efficiency than bimolecular recombination in three-dimensional perovskites. These multi-quantum-wells retain the simple solution processability and high charge carrier mobility of two-dimensional lead-halide perovskites. Importantly, these Ruddlesden-Popper perovskites offer new functionalities unavailable in single phase constituents, permitting the transcendence of the slow bimolecular recombination bottleneck in lead-halide perovskites for efficient electroluminescence.

  17. Tailoring Oxygen Sensitivity with Halide Substitution in Difluoroboron Dibenzoylmethane Polylactide Materials

    PubMed Central

    DeRosa, Christopher A.; Kerr, Caroline; Fan, Ziyi; Kolpaczynska, Milena; Mathew, Alexander S.; Evans, Ruffin E.; Zhang, Guoqing; Fraser, Cassandra L.

    2015-01-01

    The dual-emissive properties of solid-state difluoroboron β-diketonate-poly(lactic acid) (BF2bdkPLA) materials have been utilized for biological oxygen sensing. In this work, BF2dbm(X)PLA materials were synthesized, where X = H, F, Cl, Br, and I. The effects of changing the halide substituent and PLA polymer chain length on the optical properties in dilute CH2Cl2 solutions and solid-state polymer films were studied. These luminescent materials show fluorescence, phosphorescence, and lifetime tunability on the basis of molecular weight, as well as lifetime modulation via the halide substituent. Short BF2dbm(Br)PLA (6.0 kDa) and both short and long BF2dbm(I)PLA polymers (6.0 or 20.3 kDa) have fluorescence and intense phosphorescence ideal for ratiometric oxygen sensing. The lighter halide-dye polymers with hydrogen, fluorine, and chlorine substitution have longer phosphorescence lifetimes and can be utilized as ultrasensitive oxygen sensors. Photostability was also analyzed for the polymer films. PMID:26480236

  18. High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles.

    PubMed

    Xing, Jun; Yan, Fei; Zhao, Yawen; Chen, Shi; Yu, Huakang; Zhang, Qing; Zeng, Rongguang; Demir, Hilmi Volkan; Sun, Xiaowei; Huan, Alfred; Xiong, Qihua

    2016-07-26

    Organometal halide perovskite has recently emerged as a very promising family of materials with augmented performance in electronic and optoelectronic applications including photovoltaic devices, photodetectors, and light-emitting diodes. Herein, we propose and demonstrate facile solution synthesis of a series of colloidal organometal halide perovskite CH3NH3PbX3 (X = halides) nanoparticles with amorphous structure, which exhibit high quantum yield and tunable emission from ultraviolet to near-infrared. The growth mechanism and photoluminescence properties of the perovskite amorphous nanoparticles were studied in detail. A high-efficiency green-light-emitting diode based on amorphous CH3NH3PbBr3 nanoparticles was demonstrated. The perovskite amorphous nanoparticle-based light-emitting diode shows a maximum luminous efficiency of 11.49 cd/A, a power efficiency of 7.84 lm/W, and an external quantum efficiency of 3.8%, which is 3.5 times higher than that of the best colloidal perovskite quantum-dot-based light-emitting diodes previously reported. Our findings indicate the great potential of colloidal perovskite amorphous nanoparticles in light-emitting devices.

  19. Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells.

    PubMed

    Beal, Rachel E; Slotcavage, Daniel J; Leijtens, Tomas; Bowring, Andrea R; Belisle, Rebecca A; Nguyen, William H; Burkhard, George F; Hoke, Eric T; McGehee, Michael D

    2016-03-03

    A semiconductor that can be processed on a large scale with a bandgap around 1.8 eV could enable the manufacture of highly efficient low cost double-junction solar cells on crystalline Si. Solution-processable organic-inorganic halide perovskites have recently generated considerable excitement as absorbers in single-junction solar cells, and though it is possible to tune the bandgap of (CH3NH3)Pb(BrxI1-x)3 between 2.3 and 1.6 eV by controlling the halide concentration, optical instability due to photoinduced phase segregation limits the voltage that can be extracted from compositions with appropriate bandgaps for tandem applications. Moreover, these materials have been shown to suffer from thermal degradation at temperatures within the processing and operational window. By replacing the volatile methylammonium cation with cesium, it is possible to synthesize a mixed halide absorber material with improved optical and thermal stability, a stabilized photoconversion efficiency of 6.5%, and a bandgap of 1.9 eV.

  20. Lithological influence of aggregate in the alkali-carbonate reaction

    SciTech Connect

    Lopez-Buendia, A.M. . E-mail: angel.lopez@aidico.es; Climent, V. . E-mail: vcliment@grupogla.com; Verdu, P.

    2006-08-15

    The reactivity of carbonate rock with the alkali content of cement, commonly called alkali-carbonate reaction (ACR), has been investigated. Alkali-silica reaction (ASR) can also contribute in the alkali-aggregate reaction (AAR) in carbonate rock, mainly due to micro- and crypto-crystalline quartz or clay content in carbonate aggregate. Both ACR and ASR can occur in the same system, as has been also evidenced on this paper. Carbonate aggregate samples were selected using lithological reactivity criteria, taking into account the presence of dedolomitization, partial dolomitization, micro- and crypto-crystalline quartz. Selected rocks include calcitic dolostone with chert (CDX), calcitic dolostone with dedolomitization (CDD), limestone with chert (LX), marly calcitic dolostone with partial dolomitization (CD), high-porosity ferric dolostone with clays (FD). To evaluate the reactivity, aggregates were studied using expansion tests following RILEM AAR-2, AAR-5, a modification using LiOH AAR-5Li was also tested. A complementary study was done using petrographic monitoring with polarised light microscopy on aggregates immersed in NaOH and LiOH solutions after different ages. SEM-EDAX has been used to identify the presence of brucite as a product of dedolomitization. An ACR reaction showed shrinkage of the mortar bars in alkaline solutions explained by induced dedolomitization, while an ASR process typically displayed expansion. Neither shrinkage nor expansion was observed when mortar bars were immersed in solutions of lithium hydroxide. Carbonate aggregate classification with AAR pathology risk has been elaborated based on mechanical behaviours by expansion and shrinkage. It is proposed to be used as a petrographic method for AAR diagnosis to complement the RILEM AAR1 specifically for carbonate aggregate. Aggregate materials can be classified as I (non-reactive), II (potentially reactive), and III (probably reactive), considering induced dedolomitization ACR

  1. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  2. Photophysics of Hybrid Lead Halide Perovskites: The Role of Microstructure.

    PubMed

    Srimath Kandada, Ajay Ram; Petrozza, Annamaria

    2016-03-15

    Since the first reports on high efficiency, solution processed solar cells based on hybrid lead halide perovskites, there has been an explosion of activities on these materials. Researchers with interests spanning the full range from conventional inorganic to emerging organic and hybrid optoelectronic technologies have been contributing to the prolific research output. This has led to solar cell power conversion efficiencies now exceeding 20% and the demonstration of proofs of concept for electroluminescent and lasing devices. Hybrid perovskites can be self-assembled by a simple chemical deposition of the constituent units, with the possibility of integrating the useful properties of organic and inorganic compounds at the molecular scale within a single crystalline material, thus enabling a fine-tuning of the electronic properties. Tellingly, the fundamental properties of these materials may make us think of a new, solution processable, GaAs-like semiconductor. While this can be true to a first approximation, hybrid perovskites are intrinsically complex materials, where the presence of various types of interactions and structural disorder may strongly affect their properties. In particular, a clear understanding and control of the relative interactions between the organic and inorganic moieties is of paramount importance to properly disentangle their innate physics. In this Account we review our recent studies which aim to clarify the relationship between structural and electronic properties from a molecular to mesoscopic level. First we identify the markers for local disorder at the molecular level by using Raman spectroscopy as a probe. Then, we exploit such a tool to explore the role of microstructure on the absorption and luminescence properties of the semiconductor. Finally we address the controversy surrounding electron-hole interactions and excitonic effects. We show that in hybrid lead-halide perovskites dielectric screening also depends on the local

  3. Nickel-Catalyzed Borylation of Halides and Pseudo-Halides with Tetrahydroxydiboron [B2(OH)4

    PubMed Central

    Molander, Gary A.; Cavalcanti, Livia N.; García-García, Carolina

    2013-01-01

    Arylboronic acids are gaining increased importance as reagents and target structures in a variety of useful applications. Recently, the palladium-catalyzed synthesis of arylboronic acids employing the atom economical tetrahydroxydiboron (BBA) reagent has been reported. The high cost associated with palladium, combined with several limitations of both palladium and copper-catalyzed processes, prompted us to develop an alternative method. Thus, the nickel-catalyzed borylation of aryl and heteroaryl halides and pseudo-halides using tetrahydroxydiboron (BBA) has been formulated. The reaction proved to be widely functional group tolerant and applicable to a number of heterocyclic systems. To the best of our knowledge, the examples presented here represent the only effective Ni-catalyzed Miyaura borylations conducted at room temperature. PMID:23777538

  4. Thermal inactivation of alkali phosphatases under various conditions

    NASA Astrophysics Data System (ADS)

    Atyaksheva, L. F.; Tarasevich, B. N.; Chukhrai, E. S.; Poltorak, O. M.

    2009-02-01

    The thermal inactivation of alkali phosphatases from bacteria Escherichia coli (ECAP), bovine intestines (bovine IAP), and chicken intestines (chicken IAP) was studied in different buffer solutions and in the solid state. The conclusion was made that these enzymes had maximum stability in the solid state, and, in a carbonate buffer solution, their activity decreased most rapidly. It was found that the bacterial enzyme was more stable than animal phosphatases. It was noted that, for ECAP, four intermediate stages preceded the loss of enzyme activity, and, for bovine and chicken IAPs, three intermediate stages were observed. The activation energy of thermal inactivation of ECAP over the range 25-70°C was determined to be 80 kJ/mol; it corresponded to the dissociation of active dimers into inactive monomers. Higher activation energies (˜200 kJ/mol) observed at the initial stage of thermal inactivation of animal phosphatases resulted from the simultaneous loss of enzyme activity caused by dimer dissociation and denaturation. It was shown that the activation energy of denaturation of monomeric animal alkali phosphatases ranged from 330 to 380 kJ/mol depending on buffer media. It was concluded that the inactivation of solid samples of alkali phosphatases at 95°C was accompanied by an about twofold decrease in the content of β structures in protein molecules.

  5. Unraveling the Role of Monovalent Halides in Mixed-Halide Organic-Inorganic Perovskites.

    PubMed

    Deepa, Melepurath; Ramos, F Javier; Shivaprasad, S M; Ahmad, Shahzada

    2016-03-16

    The performance of perovskite solar cells is strongly influenced by the composition and microstructure of the perovskite. A recent approach to improve the power conversion efficiencies utilized mixed-halide perovskites, but the halide ions and their roles were not directly studied. Unraveling their precise location in the perovskite layer is of paramount importance. Here, we investigated four different perovskites by using X-ray photoelectron spectroscopy, and found that among the three studied mixed-halide perovskites, CH3 NH3 Pb(I0.74 Br0.26 )3 and CH3 NH3 PbBr3-x Clx show peaks that unambiguously demonstrate the presence of iodide and bromide in the former, and bromide and chloride in the latter. The CH3 NH3 PbI3-x Clx perovskite shows anomalous behavior, the iodide content far outweighs that of the chloride; a small proportion of chloride, in all likelihood, resides deep within the TiO2 /absorber layer. Our study reveals that there are many distinguishable structural differences between these perovskites, and that these directly impact the photovoltaic performances.

  6. Phonon spectra of alkali metals

    NASA Astrophysics Data System (ADS)

    Zeković, S.; Vukajlović, F.; Veljković, V.

    1982-10-01

    In this work we used a simple local model pseudopotential which includes screening for the phonon spectra calculations of alkali metals. The results obtained are in very good agreement with experimental data. In some branches of phonon spectra the differences between theoretical and experimental results are within 1-2%, while the maximum error is about 6%. The suggested form of the pseudopotential allows us to describe the phonon spectra of Na, K and Rb with only one, and, at the same time, a unique, parameter. In this case, the maximum disagreements from experiment are 9% for Na, 8% for K and 7% for Rb.

  7. Adsorption of hydrated halide ions on charged electrodes: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Glosli, James N.; Philpott, Michael R.

    1993-04-01

    Constant temperature molecular dynamics has been used to simulate the adsorption of hydrated halide ion X(-) = F(-), Cl(-), Br(-), and I(-), and lithium ion Li(+) on a flat uniformly charged surfaces. The simulations were done with either 214 water molecules and two ions (Li(+) and X(-)) in a box 2.362 nm deep or with 430 water molecules and the two ions in a box 4.320 nm deep. The boxes were periodically replicated in the xy directions. The magnitude of the surface charge on the box end was + or - 0.11 c/nm(sup 2), corresponding to an electric field of 2 x 10(exp 7) V/cm. The lateral dimensions of the simulation cell were 1.862 nm x 1.862 nm (x times y) in each case. All of the water molecules and ions interacted with the end walls via a weak 9 - 3 potential. The ST2 water model and parameters optimized for alkali halides interacting with the model ST2 water molecule were used in the calculations. Common practices of truncating the interactions at a finite distance (0.82 nm) and switching off Coulomb interactions at small distances were followed. The temperature was set at T = 2.411 kJ/mole (290 K). Some of the properties calculated were: distribution density profiles for ions and water across the gap important for comparisons iwth Gouy-Chapman theory, adsorbed ion-water pair correlation functions, the number of water molecules in the first and second hydration shells of the ions as a function of time. The time spent by a water molecule in the hydration shell was calculated to be approximately ten times longer for lithium than any other ion. The correlation between distance from the electrode and hydration number was studied and generally found to be pronounced for the larger anions.

  8. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    SciTech Connect

    Yao, Yi; Berkowitz, Max L. E-mail: ykanai@unc.edu; Kanai, Yosuke E-mail: ykanai@unc.edu

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  9. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    NASA Astrophysics Data System (ADS)

    Yao, Yi; Berkowitz, Max L.; Kanai, Yosuke

    2015-12-01

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na+ and K+ ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  10. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer.

    PubMed

    Yao, Yi; Berkowitz, Max L; Kanai, Yosuke

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na(+) and K(+) ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  11. Crystal growth of sulfide materials from alkali polysulfide liquids

    NASA Technical Reports Server (NTRS)

    White, W. B.

    1979-01-01

    The fluids experiment system was designed for low temperature solution growth, nominally aqueous solution growth. The alkali polysulfides, compositions in the systems Na2S-S and K2S-S form liquids in the temperature range of 190 C to 400 C. These can be used as solvents for other important classes of materials such as transition metal and other sulfides which are not soluble in aqueous media. Among these materials are luminescent and electroluminescent crystals whose physical properties are sensitive functions of crystal perfection and which could, therefore, serve as test materials for perfection improvement under microgravity conditions.

  12. An alkaline tin(II) halide compound Na3Sn2F6Cl: Synthesis, structure, and characterization

    NASA Astrophysics Data System (ADS)

    Gong, Pifu; Luo, Siyang; Huang, Qian; Yang, Yi; Jiang, Xingxing; Liang, Fei; Chen, Chuangtian; Lin, Zheshuai

    2017-04-01

    A new alkali tin(II) halide compound, Na3Sn2F6Cl, is synthesized by hydrothermal method. This compound crystallizes trigonally in space group of R-3c (167), and processes a zero-dimensional (0D) structure consisted of Na+ cations, Cl- anions and the isolated [SnF3]- trigonal pyramids in which the stereochemically active 5s2 lone pair electrons are attached to the Sn2+ cations. Interestingly, the [SnF3]- trigonal pyramids are parallel arranged in the a-b plane, while oppositely arranged in line with rotation along the c- axis. Moreover, the energy bandgap, thermal stability and electronic structure of Na3Sn2F6Cl are characterized and the results reveal that this compound has and indirect bandgap of 3.88 eV and is stable under 270 °C.

  13. Tellurium halide IR fibers for remote spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xhang H.; Ma, Hong Li; Blanchetiere, Chantal; Le Foulgoc, Karine; Lucas, Jacques; Heuze, Jean; Colardelle, P.; Froissard, P.; Picque, D.; Corrieu, G.

    1994-07-01

    The new family of IR transmitting glasses, the TeX glasses, based on the association of tellurium and halide (Cl, Br, or I) are characterized by a wide optical window extending from 2 to 18 micrometers and a strong stability towards devitrification. Optical fibers drawn from these glasses exhibit low losses in the 7 - 10 micrometers range (less than 1 dB/m for single index fibers, 1 - 2 dB/m for fibers having a core-clad structure). The TeX glass fibers have been used in a remote analysis set-up which is mainly composed of a FTIR spectrometer coupled with a HgCdTe detector. This prototype system permits qualitative and quantitative analysis in a wide wavelength region lying from 3 to 13 micrometers , covering the fundamental absorption of more organic species. The evolution of a lactic and an alcoholic fermentation has been monitored by means of this set-up.

  14. Passive particle dosimetry. [silver halide crystal growth

    NASA Technical Reports Server (NTRS)

    Childs, C. B.

    1977-01-01

    Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.

  15. Bleaching mechanism of silver halide photochromic glasses

    NASA Astrophysics Data System (ADS)

    Caurant, D.; Gourier, D.; Vivien, D.; Prassas, M.

    1993-02-01

    Thermal bleaching of silver halide photochromic glasses is studied by electron paramagnetic resonance spectroscopy of photoinduced CuII centers. During exposure to ultraviolet light, the only stable CuII species is the (CuIIVAg)A center, which is a CuII-silver vacancy complex with the vacancy in a nearest position. In the dark, this center rapidly decays via two parallel channels. The first involves the dissociation of the complex by displacement of the vacancy along a [110] direction, with an activation energy E3=0.44 eV and a frequency factor k30=3.4×105 s-1. The second channel involves the conversion of the (CuIIVAg)A center into a (CuIICl-VAg)B center, where the silver vacancy is in the next nearest position along the [100] direction. This process occurs with an activation energy E1=0.44 eV and a frequency factor k10=3.1×105 s-1. The (CuIICl-VAg)B center slowly decays by a vacancy hopping mechanism, with an activation energy E2=0.22 eV and a frequency factor k20=4.6 s-1. To explain these two decay channels, it is proposed that the (CuIIVAg)A and (CuIICl-VAg)B centers annihilate via the formation of a CuI ion and a neutral complex (AgIIVAg)A which migrates to the surface of the silver halide particle, where electron-hole recombination occurs.

  16. Electronic and Ionic Transport Dynamics in Organolead Halide Perovskites.

    PubMed

    Li, Dehui; Wu, Hao; Cheng, Hung-Chieh; Wang, Gongming; Huang, Yu; Duan, Xiangfeng

    2016-07-26

    Ion migration has been postulated as the underlying mechanism responsible for the hysteresis in organolead halide perovskite devices. However, the electronic and ionic transport dynamics and how they impact each other in organolead halide perovskites remain elusive to date. Here we report a systematic investigation of the electronic and ionic transport dynamics in organolead halide perovskite microplate crystals and thin films using temperature-dependent transient response measurements. Our study reveals that thermally activated ionic and electronic conduction coexist in perovskite devices. The extracted activation energies suggest that the electronic transport is easier, but ions migrate harder in microplates than in thin films, demonstrating that the crystalline quality and grain boundaries can fundamentally modify electronic and ionic transport in perovskites. These findings offer valuable insight on the electronic and ionic transport dynamics in organolead halide perovskites, which is critical for optimizing perovskite devices with reduced hysteresis and improved stability and efficiency.

  17. TRPM7 is regulated by halides through its kinase domain

    PubMed Central

    Yu, Haijie; Zhang, Zheng; Lis, Annette; Penner, Reinhold; Fleig, Andrea

    2013-01-01

    Transient receptor potential melastatin 7 (TRPM7) is a divalent-selective cation channel fused to an atypical α-kinase. TRPM7 is a key regulator of cell growth and proliferation, processes accompanied by mandatory cell volume changes. Osmolarity-induced cell volume alterations regulate TRPM7 through molecular crowding of solutes that affect channel activity, including magnesium (Mg2+), Mg-nucleotides and a further unidentified factor. Here, we assess whether chloride and related halides can act as negative feedback regulators of TRPM7. We find that chloride and bromide inhibit heterologously expressed TRPM7 in synergy with intracellular Mg2+ ([Mg2+]i) and this is facilitated through the ATP-binding site of the channel’s kinase domain. The synergistic block of TRPM7 by chloride and Mg2+ is not reversed during divalent-free or acidic conditions, indicating a change in protein conformation that leads to channel inactivation. Iodide has the strongest inhibitory effect on TRPM7 at physiological [Mg2+]i. Iodide also inhibits endogenous TRPM7-like currents as assessed in MCF-7 breast cancer cells, where upregulation of SLC5A5 sodium-iodide symporter enhances iodide uptake and inhibits cell proliferation. These results indicate that chloride could be an important factor in modulating TRPM7 during osmotic stress and implicate TRPM7 as a possible molecular mechanism contributing to the anti-proliferative characteristics of intracellular iodide accumulation in cancer cells. PMID:23471296

  18. Spectroscopic imaging of metal halide high-intensity discharge lamps

    NASA Astrophysics Data System (ADS)

    Bonvallet, Geoffrey A.

    The body of this work consists of three main research projects. An optical- and near-ultraviolet-wavelength absorption study sought to determine absolute densities of ground and excited level Sc atoms, ground level Sc + ions, and ground level Na atoms in a commercial 250 W metal halide high intensity discharge lamp during operation. These measurements also allowed the determination of the arc temperature and absolute electron density as functions of radius. Through infrared emission spectroscopy, relative densities of sodium and scandium were determined as functions of radius. Using the absolute densities gained from the optical experiment, these relative densities were calibrated. In addition, direct observation of the infrared emission allowed us to characterize the infrared power losses of the lamp. When considered as a fraction of the overall power consumption, the near-infrared spectral power losses were not substantial enough to warrant thorough investigation of their reduction in these lamps. The third project was an attempt to develop a portable x-ray diagnostic experiment. Two-dimensional spatial maps of the lamps were analyzed to determine absolute elemental mercury densities and the arc temperature as a function of radius. Two methods were used to improve the calibration of the density measurements and to correct for the spread in x-ray energy: known solutions of mercury in nitric acid, and an arc lamp which was uniformly heated to evaporate the mercury content. Although many complexities arose in this experiment, its goal was successfully completed.

  19. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  20. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  1. Self-trapped excitons in pure and Na- and Tl-doped caesium halides and the recombination luminescence

    NASA Astrophysics Data System (ADS)

    Fu, Chun-Rong; Chen, Ling-Fu; Song, K. S.

    1999-07-01

    On the basis of a method used earlier to predict the off-centre relaxed triplet self-trapped excitons in alkali halides, similar systems in caesium halides are studied. This work confirms the expected off-centre relaxation along the [100] cubic axes with increasing magnitude in the order CsI, CsBr and CsCl. The calculated emission energies are in reasonable agreement with observed values. The well-known 2.95 eV emission band of CsI:Na has been studied as a tunnelling recombination between a close pair consisting of a VK centre and a Na atom. For a number of close-pair geometries the emission energies are close to 3 eV. The strong emission bands of CsI:Tl at 2.25 eV and 2.55 eV have been interpreted as arising from tunnelling recombination of close pairs each consisting of a Tl0 and a VK centre. The calculated emission energies and polarizations are discussed in conjunction with the experimental data.

  2. Substrate inhibition competes with halide inhibition in polyphenol oxidase.

    PubMed

    Lim, Giselle Grace Fernando; Imura, Yuki; Yoshimura, Etsuro

    2012-10-01

    Polyphenol oxidase (PPO) is a ubiquitous enzyme important in the food industry. Although PPO activity followed Michaelis-Menten kinetics at catechol concentrations of up to 1 mM, it slowly decreased at catechol concentrations above 2 mM. This result indicated that in addition to the active site (site A), the enzyme possesses a second catechol-binding site (site B) that exerts an inhibitory effect on PPO activity. Halides inhibit PPO activity in such a way that substrate inhibition is lessened when halide concentration is increased. Furthermore, elevated concentrations of catechol diminished the degree of inhibition by halides. These findings suggest that halides also bind to site B to inhibit PPO activity. A steady-state kinetic analysis demonstrated that the dissociation constant between catechol and PPO depended on the binding of halides to site B. The dissociation constants were greatest when chloride bound to the site. Bromide and iodide yielded lower dissociation constants, in that order. These data indicate that the binding of halide to site B modulated the structure of site A, thereby exerting an inhibitory effect.

  3. Alkali-metal ion coordination in uranyl(VI) poly-peroxide complexes in solution. Part 1: the Li⁺, Na⁺ and K⁺--peroxide-hydroxide systems.

    PubMed

    Zanonato, Pier Luigi; Di Bernardo, Plinio; Vallet, Valerie; Szabó, Zoltán; Grenthe, Ingmar

    2015-01-28

    The alkali metal ions Li(+), Na(+) and K(+) have a profound influence on the stoichiometry of the complexes formed in uranyl(VI)-peroxide-hydroxide systems, presumably as a result of a templating effect, resulting in the formation of two complexes, M[(UO2)(O2)(OH)]2(-) where the uranyl units are linked by one peroxide bridge, μ-η(2)-η(2), with the second peroxide coordinated "end-on", η(2), to one of the uranyl groups, and M[(UO2)(O2)(OH)]4(3-), with a four-membered ring of uranyl ions linked by μ-η(2)-η(2) peroxide bridges. The stoichiometry and equilibrium constants for the reactions: M(+) + 2UO2(2+) + 2HO2(-) + 2H2O → M[(UO2)(O2)(OH)]2(-) + 4H(+) (1) and M(+) + 4UO2(2+) + 4HO2(-) + 4H2O → M[(UO2)(O2)(OH)]4(3-) + 8H(+) (2) have been measured at 25 °C in 0.10 M (tetramethyl ammonium/M(+))NO3 ionic media using reaction calorimetry. Both reactions are strongly enthalpy driven with large negative entropies of reaction; the observation that ΔH(2) ≈ 2ΔH(1) suggests that the enthalpy of reaction is approximately the same when peroxide is added in bridging and "end-on" positions. The thermodynamic driving force in the reactions is the formation of strong peroxide bridges and the role of M(+) cations is to provide a pathway with a low activation barrier between the reactants and in this way "guide" them to form peroxide bridged complexes; they play a similar role as in the synthesis of crown-ethers. Quantum chemical (QC) methods were used to determine the structure of the complexes, and to demonstrate how the size of the M(+)-ions affects their coordination geometry. There are several isomers of Na[(UO2)(O2)(OH)]2(-) and QC energy calculations show that the ones with a peroxide bridge are substantially more stable than the ones with hydroxide bridges. There are isomers with different coordination sites for Na(+) and the one with coordination to the peroxide bridge and two uranyl oxygen atoms is the most stable one.

  4. Self-Regulation Mechanism for Charged Point Defects in Hybrid Halide Perovskites**

    PubMed Central

    Walsh, Aron; Scanlon, David O; Chen, Shiyou; Gong, X G; Wei, Su-Huai

    2015-01-01

    Hybrid halide perovskites such as methylammonium lead iodide (CH3NH3PbI3) exhibit unusually low free-carrier concentrations despite being processed at low-temperatures from solution. We demonstrate, through quantum mechanical calculations, that an origin of this phenomenon is a prevalence of ionic over electronic disorder in stoichiometric materials. Schottky defect formation provides a mechanism to self-regulate the concentration of charge carriers through ionic compensation of charged point defects. The equilibrium charged vacancy concentration is predicted to exceed 0.4 % at room temperature. This behavior, which goes against established defect conventions for inorganic semiconductors, has implications for photovoltaic performance. PMID:25504875

  5. Self-regulation mechanism for charged point defects in hybrid halide perovskites

    DOE PAGES

    Walsh, Aron; Scanlon, David O.; Chen, Shiyou; ...

    2014-12-11

    Hybrid halide perovskites such as methylammonium lead iodide (CH3NH3PbI3) exhibit unusually low free-carrier concentrations despite being processed at low-temperatures from solution. We demonstrate, through quantum mechanical calculations, that an origin of this phenomenon is a prevalence of ionic over electronic disorder in stoichiometric materials. Schottky defect formation provides a mechanism to self-regulate the concentration of charge carriers through ionic compensation of charged point defects. The equilibrium charged vacancy concentration is predicted to exceed 0.4 % at room temperature. Furthermore, this behavior, which goes against established defect conventions for inorganic semiconductors, has implications for photovoltaic performance.

  6. Trimethylsilyl chloride promoted synthesis of α-branched amines by nucleophilic addition of organozinc halides to nitrones.

    PubMed

    Fu, Ying; Liu, Yanhua; Chen, Yaojuan; Hügel, Helmut M; Wang, Minzhu; Huang, Danfeng; Hu, Yulai

    2012-10-14

    A general procedure for the nucleophilic addition of organozinc halides with nitrones in the presence of trimethylsilyl chloride has been developed. Trimethylsilyl chloride was found to be both an indispensable reaction promoter and a ready hydroxylamine protective agent in these reactions. The produced O-(trimethylsilyl)hydroxylamines can be easily reduced into corresponding amines just by a zinc-copper couple in saturated aqueous NH(4)Cl solution.

  7. Ions interacting in solution: Moving from intrinsic to collective properties

    SciTech Connect

    Duignan, Timothy T.; Baer, Marcel D.; Mundy, Christopher J.

    2016-06-01

    A crucial determinant of Hofmeister effects is the direct interaction of ions in solution with the charged groups on the surface of larger particles. Understanding ion–ion interactions in solution is therefore a necessary first step to explaining Hofmeister effects. Here, we advocate an approach to modeling these types of properties where state of the art Ab Initio Molecular Dynamics (AIMD) simulation of ions in solution is used to establish benchmark values for the intrinsic properties of ions in solution such as solvation structures and ion–ion Potentials of Mean Force (PMFs). This information can then be combined with or used to parametrize and improve reduced models, which use approximations such as the continuum solvent model.(CSM) These reduced models can then be used to calculate collective and concentration dependent properties of electrolyte solution and so make accurate predictions about complex systems of relevance for direct applications. We provide an example of this approach using AIMD calculations of the sodium chloride dimer to calculate osmotic coefficients of all 20 alkali halide electrolytes. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. TD and CJM were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by MS$^{3}$ (Materials Synthesis and Simulation Across Scales) Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy.

  8. Chlorine behavior during co-hydrothermal treatment of high alkali coal and PVC

    NASA Astrophysics Data System (ADS)

    Huang, N.; Zhao, P. T.; Li, Z. Z.; Li, T.

    2016-08-01

    The hydrothermal treatment (HT) is an effective method to remove chlorine from chlorinated wastes under mild conditions. However, the alkali was required to improve the dechlorination efficiency. Meanwhile, the alkalis contents removed was necessary to realize the clean and highly efficient utilization of coal. This work was trying to investigate the feasibility of simultaneously removal alkalis and chlorine by co-hydrothermal treatment of PVC and high-alkali coal. The effect of operating conditions including the HT temperature, the holding time and particle sizes of coal on the dechlorination efficiency (DE) of PVC during the HT process was experimentally studied in this work. The results show that the DE increased with the rise of: 1) particle sizes (0.054~0.22mm), 2) holding time (30~90 min) and 3) temperature (240~300 °C). In detail, under 300 °C and 60min of holding time, the 85.18% of DE with first PS was lower than the 93.93% of DE with second PS and 100% of DE with third PS. The organic chlorine mainly transferred into chloridion in aqueous solution in HT process. All the results indicate that it is a prospective way to simultaneously removal alkalis and chlorine by co-hydrothermal treatment of chlorinated wastes and high-alkali coal.

  9. Laboratory measurements of alkali metal containing vapors released during biomass combustion

    SciTech Connect

    Dayton, D.C.; Milne, T.A.

    1996-12-31

    Alkali metals, in particular potassium, have been implicated as key ingredients for enhancing fouling and slagging of heat transfer surfaces in power generating facilities that convert biomass to electricity. When biomass is used as a fuel in boilers, the deposits formed reduce efficiency, and in the worst case lead to unscheduled plant downtime. Blending biomass with other fuels is often used as a strategy to control fouling and slagging problems. Depending on the combustor, sorbents can be added to the fuel mixture to sequester alkali metals. Another possibility is to develop methods of hot gas cleanup that reduce the amount of alkali vapor to acceptable levels. These solutions to fouling and slagging, however, would greatly benefit from a detailed understanding of the mechanisms of alkali release during biomass combustion. Identifying these alkali vapor species and understanding how these vapors enhance deposit formation would also be beneficial. The approach is to directly sample the hot gases liberated from the combustion of small biomass samples in a variable-temperature quartz-tube reactor employing a molecular beam mass spectrometer (MBMS) system. The authors have successfully used this experimental technique to identify alkali species released during the combustion of selected biomass feedstocks used in larger scale combustion facilities. Fuels investigated include lodgepole pine, eucalyptus, poplar, corn stover, switchgrass, wheat straw, rice straw, pistachio shells, almond shells and hulls, wood wastes, waste paper, alfalfa stems, and willow tops.

  10. The effects of potassium and rubidium hydroxide on the alkali-silica reaction

    SciTech Connect

    Shomglin, K.; Turanli, L.; Wenk, H.-R.; Monteiro, P.J.M.; Sposito, G

    2003-11-01

    Expansion of mortar specimens prepared with an aggregate of mylonite from the Santa Rosa mylonite zone in southern California was studied to investigate the effect of different alkali ions on the alkali-silica reaction in concrete. The expansion tests indicate that mortar has a greater expansion when subjected to a sodium hydroxide bath than in a sodium-potassium-rubidium hydroxide bath. Electron probe microanalysis (EPMA) of mortar bars at early ages show that rubidium ions, used as tracer, were present throughout the sample by the third day of exposure. The analysis also shows a high concentration of rubidium in silica gel from mortar bars exposed to bath solutions containing rubidium. The results suggest that expansion of mortar bars using ASTM C 1260 does not depend on the diffusion of alkali ions. The results indicate that the expansion of alkali-silica gel depends on the type of alkali ions present. Alkali-silica gel containing rubidium shows a lower concentration of calcium, suggesting competition for the same sites.

  11. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  12. The Interfacial Transition Zone in Alkali-Activated Slag Mortars

    NASA Astrophysics Data System (ADS)

    San Nicolas, Rackel; Provis, John

    2015-12-01

    The interfacial transition zone (ITZ) is known to strongly influence the mechanical and transport properties of mortars and concretes. This paper studies the ITZ between siliceous (quartz) aggregates and alkali activated slag binders in the context of mortar specimens. Backscattered electron images (BSE) generated in an environmental scanning electron microscope (ESEM) are used to identify unreacted binder components, reaction products and porosity in the zone surrounding aggregate particles, by composition and density contrast. X-ray mapping is used to exclude the regions corresponding to the aggregates from the BSE image of the ITZ, thus enabling analysis of only the binder phases, which are segmented into binary images by grey level discrimination. A distinct yet dense ITZ region is present in the alkali-activated slag mortars, containing a reduced content of unreacted slag particles compared to the bulk binder. The elemental analysis of this region shows that it contains a (C,N)-A-S-H gel which seems to have a higher content of Na (potentially deposited through desiccation of the pore solution) and a lower content of Ca than the bulk inner and outer products forming in the main binding region. These differences are potentially important in terms of long-term concrete performance, as the absence of a highly porous interfacial transition zone region is expected to provide a positive influence on the mechanical and transport properties of alkali-activated slag concretes.

  13. Effect of alkali treatment on surface morphology of titanium

    SciTech Connect

    Tan, K. J. Wahab, M. A. A. Mahmod, S. Idris, M. I. Abdullah, H. Z.

    2015-07-22

    Alkali and heat treatments were first introduced by Kim et al. to prepare a bioactive surface on titanium. This method has been proven very effective and widely used in other studies to promote titanium osteointegration. This study aims to investigate further the effect of alkali treatment on surface morphology of high purity titanium. High purity titanium foils were immersed in NaOH aqueous solutions of 0.5 M, 5 M and 15 M at 60°C and 80 °C for 1, 3 and 7 days. The surface morphology was examined using Field Emission Scanning Electron Microscope (FESEM). The obtained phases were analysed using Fourier Transform Infrared Spectroscopy (FTIR) in the spectra range of 4000-600 cm{sup −1} at 4 cm{sup −1} resolution and 50 scans. At the same soaking temperature and soaking time, a thicker porous network was observed with increasing concentration of NaOH. At the same soaking temperature, a much porous structure was observed with increasing soaking time. At constant alkali concentration, more homogenously distributed porous surface structure was observed with increasing soaking temperature.

  14. A statistical associating fluid theory for electrolyte solutions (SAFT-VRE)

    NASA Astrophysics Data System (ADS)

    Gil-Villegas, A.; Galindo, A.; Jackson, G.

    A general theory for electrolyte solutions is examined within the framework of the statistical associating fluid theory for potentials of variable range (SAFT-VR). A first extension of the theory (SAFT-VRE) has already been used to describe the thermodynamics and phase equilibria of aqueous solutions of alkali-halide salts [GALINDO,A.,GIL-VILLEGAS,A.,JACKSON, G. and BURGESS, A. N., 1999, J. phys. Chem. , 103, 10272]. The approach incorporates separate contributions describing the monomer, associating and ionic interactions. In the spirit of the SAFT-VR approach the monomer contribution is written as a high-temperature perturbation expansion up to second order; the separate effects of solvent-solvent, solvent-ion and ion-ion interactions on the phase equilibria are studied. Water is taken to be the solvent throughout the study, with the same four-site model and parameters as in the previous work. The association contribution is essential to account for the hydrogen bonding interactions present in water. The effects of ion pairing and solvent-ion association are also examined. For the ionic contribution several levels of approximation are discussed. The effect of the different molecular parameters on the phase behaviour of a model aqueous solution is examined for the different choices.

  15. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  16. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  17. Advancements in flowing diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Pitz, Greg A.; Stalnaker, Donald M.; Guild, Eric M.; Oliker, Benjamin Q.; Moran, Paul J.; Townsend, Steven W.; Hostutler, David A.

    2016-03-01

    Multiple variants of the Diode Pumped Alkali Laser (DPAL) have recently been demonstrated at the Air Force Research Laboratory (AFRL). Highlights of this ongoing research effort include: a) a 571W rubidium (Rb) based Master Oscillator Power Amplifier (MOPA) with a gain (2α) of 0.48 cm-1, b) a rubidium-cesium (Cs) Multi-Alkali Multi-Line (MAML) laser that simultaneously lases at both 795 nm and 895 nm, and c) a 1.5 kW resonantly pumped potassium (K) DPAL with a slope efficiency of 50%. The common factor among these experiments is the use of a flowing alkali test bed.

  18. Optical properties of halide and oxide compounds including the excitonic effects

    NASA Astrophysics Data System (ADS)

    Shwetha, G.; Kanchana, V.

    2014-04-01

    We have studied the optical properties of alkali halide and alkaline-earth oxide compounds including the excitonic effects by using the newly developed bootstrap kernel approximation for the exchange-correlation kernel of the Time-Dependent Density Functional Theory (TD-DFT) implemented in Full-Potential Linearized Augmented Plane Wave (FP-LAPW) method in the elk code. The bootstrap calculations are computationally less expensive and give results the same quality as the Bethe-Salpeter equation. We found improved results when compared to normal Density Functional Theory calculations, and observed results are comparable with the experiments. The lower energy peak of imaginary part of dielectric spectra shifts to lower energy regions as we move from MgO to BaO indicating the decrease in the band gap of these compounds from MgO to BaO. In all the studied compounds, the lower energy peak of the imaginary part of dielectric function is due to the transition from halogen p or oxide p states to metal derived s/d states.

  19. Charge carrier mobility in hybrid halide perovskites.

    PubMed

    Motta, Carlo; El-Mellouhi, Fedwa; Sanvito, Stefano

    2015-08-03

    The charge transport properties of hybrid halide perovskites are investigated with a combination of density functional theory including van der Waals interaction and the Boltzmann theory for diffusive transport in the relaxation time approximation. We find the mobility of electrons to be in the range 5-10 cm(2)V(-1)s(-1) and that for holes within 1-5 cm(2)V(-1)s(-1), where the variations depend on the crystal structure investigated and the level of doping. Such results, in good agreement with recent experiments, set the relaxation time to about 1 ps, which is the time-scale for the molecular rotation at room temperature. For the room temperature tetragonal phase we explore two possible orientations of the organic cations and find that the mobility has a significant asymmetry depending on the direction of the current with respect to the molecular axis. This is due mostly to the way the PbI3 octahedral symmetry is broken. Interestingly we find that substituting I with Cl has minor effects on the mobilities. Our analysis suggests that the carrier mobility is probably not a key factor in determining the high solar-harvesting efficiency of this class of materials.

  20. Ultrathin Colloidal Cesium Lead Halide Perovskite Nanowires.

    PubMed

    Zhang, Dandan; Yu, Yi; Bekenstein, Yehonadav; Wong, Andrew B; Alivisatos, A Paul; Yang, Peidong

    2016-10-12

    Highly uniform single crystal ultrathin CsPbBr3 nanowires (NWs) with diameter of 2.2 ± 0.2 nm and length up to several microns were successfully synthesized and purified using a catalyst-free colloidal synthesis method followed by a stepwise purification strategy. The NWs have bright photoluminescence (PL) with a photoluminescence quantum yield (PLQY) of about 30% after surface treatment. Large blue-shifted UV-vis absorption and PL spectra have been observed due to strong two-dimensional quantum confinement effects. A small angle X-ray scattering (SAXS) pattern shows the periodic packing of the ultrathin NWs along the radial direction, demonstrates the narrow radial distribution of the wires, and emphasizes the deep intercalation of the surfactants. Despite the extreme aspect ratios of the ultrathin NWs, their composition and the resulting optical properties can be readily tuned by an anion-exchange reaction with good morphology preservation. These bright ultrathin NWs may be used as a model system to study strong quantum confinement effects in a one-dimensional halide perovskite system.

  1. Perspectives on organolead halide perovskite photovoltaics

    NASA Astrophysics Data System (ADS)

    Hariz, Alex

    2016-07-01

    A number of photovoltaic technologies have been developed for large-scale solar-power production. The single-crystal first-generation photovoltaic devices were followed by thin-film semiconductor absorber layers layered between two charge-selective contacts, and more recently, by nanostructured or mesostructured solar cells that utilize a distributed heterojunction to generate charge carriers and to transport holes and electrons in spatially separated conduits. Even though a number of materials have been trialed in nanostructured devices, the aim of achieving high-efficiency thin-film solar cells in such a manner as to rival the silicon technology has yet to be attained. Organolead halide perovskites have recently emerged as a promising material for high-efficiency nanoinfiltrated devices. An examination of the efficiency evolution curve reveals that interfaces play a paramount role in emerging organic electronic applications. To optimize and control the performance in these devices, a comprehensive understanding of the contacts is essential. However, despite the apparent advances made, a fundamental theoretical analysis of the physical processes taking place at the contacts is still lacking. However, experimental ideas, such as the use of interlayer films, are forging marked improvements in efficiencies of perovskite-based solar cells. Furthermore, issues of long-term stability and large-area manufacturing have some way to go before full commercialization is possible.

  2. Color silver halide hologram production and mastering

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.; Huang, Qiang

    1997-04-01

    Color reflection holograms recorded with the Denisyuk geometry have been demonstrated by the recently formed HOLOS Corporation in New Hampshire. The Slavich red-green-blue (RGB) sensitized ultra-high resolution silver halide emulsion was used for the hologram recording. The employed laser wavelengths were 647 nm, 532 nm, and 476 nm, generated by an argon ion, a frequency doubled Nd:YAG, and a krypton ion laser, respectively. A beam combination mechanism with dichroic filters enabled a simultaneous RGB exposure, which made the color balance and overall exposure energy easy to control as well as simplifying the recording procedure. HOLOS has been producing limited edition color holograms in various sizes from 4' X 5' to 12' X 16'. A 30 foot long optical table and high power lasers will enable HOLOS to record color holograms up to the size of one meter square in the near future. Various approaches have been investigated in generating color hologram masters which have sufficiently high diffraction efficiency to contact copy the color images onto photopolymer materials. A specially designed test object including the 1931 CIE chromaticity diagram, a rainbow ribbon cable, pure yellow dots, and a cloisonne elephant was used for color recording experiments. In addition, the Macbeth Color Checker chart was used. Both colorimetric evaluation and scattering noise measurements were performed using the PR-650 Photo Research SpectraScan SpectraCalorimeter.

  3. Charge carrier mobility in hybrid halide perovskites

    PubMed Central

    Motta, Carlo; El-Mellouhi, Fedwa; Sanvito, Stefano

    2015-01-01

    The charge transport properties of hybrid halide perovskites are investigated with a combination of density functional theory including van der Waals interaction and the Boltzmann theory for diffusive transport in the relaxation time approximation. We find the mobility of electrons to be in the range 5–10 cm2V−1s−1 and that for holes within 1–5 cm2V−1s−1, where the variations depend on the crystal structure investigated and the level of doping. Such results, in good agreement with recent experiments, set the relaxation time to about 1 ps, which is the time-scale for the molecular rotation at room temperature. For the room temperature tetragonal phase we explore two possible orientations of the organic cations and find that the mobility has a significant asymmetry depending on the direction of the current with respect to the molecular axis. This is due mostly to the way the PbI3 octahedral symmetry is broken. Interestingly we find that substituting I with Cl has minor effects on the mobilities. Our analysis suggests that the carrier mobility is probably not a key factor in determining the high solar-harvesting efficiency of this class of materials. PMID:26235910

  4. Alkali metal for ultraviolet band-pass filter

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  5. Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production.

    PubMed

    Keshwani, Deepak R; Cheng, Jay J

    2010-01-01

    Switchgrass and coastal bermudagrass are promising lignocellulosic feedstocks for bioethanol production. However, pretreatment of lignocelluloses is required to improve production of fermentable sugars from enzymatic hydrolysis. Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass was investigated in this study. Pretreatments were carried out by immersing the biomass in dilute alkali reagents and exposing the slurry to microwave radiation at 250 W for residence times ranging from 5 to 20 min. Simons' stain method was used to quantify changes in biomass porosity as a result of the pretreatment. Pretreatments were evaluated based on yields of total reducing sugars, glucose, and xylose. An evaluation of different alkalis identified sodium hydroxide as the most effective alkali reagent for microwave-based pretreatment of switchgrass and coastal bermudagrass. 82% glucose and 63% xylose yields were achieved for switchgrass and 87% glucose and 59% xylose yields were achieved for coastal bermudagrass following enzymatic hydrolysis of biomass pretreated under optimal conditions. Dielectric properties for dilute sodium hydroxide solutions were measured and compared with solid losses, lignin reduction, and reducing sugar levels in hydrolyzates. Results indicate that dielectric loss tangent of alkali solutions is a potential indicator of the severity of microwave-based pretreatments.

  6. Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1986-01-01

    The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  7. Mn(2+)-Doped Lead Halide Perovskite Nanocrystals with Dual-Color Emission Controlled by Halide Content.

    PubMed

    Liu, Wenyong; Lin, Qianglu; Li, Hongbo; Wu, Kaifeng; Robel, István; Pietryga, Jeffrey M; Klimov, Victor I

    2016-11-16

    Impurity doping has been widely used to endow semiconductor nanocrystals with novel optical, electronic, and magnetic functionalities. Here, we introduce a new family of doped NCs offering unique insights into the chemical mechanism of doping, as well as into the fundamental interactions between the dopant and the semiconductor host. Specifically, by elucidating the role of relative bond strengths within the precursor and the host lattice, we develop an effective approach for incorporating manganese (Mn) ions into nanocrystals of lead-halide perovskites (CsPbX3, where X = Cl, Br, or I). In a key enabling step not possible in, for example, II-VI nanocrystals, we use gentle chemical means to finely and reversibly tune the nanocrystal band gap over a wide range of energies (1.8-3.1 eV) via postsynthetic anion exchange. We observe a dramatic effect of halide identity on relative intensities of intrinsic band-edge and Mn emission bands, which we ascribe to the influence of the energy difference between the corresponding transitions on the characteristics of energy transfer between the Mn ion and the semiconductor host.

  8. Lead Halide Perovskites and Other Metal Halide Complexes As Inorganic Capping Ligands for Colloidal Nanocrystals

    PubMed Central

    2014-01-01

    Lead halide perovskites (CH3NH3PbX3, where X = I, Br) and other metal halide complexes (MXn, where M = Pb, Cd, In, Zn, Fe, Bi, Sb) have been studied as inorganic capping ligands for colloidal nanocrystals. We present the methodology for the surface functionalization via ligand-exchange reactions and the effect on the optical properties of IV–VI, II–VI, and III–V semiconductor nanocrystals. In particular, we show that the Lewis acid–base properties of the solvents, in addition to the solvent dielectric constant, must be properly adjusted for successful ligand exchange and colloidal stability. High luminescence quantum efficiencies of 20–30% for near-infrared emitting CH3NH3PbI3-functionalized PbS nanocrystals and 50–65% for red-emitting CH3NH3CdBr3- and (NH4)2ZnCl4-capped CdSe/CdS nanocrystals point to highly efficient electronic passivation of the nanocrystal surface. PMID:24746226

  9. Improved alkali-metal/silicate binders

    NASA Technical Reports Server (NTRS)

    Schutt, J.

    1978-01-01

    Family of inorganic binders utilizes potassium or sodium oxide/silicate dispersion and employs high mole ratio of silicon dioxide to alkali-metal binder. Binders are stable, inexpensive, extremely water resistant, and easy to apply.

  10. Alkali Metal Handling Practices at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Salvail, Patrick G.; Carter, Robert R.

    2002-01-01

    NASA Marshall Space Flight Center (MSFC) is NASA s principle propulsion development center. Research and development is coordinated and carried out on not only the existing transportation systems, but also those that may be flown in the near future. Heat pipe cooled fast fission cores are among several concepts being considered for the Nuclear Systems Initiative. Marshall Space Flight Center has developed a capability to handle high-purity alkali metals for use in heat pipes or liquid metal heat transfer loops. This capability is a low budget prototype of an alkali metal handling system that would allow the production of flight qualified heat pipe modules or alkali metal loops. The processing approach used to introduce pure alkali metal into heat pipe modules and other test articles are described in this paper.

  11. Alkali metal propellants for MPD thrusters

    NASA Technical Reports Server (NTRS)

    Polk, J. E.; Pivirotto, T. J.

    1991-01-01

    Experiments performed in the United States in the 1960s and early 1970s and in the Soviet Union with alkali metal-fuelled MPD thrusters indicate performance levels substantially better than those achieved with gaseous propellants. Cathode wear appears to be less in engines with alkali metal propellants also. A critical review of the available data indicates that the data are consistent and reliable. An analysis of testing and systems-level considerations shows that pumping requirements for testing are substantially decreased and reductions in tankage fraction can be expected. In addition, while care must be exercised in handling the alkali metals, it is not prohibitively difficult or hazardous. The greatest disadvantage seems to be the potential for spacecraft contamination, but there appear to be viable strategies for minimizing the impact of propellant deposition on spacecraft surfaces. Renewed examination of alkali metal-fuelled MPD thrusters for ambitious SEI missions is recommended.

  12. Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties.

    PubMed

    Aharon, Sigalit; Etgar, Lioz

    2016-05-11

    Organo-metal halide perovskite is an efficient light harvester in photovoltaic solar cells. Organometal halide perovskite is used mainly in its "bulk" form in the solar cell. Confined perovskite nanostructures could be a promising candidate for efficient optoelectronic devices, taking advantage of the superior bulk properties of organo-metal halide perovskite, as well as the nanoscale properties. In this paper, we present facile low-temperature synthesis of two-dimensional (2D) lead halide perovskite nanorods (NRs). These NRs show a shift to higher energies in the absorbance and in the photoluminescence compared to the bulk material, which supports their 2D structure. X-ray diffraction (XRD) analysis of the NRs demonstrates their 2D nature combined with the tetragonal 3D perovskite structure. In addition, by alternating the halide composition, we were able to tune the optical properties of the NRs. Fast Fourier transform, and electron diffraction show the tetragonal structure of these NRs. By varying the ligands ratio (e.g., octylammonium to oleic acid) in the synthesis, we were able to provide the formation mechanism of these novel 2D perovskite NRs. The 2D perovskite NRs are promising candidates for a variety of optoelectronic applications, such as light-emitting diodes, lasing, solar cells, and sensors.

  13. Halide Perovskites: Poor Man's High-Performance Semiconductors.

    PubMed

    Stoumpos, Constantinos C; Kanatzidis, Mercouri G

    2016-07-01

    Halide perovskites are a rapidly developing class of medium-bandgap semiconductors which, to date, have been popularized on account of their remarkable success in solid-state heterojunction solar cells raising the photovoltaic efficiency to 20% within the last 5 years. As the physical properties of the materials are being explored, it is becoming apparent that the photovoltaic performance of the halide perovskites is just but one aspect of the wealth of opportunities that these compounds offer as high-performance semiconductors. From unique optical and electrical properties stemming from their characteristic electronic structure to highly efficient real-life technological applications, halide perovskites constitute a brand new class of materials with exotic properties awaiting discovery. The nature of halide perovskites from the materials' viewpoint is discussed here, enlisting the most important classes of the compounds and describing their most exciting properties. The topics covered focus on the optical and electrical properties highlighting some of the milestone achievements reported to date but also addressing controversies in the vastly expanding halide perovskite literature.

  14. Ab initio modeling of the optical properties in organometallic halide perovskites for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Neukirch, Amanda; Nei, Wanyi; Pedesseau, Laurent; Even, Jacky; Katan, Claudine; Mohite, Aditya; Tretiak, Segrei

    2015-03-01

    The need for an inexpensive, clean, and plentiful source of energy has generated large amounts of research in an assortment of solution processed organic and hybrid organic-inorganic solar cells. A relative newcomer to the field of solution processed photovoltaics is the lead halide perovskite solar cell. In the past 5 years, the efficiencies of devices made from this material have increased from 3.5% to nearly 20%. Despite the rapid development of organic-inorganic perovskite solar cells, a thorough understanding of the fundamental photophysical processes driving the high performance of these devices is not well understood. I am using state-of-the-art ab initio computational techniques in order to characterize the properties at the interface of perovskite devices in order to aide in materials design and device engineering. I will present an in-depth analysis of the electronic and optical properties of bulk and surface states of pure and mixed halide systems. The high-level static quantum mechanical calculations, including spin-orbit-coupling and the many body GW approach, identify the key electronic states involved in photoinduced dynamics. This knowledge provides important information on how the optical properties change with variations to the system. Supported by the DOE, the LANL LDRD program XW11, and CNLS.

  15. Effects of salt or cosolvent addition on solubility of a hydrophobic solute in water: Relevance to those on thermal stability of a protein

    NASA Astrophysics Data System (ADS)

    Murakami, Shota; Hayashi, Tomohiko; Kinoshita, Masahiro

    2017-02-01

    The solubility of a nonpolar solute in water is changed upon addition of a salt or cosolvent. Hereafter, "solvent" is formed by water molecules for pure water, by water molecules, cations, and anions for water-salt solution, and by water and cosolvent molecules for water-cosolvent solution. Decrease and increase in the solubility, respectively, are ascribed to enhancement and reduction of the hydrophobic effect. Plenty of experimental data are available for the change in solubility of argon or methane arising from the addition. We show that the integral equation theory combined with a rigid-body model, in which the solute and solvent particles are modeled as hard spheres with different diameters, can reproduce the data for the following items: salting out by an alkali halide and salting in by tetramethylammonium bromide, increase in solubility by a monohydric alcohol, and decrease in solubility by sucrose or urea. The orders of cation or anion species in terms of the power of decreasing the solubility can also be reproduced for alkali halides. With the rigid-body model, the analyses are focused on the roles of entropy originating from the translational displacement of solvent particles. It is argued by decomposing the solvation entropy of a nonpolar solute into physically insightful constituents that the solvent crowding in the bulk is a pivotal factor of the hydrophobic effect: When the solvent crowding in the bulk becomes more serious, the effect is strengthened, and when it becomes less serious, the effect is weakened. It is experimentally known that the thermal stability of a protein is also influenced by the salt or cosolvent addition. The additions which decrease and increase the solubility of a nonpolar solute, respectively, usually enhance and lower the thermal stability. This suggests that the enhanced or reduced hydrophobic effect is also a principal factor governing the stability change. However, urea decreases the solubility but lowers the stability

  16. Desulfurizing Coal With an Alkali Treatment

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kalvinskas, J. J.

    1987-01-01

    Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.

  17. Double-Diffusive Convection During Growth of Halides and Selenides

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Su, Ching-Hua; Duval, Walter M. B.

    2015-01-01

    Heavy metal halides and selenides have unique properties which make them excellent materials for chemical, biological and radiological sensors. Recently it has been shown that selenohalides are even better materials than halides or selenides for gamma-ray detection. These materials also meet the strong needs of a wide band imaging technology to cover ultra-violet (UV), midwave infrared wavelength (MWIR) to very long wavelength infrared (VLWIR) region for hyperspectral imager components such as etalon filters and acousto-optic tunable filters (AO). In fact AOTF based imagers based on these materials have some superiority than imagers based on liquid crystals, FTIR, Fabry-Perot, grating, etalon, electro-optic modulation, piezoelectric and several other concepts. For example, broadband spectral and imagers have problems of processing large amount of information during real-time observation. Acousto-Optic Tunable Filter (AOTF) imagers are being developed to fill the need of reducing processing time of data, low cost operation and key to achieving the goal of covering long-wave infrared (LWIR). At the present time spectral imaging systems are based on the use of diffraction gratings are typically used in a pushbroom or whiskbroom mode. They are mostly used in systems and acquire large amounts of hyperspectral data that is processed off-line later. In contrast, acousto-optic tunable filter spectral imagers require very little image processing, providing new strategies for object recognition and tracking. They are ideally suited for tactical situations requiring immediate real-time image processing. But the performance of these imagers depends on the quality and homogeneity of acousto-optic materials. In addition for many systems requirements are so demanding that crystals up to sizes of 10 cm length are desired. We have studied several selenides and halide crystals for laser and AO imagers for MWIR and LWIR wavelength regions. We have grown and fabricated crystals of

  18. Single Cesium Lead Halide Perovskite Nanocrystals at Low Temperature: Fast Single-Photon Emission, Reduced Blinking, and Exciton Fine Structure

    PubMed Central

    2016-01-01

    Metal-halide semiconductors with perovskite crystal structure are attractive due to their facile solution processability, and have recently been harnessed very successfully for high-efficiency photovoltaics and bright light sources. Here, we show that at low temperature single colloidal cesium lead halide (CsPbX3, where X = Cl/Br) nanocrystals exhibit stable, narrow-band emission with suppressed blinking and small spectral diffusion. Photon antibunching demonstrates unambiguously nonclassical single-photon emission with radiative decay on the order of 250 ps, representing a significant acceleration compared to other common quantum emitters. High-resolution spectroscopy provides insight into the complex nature of the emission process such as the fine structure and charged exciton dynamics. PMID:26771336

  19. Regeneration of zinc halide catalyst used in the hydrocracking of polynuclear hydrocarbons

    DOEpatents

    Gorin, Everett

    1978-01-01

    Improved recovery of spent molten zinc halide hydro-cracking catalyst is achieved in the oxidative vapor phase regeneration thereof by selective treatment of the zinc oxide carried over by the effluent vapors from the regeneration zone with hydrogen halide gas under conditions favoring the reaction of the zinc oxide with the hydrogen halide, whereby regenerated zinc halide is recovered in a solids-free state with little loss of zinc values.

  20. Potential Applications of Alkali-Activated Alumino-Silicate Binders in Military Operations

    DTIC Science & Technology

    1985-11-01

    silica/alumina compounds ( cancrinites ) will not crystallize unless a template compound (sodium sulfate or nitrate) is present in solution to fill the...used in waste dis- posal. The compounds that form in low-temperature clay-alkali reactions (zeo- lites and cancrinites ) are large cage-like crystals that

  1. Molecular Hydrogen Effectively Heals Alkali-Injured Cornea via Suppression of Oxidative Stress

    PubMed Central

    Cejka, Cestmir; Kossl, Jan; Hermankova, Barbora; Holan, Vladimir

    2017-01-01

    The aim of this study was to examine the effect of molecular hydrogen (H2) on the healing of alkali-injured cornea. The effects of the solution of H2 in phosphate buffered saline (PBS) or PBS alone topically applied on the alkali-injured rabbit cornea with 0.25 M NaOH were investigated using immunohistochemical and biochemical methods. Central corneal thickness taken as an index of corneal hydration was measured with an ultrasonic pachymeter. Results show that irrigation of the damaged eyes with H2 solution immediately after the injury and then within next five days renewed corneal transparency lost after the injury and reduced corneal hydration increased after the injury to physiological levels within ten days after the injury. In contrast, in injured corneas treated with PBS, the transparency of damaged corneas remained lost and corneal hydration elevated. Later results—on day 20 after the injury—showed that in alkali-injured corneas treated with H2 solution the expression of proinflammatory cytokines, peroxynitrite, detected by nitrotyrosine residues (NT), and malondialdehyde (MDA) expressions were very low or absent compared to PBS treated injured corneas, where NT and MDA expressions were present. In conclusion, H2 solution favorably influenced corneal healing after alkali injury via suppression of oxidative stress.

  2. Conformer of the peroxynitrite ion formed under photolysis of crystalline alkali nitrates – cis or trans?

    NASA Astrophysics Data System (ADS)

    Pak, V. Kh; Anan’ev, V. A.; Dyagileva, E. P.; Lyrshchikov, S. Yu; Miklin, M. B.; Rezvova, M. A.

    2017-01-01

    The optical and infrared reflectance spectra of the crystalline powders prepared by co-crystallization of caesium nitrate, nitrite, and peroxynitrite from alkali solution have been studied. We find that the trans conformer forms under photolysis of crystalline pure caesium nitrate. Under its dissolution the trans conformer transforms to the cis conformer.

  3. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  4. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  5. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  6. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  7. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  8. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning metal halide lamp ballasts and... FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts and Fixtures § 431.322 Definitions concerning metal halide lamp ballasts and fixtures. Ballast efficiency means, in the case of...

  9. 75 FR 5544 - Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures: Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... for Metal Halide Lamp Fixtures: Public Meeting and Availability of the Framework Document AGENCY... conservation standards for certain metal halide lamp fixtures. This document announces that the period for... metal halide lamp fixtures and provide docket number EERE-2009-BT-STD-0018 and/or RIN number 1904-...

  10. 10 CFR Appendix B to Subpart S to... - Certification Report for Metal Halide Lamp Ballasts

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Certification Report for Metal Halide Lamp Ballasts B... PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts and Fixtures Pt. 431, Subpt. S, App. B Appendix B to Subpart S to Part 431—Certification Report for Metal Halide Lamp...

  11. 10 CFR Appendix A to Subpart S of... - Compliance Statement for Metal Halide Lamp Ballasts

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Compliance Statement for Metal Halide Lamp Ballasts A... PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts and Fixtures Pt. 431, Subpt. S, App. A Appendix A to Subpart S of Part 431—Compliance Statement for Metal Halide Lamp...

  12. Thermodynamic reactivity, growth and characterization of mercurous halide crystals

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Gottlieb, M.; Henningsen, T.; Hopkins, R. H.; Mazelsky, R.; Singh, M.; Glicksman, M. E.; Paradies, C.

    1992-01-01

    Thermodynamic calculations were carried out for the Hg-X-O system (X = Cl, Br, I) to identify the potential sources of contamination and relative stability of oxides and oxy-halide phases. The effect of excess mercury vapor pressure on the optical quality of mercurous halide crystal was studied by growing several mercurous chloride crystals from mercury-rich composition. The optical quality of crystals was examined by birefringence interferometry and laser scattering studies. Crystals grown in slightly mercury-rich composition showed improved optical quality relative to stoichiometric crystals.

  13. Activation volumes in lead halides and other solids

    NASA Astrophysics Data System (ADS)

    Alexopoulos, K.; Lazaridou, M.; Varotsos, P.

    1986-02-01

    Conductivity measurements of PbCl2 and PbBr2 under pressure have been carried out by Oberschmidt and Lazarus. The migration and activation volumes scale with the corresponding enthalpies in a manner predetermined by the bulk properties. By considering the existing data for a large variety of solids (rare-gas solids, lithium halides, lead halides, SrF2, and olivine) in which the defect enthalpies vary by two orders of magnitude we conclude that there is a curve which connects in a unified manner the point-defect data with the bulk properties.

  14. A scaled-ionic-charge simulation model that reproduces enhanced and suppressed water diffusion in aqueous salt solutions.

    PubMed

    Kann, Z R; Skinner, J L

    2014-09-14

    Non-polarizable models for ions and water quantitatively and qualitatively misrepresent the salt concentration dependence of water diffusion in electrolyte solutions. In particular, experiment shows that the water diffusion coefficient increases in the presence of salts of low charge density (e.g., CsI), whereas the results of simulations with non-polarizable models show a decrease of the water diffusion coefficient in all alkali halide solutions. We present a simple charge-scaling method based on the ratio of the solvent dielectric constants from simulation and experiment. Using an ion model that was developed independently of a solvent, i.e., in the crystalline solid, this method improves the water diffusion trends across a range of water models. When used with a good-quality water model, e.g., TIP4P/2005 or E3B, this method recovers the qualitative behaviour of the water diffusion trends. The model and method used were also shown to give good results for other structural and dynamic properties including solution density, radial distribution functions, and ion diffusion coefficients.

  15. Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water

    NASA Astrophysics Data System (ADS)

    Crespo-Quesada, Micaela; Pazos-Outón, Luis M.; Warnan, Julien; Kuehnel, Moritz F.; Friend, Richard H.; Reisner, Erwin

    2016-09-01

    Lead-halide perovskites have triggered the latest breakthrough in photovoltaic technology. Despite the great promise shown by these materials, their instability towards water even in the presence of low amounts of moisture makes them, a priori, unsuitable for their direct use as light harvesters in aqueous solution for the production of hydrogen through water splitting. Here, we present a simple method that enables their use in photoelectrocatalytic hydrogen evolution while immersed in an aqueous solution. Field's metal, a fusible InBiSn alloy, is used to efficiently protect the perovskite from water while simultaneously allowing the photogenerated electrons to reach a Pt hydrogen evolution catalyst. A record photocurrent density of -9.8 mA cm-2 at 0 V versus RHE with an onset potential as positive as 0.95+/-0.03 V versus RHE is obtained. The photoelectrodes show remarkable stability retaining more than 80% of their initial photocurrent for ~1 h under continuous illumination.

  16. The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors.

    PubMed

    Stoumpos, Constantinos C; Kanatzidis, Mercouri G

    2015-10-20

    The recent re-emergence of the halide perovskites, of the type AMX3, derives from a sea-changing breakthrough in the field of photovoltaics that has led to a whole new generation of solar devices with remarkable power conversion efficiency. The success in the field of photovoltaics has led to intense, combined research efforts to better understand these materials both from the fundamental chemistry and physics points of view and for the improvement of applied functional device engineering. This groundswell of activity has breathed new life into this long-known but largely "forgotten" class of perovskites. The impressive achievements of halide perovskites in photovoltaics, as well as other optoelectronic applications, stem from an unusually favorable combination of optical and electronic properties, with the ability to be solution processed into films. This defines them as a brand new class of semiconductors that can rival or exceed the performance of the venerable classes of III-V and II-IV semiconductors, which presently dominate the industries of applied optoelectronics. Our aim in this Account is to highlight the basic pillars that define the chemistry of the halide perovskites and their unconventional electronic properties through the prism of structure-property relationships. We focus on the synthetic requirements under which a halide perovskite can exist and emphasize how the synthetic conditions can determine the structural integrity and the bulk properties of the perovskites. Then we proceed to discuss the origins of the optical and electronic phenomena, using the perovskite crystal structure as a guide. Some of the most remarkable features of the perovskites dealt with in this Account include the evolution of a unique type of defect, which gives rise to superlattices. These can enhance or diminish the fluorescence properties of the perovskites. For example, the exotic self-doping ability of the Sn-based perovskites allows them to adopt electrical

  17. Alkali-silica reaction products: Comparison between samples from concrete structures and laboratory test specimens

    SciTech Connect

    Sachlova, Sarka Prikryl, Richard; Pertold, Zdenek

    2010-12-15

    Alkali-silica gels (ASG) were investigated in concrete from bridge structures (constructed from the 1920s to 2000), as well as in experimental specimens; employing optical microscopy, petrographic image analysis, and scanning electron microscopy combined with energy dispersive spectroscopy (SEM/EDS). The main differences were found in the chemical composition and morphology of the ASGs. ASGs which had formed in older concrete samples (50-80 years old) show a partly crystalline structure and higher Ca{sup 2+} content, indicating their aging and maturation. Younger concrete samples and experimental test specimens exhibit the presence of amorphous ASG. The chemistry of ASG from experimental specimens reflects the chemical composition of accelerating solutions. - Research Highlights: {yields} Quantitative analysis of alkali-silica gels {yields} Comparison of ASR in experimental conditions with ASR in bridge structures {yields} Investigation of factors affecting alkali-silica reaction {yields} Investigation of ASR of different types of aggregates.

  18. Elliptical polarization of near-resonant linearly polarized probe light in optically pumped alkali metal vapor

    NASA Astrophysics Data System (ADS)

    Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui

    2017-02-01

    Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements.

  19. Elliptical polarization of near-resonant linearly polarized probe light in optically pumped alkali metal vapor

    PubMed Central

    Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui

    2017-01-01

    Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements. PMID:28216649

  20. Facile Precursor for Synthesis of Silver Nanoparticles Using Alkali Treated Maize Starch

    PubMed Central

    El-Rafie, M. H.; Ahmed, Hanan B.; Zahran, M. K.

    2014-01-01

    Silver nanoparticles were prepared by using alkali treated maize starch which plays a dual role as reducer for AgNO3 and stabilizer for the produced AgNPs. The redox reaction which takes a place between AgNO3 and alkali treated starch was followed up and controlled in order to obtain spherical shaped silver nanoparticles with mean size 4–6 nm. The redox potentials confirmed the principle role of alkali treatment in increasing the reducibility of starch macromolecules. The measurements of reducing sugars at the end of reaction using dinitrosalicylic acid reagent (DNS) were carried out in order to control the chemical reduction reaction. The UV/Vis spectra show that an absorption peak, occurring due to surface plasmon resonance (SPR), exists at 410 nm, which is characteristic to yellow color of silver nanoparticles solution. The samples have been characterized by transmission electron microscopy (TEM), which reveal the nanonature of the particles. PMID:27433508

  1. Visualization of alkali-denatured supercoiled plasmid DNA by atomic force microscopy

    SciTech Connect

    Yu Jia; Zhang Zhenfeng; Cao Kou; Huang Xitai

    2008-09-26

    To study the alkali denaturation of supercoiled DNA, plasmid pBR322 was treated with gradient concentrations of NaOH solution. The results of gel electrophoresis showed that the alkali denaturation of the supercoiled DNA occurred in a narrow range of pH value (12.88-12.90). The alkali-denatured supercoiled DNA ran, as a sharp band, faster than the supercoiled DNA. The supercoiled plasmid DNA of pBR322, pACYC184 and pJGX15A were denatured by NaOH, and then visualized by atomic force microscopy. Compared with the supercoiled DNA, the atomic force microscopy images of the alkali-denatured supercoiled DNA showed rough surface with many kinks, bulges on double strands with inhomogeneous diameters. The apparent contour lengths of the denatured DNA were shortened by 16%, 16% and 50% for pBR322, pACYC184 and pJGX15A, respectively. All evidence suggested that the alkali-denatured supercoiled DNA had a stable conformation with unregistered, topologically constrained double strands and intrastrand secondary structure.

  2. Dissolution Process of Palladium in Hydrochloric Acid: A Route via Alkali Metal Palladates

    NASA Astrophysics Data System (ADS)

    Kasuya, Ryo; Miki, Takeshi; Morikawa, Hisashi; Tai, Yutaka

    2015-12-01

    To improve the safety of the Pd recovery processes that use toxic oxidizers, dissolution of Pd in hydrochloric acid with alkali metal palladates was investigated. Alkali metal palladates were prepared by calcining a mixture of Pd black and alkali metal (Li, Na, and K) carbonates in air. Almost the entire amount of Pd was converted into Li2PdO2 after calcination at 1073 K (800 °C) using Li2CO3. In contrast, PdO was obtained by calcination at 1073 K (800 °C) using Na and K carbonates. Our results indicated that Li2CO3 is the most active reagent among the examined alkali metal carbonates for the formation of palladates. In addition, dissolution of the resulting Li2PdO2 in HCl solutions was evaluated under various conditions. In particular, Li2PdO2 rapidly dissolved in diluted (0.1 M) HCl at ambient temperature. Solubility of Pd of Li2PdO2 was found to be 99 pct or larger after dissolution treatment at 353 K (80 °C) for 5 minutes; in contrast, PdO hardly dissolved in 0.1 M HCl. The dissolution mechanism of Li2PdO2 in HCl was also elucidated by analysis of crystal structures and particulate properties. Since our process is completely free from toxic oxidizers, the dissolution process via alkali metal palladates is much safer than currently employed methods.

  3. Sodium-limestone double alkali flue gas desulfurization process with improved limestone utilization

    SciTech Connect

    Biolchini, R.J.; Boward, W.L. Jr.; Wang, K.H.

    1987-08-18

    This patent describes a sodium-limestone double alkali process for the continuous desulfurization of flue gas, having the steps of absorbing sulfur dioxide from an SO/sub 2/-containing gas stream in an absorber with an aqueous solution of sodium sulfite and sodium bisulfite, diverting at least a portion of the absorber effluent solution for regeneration with limestone, introducing limestone into the diverted absorber effluent solution to convert bisulfite to sulfite, separating by-product solids from the limestone-treated solution, and returning regenerated solution to the absorber, the improvement for increasing the utilization of the limestone used during the regeneration operation.

  4. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation

    SciTech Connect

    Bernal, Susan A.; Provis, John L.; Walkley, Brant; San Nicolas, Rackel; Gehman, John D.; Brice, David G.; Kilcullen, Adam R.; Duxson, Peter; Deventer, Jannie S.J. van

    2013-11-15

    Binders formed through alkali-activation of slags and fly ashes, including ‘fly ash geopolymers’, provide appealing properties as binders for low-emissions concrete production. However, the changes in pH and pore solution chemistry induced during accelerated carbonation testing provide unrealistically low predictions of in-service carbonation resistance. The aluminosilicate gel remaining in an alkali-activated slag system after accelerated carbonation is highly polymerised, consistent with a decalcification mechanism, while fly ash-based binders mainly carbonate through precipitation of alkali salts (bicarbonates at elevated CO{sub 2} concentrations, or carbonates under natural exposure) from the pore solution, with little change in the binder gel identifiable by nuclear magnetic resonance spectroscopy. In activated fly ash/slag blends, two distinct gels (C–A–S–H and N–A–S–H) are formed; under accelerated carbonation, the N–A–S–H gel behaves comparably to fly ash-based systems, while the C–A–S–H gel is decalcified similarly to alkali-activated slag. This provides new scope for durability optimisation, and for developing appropriate testing methodologies. -- Highlights: •C-A-S-H gel in alkali-activated slag decalcifies during accelerated carbonation. •Alkali-activated fly ash gel changes much less under CO{sub 2} exposure. •Blended slag-fly ash binder contains two coexisting gel types. •These two gels respond differently to carbonation. •Understanding of carbonation mechanisms is essential in developing test methods.

  5. Hybrid lead halide perovskites for light energy conversion: Excited state properties and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Manser, Joseph S.

    The burgeoning class of metal halide perovskites constitutes a paradigm shift in the study and application of solution-processed semiconductors. Advancements in thin film processing and our understanding of the underlying structural, photophysical, and electronic properties of these materials over the past five years have led to development of perovskite solar cells with power conversion efficiencies that rival much more mature first and second-generation commercial technologies. It seems only a matter of time before the real-world impact of these compounds is put to the test. Like oxide perovskites, metal halide perovskites have ABX3 stoichiometry, where typically A is a monovalent cation, B a bivalent post-transition metal, and X a halide anion. Characterizing the behavior of photogenerated charges in metal halide perovskites is integral for understanding the operating principles and fundamental limitations of perovskite optoelectronics. The majority of studies outlined in this dissertation involve fundamental study of the prototypical organic-inorganic compound methylammonium lead iodide (CH3NH3PbI 3). Time-resolved pump-probe spectroscopy serves as a principle tool in these investigations. Excitation of a semiconductor can lead to formation of a number different excited state species and electronic complexes. Through analysis of excited state decay kinetics and optical nonlinearities in perovskite thin films, we identify spontaneous formation of a large fraction of free electrons and holes, whose presence is requisite for efficient photovoltaic operation. Following photogeneration of charge carriers in a semiconductor absorber, these species must travel large distances across the thickness of the material to realize large external quantum efficiencies and efficient carrier extraction. Using a powerful technique known as transient absorption microscopy, we directly image long-range carrier diffusion in a CH3NH3PbI 3 thin film. Charges are unambiguously shown to

  6. Effect of basic alkali-pickling conditions on the production of lysinoalanine in preserved eggs.

    PubMed

    Zhao, Yan; Luo, Xuying; Li, Jianke; Xu, Mingsheng; Tu, Yonggang

    2015-09-01

    During the pickling process, strong alkali causes significant lysinoalanine (LAL) formation in preserved eggs, which may reduce the nutritional value of the proteins and result in a potential hazard to human health. In this study, the impacts of the alkali treatment conditions on the production of LAL in preserved eggs were investigated. Preserved eggs were prepared using different times and temperatures, and alkali-pickling solutions with different types and concentrations of alkali and metal salts, and the corresponding LAL contents were measured. The results showed the following: during the pickling period of the preserved egg, the content of LAL in the egg white first rapidly increased and then slowly increased; the content of LAL in the egg yolk continued to increase significantly. During the aging period, the levels of LAL in both egg white and egg yolk slowly increased. The amounts of LAL in the preserved eggs were not significantly different at temperatures between 20 and 25ºC. At higher pickling temperatures, the LAL content in the preserved eggs increased. With the increase of alkali concentration in the alkali-pickling solution, the LAL content in the egg white and egg yolk showed an overall trend of an initial increase followed by a slight decrease. The content of LAL produced in preserved eggs treated with KOH was lower than in those treated with NaOH. NaCl and KCl produced no significant effects on the production of LAL in the preserved eggs. With increasing amounts of heavy metal salts, the LAL content in the preserved eggs first decreased and then increased. The LAL content generated in the CuSO4 group was lower than that in either the ZnSO4 or PbO groups.

  7. Color-Pure Violet-Light-Emitting Diodes Based on Layered Lead Halide Perovskite Nanoplates.

    PubMed

    Liang, Dong; Peng, Yuelin; Fu, Yongping; Shearer, Melinda J; Zhang, Jingjing; Zhai, Jianyuan; Zhang, Yi; Hamers, Robert J; Andrew, Trisha L; Jin, Song

    2016-07-26

    Violet electroluminescence is rare in both inorganic and organic light-emitting diodes (LEDs). Low-cost and room-temperature solution-processed lead halide perovskites with high-efficiency and color-tunable photoluminescence are promising for LEDs. Here, we report room-temperature color-pure violet LEDs based on a two-dimensional lead halide perovskite material, namely, 2-phenylethylammonium (C6H5CH2CH2NH3(+), PEA) lead bromide [(PEA)2PbBr4]. The natural quantum confinement of two-dimensional layered perovskite (PEA)2PbBr4 allows for photoluminescence of shorter wavelength (410 nm) than its three-dimensional counterpart. By converting as-deposited polycrystalline thin films to micrometer-sized (PEA)2PbBr4 nanoplates using solvent vapor annealing, we successfully integrated this layered perovskite material into LEDs and achieved efficient room-temperature violet electroluminescence at 410 nm with a narrow bandwidth. This conversion to nanoplates significantly enhanced the crystallinity and photophysical properties of the (PEA)2PbBr4 samples and the external quantum efficiency of the violet LED. The solvent vapor annealing method reported herein can be generally applied to other perovskite materials to increase their grain size and, ultimately, improve the performance of optoelectronic devices based on perovskite materials.

  8. Transition metal ion-assisted photochemical generation of alkyl halides and hydrocarbons from carboxylic acids

    SciTech Connect

    Carraher, Jack; Pestovsky, Oleg; Bakac, Andreja

    2012-03-14

    Near-UV photolysis of aqueous solutions of propionic acid and aqueous Fe3+ in the absence of oxygen generates a mixture of hydrocarbons (ethane, ethylene and butane), carbon dioxide, and Fe2+. The reaction becomes mildly catalytic (about five turnovers) in the presence of oxygen which converts a portion of alkyl radicals to oxidizing intermediates that reoxidize Fe2+. The photochemistry in the presence of halide ions (X− = Cl−, Br−) generates ethyl halides via halogen atom abstraction from FeXn3−n by ethyl radicals. Near-quantitative yields of C2H5X are obtained at ≥0.05 M X−. Competition experiments with Co(NH3)5Br2+ provided kinetic data for the reaction of ethyl radicals with FeCl2+ (k = (4.0 ± 0.5) × 106 M−1 s−1) and with FeBr2+ (k = (3.0 ± 0.5) × 107 M−1 s−1). Photochemical decarboxylation of propionic acid in the presence of Cu2+ generates ethylene and Cu+. Longer-chain acids also yield alpha olefins as exclusive products. These reactions become catalytic under constant purge with oxygen which plays a dual role. It reoxidizes Cu+ to Cu2+, and removes gaseous olefins to prevent accumulation of Cu+(olefin) complexes and depletion of Cu2+. The results underscore the profound effect that the choice of metal ions, the medium, and reaction conditions exert on the photochemistry of carboxylic acids.

  9. Nonaqueous Halide-Free Flux Reactions with Tin-Based Solders

    NASA Astrophysics Data System (ADS)

    Qu, Guoying; Weinman, Craig J.; Ghosh, Tanushree; Flake, John C.

    2015-04-01

    New halide-free fluxes are becoming more prevalent in electronic packaging; however, their efficacy and reactive behavior with conventional solders has not been well characterized. In this work, we examine nonaqueous halide-free flux reactions of tin (Sn)-based solder surfaces using electrochemical methods. Cyclic voltammetry was used to study reactions of Sn(II) and Sn(IV) species, x-ray photoelectron spectroscopy (XPS) was used to study surface chemistry, and chronopotentiometry was used to quantify equilibrium constants of Sn-carboxylic complexes. Reactions were investigated using carboxylic acid solutions such as adipic acid or maleic acid in polyethylene glycol. Carboxylic acid-based fluxes are practically inactive toward SnO2 removal at room temperature (25°C); however, some species are capable of removing the oxides at temperatures as high as 180°C and at pH as low as 0.1. XPS results suggest the H+ activity of the carboxylic acid is the key to removing SnO2 on Sn-based solder surfaces. Equilibrium coefficients and potential-pH diagrams are given to elucidate the influence of pH on Sn surfaces.

  10. All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications.

    PubMed

    Li, Xiaoming; Cao, Fei; Yu, Dejian; Chen, Jun; Sun, Zhiguo; Shen, Yalong; Zhu, Ying; Wang, Lin; Wei, Yi; Wu, Ye; Zeng, Haibo

    2017-03-01

    The recent success of organometallic halide perovskites (OHPs) in photovoltaic devices has triggered lots of corresponding research and many perovskite analogues have been developed to look for devices with comparable performance but better stability. Upon the preparation of all inorganic halide perovskite nanocrystals (IHP NCs), research activities have soared due to their better stability, ultrahigh photoluminescence quantum yield (PL QY), and composition dependent luminescence covering the whole visible region with narrow line-width. They are expected to be promising materials for next generation lighting and display, and many other applications. Within two years, a lot of interesting results have been observed. Here, the synthesis of IHPs is reviewed, and their progresses in optoelectronic devices and optical applications, such as light-emitting diodes (LEDs), photodetectors (PDs), solar cells (SCs), and lasing, is presented. Information and recent understanding of their crystal structures and morphology modulations are addressed. Finally, a brief outlook is given, highlighting the presently main problems and their possible solutions and future development directions.

  11. Ultrabroad Photoluminescence and Electroluminescence at New Wavelengths from Doped Organometal Halide Perovskites.

    PubMed

    Zhou, Yang; Yong, Zi-Jun; Zhang, Kai-Cheng; Liu, Bo-Mei; Wang, Zhao-Wei; Hou, Jing-Shan; Fang, Yong-Zheng; Zhou, Yi; Sun, Hong-Tao; Song, Bo

    2016-07-21

    Doping of semiconductors by introducing foreign atoms enables their widespread applications in microelectronics and optoelectronics. We show that this strategy can be applied to direct bandgap lead-halide perovskites, leading to the realization of ultrawide photoluminescence (PL) at new wavelengths enabled by doping bismuth (Bi) into lead-halide perovskites. Structural and photophysical characterization reveals that the PL stems from one class of Bi doping-induced optically active center, which is attributed to distorted [PbI6] units coupled with spatially localized bipolarons. Additionally, we find that compositional engineering of these semiconductors can be employed as an additional way to rationally tune the PL properties of doped perovskites. Finally, we accomplished the electroluminescence at cryogenic temperatures by using this system as an emissive layer, marking the first electrically driven devices using Bi-doped photonic materials. Our results suggest that low-cost, earth-abundant, solution-processable Bi-doped perovskite semiconductors could be promising candidate materials for developing optical sources operating at new wavelengths.

  12. Extended Photo-Conversion Spectrum in Low-Toxic Bismuth Halide Perovskite Solar Cells.

    PubMed

    Johansson, Malin B; Zhu, Huimin; Johansson, Erik M J

    2016-09-01

    Lead-based perovskites show very promising properties for use in solar cells; however, the toxicity of lead is a potential inhibitor for large-scale application of these solar cells. Here, a low-toxic bismuth halide, CsBi3I10, is synthesized from solution and the optical properties and crystal structure are compared with previously reported Cs3Bi2I9 perovskite, and the photovoltaic properties are also investigated. The XRD pattern suggests that the CsBi3I10 film has a layered structure with a different dominating crystal growth direction than the Cs3Bi2I9 perovskite. A band gap of 1.77 eV is obtained for the CsBi3I10 film, which is smaller than the band gap of Cs3Bi2I9 at 2.03 eV, and an extended visible light absorption spectrum is therefore obtained. The solar cell device with CsBi3I10 shows a photocurrent up to 700 nm, and this work shows therefore the possibility for increased light absorption and higher photocurrents in solar cells based on bismuth halide perovskites.

  13. Acid/Base-mediated uptake and release of halide anions with a preorganized aryl-triazole foldamer.

    PubMed

    Zhao, Wei; Wang, Ying; Shang, Jie; Che, Yanke; Jiang, Hua

    2015-05-18

    A new approach for the construction of artificial receptors capable of selectively uptake and release of halides to mimic the biological halide ions pumps is developed, in which the preorganized aryl-triazole foldamer was designed to bear a resorcinolic group in the central strand as a switch regulator. By using 1,8-diazabicyclo[5.4.0]undec-7-ene/picric acid as the trigger, the foldamer can be switched between "w"-shape and helical conformation. Due to the large, half-open cavity as well as the additional electrostatic repulsion between oxyanions and guest halide, the foldamer in "w"-shape possesses a much weaker affinity for chloride, bromide, and iodide anions than those in the helical conformation in 6:94 (v/v) [D6 ]DMSO/CDCl3 . When the foldamer and chloride ions have the same initial concentrations of 1 mM, 70 % chloride ions in the solution could be reversibly bound or released upon switching.

  14. Cs{sub 7}Sm{sub 11}[TeO{sub 3}]{sub 12}Cl{sub 16} and Rb{sub 7}Nd{sub 11}[TeO{sub 3}]{sub 12}Br{sub 16}, the new tellurite halides of the tetragonal Rb{sub 6}LiNd{sub 11}[SeO{sub 3}]{sub 12}Cl{sub 16} structure type

    SciTech Connect

    Charkin, Dmitri O.; Black, Cameron; Downie, Lewis J.; Sklovsky, Dmitry E.; Berdonosov, Peter S.; Olenev, Andrei V.; Zhou, Wuzong; Lightfoot, Philip; Dolgikh, Valery A.

    2015-12-15

    Two new rare-earth – alkali – tellurium oxide halides were synthesized by a salt flux technique and characterized by single-crystal X-ray diffraction. The structures of the new compounds Cs{sub 7}Sm{sub 11}[TeO{sub 3}]{sub 12}Cl{sub 16} (I) and Rb{sub 7}Nd{sub 11}[TeO{sub 3}]{sub 12}Br{sub 16} (II) (both tetragonal, space group I4/mcm) correspond to the sequence of [MLn{sub 11}(TeO{sub 3}){sub 12}] and [M{sub 6}X{sub 16}] layers and bear very strong similarities to those of known selenite analogs. We discuss the trends in similarities and differences in compositions and structural details between the Se and Te compounds; more members of the family are predicted. - Graphical abstract: Two new rare-earth – alkali – tellurium oxide halides were predicted and synthesized. - Highlights: • Two new rare-earth – alkali – tellurium oxide halides were synthesized. • They adopt slab structure of rare earth-tellurium-oxygen and CsCl-like slabs. • The Br-based CsCl-like slabs have been observed first in this layered family.

  15. Semiempirical and DFT Investigations of the Dissociation of Alkyl Halides

    ERIC Educational Resources Information Center

    Waas, Jack R.

    2006-01-01

    Enthalpy changes corresponding to the gas phase heats of dissociation of 12 organic halides were calculated using two semiempirical methods, the Hartree-Fock method, and two DFT methods. These calculated values were compared to experimental values where possible. All five methods agreed generally with the expected empirically known trends in the…

  16. On the Boiling Points of the Alkyl Halides.

    ERIC Educational Resources Information Center

    Correia, John

    1988-01-01

    Discusses the variety of explanations in organic chemistry textbooks of a physical property of organic compounds. Focuses on those concepts explaining attractive forces between molecules. Concludes that induction interactions play a major role in alkyl halides and other polar organic molecules and should be given wider exposure in chemistry texts.…

  17. Kinetic Studies of the Solvolysis of Two Organic Halides

    ERIC Educational Resources Information Center

    Duncan, J. A.; Pasto, D. J.

    1975-01-01

    Describes an undergraduate organic chemistry laboratory experiment which utilizes the solvolysis of organic halides to demonstrate first and second order reaction kinetics. The experiment also investigates the effect of a change of solvent polarity on reaction rate, common-ion and noncommon-ion salt effects, and the activation parameters of a…

  18. Students' understanding of alkyl halide reactions in undergraduate organic chemistry

    NASA Astrophysics Data System (ADS)

    Cruz-Ramirez de Arellano, Daniel

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is studied in undergraduate organic chemistry courses, establishing a robust understanding of the concepts and reactions related to them can be beneficial in assuring students' success in organic chemistry courses. Therefore, the purpose of this study was to elucidate and describe students' understanding of alkyl halide reactions in an undergraduate organic chemistry course. Participants were interviewed using a think-aloud protocol in which they were given a set of exercises dealing with reactions and mechanisms of alkyl halide molecules in order to shed light on the students' understanding of these reactions and elucidate any gaps in understanding and incorrect warrants that may be present. These interviews were transcribed and analyzed using qualitative inquiry approaches. In general, the findings from this study show that the students exhibited gaps in understanding and incorrect warrants dealing with: (1) classifying substances as bases and/or nucleophiles, (2) assessing the basic or nucleophilic strength of substances, (3) accurately describing the electron movement of the steps that take place during alkyl halide reaction mechanisms, and (4) assessing the viability of their proposed reactive intermediates and breakage of covalent bonds. In addition, implications for teaching and future research are proposed.

  19. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Cruz-Ramirez de Arellano, Daniel

    2013-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  20. Influence of lithium hydroxide on alkali-silica reaction

    SciTech Connect

    Bulteel, D.; Garcia-Diaz, E.; Degrugilliers, P.

    2010-04-15

    Several papers show that the use of lithium limits the development of alkali-silica reaction (ASR) in concrete. The aim of this study is to improve the understanding of lithium's role on the alteration mechanism of ASR. The approach used is a chemical method which allowed a quantitative measurement of the specific degree of reaction of ASR. The chemical concrete sub-system used, called model reactor, is composed of the main ASR reagents: reactive aggregate, portlandite and alkaline solution. Different reaction degrees are measured and compared for different alkaline solutions: NaOH, KOH and LiOH. Alteration by ASR is observed with the same reaction degrees in the presence of NaOH and KOH, accompanied by the consumption of hydroxyl concentration. On the other hand with LiOH, ASR is very limited. Reaction degree values evolve little and the hydroxyl concentration remains about stable. These observations demonstrate that lithium ions have an inhibitor role on ASR.

  1. Quantum efficiencies of imaging detectors with alkali halide photocathodes. I - Microchannel plates with separate and integral CsI photocathodes

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.

    1987-01-01

    Measurements and comparisons have been made of the quantum efficiencies of microchannel plate (MCP) detectors in the far-UV (below 2000-A) wavelength range using CsI photocathodes (a) deposited on the front surfaces of microchannel plates and (b) deposited on solid substrates as opaque photocathodes with the resulting photoelectrons input to microchannel plates. The efficiences were measured in both pulse-counting and photodiode modes of operation. Typical efficiencies are about 15 percent at 1216 A for a CsI-coated MCP compared with 65 percent for an opaque CsI photocathode MCP detector. Special processing has yielded an efficiency as high as 20 percent for a CsI-coated MCP. This may possibly be further improved by optimization of the tilt angle of the MCP channels relative to the front face of the MCP and incident radiation. However, at present there still remains a factor of at least 3 quantum efficiency advantage in the separate opaque CsI photocathode configuration.

  2. Modeling and Investigation of Heavy Oxide and Alkali-Halide Scintillators for Potential Use in Neutron and Gamma Detection Systems

    DTIC Science & Technology

    2015-06-01

    Gamma rays are a form of high energy electromagnetic radiation created in a nuclear process or transition. Gamma radiation from the decay of...fast neutron detection efficiencies well over 40%, were investigated for potential use as highly efficient gamma-neutron radiation detectors. The...Monte Carlo N-Particle radiation transport code (MCNP) was used to characterize the radiation interactions in a candidate set of crystals, including

  3. Cocrystallization of certain 4f and 5f elements in the bivalent state with alkali metal halides

    SciTech Connect

    Mikheev, N.B.; Kamenskaya, A.M.; Veleshko, I.E.; Kulyukhin, S.A.

    1987-01-01

    The cocrystallization of Fm/sup 2 +/, Es/sup 2 +/, Cf/sup 2 +/, Am/sup 2 +/, Yb/sup 2 +/, Eu/sup 2 +/ and Sr/sup 2 +/ with NaCl, KCl and KBr in tetrahydrofuran (THF), hexamethylphosphorotriamide (HMPA), and ethanol has been studied. It is shown that in water-ethanol medium An/sup 2 +/ cocrystallize with KCl by the formation of anomalous mixed crystals and Ln/sup 2 +/ do not cocrystallize. In HMPA neither Ln/sup 2 +/ nor An/sup 2 +/ are observed to transfer into the KBr solid phase, while in THF both Ln/sup 2 +/ and An/sup 2 +/ cocrystallize with NaCl. The change in the behavior on Ln/sup 2 +/ and An/sup 2 +/ cocrystallize with a change from one solvent to another is caused by the difference in the effective ionic radii of these elements, which arises from the large nephelauxetic effect for An/sup 2 +/ as well as by the different solvating power of these solvents.

  4. Theoretical study of Ti0 and Pb+ centers in alkali halide and alkaline earth fluoride type crystals

    NASA Astrophysics Data System (ADS)

    Andriessen, J.; Postma, H.

    1987-04-01

    A theoretical study has been carried out on the hfi of Pb+ defects in KCl, CaF2 and BaF2 using an earlier developed crystal field model. Experimental results can be explained in the same way as was done for Tl0 in KCl. However some parameters seem to have a less physical meaning than in the case of Tl0. A new method is in progress using the ASW band structure procedure in order to estimate genuine solid state effects. Preliminary results are encouraging.

  5. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  6. Alkali-aggregate reaction in concrete containing high-alkali cement and granite aggregate

    SciTech Connect

    Owsiak, Z

    2004-01-01

    The paper discusses results of the research into the influence of high-alkali Portland cement on granite aggregate. The deformation of the concrete structure occurred after 18 months. The research was carried out by means of a scanning electron microscope equipped with a high-energy dispersive X-ray analyzer that allowed observation of unpolished sections of concrete bars exhibiting the cracking pattern typical of the alkali-silica reaction. Both the microscopic observation and the X-ray elemental analysis confirm the presence of alkali-silica gel and secondary ettringite in the cracks.

  7. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut

    PubMed Central

    2015-01-01

    Metal halides perovskites, such as hybrid organic–inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4–15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410–700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12–42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiative lifetimes in the range of 1–29 ns. The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410–530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation. PMID:25633588

  8. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX₃, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut.

    PubMed

    Protesescu, Loredana; Yakunin, Sergii; Bodnarchuk, Maryna I; Krieg, Franziska; Caputo, Riccarda; Hendon, Christopher H; Yang, Ruo Xi; Walsh, Aron; Kovalenko, Maksym V

    2015-06-10

    Metal halides perovskites, such as hybrid organic-inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4-15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410-700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12-42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiative lifetimes in the range of 1-29 ns. The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410-530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.

  9. Purification and Characterization of an Extracellular, Thermo-Alkali-Stable, Metal Tolerant Laccase from Bacillus tequilensis SN4

    PubMed Central

    Sondhi, Sonica; Sharma, Prince; Saini, Shilpa; Puri, Neena; Gupta, Naveen

    2014-01-01

    A novel extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4 (SN4LAC) was purified to homogeneity. The laccase was a monomeric protein of molecular weight 32 KDa. UV-visible spectrum and peptide mass fingerprinting results showed that SN4LAC is a multicopper oxidase. Laccase was active in broad range of phenolic and non-phenolic substrates. Catalytic efficiency (kcat/Km) showed that 2, 6-dimethoxyphenol was most efficiently oxidized by the enzyme. The enzyme was inhibited by conventional inhibitors of laccase like sodium azide, cysteine, dithiothreitol and β-mercaptoethanol. SN4LAC was found to be highly thermostable, having temperature optimum at 85°C and could retain more than 80% activity at 70°C for 24 h. The optimum pH of activity for 2, 6-dimethoxyphenol, 2, 2′-azino bis[3-ethylbenzthiazoline-6-sulfonate], syringaldazine and guaiacol was 8.0, 5.5, 6.5 and 8.0 respectively. Enzyme was alkali-stable as it retained more than 75% activity at pH 9.0 for 24 h. Activity of the enzyme was significantly enhanced by Cu2+, Co2+, SDS and CTAB, while it was stable in the presence of halides, most of the other metal ions and surfactants. The extracellular nature and stability of SN4LAC in extreme conditions such as high temperature, pH, heavy metals, halides and detergents makes it a highly suitable candidate for biotechnological and industrial applications. PMID:24871763

  10. Alkali-Activated Aluminium-Silicate Composites as Insulation Materials for Industrial Application

    NASA Astrophysics Data System (ADS)

    Dembovska, L.; Bajare, D.; Pundiene, I.; Bumanis, G.

    2015-11-01

    The article reports on the study of thermal stability of alkali-activated aluminium- silicate composites (ASC) at temperature 800-1100°C. ASC were prepared by using calcined kaolinite clay, aluminium scrap recycling waste, lead-silicate glass waste and quartz sand. As alkali activator, commercial sodium silicate solution modified with an addition of sodium hydroxide was used. The obtained alkali activation solution had silica modulus Ms=1.67. Components of aluminium scrap recycling waste (aluminium nitride (AlN) and iron sulphite (FeSO3)) react in the alkali media and create gases - ammonia and sulphur dioxide, which provide the porous structure of the material [1]. Changes in the chemical composition of ASC during heating were identified and quantitatively analysed by using DTA/TG, dimension changes during the heating process were determined by using HTOM, pore microstructure was examined by SEM, and mineralogical composition of ASC was determined by XRD. The density of ASC was measured in accordance with EN 1097-7. ASC with density around 560 kg/m3 and heat resistance up to 1100°C with shrinkage less than 5% were obtained. The intended use of this material is the application as an insulation material for industrial purposes at elevated temperatures.

  11. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  12. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  13. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  14. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  15. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  16. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  17. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  18. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  19. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  20. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  1. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in...

  2. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  3. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  4. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  5. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  6. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in...

  7. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  8. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in...

  9. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in...

  10. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  11. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  12. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  13. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in...

  14. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  15. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  16. Surface modification by alkali and heat treatments in titanium alloys.

    PubMed

    Lee, Baek-Hee; Do Kim, Young; Shin, Ji Hoon; Hwan Lee, Kyu

    2002-09-05

    Pure titanium and titanium alloys are normally used for orthopedic and dental prostheses. Nevertheless, their chemical, biological, and mechanical properties still can be improved by the development of new preparation technologies. This has been the limiting factor for these metals to show low affinity to living bone. The purpose of this study is to improve the bone-bonding ability between titanium alloys and living bone through a chemically activated process and a thermally activated one. Two kinds of titanium alloys, a newly designed Ti-In-Nb-Ta alloy and a commercially available Ti-6Al-4V ELI alloy, were used in this study. In this study, surface modification of the titanium alloys by alkali and heat treatments (AHT), alkali treated in 5.0M NaOH solution, and heat treated in vacuum furnace at 600 degrees C, is reported. After AHT, the effects of the AHT on the bone integration property were evaluated in vitro. Surface morphologies of AHT were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Chemical compositional surface changes were investigated by X-ray diffractometry (XRD), energy dispersive spectroscopy (EDS), and auger electron spectroscopy (AES). Titanium alloys with surface modification by AHT showed improved bioactive behavior, and the Ti-In-Nb-Ta alloy had better bioactivity than the Ti-6Al-4V ELI alloy in vitro.

  17. Biological neutralization of chlor-alkali industry wastewater.

    PubMed

    Jain, Rakeshkumar M; Mody, Kalpana H; Keshri, Jitendra; Jha, Bhavanath

    2011-11-01

    The present work reports biological neutralization of chlor-alkali industrial effluent by an alkaliphilic bacterium, isolated from the Gujarat coast, which was identified as Enterococcus faecium strain R-5 on the basis of morphological, biochemical and partial 16S rRNA gene sequencing. The isolate was capable of bringing down the pH of waste water from 12.0 to 7.0 within 3 h in the presence of carbon and nitrogen sources, with simultaneous reduction in total dissolved solutes (TDS) up to 19-22%. This bacterium produced carboxylic acid, as revealed by FT-IR analysis, which facilitated neutralization of alkaline effluent. The presence of unconventional raw materials viz. Madhuca indica flowers or sugar cane bagasse as carbon and nitrogen sources could effectively neutralize alkaline effluent and thus making the bioremediation process economically viable. The time required for neutralization varied with size of inoculum. To the best of our knowledge, this is the first report on biological neutralization of a chlor-alkali industrial effluent.

  18. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    DOEpatents

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  19. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries

    SciTech Connect

    Deng, Zhi; Mo, Yifei; Ong, Shyue Ping

    2016-03-25

    The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that are currently of the most commercial interest.

  20. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries

    DOE PAGES

    Deng, Zhi; Mo, Yifei; Ong, Shyue Ping

    2016-03-25

    The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that aremore » currently of the most commercial interest.« less