Science.gov

Sample records for alkali hydrolysis chemical

  1. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    PubMed

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins.

  2. Solvent effects and alkali metal ion catalysis in phosphodiester hydrolysis.

    PubMed

    Gomez-Tagle, Paola; Vargas-Zúñiga, Idania; Taran, Olga; Yatsimirsky, Anatoly K

    2006-12-22

    The kinetics of the alkaline hydrolysis of bis(p-nitrophenyl) phosphate (BNPP) have been studied in aqueous DMSO, dioxane, and MeCN. In all solvent mixtures the reaction rate steadily decreases to half of its value in pure water in the range of 0-70 vol % of organic cosolvent and sharply increases in mixtures with lower water content. Correlations based on different scales of solvent empirical parameters failed to describe the solvent effect in this system, but it can be satisfactorily treated in terms of a simplified stepwise solvent-exchange model. Alkali metal ions catalyze the BNPP hydrolysis but do not affect the rate of hydrolysis of neutral phosphotriester p-nitrophenyl diphenyl phosphate in DMSO-rich mixtures. The catalytic activity decreases in the order Li+ > Na+ > K+ > Rb+ > Cs+. For all cations except Na+, the reaction rate is first-order in metal ion. With Na+, both first- and second-order kinetics in metal ions are observed. Binding constants of cations to the dianionic transition state of BNPP alkaline hydrolysis are of the same order of magnitude and show a similar trend as their binding constants to p-nitrophenyl phosphate dianion employed as a transition-state model. The appearance of alkali metal ion catalysis in a medium, which solvates metal ions stronger than water, is attributed to the increased affinity of cations to dianions, which undergo a strong destabilization in the presence of an aprotic dipolar cosolvent.

  3. Pretreatment of garden biomass by alkali-assisted ultrasonication: effects on enzymatic hydrolysis and ultrastructural changes.

    PubMed

    Gabhane, Jagdish; William, Spm Prince; Vaidya, Atul Narayan; Anand, Duraisamy; Wate, Satish

    2014-01-01

    The present investigation aims at studying the effectiveness of alkali-assisted ultrasonication on pretreatment of garden biomass (GB). Dry and powdered GB suspended in 1% NaOH was ultrasonicated for 15, 30 and 60 minutes at a frequency of 25 KHZ. The mode of action and effectiveness of alkali-assisted ultrasonication on GB was established through microscopic, scanning electron microscopic and X-ray diffraction studies. A perusal of results showed that alkali-assisted ultrasonication led to fibrillation of GB which ultimately facilitated enzymatic hydrolysis. The results also indicated that alkali-assisted ultrasonication is an efficient means of pretreatment of GB at moderate (45-50°C) working temperature and low (1%) concentration of alkali. The yield of reducing sugar after enzymatic hydrolysis increased almost six times as compared to control due to alkali-assisted ultrasonication.

  4. Pretreatment of garden biomass by alkali-assisted ultrasonication: effects on enzymatic hydrolysis and ultrastructural changes

    PubMed Central

    2014-01-01

    The present investigation aims at studying the effectiveness of alkali-assisted ultrasonication on pretreatment of garden biomass (GB). Dry and powdered GB suspended in 1% NaOH was ultrasonicated for 15, 30 and 60 minutes at a frequency of 25 KHZ. The mode of action and effectiveness of alkali-assisted ultrasonication on GB was established through microscopic, scanning electron microscopic and X-ray diffraction studies. A perusal of results showed that alkali-assisted ultrasonication led to fibrillation of GB which ultimately facilitated enzymatic hydrolysis. The results also indicated that alkali-assisted ultrasonication is an efficient means of pretreatment of GB at moderate (45-50°C) working temperature and low (1%) concentration of alkali. The yield of reducing sugar after enzymatic hydrolysis increased almost six times as compared to control due to alkali-assisted ultrasonication. PMID:24843790

  5. Structural features of dilute acid, steam exploded, and alkali pretreated mustard stalk and their impact on enzymatic hydrolysis.

    PubMed

    Kapoor, Manali; Raj, Tirath; Vijayaraj, M; Chopra, Anju; Gupta, Ravi P; Tuli, Deepak K; Kumar, Ravindra

    2015-06-25

    To overcome the recalcitrant nature of biomass several pretreatment methodologies have been explored to make it amenable to enzymatic hydrolysis. These methodologies alter cell wall structure primarily by removing/altering hemicelluloses and lignin. In this work, alkali, dilute acid, steam explosion pretreatment are systematically studied for mustard stalk. To assess the structural variability after pretreatment, chemical analysis, surface area, crystallinity index, accessibility of cellulose, FT-IR and thermal analysis are conducted. Although the extent of enzymatic hydrolysis varies upon the methodologies used, nevertheless, cellulose conversion increases from <10% to 81% after pretreatment. Glucose yield at 2 and 72h are well correlated with surface area and maximum adsorption capacity. However, no such relationship is observed for xylose yield. Mass balance of the process is also studied. Dilute acid pretreatment is the best methodology in terms of maximum sugar yield at lower enzyme loading.

  6. Enhancing the enzymatic hydrolysis of corn stover by an integrated wet-milling and alkali pretreatment.

    PubMed

    He, Xun; Miao, Yelian; Jiang, Xuejian; Xu, Zidong; Ouyang, Pingkai

    2010-04-01

    An integrated wet-milling and alkali pretreatment was applied to corn stover prior to enzymatic hydrolysis. The effects of NaOH concentration in the pretreatment on crystalline structure, chemical composition, and reducing-sugar yield of corn stover were investigated, and the mechanism of increasing reducing-sugar yield by the pretreatment was discussed. The experimental results showed that the crystalline structure of corn stover was disrupted, and lignin was removed, while cellulose and hemicellulose were retained in corn stover by the pretreatment with 1% NaOH in 1 h. The reducing-sugar yield from the pretreated corn stovers increased from 20.2% to 46.7% when the NaOH concentration increased from 0% to 1%. The 1% NaOH pretreated corn stover had a holocellulose conversion of 55.1%. The increase in reducing-sugar yield was related to the crystalline structure disruption and delignification of corn stover. It was clarified that the pretreatment significantly enhanced the conversion of cellulose and hemicellulose in the corn stover to sugars.

  7. Ethanol production from cashew apple bagasse: improvement of enzymatic hydrolysis by microwave-assisted alkali pretreatment.

    PubMed

    Rodrigues, Tigressa Helena Soares; Rocha, Maria Valderez Ponte; de Macedo, Gorete Ribeiro; Gonçalves, Luciana R B

    2011-07-01

    In this work, the potential of microwave-assisted alkali pretreatment in order to improve the rupture of the recalcitrant structures of the cashew able bagasse (CAB), lignocellulosic by-product in Brazil with no commercial value, is obtained from cashew apple process to juice production, was studied. First, biomass composition of CAB was determined, and the percentage of glucan and lignin was 20.54 ± 0.70% and 33.80 ± 1.30%, respectively. CAB content in terms of cellulose, hemicelluloses, and lignin, 19.21 ± 0.35%, 12.05 ± 0.37%, and 38.11 ± 0.08%, respectively, was also determined. Results showed that, after enzymatic hydrolysis, alkali concentration exerted influence on glucose formation, after pretreatment with 0.2 and 1.0 mo L(-1) of NaOH (372 ± 12 and 355 ± 37 mg g(glucan)(-1) ) when 2% (w/v) of cashew apple bagasse pretreated by microwave-assisted alkali pretreatment (CAB-M) was used. On the other hand, pretreatment time (15-30 min) and microwave power (600-900 W) exerted no significant effect on hydrolysis. On enzymatic hydrolysis step, improvement on solid percentage (16% w/v) and enzyme load (30 FPU g (CAB-M) (-1) ) increased glucose concentration to 15 g L(-1). The fermentation of the hydrolyzate by Saccharomyces cerevesiae resulted in ethanol concentration and productivity of 5.6 g L(-1) and 1.41 g L(-1) h(-1), respectively.

  8. Improvement of enzymatic hydrolysis and ethanol production from corn stalk by alkali and N-methylmorpholine-N-oxide pretreatments.

    PubMed

    Cai, Ling-Yan; Ma, Yu-Long; Ma, Xiao-Xia; Lv, Jun-Min

    2016-07-01

    A combinative technology of alkali and N-methylmorpholine-N-oxide (NMMO) was used to pretreat corn stalk (CS) for improving the efficiencies of subsequent enzymatic hydrolysis and ethanol fermentation. The results showed that this strategy could not only remove hemicellulose and lignin but also decrease the crystallinity of cellulose. About 98.0% of enzymatic hydrolysis yield was obtained from the pretreated CS as compared with 46.9% from the untreated sample. The yield for corresponding ethanol yield was 64.6% while untreated CS was only 18.8%. Besides, xylose yield obtained from the untreated CS was only 11.1%, while this value was 93.8% for alkali with NMMO pretreated sample. These results suggest that a combination of alkali with 50% (wt/wt) NMMO solution may be a promising alternative for pretreatment of lignocellulose, which can increase the productions of subsequent enzymatic hydrolysis and ethanol fermentation.

  9. Fermentable sugars by chemical hydrolysis of biomass.

    PubMed

    Binder, Joseph B; Raines, Ronald T

    2010-03-09

    Abundant plant biomass has the potential to become a sustainable source of fuels and chemicals. Realizing this potential requires the economical conversion of recalcitrant lignocellulose into useful intermediates, such as sugars. We report a high-yielding chemical process for the hydrolysis of biomass into monosaccharides. Adding water gradually to a chloride ionic liquid-containing catalytic acid leads to a nearly 90% yield of glucose from cellulose and 70-80% yield of sugars from untreated corn stover. Ion-exclusion chromatography allows recovery of the ionic liquid and delivers sugar feedstocks that support the vigorous growth of ethanologenic microbes. This simple chemical process, which requires neither an edible plant nor a cellulase, could enable crude biomass to be the sole source of carbon for a scalable biorefinery.

  10. Fermentable sugars by chemical hydrolysis of biomass

    PubMed Central

    Binder, Joseph B.; Raines, Ronald T.

    2010-01-01

    Abundant plant biomass has the potential to become a sustainable source of fuels and chemicals. Realizing this potential requires the economical conversion of recalcitrant lignocellulose into useful intermediates, such as sugars. We report a high-yielding chemical process for the hydrolysis of biomass into monosaccharides. Adding water gradually to a chloride ionic liquid-containing catalytic acid leads to a nearly 90% yield of glucose from cellulose and 70–80% yield of sugars from untreated corn stover. Ion-exclusion chromatography allows recovery of the ionic liquid and delivers sugar feedstocks that support the vigorous growth of ethanologenic microbes. This simple chemical process, which requires neither an edible plant nor a cellulase, could enable crude biomass to be the sole source of carbon for a scalable biorefinery. PMID:20194793

  11. Chemically induced fracturing in alkali feldspar

    NASA Astrophysics Data System (ADS)

    Scheidl, K. S.; Schaeffer, A.-K.; Petrishcheva, E.; Habler, G.; Fischer, F. D.; Schreuer, J.; Abart, R.

    2014-01-01

    Fracturing in alkali feldspar during Na+-K+ cation exchange with a NaCl-KCl salt melt was studied experimentally. Due to a marked composition dependence of the lattice parameters of alkali feldspar, any composition gradient arising from cation exchange causes coherency stress. If this stress exceeds a critical level fracturing occurs. Experiments were performed on potassium-rich gem-quality alkali feldspars with polished (010) and (001) surfaces. When the feldspar was shifted toward more sodium-rich compositions over more than about 10 mole %, a system of parallel cracks with regular crack spacing formed. The cracks have a general (h0l) orientation and do not correspond to any of the feldspar cleavages. The cracks are rather oriented (sub)-perpendicular to the direction of maximum tensile stress. The critical stress needed to initiate fracturing is about 325 MPa. The critical stress intensity factor for the propagation of mode I cracks, K Ic, is estimated as 2.30-2.72 MPa m1/2 (73-86 MPa mm1/2) from a systematic relation between characteristic crack spacing and coherency stress. An orientation mismatch of 18° between the crack normal and the direction of maximum tensile stress is ascribed to the anisotropy of the longitudinal elastic stiffness which has pronounced maxima in the crack plane and a minimum in the direction of the crack normal.

  12. Application of high throughput pretreatment and co-hydrolysis system to thermochemical pretreatment. Part 2: Dilute alkali.

    PubMed

    Li, Hongjia; Gao, Xiadi; Demartini, Jaclyn D; Kumar, Rajeev; Wyman, Charles E

    2013-11-01

    High throughput pretreatment (HTPH) and enzymatic hydrolysis systems are now vital for screening large numbers of biomass samples to investigate biomass recalcitrance over various pretreatment and enzymatic hydrolysis conditions. Although hydrothermal pretreatment is currently being employed in most high throughput applications, thermochemical pretreatment at low and high pH conditions can offer additional insights to better understand the roles of hemicellulose and lignin, respectively, in defining biomass recalcitrance. Thus, after successfully applying the HTPH approach to dilute acid pretreatment [Gao et al. (2012) Biotechnol. Bioeng. 110(3): 754-762], extension to dilute alkali pretreatment was also achieved using a similar single-step neutralization and buffering concept. In the latter approach, poplar and switchgrass were pretreated with 1 wt% sodium hydroxide at 120°C for different reaction times. Following pretreatment, an H₂Cit⁻/HCit²⁻ buffer with a pH of 4.5 was used to condition the pretreatment slurry to a pH range of 4.69-4.89, followed by enzymatic hydrolysis for 72 h of the entire mixture. Sugar yields showed different trends for poplar and switchgrass with increases in pretreatment times, demonstrating the method provided a clearly discernible screening tool at alkali conditions. This method was then applied to selected Populus tremuloides samples to follow ring-by-ring sugar release patterns. Observed variations were compared to results from hydrothermal pretreatments, providing new insights in understanding the influence of biomass structural differences on recalcitrance.

  13. Chemical compatibility of structural materials in alkali metals

    SciTech Connect

    Natesan, K.; Rink, D.L.; Haglund, R.

    1995-04-01

    The objectives of this task are to (a) evaluate the chemical compatibility of structural alloys such as V-5 wt.%Cr-5 wt.%Ti alloy and Type 316 stainless steel for application in liquid alkali metals such as lithium and sodium-78 wt.% potassium (NaK) at temperatures in the range that are of interest for International Thermonuclear Experimental Reactor (ITER); (b) evaluate the transfer of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen between structural materials and liquid metals; and (c) evaluate the effects of such transfers on the mechanical and microstructural characteristics of the materials for long-term service in liquid-metal-environments.

  14. A novel stepwise pretreatment on corn stalk by alkali deacetylation and liquid hot water for enhancing enzymatic hydrolysis and energy utilization efficiency.

    PubMed

    Jiang, Wei; Xu, Jian

    2016-06-01

    A novel stepwise pretreatment on corn stalk (CS) by alkali deacetylation combined with liquid hot water (LHW) was investigated to enhance enzymatic hydrolysis. After deacetylated treatment, strength of alkali deacetylation of CS was from 1.79% to 91.34% which was subsequently pretreated by LHW with severity from 3.27 to 4.27. It was found that higher strength of alkali deacetylation could reduce both the degradation of hemicellulose and inhibitors formation in liquid hot water pretreatment (LHWP). Enzymatic hydrolysis efficiency was confirmed to be affected by LHW pretreatment severity (PS) and strength of alkali treatment. This combined pretreatment of alkali deacetylation and LHW could not only increase glucose yield, but also enhance energy utilization efficiency. The maximum enzymatic hydrolysis of 87.55%±3.64 with the ratio of glucose yield to energy input at 50.39gglucosekJ(-1) was obtained when strength of alkali deacetylation at 84.96% with PS at 3.97 were used.

  15. Alkali-explosion pretreatment of straw and bagasse for enzymic hydrolysis.

    PubMed

    Puri, V P; Pearce, G R

    1986-04-01

    Sugarcane bagasse and wheat straw were subjected to alkali treatment at 200 degrees C for 5 min and at 3.45 MPa gas pressure (steam and nitrogen), followed by an explosive discharge through a defibrating nozzle, in an attempt to improve the rate and extent of digestibility. The treatment resulted in the solubilization of 40-45% of the components and in the production of a pulp that gave saccharification yields of 80 and 65% in 8 h for bagasse and wheat straw, respectively. By comparison, alkali steaming at 200 degrees C (1.72 MPa) for 5 min gave saccharification yields of only 58 and 52% in 48 h. The increase in temperature from 140 to 200 degrees C resulted in a gradual increase in in vitro organic matter digestibility (IVOMD) for both the substrates. Also, the extent of alkalinity during pretreatment appears to effect the reactivity of the final product towards enzymes. Pretreatment times ranging from 5 to 60 caused a progressive decline in the IVOMD of bagasse and wheat straw by the alkali explosion method and this was accompanied by a progressive decrease in pH values after explosion. In the alkali-steaming method, pretreatment time had no apparent effect with either substrate. An analysis of the alkali-exploded products showed that substantial amounts of hemicellulose and a small proportion of the lignin were solubilized. The percentage crystallinity of the cellulose did not alter in either substrate but there was a substantial reduction in the degree of polymerization. The superiority of the alkali-explosion pretreatment is attributed to the efficacy of fiber separation and disintegration; this increases the surface area and reduces the degree of polymerization.

  16. Enzymatic hydrolysis and fermentation of pretreated cashew apple bagasse with alkali and diluted sulfuric Acid for bioethanol production.

    PubMed

    Rocha, Maria Valderez Ponte; Rodrigues, Tigressa Helena Soares; de Macedo, Gorete Ribeiro; Gonçalves, Luciana R B

    2009-05-01

    The aim of this work was to optimize the enzymatic hydrolysis of the cellulose fraction of cashew apple bagasse (CAB) after diluted acid (CAB-H) and alkali pretreatment (CAB-OH), and to evaluate its fermentation to ethanol using Saccharomyces cerevisiae. Glucose conversion of 82 +/- 2 mg/g CAB-H and 730 +/- 20 mg/g CAB-OH was obtained when 2% (w/v) of solid and 30 FPU/g bagasse was used during hydrolysis at 45 degrees C, 2-fold higher than when using 15 FPU/g bagasse, 44 +/- 2 mg/g CAB-H, and 450 +/- 50 mg/g CAB-OH, respectively. Ethanol concentration and productivity, achieved after 6 h of fermentation, were 20.0 +/- 0.2 g L(-1) and 3.33 g L(-1) h(-1), respectively, when using CAB-OH hydrolyzate (initial glucose concentration of 52.4 g L(-1)). For CAB-H hydrolyzate (initial glucose concentration of 17.4 g L(-1)), ethanol concentration and productivity were 8.2 +/- 0.1 g L(-1) and 2.7 g L(-1) h(-1) in 3 h, respectively. Hydrolyzates fermentation resulted in an ethanol yield of 0.38 and 0.47 g/g glucose with pretreated CAB-OH and CAB-H, respectively. Ethanol concentration and productivity, obtained using CAB-OH hydrolyzate, were close to the values obtained in the conventional ethanol fermentation of cashew apple juice or sugar cane juice.

  17. Enhancing bio-butanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis.

    PubMed

    Wang, Yue; Guo, Wanqian; Cheng, Chieh-Lun; Ho, Shih-Hsin; Chang, Jo-Shu; Ren, Nanqi

    2016-01-01

    This study presents a successful butanol production method using alkali and acid pretreated biomass of Chlorella vulgaris JSC-6. The butanol concentration, yield, and productivity were 13.1g/L, 0.58mol/mol sugar, 0.66g/L/h, respectively. Nearly 2.93L/L of biohydrogen was produced during the acidogenesis phase in ABE fermentation. The hydrogen yield and productivity were 0.39mol/mol sugar and 104.2g/L/h respectively. In addition, the high glucose consumption efficiency (97.5%) suggests that the hydrolysate pretreated with NaOH (1%) followed by H2SO4 (3%) did not contain inhibitors to the fermentation. It was also discovered that an excess amount of nitrogen sources arising from hydrolysis of highly concentrated microalgal biomass negatively affected the butanol production. This work demonstrates the technical feasibility of producing butanol from sustainable third-generation feedstock (i.e., microalgal biomass).

  18. HYDROLYSIS

    EPA Science Inventory

    Hydrolytic processes provide the baseline loss rate for any chemical in an aqueous envi- ronment. Although various hydrolytic pathways account for significant degradation of certain classes of organic chemicals, other organic structures are completely inert. Strictly speaking, hy...

  19. A new effective process for production of curdlan oligosaccharides based on alkali-neutralization treatment and acid hydrolysis of curdlan particles in water suspension.

    PubMed

    Li, Jing; Zhu, Li; Zheng, Zhi-Yong; Zhan, Xiao-Bei; Lin, Chi-Chung; Zong, Yu; Li, Wei-Jiang

    2013-10-01

    Biologically active β-1,3-oligosaccharides with rapidly growing biomedical applications are produced from hydrolysis of curdlan polysaccharide. The water-insoluble curdlan impedes its hydrolysis efficiency which is enhanced by our newly developed alkali-neutralization treatment process to increase the stability of curdlan suspension to more than 20 days, while the untreated control settled within 5 min. A putative double-layer structure model comprising of a compact core and a hydrated outer layer was proposed to describe the treated curdlan particles based on sedimentation and scanning electron microscopy observation. This model was verified by single- and two-step acid hydrolysis, indicative of the reduced susceptibility to hydrolysis when close to the compact core. Electrospray ionization-mass spectrometry, thin-layer chromatography analyses, and effective HPLC procedure led to the development of improved process to produce purified individual β-1,3-oligosaccharides with degrees of polymerization from 2 to 10 and potential for biomedical applications from curdlan hydrolyzate. Our new curdlan oligosaccharide production process offers an even better alternative to the previously published processes.

  20. Chemical structures of corn stover and its residue after dilute acid prehydrolysis and enzymatic hydrolysis: Insight into factors limiting enzymatic hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advanced solid-state NMR techniques and wet chemical analyses were applied to investigate untreated corn stover (UCS) and its residues after dilute acid prehydrolysis (DAP) and enzymatic hydrolysis (RES) to provide evidence for the limitations to the effectiveness of enzyme hydrolysis. Advanced soli...

  1. Salt, Chlor-Alkali, and Related Heavy Chemicals

    NASA Astrophysics Data System (ADS)

    Bommaraju, Tilak V.

    The chemical category of inorganic salts encompasses many substances that dissociate completely in water, but only one salt, sodium chloride, is referred to by the common name, salt. Sodium chloride is ubiquitous in both its occurrence and its many uses. To date, there are over 14,000 uses for salt.1 Salt is used as a feedstock for many chemicals including chlorine, caustic soda (sodium hydroxide), synthetic soda ash (sodium carbonate), sodium chlorate, sodium sulfate, and metallic sodium. By indirect methods, sodium chloride is also used to produce hydrochloric acid and many other sodium salts. In its natural mineral form, salt may take on some color from some of the trace elements and other salts present, however, pure sodium chloride is a white to colorless crystalline substance, fairly soluble in water.2 Also known as halite, the substance is an essential nutrient to humans and animals for proper bodily functions.

  2. Solar assisted alkali pretreatment of garden biomass: Effects on lignocellulose degradation, enzymatic hydrolysis, crystallinity and ultra-structural changes in lignocellulose.

    PubMed

    Gabhane, Jagdish; William, S P M Prince; Vaidya, Atul N; Das, Sera; Wate, Satish R

    2015-06-01

    A comprehensive study was carried out to assess the effectiveness of solar assisted alkali pretreatment (SAAP) on garden biomass (GB). The pretreatment efficiency was assessed based on lignocellulose degradation, conversion of cellulose into reducing sugars, changes in the ultra-structure and functional groups of lignocellulose and impact on the crystallinity of cellulose, etc. SAAP was found to be efficient for the removal of lignin and hemicellulose that facilitated enzymatic hydrolysis of cellulose. FTIR and XRD studies provided details on the effectiveness of SAAP on lignocellulosic moiety and crystallinity of cellulose. Scanning electron microscopic analysis showed ultra-structural disturbances in the microfibrils of GB as a result of pretreatment. The mass balance closer of 97.87% after pretreatment confirmed the reliability of SAAP pretreatment. Based on the results, it is concluded that SAAP is not only an efficient means of pretreatment but also economical as it involved no energy expenditure for heat generation during pretreatment.

  3. Fractionation of rapeseed straw by hydrothermal/dilute acid pretreatment combined with alkali post-treatment for improving its enzymatic hydrolysis.

    PubMed

    Chen, Bo-Yang; Zhao, Bao-Cheng; Li, Ming-Fei; Liu, Qiu-Yun; Sun, Run-Cang

    2017-02-01

    The aim of the research was to evaluate the effect of combined treatments on fermentable sugar production from rapeseed straw. An optimum condition was found to be the combination of hydrothermal pretreatment at 180°C for 45min and post-treatment by 2% NaOH at 100°C for 2h, which was based on the quantity of monosaccharides released during enzymatic hydrolysis. As compared with the raw material without treatment, the combination of hydrothermal pretreatment and alkali post-treatment resulted in a significant increase of the saccharification rate by 5.9times. This process potentially turned rapeseed straw into value added products in accordance with the biorefinery concept.

  4. Energy requirement for alkali assisted microwave and high pressure reactor pretreatments of cotton plant residue and its hydrolysis for fermentable sugar production for biofuel application.

    PubMed

    Vani, Sankar; Binod, Parameswaran; Kuttiraja, Mathiyazhakan; Sindhu, Raveendran; Sandhya, Soolamkandath Variem; Preeti, Varghese Elizabeth; Sukumaran, Rajeev Kumar; Pandey, Ashok

    2012-05-01

    In the present work, alkali assisted microwave pretreatment (AAMP) of cotton plant residue (CPR) with high pressure reactor pretreatment was compared. Further, modeling of AAMP was attempted. AAMP, followed by enzymatic saccharification was evaluated and the critical parameters were identified to be exposure time, particle size and enzyme loading. The levels of these parameters were optimized using response surface methodology (RSM) to enhance sugar yield. AAMP of CPR (1mm average size) for 6 min at 300 W yielded solid fractions that on hydrolysis resulted in maximum reducing sugar yield of 0.495 g/g. The energy required for AAMP at 300 W for 6 min was 108 kJ whereas high pressure pretreatment (180°C, 100 rpm for 45 min) requires 5 times more energy i.e., 540 kJ. Physiochemical characterization of native and pretreated feedstock revealed differences between high pressure pretreatment and AAMP.

  5. Fumaric Acid Production from Alkali-Pretreated Corncob by Fed-Batch Simultaneous Saccharification and Fermentation Combined with Separated Hydrolysis and Fermentation at High Solids Loading.

    PubMed

    Li, Xin; Zhou, Jin; Ouyang, Shuiping; Ouyang, Jia; Yong, Qiang

    2017-02-01

    Production of fumaric acid from alkali-pretreated corncob (APC) at high solids loading was investigated using a combination of separated hydrolysis and fermentation (SHF) and fed-batch simultaneous saccharification and fermentation (SSF) by Rhizopus oryzae. Four different fermentation modes were tested to maximize fumaric acid concentration at high solids loading. The highest concentration of 41.32 g/L fumaric acid was obtained from 20 % (w/v) APC at 38 °C in the combined SHF and fed-batch SSF process, compared with 19.13 g/L fumaric acid in batch SSF alone. The results indicated that a combination of SHF and fed-batch SSF significantly improved production of fumaric acid from lignocellulose by R. oryzae than that achieved with batch SSF at high solids loading.

  6. Solar assisted alkali pretreatment of garden biomass: Effects on lignocellulose degradation, enzymatic hydrolysis, crystallinity and ultra-structural changes in lignocellulose

    SciTech Connect

    Gabhane, Jagdish; William, S.P.M. Prince; Vaidya, Atul N.; Das, Sera; Wate, Satish R.

    2015-06-15

    Highlights: • SAAP is an efficient and economic means of pretreatment. • SAAP was found to be efficient in lignin and hemicellulose removal. • SAAP enhanced the enzymatic hydrolysis. • FTIR, XRD and SEM provided vivid understanding about the mode of action of SAAP. • Mass balance closer of 98% for pretreated GB confirmed the reliability of SAAP. - Abstract: A comprehensive study was carried out to assess the effectiveness of solar assisted alkali pretreatment (SAAP) on garden biomass (GB). The pretreatment efficiency was assessed based on lignocellulose degradation, conversion of cellulose into reducing sugars, changes in the ultra-structure and functional groups of lignocellulose and impact on the crystallinity of cellulose, etc. SAAP was found to be efficient for the removal of lignin and hemicellulose that facilitated enzymatic hydrolysis of cellulose. FTIR and XRD studies provided details on the effectiveness of SAAP on lignocellulosic moiety and crystallinity of cellulose. Scanning electron microscopic analysis showed ultra-structural disturbances in the microfibrils of GB as a result of pretreatment. The mass balance closer of 97.87% after pretreatment confirmed the reliability of SAAP pretreatment. Based on the results, it is concluded that SAAP is not only an efficient means of pretreatment but also economical as it involved no energy expenditure for heat generation during pretreatment.

  7. Characteristics and enzymatic hydrolysis of cellulose-rich fractions from steam exploded and sequentially alkali delignified bamboo (Phyllostachys pubescens).

    PubMed

    Sun, Shao-Ni; Cao, Xue-Fei; Zhang, Xue-Ming; Xu, Feng; Sun, Run-Cang; Jones, Gwynn Lloyd

    2014-07-01

    In this study, cellulose-rich fractions from bamboo were prepared with steam explosion pretreatment (SEP) followed by a successive alkaline delignification to improve the enzymatic digestibility for an efficient bioethanol production. The cellulose-rich fractions obtained were characterized by FT-IR, XRD, CP/MAS (13)C NMR, SEM, and BET surface area. It was found that the SEP alone significantly removed partial hemicelluloses, while the synergistic treatment by SEP and alkaline delignification removed most hemicelluloses and lignin. Results from enzymatic hydrolysis showed that SEP alone improved the enzymatic hydrolysis rate by 7.9-33.1%, while the synergistic treatment by SEP and alkaline delignification enhanced the rate by 45.7-63.9%. The synergistic treatment by SEP at 2.0 MPa for 5 min with water impregnation followed by a successive alkaline delignification with 0.5% NaOH and 70% ethanol containing 1.5% NaOH resulted in a maximum enzymatic hydrolysis rate of 70.6%.

  8. A theoretical interpretation of the chemical shift of 29Si NMR peaks in alkali borosilicate glasses

    NASA Astrophysics Data System (ADS)

    Nanba, Tokuro; Nishimura, Mitsunori; Miura, Yoshinari

    2004-12-01

    In 29Si-NMR, it has so far been accepted that the chemical shifts of Q n species (SiO 4 units containing n bridging oxygens) were equivalent between alkali borosilicate and boron-free alkali silicate glasses. In the sodium borosilicate glasses with low sodium content, however, a contradiction was confirmed in the estimation of alkali distribution; 11B NMR suggested that Na ions were entirely distributed to borate groups to form BO 4 units, whereas a -90 ppm component was also observed in 29Si-NMR spectra, which has been attributed to Q 3 species associated with a nonbridging oxygen (NBO). Then, cluster molecular orbital calculations were performed to interpret the -90 ppm component in the borosilicate glasses. It was found that a silicon atom which had two tetrahedral borons (B4) as its second nearest neighbors was similar in atomic charge and Si2p energy to the Q 3 species in boron-free alkali silicates. Unequal distribution of electrons in Si-O-B4 bridging bonds was also found, where much electrons were localized on the Si-O bonds. It was finally concluded that the Si-O-B4 bridges with narrow bond angle were responsible for the -90 ppm 29Si component in the borosilicate glasses. There still remained another interpretation; the Q 3 species were actually present in the glasses, and NBOs in the Q 3 species were derived from the tricluster groups, such as (O 3Si)O(BO 3) 2. In the glasses with low sodium content, however, it was concluded that the tricluster groups were not so abundant to contribute to the -90 ppm component.

  9. Immobilization of indigenous holocellulase on iron oxide (Fe2O3) nanoparticles enhanced hydrolysis of alkali pretreated paddy straw.

    PubMed

    Kumar, Ajay; Singh, Surender; Tiwari, Rameshwar; Goel, Renu; Nain, Lata

    2017-03-01

    The holocellulase from Aspergillus niger SH3 was characterized and found to contain 125 proteins including cellulases (26), hemicellulases (21), chitinases (10), esterases (6), amylases (4) and hypothetical protein (32). The crude enzyme was immobilized on five different nanoparticles (NPs) via physical adsorption and covalent coupling methods. The enzyme-nanoparticle complexes (ENC) were screened for protein binding, enzymatic activities and immobilization efficiency. Magnetic enzyme-nanoparticle complexes (MENC) showed higher immobilization efficiency (60-80%) for most of the enzymes. MENC also showed better catalytic efficiencies in term of higher Vmax and lower Km than free enzyme. Saccharification yields from alkali treated paddy straw were higher (375.39mg/gds) for covalently immobilized MENC than free enzyme (339.99mg/gds). The immobilized enzyme was used for two cycles of saccharification with 55% enzyme recovery. Hence, this study for the first time demonstrated the immobilization of indigenous enzyme and its utilization for saccharification of paddy straw.

  10. Surface characterization and chemical analysis of bamboo substrates pretreated by alkali hydrogen peroxide.

    PubMed

    Song, Xueping; Jiang, Yan; Rong, Xianjian; Wei, Wei; Wang, Shuangfei; Nie, Shuangxi

    2016-09-01

    The surface characterization and chemical analysis of bamboo substrates by alkali hydrogen peroxide pretreatment (AHPP) were investigated in this study. The results tended to manifest that AHPP prior to enzymatic and chemical treatment was potential for improving accessibility and reactivity of bamboo substrates. The inorganic components, organic solvent extractives and acid-soluble lignin were effectively removed by AHPP. X-ray photoelectron spectroscopy (XPS) analysis indicated that the surface of bamboo chips had less lignin but more carbohydrate after pre-treatment. Fiber surfaces became etched and collapsed, and more pores and debris on the substrate surface were observed with Scanning Electron Microscopy (SEM). Brenauer-Emmett-Teller (BET) results showed that both of pore volume and surface area were increased after AHPP. Although XRD analysis showed that AHPP led to relatively higher crystallinity, pre-extraction could overall enhance the accessibility of enzymes and chemicals into the bamboo structure.

  11. Effects of chemical form of sodium on the product characteristics of alkali lignin pyrolysis.

    PubMed

    Guo, Da-liang; Yuan, Hong-you; Yin, Xiu-li; Wu, Chuang-zhi; Wu, Shu-bin; Zhou, Zhao-qiu

    2014-01-01

    The effects of Na as organic bound form or as inorganic salts form on the pyrolysis products characteristics of alkali lignin were investigated by using thermogravimetric analyzer coupled with Fourier transform infrared spectrometry (TG-FTIR), tube furnace and thermo-gravimetric analyzer (TGA). Results of TG-FTIR and tube furnace indicated that the two chemical forms Na reduced the releasing peak temperature of CO and phenols leading to the peak temperature of the maximum mass loss rate shifted to low temperature zone. Furthermore, organic bound Na obviously improved the elimination of alkyl substituent leading to the yields of phenol and guaiacol increased, while inorganic Na increased the elimination of phenolic hydroxyl groups promoting the formation of ethers. It was also found the two chemical forms Na had different effects on the gasification reactivity of chars. For inorganic Na, the char conversion decreased with increasing the char forming temperature, while organic bound Na was opposite.

  12. Alkali metal ion battery with bimetallic electrode

    DOEpatents

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  13. Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents.

    PubMed

    Sklyar, V I; Mosolova, T P; Kucherenko, I A; Degtyarova, N N; Varfolomeyev, S D; Kalyuzhnyi, S V

    1999-08-01

    The toxicity and biodegradability of the main hydrolysis products of chemical warfare agents were investigated under methanogenic conditions. Among the tested substances, only MPhA does not have any toxic effect with regard to the aceticlastic methanogenic activity. The toxicity of other compounds varied between moderate (TDG, mercaptoethanol) to strong (ethanolamine, diisobutyl ester of MPhA). Biodegradability tests showed that all the products of chemical detoxification of mustard gas (ethanolamine, ethylene glycol, TDG, mercaptoethanol) can be biomineralized under methanogenic conditions. On the contrary, phosphorus-containing compounds from the chemical detoxification of nerve warfare agents (Sarin, Soman, Vx-gases) are quite persistent under these conditions.

  14. The fate of minor alkali elements in the chemical evolution of salt lakes

    PubMed Central

    2011-01-01

    Alkaline earth elements and alkali metals (Mg, Ca, Na and K) play an important role in the geochemical evolution of saline lakes as the final brine type is defined by the abundance of these elements. The role of major ions in brine evolution has been studied in great detail, but little has been done to investigate the behaviour of minor alkali elements in these systems despite their similar chemical affinities to the major cations. We have examined three major anionic brine types, chloride, sulphate, and bicarbonate-carbonate, in fifteen lakes in North America and Antarctica to determine the geochemical behaviour of lithium, rubidium, strontium, and barium. Lithium and rubidium are largely conservative in all water types, and their concentrations are the result of long-term solute input and concentration through evaporation and/or sublimation. Strontium and barium behaviours vary with anionic brine type. Strontium can be removed in sulphate and carbonate-rich lakes by the precipitation of carbonate minerals. Barium may be removed in chloride and sulphate brines by either the precipitation of barite and perhaps biological uptake. PMID:21992434

  15. Modification of chemical reactivity of enzymatic hydrolysis lignin by ultrasound treatment in dilute alkaline solutions.

    PubMed

    Ma, Zhuoming; Li, Shujun; Fang, Guizhen; Patil, Nikhil; Yan, Ning

    2016-12-01

    In this study, we have explored various ultrasound treatment conditions for structural modification of enzymatic hydrolysis lignin (EHL) for enhanced chemical reactivity. The key structural modifications were characterized by using a combination of analytical methods, including, Fourier Transform-Infrared spectroscopy (FTIR), Proton Nuclear Magnetic Resonance ((1)H NMR), Gel permeation chromatography (GPC), X-ray photoelectron spectroscopy (XPS), and Folin-Ciocalteu (F-C) method. Chemical reactivity of the modified EHL samples was determined by both 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and their reactivity towards formaldehyde. It was observed that the modified EHL had a higher phenolic hydroxyl group content, a lower molecular weight, a higher reactivity towards formaldehyde, and a greater antioxidant property. The higher reactivity demonstrated by the samples after treatment suggesting that ultrasound is a promising method for modifying enzymatic hydrolysis lignin for value-added applications.

  16. A simple environmentally friendly, and chemically specific method for the identification and evaluation of the alkali-silica reaction

    SciTech Connect

    Guthrie, G.D. Jr.; Carey, J.W.

    1997-09-01

    One of the principal mechanisms of premature degradation of concrete is the alkali silica reaction, in which an alkali-rick silica gel froms around and within some reactive aggregate grains, in pores, along fractures, and within paste. A rapid, dual staining method is described whereby reaction products associated with the alkali-silica reaction (ASR) are readily identified by their pink or yellow color following treatment in the laboratory or field. The method is based on both the compositional and physical characteristics of the ASR gel; hence, it provides greater information than non-chemical-specific techniques (such as the uranyl acetate method). In addition, the chemicals used in the staining method pose minimal health risks and are environmentally benign.

  17. Surface chemical compositions and dispersity of starch nanocrystals formed by sulfuric and hydrochloric acid hydrolysis.

    PubMed

    Wei, Benxi; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2014-01-01

    Surface chemical compositions of starch nanocrystals (SNC) prepared using sulfuric acid (H2SO4) and hydrochloric acid (HCl) hydrolysis were analyzed by X-ray photoelectron spectroscopy (XPS) and FT-IR. The results showed that carboxyl groups and sulfate esters were presented in SNC after hydrolysis with H2SO4, while no sulfate esters were detected in SNC during HCl-hydrolysis. TEM results showed that, compared to H2SO4-hydrolyzed sample, a wider size distribution of SNC prepared by HCl-hydrolysis were observed. Zeta-potentials were -23.1 and -5.02 mV for H2SO4- and HCl-hydrolyzed SNC suspensions at pH 6.5, respectively. Nevertheless, the zeta-potential values decreased to -32.3 and -10.2 mV as the dispersion pH was adjusted to 10.6. After placed 48 h at pH 10.6, zeta-potential increased to -24.1 mV for H2SO4-hydrolyzed SNC, while no change was detected for HCl-hydrolyzed one. The higher zeta-potential and relative small particle distribution of SNC caused more stable suspensions compared to HCl-hydrolyzed sample.

  18. Structures of alkali metals in silica gel nanopores: new materials for chemical reductions and hydrogen production.

    PubMed

    Shatnawi, Mouath; Paglia, Gianluca; Dye, James L; Cram, Kevin C; Lefenfeld, Michael; Billinge, Simon J L

    2007-02-07

    Alkali metals and their alloys can be protected from spontaneous reaction with dry air by intercalation (with subsequent heating) into the pores of silica gel (SG) at loadings up to 40 wt %. The resulting loose, black powders are convenient materials for chemical reduction of organic compounds and the production of clean hydrogen. The problem addressed in this paper is the nature of the reducing species present in these amorphous materials. The atomic pair distribution function (PDF), which considers both Bragg and diffuse scattering components, was used to examine their structures. Liquid Na-K alloys added to silica gel at room temperature (stage 0) or heated to 150 degrees C (stage I) as well as stage I Na-SG, retain the overall pattern of pure silica gel. Broad oscillations in the PDF show that added alkali metals remain in the pores as nanoscale metal clusters. 23Na MAS NMR studies confirm the presence of Na(0) and demonstrate that Na+ ions are formed as well. The relative amounts of Na(0) and Na(+) depend on both the overall metal loading and the average pore size. The results suggest that ionization occurs near or in the SiO2 walls, with neutral metal present in the larger cavities. The fate of the electrons released by ionization is uncertain, but they may add to the silica gel lattice, or form an "electride-like plasma" near the silica gel walls. A remaining mystery is why the stage I material does not show a melting endotherm of the encapsulated metal and does not react with dry oxygen. Na-SG when heated to 400 degrees C (stage II) yields a dual-phase reaction product that consists of Na(4)Si(4) and Na(2)SiO(3).

  19. Complete chemical hydrolysis of cellulose into fermentable sugars through ionic liquids and antisolvent pretreatments.

    PubMed

    Morales-delaRosa, Silvia; Campos-Martin, Jose M; Fierro, Jose L G

    2014-12-01

    This work describes a relatively simple methodology for efficiently deconstructing cellulose into monomeric glucose, which is more easily transformed into a variety of platform molecules for the production of chemicals and fuels. The approach undertaken herein first involves the dissolution of cellulose in an ionic liquid (IL), followed by a second reconstruction step aided by an antisolvent. The regenerated cellulose exhibited strong structural and morphological changes, as revealed by XRD and SEM analyses. These changes dramatically affect the hydrolytic reactivity of cellulose with dilute mineral acids. As a consequence, the glucose yield obtained from the deconstructed-reconstructed cellulose was substantially higher than that achieved through hydrolysis of the starting cellulose. Factors that affect the hydrolysis reaction include the type of cellulose substrate, the type of IL used in pretreatment, and the type of acid used in the hydrolysis step. The best results were obtained by treating cellulose with IL and using phosphotungstic acid (0.067 mol L(-1) ) as a catalyst at 413 K. Under these conditions, the conversion of cellulose was almost complete (>99%), with a glucose yield of 87% after only 5 h of reaction.

  20. Prediction of hydrolysis pathways and kinetics for antibiotics under environmental pH conditions: a quantum chemical study on cephradine.

    PubMed

    Zhang, Haiqin; Xie, Hongbin; Chen, Jingwen; Zhang, Shushen

    2015-02-03

    Understanding hydrolysis pathways and kinetics of many antibiotics that have multiple hydrolyzable functional groups is important for their fate assessment. However, experimental determination of hydrolysis encounters difficulties due to time and cost restraint. We employed the density functional theory and transition state theory to predict the hydrolysis pathways and kinetics of cephradine, a model of cephalosporin with two hydrolyzable groups, two ionization states, two isomers and two nucleophilic attack directions. Results showed that the hydrolysis of cephradine at pH = 8.0 proceeds via opening of the β-lactam ring followed by intramolecular amidation. The predicted rate constants at different pH conditions are of the same order of magnitude as the experimental values, and the predicted products are confirmed by experiment. This study identified a catalytic role of the carboxyl group in the hydrolysis, and implies that the carboxyl group also plays a catalytic role in the hydrolysis of other cephalosporin and penicillin antibiotics. This is a first attempt to quantum chemically predict hydrolysis of an antibiotic with complex pathways, and indicates that to predict hydrolysis products under the environmental pH conditions, the variation of the rate constants for different pathways with pH should be evaluated.

  1. Thermo-chemical pretreatment and enzymatic hydrolysis for enhancing saccharification of catalpa sawdust.

    PubMed

    Jin, Shuguang; Zhang, Guangming; Zhang, Panyue; Li, Fan; Fan, Shiyang; Li, Juan

    2016-04-01

    To improve the reducing sugar production from catalpa sawdust, thermo-chemical pretreatments were examined and the chemicals used including NaOH, Ca(OH)2, H2SO4, and HCl. The hemicellulose solubilization and cellulose crystallinity index (CrI) were significantly increased after thermo-alkaline pretreatments, and the thermo-Ca(OH)2 pretreatment showed the best improvement for reducing sugar production comparing to other three pretreatments. The conditions of thermo-Ca(OH)2 pretreatment and enzymatic hydrolysis were systematically optimized. Under the optimal conditions, the reducing sugar yield increased by 1185.7% comparing to the control. This study indicates that the thermo-Ca(OH)2 pretreatment is ideal for the saccharification of catalpa sawdust and that catalpa sawdust is a promising raw material for biofuel.

  2. Neurophysiologic effects of chemical agent hydrolysis products on cortical neurons in vitro.

    PubMed

    Pancrazio, J J; Keefer, E W; Ma, W; Stenger, D A; Gross, G W

    2001-06-01

    The neurophysiologic effects of chemical agent hydrolysis products were examined on cultured cortical neurons using multielectrode array (MEA) recording and the whole-cell patch clamp technique. Measurement of neuronal network extracellular potentials showed that the primary hydrolysis product of soman, pinacolyl methylphosphonic acid (PMPA), inhibited network mean burst and spike rates with an EC50 of approximately 2 mM. In contrast, the degradation product of sarin, isopropyl methylphosphonic acid (IMPA), and the final common hydrolysis product of both soman and sarin, methylphosphonic acid (MPA), failed to affect neuronal network behavior at concentrations reaching 5 mM. Closer examination of the effects of PMPA (2 mM) on discriminated extracellular units revealed that mean spike amplitude was slightly diminished to 95 +/- 1% (mean +/- S.E.M., n = 6, P < 0.01) of control. Whole-cell patch clamp records under current clamp mode also showed a PMPA-induced depression of the firing rate of spontaneous action potentials (APs) to 36 +/- 6% (n = 5, P < 0.001) of control. In addition, a minor depression with exposure to PMPA was observed in spontaneous and evoked AP amplitude to 93 +/- 3% (n = 5, P < 0.05) of control with no change in either the baseline membrane potential or input resistance. Preliminary voltage clamp recordings indicated a reduction in the occurrence of spontaneous inward currents with application of PMPA. These findings suggest that PMPA, unlike MPA or IMPA, may more readily interfere with one or more aspects of excitatory synaptic transmission. Furthermore, the data demonstrate that the combination of extracellular microelectrode array and patch clamp recording techniques facilitates analysis of compounds with neuropharmacologic effects.

  3. Efficient hydrolysis of the chemical warfare nerve agent tabun by recombinant and purified human and rabbit serum paraoxonase 1.

    PubMed

    Valiyaveettil, Manojkumar; Alamneh, Yonas; Biggemann, Lionel; Soojhawon, Iswarduth; Doctor, Bhupendra P; Nambiar, Madhusoodana P

    2010-12-03

    Paraoxonase 1 (PON1) has been described as an efficient catalytic bioscavenger due to its ability to hydrolyze organophosphates (OPs) and chemical warfare nerve agents (CWNAs). It is the future most promising candidate as prophylactic medical countermeasure against highly toxic OPs and CWNAs. Most of the studies conducted so far have been focused on the hydrolyzing potential of PON1 against nerve agents, sarin, soman, and VX. Here, we investigated the hydrolysis of tabun by PON1 with the objective of comparing the hydrolysis potential of human and rabbit serum purified and recombinant human PON1. The hydrolysis potential of PON1 against tabun, sarin, and soman was evaluated by using an acetylcholinesterase (AChE) back-titration Ellman method. Efficient hydrolysis of tabun (100 nM) was observed with ∼25-40 mU of PON1, while higher concentration (80-250 mU) of the enzyme was required for the complete hydrolysis of sarin (11 nM) and soman (3 nM). Our data indicate that tabun hydrolysis with PON1 was ∼30-60 times and ∼200-260 times more efficient than that with sarin and soman, respectively. Moreover, the catalytic activity of PON1 varies from source to source, which also reflects their efficiency of hydrolyzing different types of nerve agents. Thus, efficient hydrolysis of tabun by PON1 suggests its promising potential as a prophylactic treatment against tabun exposure.

  4. Transportation behavior of alkali ions through a cell membrane ion channel. A quantum chemical description of a simplified isolated model.

    PubMed

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans

    2012-08-01

    Quantum chemical model calculations were carried out for modeling the ion transport through an isolated ion channel of a cell membrane. An isolated part of a natural ion channel was modeled. The model channel was a calixarene derivative, hydrated sodium and potassium ions were the models of the transported ion. The electrostatic potential of the channel and the energy of the channel-ion system were calculated as a function of the alkali ion position. Both attractive and repulsive ion-channel interactions were found. The calculations - namely the dependence of the system energy and the atomic charges of the water molecules with respect to the position of the alkali ion in the channel - revealed the molecular-structural background of the potassium selectivity of this artificial ion channel. It was concluded that the studied ion channel mimics real biological ion channel quite well.

  5. Chemical feedstock from hardwood by organosolv hydrolysis: Computer-aided process design and economic evaluation

    NASA Astrophysics Data System (ADS)

    Nguyen, X. N.

    1982-12-01

    A two stage catalyzed organosolv plant producing ethanol, furfural, acetic acid, and soluble lignin from wood waste was investigated. The GEMS computer system was used to aid the preliminary design and cost estimation of the proposed wood chemical plant. For a plant processing 1000 ovendry tons of wood per day, a capital investment of $66 million and an operating expense of about $20 million per year were estimated. The capital cost calculated compares favorably with other published estimates. Sensitivity analyses of some key factors in the proposed process disclose that the recovery efficiency of ethanol used in the lignin extraction stage is most important in determining the process economics. Ethanol solvent recovery of about 98% is required. At 95% recovery efficiency, conversion to glucose in the acid hydrolysis step above 90% is necessary for the ethanol selling price to be comparable to the current market price.

  6. [Enhancement of anaerobic digestion of excess sludge by acid-alkali pretreatment].

    PubMed

    Yuan, Guang-Huan; Zhou, Xing-Qiu; Wu, Jian-Dong

    2012-06-01

    In order to enhance the efficiency of anaerobic digestion of excess sludge, acid-alkali pretreatment method was studied. Three different pretreatment methods (alkali alone,acid-alkali, alkali-acid) were compared to investigate their impacts on hydrolysis and acidification of activated sludge. In addition, their influences on methane-producing in subsequent anaerobic digestion process were also studied. The results showed that the soluble chemical oxygen demand (SCOD) of alkaline treatment alone was about 16% higher than the combining of acid and alkali treatment, SCOD concentration increased to 5406.1 mg x L(-1) after 8 d pretreatment. After treated by acid (pH 4.0, 4 d) and alkali (pH 10.0, 4 d), the acetic acid production and its content in short-chain fatty acids (SCFAs) were higher than other pretreatment methods. And the acetic acid production (as COD/VSS) could reach 74.4 mg x g(-1), accounting for 60.5% of SCFAs. After acid-alkali pretreatment, the C: N ratio of the sludge mixed liquor was about 25, and the C: P ratio was between 35-40, which was more favorable than C: N and C: P ratio of alkali alone and alkali-acid to subsequent anaerobic digestion. The control experiments showed that, after acid-alkali pretreatment, anaerobic digestion cumulative methane yield (CH4/VSS(in)) reached to 136.1 mL x g(-1) at 15 d, which was about 2.5-, 1.6-, and 1.7-fold of the blank (unpretreated), alkali alone pretreatment and alkali-acid pretreatment, respectively. After acid-alkali pretreatment for 8 d and anaerobic digestion for 15 d, the removal efficiency of VSS was about 60.9%, and the sludge reduction effect was better than other pretreatments. It is obvious that the acid-alkali pretreatment method was more favorable to anaerobic digestion and sludge reduction.

  7. Slow pyrolysis of prot, alkali and dealkaline lignins for production of chemicals.

    PubMed

    Biswas, Bijoy; Singh, Rawel; Kumar, Jitendra; Khan, Adnan Ali; Krishna, Bhavya B; Bhaskar, Thallada

    2016-08-01

    Effect of different lignins were studied during slow pyrolysis. Maximum bio-oil yield of 31.2, 34.1, and 29.5wt.% was obtained at 350, 450 and 350°C for prot lignin, alkali lignin and dealkaline lignin respectively. Maximum yield of phenolic compounds 78%, 80% and 92% from prot lignin, alkali and dealkaline lignin at 350, 450 and 350°C. The differences in the pyrolysis products indicated the source of lignins such as soft and hard wood lignins. The biochar characterisation revealed that the various ether linkages were broken during pyrolysis and lignin was converted into monomeric substituted phenols. Bio-oil showed that the relative contents of each phenolic compound changes significantly with pyrolysis temperature and also the relative contents of each compound changes with different samples.

  8. Effective, Facile, and Selective Hydrolysis of the Chemical Warfare Agent VX Using Zr6-Based Metal-Organic Frameworks.

    PubMed

    Moon, Su-Young; Wagner, George W; Mondloch, Joseph E; Peterson, Gregory W; DeCoste, Jared B; Hupp, Joseph T; Farha, Omar K

    2015-11-16

    The nerve agent VX is among the most toxic chemicals known to mankind, and robust solutions are needed to rapidly and selectively deactivate it. Herein, we demonstrate that three Zr6-based metal-organic frameworks (MOFs), namely, UiO-67, UiO-67-NH2, and UiO-67-N(Me)2, are selective and highly active catalysts for the hydrolysis of VX. Utilizing UiO-67, UiO-67-NH2, and UiO-67-N(Me)2 in a pH 10 buffered solution of N-ethylmorpholine, selective hydrolysis of the P-S bond in VX was observed. In addition, UiO-67-N(Me)2 was found to catalyze VX hydrolysis with an initial half-life of 1.8 min. This half-life is nearly 3 orders of magnitude shorter than that of the only other MOF tested to date for hydrolysis of VX and rivals the activity of the best nonenzymatic materials. Hydrolysis utilizing Zr-based MOFs is also selective and facile in the absence of pH 10 buffer (just water) and for the destruction of the toxic byproduct EA-2192.

  9. The characterisation of an alkali-stable maltogenic amylase from Bacillus lehensis G1 and improved malto-oligosaccharide production by hydrolysis suppression.

    PubMed

    Abdul Manas, Nor Hasmaliana; Pachelles, Samson; Mahadi, Nor Muhammad; Illias, Rosli Md

    2014-01-01

    A maltogenic amylase (MAG1) from alkaliphilic Bacillus lehensis G1 was cloned, expressed in Escherichia coli, purified and characterised for its hydrolysis and transglycosylation properties. The enzyme exhibited high stability at pH values from 7.0 to 10.0. The hydrolysis of β-cyclodextrin (β-CD) produced malto-oligosaccharides of various lengths. In addition to hydrolysis, MAG1 also demonstrated transglycosylation activity for the synthesis of longer malto-oligosaccharides. The thermodynamic equilibrium of the multiple reactions was shifted towards synthesis when the reaction conditions were optimised and the water activity was suppressed, which resulted in a yield of 38% transglycosylation products consisting of malto-oligosaccharides of various lengths. Thin layer chromatography and high-performance liquid chromatography analyses revealed the presence of malto-oligosaccharides with a higher degree of polymerisation than maltoheptaose, which has never been reported for other maltogenic amylases. The addition of organic solvents into the reaction further suppressed the water activity. The increase in the transglycosylation-to-hydrolysis ratio from 1.29 to 2.15 and the increased specificity toward maltopentaose production demonstrated the enhanced synthetic property of the enzyme. The high transglycosylation activity of maltogenic amylase offers a great advantage for synthesising malto-oligosaccharides and rare carbohydrates.

  10. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: thermal cycle stability and chemical compatibility

    SciTech Connect

    Chou, Y. S.; Thomsen, Edwin C.; Williams, Riley T.; Choi, Jung-Pyung; Canfield, Nathan L.; Bonnett, Jeff F.; Stevenson, Jeffry W.; Shyam, Amit; Lara-Curzio, E.

    2011-03-01

    An alkali silicate glass (SCN-1) is currently being evaluated as a candidate sealing glass for solid oxide fuel (SOFC) applications. The glass containing ~17 mole% alkalis (K2O and Na2O) remains vitreous and compliant during SOFC operation, unlike conventional SOFC sealing glasses, which experience substantial devitrification after the sealing process. The non-crystallizing compliant sealing glass has lower glass transition and softening temperatures since the microstructure remains glassy without significant crystallite formation, and hence can relieve or reduce residual stresses and also has the potential for crack healing. Sealing approaches based on compliant glass will also need to satisfy all the mechanical, thermal, chemical, physical, and electrical requirements for SOFC applications, not only in bulk properties but also at sealing interfaces. In this first of a series of papers we will report the thermal cycle stability of the glass when sealed between two SOFC components, i.e., a NiO/YSZ anode supported YSZ bilayer and a coated ferritic stainless steel interconnect material. High temperature leak rates were monitored versus thermal cycles between 700-850oC using back pressures ranging from 0.2 psi to 1.0 psi. Isothermal stability was also evaluated in a dual environment consisting of flowing dilute H2 fuel versus ambient air. In addition, chemical compatibility at the alumina and YSZ interfaces was examined with scanning electron microscopy and energy dispersive spectroscopy. The results shed new light on the topic of SOFC glass seal development.

  11. Structural and Crystal Chemical Properties of Alkali Rare-earth Double Phosphates

    DOE PAGES

    Farmer, James Matthew; Boatner, Lynn A.; Chakoumakos, Bryan C.; ...

    2016-01-01

    When appropriately activated, alkali rare-earth double phosphates of the form: M3RE(PO4)2 (where M denotes an alkali metal and RE represents either a rare-earth element or Y or Sc) are of interest for use as inorganic scintillators for radiation detection at relatively long optical emission wavelengths. These compounds exhibit layered crystal structures whose symmetry properties depend on the relative sizes of the rare-earth and alkali-metal cations. Single-crystal X-ray and powder neutron diffraction methods were used here to refine the structures of the series of rare-earth double phosphate compounds: K3RE(PO4)2 with RE = Lu, Er, Ho, Dy, Gd, Nd, Ce, plus Ymore » and Sc - as well as the compounds: A3Lu(PO4)2, with A = Rb, and Cs. The double phosphate K3Lu(PO4)2 was reported and structurally refined previously. This material had a hexagonal unit cell at room temperature with the Lu ion six-fold coordinated with oxygen atoms of the surrounding phosphate groups. Additionally two lower-temperature phases were observed for K3Lu(PO4)2. The first phase transition to a monoclinic P21/m phase occurred at ~230 K, and the Lu ion retained its six-fold coordination. The second K3Lu(PO4)2 phase transition occurred at ~130 K. The P21/m space group symmetry was retained, however, one of the phosphate groups rotated to increase the oxygen coordination number of Lu from six to seven. This structure then became isostructural with the room-temperature form of the compound K3Yb(PO4)2 reported here that also exhibits an additional high-temperature phase which occurs at T = 120 °C with a transformation to hexagonal P-3 space group symmetry and a Yb-ion coordination number reduction from seven to six. This latter result was confirmed using EXAFS. The single-crystal growth methods structural systematics, and thermal expansion properties of the present series of alkali rare-earth double phosphates, as determined by X-ray and neutron diffraction methods, are treated here.« less

  12. Structural and Crystal Chemical Properties of Alkali Rare-earth Double Phosphates

    SciTech Connect

    Farmer, James Matthew; Boatner, Lynn A.; Chakoumakos, Bryan C.; Rawn, Claudia J.; Richardson, Jim

    2016-01-01

    When appropriately activated, alkali rare-earth double phosphates of the form: M3RE(PO4)2 (where M denotes an alkali metal and RE represents either a rare-earth element or Y or Sc) are of interest for use as inorganic scintillators for radiation detection at relatively long optical emission wavelengths. These compounds exhibit layered crystal structures whose symmetry properties depend on the relative sizes of the rare-earth and alkali-metal cations. Single-crystal X-ray and powder neutron diffraction methods were used here to refine the structures of the series of rare-earth double phosphate compounds: K3RE(PO4)2 with RE = Lu, Er, Ho, Dy, Gd, Nd, Ce, plus Y and Sc - as well as the compounds: A3Lu(PO4)2, with A = Rb, and Cs. The double phosphate K3Lu(PO4)2 was reported and structurally refined previously. This material had a hexagonal unit cell at room temperature with the Lu ion six-fold coordinated with oxygen atoms of the surrounding phosphate groups. Additionally two lower-temperature phases were observed for K3Lu(PO4)2. The first phase transition to a monoclinic P21/m phase occurred at ~230 K, and the Lu ion retained its six-fold coordination. The second K3Lu(PO4)2 phase transition occurred at ~130 K. The P21/m space group symmetry was retained, however, one of the phosphate groups rotated to increase the oxygen coordination number of Lu from six to seven. This structure then became isostructural with the room-temperature form of the compound K3Yb(PO4)2 reported here that also exhibits an additional high-temperature phase which occurs at T = 120 °C with a transformation to hexagonal P-3 space group symmetry and a Yb-ion coordination number reduction from seven to six. This latter result was confirmed using EXAFS. The single

  13. Diffusion with chemical reaction: An attempt to explain number density anomalies in experiments involving alkali vapor

    NASA Technical Reports Server (NTRS)

    Snow, W. L.

    1974-01-01

    The mutual diffusion of two reacting gases is examined which takes place in a bath of inert gas atoms. Solutions are obtained between concentric spheres, each sphere acting as a source for one of the reactants. The calculational model is used to illustrate severe number density gradients observed in absorption experiments with alkali vapor. Severe gradients result when sq root k/D R is approximately 5 where k, D, and R are respectively the second order rate constant, the multicomponent diffusion constant, and the geometrical dimension of the experiment.

  14. Enhanced enzymatic hydrolysis of mild alkali pre-treated rice straw at high-solid loadings using in-house cellulases in a bench scale system.

    PubMed

    Narra, Madhuri; Balasubramanian, Velmurugan; James, Jisha P

    2016-06-01

    In the present study, scale-up systems for cellulase production and enzymatic hydrolysis of pre-treated rice straw at high-solid loadings were designed, fabricated and tested in the laboratory. Cellulase production was carried out using tray fermentation at 45 °C by Aspergillus terreus in a temperature-controlled humidity chamber. Enzymatic hydrolysis studies were performed in a horizontal rotary drum reactor at 50 °C with 25 % (w/v) solid loading and 9 FPU g(-1) substrate enzyme load using in-house as well commercial cellulases. Highly concentrated fermentable sugars up to 20 % were obtained at 40 h with an increased saccharification efficiency of 76 % compared to laboratory findings (69.2 %). These findings demonstrate that we developed a simple and less energy intensive bench scale system for efficient high-solid saccharification. External supplementation of commercial β-glucosidase and hemicellulase ensured better hydrolysis and further increased the saccharification efficiency by 14.5 and 20 %, respectively. An attempt was also made to recover cellulolytic enzymes using ultrafiltration module and nearly 79-84 % of the cellulases and more than 90 % of the sugars were recovered from the saccharification mixture.

  15. Optimum conditions to prepare high yield, phase pure α-Ni(OH) 2 nanoparticles by urea hydrolysis and electrochemical ageing in alkali solutions

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, M.; Venugopal, N.; Reddy, B. Ramachandra; Rao, M. Mohan

    Phase pure alpha nickel hydroxide (α-Ni(OH) 2) is synthesized by a hydrothermal method using urea and nickel nitrate in an autoclave. Optimum conditions to obtain high yield and phase pure α-Ni(OH) 2 are identified by varying experimental parameters such as urea concentration, ramp time, and temperature. In a typical experiment, a 94% yield of phase pure α-Ni(OH) 2 is successfully prepared. The nickel content, analyzed by means of atomic absorption spectroscopy, is 44% in all samples. The α-Ni(OH) 2 nanoparticles are characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The BET surface area and tap density of the nickel hydroxide nanoparticles are also determined. Electrochemical characterization is undertaken via cyclic voltammetry for which the nanoparticles are immobilized on the surface of paraffin impregnated graphite electrodes in 1.0 M alkali solutions. The ageing of the alpha phase occurs within 27 min (30 cycles) of exposure in alkali solutions.

  16. Chemical evolution. XXI - The amino acids released on hydrolysis of HCN oligomers

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Wos, J. D.; Nooner, D. W.; Oro, J.

    1974-01-01

    Major amino acids released by hydrolysis of acidic and basic HCN oligomers are identified by chromatography as Gly, Asp, and diaminosuccinic acid. Smaller amounts of Ala, Ile and alpha-aminoisobutyric acid are also detected. The amino acids released did not change appreciably when the hydrolysis medium was changed from neutral to acidic or basic. The presence of both meso and d, l-diaminosuccinic acids was established by paper chromatography and on an amino acid analyzer.

  17. Chemically coupled microwave and ultrasonic pre-hydrolysis of pulp and paper mill waste-activated sludge: effect on sludge solubilisation and anaerobic digestion.

    PubMed

    Tyagi, Vinay Kumar; Lo, Shang-Lien; Rajpal, Ankur

    2014-05-01

    The effects of alkali-enhanced microwave (MW; 50-175 °C) and ultrasonic (US) (0.75 W/mL, 15-60 min) pretreatments, on solubilisation and subsequent anaerobic digestion efficiency of pulp and paper mill waste-activated sludge, were investigated. Improvements in total chemical oxygen demand and volatile suspended solids (VSS) solubilisation were limited to 33 and 39 % in MW pretreatment only (175 °C). It reached 78 and 66 % in combined MW-alkali pretreatment (pH 12 + 175 °C), respectively. Similarly, chemical oxygen demand and VSS solubilisation were 58 and 37 % in US pretreatment alone (60 min) and it improved by 66 and 49 % after US-alkali pretreatment (pH 12 + 60 min), respectively. The biogas yield for US 60 min-alkali (pH 12)-pretreated sludge was significantly improved by 47 and 20 % over the control and US 60 reactors, respectively. The biogas generation for MW (150 °C)-alkali (pH 12)-pretreated sludge was only 6.3 % higher than control; however, it was 8.3 % lower than the MW (150 °C) reactor, which was due to the inhibition of anaerobic activity under harsh thermal-alkali treatment condition.

  18. Powerful peracetic acid-ionic liquid pretreatment process for the efficient chemical hydrolysis of lignocellulosic biomass.

    PubMed

    Uju; Goto, Masahiro; Kamiya, Noriho

    2016-08-01

    The aim of this work was to design a new method for the efficient saccharification of lignocellulosic biomass (LB) using a combination of peracetic acid (PAA) pretreatment with ionic liquid (IL)-HCl hydrolysis. The pretreatment of LBs with PAA disrupted the lignin fractions, enhanced the dissolution of LB and led to a significant increase in the initial rate of the IL-HCl hydrolysis. The pretreatment of Bagasse with PAA prior to its 1-buthyl-3-methylimidazolium chloride ([Bmim][Cl])-HCl hydrolysis, led to an improvement in the cellulose conversion from 20% to 70% in 1.5h. Interestingly, the 1-buthyl-3-methylpyridium chloride ([Bmpy][Cl])-HCl hydrolysis of Bagasse gave a cellulose conversion greater than 80%, with or without the PAA pretreatment. For LB derived from seaweed waste, the cellulose conversion reached 98% in 1h. The strong hydrolysis power of [Bmpy][Cl] was attributed to its ability to transform cellulose I to II, and lowering the degree of polymerization of cellulose.

  19. Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues.

    PubMed

    Ben Taher, Imen; Fickers, Patrick; Chniti, Sofien; Hassouna, Mnasser

    2016-12-20

    The aim of this work was the optimization of the enzyme hydrolysis of potato peel residues (PPR) for bioethanol production. The process included a pretreatment step followed by an enzyme hydrolysis using crude enzyme system composed of cellulase, amylase and hemicellulase, produced by a mixed culture of Aspergillus niger and Trichoderma reesei. Hydrothermal, alkali and acid pretreatments were considered with regards to the enhancement of enzyme hydrolysis of potato peel residues. The obtained results showed that hydrothermal pretreatment lead to a higher enzyme hydrolysis yield compared to both acid and alkali pretreatments. Enzyme hydrolysis was also optimized for parameters such as temperature, pH, substrate loading and surfactant loading using a response surface methodology. Under optimized conditions, 77 g L(-1) of reducing sugars were obtained. Yeast fermentation of the released reducing sugars led to an ethanol titer of 30 g L(-1) after supplementation of the culture medium with ammonium sulfate. Moreover, a comparative study between acid and enzyme hydrolysis of potato peel residues was investigated. Results showed that enzyme hydrolysis offers higher yield of bioethanol production than acid hydrolysis. These results highlight the potential of second generation bioethanol production from potato peel residues treated with onsite produced hydrolytic enzymes. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 2016.

  20. Synthesis, Spectroscopic, Structural and Quantum Chemical Studies of a New Imine Oxime and Its Palladium(II) Complex: Hydrolysis Mechanism.

    PubMed

    Kaya, Yunus; Yilmaz, Veysel T; Buyukgungor, Orhan

    2016-01-21

    In this work, we report synthesis, crystallographic, spectroscopic and quantum chemical studies of a new imine oxime, namely (4-nitro-phenyl)-(1-phenyl-ethylimino)-acetaldehyde oxime (nppeieoH). Spectroscopic and X-ray diffraction studies showed that nppeieoH is hydrolyzed in aqueous solution, forming nitroisonitrosoacetophenone (ninap) and the hydrolysis product binds to Pd(II) to yield [Pd(nppeieo)(ninap)]. The mechanism of the hydrolysis reaction has been theoretically investigated in detail, using density functional theory (DFT) with the B3LYP method. The vibrational and the electronic spectra of nppeieoH and its Pd(II) complex, the HOMO and LUMO analysis, Mulliken atomic charges and molecular electrostatic potential were also performed. The predicted nonlinear optical properties of both compounds are higher than those of urea.

  1. Detection of chemical warfare agent simulants and hydrolysis products in biological samples by paper spray mass spectrometry.

    PubMed

    McKenna, Josiah; Dhummakupt, Elizabeth S; Connell, Theresa; Demond, Paul S; Miller, Dennis B; Michael Nilles, J; Manicke, Nicholas E; Glaros, Trevor

    2017-03-24

    Paper spray ionization coupled to a high resolution tandem mass spectrometer (a quadrupole orbitrap) was used to identify and quantitate chemical warfare agent (CWA) simulants and their hydrolysis products in blood and urine. Three CWA simulants, dimethyl methylphosphonate (DMMP), trimethyl phosphate (TMP), and diisopropyl methylphosphonate (DIMP), and their isotopically labeled standards were analyzed in human whole blood and urine. Calibration curves were generated and tested with continuing calibration verification standards. Limits of detection for these three compounds were in the low ng mL(-1) range for the direct analysis of both blood and urine samples. Five CWA hydrolysis products, ethyl methylphosphonic acid (EMPA), isopropyl methylphosphonic acid (IMPA), isobutyl methylphosphonic acid (iBuMPA), cyclohexyl methylphosphonic acid (CHMPA), and pinacolyl methylphosphonic acid (PinMPA), were also analyzed. Calibration curves were generated in both positive and negative ion modes. Limits of detection in the negative ion mode ranged from 0.36 ng mL(-1) to 1.25 ng mL(-1) in both blood and urine for the hydrolysis products. These levels were well below those found in victims of the Tokyo subway attack of 2 to 135 ng mL(-1). Improved stability and robustness of the paper spray technique in the negative ion mode was achieved by the addition of chlorinated solvents. These applications demonstrate that paper spray mass spectrometry (PS-MS) can be used for rapid, sample preparation-free detection of chemical warfare agents and their hydrolysis products at physiologically relevant concentrations in biological samples.

  2. Chemical state analysis of trace-level alkali metals sorbed in micaceous oxide by total reflection X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Baba, Y.; Shimoyama, I.; Hirao, N.

    2016-10-01

    In order to determine the chemical states of radioactive cesium (137Cs or 134Cs) sorbed in clay minerals, chemical states of cesium as well as the other alkali metals (sodium and rubidium) sorbed in micaceous oxides have been investigated by X-ray photoelectron spectroscopy (XPS). Since the number of atoms in radioactive cesium is extremely small, we specially focused on chemical states of trace-level alkali metals. For this purpose, we have measured XPS under X-ray total reflection (TR) condition. For cesium, it was shown that ultra-trace amount of cesium down to about 100 pg cm-2 can be detected by TR-XPS. This amount corresponds to about 200 Bq of 137Cs (t1/2 = 30.2 y). It was demonstrated that ultra-trace amount of cesium corresponding to radioactive cesium level can be measured by TR-XPS. As to the chemical states, it was found that core-level binding energy in TR-XPS for trace-level cesium shifted to lower-energy side compared with that for thicker layer. A reverse tendency is observed in sodium. Based on charge transfer within a simple point-charge model, it is concluded that chemical bond between alkali metal and micaceous oxide for ultra-thin layer is more polarized that for thick layer.

  3. Enzymatic neutralization of the chemical warfare agent VX: evolution of phosphotriesterase for phosphorothiolate hydrolysis.

    PubMed

    Bigley, Andrew N; Xu, Chengfu; Henderson, Terry J; Harvey, Steven P; Raushel, Frank M

    2013-07-17

    The V-type nerve agents (VX and VR) are among the most toxic substances known. The high toxicity and environmental persistence of VX make the development of novel decontamination methods particularly important. The enzyme phosphotriesterase (PTE) is capable of hydrolyzing VX but with an enzymatic efficiency more than 5 orders of magnitude lower than with its best substrate, paraoxon. PTE has previously proven amenable to directed evolution for the improvement of catalytic activity against selected compounds through the manipulation of active-site residues. Here, a series of sequential two-site mutational libraries encompassing 12 active-site residues of PTE was created. The libraries were screened for catalytic activity against a new VX analogue, DEVX, which contains the same thiolate leaving group of VX coupled to a diethoxyphosphate core rather than the ethoxymethylphosphonate core of VX. The evolved catalytic activity with DEVX was enhanced 26-fold relative to wild-type PTE. Further improvements were facilitated by targeted error-prone PCR mutagenesis of loop-7, and additional PTE variants were identified with up to a 78-fold increase in the rate of DEVX hydrolysis. The best mutant hydrolyzed the racemic nerve agent VX with a value of kcat/Km = 7 × 10(4) M(-1) s(-1), a 230-fold improvement relative to wild-type PTE. The highest turnover number achieved by the mutants created for this investigation was 137 s(-1), an enhancement of 152-fold relative to wild-type PTE. The stereoselectivity for the hydrolysis of the two enantiomers of VX was relatively low. These engineered mutants of PTE are the best catalysts ever reported for the hydrolysis of nerve agent VX.

  4. Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions.

    PubMed

    Chen, Shanshan; Liu, Guangli; Zhang, Renduo; Qin, Bangyu; Luo, Yong

    2012-02-21

    By combining the microbial electrolysis cell and the microbial desalination cell, the microbial electrolysis desalination cell (MEDC) becomes a novel device to desalinate salty water. However, several factors, such as sharp pH decrease and Cl(-) accumulation in the anode chamber, limit the MEDC development. In this study, a microbial electrolysis desalination and chemical-production cell (MEDCC) was developed with four chambers using a bipolar membrane. Results showed that the pH in the anode chamber of the MEDCC always remained near 7.0, which greatly enhanced the microbial activities in the cell. With applied voltages of 0.3-1.0 V, 62%-97% of Coulombic efficiencies were achieved from the MEDCC, which were 1.5-2.0 times of those from the MEDC. With 10 mL of 10 g/L NaCl in the desalination chamber, desalination rates of the MEDCC reached 46%-86% within 18 h. Another unique feature of the MEDCC was the simultaneous production of HCl and NaOH in the cell. With 1.0 V applied voltage, the pH values at 18 h in the acid-production chamber and cathode chamber were 0.68 and 12.9, respectively. With the MEDCC, the problem with large pH changes in the anode chamber was resolved, and products of the acid and alkali were obtained.

  5. Pretreatment of corn stover by combining ionic liquid dissolution with alkali extraction.

    PubMed

    Geng, Xinglian; Henderson, Wesley A

    2012-01-01

    Pretreatment plays an important role in the efficient enzymatic hydrolysis of biomass into fermentable sugars for biofuels. A highly effective pretreatment method is reported for corn stover which combines mild alkali-extraction followed by ionic liquid (IL) dissolution of the polysaccharides and regeneration (recovery of the polysaccharides as solids). Air-dried, knife-milled corn stover was soaked in 1% NaOH at a moderate condition (90°C, 1 h) and then thoroughly washed with hot deionized (DI) water. The alkali extraction solublized 75% of the lignin and 37% of the hemicellulose. The corn stover fibers became softer and smoother after the alkali extraction. Unextracted and extracted corn stover samples were separately dissolved in an IL, 1-butyl-3-methylimidazolium chloride (C(4) mimCl), at 130°C for 2 h and then regenerated with DI water. The IL dissolution process did not significantly change the chemical composition of the materials, but did alter their structural features. Untreated and treated corn stover samples were hydrolyzed with commercial enzyme preparations including cellulases and hemicellulases at 50°C. The glucose yield from the corn stover sample that was both alkali-extracted and IL-dissolved was 96% in 5 h of hydrolysis. This is a highly effective methodology for minimizing the enzymatic loading for biomass hydrolysis and/or maximizing the conversion of biomass polysaccharides into sugars.

  6. Cationic gemini surfactants with cleavable spacer: chemical hydrolysis, biodegradation, and toxicity.

    PubMed

    Tehrani-Bagha, A R; Holmberg, K; van Ginkel, C G; Kean, M

    2015-07-01

    The paper describes synthesis and characterization of a new type of cationic gemini surfactant, which has dodecyl tails and a spacer that contains an ester bond. The nomenclature used to describe the structure is 12Q2OCO1Q12, with Q being a quaternary ammonium group and the numbers indicating the number of methylene or methyl groups. Due to the close proximity to the two quaternary ammonium groups, the ester bond is very stable on the acid side and very labile already at slightly alkaline conditions. The hydrolysis products are two single chain surfactants (i.e. 12Q2OH and 12Q1COOH) which are less surface active than the intact gemini surfactant. 12Q2OCO1Q12 was found to be readily biodegradable, i.e. it gave more than 60% biodegradation after 28 days. This is interesting because similar gemini surfactants but with ester bonds in the tails instead of the spacer, have previously been found not to be readily biodegradable. The gemini surfactant was found to be toxic to aquatic organisms (ErC50 value of 0.27 mg/l), although less toxic than the two hydrolysis products.

  7. Hydrolysis of aspartic acid phosphoramidate nucleotides: a comparative quantum chemical study.

    PubMed

    Michielssens, Servaas; Tien Trung, Nguyen; Froeyen, Matheus; Herdewijn, Piet; Tho Nguyen, Minh; Ceulemans, Arnout

    2009-09-07

    L-Aspartic acid has recently been found to be a good leaving group during HIV reverse transcriptase catalyzed incorporation of deoxyadenosine monophosphate (dAMP) in DNA. This showed that L-Asp is a good mimic for the pyrophosphate moiety of deoxyadenosine triphosphate. The present work explores the thermochemistry and mechanism for hydrolysis of several models for L-aspartic-dAMP using B3LYP/DGDZVP, MP2/6-311++G** and G3MP2 level of theory. The effect of the new compound is gradually investigated: starting from a simple methyl amine leaving group up to the aspartic acid leaving group. The enzymatic environment was mimicked by involving two Mg(2+) ions and some important active site residues in the reaction. All reactions are compared to the corresponding O-coupled leaving group, which is methanol for methyl amine and malic acid for aspartic acid. With methyl amine as a leaving group a tautomeric associative or tautomeric dissociative mechanism is preferred and the barrier is lower than the comparable mechanism with methanol as a leaving group. The calculations on the aspartic acid in the enzymatic environment show that qualitatively the mechanism is the same as for triphosphate but the barrier for hydrolysis by the associative mechanism is higher for L-aspartic-dAMP than for L-malic-dAMP and pyrophosphate.

  8. Extreme early solar system chemical fractionation recorded by alkali-rich clasts contained in ordinary chondrite breccias

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tatsunori; Misawa, Keiji; Okano, Osamu; Shih, Chi-Yu; Nyquist, Laurence E.; Simon, Justin I.; Tappa, Michael J.; Yoneda, Shigekazu

    2017-01-01

    New K-Ca and Rb-Sr isotopic analyses have been performed on alkali-rich igneous rock fragments in the Yamato (Y)-74442 and Bhola LL-chondritic breccias to better understand the extent and timing of alkali enrichments in the early solar system. The Y-74442 fragments yield a K-Ca age of 4.41 ± 0.28 Ga for λ(40K) = 0.5543 Ga-1 with an initial 40Ca/44Ca ratio of 47.1618 ± 0.0032. Studying the same fragments with the Rb-Sr isotope system yields an age of 4.420 ± 0.031 Ga for λ(87Rb) = 0.01402 Ga-1 with an initial ratio of 87Sr/86Sr = 0.7203 ± 0.0044. An igneous rock fragment contained in Bhola shows a similar alkali fractionation pattern to those of Y-74442 fragments but does not plot on the K-Ca or Rb-Sr isochron of the Y-74442 fragments. Calcium isotopic compositions of whole-rock samples of angrite and chondrites are primordial, indistinguishable from mantle-derived terrestrial rocks, and here considered to represent the initial composition of bulk silicate Earth. The initial ε40Ca value determined for the source of the alkali clasts in Y-74442 that is ∼0.5 ε-units higher than the solar system value implies an early alkali enrichment. Multi-isotopic studies on these alkali-rich fragments reveal that the source material of Y-74442 fragments had elemental ratios of K/Ca = 0.43 ± 0.18, Rb/Sr = 3.45 ± 0.66 and K/Rb ∼ 170, that may have formed from mixtures of an alkali-rich component (possibly an alkali-enriched gaseous reservoir produced by fractionation of early nebular condensates) and chondritic components that were flash-heated during an impact event on the LL-chondrite parent body ∼4.42 Ga ago. Further enrichments of potassium and rubidium relative to calcium and strontium as well as a mutual alkali-fractionation (K/Rb ∼ 50 and heavier alkali-enrichment) would have likely occurred during subsequent cooling and differentiation of this melt. Alkali fragments in Bhola might have undergone similar solid-vapor fractionation processes to those of Y

  9. Effect of different alkali treatments on the chemical composition, physical properties, and microstructure of pidan white.

    PubMed

    Zhang, Xianwei; Jiang, Aimin; Chen, Mingtsao; Ockerman, Herbert W; Chen, Jiaojiao

    2015-04-01

    Changes in chemical composition, physical property and microstructure of pidan white treated with 4.5 % NaOH or 5.5 % KOH were monitored during pickling up to 4 weeks, and followed by aging for another 2 weeks. As the pickling and ageing times increased, moisture content of pidan white decreased and salt content increased for both (4.5 % NaOH and 5.5 % KOH) treatments (P < 0.05). Free alkalinity and pH of pidan white treated with 4.5 % NaOH increased as pickling proceeded, but decreased during ageing for both pickling treatments (P < 0.05). At week 4 of pickling, pidan white treated with 5.5 % KOH had higher hardness, cohesiveness, gumminess and chewiness than those treated with 4.5 % NaOH. After ageing, higher springiness, elastic modulus (G') and viscous modulus (G") were generally found in pidan white treated with 5.5 % KOH (P < 0.05). As the pickling time increased, lower L*, b* values and higher a* value were observed in pidan white from both treatments (P < 0.05). As visualized by scanning electron microscope, the aggregation of egg proteins took place in pidan white gels, irrespective of pickling treatments used. Nevertheless, closer and more orderly protein aggregates with denser network were founded in pidan white treated with 5.5 % KOH.

  10. The influence of 1-butanol and trisodium citrate ion on morphology and chemical properties of chitosan-based microcapsules during rigidification by alkali treatment.

    PubMed

    Chatterjee, Sudipta; Salaün, Fabien; Campagne, Christine

    2014-12-02

    Linseed oil which has various biomedical applications was encapsulated by chitosan (Chi)-based microcapsules in the development of a suitable carrier. Oil droplets formed in oil-in-water emulsion using sodium dodecyl sulfate (SDS) as emulsifier was stabilized by Chi, and microcapsules with multilayers were formed by alternate additions of SDS and Chi solutions in an emulsion through electrostatic interaction. No chemical cross-linker was used in the study and the multilayer shell membrane was formed by ionic gelation using Chi and SDS. The rigidification of the shell membrane of microcapsules was achieved by alkali treatment in the presence of a small amount of 1-butanol to reduce aggregation. A trisodium citrate solution was used to stabilize the charge of microcapsules by ionic cross-linking. Effects of butanol during alkali treatment and citrate in post alkali treatment were monitored in terms of morphology and the chemical properties of microcapsules. Various characterization techniques revealed that the aggregation was decreased and surface roughness was increased with layer formation.

  11. The Influence of 1-Butanol and Trisodium Citrate Ion on Morphology and Chemical Properties of Chitosan-Based Microcapsules during Rigidification by Alkali Treatment

    PubMed Central

    Chatterjee, Sudipta; Salaün, Fabien; Campagne, Christine

    2014-01-01

    Linseed oil which has various biomedical applications was encapsulated by chitosan (Chi)-based microcapsules in the development of a suitable carrier. Oil droplets formed in oil-in-water emulsion using sodium dodecyl sulfate (SDS) as emulsifier was stabilized by Chi, and microcapsules with multilayers were formed by alternate additions of SDS and Chi solutions in an emulsion through electrostatic interaction. No chemical cross-linker was used in the study and the multilayer shell membrane was formed by ionic gelation using Chi and SDS. The rigidification of the shell membrane of microcapsules was achieved by alkali treatment in the presence of a small amount of 1-butanol to reduce aggregation. A trisodium citrate solution was used to stabilize the charge of microcapsules by ionic cross-linking. Effects of butanol during alkali treatment and citrate in post alkali treatment were monitored in terms of morphology and the chemical properties of microcapsules. Various characterization techniques revealed that the aggregation was decreased and surface roughness was increased with layer formation. PMID:25474188

  12. Relationship between chemical structure and biological activity of alkali metal o-, m- and p-anisates. FT-IR and microbiological studies.

    PubMed

    Kalinowska, M; Piekut, J; Lewandowski, W

    2011-11-01

    In this work we investigated relationship between molecular structure of alkali metal o-, m-, p-anisate molecules and their antimicrobial activity. For this purpose FT-IR spectra for lithium, sodium, potassium, rubidium and caesium anisates in solid state and solution were recorded, assigned and analysed. Microbial activity of studied compounds was tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Proteus vulgaris. In order to evaluate the dependency between chemical structure and biological activity of alkali metal anisates the statistical analysis (multidimensional regression and principal component) was performed for selected wavenumbers from FT-IR spectra and parameters that describe microbial activity of anisates. The obtained statistical equations show the existence of correlation between molecular structure of anisates and their biological properties.

  13. Relationship between chemical structure and biological activity of alkali metal o-, m- and p-anisates. FT-IR and microbiological studies

    NASA Astrophysics Data System (ADS)

    Kalinowska, M.; Piekut, J.; Lewandowski, W.

    2011-11-01

    In this work we investigated relationship between molecular structure of alkali metal o-, m-, p-anisate molecules and their antimicrobial activity. For this purpose FT-IR spectra for lithium, sodium, potassium, rubidium and caesium anisates in solid state and solution were recorded, assigned and analysed. Microbial activity of studied compounds was tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Proteus vulgaris. In order to evaluate the dependency between chemical structure and biological activity of alkali metal anisates the statistical analysis (multidimensional regression and principal component) was performed for selected wavenumbers from FT-IR spectra and parameters that describe microbial activity of anisates. The obtained statistical equations show the existence of correlation between molecular structure of anisates and their biological properties.

  14. Effect of pretreatment and enzymatic hydrolysis on the physical-chemical composition and morphologic structure of sugarcane bagasse and sugarcane straw.

    PubMed

    Moretti, Marcia Maria de Souza; Perrone, Olavo Micali; Nunes, Christiane da Costa Carreira; Taboga, Sebastião; Boscolo, Maurício; da Silva, Roberto; Gomes, Eleni

    2016-11-01

    The present work aimed to study the effect of the pretreatment of sugarcane bagasse and straw with microwave irradiation in aqueous and acid glycerol solutions on their chemical composition, fiber structure and the efficiency of subsequent enzymatic hydrolysis. Thermogravimetric analysis showed that the pretreatment acted mainly on the lignin and hemicellulose fractions of the bagasse, whereas, in the straw, lesser structural and chemical changes were observed. The images from transmission electron microscopy (TEM) revealed that treating bagasse and straw with acid glycerol solution loosened the cell walls and there was a breakdown in the pit membrane. The treated material was submitted to hydrolysis for 72h and higher yields of reducing sugars were observed compared to the untreated material (250.9mg/g from straw and 197.4mg/g from bagasse). TEM images after hydrolysis confirmed the possible points of access of the enzymes to the secondary cell wall region of the pretreated biomass.

  15. An Overview of Chemical Processes That Damage Cellular DNA: Spontaneous Hydrolysis, Alkylation, and Reactions with Radicals

    PubMed Central

    Gates, Kent S.

    2009-01-01

    The sequence of heterocyclic bases on the interior of the DNA double helix constitutes the genetic code that drives the operation of all living organisms. With this said, it is not surprising that chemical modification of cellular DNA can have profound biological consequences. Therefore, the organic chemistry of DNA damage is fundamentally important to diverse fields including medicinal chemistry, toxicology, and biotechnology. This review is designed to provide a brief overview of the common types of chemical reactions that lead to DNA damage under physiological conditions. PMID:19757819

  16. Experimental Na/K exchange between alkali feldspar and an NaCl-KCl salt melt: chemically induced fracturing and element partitioning

    NASA Astrophysics Data System (ADS)

    Neusser, G.; Abart, R.; Fischer, F. D.; Harlov, D.; Norberg, N.

    2012-08-01

    The exchange of Na+ and K+ between alkali feldspar and a NaCl-KCl salt melt has been investigated experimentally. Run conditions were at ambient pressure and 850 °C as well as 1,000 °C. Cation exchange occurred by interdiffusion of Na+ and K+ on the feldspar sub-lattice, while the Si-Al framework remained unaffected. Due to the compositional dependence of the lattice parameters compositional heterogeneities resulting from Na+/K+ interdiffusion induced coherency stress and associated fracturing. Depending on the sense of chemical shift, different crack patterns developed. For the geometrically most regular case that developed when potassic alkali feldspar was shifted toward more sodium-rich compositions, a prominent set of cracks corresponding to tension cracks opened perpendicular to the direction of maximum tensile stress and did not follow any of the feldspar cleavage planes. The critical stress needed to initiate fracturing in a general direction of the feldspar lattice was estimated at ≤0.35 GPa. Fracturing provided fast pathways for penetration of salt melt or vapor into grain interiors enhancing overall cation exchange. The Na/K partitioning between feldspar and the salt melt attained equilibrium values in the exchanged portions of the grains allowing for extraction of the alkali feldspar mixing properties.

  17. Facile hydrolysis-based chemical destruction of the warfare agents VX, GB, and HD by alumina-supported fluoride reagents.

    PubMed

    Gershonov, E; Columbus, I; Zafrani, Y

    2009-01-02

    A facile solvent-free hydrolysis (chemical destruction) of the warfare agents VX (O-ethyl S-2-(diisopropylamino)ethyl methylphosphonothioate), GB (O-isopropyl methylphosphonofluoridate or sarin), and HD (2,2'-dichloroethyl sulfide or sulfur mustard) upon reaction with various solid-supported fluoride reagents is described. These solid reagents include different alumina-based powders such as KF/Al(2)O(3), AgF/KF/Al(2)O(3), and KF/Al(2)O(3) enriched by so-called coordinatively unsaturated fluoride ions (termed by us as ECUF-KF/Al(2)O(3)). When adsorbed on these sorbents, the nerve agent VX quickly hydrolyzed (t(1/2) range between 0.1-6.3 h) to the corresponding nontoxic phosphonic acid EMPA as a major product (>90%) and to the relatively toxic desethyl-VX (<10%). The latter byproduct was further hydrolyzed to the nontoxic MPA product (t(1/2) range between 2.2-161 h). The reaction rates and the product distribution were found to be strongly dependent on the nature of the fluoride ions in the KF/Al(2)O(3) matrix and on its water content. All variations of the alumina-supported fluoride reagents studied caused an immediate hydrolysis of the highly toxic GB (t(1/2) < 10 min) to form the corresponding nontoxic phosphonic acid IMPA. A preliminary study of the detoxification of HD on these catalyst supports showed the formation of the nontoxic 1,4-thioxane as a major product together with minor amounts of TDG and vinylic compounds within a few days. The mechanisms and the efficiency of these processes were successfully studied by solid-state (31)P, (13)C, and (19)F MAS NMR.

  18. Effect of a residue after evaporation from industrial vitamin C fermentation on chemical and microbial properties of alkali-saline soil.

    PubMed

    Kong, Tao; Xu, Hui; Wang, Zhenyu; Sun, Hao; Wang, Lihua

    2014-07-01

    Residue after evaporation (RAE) from industrial vitamin C fermentation is emitted as a waste product at an amount of 60,000 tons per year in China. The disposal of RAE is difficult because of its high chemical oxygen demand (1.17×10(6) mg/l) and low pH (0.27). We hypothesized that RAE could be used as an ameliorant for alkali-saline soils, and tried to verify it by carrying out a pot experiment of pakchoi cultivation and to explore its effect on soil chemical and microbial properties. The results showed that pakchoi yield was increased by 28.13% and pakchoi quality was also enhanced under RAE treatment. The improved chemical and microbial properties of treated soil were also observed: soil pH was decreased from 9.19 to 9.03; total organic carbon, available phosphorus and available potassium were increased by 49.15%, 34.91% and 42.02%, respectively; number of culturable bacteria, actinomycetes and fungi, microbial biomass carbon and enzyme activity number were improved by 52.97%, 104.05%, 79.09%, 57.82% and 31.16%, respectively. These results suggested the residue application led to an improved soil quality and subsequently a higher yield and quality of pakchoi. This study provided a strong evidence for the feasibility of RAE as an ameliorant for alkali-saline soil.

  19. Characterization of chemical warfare G-agent hydrolysis products by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Inscore, Frank E.; Gift, Alan D.; Maksymiuk, Paul; Farquharson, Stuart

    2004-12-01

    The United States and its allies have been increasingly challenged by terrorism, and since the September 11, 2001 attacks and the war in Afghanistan and Iraq, homeland security has become a national priority. The simplicity in manufacturing chemical warfare agents, the relatively low cost, and previous deployment raises public concern that they may also be used by terrorists or rogue nations. We have been investigating the ability of surface-enhanced Raman spectroscopy (SERS) to detect extremely low concentrations (e.g. part-per-billion) of chemical agents, as might be found in poisoned water. Since trace quantities of nerve agents can be hydrolyzed in the presence of water, we have expanded our studies to include such degradation products. Our SERS-active medium consists of silver or gold nanoparticles incorporated into a sol-gel matrix, which is immobilized in a glass capillary. The choice of sol-gel precursor allows controlling hydrophobicity, while the porous silica network offers a unique environment for stabilizing the SERS-active metals. Here we present the use of these metal-doped sol-gels to selectively enhance the Raman signal of the hydrolyzed products of the G-series nerve agents.

  20. Methods of use of calcium hexa aluminate refractory linings and/or chemical barriers in high alkali or alkaline environments

    DOEpatents

    McGowan, Kenneth A; Cullen, Robert M; Keiser, James R; Hemrick, James G; Meisner, Roberta A

    2013-10-22

    A method for improving the insulating character/and or penetration resistance of a liner in contact with at least one of an alkali and/or alkaline environments is provided. The method comprises lining a surface that is subject to wear by an alkali environment and/or an alkaline environment with a refractory composition comprising a refractory aggregate consisting essentially of a calcium hexa aluminate clinker having the formula CA.sub.6, wherein C is equal to calcium oxide, wherein A is equal to aluminum oxide, and wherein the hexa aluminate clinker has from zero to less than about fifty weight percent C.sub.12A.sub.7, and wherein greater than 98 weight percent of the calcium hexa aluminate clinker having a particle size ranging from -20 microns to +3 millimeters, for forming a liner of the surface. This method improves the insulating character/and or penetration resistance of the liner.

  1. An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis.

    PubMed

    Revilla, Marta; Galán, Berta; Viguri, Javier R

    2016-07-01

    An integrated mathematical model is proposed for modelling a moving bed biofilm reactor (MBBR) for removal of chemical oxygen demand (COD) under aerobic conditions. The composite model combines the following: (i) a one-dimensional biofilm model, (ii) a bulk liquid model, and (iii) biological processes in the bulk liquid and biofilm considering the interactions among autotrophic, heterotrophic and predator microorganisms. Depending on the values for the soluble biodegradable COD loading rate (SCLR), the model takes into account a) the hydrolysis of slowly biodegradable compounds in the bulk liquid, and b) the growth of predator microorganisms in the bulk liquid and in the biofilm. The integration of the model and the SCLR allows a general description of the behaviour of COD removal by the MBBR under various conditions. The model is applied for two in-series MBBR wastewater plant from an integrated cellulose and viscose production and accurately describes the experimental concentrations of COD, total suspended solids (TSS), nitrogen and phosphorous obtained during 14 months working at different SCLRs and nutrient dosages. The representation of the microorganism group distribution in the biofilm and in the bulk liquid allow for verification of the presence of predator microorganisms in the second reactor under some operational conditions.

  2. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  3. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  4. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  5. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  6. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  7. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  8. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  9. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  10. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  11. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  12. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in...

  13. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  14. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  15. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  16. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  17. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in...

  18. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  19. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in...

  20. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in...

  1. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  2. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  3. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  4. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in...

  5. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  6. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  7. Hydrolysis reactor for hydrogen production

    DOEpatents

    Davis, Thomas A.; Matthews, Michael A.

    2012-12-04

    In accordance with certain embodiments of the present disclosure, a method for hydrolysis of a chemical hydride is provided. The method includes adding a chemical hydride to a reaction chamber and exposing the chemical hydride in the reaction chamber to a temperature of at least about 100.degree. C. in the presence of water and in the absence of an acid or a heterogeneous catalyst, wherein the chemical hydride undergoes hydrolysis to form hydrogen gas and a byproduct material.

  8. Analyzing relationships between surface perturbations and local chemical reactivity of metal sites: Alkali promotion of O2 dissociation on Ag(111)

    NASA Astrophysics Data System (ADS)

    Xin, Hongliang; Linic, Suljo

    2016-06-01

    Many commercial heterogeneous catalysts are complex structures that contain metal active sites promoted by multiple additives. Developing fundamental understanding about the impact of these perturbations on the local surface reactivity is crucial for catalyst development and optimization. In this contribution, we develop a general framework for identifying underlying mechanisms that control the changes in the surface reactivity of a metal site (more specifically the adsorbate-surface interactions) upon a perturbation in the local environment. This framework allows us to interpret fairly complex interactions on metal surfaces in terms of specific, physically transparent contributions that can be evaluated independently of each other. We use Cs-promoted dissociation of O2 as an example to illustrate our approach. We concluded that the Cs adsorbate affects the outcome of the chemical reaction through a strong alkali-induced electric field interacting with the static dipole moment of the O2/Ag(111) system.

  9. Analyzing relationships between surface perturbations and local chemical reactivity of metal sites: Alkali promotion of O2 dissociation on Ag(111).

    PubMed

    Xin, Hongliang; Linic, Suljo

    2016-06-21

    Many commercial heterogeneous catalysts are complex structures that contain metal active sites promoted by multiple additives. Developing fundamental understanding about the impact of these perturbations on the local surface reactivity is crucial for catalyst development and optimization. In this contribution, we develop a general framework for identifying underlying mechanisms that control the changes in the surface reactivity of a metal site (more specifically the adsorbate-surface interactions) upon a perturbation in the local environment. This framework allows us to interpret fairly complex interactions on metal surfaces in terms of specific, physically transparent contributions that can be evaluated independently of each other. We use Cs-promoted dissociation of O2 as an example to illustrate our approach. We concluded that the Cs adsorbate affects the outcome of the chemical reaction through a strong alkali-induced electric field interacting with the static dipole moment of the O2/Ag(111) system.

  10. Woody biomass: Niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis.

    PubMed

    Liu, Shijie

    2010-01-01

    The conversion of biomass to chemicals and energy is imperative to sustaining our way of life as known to us today. Fossil chemical and energy sources are traditionally regarded as wastes from a distant past. Petroleum, natural gas, and coal are not being regenerated in a sustainable manner. However, biomass sources such as algae, grasses, bushes and forests are continuously being replenished. Woody biomass represents the most abundant and available biomass source. Woody biomass is a reliably sustainable source of chemicals and energy that could be replenished at a rate consistent with our needs. The biorefinery is a concept describing the collection of processes used to convert biomass to chemicals and energy. Woody biomass presents more challenges than cereal grains for conversion to platform chemicals due to its stereochemical structures. Woody biomass can be thought of as comprised of at least four components: extractives, hemicellulose, lignin and cellulose. Each of these four components has a different degree of resistance to chemical, thermal and biological degradation. The biorefinery concept proposed at ESF (State University of New York - College of Environmental Science and Forestry) aims at incremental sequential deconstruction, fractionation/conversion of woody biomass to achieve efficient separation of major components. The emphasis of this work is on the kinetics of hot-water extraction, filling the gap in the fundamental understanding, linking engineering developments, and completing the first step in the biorefinery processes. This first step removes extractives and hemicellulose fractions from woody biomass. While extractives and hemicellulose are largely removed in the extraction liquor, cellulose and lignin largely remain in the residual woody structure. Xylo-oligomers and acetic acid in the extract are the major components having the greatest potential value for development. Extraction/hydrolysis involves at least 16 general reactions that could

  11. Spectrometric study of AOT-hydrolysis reaction in water/AOT/isooctane microemulsions using phenolphthalein as a chemical probe.

    PubMed

    Mao, Shiyan; Chen, Zhiyun; Fan, Dashuang; An, Xueqin; Shen, Weiguo

    2012-01-12

    The kinetics of the alkaline hydrolysis of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in water/AOT/isooctane microemulsions has been studied by monitoring the absorbance change of the phenolphthalein in the system with time. The apparent first-order rate constant k(obs) has been obtained and found to be dependent on both the molar ratio of water to AOT ω and the temperature. The dependences of k(obs) on ω have been analyzed by a pseudophase model which gives the true rate constants k(i) of the AOT-hydrolysis reaction on the interface and the partition coefficients K(wi) for the distribution of OH(-) between aqueous and interface pseudophases at various temperatures; the latter is almost independent of the temperature and ω. The temperature dependences of the reaction rate constants k(obs) and k(i) have been analyzed to obtain enthalpy ΔH(≠), entropy ΔS(≠), and energy E(a) of activation, which indicate that the distribution of OH(-) between aqueous and interface pseudophases increases ΔS(≠) but makes no contribution to E(a) and ΔH(≠). The influence of the overall concentration of AOT in the system on the rate constant has been examined and found to be negligible. It contradicts with what was reported by García-Río et al. (1) but confirms that the first-order reaction of the AOT-hydrolysis takes place on the surfactant interface. The study of the influence of AOT-hydrolysis on the kinetics of the alkaline fading of crystal violet or phenolphthalein in the water/AOT/isooctane microemulsions suggests that corrections for the AOT-hydrolysis in these reactions are required.

  12. Density and water content of nanoscale solid C-S-H formed in alkali-activated slag (AAS) paste and implications for chemical shrinkage

    SciTech Connect

    Thomas, Jeffrey J.; Allen, Andrew J.; Jennings, Hamlin M.

    2012-02-15

    Alkali-activated slag (AAS) paste was analyzed using small-angle neutron scattering (SANS). The scattering response indicates that the microstructure consists of a uniform matrix of hydration product with a high surface area studded with unhydrated cores of slag particles. In contrast with portland cement paste, no surface fractal scattering regime was detected, and elevated temperature curing (at 60 Degree-Sign C) had no detectable effect on the microstructure at any length scale studied. The specific surface area of the AAS pastes is about 25% higher than that of a portland cement paste cured under the same conditions. The composition and mass density of the nanoscale solid C-S-H phase formed in the AAS paste was determined using a previously developed neutron scattering method, in conjunction with a hydration model. The result ((CaO){sub 0.99}-SiO{sub 2}-(Al{sub 2}O{sub 3}){sub 0.06}-(H{sub 2}O){sub 0.97}, d = (2.73 {+-} 0.02) g/cm{sup 3}) is significantly lower in calcium and in water as compared to portland cement or pure tricalcium silicate paste. These values were used to calculate the chemical shrinkage that would result from complete hydration of the AAS paste. The result, (12.2 {+-} 1.5) cm{sup 3} of volumetric shrinkage per 100 g of unhydrated cement, is about twice the amount of chemical shrinkage exhibited by normal cement pastes.

  13. Effects of thermo-chemical pretreatment plus microbial fermentation and enzymatic hydrolysis on saccharification and lignocellulose degradation of corn straw.

    PubMed

    Wang, Ping; Chang, Juan; Yin, Qingqiang; Wang, Erzhu; Zhu, Qun; Song, Andong; Lu, Fushan

    2015-10-01

    In order to increase corn straw degradation, the straw was kept in the combined solution of 15% (w/w) lime supernatant and 2% (w/w) sodium hydroxide with liquid-to-solid ratio of 13:1 (mL/g) at 83.92°C for 6h; and then added with 3% (v/v) H2O2 for reaction at 50°C for 2h; finally cellulase (32.3 FPU/g dry matter) and xylanase (550 U/g dry matter) was added to keep at 50°C for 48 h. The maximal reducing sugars yield (348.77 mg/g) was increased by 126.42% (P<0.05), and the degradation rates of cellulose, hemicellulose and lignin in pretreated corn straw with enzymatic hydrolysis were increased by 40.08%, 45.71% and 52.01%, compared with the native corn straw with enzymatic hydrolysis (P<0.05). The following study indicated that the combined microbial fermentation and enzymatic hydrolysis could further increase straw degradation and reducing sugar yield (442.85 mg/g, P<0.05).

  14. Simulation of continuous and batch hydrolysis of willow

    SciTech Connect

    Zacchi, G.; Dahlbom, J.; Scott, C.D.

    1986-01-01

    The influence of product and enzyme concentrations on the kinetics of the enzymic hydrolysis of alkali-pretreated willow is studied. The hydrolysis was performed in a UF-membrane reactor in which the product concentration was kept constant. An empirical 4-parameter rate equation that gives a good correlation to both continuous and batch hydrolysis data is presented. The model comprises the effects of enzyme concentration and product inhibition. (Refs. 11).

  15. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS - ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  16. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. I. ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  17. Effects of chemical composition on the environments of D+ and H+ in alkali silicate glasses: with implications for D/H fractionation in magmatic processes

    NASA Astrophysics Data System (ADS)

    Le Losq, C.; Cody, G. D.; Mysen, B. O.

    2014-12-01

    The δD is an important probe for studying the cycle of water within the Earth and between planetary bodies. D/H fractionation between silicate melts, minerals, aqueous fluids and gases governed the δD-evolution of the various geochemical reservoirs. It is usually assumed that D+ and H+ have the same chemical properties and structural environments in silicate melts and aqueous fluids, so that the only mass-dependent fractionation takes place with values approaching 1 at magmatic temperatures. However, recent in situ studies reveal important D/H fractionation between silicate melts and aqueous fluids even at high temperature. H and D MAS NMR data from sodium silicate glasses also shown that D+ and H+ occupy different structural positions in the structure of silicate glasses. This suggests that mass-dependent fractionation is not the only factor governing D/H fractionation in magmatic systems. To assess how the chemical composition and the structure of alkali silicate glasses affect the environments of H+ and D+, the H and D MAS NMR spectra of M2Si4O9 glasses (M = Li, Na or K) with different concentrations of pure H2O or D2O (from 3.3 up to 17.6 mol%) were recorded. Other spectra were acquired from M2Si4O9 glasses with 17.6 mol%(1H,1D)2O. Signals at ~1, ~3.5, ~5, ~12 and ~16 ppm in 1H MAS NMR spectra are assigned to H+ in H2O molecules and Si-OH groups in the glasses. These five signals indicates protons distribution between at least five environments with O…O distances ranging from ~305 to ~240 pm. The ionic radius of alkali affects the distribution of H+ between those environments. D MAS NMR spectra reveal that by exchanging H+ with D+, the intensity of the 16 ppm NMR line increases, whereas the intensity of the 5 ppm line decreases. Consequently, D+ seems to be more concentrated than H+ in environments with small O...O distances. In other words, the structural environments of H+ and D+ in the silicate glasses, and hence in melts at their glass transition

  18. Sugar production from barley straw biomass pretreated by combined alkali and enzymatic extrusion.

    PubMed

    Duque, A; Manzanares, P; Ballesteros, I; Negro, M J; Oliva, J M; González, A; Ballesteros, M

    2014-04-01

    A pretreatment that combines a thermo-mechanical process (extrusion) with chemical and biological catalysts to produce fermentable sugars from barley straw (BS) biomass was investigated. BS was firstly extruded with alkali and then, the pretreated material (extrudate) was submitted to extrusion with hydrolytic enzymes (bioextrusion). The bioextrudate was found to have 35% (w/w dwb) of total solids in soluble form, partly coming from carbohydrate hydrolysis during bioextrusion. About 48% of soluble solids dry weight is comprised by sugars, mostly glucose and xylose. Further enzymatic hydrolysis of bioextrudate could be successfully carried out at high solid loading level of 30% (w/v), with sugar production yield of 32 g glucose and 18 g xylose/100g bioextrudate at 72 h incubation (equivalent to 96 and 52 g/l concentration, respectively). These results, together with the high level of integration of the process, indicate a great potential of this pretreatment technology for sugar production from lignocellulosic substrates.

  19. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  20. Environmentally friendly chemical recycling of poly(bisphenol-A carbonate) through phase transfer-catalysed alkaline hydrolysis under microwave irradiation.

    PubMed

    Tsintzou, Georgia P; Antonakou, Eleni V; Achilias, Dimitris S

    2012-11-30

    The various and widespread uses of polycarbonate (PC) polymers require a meaningful and environmentally friendly disposal method. In this study, depolymerisation of polycarbonate with water in a microwave reactor is suggested as a recycling method. Hydrolysis was investigated in an alkaline (NaOH) solution using a phase-transfer catalyst. All of the experiments were carried out in a sealed microwave reactor, in which the reaction pressure, temperature and microwave power were continuously controlled and recorded. In the hydrolysis products, bisphenol-A monomer was obtained and identified by FTIR measurements. PC degradation higher than 80% can be obtained at 160°C after a microwave irradiation time of either 40 min or 10 min using either a 5 or 10% (w/v) NaOH solution, respectively. GPC, TGA and DSC measurements of the PC residues revealed that surface erosion is the degradation mechanism. First-order reaction kinetics were estimated by implementing a simple kinetic model. Finally, greater than 85% degradation was achieved when waste CDs were treated with the same method. The results confirm the importance of the microwave power technique as a promising recycling method for PC-based waste plastics, resulting in monomer recovery in addition to substantial energy savings.

  1. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    PubMed Central

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-01-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition. PMID:27222322

  2. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    NASA Astrophysics Data System (ADS)

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-05-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition.

  3. Chemical equilibrium model for interfacial activity of crude oil in aqueous alkaline solution: the effects of pH, alkali and salt

    SciTech Connect

    Chan, M.; Yen, T.F.

    1980-11-01

    A chemical equilibrium model for interfacial activity of crude in aqueous alkaline solution is proposed. The model predicts the observed effects of pH and concentrations of alkali and salt on the interfacial tension (IFT). The model proposed was shown to describe the observed effects of acid content, pH, and sodium ions on the interfacial activity of crude oil in water. Once the pH of the interface reaches the pKa of the acids, sometimes with the help of addition of some salt, the IFT experiences a sudden steep drop to the range of 10/sup -2/ dynes/cm. After that, further addition of sodium either in the form of NaOH or NaCl is going to increase the IFT due to a shift of equilibriumn to the formation of undissociated soap. This was confirmed by the difference in the observed effect of sodium on the IFT of the extracted soap molecules which are dissociated easily and those which are associated highly and precipitated easily. These soap molecules have dissociation constant values ranging from below 10/sup -2/ to above one. 13 references.

  4. An integrated process for the production of platform chemicals and diesel miscible fuels by acid-catalyzed hydrolysis and downstream upgrading of the acid hydrolysis residues with thermal and catalytic pyrolysis.

    PubMed

    Girisuta, Buana; Kalogiannis, Konstantinos G; Dussan, Karla; Leahy, James J; Hayes, Michael H B; Stefanidis, Stylianos D; Michailof, Chrysa M; Lappas, Angelos A

    2012-12-01

    This study evaluates an integrated process for the production of platform chemicals and diesel miscible biofuels. An energy crop (Miscanthus) was treated hydrothermally to produce levulinic acid (LA). Temperatures ranging between 150 and 200 °C, sulfuric acid concentrations 1-5 wt.% and treatment times 1-12 h were applied to give different combined severity factors. Temperatures of 175 and 200 °C and acid concentration of 5 wt.% were found to be necessary to achieve good yield (17 wt.%) and selectivities of LA while treatment time did not have an effect. The acid hydrolysis residues were characterized for their elemental, cellulose, hemicellulose and lignin contents, and then tested in a small-scale pyrolyzer using silica sand and a commercial ZSM-5 catalyst. Milder pretreatment yielded more oil (43 wt.%) and oil O(2) (37%) while harsher pretreatment and catalysis led to more coke production (up to 58 wt.%), less oil (12 wt.%) and less oil O(2) (18 wt.%).

  5. Synthesis, Chemical and Enzymatic Hydrolysis, and Aqueous Solubility of Amino Acid Ester Prodrugs of 3-Carboranyl Thymidine Analogues for Boron Neutron Capture Therapy of Brain Tumors

    PubMed Central

    Hasabelnaby, Sherifa; Goudah, Ayman; Agarwal, Hitesh K.; Abd alla, Mosaad S. M.; Tjarks, Werner

    2012-01-01

    Various water-soluble L-valine-, L-glutamate-, and glycine ester prodrugs of two 3-Carboranyl Thymidine Analogues (3-CTAs), designated N5 and N5-2OH, were synthesized for Boron Neutron Capture Therapy (BNCT) of brain tumors since the water solubilities of the parental compounds proved to be insufficient in preclinical studies. The amino acid ester prodrugs were prepared and stored as hydrochloride salts. The water solubilities of these amino acid ester prodrugs, evaluated in phosphate buffered saline (PBS) at pH 5, pH 6 and pH 7.4, improved 48 to 6600 times compared with parental N5 and N5-2OH. The stability of the amino acid ester prodrugs was evaluated in PBS at pH 7.4, Bovine serum, and Bovine cerebrospinal fluid (CSF). The rate of the hydrolysis in all three incubation media depended primarily on the amino acid promoiety and, to a lesser extend, on the site of esterification at the deoxyribose portion of the 3-CTAs. In general, 3'-amino acid ester prodrugs were less sensitive to chemical and enzymatic hydrolysis than 5'-amino acid ester prodrugs and the stabilities of the latter decreased in the following order: 5'-valine > 5'-glutamate > 5'-glycine. The rate of the hydrolysis of the 5'-amino acid ester prodrugs in Bovine CSF was overall higher than in PBS and somewhat lower than in Bovine serum. Overall, 5'-glutamate ester prodrug of N5 and the 5'-glycine ester prodrugs of N5 and N5-2OH appeared to be the most promising candidates for preclinical BNCT studies. PMID:22889558

  6. Biochemical methane potential, biodegradability, alkali treatment and influence of chemical composition on methane yield of yard wastes.

    PubMed

    Gunaseelan, Victor Nallathambi

    2016-03-01

    In this study, the biochemical CH4 potential, rate, biodegradability, NaOH treatment and the influence of chemical composition on CH4 yield of yard wastes generated from seven trees were examined. All the plant parts were sampled for their chemical composition and subjected to the biochemical CH4 potential assay. The component parts exhibited significant variation in biochemical CH4 potential, which was reflected in their ultimate CH4 yields that ranged from 109 to 382 ml g(-1) volatile solids added and their rate constants that ranged from 0.042 to 0.173 d(-1). The biodegradability of the yard wastes ranged from 0.26 to 0.86. Variation in the biochemical CH4 potential of the yard wastes could be attributed to variation in the chemical composition of the different fractions. In the Thespesia yellow withered leaf, Tamarindus fruit pericarp and Albizia pod husk, NaOH treatment enhanced the ultimate CH4 yields by 17%, 77% and 63%, respectively, and biodegradability by 15%, 77% and 61%, respectively, compared with the untreated samples. The effectiveness of NaOH treatment varied for different yard wastes, depending on the amounts of acid detergent fibre content. Gliricidia petals, Prosopis leaf, inflorescence and immature pod, Tamarindus seeds, Albizia seeds, Cassia seeds and Delonix seeds exhibited CH4 yields higher than 300 ml g(-1) volatile solids added. Multiple linear regression models for predicting the ultimate CH4 yield and biodegradability of yard wastes were designed from the results of this work.

  7. Milk-alkali syndrome

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000332.htm Milk-alkali syndrome To use the sharing features on this page, please enable JavaScript. Milk-alkali syndrome is a condition in which there ...

  8. [Chemical ribonucleases. 3. Synthesis of organic catalysts of hydrolysis of phosphodiester bonds based on quaternary salts of 1,4-diazabicyclo(2.2.2)octane].

    PubMed

    Konevets, D A; Bekk, I E; Sil'nikov, V N; Zenkova, M A; Shishkin, G V

    2000-11-01

    On the basis of imidazole and bisquaternary salts of 1,4-diazabicyclo[2.2.2]octane, a number of highly effective catalysts of the nDm series (here, n is the number of positive charges at neutral pH values and m is the digital code of the catalytically active fragment: 1, histamine, and 2, histidine methyl ester) were synthesized for the cleavage of the phosphodiester bonds in ribonucleic acids. A general method for the synthesis of chemical ribonucleases was suggested, which helps vary both the number of positive charges in their RNA-binding domain and the catalytic center. By the example of hydrolysis under physiological conditions of the in vitro transcript of tRNA(Lys) from human mitochondria, it was shown that the RNA cleavage rate with the nDm conjugates increases approximately 30-fold along with the increase in the number of positive charges from two to four.

  9. From hazardous waste to valuable raw material: hydrolysis of CCA-treated wood for the production of chemicals.

    PubMed

    Hakola, Maija; Kallioinen, Anne; Leskelä, Markku; Repo, Timo

    2013-05-01

    Solid wood, metal finnish: Instead of burning waste wood treated with chromated copper arsenite (CCA) or disposing of it in landfills, the CCA-treated wood can be used as a raw material for the production of chemicals. Catalytic or alkaline oxidation together with very mild sulfuric acid extraction produces an easily enzymatically hydrolyzable material. Usage as a raw material for the chemical industry in this manner demonstrates a sustainable and value-added waste management process.

  10. The enzymatic hydrolysis of leather waste with chromium recycling

    SciTech Connect

    Kim, M.S.; Clesceri, L.S.

    1996-11-01

    The work of Taylor et al. (1990) has shown the potential for alkaline hydrolase enzymes for the solubilization of waste from the tanning industry. The authors have carried this work further to examine the mechanism whereby enzymes release chromium from leather waste. An alkaline digest of waste leather was used in this work. Treatment with strong alkali produced a thick slurry that contained 7,000 ppm chromium. The objective of this work is to optimize a closed cycle system for the recycling of chromium salts for tanning as well as a chrome-free product for use as a fertilizer. The authors are able to track the progress of the leather protein hydrolysis with polyacrylamide gel electrophoresis (PAGE). By means of PAGE, it is possible to determine the relationship between chromium release and the extent of protein hydrolysis. Rate constant for hydrolysis and chromium release have been developed for various hydrolysis conditions. Chemical precipitation of chromium from the hydrolysate results in a purified product for reuse in tanning. The chrome-free hydrolysate can be applied as a fertilizer either directly or as a dried product. There are more than 56,000 metric tons of tannery waste produced annually in the US. The majority of the organic solids can be converted into high quality fertilizers. Since the nitrogen is organic rather than inorganic, release is at a controlled rate since the microbody in the soil must make the nitrogen available for plant growth. Leather manufacturing is a world-wide industry. Conversion of leather waste to fertilizers can improve global productivity as well as solve a waste problem.

  11. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under...

  12. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under...

  13. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under...

  14. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under...

  15. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under...

  16. Alkali-Ion-Crown Ether in Art and Conservation: The Applied Bioinorganic Chemistry Approach

    PubMed Central

    Hilfrich, Uwe; Taylor, Harold; Weser, Ulrich

    2004-01-01

    Dried varnish is rich in many ester moieties, which may be broken down into small, soluble compounds by esterase activity or alkaline hydrolysis. Two methods for varnish removal have been developed, including the treatment of either lipase or RbOH / PEG-400 crown ether which allow aged oil varnishes or paint coverings to be removed or thinned. These techniques are designed to proceed in a controlled manner without damaging lower paint or base layers. Unfortunately, lipase did not react with the aged ester groups of dried linseed oil varnish. Surprisingly, the varnish came off in the presence of Tris buffer alone which, in addition, formed reactive metal complexes. A better choice was the use of high Mr alkali ion polyethylene glycol–400 (PEG-400) crown ether type chelates. PEG-400 complexes alkali ions including rubidium and other alkaliions impeding the diffusion of their basic counter ions into lower varnish or paint layers. Possible migration of alkali metal ions into the paint layer during alkaline varnish removal was determined by labelling the cleansing solutions with 86Rb. Fortunately, varnish is degraded on the surface only. Lower paint or varnish layers are not attacked even if chemically similar to the varnish or over painting to be removed as virtually no 86Rb was detected on the paint surface. PMID:18365066

  17. The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review

    PubMed Central

    Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang

    2013-01-01

    Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697

  18. Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-08-22

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  19. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali and amine salts. 721.2565 Section 721.2565 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and...

  20. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali and amine salts. 721.2565 Section 721.2565 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and...

  1. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali and amine salts. 721.2565 Section 721.2565 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and...

  2. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  3. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  4. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  5. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  6. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  7. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  8. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  9. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  10. Hydrogen generation from the hydrolysis of sodium borohydride using chemically modified multiwalled carbon nanotubes with pyridinium based ionic liquid and decorated with highly dispersed Mn nanoparticles

    NASA Astrophysics Data System (ADS)

    Chinnappan, Amutha; Puguan, John Marc C.; Chung, Wook-Jin; Kim, Hern

    2015-10-01

    Multiwalled carbon nanotubes (MWCNTs)/Ionic liquid (IL)/Mn nanohybrids are synthesized and their catalytic activity is examined for hydrogen generation from the hydrolysis of sodium borohydride (NaBH4). Transmission electron microscopy reveals that Mn nanoparticles well-distributed on the MWCNTs surface. Energy dispersive x-ray spectrometer and x-ray photoelectron spectroscopy confirms the presence of Mn and Ni atom in the nanohybrids. The nanohybrids exhibit excellent catalytic lifetime and gives the total turnover number of 18496 mol H2/mol catalyst in the hydrolysis of NaBH4, which can be attributed to the presence of Mn atom and IL containing nickel halide anion. It is worthy of note that a very small amount of catalyst is used for this hydrolysis reaction. The activation energy is found to be 40.8 kJ/mol by MWCNTs/IL/Mn nanohybrids from the kinetic study of the hydrogen generation from the hydrolysis of NaBH4. The improved hydrogen generation rate, lower activation energy, and less expensive make the nanohybrids promising candidate as catalyst for the hydrogen generation from NaBH4 solution. The nanohybrids are easy to prepare, store and yet catalytically active. The recycling process is very simple and further purification is not tedious.

  11. Performance of Straight Steel Fibres Reinforced Alkali Activated Concrete

    NASA Astrophysics Data System (ADS)

    Faris, Meor Ahmad; Bakri Abdullah, Mohd Mustafa Al; Nizar Ismail, Khairul; Muniandy, Ratnasamy; Putra Jaya, Ramadhansyah

    2016-06-01

    This paper focus on the performance of alkali activated concrete produced by using fly ash activated by sodium silicate and sodium hydroxide solutions. These alkali activated concrete were reinforced with straight steel fibres with different weight percentage starting from 0 % up to 5 %. Chemical composition of raw material in the production alkali activated concrete which is fly ash was first identified by using X-ray fluorescence. Results reveal there have an effect of straight steel fibres inclusion to the alkali activated concrete. Highest compressive strength of alkali activated concrete which is 67.72 MPa was obtained when 3 % of straight fibres were added. As well as flexural strength, highest flexural strength which is 6.78 MPa was obtained at 3 % of straight steel fibres inclusions.

  12. Kinetics of catalyzed hydrolysis of 4-methylumbelliferyl caprylate (MUCAP) salmonella reagent.

    PubMed

    Al-Kady, Ahmed S; Ahmed, El-Sadat I; Gaber, M; Hussein, Mohamed M; Ebeid, El-Zeiny M

    2011-09-01

    The kinetics of chemical hydrolysis including neutral, acid- and base-catalyzed hydrolysis of 4-methylumbelliferyl caprylate (MUCAP) salmonella reagent were studied at different temperatures. The rate constants and activation parameters were determined by following the build-up of fluorescence peak of the hydrolysis product 4-methylumbelliferone (4-MU). The time scale of esterase enzyme hydrolysis caused by salmonella was compared with chemical hydrolysis as a background process.

  13. Kinetics of catalyzed hydrolysis of 4-methylumbelliferyl caprylate (MUCAP) salmonella reagent

    NASA Astrophysics Data System (ADS)

    Al-Kady, Ahmed S.; Ahmed, El-Sadat I.; Gaber, M.; Hussein, Mohamed M.; Ebeid, El-Zeiny M.

    2011-09-01

    The kinetics of chemical hydrolysis including neutral, acid- and base-catalyzed hydrolysis of 4-methylumbelliferyl caprylate (MUCAP) salmonella reagent were studied at different temperatures. The rate constants and activation parameters were determined by following the build-up of fluorescence peak of the hydrolysis product 4-methylumbelliferone (4-MU). The time scale of esterase enzyme hydrolysis caused by salmonella was compared with chemical hydrolysis as a background process.

  14. Mechanism of the alkali degradation of (6-4) photoproduct-containing DNA.

    PubMed

    Arichi, Norihito; Inase, Aki; Eto, Sachise; Mizukoshi, Toshimi; Yamamoto, Junpei; Iwai, Shigenori

    2012-03-21

    The (6-4) photoproduct is one of the major damaged bases produced by ultraviolet light in DNA. This lesion is known to be alkali-labile, and strand breaks occur at its sites when UV-irradiated DNA is treated with hot alkali. We have analyzed the product obtained by the alkali treatment of a dinucleoside monophosphate containing the (6-4) photoproduct, by HPLC, NMR spectroscopy, and mass spectrometry. We previously found that the N3-C4 bond of the 5' component was hydrolyzed by a mild alkali treatment, and the present study revealed that the following reaction was the hydrolysis of the glycosidic bond at the 3' component. The sugar moiety of this component was lost, even when a 3'-flanking nucleotide was not present. Glycosidic bond hydrolysis was also observed for a dimer and a trimer containing 5-methyl-2-pyrimidinone, which was used as an analog of the 3' component of the (6-4) photoproduct, and its mechanism was elucidated. Finally, the alkali treatment of a tetramer, d(GT(6-4)TC), yielded 2'-deoxycytidine 5'-monophosphate, while 2'-deoxyguanosine 3'-monophosphate was not detected. This result demonstrated the hydrolysis of the glycosidic bond at the 3' component of the (6-4) photoproduct and the subsequent strand break by β-elimination. It was also shown that the glycosidic bond at the 3' component of the Dewar valence isomer was more alkali-labile than that of the (6-4) photoproduct.

  15. Ideas about Acids and Alkalis.

    ERIC Educational Resources Information Center

    Toplis, Rob

    1998-01-01

    Investigates students' ideas, conceptions, and misconceptions about acids and alkalis before and after a teaching sequence in a small-scale research project. Concludes that student understanding of acids and alkalis is lacking. (DDR)

  16. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  17. A reactor system for studying the interactions between alkali vapors and ceramic compounds

    SciTech Connect

    Shadman, F.; Punjak, W.A.

    1987-01-01

    The kinetics and mechanism of interaction between alkali vapors and several ceramic compounds are studied. A unique micro-gravimetric reactor is designed and utilized for this study. Bauxite and kaolin are very good adsorbents for alkali chlorides and are potentially good additives for control of alkali during coal combustion and gasification. The experimental data shows that the alkali capturing process is a combination of physisorption, chemisorption and chemical reaction. An analytical model is developed assuming a multi-layer adsorption of alkali on substrate followed by a rate-controlling rection on the surface. The experimental results and model predictions are in good agreement.

  18. Chlor-Alkali Technology.

    ERIC Educational Resources Information Center

    Venkatesh, S.; Tilak, B. V.

    1983-01-01

    Chlor-alkali technology is one of the largest electrochemical industries in the world, the main products being chlorine and caustic soda (sodium hydroxide) generated simultaneously by the electrolysis of sodium chloride. This technology is reviewed in terms of electrochemical principles and manufacturing processes involved. (Author/JN)

  19. Ultrasonic coal washing to leach alkali elements from coals.

    PubMed

    Balakrishnan, S; Reddy, V Midhun; Nagarajan, R

    2015-11-01

    Deposition of fly ash particles onto heat-transfer surfaces is often one of the reasons for unscheduled shut-downs of coal-fired boilers. Fouling deposits encountered in convective sections of a boiler are characterized by arrival of ash particles in solidified (solid) state. Fouling is most frequently caused by condensation and chemical reaction of alkali vapors with the deposited ash particles creating a wet surface conducive to collect impacting ash particles. Hence, the amount of alkali elements present in coals, which, in turn, is available in the flue gas as condensable vapors, determines the formation and growth of fouling deposits. In this context, removal of alkali elements becomes vital when inferior coals having high-ash content are utilized for power generation. With the concept of reducing alkali elements present in a coal entering the combustor, whereby the fouling deposits can either be minimized or be weakened due to absence of alkali gluing effect, the ultrasonic leaching of alkali elements from coals is investigated in this study. Ultrasonic water-washing and chemical-washing, in comparison with agitation, are studied in order to estimate the intensification of the alkali removal process by sonication.

  20. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  1. The hydrolysis of polyimides

    NASA Technical Reports Server (NTRS)

    Hoagland, P. D.; Fox, S. W.

    1973-01-01

    Thermal polymerization of aspartic acid produces a polysuccinimide (I), a chain of aspartoyl residues. An investigation was made of the alkaline hydrolysis of the imide rings of (I) which converts the polyimide to a polypeptide. The alkaline hydrolysis of polyimides can be expected to be kinetically complex due to increasing negative charge generated by carboxylate groups. For this reason, a diimide, phthaloyl-DL-aspartoyl-beta-alanine (IIA) was synthesized for a progressive study of the hydrolysis of polyimides. In addition, this diimide (IIA) can be related to thalidomide and might be expected to exhibit similar reactivity during hydrolysis of the phthalimide ring.

  2. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under...

  3. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under...

  4. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN...

  5. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under...

  6. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under...

  7. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN...

  8. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN...

  9. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under...

  10. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN...

  11. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN...

  12. Alkalis in alternative biofuels

    SciTech Connect

    Miles, T.R.; Miles, T.R. Jr.; Bryers, R.W.; Baxter, L.L.; Jenkins, B.M.; Oden, L.L.

    1994-12-31

    The alkali content and behavior of inorganic material of annually produced biofuels severely limits their use for generating electrical power in conventional furnaces. A recent eighteen-month investigation of the chemistry and firing characteristics of 26 different biofuels has been conducted. Firing conditions were simulated in the laboratory for eleven biofuels. This paper describes some results from the investigation including fuel properties, deposits, deposition mechanisms, and implications for biomass boiler design, fuel sampling and characterizations. Urban wood fuel, agricultural residues, energy crops, and other potential alternate fuels are included in the study. Conventional methods for establishing fuel alkali content and determining ash sticky temperatures were deceptive. The crux of the problem was found to be the high concentration of potassium in biofuels and its reactions with other fuel constituents which lower the ``sticky temperature`` of the ash to the 650 C to 760 C (1,200 F-1,400 F).

  13. Alkali-vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.; Krupke, W. F.

    2010-02-01

    We report on the results from several of our alkali laser systems. We show highly efficient performance from an alexandrite-pumped rubidium laser. Using a laser diode stack as a pump source, we demonstrate up to 145 W of average power from a CW system. We present a design for a transversely pumped demonstration system that will show all of the required laser physics for a high power system.

  14. TL and ESR based identification of gamma-irradiated frozen fish using different hydrolysis techniques

    NASA Astrophysics Data System (ADS)

    Ahn, Jae-Jun; Akram, Kashif; Shahbaz, Hafiz Muhammad; Kwon, Joong-Ho

    2014-12-01

    Frozen fish fillets (walleye Pollack and Japanese Spanish mackerel) were selected as samples for irradiation (0-10 kGy) detection trials using different hydrolysis methods. Photostimulated luminescence (PSL)-based screening analysis for gamma-irradiated frozen fillets showed low sensitivity due to limited silicate mineral contents on the samples. Same limitations were found in the thermoluminescence (TL) analysis on mineral samples isolated by density separation method. However, acid (HCl) and alkali (KOH) hydrolysis methods were effective in getting enough minerals to carry out TL analysis, which was reconfirmed through the normalization step by calculating the TL ratios (TL1/TL2). For improved electron spin resonance (ESR) analysis, alkali and enzyme (alcalase) hydrolysis methods were compared in separating minute-bone fractions. The enzymatic method provided more clear radiation-specific hydroxyapatite radicals than that of the alkaline method. Different hydrolysis methods could extend the application of TL and ESR techniques in identifying the irradiation history of frozen fish fillets.

  15. Reinforcement Effect of Alkali Hydrolyzed Wheat Gluten and Starch in Carboxylated Styrene-Butadiene Composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten (WG) and wheat starch (WS) are the protein and carbohydrate obtained from wheat flours. Wheat gluten is not water soluble or dispersible due to its hydrophobic nature. To prepare wheat gluten dispersions, an alkali hydrolysis reaction was carried out to produce a stable aqueous disper...

  16. Alkali-treated titanium selectively regulating biological behaviors of bacteria, cancer cells and mesenchymal stem cells.

    PubMed

    Li, Jinhua; Wang, Guifang; Wang, Donghui; Wu, Qianju; Jiang, Xinquan; Liu, Xuanyong

    2014-12-15

    Many attentions have been paid to the beneficial effect of alkali-treated titanium to bioactivity and osteogenic activity, but few to the other biological effect. In this work, hierarchical micro/nanopore films were prepared on titanium surface by acid etching and alkali treatment and their biological effects on bacteria, cancer cells and mesenchymal stem cells were investigated. Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and human cholangiocarcinoma cell line RBE were used to investigate whether alkali-treated titanium can influence behaviors of bacteria and cancer cells. Responses of bone marrow mesenchymal stem cells (BMMSCs) to alkali-treated titanium were also subsequently investigated. The alkali-treated titanium can potently reduce bacterial adhesion, inhibit RBE and BMMSCs proliferation, while can better promote BMMSCs osteogenesis and angiogenesis than acid-etched titanium. The bacteriostatic ability of the alkali-treated titanium is proposed to result from the joint effect of micro/nanotopography and local pH increase at bacterium/material interface due to the hydrolysis of alkali (earth) metal titanate salts. The inhibitory action of cell proliferation is thought to be the effect of local pH increase at cell/material interface which causes the alkalosis of cells. This alkalosis model reported in this work will help to understand the biologic behaviors of various cells on alkali-treated titanium surface and design the intended biomedical applications.

  17. 40 CFR 721.10498 - Substituted alkyl ester, hydrolysis products with silica (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted alkyl ester, hydrolysis... Significant New Uses for Specific Chemical Substances § 721.10498 Substituted alkyl ester, hydrolysis products... chemical substances identified generically as substituted alkyl ester, hydrolysis products with...

  18. 40 CFR 721.10498 - Substituted alkyl ester, hydrolysis products with silica (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted alkyl ester, hydrolysis... Significant New Uses for Specific Chemical Substances § 721.10498 Substituted alkyl ester, hydrolysis products... chemical substances identified generically as substituted alkyl ester, hydrolysis products with...

  19. Novel double prodrugs of the iron chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED): Synthesis, characterization, and investigation of activation by chemical hydrolysis and oxidation.

    PubMed

    Thiele, Nikki A; Abboud, Khalil A; Sloan, Kenneth B

    2016-08-08

    The development of iron chelators suitable for the chronic treatment of diseases where iron accumulation and subsequent oxidative stress are implicated in disease pathogenesis is an active area of research. The clinical use of the strong chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) and its alkyl ester prodrugs has been hindered by poor oral bioavailability and lack of conversion to the parent chelator, respectively. Here, we present novel double prodrugs of HBED that have the carboxylate and phenolate donors of HBED masked with carboxylate esters and boronic acids/esters, respectively. These double prodrugs were successfully synthesized as free bases (7a-f) or as dimesylate salts (8a-c,e), and were characterized by (1)H, (13)C, and (11)B NMR; MP; MS; and elemental analysis. The crystal structure of 8a was solved. Three of the double prodrugs (8a-c) were selected for further investigation into their abilities to convert to HBED by stepwise hydrolysis and H2O2 oxidation. The serial hydrolysis of the pinacol and methyl esters of N,N'-bis(2-boronic acid pinacol ester benzyl)ethylenediamine-N,N'-diacetic acid methyl ester dimesylate (8a) was verified by LC-MS. The macro half-lives for the hydrolyses of 8a-c, measured by UV, ranged from 3.8 to 26.3 h at 37 °C in pH 7.5 phosphate buffer containing 50% MeOH. 9, the product of hydrolysis of 8a-c and the intermediate in the conversion pathway, showed little-to-no affinity for iron or copper in UV competition experiments. 9 underwent a serial oxidative deboronation by H2O2 in N-methylmorpholine buffer to generate HBED (k = 10.3 M(-1) min(-1)). The requirement of this second step, oxidation, before conversion to the active chelator is complete may confer site specificity when only localized iron chelation is needed. Overall, these results provide proof of principle for the activation of the double prodrugs by chemical hydrolysis and H2O2 oxidation, and merit further investigation into the

  20. Review: Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-07-16

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  1. Geopolymers and Related Alkali-Activated Materials

    NASA Astrophysics Data System (ADS)

    Provis, John L.; Bernal, Susan A.

    2014-07-01

    The development of new, sustainable, low-CO2 construction materials is essential if the global construction industry is to reduce the environmental footprint of its activities, which is incurred particularly through the production of Portland cement. One type of non-Portland cement that is attracting particular attention is based on alkali-aluminosilicate chemistry, including the class of binders that have become known as geopolymers. These materials offer technical properties comparable to those of Portland cement, but with a much lower CO2 footprint and with the potential for performance advantages over traditional cements in certain niche applications. This review discusses the synthesis of alkali-activated binders from blast furnace slag, calcined clay (metakaolin), and fly ash, including analysis of the chemical reaction mechanisms and binder phase assemblages that control the early-age and hardened properties of these materials, in particular initial setting and long-term durability. Perspectives for future research developments are also explored.

  2. Degradation of protein disulphide bonds in dilute alkali.

    PubMed Central

    Florence, T M

    1980-01-01

    The degradation of S--S bonds in 0.2 M-NaOH at 25 degrees C was studied for a series of proteins and simple aliphatic disulphide compounds, by using cathodic stripping voltammetry, ion-selective-electrode potentiometry, spectrophotometry and ultrafiltration. The disulphide bonds that dissociated in 0.2 M-NaOH were usually those that are solvent accessible and that can be reduced by mild chemical reductants. Some unexpected differences were found between similar proteins, both in the number of S--S bonds dissociated and in their rates of decomposition. Chymotrypsin has one S--S bond attacked, whereas chymotrypsinogen and trypsinogen have two. Ribonuclease A has two S--S bonds dissociated, but ribonuclease S and S-protein have three. Denaturation in 6 M-guanidine hydrochloride before alkaline digestion caused the loss of an additional S--S bond in ribonuclease A and insulin, and increased the rate of dissociation of the S--S bonds of some other proteins. The initial product of S--S bond dissociation in dilute alkali is believed to be a persulphide intermediate formed by a beta-elimination reaction. This intermediate is in mobile equilibrium with bisulphide ion, HS-, and decomposes at a mercury electrode or in acid solution to yield a stoichiometric amount of sulphide. Rate constants and equilibrium constants were measured for the equilibria between HS- and the intermediates involved in the alkaline dissociation of several proteins. Elemental sulphur was not detected in any of the protein digests. It is suggested that formation of HS- from a persulphide intermediate involves a hydrolysis reaction to yield a sulphenic acid derivative. The small polypeptides glutathione and oxytocin gave only a low yield of persulphide, and their alkaline decomposition must proceed by a mechanism different from that of the proteins. PMID:7213343

  3. Progressing batch hydrolysis process

    DOEpatents

    Wright, J.D.

    1985-01-10

    A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

  4. Pretreatment and Enzymatic Hydrolysis

    SciTech Connect

    2006-06-01

    Activities in this project are aimed at overcoming barriers associated with high capital and operating costs and sub-optimal sugar yields resulting from pretreatment and subsequent enzymatic hydrolysis of biomass.

  5. Preparation of alkali metal dispersions

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Landel, R. F. (Inventor)

    1968-01-01

    A method is described for producing alkali metal dispersions of high purity. The dispersions are prepared by varying the equilibrium solubility of the alkali metal in a suitable organic solvent in the presence of aromatic hydrocarbons. The equilibrium variation is produced by temperature change. The size of the particles is controlled by controlling the rate of temperature change.

  6. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  7. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  8. Enhancing fermentable sugar yield from cassava pulp for bioethanol production: microwave-coupled enzymatic hydrolysis approach.

    PubMed

    Sudha, A; Sivakumar, V; Sangeetha, V; Devi, K S Priyenka

    2015-08-01

    Cassava pulp, a potential biological feedstock for ethanol production has been subjected to microwave-assisted alkali pretreatment and microwave-coupled enzymatic hydrolysis. Microwave pretreatment may be a good alternative as it can reduce the pretreatment time and improve the enzymatic activity during hydrolysis. Liquid to solid ratio for the pretreatment of cassava pulp was found to be 20:1. Cassava pulp was pretreated at various NaOH concentration, microwave temperature and gave maximum yield of reducing sugar with 1.5% NaOH at 90 °C in 30 min than conventional alkali pretreatment after enzymatic hydrolysis. The subsequent enzymatic saccharification of pretreated cassava pulp using α amylase dosage of 400 IU at microwave temperature of 90 °C resulted in highest reducing sugar yield of 723 mg/g pulp. Microwave-assisted alkali pretreatment improved the enzymatic saccharification of cassava pulp by increasing its accessibility to hydrolytic enzymes. Microwave-assisted alkali pretreatment and microwave-coupled enzymatic hydrolysis are found to be efficient for improving the yield of reducing sugar.

  9. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and...

  10. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and...

  11. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject...

  12. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject...

  13. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject...

  14. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject...

  15. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject...

  16. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  17. Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production.

    PubMed

    Keshwani, Deepak R; Cheng, Jay J

    2010-01-01

    Switchgrass and coastal bermudagrass are promising lignocellulosic feedstocks for bioethanol production. However, pretreatment of lignocelluloses is required to improve production of fermentable sugars from enzymatic hydrolysis. Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass was investigated in this study. Pretreatments were carried out by immersing the biomass in dilute alkali reagents and exposing the slurry to microwave radiation at 250 W for residence times ranging from 5 to 20 min. Simons' stain method was used to quantify changes in biomass porosity as a result of the pretreatment. Pretreatments were evaluated based on yields of total reducing sugars, glucose, and xylose. An evaluation of different alkalis identified sodium hydroxide as the most effective alkali reagent for microwave-based pretreatment of switchgrass and coastal bermudagrass. 82% glucose and 63% xylose yields were achieved for switchgrass and 87% glucose and 59% xylose yields were achieved for coastal bermudagrass following enzymatic hydrolysis of biomass pretreated under optimal conditions. Dielectric properties for dilute sodium hydroxide solutions were measured and compared with solid losses, lignin reduction, and reducing sugar levels in hydrolyzates. Results indicate that dielectric loss tangent of alkali solutions is a potential indicator of the severity of microwave-based pretreatments.

  18. Effect of combined ultrasonic and alkali pretreatment on enzymatic preparation of angiotensin converting enzyme (ACE) inhibitory peptides from native collagenous materials.

    PubMed

    Zhang, Yuhao; Ma, Liang; Cai, Luyun; Liu, Yi; Li, Jianrong

    2017-05-01

    The combined effect of ultrasonic and alkali pretreatment for the hydrolysis of native collagenous materials and release of ACE inhibitory peptides was investigated. The ultrasonic and alkali pretreatment of pig skin could accelerate the release of the ACE inhibitory peptides from the triple helix of collagen in early stages of hydrolysis. Furthermore, the pretreatment could also accelerate collapse of the triple helix and release more ACE inhibitory peptides during hydrolysis than collagen samples left untreated. Compared to untreated and alkali pretreated samples, the ultrasonic and alkali pretreatment could decrease the thermostability of pig skin significantly (P<0.05) because the ultrasonic and alkali pretreatment could weaken hydrogen bonds and break parts of covalent bonds in collagen, leading to damage of the triple helical structure in collagen. Therefore, the ultrasonic and alkali pretreatment could damage the triple helical structure of collagen in native collagenous materials and expose more inner sites for subsequent hydrolysis, and it could be a potential way to prepare ACE inhibitory peptides effectively from collagen-rich raw material.

  19. How Does Alkali Aid Protein Extraction in Green Tea Leaf Residue: A Basis for Integrated Biorefinery of Leaves

    PubMed Central

    Zhang, Chen; Sanders, Johan P. M.; Xiao, Ting T.; Bruins, Marieke E.

    2015-01-01

    Leaf protein can be obtained cost-efficiently by alkaline extraction, but overuse of chemicals and low quality of (denatured) protein limits its application. The research objective was to investigate how alkali aids protein extraction of green tea leaf residue, and use these results for further improvements in alkaline protein biorefinery. Protein extraction yield was studied for correlation to morphology of leaf tissue structure, protein solubility and hydrolysis degree, and yields of non-protein components obtained at various conditions. Alkaline protein extraction was not facilitated by increased solubility or hydrolysis of protein, but positively correlated to leaf tissue disruption. HG pectin, RGII pectin, and organic acids were extracted before protein extraction, which was followed by the extraction of cellulose and hemi-cellulose. RGI pectin and lignin were both linear to protein yield. The yields of these two components were 80% and 25% respectively when 95% protein was extracted, which indicated that RGI pectin is more likely to be the key limitation to leaf protein extraction. An integrated biorefinery was designed based on these results. PMID:26200774

  20. Progressing batch hydrolysis process

    DOEpatents

    Wright, John D.

    1986-01-01

    A progressive batch hydrolysis process for producing sugar from a lignocellulosic feedstock, comprising passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feedstock to glucose; cooling said dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, then feeding said dilute acid stream serially through a plurality of prehydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose; and cooling the dilute acid stream containing glucose after it exits the last prehydrolysis reactor.

  1. ESTIMATION OF CARBOXYLIC ACID ESTER HYDROLYSIS RATE CONSTANTS

    EPA Science Inventory

    SPARC chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid esters from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external...

  2. Acylglucuronide in alkaline conditions: migration vs. hydrolysis.

    PubMed

    Di Meo, Florent; Steel, Michele; Nicolas, Picard; Marquet, Pierre; Duroux, Jean-Luc; Trouillas, Patrick

    2013-06-01

    This work rationalizes the glucuronidation process (one of the reactions of the phase II metabolism) for drugs having a carboxylic acid moiety. At this stage, acylglucuronides (AG) metabolites are produced, that have largely been reported in the literature for various drugs (e.g., mycophenolic acid (MPA), diclofenac, ibuprofen, phenylacetic acids). The competition between migration and hydrolysis is rationalized by adequate quantum calculations, combing MP2 and density functional theory (DFT) methods. At the molecular scale, the former process is a real rotation of the drug around the glucuconic acid. This chemical-engine provides four different metabolites with various toxicities. Migration definitely appears feasible under alkaline conditions, making proton release from the OH groups. The latter reaction (hydrolysis) releases the free drug, so the competition is of crucial importance to tackle drug action and elimination. From the theoretical data, both migration and hydrolysis appear kinetically and thermodynamically favored, respectively.

  3. 40 CFR 721.10499 - Substituted silane, hydrolysis products with silica (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted silane, hydrolysis... Significant New Uses for Specific Chemical Substances § 721.10499 Substituted silane, hydrolysis products with... substances identified generically as substituted silane, hydrolysis products with silica (PMNs P-06-278 and...

  4. 40 CFR 721.10497 - Substituted alkyl ester, hydrolysis products with silica and substituted silane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted alkyl ester, hydrolysis... ester, hydrolysis products with silica and substituted silane (generic). (a) Chemical substance and... alkyl ester, hydrolysis products with silica and substituted silane (PMNs P-06-276 and P-06-279)...

  5. 40 CFR 721.10497 - Substituted alkyl ester, hydrolysis products with silica and substituted silane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted alkyl ester, hydrolysis... ester, hydrolysis products with silica and substituted silane (generic). (a) Chemical substance and... alkyl ester, hydrolysis products with silica and substituted silane (PMNs P-06-276 and P-06-279)...

  6. 40 CFR 721.10499 - Substituted silane, hydrolysis products with silica (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted silane, hydrolysis... Significant New Uses for Specific Chemical Substances § 721.10499 Substituted silane, hydrolysis products with... substances identified generically as substituted silane, hydrolysis products with silica (PMNs P-06-278 and...

  7. Enzymatic hydrolysis of cellulose and various pretreated wood fractions

    SciTech Connect

    Saddler, J.N.; Brownell, H.H.; Clermont, L.P.; Levitin, N.

    1982-06-01

    Three strains of Trichoderma-Trichoderma reesei C30, Trichoderma reesei QM9414, and Trichoderma species E58-were used to study the enzymatic hydrolysis of pretreated wood substrates. Each of the culture filtrates was incubated with a variety of commercially prepared cellulose substrates and pretreated wood substrates. Solka floc was the most easily degraded commercial cellulose. The enzyme accessibility of steam-exploded samples which has been alkali extracted and then stored wet decreased with the duration of the steam treatment. Air drying reduced the extent of hydrolysis of all the samples but had a greater effect on the samples which had previously shown the greatest hydrolysis. Mild pulping using 2% chlorite increased the enzymatic hydrolysis of all the samples. Steam explosion was shown to be an excellent pretreatment method for aspen wood and was much superior to dilute nitric acid pretreatment. The results indicate that the distribution of the lignin as well as the surface area of the cellulosic substrate are important features in enzymatic hydrolysis. (Refs 17).

  8. Sub-Equimolar Hydrolysis and Condensation of Organophosphates

    DOE PAGES

    Alam, Todd M.; Kinnan, Mark K.; Wilson, Brendan W.; ...

    2016-07-16

    We characterized the in-situ hydrolysis and subsequent condensation reaction of the chemical agent simulant diethyl chlorophosphate (DECP) by high-resolution 31P NMR spectroscopy following the addition of water in sub-equimolar concentrations. Moreover, the identification and quantification of the multiple pyrophosphate and larger polyphosphate chemical species formed through a series of self-condensation reactions are reported. Finally, the DECP hydrolysis kinetics and distribution of breakdown species was strongly influenced by the water concentration and reaction temperature.

  9. Upgrading platform using alkali metals

    DOEpatents

    Gordon, John Howard

    2017-01-17

    A method for removing sulfur, nitrogen or metals from an oil feedstock. The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  10. Upgrading platform using alkali metals

    SciTech Connect

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  11. Chlor-Alkali Industry: A Laboratory Scale Approach

    ERIC Educational Resources Information Center

    Sanchez-Sanchez, C. M.; Exposito, E.; Frias-Ferrer, A.; Gonzalez-Garaia, J.; Monthiel, V.; Aldaz, A.

    2004-01-01

    A laboratory experiment for students in the last year of degree program in chemical engineering, chemistry, or industrial chemistry is presented. It models the chlor-alkali process, one of the most important industrial applications of electrochemical technology and the second largest industrial consumer of electricity after aluminium industry.

  12. Hydrolysis of lignocelluloses by penicillium funiculosum cellulase

    SciTech Connect

    Mishra, C.; Rao, M.; Seeta, R.; Srinivasan, M.C.; Deshpande, V.

    1984-04-01

    Enzymatic hydrolysis of cellulose is a promising method for the conversion of waste cellulose to glucose. During the past few years, the development of this technology has proceeded rapidly, with significant advances made in enzyme production, pretreatment, and hydrolysis. A variety of fungi are reported to produce cellulases but among these Trichoderma reesei and its mutants are powerful producers of cellulases. However, the search for new and possibly better sources of cellulase is continued due to the low levels of beta-glucosidase of T. reesei. Penicillium funiculosum produces a complete cellulase having endo-beta-1,4-glucanase (15-20 U/mL), exo-beta-1,4-glucanase (1.5-2.0 U/mL), and high beta-glucosidase (8-10 U/mL). The saccharification of alkali-treated cotton and bagasse by P. funiculosum enzyme was 70 and 63%, respectively. It was possible to obtain glucose concentration as high as 30% using 50% bagasse. It is of interest that the percent saccharification of cellulosic substrates with the Penicillium enzyme is comparable to that of T. reesei cellulase when the same amount of filter paper activity is used, although the endo-glucanase activity of the latter is two to three times higher. This communication reports the studies on saccharification of lignocelluloses by P. funiculosum cellulase and certain studies on the kinetic aspects. (Refs. 15).

  13. Development of a novel ultrasound-assisted alkali pretreatment strategy for the production of bioethanol and xylanases from chili post harvest residue.

    PubMed

    Sindhu, Raveendran; Binod, Parameswaran; Mathew, Anil Kuruvilla; Abraham, Amith; Gnansounou, Edgard; Ummalyma, Sabeela Beevi; Thomas, Leya; Pandey, Ashok

    2017-03-04

    A novel ultrasound-assisted alkali pretreatment strategy was developed which could effectively remove lignin and hemicelluloses and improve the sugar yield from chili post harvest residue. Operational parameters that affect the pretreatment efficiency were studied and optimized. Inhibitor analysis of the hydrolyzate revealed that major fermentation inhibitors like furfural, 5-hydroxymethyl furfural as well as organic acids like citric acid, succinic acid and propionic acid were absent. Hence fermentation can be carried out without detoxification of the hydrolyzate. Changes in structural properties of the biomass were studied in relation to the pretreatment process using Scanning Electron Microscopy (SEM) and the changes in chemical composition were also monitored. The biomass pretreated with the optimized novel method could yield 0.428g/g of reducing sugars upon enzymatic hydrolysis. The hydrolyzate obtained by this novel pretreatment strategy was found to be suitable for bioethanol and xylanase production.

  14. Thermal effects in Cs DPAL and alkali cell window damage

    NASA Astrophysics Data System (ADS)

    Zhdanov, B. V.; Rotondaro, M. D.; Shaffer, M. K.; Knize, R. J.

    2016-10-01

    Experiments on power scaling of Diode Pumped Alkali Lasers (DPALs) revealed some limiting parasitic effects such as alkali cell windows and gain medium contamination and damage, output power degradation in time and others causing lasing efficiency decrease or even stop lasing1 . These problems can be connected with thermal effects, ionization, chemical interactions between the gain medium components and alkali cells materials. Study of all these and, possibly, other limiting effects and ways to mitigate them is very important for high power DPAL development. In this talk we present results of our experiments on temperature measurements in the gain medium of operating Cs DPAL at different pump power levels in the range from lasing threshold to the levels causing damage of the alkali cell windows. For precise contactless in situ temperature measurements, we used an interferometric technique, developed in our lab2 . In these experiments we demonstrated that damage of the lasing alkali cell starts in the bulk with thermal breakdown of the hydrocarbon buffer gas. The degradation processes start at definite critical temperatures of the gain medium, different for each mixture of buffer gas. At this critical temperature, the hydrocarbon and the excited alkali metal begin to react producing the characteristic black soot and, possibly, some other chemical compounds, which both harm the laser performance and significantly increase the harmful heat deposition within the laser medium. This soot, being highly absorptive, is catastrophically heated to very high temperatures that visually observed as bulk burning. This process quickly spreads to the cell windows and causes their damage. As a result, the whole cell is also contaminated with products of chemical reactions.

  15. Empirical Calculations of {sup 29}Si NMR Chemical Shielding Tensors: A Partial Charge Model Investigation of Hydrolysis in Organically Modified Alkoxy Silanes

    SciTech Connect

    Alam, Todd M.; Henry, Marc

    1999-08-05

    Organically modified alkoxy silanes play an important role in tailoring different properties of silica produced by the sol-gel method. Changes in the size and functionality of the organic group allows control of both physical and chemical properties of the resulting gel, with the kinetics of the polymerization process playing an important role in the design of new siloxane materials. High resolution {sup 29}Si NMR has proven to be valuable tool for monitoring the polymerization reaction, and has been used to investigate a variety of organically modified alkoxy silane systems.

  16. Reinforcement Effect of Alkali-Hydrolyzed Wheat Gluten and Shear-Degraded Wheat Starch in Carboxylated Styrene-Butadiene Composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten (WG) and wheat starch (WS) are the protein and carbohydrate obtained from wheat flours. Wheat gluten is not water soluble or dispersible due to its hydrophobic nature. To prepare wheat gluten dispersions, an alkali hydrolysis reaction was carried out to produce a stable aqueous disper...

  17. Structural Investigation of Alkali Activated Clay Minerals for Application in Water Treatment Systems

    NASA Astrophysics Data System (ADS)

    Bumanis, G.; Bajare, D.; Dembovska, L.

    2015-11-01

    Alkali activation technology can be applied for a wide range of alumo-silicates to produce innovative materials with various areas of application. Most researches focuse on the application of alumo-silicate materials in building industry as cement binder replacement to produce mortar and concrete [1]. However, alkali activation technology offers high potential also in biotechnologies [2]. In the processes where certain pH level, especially alkaline environment, must be ensured, alkali activated materials can be applied. One of such fields is water treatment systems where high level pH (up to pH 10.5) ensures efficient removal of water pollutants such as manganese [3]. Previous investigations had shown that alkali activation technology can be applied to calcined clay powder and aluminium scrap recycling waste as a foam forming agent to create porous alkali activated materials. This investigation focuses on the structural investigation of calcined kaolin and illite clay alkali activation processes. Chemical and mineralogical composition of both clays were determined and structural investigation of alkali activated materials was made by using XRD, DTA, FTIR analysis; the microstructure of hardened specimens was observed by SEM. Physical properties of the obtained material were determined. Investigation indicates the essential role of chemical composition of the clay used in the alkali activation process, and potential use of the obtained material in water treatment systems.

  18. Spectroscopic and theoretical study on alkali metal phenylacetates

    NASA Astrophysics Data System (ADS)

    Regulska, E.; Świsłocka, R.; Samsonowicz, M.; Lewandowski, W.

    2013-07-01

    The influence of lithium, sodium, potassium, rubidium and cesium cations on the electronic system of phenylacetic acid was studied. The FT-IR, FT-Raman and 1H and 13C NMR spectra were recorded for studied compounds. Characteristic shifts in IR and NMR spectra along alkali metal phenylacetates were observed. Good correlations between the wavenumbers of the vibrational bands in the IR spectra of phenylacetates and some alkali metal parameters such as ionic potential, electronegativity, inverse of atomic mass, atomic radius and ionization energy were found. The density functional hybrid method B3LYP with 6-311++G** basis set was used to calculate optimized geometrical structures of studied compounds. Aromaticity indices, atomic charges, dipole moments and energies were calculated as well as the wavenumbers and intensities of IR spectra and chemical shifts in NMR spectra. The theoretical parameters were compared to experimental characteristic of alkali metal phenylacetates.

  19. An X-band Co2+ EPR study of Zn1-xCoxO (x=0.005-0.1) nanoparticles prepared by chemical hydrolysis methods using diethylene glycol and denaturated alcohol at 5 K

    NASA Astrophysics Data System (ADS)

    Misra, Sushil K.; Andronenko, S. I.; Srinivasa Rao, S.; Chess, Jordan; Punnoose, A.

    2015-11-01

    EPR investigations on two types of dilute magnetic semiconductor (DMS) ZnO nanoparticles doped with 0.5-10% Co2+ ions, prepared by two chemical hydrolysis methods, using: (i) diethylene glycol ((CH2CH2OH)2O) (NC-rod-like samples), and (ii) denatured ethanol (CH3CH2OH) solutions (QC-spherical samples), were carried out at X-band (9.5 GHz) at 5 K. The analysis of EPR data for NC samples revealed the presence of several types of EPR lines: (i) two types, intense and weak, of high-spin Co2+ ions in the samples with Co concentration >0.5%; (ii) surface oxygen vacancies, and (iii) a ferromagnetic resonance (FMR) line. QC samples exhibit an intense FMR line and an EPR line due to high-spin Co2+ ions. FMR line is more intense, than the corresponding line exhibited by NC samples. These EPR spectra varied for sample with different doping concentrations. The magnetic states of these samples as revealed by EPR spectra, as well as the origin of ferromagnetism DMS samples are discussed.

  20. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. II. ACID AND GENERAL BASE CATALYZED HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate acid and neutral hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition states of a ...

  1. Effects of acid and alkali promoters on compressed liquid hot water pretreatment of rice straw.

    PubMed

    Imman, Saksit; Arnthong, Jantima; Burapatana, Vorakan; Champreda, Verawat; Laosiripojana, Navadol

    2014-11-01

    In this study, effects of homogeneous acid and alkali promoters on efficiency and selectivity of LHW pretreatment of rice straw were studied. The presences of acid (0.25%v/v H2SO4, HCl, H3PO4, and oxalic acid) and alkali (0.25 w/v NaOH) efficiently promoted hydrolysis of hemicellulose, improved enzymatic digestibility of the solids, and lower the required LHW temperature. Oxalic acid was a superior promoter under the optimal LHW conditions at 160 °C, leading to the highest glucose yield from enzymatic hydrolysis (84.2%) and the lowest formation of furans. Combined with hydrolyzed glucose in the liquid, this resulted in the maximal 91.6% glucose recovery from the native rice straw. This was related to changes in surface area and crystallinity of pretreated biomass. The results showed efficiency of external promoters on increasing sugar recovery and saving energy in LHW pretreatment.

  2. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    SciTech Connect

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  3. Hydrothermal alkali metal catalyst recovery process

    DOEpatents

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  4. Alkali Metal Cluster Theory.

    NASA Astrophysics Data System (ADS)

    Chen, Jian

    Available from UMI in association with The British Library. Requires signed TDF. In this thesis, we apply the tight-binding Hubbard model to alkali metal clusters with Hartree-Fock self-consistent methods and perturbation methods for the numerical calculations. We have studied the relation between the equilibrium structures and the range of the hopping matrix elements in the Hubbard Hamiltonian. The results show that the structures are not sensitive to the interaction range but are determined by the number of valence electrons each atom has. Inertia tensors are used to analyse the symmetries of the clusters. The principal axes of the clusters are determined and they are the axes of rotational symmetries of clusters if the clusters have any. The eigenvalues of inertia tensors which are the indication of the deformation of clusters are compared between our model and the ellipsoidal jellium model. The agreement is good for large clusters. At a finite temperature, the thermal motion fluctuates the structures. We defined a fluctuation function with the distance matrix of a cluster. The fluctuation has been studied with the Monte-Carlo simulation method. Our studies show that the clusters remain in the solid state when temperature is low. The small values of fluctuation functions indicates the thermal vibration of atoms around their equilibrium positions. If the temperature is high, the atoms are delocalized. The cluster melts and enters the liquid region. The cluster melting is simulated by the Monte-Carlo simulation with the fluctuation function we defined. Energy levels of clusters are calculated from the Hubbard model. Ionization potentials and magic numbers are also obtained from these energy levels. The results confirm that the Hubbard model is a good approximation for a small cluster. The excitation energy is presented by the difference between the original level and excited level, and the electron-hole interactions. We also have studied cooling of clusters

  5. Structural and functional properties of alkali-treated high-amylose rice starch.

    PubMed

    Cai, Jinwen; Yang, Yang; Man, Jianmin; Huang, Jun; Wang, Zhifeng; Zhang, Changquan; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2014-02-15

    Native starches were isolated from mature grains of high-amylose transgenic rice TRS and its wild-type rice TQ and treated with 0.1% and 0.4% NaOH for 7 and 14 days at 35 °C. Alkali-treated starches were characterised for structural and functional properties using various physical methods. The 0.1% NaOH treatment had no significant effect on structural and functional properties of starches except that it markedly increased the hydrolysis of starch by amylolytic enzymes. The 0.4% NaOH treatment resulted in some changes in structural and functional properties of starches. The alkali treatment affected granule morphology and decreased the electron density between crystalline and amorphous lamellae of starch. The effect of alkali on the crystalline structure including long- and short-range ordered structure was not pronounced. Compared with control starch, alkali-treated TRS starches had lower amylose content, higher onset and peak gelatinisation temperatures, and faster hydrolysis of starch by HCl and amylolytic enzymes.

  6. Kinetics of the alkaline hydrolysis of nitrocellulose.

    PubMed

    Christodoulatos, C; Su, T L; Koutsospyros, A

    2001-01-01

    Cellulose nitrate (nitrocellulose) is an explosive solid substance used in large quantities in various formulations of rocket and gun propellants. Safe destruction of nitrocellulose can be achieved by alkaline hydrolysis, which converts it to biodegradable products that can then be treated by conventional biological processes. The kinetics of the alkaline hydrolysis of munitions-grade nitrocellulose in sodium hydroxide solutions were investigated in completely mixed batch reactors. Experiments were conducted using solutions of alkaline strength ranging from 0.1 to 15% by mass and temperatures in the range of 30 to 90 degrees C. Regression analysis of the kinetic data revealed that alkaline hydrolysis of nitrocellulose is of the order 1.0 and 1.5 with respect to nitrocellulose and hydroxide concentration, respectively. The activation energy of the hydrolysis reaction was found to be 100.9 kJ/mol with a preexponential Arrhenius constant of 4.73 x 10(13). Nitrite and nitrate, in a 3:1 ratio, were the primary nitrogen species present in the posthydrolysis solution. The kinetic information is pertinent to the development and optimization of nitrocellulose chemical-biological treatment systems.

  7. In situ alkali-silica reaction observed by x-ray microscopy

    SciTech Connect

    Kurtis, K.E.; Monteiro, P.J.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-04-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction.

  8. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    DOEpatents

    Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  9. Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides

    DOEpatents

    Gordon, John Howard; Alvare, Javier

    2016-10-25

    Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte solution and may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.

  10. Electrical Resistivity of Alkali Elements.

    DTIC Science & Technology

    1976-01-01

    rubidium, cesium, and francium ) and contains recommended reference values (or provisional or typical values). The compiled data include all the...and information on the electrical resistivity of alkali elements (lithium, sodium, potassium, rubidium, cesium, and francium ) and contains...107Ic. Magnetic Flux Density Dependence o.. .. ... .... 112 4.6. Francium ..........................115j a. Temperature Dependence

  11. Coupling alkaline pre-extraction with alkaline-oxidative post-treatment of corn stover to enhance enzymatic hydrolysis and fermentability

    PubMed Central

    2014-01-01

    Background A two-stage chemical pretreatment of corn stover is investigated comprising an NaOH pre-extraction followed by an alkaline hydrogen peroxide (AHP) post-treatment. We propose that conventional one-stage AHP pretreatment can be improved using alkaline pre-extraction, which requires significantly less H2O2 and NaOH. To better understand the potential of this approach, this study investigates several components of this process including alkaline pre-extraction, alkaline and alkaline-oxidative post-treatment, fermentation, and the composition of alkali extracts. Results Mild NaOH pre-extraction of corn stover uses less than 0.1 g NaOH per g corn stover at 80°C. The resulting substrates were highly digestible by cellulolytic enzymes at relatively low enzyme loadings and had a strong susceptibility to drying-induced hydrolysis yield losses. Alkaline pre-extraction was highly selective for lignin removal over xylan removal; xylan removal was relatively minimal (~20%). During alkaline pre-extraction, up to 0.10 g of alkali was consumed per g of corn stover. AHP post-treatment at low oxidant loading (25 mg H2O2 per g pre-extracted biomass) increased glucose hydrolysis yields by 5%, which approached near-theoretical yields. ELISA screening of alkali pre-extraction liquors and the AHP post-treatment liquors demonstrated that xyloglucan and β-glucans likely remained tightly bound in the biomass whereas the majority of the soluble polymeric xylans were glucurono (arabino) xylans and potentially homoxylans. Pectic polysaccharides were depleted in the AHP post-treatment liquor relative to the alkaline pre-extraction liquor. Because the already-low inhibitor content was further decreased in the alkaline pre-extraction, the hydrolysates generated by this two-stage pretreatment were highly fermentable by Saccharomyces cerevisiae strains that were metabolically engineered and evolved for xylose fermentation. Conclusions This work demonstrates that this two

  12. Biochemical and thermodynamic characteristics of thermo-alkali-stable xylanase from a novel polyextremophilic Bacillus halodurans TSEV1.

    PubMed

    Kumar, Vikash; Satyanarayana, T

    2013-09-01

    The purified extracellular xylanase of polyextremophilic Bacillus halodurans TSEV1 has been visualized as a single band on SDS-PAGE and eluted as single peak by gel filtration, with a molecular mass of 40 kDa. The peptide finger print and cloned xylanase gene sequence analyses indicate that this enzyme belongs to GH family 10. The active site carboxyl residues are mainly involved in catalysis, while tryptophan residues are involved in substrate binding. The enzyme is optimally active at 80 °C and pH 9.0, and stable in the pH range of 7.0-12.0 with T 1/2 of 35 min at 80 °C (pH 9.0). Activation energy for birch wood xylan hydrolysis is 30.51 kJ mol(-1). The K m, V max and k cat (birchwood xylan) are 2.05 mg ml(-1), 333.33 μmol mg(-1 )min(-1) and 3.33 × 10(4) min(-1), respectively. The pKa1 and pKa2 of ionizable groups of the active site that influence V max are 8.51 and 11.0. The analysis of thermodynamic parameters for xylan hydrolysis suggests this as a spontaneous process. The enzyme is resistant to chemical denaturants like urea and guanidinium-HCl. The site-directed mutagenesis of catalytic glutamic acid residues (E196 and E301) resulted in a complete loss of activity. The birch wood xylan hydrolyzate contained xylobiose and xylotriose as the main products without any trace of xylose, and the enzyme hydrolyzes xylotetraose and xylopentaose rapidly to xylobiose. Thermo-alkali-stability, resistance to various chemical denaturants and mode of action make it a useful biocatalyst for generating xylo-oligosaccharides from agro-residues and bleaching of pulp in paper industries.

  13. Hydrolysis of biomass material

    DOEpatents

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  14. Hydrolysis of Oleuropein by Lactobacillus plantarum Strains Associated with Olive Fermentation

    PubMed Central

    Ciafardini, G.; Marsilio, V.; Lanza, B.; Pozzi, N.

    1994-01-01

    Oleuropein (Chemical Abstracts Service registry number 32619-42-4), a bitter-tasting secoiridoid glucoside commonly found in leaves of the olive tree as well as in olives (Olea europaea L.), was found to be hydrolyzed by the β-glucosidase (EC 3.2.1.2.1) produced by oleuropeinolytic Lactobacillus plantarum-type strains. Three strains, designated B17, B20, and B21, were isolated from the brine of naturally ripe olives not treated with alkali. These strains were rod-shaped forms, grown at a pH 3.5 limit, and tolerated 1% oleuropein and 8% NaCl in the growth medium. The β-glucosidase produced hydrolyzed 5-bromo-4-chloro-3-indolyl-β-d-glucopy-ranoside as well as oleuropein. The presence of 2% glucose in the medium inhibited activity by 40 to 50%, depending on the bacterial strain. Chromatographic analysis of the trimethylsilyl derivatives of the products obtained after 7 days of incubation at 30°C of strain B21 showed all the hydrolysis products of oleuropein, i.e., aglycone, iridoid monoterpen, and 3,4-dihydroxyphenylethanol (hydroxytyrosol). Oleuropein and its aglycone after 21 days of incubation decreased to trace levels with the simultaneous increase in concentration of β-3,4-dihydroxyphenylethanol. Images PMID:16349442

  15. Sequential dilute acid and alkali pretreatment of corn stover: sugar recovery efficiency and structural characterization.

    PubMed

    Lee, Jae Won; Kim, Ji Young; Jang, Hyun Min; Lee, Min Woo; Park, Jong Moon

    2015-04-01

    The objectives of this study were to explore the feasibility of applying sequential dilute acid and alkali pretreatment into the hydrolysis of corn stover and to elucidate the effects of structural changes in the biomass on its enzymatic digestibility. H2SO4 used in the first step selectively hydrolyzed 74.6-77.3% of xylan and NaOH used in the second step removed 85.9-89.4% of lignin, from the raw corn stover. Compared to single dilute acid pretreatment, the proposed combined pretreatment minimized the generation of byproducts such as acetic acid, furfural and hydroxymethylfurfural in the hydrolysates, and enhanced the enzymatic hydrolysis of the solid residue. The changes in the structural features (porosity, morphology, and crystallinity) of the solid residue were strongly correlated with the enhancement of enzymatic digestibility. The overall glucose and xylose yields finally obtained after enzymatic hydrolysis reached 89.1-97.9% and 71.0-75.9%, respectively.

  16. Detection of alkali-silica reaction swelling in concrete by staining

    DOEpatents

    Guthrie, Jr., George D.; Carey, J. William

    1998-01-01

    A method using concentrated aqueous solutions of sodium cobaltinitrite and rhodamine B is described which can be used to identify concrete that contains gels formed by the alkali-silica reaction (ASR). These solutions present little health or environmental risk, are readily applied, and rapidly discriminate between two chemically distinct gels; K-rich, Na--K--Ca--Si gels are identified by yellow staining, and alkali-poor, Ca--Si gels are identified by pink staining.

  17. Detection of alkali-silica reaction swelling in concrete by staining

    DOEpatents

    Guthrie, G.D. Jr.; Carey, J.W.

    1998-04-14

    A method using concentrated aqueous solutions of sodium cobalt nitrite and rhodamine B is described which can be used to identify concrete that contains gels formed by the alkali-silica reaction (ASR). These solutions present little health or environmental risk, are readily applied, and rapidly discriminate between two chemically distinct gels; K-rich, Na-K-Ca-Si gels are identified by yellow staining, and alkali-poor, Ca-Si gels are identified by pink staining.

  18. 40 CFR 796.3500 - Hydrolysis as a function of pH at 25 °C.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 33 2012-07-01 2012-07-01 false Hydrolysis as a function of pH at 25 Â....3500 Hydrolysis as a function of pH at 25 °C. (a) Introduction—(1) Background and purpose. (i) Water is..., can undergo hydrolysis, which is one of the most common reactions controlling chemical stability...

  19. Assesment of Alkali Resistance of Basalt Used as Concrete Aggregates

    NASA Astrophysics Data System (ADS)

    al-Swaidani, Aref M.; Baddoura, Mohammad K.; Aliyan, Samira D.; Choeb, Walid

    2015-11-01

    The objective of this paper is to report a part of an ongoing research on the influence of using crushed basalt as aggregates on one of durability-related properties of concrete (i.e. alkali-silica reaction which is the most common form of Alkali-Aggregate Reaction). Alkali resistance has been assessed through several methods specified in the American Standards. Results of petrographic examination, chemical test (ASTM C289) and accelerated mortar bar test (ASTM C1260) have particularly been reported. In addition, the weight change and compressive strength of 28 days cured concrete containing basaltic aggregates were also reported after 90 days of exposure to 10% NaOH solution. Dolomite aggregate were used in the latter test for comparison. The experimental results revealed that basaltic rocks quarried from As-Swaida'a region were suitable for production of aggregates for concrete. According to the test results, the studied basalt aggregates can be classified as innocuous with regard to alkali-silica reaction. Further, the 10% sodium hydroxide attack did not affect the compressive strength of concrete.

  20. Solid Electrolytes: Alkali-Ion Transport in Skeleton Structures

    DTIC Science & Technology

    1976-06-30

    side if necessary and identify by block number) solid electrolytes alkali -ion transport sodium -sulfur batteries fast -ion transport O ABSTRACT...molten Na 2 S4 for 10 days at 400’C indicated chemical stability, similar testing i-1 molten sodium was initiated, and it has been established that...tests under dynamic conditions are necessary before long-term stability of tile material can be established. Tests for stability in molten sodium have

  1. [Pretreatment of oil palm residues by dilute alkali for cellulosic ethanol production].

    PubMed

    Zhang, Haiyan; Zhou, Yujie; Li, Jinping; Dai, Lingmei; Liu, Dehua; Zhang, Jian'an; Choo, Yuen May; Loh, Soh Kheang

    2013-04-01

    In the study, we used oil palm residues (empty fruit bunch, EFB) as raw material to produce cellulosic ethanol by pretreatment, enzymatic hydrolysis and fermentation. Firstly, the pretreatment of EFB with alkali, alkali/hydrogen peroxide and the effects on the components and enzymatic hydrolysis of cellulose were studied. The results show that dilute alkali was the suitable pretreatment method and the conditions were first to soak the substrate with 1% sodium hydroxide with a solid-liquid ratio of 1:10 at 40 degrees C for 24 h, and then subjected to 121 degrees C for 30 min. Under the conditions, EFB solid recovery was 74.09%, and glucan, xylan and lignin content were 44.08%, 25.74% and 13.89%, respectively. After separated with alkali solution, the pretreated EFB was washed and hydrolyzed for 72 h with 5% substrate concentration and 30 FPU/g dry mass (DM) enzyme loading, and the conversion of glucan and xylan reached 84.44% and 89.28%, respectively. We further investigated the effects of substrate concentration and enzyme loading on enzymatic hydrolysis and ethanol batch simultaneous saccharification and fermentation (SSF). The results show that when enzyme loading was 30 FPU/g DM and substrate concentration was increased from 5% to 25%, ethanol concentration were 9.76 g/L and 35.25 g/L after 72 h fermentation with Saccharomyces cerevisiae (inoculum size 5%, V/V), which was 79.09% and 56.96% of ethanol theory yield.

  2. Positron-alkali atom scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.; Ward, S. J.

    1990-01-01

    Positron-alkali atom scattering was recently investigated both theoretically and experimentally in the energy range from a few eV up to 100 eV. On the theoretical side calculations of the integrated elastic and excitation cross sections as well as total cross sections for Li, Na and K were based upon either the close-coupling method or the modified Glauber approximation. These theoretical results are in good agreement with experimental measurements of the total cross section for both Na and K. Resonance structures were also found in the L = 0, 1 and 2 partial waves for positron scattering from the alkalis. The structure of these resonances appears to be quite complex and, as expected, they occur in conjunction with the atomic excitation thresholds. Currently both theoretical and experimental work is in progress on positron-Rb scattering in the same energy range.

  3. Alkali metal/sulfur battery

    DOEpatents

    Anand, Joginder N.

    1978-01-01

    Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

  4. DNA-Catalyzed Amide Hydrolysis

    PubMed Central

    Zhou, Cong; Avins, Joshua L.; Klauser, Paul C.; Brandsen, Benjamin M.; Lee, Yujeong; Silverman, Scott K.

    2016-01-01

    DNA catalysts (deoxyribozymes) for a variety of reactions have been identified by in vitro selection. However, for certain reactions this identification has not been achieved. One important example is DNA-catalyzed amide hydrolysis, for which a previous selection experiment instead led to DNA-catalyzed DNA phosphodiester hydrolysis. Subsequent efforts in which the selection strategy deliberately avoided phosphodiester hydrolysis led to DNA-catalyzed ester and aromatic amide hydrolysis, but aliphatic amide hydrolysis has been elusive. In the present study, we show that including modified nucleotides that bear protein-like functional groups (any one of primary amino, carboxyl, or primary hydroxyl) enables identification of amide-hydrolyzing deoxyribozymes. In one case, the same deoxyribozyme sequence without the modifications still retains substantial catalytic activity. Overall, these findings establish the utility of introducing protein-like functional groups into deoxyribozymes for identifying new catalytic function. The results also suggest the longer-term feasibility of deoxyribozymes as artificial proteases. PMID:26854515

  5. Selection of the best chemical pretreatment for lignocellulosic substrate Prosopis juliflora.

    PubMed

    Naseeruddin, Shaik; Srilekha Yadav, K; Sateesh, L; Manikyam, Ananth; Desai, Suseelendra; Venkateswar Rao, L

    2013-05-01

    Pretreatment is a pre-requisite step in bioethanol production from lignocellulosic biomass required to remove lignin and increase the porosity of the substrate for saccharification. In the present study, chemical pretreatment of Prosopis juliflora was performed using alkali (NaOH, KOH, and NH3), reducing agents (Na2S2O4, Na2SO3) and NaClO2 in different concentration ranges at room temperature (30±2 °C) to remove maximum lignin with minimum sugar loss. Further, biphasic acid hydrolysis of the various pretreated substrates was performed at mild temperatures. Considering the amount of holocellulose hydrolyzed and inhibitors released during hydrolysis, best chemical pretreatment was selected. Among all the chemicals investigated, pretreatment with sodium dithionite at concentration of 2% (w/v) removed maximum lignin (80.46±1.35%) with a minimum sugar loss (2.56±0.021%). Subsequent biphasic acid hydrolysis of the sodium dithionite pretreated substrate hydrolyzed 40.09±1.22% of holocellulose and released minimum amount of phenolics (1.04±0.022 g/L) and furans (0.41±0.012 g/L) in the hydrolysate.

  6. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  7. Regenerable activated bauxite adsorbent alkali monitor probe

    SciTech Connect

    Lee, S.H.D.

    1991-01-22

    This invention relates to a regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor 5 concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC 10 exhaust gases.

  8. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  9. 40 CFR 721.10630 - Amino acid, carboxyalkyl, alkylsulfonate, alkali salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amino acid, carboxyalkyl... Significant New Uses for Specific Chemical Substances § 721.10630 Amino acid, carboxyalkyl, alkylsulfonate... chemical substances identified generically as amino acid, carboxyalkyl, alkylsulfonate, alkali salts...

  10. 40 CFR 721.10630 - Amino acid, carboxyalkyl, alkylsulfonate, alkali salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amino acid, carboxyalkyl... Significant New Uses for Specific Chemical Substances § 721.10630 Amino acid, carboxyalkyl, alkylsulfonate... chemical substances identified generically as amino acid, carboxyalkyl, alkylsulfonate, alkali salts...

  11. The reaction dynamics of alkali dimer molecules and electronically excited alkali atoms with simple molecules

    SciTech Connect

    Hou, Hongtao

    1995-12-01

    This dissertation presents the results from the crossed molecular beam studies on the dynamics of bimolecular collisions in the gas phase. The primary subjects include the interactions of alkali dimer molecules with simple molecules, and the inelastic scattering of electronically excited alkali atoms with O2. The reaction of the sodium dimers with oxygen molecules is described in Chapter 2. Two reaction pathways were observed for this four-center molecule-molecule reaction, i.e. the formations of NaO2 + Na and NaO + NaO. NaO2 products exhibit a very anisotropic angular distribution, indicating a direct spectator stripping mechanism for this reaction channel. The NaO formation follows the bond breaking of O2, which is likely a result of a charge transfer from Na2 to the excited state orbital of O2-. The scattering of sodium dimers from ammonium and methanol produced novel molecules, NaNH3 and Na(CH3OH), respectively. These experimental observations, as well as the discussions on the reaction dynamics and the chemical bonding within these molecules, will be presented in Chapter 3. The lower limits for the bond dissociation energies of these molecules are also obtained. Finally, Chapter 4 describes the energy transfer between oxygen molecules and electronically excited sodium atoms.

  12. Laser enhanced hydrolysis of selected polypeptides

    NASA Astrophysics Data System (ADS)

    Ouzts, Mary Paige

    This project serves as a preliminary examination of selectively enhancing bond cleavage during chemical reactions in biological molecules by using continuous wave infrared lasers. To analyze protein content, polypeptides are broken into their constituent amino acids through hydrolysis. The cleaving of the peptide bond has traditionally been accomplished under harsh conditions, 110°C in 6 N hydrochloric acid for 24 hours. In this project hydrolysis was strongly enhanced by irradiating the dipeptides, threonyl-aspartate and alanyl-alanine, for 30 minutes with coherent infrared radiation from a tunable carbon dioxide laser. The dipeptide tyrosyl-tyrosine, the chemical N- methylacetimide, and the protein BSA were successfully hydrolyzed with the laser. The effect of reaction parameters such as laser power and HCl concentration were studied, as well as the effect of the primary parameter, the beam wavelength. The samples were analyzed using standard biological methods for determining the amino acid concentration, thin layer chromatography and ion exchange chromatography. These methods gave consistent results for the irradiated samples as well as for standard amino acids and polypeptide samples. The results from these methods were used to create the hydrolysis spectra. The catalytic action of the laser was strongly wavelength dependent. The hydrolysis spectra of the molecules were compared to the absorption spectra of the samples. Laser enhanced hydrolysis occurred when the laser wavelength coincided with a line in the dipeptide spectra. This weak line in each of the dipeptide spectra is consistent both in position and strength with a line in NMA, which has been identified as a fundamental mode associated with the peptide bond. From the experimental results, the enhanced process appears to occur in the vapor phase. The initially liquid sample was progressively evaporated, and fully hydrolyzed material was carried to a collection trap by the vapor. It can, in principle

  13. Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment.

    PubMed

    Saha, Prosenjit; Manna, Suvendu; Chowdhury, Sougata Roy; Sen, Ramkrishna; Roy, Debasis; Adhikari, Basudam

    2010-05-01

    The physico-chemical properties of jute fibers treated with alkali (NaOH) solution have been investigated in this study. The treatments were applied under ambient and elevated temperatures and high pressure steaming conditions. To the knowledge of these authors the influence of alkali-steam treatment on the uniaxial tensile strength of natural ligno-cellulosic fibers, such as jute, has not been investigated earlier. The results from this investigation indicate that a 30 min dipping of the fibers in 0.5% alkali solution followed by 30 min alkali-steam treatment leads to an increase in the tensile strength of up to 65%. The increase appears to be due to fiber separation and removal of non-cellulosic materials, which, in turn, resulted in an increased crystallinity.

  14. Alkali-related ocular burns: a case series and review.

    PubMed

    Bunker, Daniel J L; George, Robert J; Kleinschmidt, Andrew; Kumar, Rohit J; Maitz, Peter

    2014-01-01

    Alkali burns are known to possess high pathological potential because of their inherent ability to lyse cell membranes and penetrate intraocular structures with devastating results. The authors aimed to evaluate the most common cause of this presentation, the current treatment approaches to injury, and eventual outcome as related to severity. The authors performed a retrospective review of all patients who sustained chemical-related ocular injuries seen at the Concord Hospital Burns Unit, Australia between January 2005 and March 2012. Management was based on cooperation between ophthalmic staff and the burns unit, with emphasis on early aggressive intervention and rigorous follow-up. The records of 39 patients who presented with chemical-related injury were assessed, 12 of whom had confirmed alkali burns involving the cornea. The most commonly implicated agent was sodium hydroxide, usually in the context of otherwise trivial domestic accidents. Acute medical management included copious irrigation and the use of analgesics, cycloplegics, and topical antibiotics. In half the cases, steroid drops and oral vitamin C were also used. Ten of the 12 patients (83%) had return to premorbid visual acuity. Complications included cicatrical ectropion (n = 1), pseudoexfoliative syndrome (n = 1), and symblepharon (n = 1). Surgical correction was needed in the one patient with cicatrical ectropion. This case series shows that appropriate acute management minimizes the potentially devastating sequelae of ocular alkali burns. Emphasis should be placed on prevention of domestic and workplace injuries when using alkaline products.

  15. Obtaining fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose.

    PubMed

    Jiang, Liqun; Zheng, Anqing; Zhao, Zengli; He, Fang; Li, Haibin; Liu, Weiguo

    2015-04-01

    The objective of this study was to get fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose from sugarcane bagasse. Hemicellulose could be easily hydrolyzed by dilute acid as sugars. The remained solid residue of acid hydrolysis was utilized to get levoglucosan by fast pyrolysis economically. Levoglucosan yield from crystalline cellulose could be as high as 61.47%. Dilute acid hydrolysis was also a promising pretreatment for levoglucosan production from lignocellulose. The dilute acid pretreated sugarcane bagasse resulted in higher levoglucosan yield (40.50%) in fast pyrolysis by micropyrolyzer, which was more effective than water washed (29.10%) and un-pretreated (12.84%). It was mainly ascribed to the effective removal of alkali and alkaline earth metals and the accumulation of crystalline cellulose. This strategy seems a promising route to achieve inexpensive fermentable sugars from lignocellulose for biorefinery.

  16. Factors affecting the rate of hydrolysis of phenylboronic acid in lab-scale precipitate reactor studies

    SciTech Connect

    Bannochie, C.J.; Marek, J.C.; Eibling, R.E.; Baich, M.A.

    1992-01-01

    Removing aromatic carbon from an aqueous slurry of cesium-137 and other alkali tetraphenylborates by acid hydrolysis will be an important step in preparing high-level radioactive waste for vitrification at the Savannah River Site's Defense Waste Processing Facility (DWPF). Kinetic data obtained in bench-scale precipitate hydrolysis reactors suggest changes in operating parameters to improve product quality in the future plant-scale radioactive operation. The rate-determining step is the removal of the fourth phenyl group, i.e. hydrolysis of phenylboronic acid. Efforts to maximize this rate have established the importance of several factors in the system, including the ratio of copper(II) catalyst to formic acid, the presence of nitrite ion, reactions of diphenylmercury, and the purge gas employed in the system.

  17. Factors affecting the rate of hydrolysis of phenylboronic acid in lab-scale precipitate reactor studies

    SciTech Connect

    Bannochie, C.J.; Marek, J.C.; Eibling, R.E.; Baich, M.A.

    1992-10-01

    Removing aromatic carbon from an aqueous slurry of cesium-137 and other alkali tetraphenylborates by acid hydrolysis will be an important step in preparing high-level radioactive waste for vitrification at the Savannah River Site`s Defense Waste Processing Facility (DWPF). Kinetic data obtained in bench-scale precipitate hydrolysis reactors suggest changes in operating parameters to improve product quality in the future plant-scale radioactive operation. The rate-determining step is the removal of the fourth phenyl group, i.e. hydrolysis of phenylboronic acid. Efforts to maximize this rate have established the importance of several factors in the system, including the ratio of copper(II) catalyst to formic acid, the presence of nitrite ion, reactions of diphenylmercury, and the purge gas employed in the system.

  18. Phonon spectra of alkali metals

    NASA Astrophysics Data System (ADS)

    Zeković, S.; Vukajlović, F.; Veljković, V.

    1982-10-01

    In this work we used a simple local model pseudopotential which includes screening for the phonon spectra calculations of alkali metals. The results obtained are in very good agreement with experimental data. In some branches of phonon spectra the differences between theoretical and experimental results are within 1-2%, while the maximum error is about 6%. The suggested form of the pseudopotential allows us to describe the phonon spectra of Na, K and Rb with only one, and, at the same time, a unique, parameter. In this case, the maximum disagreements from experiment are 9% for Na, 8% for K and 7% for Rb.

  19. Development of complete hydrolysis of pectins from apple pomace.

    PubMed

    Wikiera, Agnieszka; Mika, Magdalena; Starzyńska-Janiszewska, Anna; Stodolak, Bożena

    2015-04-01

    Enzymatically extracted pectins have a more complex structure than those obtained by conventional methods. As a result, they are less susceptible to hydrolysis, which makes the precise determination of their composition difficult. The aim of the study was to develop a method of complete hydrolysis of enzymatically extracted apple pectins. Substrates were pectins isolated from apple pomace by the use of xylanase and multicatalytic preparation Celluclast and apple pomace. Hydrolysis was performed by a chemical method with 2M TFA at 100 °C and 120 °C and a combined acidic/enzymatic method. After hydrolysis, the contents of galacturonic acid and neutral sugars were measured by HPLC. Complete hydrolysis of polygalacturonic acid occurred after 2.5h incubation with 2M TFA at 120 °C. The efficient hydrolysis of neutral sugars in pectins was performed with 2M TFA at 100 °C for 2.5h. Monomers most susceptible to concentrated acid were rhamnose, mannose and arabinose.

  20. Site- and species-specific hydrolysis rates of heroin.

    PubMed

    Szöcs, Levente; Orgován, Gábor; Tóth, Gergő; Kraszni, Márta; Gergó, Lajos; Hosztafi, Sándor; Noszál, Béla

    2016-06-30

    The hydroxide-catalyzed non-enzymatic, simultaneous and consecutive hydrolyses of diacetylmorphine (DAM, heroin) are quantified in terms of 10 site- and species-specific rate constants in connection with also 10 site- and species-specific acid-base equilibrium constants, comprising all the 12 coexisting species in solution. This characterization involves the major and minor decomposition pathways via 6-acetylmorphine and 3-acetylmorphine, respectively, and morphine, the final product. Hydrolysis has been found to be 18-120 times faster at site 3 than at site 6, depending on the status of the amino group and the rest of the molecule. Nitrogen protonation accelerates the hydrolysis 5-6 times at site 3 and slightly less at site 6. Hydrolysis rate constants are interpreted in terms of intramolecular inductive effects and the concomitant local electron densities. Hydrolysis fraction, a new physico-chemical parameter is introduced and determined to quantify the contribution of the individual microspecies to the overall hydrolysis. Hydrolysis fractions are depicted as a function of pH.

  1. Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance.

    PubMed

    Chang, Young-Cheol; Choi, Dubok; Takamizawa, Kazuhiro; Kikuchi, Shintaro

    2014-01-01

    Effective biological pretreatment method for enhancing cellulase performance was investigated. Two alkali lignin-degrading bacteria were isolated from forest soils in Japan and named CS-1 and CS-2. 16S rDNA sequence analysis indicated that CS-1 and CS-2 were Bacillus sp. Strains CS-1 and CS-2 displayed alkali lignin degradation capability. With initial concentrations of 0.05-2.0 g L(-1), at least 61% alkali lignin could be degraded within 48 h. High laccase activities were observed in crude enzyme extracts from the isolated strains. This result indicated that alkali lignin degradation was correlated with laccase activities. Judging from the net yields of sugars after enzymatic hydrolysis, the most effective pretreatment method for enhancing cellulase performance was a two-step processing procedure (pretreatment using Bacillus sp. CS-1 followed by lactic acid bacteria) at 68.6%. These results suggest that the two-step pretreatment procedure is effective at accelerating cellulase performance.

  2. Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis.

    PubMed

    Ometto, Francesco; Quiroga, Gerardo; Pšenička, Pavel; Whitton, Rachel; Jefferson, Bruce; Villa, Raffaella

    2014-11-15

    Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This work investigated the effect of four pre-treatments on three microalgae species, and their impact on the quantity of soluble biomass released in the media and thus on the digestion process yields. The analysis of the composition of the soluble COD released and of the TEM images of the cells showed two main degradation actions associated with the processes: (1) cell wall damage with the release of intracellular AOM (thermal, thermal hydrolysis and ultrasound) and (2) degradation of the cell wall constituents with the release of intracellular AOM and the solubilisation of the cell wall biopolymers (enzymatic hydrolysis). As a result of this, enzymatic hydrolysis showed the greatest biogas yield increments (>270%) followed by thermal hydrolysis (60-100%) and ultrasounds (30-60%).

  3. Process for the disposal of alkali metals

    DOEpatents

    Lewis, Leroy C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.

  4. Enzymolysis kinetics and structural characteristics of rice protein with energy-gathered ultrasound and ultrasound assisted alkali pretreatments.

    PubMed

    Li, Suyun; Yang, Xue; Zhang, Yanyan; Ma, Haile; Qu, Wenjuan; Ye, Xiaofei; Muatasim, Rahma; Oladejo, Ayobami Olayemi

    2016-07-01

    This research investigated the structural characteristics and enzymolysis kinetics of rice protein which was pretreated by energy-gathered ultrasound and ultrasound assisted alkali. The structural characteristics of rice protein before and after the pretreatment were performed with surface hydrophobicity and Fourier transform infrared (FTIR). There was an increase in the intensity of fluorescence spectrum and changes in functional groups after the pretreatment on rice protein compared with the control (without ultrasound and ultrasound assisted alkali processed), thus significantly enhancing efficiency of the enzymatic hydrolysis. A simplified kinetic equation for the enzymolysis model with the impeded reaction of enzyme was deduced to successfully describe the enzymatic hydrolysis of rice protein by different pretreatments. The initial observed rate constants (Kin,0) as well as ineffective coefficients (kimp) were proposed and obtained based on the experimental observation. The results showed that the parameter of kin,0 increased after ultrasound and ultrasound assisted alkali pretreatments, which proved the effects of the pretreatments on the substrate enhancing the enzymolysis process and had relation to the structure changes of the pretreatments on the substrate. Furthermore, the applicability of the simplified model was demonstrated by the enzymatic hydrolysis process for other materials.

  5. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  6. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  7. Alkali (NaOH) pretreatment of switchgrass by radio frequency-based dielectric heating.

    PubMed

    Hu, Zhenhu; Wang, Yifen; Wen, Zhiyou

    2008-03-01

    Radio-frequency (RF)-based dielectric heating was used in the alkali (NaOH) pretreatment of switchgrass to enhance its enzymatic digestibility. Due to the unique features of RF heating (i.e., volumetric heat transfer, deep heat penetration of the samples, etc.), switchgrass could be treated on a large scale, high solid content, and uniform temperature profile. At 20% solid content, RF-assisted alkali pretreatment (at 0.1 g NaOH/g biomass loading and 90 degrees C) resulted in a higher xylose yield than the conventional heating pretreatment. The enzymatic hydrolysis of RF-treated solids led to a higher glucose yield than the corresponding value obtained from conventional heating treatment. When the solid content exceeded 25%, conventional heating could not handle this high-solid sample due to the loss of fluidity, poor mixing, and heating transfer of the samples. As a result, there was a significantly lower sugar yield, but the sugar yield of the RF-based pretreatment process was still maintained at high levels. Furthermore, the optimal particle size and alkali loading in the RF pretreatment was determined as 0.25-0.50 mm and 0.25 g NaOH/g biomass, respectively. At alkali loading of 0.20-0.25 g NaOH/g biomass, heating temperature of 90(o)C, and solid content of 20%, the glucose, xylose, and total sugar yield from the combined RF pretreatment and the enzymatic hydrolysis were 25.3, 21.2, and 46.5 g/g biomass, respectively.

  8. Alkali (NaOH) Pretreatment of Switchgrass by Radio Frequency-based Dielectric Heating

    NASA Astrophysics Data System (ADS)

    Hu, Zhenhu; Wang, Yifen; Wen, Zhiyou

    Radio-frequency (RF)-based dielectric heating was used in the alkali (NaOH) pre-treatment of switchgrass to enhance its enzymatic digestibility. Due to the unique features of RF heating (i.e., volumetric heat transfer, deep heat penetration of the samples, etc.), switchgrass could be treated on a large scale, high solid content, and uniform temperature profile. At 20% solid content, RF-assisted alkali pretreatment (at 0.1 g NaOH/g biomass loading and 90°C) resulted in a higher xylose yield than the conventional heating pretreatment. The enzymatic hydrolysis of RF-treated solids led to a higher glucose yield than the corresponding value obtained from conventional heating treatment. When the solid content exceeded 25%, conventional heating could not handle this high-solid sample due to the loss of fluidity, poor mixing, and heating transfer of the samples. As a result, there was a significantly lower sugar yield, but the sugar yield of the RF-based pretreatment process was still maintained at high levels. Furthermore, the optimal particle size and alkali loading in the RF pretreatment was determined as 0.25-0.50 mm and 0.25 g NaOH/g biomass, respectively. At alkali loading of 0.20-0.25 g NaOH/g biomass, heating temperature of 90°C, and solid content of 20%, the glucose, xylose, and total sugar yield from the combined RF pretreatment and the enzymatic hydrolysis were 25.3, 21.2, and 46.5 g/g biomass, respectively.

  9. Alkali-deficient tourmaline from the Sullivan Pb-Zn-Ag deposit, British Columbia

    USGS Publications Warehouse

    Jiang, S.-Y.; Palmer, M.R.; Slack, J.F.

    1997-01-01

    Alkali-deficient tourmalines are found in albitized rocks from the hanging-wall of the Sullivan Pb-Zn-Ag deposit (British Columbia, Canada). They approximate the Mg-equivalent of foitite with an idealized formula D???(Mg2Al)Al6Si6O18(BO 3)3(OH)4. Major chemical substitutions in the tourmalines are the alkali-defect type [Na*(x) + Mg*(Y) = ???(X) + Al(Y)] and the uvite type [Na*(X) + Al(Y) = Ca(X) + Mg*(Y)], where Na* = Na + K, Mg* = Mg + Fe + Mn. The occurrence of these alkali-deficient tourmalines reflects a unique geochemical environment that is either alkali-depleted overall or one in which the alkalis preferentially partitioned into coexisting minerals (e.g. albite). Some of the alkali-deficient tourmalines have unusually high Mn contents (up to 1.5 wt.% MnO) compared to other Sullivan tourmalines. Manganese has a strong preference for incorporation into coexisting garnet and carbonate at Sullivan, thus many tourmalines in Mn-rich rocks are poor in Mn (<0.2 wt.% MnO). It appears that the dominant controls over the occurrence of Mn-rich tourmalines at Sullivan are the local availability of Mn and the lack of other coexisting minerals that may preferentially incorporate Mn into their structures.

  10. The unexpected properties of alkali metal iron selenide superconductors

    SciTech Connect

    Dagotto, Elbio R

    2013-01-01

    The iron-based superconductors that contain FeAs layers as the fundamental building block in the crystal structures have been rationalized in the past using ideas based on the Fermi surface nesting of hole and electron pockets when in the presence of weak Hubbard U interactions. This approach seemed appropriate considering the small values of the magnetic moments in the parent compounds and the clear evidence based on photoemission experiments of the required electron and hole pockets. However, recent results in the context of alkali metal iron selenides, with generic chemical composition AxFe2ySe2 (A alkali metal element), have challenged those previous ideas since at particular compositions y the low-temperature ground states are insulating and display antiferromagnetic order with large iron magnetic moments. Moreover, angle-resolved photoemission studies have revealed the absence of hole pockets at the Fermi level in these materials. The present status of this exciting area of research, with the potential to alter conceptually our understanding of the ironbased superconductors, is here reviewed, covering both experimental and theoretical investigations. Other recent related developments are also briefly reviewed, such as the study of selenide two-leg ladders and the discovery of superconductivity in a single layer of FeSe. The conceptual issues considered established for the alkali metal iron selenides, as well as several issues that still require further work, are discussed.

  11. Urea hydrolysis and calcium carbonate reaction fronts

    NASA Astrophysics Data System (ADS)

    Fox, D. T.; Redden, G. D.; Henriksen, J.; Fujita, Y.; Guo, L.; Huang, H.

    2010-12-01

    The mobility of toxic or radioactive metal contaminants in subsurface environments can be reduced by the formation of mineral precipitates that form co-precipitates with the contaminants or that isolate them from the mobile fluid phase. An engineering challenge is to control the spatial distribution of precipitation reactions with respect to: 1) the location of a contaminant, and 2) where reactants are introduced into the subsurface. One strategy being explored for immobilizing contaminants, such as Sr-90, involves stimulating mineral precipitation by forming carbonate ions and hydroxide via the in situ, microbially mediated hydrolysis of urea. A series of column experiments have been conducted to explore how the construction or design of such an in situ reactant production strategy can affect the temporal and spatial distribution of calcium carbonate precipitation, and how the distribution is coupled to changes in permeability. The columns were constructed with silica gel as the porous media. An interval midway through the column contained an adsorbed urease enzyme in order to simulate a biologically active zone. A series of influent solutions were injected to characterize hydraulic properties of the column (e.g., bromide tracer), profiles of chemical conditions and reaction products as the enzyme catalyzes urea hydrolysis (e.g., pH, ammonia, urea), and changes that occur due to CaCO3 precipitation with the introduction of a calcium+urea solutions. In one experiment, hydraulic conductivity was reduced as precipitate accumulated in a layer within the column that had a higher fraction of fine grained silica gel. Subsequent reduction of permeability and flow (for a constant head condition) resulted in displacement of the hydrolysis and precipitation reaction profiles upstream. In another experiment, which lacked the physical heterogeneity (fine grained layer), the precipitation reaction did not result in loss of permeability or flow velocity and the reaction profile

  12. Research on the chemical mechanism in the polyacrylate latex modified cement system

    SciTech Connect

    Wang, Min; Wang, Rumin; Zheng, Shuirong; Farhan, Shameel; Yao, Hao; Jiang, Hao

    2015-10-15

    In this paper, the chemical mechanism in the polyacrylate latex modified cement system was investigated by Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), gel permeation chromatography (GPC) and compact pH meter. All results have shown that the chemical reactions in the polyacrylate modified system can be divided into three stages. The hydration reactions of cement can produce large amounts of Ca(OH){sub 2} (calcium hydroxide) and lead the whole system to be alkali-rich and exothermic at the first stage. Subsequently, this environment can do great contributions to the hydrolysis of ester groups in the polyacrylate chains, resulting in the formation of carboxyl groups at the second stage. At the third stage, the final crosslinked network structure of the product was obtained by the reaction between the carboxyl groups in the polyacrylate latex chains and Ca(OH){sub 2}.

  13. Alkali-silica reaction products: Comparison between samples from concrete structures and laboratory test specimens

    SciTech Connect

    Sachlova, Sarka Prikryl, Richard; Pertold, Zdenek

    2010-12-15

    Alkali-silica gels (ASG) were investigated in concrete from bridge structures (constructed from the 1920s to 2000), as well as in experimental specimens; employing optical microscopy, petrographic image analysis, and scanning electron microscopy combined with energy dispersive spectroscopy (SEM/EDS). The main differences were found in the chemical composition and morphology of the ASGs. ASGs which had formed in older concrete samples (50-80 years old) show a partly crystalline structure and higher Ca{sup 2+} content, indicating their aging and maturation. Younger concrete samples and experimental test specimens exhibit the presence of amorphous ASG. The chemistry of ASG from experimental specimens reflects the chemical composition of accelerating solutions. - Research Highlights: {yields} Quantitative analysis of alkali-silica gels {yields} Comparison of ASR in experimental conditions with ASR in bridge structures {yields} Investigation of factors affecting alkali-silica reaction {yields} Investigation of ASR of different types of aggregates.

  14. Effect of the alkali metal activator on the properties of fly ash-based geopolymers

    SciTech Connect

    Jaarsveld, J.G.S. van; Deventer, J.S.J. van

    1999-10-01

    The alkali and alkali earth metal cations present during the formation of most known aluminosilicate structures have a very significant effect on both the physical and chemical properties of the final product. Geopolymers are no exception, although this effect has not been thoroughly quantified and in the case of waste-based geopolymers it has not received any significant attention. The present study investigates the effect of mainly Na{sup +} and K{sup +} on the physical and chemical properties of fly ash-based geopolymeric binders both before and after setting has occurred. A variety of tests were conducted, including rheological measurements, various leaching tests, compressive strength testing, specific surface area determinations, and infrared spectroscopy (IR). It is concluded that the alkali metal cation controls and affects almost all stages of geopolymerization, from the ordering of ions and soluble species during the dissolution process to playing a structure-directing role during gel hardening and eventual crystal formation.

  15. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Schmalzer, D.K.; Steindler, M.J.; Lee, S.H.D.; Swift, W.M.

    1992-12-01

    This project supports the DOE/METC Fossil Energy Program for the development of Pressurized fluidized bed combustion (PFBC) technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an alternative to the on-line alkali analyzer for field application. RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no high temperature/high pressure (HTHP) sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-reaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial-grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6{und M}-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed in the following.

  16. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Schmalzer, D.K.; Steindler, M.J.; Lee, S.H.D.; Swift, W.M.

    1992-01-01

    This project supports the DOE/METC Fossil Energy Program for the development of Pressurized fluidized bed combustion (PFBC) technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an alternative to the on-line alkali analyzer for field application. RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no high temperature/high pressure (HTHP) sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-reaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial-grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6[und M]-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed in the following.

  17. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1992-01-01

    This project supports the DOE/METC Fossil Energy Program for the development of PFBC technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an altemative to the on-line alkali analyzer for field application. As shown in Fig. 1, the RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no HTHP sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-leaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6M-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite [8]. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed.

  18. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1992-11-01

    This project supports the DOE/METC Fossil Energy Program for the development of PFBC technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an altemative to the on-line alkali analyzer for field application. As shown in Fig. 1, the RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no HTHP sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-leaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6M-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite [8]. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed.

  19. The combination of atomic force microscopy and sugar analysis to evaluate alkali-soluble Canna edulis Ker pectin.

    PubMed

    Zhang, Juan; Cui, Junhui; Xiao, Lin; Wang, Zhengwu

    2014-08-01

    Alkali-soluble pectin, which has been extracted from Canna edulis Ker, was characterized by single sugar determination and atomic force microscopy (AFM). The results indicated that the amounts of four predominant sugars including arabinose (Ara), glucose (Glc), galactose (Gal) and galacturonic acid (GalA) significantly decreased during the process of mild acid hydrolysis. The decreasing rates of these four sugars followed a sequential order of Ara>Gal>Glc>GalA. The homogalacturonan (HG) chain present in pectin, and the quantity of branched material is greater than the sample containing the main neutral sugars. The results indicated that the neutral sugar and HG side chains are attached to pectin as part of the rhamnogalacturonan I (RGI) complex. Moreover, hydrolysis leads to the reduction of mean lengths of backbone and branch, as well as the number/weight-average molecular weight. Meanwhile, the amount of short chain fractions increased during hydrolysis. Furthermore, the decrease of the polymerization degree of alkali-soluble C. edulis pectin as a function of the hydrolysis time could be described by a first-order exponential decay function.

  20. Room temperature reduction and hydrolysis of FeCl3ṡ6H2O on self-sacrifice microscale Cu2O octahedron template: A mild chemical synthesis of pseudocapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Zhang, Mu; Peng, Xiaoyang; Chen, Xu; Chen, Kunfeng; Sun, Xudong; Xue, Dongfeng

    2015-03-01

    Fe(OH)x (x = 2, 3) colloidal aggregations were synthesized at room temperature via a reduction and hydrolysis of FeCl3ṡ6H2O on microscale Cu2O octahedron, which functions as a self-sacrifice template. We herein proposed the growth of Fe(OH)x colloidal aggregation by redox etching Cu2O octahedron while two critical reactions of both redox and precipitation were well employed in this work. As-synthesized Fe(OH)x samples exhibited high specific capacitance of 242.7 F/g, which was higher than those available data of iron oxides and hydroxides.

  1. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  2. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  3. Advancements in flowing diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Pitz, Greg A.; Stalnaker, Donald M.; Guild, Eric M.; Oliker, Benjamin Q.; Moran, Paul J.; Townsend, Steven W.; Hostutler, David A.

    2016-03-01

    Multiple variants of the Diode Pumped Alkali Laser (DPAL) have recently been demonstrated at the Air Force Research Laboratory (AFRL). Highlights of this ongoing research effort include: a) a 571W rubidium (Rb) based Master Oscillator Power Amplifier (MOPA) with a gain (2α) of 0.48 cm-1, b) a rubidium-cesium (Cs) Multi-Alkali Multi-Line (MAML) laser that simultaneously lases at both 795 nm and 895 nm, and c) a 1.5 kW resonantly pumped potassium (K) DPAL with a slope efficiency of 50%. The common factor among these experiments is the use of a flowing alkali test bed.

  4. Prediction of sugar yields during hydrolysis of lignocellulosic biomass using artificial neural network modeling.

    PubMed

    Vani, Sankar; Sukumaran, Rajeev Kumar; Savithri, Sivaraman

    2015-01-01

    The present investigation was carried out to study application of ANN as a tool for predicting sugar yields of pretreated biomass during hydrolysis process at various time intervals. Since it is known that biomass loading and particle size influences the rheology and mass transfer during hydrolysis process, these two parameters were chosen for investigating the efficiency of hydrolysis. Alkali pretreated rice straw was used as the model feedstock in this study and biomass loadings were varied from 10% to 18%. Substrate particle sizes used were <0.5mm, 0.5-1mm, >1mm and mixed size. Effectiveness of hydrolysis was strongly influenced by biomass loadings, whereas particle size did not have any significant impact on sugar yield. Higher biomass loadings resulted in higher sugar concentration in the hydrolysates. Optimum hydrolysis conditions predicted were 10 FPU/g cellulase, 5 IU/g BGL, 7500 U/g xylanase, 18% biomass loading and mixed particle size with reaction time between 12-28 h.

  5. Potentiometric determination of the 'formal' hydrolysis ratio of aluminium species in aqueous solutions.

    PubMed

    Fournier, Agathe C; Shafran, Kirill L; Perry, Carole C

    2008-01-21

    The 'formal' hydrolysis ratio (h = C(OH-)added/C(Al)total) of hydrolysed aluminium-ions is an important parameter required for the exhaustive and quantitative speciation-fractionation of aluminium in aqueous solutions. This paper describes a potentiometric method for determination of the formal hydrolysis ratio based on an automated alkaline titration procedure. The method uses the point of precipitation of aluminium hydroxide as a reference (h = 3.0) in order to calculate the initial formal hydrolysis ratio of hydrolysed aluminium-ion solutions. Several solutions of pure hydrolytic species including aluminium monomers (AlCl3), Al13 polynuclear cluster ([Al13O4(OH)24(H2O)12]7+), Al30 polynuclear cluster ([Al30O8(OH)56(H2O)26]18+) and a suspension of nanoparticulate aluminium hydroxide have been used as 'reference standards' to validate the proposed potentiometric method. Other important variables in the potentiometric determination of the hydrolysis ratio have also been optimised including the concentration of aluminium and the type and strength of alkali (Trizma-base, NH3, NaHCO3, Na2CO3 and KOH). The results of the potentiometric analysis have been cross-verified by quantitative 27Al solution nuclear magnetic resonance (27Al NMR) measurements. The 'formal' hydrolysis ratio of a commercial basic aluminium chloride has been measured as an example of a practical application of the developed technique.

  6. Alkali metal for ultraviolet band-pass filter

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  7. Structural modification of lignocellulosics by pretreatments to enhance enzymatic hydrolysis.

    PubMed

    Gharpuray, M M; Lee, Y H; Fan, L T

    1983-01-01

    In this work an evaluation was made of a wide variety of single and multiple pretreatment methods for enhancing the rate of enzymatic hydrolysis of wheat straw. A multiple pretreatment consisted of a physical pretreatment followed by a chemical pretreatment. The structural features of wheat straw, including the specific surface area, crystallinity index, and lignin content, were measured to understand the mechanism of the enhancement in the hydrolysis rate upon pretrement. It has been found that, in general, multiple pretreatments were not promising, since the hydrolysis rates rarely exceeded those achieved by single pretreatments. Ballmilling pretreatment was found to be effective in increasing the specific surface area and decreasing the crystallinity index. Treatment with ethylene glycol was highly effective in increasing the specific surface area, in addition to a high degree of delignification. Peracetic acid pretreatment was highly effective in delignifying substrate. Among multiple pretreatments, those involving peracetic acid treatment generally had lower crystallinity indices and lignin content values. The relationship between the hydrolysis rate and the set of structural features indicated that an increase in surface area and a decrease in the crystallinity and lignin content enhance the hydrolysis; the specific surface area is the most influential of the structural features, followed by the lignin content.

  8. Synthetic, structural, and theoretical investigations of alkali metal germanium hydrides--contact molecules and separated ions.

    PubMed

    Teng, Weijie; Allis, Damian G; Ruhlandt-Senge, Karin

    2007-01-01

    The preparation of a series of crown ether ligated alkali metal (M=K, Rb, Cs) germyl derivatives M(crown ether)nGeH3 through the hydrolysis of the respective tris(trimethylsilyl)germanides is reported. Depending on the alkali metal and the crown ether diameter, the hydrides display either contact molecules or separated ions in the solid state, providing a unique structural insight into the geometry of the obscure GeH3- ion. Germyl derivatives displaying M--Ge bonds in the solid state are of the general formula [M([18]crown-6)(thf)GeH3] with M=K (1) and M=Rb (4). The compounds display an unexpected geometry with two of the GeH3 hydrogen atoms closely approaching the metal center, resulting in a partially inverted structure. Interestingly, the lone pair at germanium is not pointed towards the alkali metal, rather two of the three hydrides are approaching the alkali metal center to display M--H interactions. Separated ions display alkali metal cations bound to two crown ethers in a sandwich-type arrangement and non-coordinated GeH3- ions to afford complexes of the type [M(crown ether)2][GeH3] with M=K, crown ether=[15]crown-5 (2); M=K, crown ether=[12]crown-4 (3); and M=Cs, crown ether=[18]crown-6 (5). The highly reactive germyl derivatives were characterized by using X-ray crystallography, 1H and 13C NMR, and IR spectroscopy. Density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2) calculations were performed to analyze the geometry of the GeH3- ion in the contact molecules 1 and 4.

  9. Transition-state structures for enzymatic and alkaline phosphotriester hydrolysis

    SciTech Connect

    Caldwell, S.R.; Raushel, F.M. ); Weiss, P.M.; Cleland, W.W. )

    1991-07-30

    The primary and secondary {sup 18}O isotope effects for the alkaline (KOH) and enzymatic (phosphotriesterase) hydrolysis of two phosphotriesters, O,O-diethyl p-nitrophenyl phosphate (I) and O,O-diethyl O-(4-carbamoylphenyl) phosphate (II), are consistent with an associative mechanism with significant changes in bond order to both the phosphoryl and phenolic leaving group oxygens in the transition state. The synthesis of ({sup 15}N, phosphoryl-{sup 18}O)-,({sup 15}N, phenolic-{sup 18}O)-, and ({sup 15}N)-O,O-diethyl p-nitrophenyl phosphate and O,O-diethyl O-(4-carbamoylphenyl)phosphate is described. The primary and secondary {sup 18}O isotope effects for the alkaline hydrolysis of compound I are 1.0060 and 1.0063 {plus minus} 0.0001, whereas for compound II they are 1.027{plus minus}0.002 and 1.025 {plus minus} 0.002, respectively. These isotope effects are consistent with the rate-limiting addition of hydroxide and provide evidence for a S{sub N}2-like transition state with the absence of a stable phosphorane intermediate. For the enzymatic hydrolysis of compound I, the primary and secondary {sup 18}O isotope effects are very small, 1.0020 and 1.0021{plus minus}0.0004, respectively, and indicate that the chemical step in the enzymatic mechanism is not rate-limiting. The {sup 18}O isotope effects for the enzymatic hydrolysis of compound II are 1.036{plus minus}0.001 and 1.0181{plus minus}0.0007, respectively, and are comparable in magnitude to the isotope effects for alkaline hydrolysis, suggesting that the chemical step is rate-limiting. The relative magnitude of the primary {sup 18}O isotope effects for the alkaline and enzymatic hydrolysis of compound II reflect a transition state that is more progressed for the enzymatic reaction.

  10. Transition-state structures for enzymatic and alkaline phosphotriester hydrolysis.

    PubMed

    Caldwell, S R; Raushel, F M; Weiss, P M; Cleland, W W

    1991-07-30

    The primary and secondary 18O isotope effects for the alkaline (KOH) and enzymatic (phosphotriesterase) hydrolysis of two phosphotriesters, O,O-diethyl p-nitrophenyl phosphate (I) and O,O-diethyl O-(4-carbamoylphenyl) phosphate (II), are consistent with an associative mechanism with significant changes in bond order to both the phosphoryl and phenolic leaving group oxygens in the transition state. The synthesis of [15N, phosphoryl-18O]-, [15N, phenolic-18O]-, and [15N]-O,O-diethyl p-nitrophenyl phosphate and O,O-diethyl O-(4-carbamoylphenyl)phosphate is described. The primary and secondary 18O isotope effects for the alkaline hydrolysis of compound I are 1.0060 and 1.0063 +/- 0.0001, whereas for compound II they are 1.027 +/- 0.002 and 1.025 +/- 0.002, respectively. These isotope effects are consistent with the rate-limiting addition of hydroxide and provide evidence for a SN2-like transition state with the absence of a stable phosphorane intermediate. For the enzymatic hydrolysis of compound I, the primary and secondary 18O isotope effects are very small, 1.0020 and 1.0021 +/- 0.0004, respectively, and indicate that the chemical step in the enzymatic mechanism is not rate-limiting. The 18O isotope effects for the enzymatic hydrolysis of compound II are 1.036 +/- 0.001 and 1.0181 +/- 0.0007, respectively, and are comparable in magnitude to the isotope effects for alkaline hydrolysis, suggesting that the chemical step is rate-limiting. The relative magnitude of the primary 18O isotope effects for the alkaline and enzymatic hydrolysis of compound II reflect a transition state that is more progressed for the enzymatic reaction.

  11. Surface modification by alkali and heat treatments in titanium alloys.

    PubMed

    Lee, Baek-Hee; Do Kim, Young; Shin, Ji Hoon; Hwan Lee, Kyu

    2002-09-05

    Pure titanium and titanium alloys are normally used for orthopedic and dental prostheses. Nevertheless, their chemical, biological, and mechanical properties still can be improved by the development of new preparation technologies. This has been the limiting factor for these metals to show low affinity to living bone. The purpose of this study is to improve the bone-bonding ability between titanium alloys and living bone through a chemically activated process and a thermally activated one. Two kinds of titanium alloys, a newly designed Ti-In-Nb-Ta alloy and a commercially available Ti-6Al-4V ELI alloy, were used in this study. In this study, surface modification of the titanium alloys by alkali and heat treatments (AHT), alkali treated in 5.0M NaOH solution, and heat treated in vacuum furnace at 600 degrees C, is reported. After AHT, the effects of the AHT on the bone integration property were evaluated in vitro. Surface morphologies of AHT were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Chemical compositional surface changes were investigated by X-ray diffractometry (XRD), energy dispersive spectroscopy (EDS), and auger electron spectroscopy (AES). Titanium alloys with surface modification by AHT showed improved bioactive behavior, and the Ti-In-Nb-Ta alloy had better bioactivity than the Ti-6Al-4V ELI alloy in vitro.

  12. Enzymatic hydrolysis of lignocellulosic biomass from Onopordum nervosum.

    PubMed

    Martín, C; Negro, M J; Alfonsel, M; Sáez, R

    1988-07-20

    Some properties of the cellulolytic complex obtained from Trichoderma reesei QM 9414 grown on Solka floc as carbon source and its ability to hydrolyze the lignocellulosic biomass of Onopordum nervosum Boiss were studied. The optimum enzyme activity was found at temperatures between 50 and 55 degrees C and pH ranging from 4.3 to 4.8. Hydrolysis of 4-nitropnenyl-beta-D-glucopyranoside (4-NPG) and cellobiose by the beta-glucosidase of the complex, showed competitive inhibition by glucose with a K(i) value of 0.8 mM for 4-NPG and 2. 56 mM for cellobiose. Enzymatic hydrolysis yield of Onopordum nervosum, evaluated as glucose production after 48 h, showed a threefold increase by pretreating the lignocellulosic substrate with alkali. When the loss of glucose incurred by de pretreatment was taken into account, a 160% increase in the final cellulose to glucose conversion was found to be due to the pretreatment.

  13. Improved alkali-metal/silicate binders

    NASA Technical Reports Server (NTRS)

    Schutt, J.

    1978-01-01

    Family of inorganic binders utilizes potassium or sodium oxide/silicate dispersion and employs high mole ratio of silicon dioxide to alkali-metal binder. Binders are stable, inexpensive, extremely water resistant, and easy to apply.

  14. Alkali Metal Handling Practices at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Salvail, Patrick G.; Carter, Robert R.

    2002-01-01

    NASA Marshall Space Flight Center (MSFC) is NASA s principle propulsion development center. Research and development is coordinated and carried out on not only the existing transportation systems, but also those that may be flown in the near future. Heat pipe cooled fast fission cores are among several concepts being considered for the Nuclear Systems Initiative. Marshall Space Flight Center has developed a capability to handle high-purity alkali metals for use in heat pipes or liquid metal heat transfer loops. This capability is a low budget prototype of an alkali metal handling system that would allow the production of flight qualified heat pipe modules or alkali metal loops. The processing approach used to introduce pure alkali metal into heat pipe modules and other test articles are described in this paper.

  15. Alkali metal propellants for MPD thrusters

    NASA Technical Reports Server (NTRS)

    Polk, J. E.; Pivirotto, T. J.

    1991-01-01

    Experiments performed in the United States in the 1960s and early 1970s and in the Soviet Union with alkali metal-fuelled MPD thrusters indicate performance levels substantially better than those achieved with gaseous propellants. Cathode wear appears to be less in engines with alkali metal propellants also. A critical review of the available data indicates that the data are consistent and reliable. An analysis of testing and systems-level considerations shows that pumping requirements for testing are substantially decreased and reductions in tankage fraction can be expected. In addition, while care must be exercised in handling the alkali metals, it is not prohibitively difficult or hazardous. The greatest disadvantage seems to be the potential for spacecraft contamination, but there appear to be viable strategies for minimizing the impact of propellant deposition on spacecraft surfaces. Renewed examination of alkali metal-fuelled MPD thrusters for ambitious SEI missions is recommended.

  16. Enzymatic hydrolysis of organic phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Orthophosphate-releasing enzymatic hydrolysis is an alternative means for characterizing organic phosphorus (Po) in animal manure. The approach is not only simple and fast, but can also provide information difficult to obtain by other methods. Currently, commercially available phosphatases are mainl...

  17. Lignocellulose hydrolysis by multienzyme complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignocellulosic biomass is the most abundant renewable resource on the planet. Converting this material into a usable fuel is a multi-step process, the rate-limiting step being enzymatic hydrolysis of organic polymers into monomeric sugars. While the substrate can be complex and require a multitud...

  18. Microbial hydrolysis of steviol glycosides.

    PubMed

    Renwick, A G; Tarka, S M

    2008-07-01

    A review of the role of gut microbiota in the metabolism of the steviol glycosides, stevioside and rebaudioside A, indicates that they are not absorbed intact but undergo hydrolysis by the intestinal microflora to steviol. Steviol is not metabolized by the intestinal flora and is absorbed from the intestine. The rate of hydrolysis for stevioside is greater than for rebaudioside A. Recent studies using mass spectrometry have shown that steviol-16,17-epoxide is not a microbial metabolite of steviol glycosides. Bacteroides species are primarily responsible for hydrolysis via their beta-glucosidase activity. Fecal incubation studies with both human and animal mixed flora provide similar results, and this indicates that the rat is an appropriate model for studies on steviol glycosides. Given the similarity in the microbial metabolism of stevioside and rebaudioside A with the formation of steviol as the single hydrolysis product that is absorbed from the intestinal tract, the toxicological data on stevioside are relevant to the risk assessment of rebaudioside A.

  19. Pretreatment and enzymatic hydrolysis of lignocellulosic biomass

    NASA Astrophysics Data System (ADS)

    Corredor, Deisy Y.

    The performance of soybean hulls and forage sorghum as feedstocks for ethanol production was studied. The main goal of this research was to increase fermentable sugars' yield through high-efficiency pretreatment technology. Soybean hulls are a potential feedstock for production of bio-ethanol due to their high carbohydrate content (≈50%) of nearly 37% cellulose. Soybean hulls could be the ideal feedstock for fuel ethanol production, because they are abundant and require no special harvesting and additional transportation costs as they are already in the plant. Dilute acid and modified steam-explosion were used as pretreatment technologies to increase fermentable sugars yields. Effects of reaction time, temperature, acid concentration and type of acid on hydrolysis of hemicellulose in soybean hulls and total sugar yields were studied. Optimum pretreatment parameters and enzymatic hydrolysis conditions for converting soybean hulls into fermentable sugars were identified. The combination of acid (H2SO4, 2% w/v) and steam (140°C, 30 min) efficiently solubilized the hemicellulose, giving a pentose yield of 96%. Sorghum is a tropical grass grown primarily in semiarid and dry parts of the world, especially in areas too dry for corn. The production of sorghum results in about 30 million tons of byproducts mainly composed of cellulose, hemicellulose, and lignin. Forage sorghum such as brown midrib (BMR) sorghum for ethanol production has generated much interest since this trait is characterized genetically by lower lignin concentrations in the plant compared with conventional types. Three varieties of forage sorghum and one variety of regular sorghum were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-Ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and enzymatic hydrolysis

  20. Desulfurizing Coal With an Alkali Treatment

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kalvinskas, J. J.

    1987-01-01

    Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.

  1. Water Content of Lunar Alkali Fedlspar

    NASA Technical Reports Server (NTRS)

    Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

    2016-01-01

    Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of < 1 ppm in urKREEP. Using these data, predict that the bulk water content of the magma ocean would have <10 ppm. In contrast, estimate water contents of 320 ppm for the bulk Moon and 1.4 wt % for urKREEP from plagioclase in ferroan anorthosites. Results and interpretation: NanoSIMS data from granitic clasts from Apollo sample 15405,78 show that alkali feldspar, a common mineral in K-enriched rocks, can have approx. 20 ppm of water, which implies magmatic water contents of approx. 1 wt % in the high-silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was

  2. Evaluation Of Demercurization Efficiency Of Chlor-Alkali Production In Pavlodar City, Kazakhstan

    EPA Science Inventory

    Mercury pollution in Pavlodar, a city in northeastern Kazakhstan, is the result of chlor-alkali chemical plant operations in 1975-1993, where chlorine production capacity was approximately 100,000 tons per year. The total quantity of metallic mercury released into the environmen...

  3. Groundwater Modeling Of Mercury Pollution At A Former Mercury Cell Chlor Alkali Facility In Pavoldar, Kazakhstan

    EPA Science Inventory

    In Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severly contaminated with mercury and mercury compounds as a result of the industrial activity of this chemical pla...

  4. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOEpatents

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  5. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOEpatents

    Cassano, A.A.

    1985-07-02

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

  6. Effect of the chemical treatments on the characteristics of natural cellulose

    SciTech Connect

    Sosiati, H.; Muhaimin, M.; Abdilah, P.; Wijayanti, D. A.; Harsojo; Triyana, K.

    2014-09-25

    In order to characterize the morphology and size distribution of the cellulose fibers, natural cellulose from kenaf bast fibers was extracted using two chemical treatments; (1) alkali-bleaching-ultrasonic treatment and (2) alkali-bleaching-hydrolysis. Solutions of NaOH, H{sub 2}O{sub 2} and H{sub 2}SO{sub 4} were used for alkalization, bleaching and hydrolysis, respectively. The hydrolyzed fibers were centrifuged at a rotation speed of 10000 rpm for 10 min to separate the nanofibers from the microfibers. The separation was repeated in 7 steps by controlling pH of the solution in each step until neutrality was reached. Fourier transform infrared (FTIR) spectroscopy was performed on the fibers at the final step of each treatment: i.e. either ultrasonic treated- or hydrolyzed microfibers. Their FTIR spectra were compared with FTIR spectrum of a reference commercial α-cellulose. Changes in morphology and size distribution of the treated fibers were examined by scanning electron microscopy (SEM). FTIR spectra of ultrasonic treated- and hydrolyzed microfibers nearly coincided with the FTIR spectrum of commercial α-cellulose, suggesting successful extraction of cellulose. Ultrasonic treatment for 6 h resulted in a specific morphology in which cellulose nanofibers (≥100 nm) were distributed across the entire surface of cellulose microfibers (∼5 μm). Constant magnetic stirring combined with acid hydrolysis resulted in an inhomogeneous size distribution of both cellulose rods (500 nm-3 μm length, 100–200 nm diameter) and particles 100–200 nm in size. Changes in morphology of the cellulose fibers depended upon the stirring time; longer stirring time resulted in shorter fiber lengths.

  7. Effect of the chemical treatments on the characteristics of natural cellulose

    NASA Astrophysics Data System (ADS)

    Sosiati, H.; Muhaimin, M.; Abdilah, P.; Wijayanti, D. A.; Harsojo, K. Triyana

    2014-09-01

    In order to characterize the morphology and size distribution of the cellulose fibers, natural cellulose from kenaf bast fibers was extracted using two chemical treatments; (1) alkali-bleaching-ultrasonic treatment and (2) alkali-bleaching-hydrolysis. Solutions of NaOH, H2O2 and H2SO4 were used for alkalization, bleaching and hydrolysis, respectively. The hydrolyzed fibers were centrifuged at a rotation speed of 10000 rpm for 10 min to separate the nanofibers from the microfibers. The separation was repeated in 7 steps by controlling pH of the solution in each step until neutrality was reached. Fourier transform infrared (FTIR) spectroscopy was performed on the fibers at the final step of each treatment: i.e. either ultrasonic treated- or hydrolyzed microfibers. Their FTIR spectra were compared with FTIR spectrum of a reference commercial α-cellulose. Changes in morphology and size distribution of the treated fibers were examined by scanning electron microscopy (SEM). FTIR spectra of ultrasonic treated- and hydrolyzed microfibers nearly coincided with the FTIR spectrum of commercial α-cellulose, suggesting successful extraction of cellulose. Ultrasonic treatment for 6 h resulted in a specific morphology in which cellulose nanofibers (≥100 nm) were distributed across the entire surface of cellulose microfibers (˜5 μm). Constant magnetic stirring combined with acid hydrolysis resulted in an inhomogeneous size distribution of both cellulose rods (500 nm-3 μm length, 100-200 nm diameter) and particles 100-200 nm in size. Changes in morphology of the cellulose fibers depended upon the stirring time; longer stirring time resulted in shorter fiber lengths.

  8. Detecting hydrolysis products of blister agents in water by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Inscore, Frank; Farquharson, Stuart

    2005-11-01

    Protecting the nation's drinking water from terrorism, requires microg/L detection of chemical agents and their hydrolysis products in less than 10 minutes. In an effort to aid military personnel and the public at large, we have been investigating the ability of surface-enhanced Raman spectroscopy (SERS) to detect microgram per liter (part-per-billion) concentrations of chemical agents in water. It is equally important to detect and distinguish the hydrolysis products of these agents to eliminate false-positive responses and evaluate the extent of an attack. Previously, we reported the SER spectra of GA, GB, VX and most of their hydrolysis products. Here we extend these studies to include the chemical agent sulfur-mustard, also known as HD, and its principle hydrolysis product thiodiglycol. We also report initial continuous measurements of thiodiglycol flowing through a SERS-active capillary.

  9. Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se2.

    PubMed

    Colombara, Diego; Berner, Ulrich; Ciccioli, Andrea; Malaquias, João C; Bertram, Tobias; Crossay, Alexandre; Schöneich, Michael; Meadows, Helene J; Regesch, David; Delsante, Simona; Gigli, Guido; Valle, Nathalie; Guillot, Jérome; El Adib, Brahime; Grysan, Patrick; Dale, Phillip J

    2017-02-24

    Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se2 (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas-phase alkali transport in the kesterite sulfide (Cu2ZnSnS4) system (re)open the way to a novel gas-phase doping strategy. However, the current understanding of gas-phase alkali transport is very limited. This work (i) shows that CIGSe device efficiency can be improved from 2% to 8% by gas-phase sodium incorporation alone, (ii) identifies the most likely routes for gas-phase alkali transport based on mass spectrometric studies, (iii) provides thermochemical computations to rationalize the observations and (iv) critically discusses the subject literature with the aim to better understand the chemical basis of the phenomenon. These results suggest that accidental alkali metal doping occurs all the time, that a controlled vapor pressure of alkali metal could be applied during growth to dope the semiconductor, and that it may have to be accounted for during the currently used solid state doping routes. It is concluded that alkali gas-phase transport occurs through a plurality of routes and cannot be attributed to one single source.

  10. Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se2

    PubMed Central

    Colombara, Diego; Berner, Ulrich; Ciccioli, Andrea; Malaquias, João C.; Bertram, Tobias; Crossay, Alexandre; Schöneich, Michael; Meadows, Helene J.; Regesch, David; Delsante, Simona; Gigli, Guido; Valle, Nathalie; Guillot, Jérome; El Adib, Brahime; Grysan, Patrick; Dale, Phillip J.

    2017-01-01

    Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se2 (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas-phase alkali transport in the kesterite sulfide (Cu2ZnSnS4) system (re)open the way to a novel gas-phase doping strategy. However, the current understanding of gas-phase alkali transport is very limited. This work (i) shows that CIGSe device efficiency can be improved from 2% to 8% by gas-phase sodium incorporation alone, (ii) identifies the most likely routes for gas-phase alkali transport based on mass spectrometric studies, (iii) provides thermochemical computations to rationalize the observations and (iv) critically discusses the subject literature with the aim to better understand the chemical basis of the phenomenon. These results suggest that accidental alkali metal doping occurs all the time, that a controlled vapor pressure of alkali metal could be applied during growth to dope the semiconductor, and that it may have to be accounted for during the currently used solid state doping routes. It is concluded that alkali gas-phase transport occurs through a plurality of routes and cannot be attributed to one single source. PMID:28233864

  11. Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se2

    NASA Astrophysics Data System (ADS)

    Colombara, Diego; Berner, Ulrich; Ciccioli, Andrea; Malaquias, João C.; Bertram, Tobias; Crossay, Alexandre; Schöneich, Michael; Meadows, Helene J.; Regesch, David; Delsante, Simona; Gigli, Guido; Valle, Nathalie; Guillot, Jérome; El Adib, Brahime; Grysan, Patrick; Dale, Phillip J.

    2017-02-01

    Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se2 (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas-phase alkali transport in the kesterite sulfide (Cu2ZnSnS4) system (re)open the way to a novel gas-phase doping strategy. However, the current understanding of gas-phase alkali transport is very limited. This work (i) shows that CIGSe device efficiency can be improved from 2% to 8% by gas-phase sodium incorporation alone, (ii) identifies the most likely routes for gas-phase alkali transport based on mass spectrometric studies, (iii) provides thermochemical computations to rationalize the observations and (iv) critically discusses the subject literature with the aim to better understand the chemical basis of the phenomenon. These results suggest that accidental alkali metal doping occurs all the time, that a controlled vapor pressure of alkali metal could be applied during growth to dope the semiconductor, and that it may have to be accounted for during the currently used solid state doping routes. It is concluded that alkali gas-phase transport occurs through a plurality of routes and cannot be attributed to one single source.

  12. Investigation of structural properties associated with alkali-silica reaction by means of macro- and micro-structural analysis

    SciTech Connect

    Mo Xiangyin . E-mail: moxiangyin@njnu.edu.cn; Fournier, Benoit

    2007-02-15

    Structural properties associated with alkali-silica reaction were systematically investigated by means of macro-structural accelerated mortar prism expansion levels testing, combined with micro-structural analysis. One part of this study is to determine the reactivity of the aggregate by means of accelerated mortar bar tests, and also to evaluate perlite aggregate constituents, especially the presence of deleterious components and find main causes of the alkali-silica reaction, which was based on the petrographic studies by optical microscope and the implication of X-ray diffraction on the aggregate. Results implied that the aggregate was highly alkali-silica reactive and the main micro-crystalline quartz-intermediate character and matrix that is mainly composed of chalcedony are potentially suitable for alkali-silica reaction. The other part is to study the long-term effect of lithium salts against alkali-silica reaction by testing accelerated mortar prism expansion levels. The macro-structural results were also consistent with the micro-structural mechanisms of alkali-silica reaction of mortar prisms containing this aggregate and the effect of chemical admixtures by means of the methods of scanning electron microscope-X-ray energy-dispersive spectroscopy and X-ray diffraction. It was indicated by these techniques that lithium salts, which were introduced into concrete containing reactive aggregate at the mixing stage, suppressed the alkali-silica reaction by producing non-expansive crystalline materials.

  13. Alteration of alkali reactive aggregates autoclaved in different alkali solutions and application to alkali-aggregate reaction in concrete

    SciTech Connect

    Lu Duyou; Xu Zhongzi; Tang Mingshu; Fournier, Benoit

    2006-06-15

    Surface alteration of typical aggregates with alkali-silica reactivity and alkali-carbonate reactivity, i.e. Spratt limestone (SL) and Pittsburg dolomitic limestone (PL), were studied by XRD and SEM/EDS after autoclaving in KOH, NaOH and LiOH solutions at 150 deg. C for 150 h. The results indicate that: (1) NaOH shows the strongest attack on both ASR and ACR aggregates, the weakest attack is with LiOH. For both aggregates autoclaved in different alkali media, the crystalline degree, morphology and distribution of products are quite different. More crystalline products are formed on rock surfaces in KOH than that in NaOH solution, while almost no amorphous product is formed in LiOH solution; (2) in addition to dedolomitization of PL in KOH, NaOH and LiOH solutions, cryptocrystalline quartz in PL involves in reaction with alkaline solution and forms typical alkali-silica product in NaOH and KOH solutions, but forms lithium silicate (Li{sub 2}SiO{sub 3}) in LiOH solution; (3) in addition to massive alkali-silica product formed in SL autoclaved in different alkaline solutions, a small amount of dolomite existing in SL may simultaneously dedolomitize and possibly contribute to expansion; (4) it is promising to use the duplex effect of LiOH on ASR and ACR to distinguish the alkali-silica reactivity and alkali-carbonate reactivity of aggregate when both ASR and ACR might coexist.

  14. Comparison of different alkali-based pretreatments of corn stover for improving enzymatic saccharification.

    PubMed

    Li, Qiang; Gao, Yang; Wang, Haisong; Li, Bin; Liu, Chao; Yu, Guang; Mu, Xindong

    2012-12-01

    Corn stover was treated with NaOH, NaOH+anthraquinone (AQ), NaOH+Na(2)SO(3) (alkaline), NaOH+Na(2)SO(3) (neutral), and NaOH+Na(2)S, respectively. The treated corn stover was subjected to hydrolysis with cellulase (20 FPU/g dry biomass) and β-glucosidase (10I U/g dry biomass). Compared with other pretreatment methods, alkaline sodium sulfite pretreatment (ASSP) at a relatively low temperature of 140°C provided for the best lignin removal of about 92%. After ASSP with 10 wt.% of the total alkali charge (Na(2)SO(3):NaOH=1:1) at 140°C for 30 min and subsequent enzymatic hydrolysis, a total sugar yield of 78.2% was obtained on the basis of the amount of glucose and xylose released from raw corn stover. This yield was 24.0% higher than that achieved with NaOH only under the same conditions. Therefore, the supplement of Na(2)SO(3) in alkali pretreatment can facilitate delignification and significantly improve the enzymatic saccharification.

  15. Effect of acid hydrolysis on starch structure and functionality: a review.

    PubMed

    Wang, Shujun; Copeland, Les

    2015-01-01

    Acid hydrolysis is an important chemical modification that can significantly change the structural and functional properties of starch without disrupting its granular morphology. A deep understanding of the effect of acid hydrolysis on starch structure and functionality is of great importance for starch scientific research and its industrial applications. During acid hydrolysis, amorphous regions are hydrolyzed preferentially, which enhances the crystallinity and double helical content of acid hydrolyzed starch. This review discusses current understanding of the effect of acid hydrolysis on starch structure and functionality. The effects of acid hydrolysis on amylose content, chain length distribution of amylopectin molecules, molecular and crystalline organization (including lamellar structure) and granular morphology are considered. Functional properties discussed include swelling power, gelatinization, retrogradation, pasting, gel texture, and in vitro enzyme digestibility. The paper also highlights some promising applications of acid hydrolyzed starch (starch nanocrystals) in the preparation of biodegradable nanocomposites, bio-hydrogen, and slowly digestible starch-based healthy foods.

  16. Facile Precursor for Synthesis of Silver Nanoparticles Using Alkali Treated Maize Starch

    PubMed Central

    El-Rafie, M. H.; Ahmed, Hanan B.; Zahran, M. K.

    2014-01-01

    Silver nanoparticles were prepared by using alkali treated maize starch which plays a dual role as reducer for AgNO3 and stabilizer for the produced AgNPs. The redox reaction which takes a place between AgNO3 and alkali treated starch was followed up and controlled in order to obtain spherical shaped silver nanoparticles with mean size 4–6 nm. The redox potentials confirmed the principle role of alkali treatment in increasing the reducibility of starch macromolecules. The measurements of reducing sugars at the end of reaction using dinitrosalicylic acid reagent (DNS) were carried out in order to control the chemical reduction reaction. The UV/Vis spectra show that an absorption peak, occurring due to surface plasmon resonance (SPR), exists at 410 nm, which is characteristic to yellow color of silver nanoparticles solution. The samples have been characterized by transmission electron microscopy (TEM), which reveal the nanonature of the particles. PMID:27433508

  17. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    SciTech Connect

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad

    2015-09-25

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  18. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    NASA Astrophysics Data System (ADS)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad

    2015-09-01

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD).

  19. Limiting factors of starch hydrolysis.

    PubMed

    Colonna, P; Leloup, V; Buléon, A

    1992-10-01

    Foods appear as complex structures, in which starch may be present in different forms. These, including the molecular characteristics and the crystalline organization, depend on processing conditions and compositions of ingredients. The main changes in starch macro- and microstructures are the increase of surface area to volume ratio in the solid phase, the modification of the crystallinity as affected by gelatinization and gelation, and the depolymerization of amylose and amylopectin. Starch modification may be estimated by different methodologies, which should be selected according to the level of structure considered. When amylose and amylopectin are in solution, rapid and total hydrolysis leads to the formation of a mixture of linear oligosaccharides and branched alpha-limit dextrins. However, starch usually occurs in foods as solid structures. Structural factors of starchy materials influence their enzymic hydrolysis. A better understanding of the enzymatic process enables the identification of the structural factors limiting hydrolysis: diffusion of enzyme molecules, porosity of solid substrates, adsorption of enzymes onto solid substrates, and the catalytic event. A mechanistic modelling should be possible in the future.

  20. Hydrolysis of fluorosilanes: a theoretical study.

    PubMed

    Cypryk, Marek

    2005-12-29

    Hydrolysis and condensation of simple trifluorosilanes, HSiF3 and MeSiF3, was studied by quantum mechanical methods. Hydrolysis of fluorosilanes is highly endothermic. The Gibbs free energy of the first reaction step in the gas phase is 31.4 kJ/mol, which corresponds to an equilibrium constant of 10(-6). Hydrolysis of the subsequent fluorine atoms in trifluorosilanes is thermodynamically more unfavorable than the first step of substitution. No significant difference in thermodynamics of hydrolysis was found between HSiF3 and MeSiF3. The activation energy for hydrolysis by a water dimer is significantly lower than that for hydrolysis by a water monomer. The former reaction is also less unfavorable thermodynamically, due to a high binding energy of the HF-H2O complex formed as a product of hydrolysis. Self-consistent reaction field (SCRF) calculations show that hydrolysis of trifluorosilanes in aqueous medium has lower activation energy than in the gas phase. It is also thermodynamically less unfavorable, due to better solvation of the products. Homofunctional condensation of HSiF2OH is thermodynamically favored. The equilibrium mixture for hydrolysis/condensation of RSiF3 in water is predicted to contain ca. 2.3% disiloxane (HF2Si)2O, if 100-fold excess of water relative to silane is assumed. Further hydrolysis of (HF2Si)2O is negligible. The thermodynamics of fluorosilane hydrolysis contrasts with that of chlorosilanes, where both hydrolysis and condensation are strongly favorable. Moreover, in the case of trichlorosilanes each subsequent hydrolysis step is more facile, leading to the product of full hydrolysis, RSi(OH)3.

  1. Influence of lithium hydroxide on alkali-silica reaction

    SciTech Connect

    Bulteel, D.; Garcia-Diaz, E.; Degrugilliers, P.

    2010-04-15

    Several papers show that the use of lithium limits the development of alkali-silica reaction (ASR) in concrete. The aim of this study is to improve the understanding of lithium's role on the alteration mechanism of ASR. The approach used is a chemical method which allowed a quantitative measurement of the specific degree of reaction of ASR. The chemical concrete sub-system used, called model reactor, is composed of the main ASR reagents: reactive aggregate, portlandite and alkaline solution. Different reaction degrees are measured and compared for different alkaline solutions: NaOH, KOH and LiOH. Alteration by ASR is observed with the same reaction degrees in the presence of NaOH and KOH, accompanied by the consumption of hydroxyl concentration. On the other hand with LiOH, ASR is very limited. Reaction degree values evolve little and the hydroxyl concentration remains about stable. These observations demonstrate that lithium ions have an inhibitor role on ASR.

  2. Recovery of phosphorus and nitrogen from alkaline hydrolysis supernatant of excess sludge by magnesium ammonium phosphate.

    PubMed

    Bi, Wei; Li, Yiyong; Hu, Yongyou

    2014-08-01

    Magnesium ammonium phosphate (MAP) method was used to recover orthophosphate (PO₄(3-)-P) and ammonium nitrogen (NH4(+)-N) from the alkaline hydrolysis supernatant of excess sludge. To reduce alkali consumption and decrease the pH of the supernatant, two-stage alkaline hydrolysis process (TSAHP) was designed. The results showed that the release efficiencies of PO₄(3-)-P and NH₄(+)-N were 41.96% and 7.78%, respectively, and the pH of the supernatant was below 10.5 under the running conditions with initial pH of 13, volume ratio (sludge dosage/water dosage) of 1.75 in second-stage alkaline hydrolysis reactor, 20 g/L of sludge concentration in first-stage alkaline hydrolysis reactor. The order of parameters influencing MAP reaction was analyzed and the optimized conditions of MAP reaction were predicted through the response surface methodology. The recovery rates of PO₄(3-)-P and NH₄(+)-N were 46.88% and 16.54%, respectively under the optimized conditions of Mg/P of 1.8, pH 9.7 and reaction time of 15 min.

  3. Thermal-pressure-mediated hydrolysis of Reactive Blue 19 dye.

    PubMed

    Siddique, Maria; Farooq, Robina; Khalid, Abda; Farooq, Ather; Mahmood, Qaisar; Farooq, Umar; Raja, Iftikhar Ahmad; Shaukat, Saleem Farooq

    2009-12-30

    The thermal-pressure-mediated hydrolysis rates and the degradation kinetics of environmentally persistent Reactive Blue (RB) 19 dye were studied. The dye decomposition was studied at 40-120 degrees C, pH 2-10, and atmospheric pressure range of 1-2 atm. The intermediates and end products formed during the degradation were identified using gas chromatography/mass spectrometry and a possible degradation pathway of RB 19 was proposed. The stability of the dye in aqueous solution was influenced by changes in pH. At pH 4, half-life was 2247.5 min at 40 degrees C and it reduced to 339.4 min when the temperature was increased to 120 degrees C. Acidic conditions were more conducive to enhance hydrolysis rate than basic ones as the decomposition was optimum at pH 4. The kinetic studies indicated that the rate of hydrolysis apparently followed first order reaction. A linear relationship was observed between hydrolysis rate of RB 19 dye and increasing temperatures and pressures. Overall, 23% dye decomposition occurred in 120 minutes at pH 4, 120 degrees C and pressure of 2 atm. Along with thermal-pressure, a combination of techniques like physico-chemical, biological, enzymatic etc. may be more suitable choice for the effective treatment of RB19 dye.

  4. Radiolysis and Hydrolysis of TRUEX-NPH solvent.

    SciTech Connect

    Simonzadeh, N.; Crabtree, A. M.; Trevorrow, L. E.; Vandegrift, G. F.

    1992-07-01

    The TRUEX solvent extraction process separates transuranic (TRU) elements from aqueous nitrate and chloride solutions. During contact with high-level wastes, which may be highly radioactive and highly acidic, the radiolysis and hydrolysis ofTRUEX-NPH solvent can affect the process not only by destroying the extractant CMPO in the solvent, but also by generating products of CMPO destruction, some of which are powerful extractants at low acidities and can prevent the stripping of Am and Pu from solvent that is to be recycled. To provide an experimental basis from which mathematical expressions of these effects could be derived, samples of solvent were degraded by radiolysis and hydrolysis while in contact with acidic aqueous solutions. Following this treatment, the distribution of americium between degraded solvent and aqueous HNO3 was used as a measure of the extent of degradation. Mathematical expressions were derived to represent the distribution coefficient, DAm, as a function of hydrolysis time and/or radiation dose. Assumptions about the dependence of DAm on CMPO concentration were used to derive expressions for the hydrolysis rate for CMPO and also to calculate values of radiation chemical yield for CMPO radiolysis. Also experimentally investigated were changes in acidity of both the aqueous and organic phases as functions of contact time, the effects of a carbonate wash in removing acidic degradation products that function as extractants at low acidities, and changes in compositions of some of the aqueous and organic phases during contact.

  5. Structural modifications of lignocellulosics by pretreatments to enhance enzymatic hydrolysis

    SciTech Connect

    Gharpuray, M.M.; Lee, Y.F.; Fan, L.T.

    1983-01-01

    In this work an evaluation was made of a wide variety of single and multiple pretreatment methods for enhancing the rate of enzymatic hydrolysis of wheat straw. A multiple pretreatment consisted of a physical pretreatment followed by a chemical pretreatment. The structural features of wheat straw, including the specific surface area, crystallinity index, and lignin content, were measured to understand the mechanism of the enhancement in the hyrolysis rate upon pretreatment. It has been found that, in general, multiple pretreatments were not promising, since the hydrolysis rates rarely exceeded those achieved by single pretreatments. Ball-milling pretreatment was found to be effective in increasing the specific surface area and decreasing the crystallinity index. Treatment with ethylene glycol was highly effective in increasing the specific surface area, in addition to a high degree of delignification. Peracetic acid pretreatment was highly effective in delignifying substrate. Among multiple pretreatments, those involving peracetic acid treatment generally had lower crystallinity indices and lignin content values. The relationship between the hydrolysis rate and the set of structural features indicated that an increase in surface area and a decrease in the crystallinity and lignin content enhance the hydrolysis; the specific surface area is the most influential of the structural features, followed by the lignin content. (Refs. 23).

  6. Integrated system for the destruction of organics by hydrolysis and oxidation with peroxydisulfate

    DOEpatents

    Cooper, John F.; Balazs, G. Bryan; Hsu, Peter; Lewis, Patricia R.; Adamson, Martyn G.

    2000-01-01

    An integrated system for destruction of organic waste comprises a hydrolysis step at moderate temperature and pressure, followed by direct chemical oxidation using peroxydisulfate. This system can be used to quantitatively destroy volatile or water-insoluble halogenated organic solvents, contaminated soils and sludges, and the organic component of mixed waste. The hydrolysis step results in a substantially single phase of less volatile, more water soluble hydrolysis products, thus enabling the oxidation step to proceed rapidly and with minimal loss of organic substrate in the off-gas.

  7. Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment.

    PubMed

    Zhang, Yaobin; Feng, Yinghong; Quan, Xie

    2015-04-01

    Heat or alkali pretreatment is the effective method to improve hydrolysis of waste sludge and then enhance anaerobic sludge digestion. However the pretreatment may inactivate the methanogens in the sludge. In the present work, zero-valent iron (ZVI) was used to enhance the methanogenic activity in anaerobic sludge digester under two methanogens-suppressing conditions, i.e. heat-pretreatment and alkali condition respectively. With the addition of ZVI, the lag time of methane production was shortened, and the methane yield increased by 91.5% compared to the control group. The consumption of VFA was accelerated by ZVI, especially for acetate, indicating that the acetoclastic methanogenesis was enhanced. In the alkali-condition experiment, the hydrogen produced decreased from 27.6 to 18.8 mL when increasing the ZVI dosage from 0 to 10 g/L. Correspondingly, the methane yield increased from 1.9 to 32.2 mL, which meant that the H2-utilizing methanogenes was enriched. These results suggested that the addition of ZVI into anaerobic digestion of sludge after pretreated by the heat or alkali process could efficiently recover the methanogenic activity and increase the methane production and sludge reduction.

  8. Structures of dimeric hydrolysis products of thorium.

    PubMed

    Wilson, Richard E; Skanthakumar, S; Sigmon, Ginger; Burns, Peter C; Soderholm, L

    2007-04-02

    Three unique thorium dimeric compounds have been crystallized from either direct hydrolysis of Th4+(aq)/HCl or titration of Th(OH)4(am) with Th(NO3)4(aq) and their structures determined using single-crystal X-ray diffraction. The compound [Th2(micro2-OH)2(NO3)6(H2O)6]H2O (1) is identical to that identified previously by Johansson. Two additional unreported compounds have been identified, [Th2(micro2-OH)2(NO3)4(H2O)8](NO3)2 (2) and [Th2(micro2-OH)2Cl2(H2O)12]Cl4.2H2O (3). 1 crystallizes in the monoclinic space group P21/c, with a = 6.792(2) A, b = 11.710(4) A, c = 13.778(5) A, and beta = 102.714(5) degrees and 2 crystallizes in the monoclinic space group P21/n, with a = 6.926(5) A, b = 7.207(1) A, c = 21.502(1) A, and beta = 96.380(1) degrees . The chloride-containing dimer, 3, crystallizes in triclinic P, with a = 8.080(2) A, b = 8.880(2) A, c = 9.013(2) A, alpha = 97.41(3) degrees , beta = 91.00(3), and gamma = 116.54(3) degrees . We also present high-energy X-ray scattering data demonstrating the presence of the hydroxo-bridged moiety in solution and discuss our findings in the context of known solid-state structures. The three structures demonstrate 11-, 10-, and 9-coordinate thorium, respectively, and coupled with the scattering experiments provide additional structural and chemical insight into tetravalent actinide hydrolysis.

  9. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  10. Alkali-aggregate reaction in concrete containing high-alkali cement and granite aggregate

    SciTech Connect

    Owsiak, Z

    2004-01-01

    The paper discusses results of the research into the influence of high-alkali Portland cement on granite aggregate. The deformation of the concrete structure occurred after 18 months. The research was carried out by means of a scanning electron microscope equipped with a high-energy dispersive X-ray analyzer that allowed observation of unpolished sections of concrete bars exhibiting the cracking pattern typical of the alkali-silica reaction. Both the microscopic observation and the X-ray elemental analysis confirm the presence of alkali-silica gel and secondary ettringite in the cracks.

  11. Salts of alkali metal anions and process of preparing same

    DOEpatents

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  12. A new polarizable force field for alkali and halide ions

    SciTech Connect

    Kiss, Péter T.; Baranyai, András

    2014-09-21

    We developed transferable potentials for alkali and halide ions which are consistent with our recent model of water [P. T. Kiss and A. Baranyai, J. Chem. Phys. 138, 204507 (2013)]. Following the approach used for the water potential, we applied Gaussian charge distributions, exponential repulsion, and r{sup −6} attraction. One of the two charges of the ions is fixed to the center of the particle, while the other is connected to this charge by a harmonic spring to express polarization. Polarizability is taken from quantum chemical calculations. The repulsion between different species is expressed by the combining rule of Kong [J. Chem. Phys. 59, 2464 (1972)]. Our primary target was the hydration free energy of ions which is correct within the error of calculations. We calculated water-ion clusters up to 6 water molecules, and, as a crosscheck, we determined the density and internal energy of alkali-halide crystals at ambient conditions with acceptable accuracy. The structure of hydrated ions was also discussed.

  13. Acid hydrolysis of cellulose to yield glucose

    DOEpatents

    Tsao, George T.; Ladisch, Michael R.; Bose, Arindam

    1979-01-01

    A process to yield glucose from cellulose through acid hydrolysis. Cellulose is recovered from cellulosic materials, preferably by pretreating the cellulosic materials by dissolving the cellulosic materials in Cadoxen or a chelating metal caustic swelling solvent and then precipitating the cellulose therefrom. Hydrolysis is accomplished using an acid, preferably dilute sulfuric acid, and the glucose is yielded substantially without side products. Lignin may be removed either before or after hydrolysis.

  14. Low temperature hydrolysis for ethanol production

    SciTech Connect

    Garcia, A.; Fischer, J.R.; Iannotti, E.L.

    1982-12-01

    Hydrolysis of corn was compared at two temperatures of 100/sup 0/C and 75/sup 0/C. Starch conversion to dextrose and then ethanol were determined. Yields were 10.69% ethanol in the fermented beer for 100/sup 0/C and 9.89% for 75/sup 0/C. The 75/sup 0/C hydrolysis required about 100 MJ less thermal energy than the 100/sup 0/C hydrolysis. The effects of contamination and respiration were also assessed.

  15. Alkali basalts and enclosed ultramafic xenoliths near Ushuaia, Tierra Del Fuego, Argentina.

    PubMed

    Acevedo, Rogelio Daniel

    2016-01-01

    At the southernmost part of Tierra del Fuego a few outcrops and erratic boulders of alkali basaltic rocks with ultramafic enclaves have been studied. Alkali basalt plugs or pipes hitherto identified are scarce, and host rocks are constituted by slates that belong to Mesozoic deposition. The petrography, texture and composition of the basalt and xenoliths were investigated by petrographic microscope and electron microprobe analysis. Xenocrysts of amphibole and alkali feldspar, phenocrysts of nepheline, olivine, spinel, phlogopite and Fe-Ti minerals (10 %) and a diversity of xenoliths, mainly lherzolitic, pyroxenite and wehrlitic nodules (15 %), but also from metamorphic rocks provenance, are contained in the basalt groundmass (75 %). This finer-grained material is made up of laths or needles of plagioclase, pyroxene, opaque minerals, apatite and glass, with intersertal, hyalopilitic and pilotaxitic. Locally, rock has an even granoblastic texture. Former amygdules are filled by analcite, zeolites, sodalite and calcite. The normative classification, based on nepheline content, conclude that this rock is an alkali basalt. The chemical classification, considering immobile elements as Zr/TiO2 versus Nb/Y indicate an alkali basalt too and plots over the TAS diagram fall in the foidite (Na-rich or nephelinite) and basanite fields. The REE patterns are fractionated (La/Yb primitive mantle normalized is approximately 30). The K-Ar isotopic technique on individual macrocrysts gave ages of 146 ± 5 Ma (amphibole) and 127 ± 4 Ma (alkali feldspar); and K-Ar whole rock datum reported 8.3 ± 0.3 Ma. Nevertheless, fertile samples show geochemical features typical of deep derived material thus, based on the position in the actual tectonic setting, indicate that the basalt is older than its isotopic age.

  16. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    DOEpatents

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  17. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries

    SciTech Connect

    Deng, Zhi; Mo, Yifei; Ong, Shyue Ping

    2016-03-25

    The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that are currently of the most commercial interest.

  18. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries

    DOE PAGES

    Deng, Zhi; Mo, Yifei; Ong, Shyue Ping

    2016-03-25

    The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that aremore » currently of the most commercial interest.« less

  19. Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological pretreatment of lignocellulosic biomass by white-rot fungus can represent a low-cost and eco-friendly alternative to harsh physical, chemical or physico-chemical pretreatment methods to facilitate enzymatic hydrolysis. However, fungal pretreatment can cause carbohydrate loss and it is, th...

  20. Acid Hydrolysis of Trioxalatocobaltate (III) Ion

    ERIC Educational Resources Information Center

    Wiggans, P. W.

    1975-01-01

    Describes an investigation involving acid hydrolysis and using both volumetric and kinetic techniques. Presents examples of the determination of the rate constant and its variation with temperature. (GS)

  1. Ingestion of caustic alkali farm products.

    PubMed

    Neidich, G

    1993-01-01

    Since the Poison Prevention Packaging Act took effect, the number of ingestions of caustic alkali from household products has been significantly reduced. Commercial caustic alkalis used on farms, however, were not included in this legislation. Fourteen children over a 5 year period were seen after ingestion of commercial caustic alkalis used on farms. Seven of the children had ingested liquid pipeline cleaners and seven had ingested solid agents used for a variety of reasons. Six of seven children ingesting liquid agents did so from nonoriginal containers into which the caustic had been transferred for convenience. All seven children ingesting solid agents did so from the original container. Eight of the 14 children were found to have second-degree or worse esophageal involvement. Both solid and liquid caustic agents used commercially on farms can cause significant morbidity. Development of a child-resistant container for daily transfer of liquid pipeline agents could be helpful in preventing injuries from liquid pipeline cleaners. Pediatric gastroenterologists as well as primary care physicians in rural areas should be familiar with this type of injury and should take an active role in instructing parents of children living on farms to prevent such injuries. Extension of the Poison Prevention Packaging Act to caustic alkalis used on farms needs to be considered.

  2. The Additive Coloration of Alkali Halides

    ERIC Educational Resources Information Center

    Jirgal, G. H.; and others

    1969-01-01

    Describes the construction and use of an inexpensive, vacuum furnace designed to produce F-centers in alkali halide crystals by additive coloration. The method described avoids corrosion or contamination during the coloration process. Examination of the resultant crystals is discussed and several experiments using additively colored crystals are…

  3. Cohesive Energy of the Alkali Metals.

    ERIC Educational Resources Information Center

    Poole, R. T.

    1980-01-01

    Describes a method, considered appropriate for presentation to undergraduate students in materials science and related courses, for the calculation of cohesive energies of the alkali metals. Uses a description based on the free electron model and gives results to within 0.1 eV of the experimental values. (Author/GS)

  4. Terahertz radiation in alkali vapor plasmas

    SciTech Connect

    Sun, Xuan; Zhang, X.-C.

    2014-05-12

    By taking advantage of low ionization potentials of alkali atoms, we demonstrate terahertz wave generation from cesium and rubidium vapor plasmas with an amplitude nearly one order of magnitude larger than that from nitrogen gas at low pressure (0.02–0.5 Torr). The observed phenomena are explained by the numerical modeling based upon electron tunneling ionization.

  5. A novel chemical/biological combined technique for N, N-dimethylformamide wastewater treatment.

    PubMed

    Chen, Yingwen; Li, Bing; Qiu, Yu; Xu, Xiaoliang; Shen, Shubao

    2016-01-01

    N, N-Dimethylformamide (DMF) is a widely used organic solvent whose wastewater is difficult to biodegrade directly. In this paper, a novel chemical/biological combined technique consisting of alkaline hydrolysis stripping, activated sludge and a bio-trickling filter (BTF) was developed for DMF wastewater treatment. The main pollutant, DMF, was decomposed to dimethylamine and formate under alkaline conditions, and the dimethylamine was stripped out by the BTF. The pretreated wastewater was then degraded in an activated sludge process. The operation performances of alkaline hydrolysis, activated sludge and BTF processes were investigated separately. At the optimal conditions of an alkali dosage of 40 g/L, an air/liquid ratio of 3000:1 and 5 h in the air-stripping process, the removal of total organic carbon and DMF was found to be 58% and 96%, respectively. A chemical oxygen demand removal efficiency of 80-90% was obtained in the activated sludge process. The performance of BTF was excellent with a dimethylamine removal efficiency close to 90% even at a high loading of 16 g/d.

  6. Fundamental Reaction Mechanism for Cocaine Hydrolysis in Human Butyrylcholinesterase

    PubMed Central

    Zhan, Chang-Guo; Zheng, Fang; Landry, Donald W.

    2010-01-01

    Butyrylcholinesterase (BChE)-cocaine binding and the fundamental pathway for BChE-catalyzed hydrolysis of cocaine have been studied by molecular modelling, molecular dynamics (MD) simulations, and ab initio calculations. Modelling and simulations indicate that the structures of the prereactive BChE-substrate complexes for (−)-cocaine and (+)-cocaine are all similar to that of the corresponding prereactive BChE-butyrylcholine (BCh) complex. The overall binding of BChE with (−)-cocaine and (+)-cocaine is also similar to that proposed with butyrylthiocholine and succinyldithiocholine, i.e. (−)-cocaine/(+)-cocaine first slides down the substrate-binding gorge to bind to Trp-82 and stands vertically in the gorge between Asp-70 and Trp-82 (non-prereactive complex) and then rotates to a position in the catalytic site within a favorable distance for nucleophilic attack and hydrolysis by Ser-198 (prereactive complex). In the prereactive complex, cocaine lies horizontally at the bottom of the gorge. The fundamental catalytic hydrolysis pathway, consisting of acylation and deacylation stages similar to those for ester hydrolysis by other serine hydrolases, was proposed based on the simulated prereactive complex and confirmed theoretically by ab initio reaction coordinate calculations. Both the acylation and deacylation follow a double-proton-transfer mechanism. The calculated energetic results show that within the chemical reaction process the highest energy barrier and Gibbs free energy barrier are all associated with the first step of deacylation. The calculated ratio of the rate constant (kcat) for the catalytic hydrolysis to that (k0) for the spontaneous hydrolysis is ~ 9.0 × 107. The estimated kcat/k0 value of ~ 9.0 × 107 is in excellent agreement with the experimentally-derived kcat/k0 value of ~ 7.2 × 107 for (+)-cocaine, whereas it is ~ 2000 times larger than the experimentally-derived kcat/k0 value of ~ 4.4 × 104 for (−)-cocaine. All of the results

  7. Alkaline phosphatase revisited: hydrolysis of alkyl phosphates.

    PubMed

    O'Brien, Patrick J; Herschlag, Daniel

    2002-03-05

    Escherichia coli alkaline phosphatase (AP) is the prototypical two metal ion catalyst with two divalent zinc ions bound approximately 4 A apart in the active site. Studies spanning half a century have elucidated many structural and mechanistic features of this enzyme, rendering it an attractive model for investigating the potent catalytic power of bimetallic centers. Unfortunately, fundamental mechanistic features have been obscured by limitations with the standard assays. These assays generate concentrations of inorganic phosphate (P(i)) in excess of its inhibition constant (K(i) approximately 1 muM). This tight binding by P(i) has affected the majority of published kinetic constants. Furthermore, binding limits k(cat)/K(m) for reaction of p-nitrophenyl phosphate, the most commonly employed substrate. We describe a sensitive (32)P-based assay for hydrolysis of alkyl phosphates that avoids the complication of product inhibition. We have revisited basic mechanistic features of AP with these alkyl phosphate substrates. The results suggest that the chemical step for phosphorylation of the enzyme limits k(cat)/K(m). The pH-rate profile and additional results suggest that the serine nucleophile is active in its anionic form and has a pK(a) of < or = 5.5 in the free enzyme. An inactivating pK(a) of 8.0 is observed for binding of both substrates and inhibitors, and we suggest that this corresponds to ionization of a zinc-coordinated water molecule. Counter to previous suggestions, inorganic phosphate dianion appears to bind to the highly charged AP active site at least as strongly as the trianion. The dependence of k(cat)/K(m) on the pK(a) of the leaving group follows a Brønsted correlation with a slope of beta(lg) = -0.85 +/- 0.1, differing substantially from the previously reported value of -0.2 obtained from data with a less sensitive assay. This steep leaving group dependence is consistent with a largely dissociative transition state for AP-catalyzed hydrolysis of

  8. Calcium-Alkali Syndrome in the Modern Era

    PubMed Central

    Patel, Ami M.; Adeseun, Gbemisola A.; Goldfarb, Stanley

    2013-01-01

    The ingestion of calcium, along with alkali, results in a well-described triad of hypercalcemia, metabolic alkalosis, and renal insufficiency. Over time, the epidemiology and root cause of the syndrome have shifted, such that the disorder, originally called the milk-alkali syndrome, is now better described as the calcium-alkali syndrome. The calcium-alkali syndrome is an important cause of morbidity that may be on the rise, an unintended consequence of shifts in calcium and vitamin D intake in segments of the population. We review the pathophysiology of the calcium-alkali syndrome. PMID:24288027

  9. Hydrolysis kinetics of tulip tree xylan in hot compressed water.

    PubMed

    Yoon, Junho; Lee, Hun Wook; Sim, Seungjae; Myint, Aye Aye; Park, Hee Jeong; Lee, Youn-Woo

    2016-08-01

    Lignocellulosic biomass, a promising renewable resource, can be converted into numerous valuable chemicals post enzymatic saccharification. However, the efficacy of enzymatic saccharification of lignocellulosic biomass is low; therefore, pretreatment is necessary to improve the efficiency. Here, a kinetic analysis was carried out on xylan hydrolysis, after hot compressed water pretreatment of the lignocellulosic biomass conducted at 180-220°C for 5-30min, and on subsequent xylooligosaccharide hydrolysis. The weight ratio of fast-reacting xylan to slow-reacting xylan was 5.25 in tulip tree. Our kinetic results were applied to three different reaction systems to improve the pretreatment efficiency. We found that semi-continuous reactor is promising. Lower reaction temperatures and shorter space times in semi-continuous reactor are recommended for improving xylan conversion and xylooligosaccharide yield. In the theoretical calculation, 95% of xylooligosaccharide yield and xylan conversion were achieved simultaneously with high selectivity (desired product/undesired product) of 100 or more.

  10. Oleaginous fungal lipid fermentation on combined acid- and alkali-pretreated corn stover hydrolysate for advanced biofuel production.

    PubMed

    Ruan, Zhenhua; Zanotti, Michael; Archer, Steven; Liao, Wei; Liu, Yan

    2014-07-01

    A combined hydrolysis process, which first mixed dilute acid- and alkali-pretreated corn stover at a 1:1 (w/w) ratio, directly followed by enzymatic saccharification without pH adjustment, has been developed in this study in order to minimize the need of neutralization, detoxification, and washing during the process of lignocellulosic biofuel production. The oleaginous fungus Mortierella isabellina was selected and applied to the combined hydrolysate as well as a synthetic medium to compare fungal lipid accumulation and biodiesel production in both shake flask and 7.5L fermentor. Fungal cultivation on combined hydrolysate exhibited comparable cell mass and lipid yield with those from synthetic medium, indicating that the integration of combined hydrolysis with oleaginous fungal lipid fermentation has great potential to improve performance of advanced lignocellulosic biofuel production.

  11. Effect of Treatment pH on the End Products of the Alkaline Hydrolysis of TNT and RDX

    DTIC Science & Technology

    2007-06-01

    Comparison of final TOC of TNT alkaline hydrolysis solutions at three pHs........................19 Table 7. Results of ion chromatographic analysis ...25 Table 12. Results of ion chromatographic analysis of unlabeled RDX solutions following extended alkaline hydrolysis at three...8330 explo- sives analysis TOC IC Lime Control ERDC/EL TR-07-4 7 3 Materials and Methods Chemicals Chemicals used in this study included

  12. Alkali metal recovery from carbonaceous material conversion process

    DOEpatents

    Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  13. Measurement of alkali vapor in PFBC flue gas and its control by a fixed granular bed of activated bauxite

    SciTech Connect

    Lee, S.H.D.; Myles, K.M.

    1985-01-01

    A fixed granular-bed sorber, with regenerable activated bauxite as the sorbent, for the control of the alkali vapor in the flue gas produced during pressurized fluidized-bed combustion (PFBC) of coal is being developed. In a gas stream closely simulating the actual PFBC flue gas, activated bauxite is shown to capture NaCl vapor by (1) chemical fixation of the vapor with the intrinsic clay minerals, probably to form thermally stable, water-insoluble sodium aluminosilicates and (2) chemical conversion of NaCl vapor into a condensed-phase sodium sulfate, which has a much lower vapor pressure than does NaCl. The latter predominates the capture process, and the captured sodium sulfate can be easily removed by simple water-leaching to restore the porosity of activated bauxite for reuse. A high-temperature (less than or equal to 900/sup 0/C) and high-pressure (less than or equal to 10 atm) laboratory-scale, fixed, granular-bed alkali sorber has been operated with the Argonne National Laboratory PFBC combustor to (1) measure the alkali vapor concentration in the PFBC flue gas on a real-time, on-line basis, and (2) demonstrate the alkali sorber for the control of alkali vapor from an actual PFBC flue gas. The alkali (Na + K) vapor concentration in particulate filtered hot flue gas was measured to be <10 ppbW with the Ames analyzer. The same measurement with the APST was higher between 90 to 170 ppbW. Therefore, the possibility of sink for sodium vapor in the PFBC/alkali sorber system must be considered. 32 refs.

  14. Structure and energetics of helium films on alkali substrates

    NASA Astrophysics Data System (ADS)

    Boninsegni, Massimo; Szybisz, Leszek

    2004-07-01

    Low-temperature adsorption of He4 films on Alkali metal substrates is investigated theoretically by means of ground-state quantum Monte Carlo simulations. The most accurate potentials currently available are utilized to model the interaction of He4 atoms with the substrate. Continuous growth of film thickness as a function of chemical potential is observed on Li, Na, and K substrates. A superfluid monolayer forms on a Li substrate; on Na and K, thermodynamically stable films are a few layers thick. The uncertainties of the calculation and in the potentials, preclude a definitive conclusion on the existence of a stable He4 film on Rb. A comparison of the results of this calculation with those obtained using the Orsay-Trento density functional shows broad quantitative agreement.

  15. The behaviour of alkali metals in biomass conversion systems

    SciTech Connect

    Hald, P.

    1995-12-31

    Alkali metals present in biomass contribute to problems as agglomeration, deposition and corrosion. In order to reduce the problems. It is of interest to describe the behavior of alkali metals in the conversion systems. Useful tools for die description are equilibrium calculations combined with measurements of gaseous alkali metal and analyses of solid materials. A comprehensive equilibrium study has been conducted and the results organized in tables, showing which alkali metal components can be present, dependent on the temperature and the ratios alkali metal to sulphur and alkali metal to chlorine. The tables presented can be used as a catalogue, giving easy access to equilibrium results. A sampling method for die measurement of gaseous alkali metal is described and the sampling efficiency is given. The developed tools are demonstrated for a straw gasifier and a fluidized bed combustor using a coal/straw mixture as a fuel.

  16. Microbial diversity of cellulose hydrolysis.

    PubMed

    Wilson, David B

    2011-06-01

    Enzymatic hydrolysis of cellulose by microorganisms is a key step in the global carbon cycle. Despite its abundance only a small percentage of microorganisms can degrade cellulose, probably because it is present in recalcitrant cell walls. There are at least five distinct mechanisms used by different microorganisms to degrade cellulose all of which involve cellulases. Cellulolytic organisms and cellulases are extremely diverse possibly because their natural substrates, plant cell walls, are very diverse. At this time the microbial ecology of cellulose degradation in any environment is still not clearly understood even though there is a great deal of information available about the bovine rumen. Two major problems that limit our understanding of this area are the vast diversity of organisms present in most cellulose degrading environments and the inability to culture most of them.

  17. Measurement of alkali vapors in PFBC exhaust. Final report

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1994-01-01

    Under the auspices of the US Department of Energy through Morgantown Energy Technology Center, laboratory-scale studies were conducted to develop a regenerable activated-bauxite adsorbent (RABA) for use in an in situ regenerable activated-bauxite sorber alkali monitor (RABSAM). The RABSAM is a sampling probe that does not require a high-temperature/high-pressure sampling line for reliable measurement of alkali vapor in the exhaust of pressurized fluidized-bed combustor (PFBC). The RABA can be generated from the commercial grade activated bauxite by deactivating (or reacting) clay impurities in activated bauxite with NaCl or LiCl vapor. Under the atmospheric deactivation process, however, only a partial deactivation of clay impurities is achieved, probably due to limited access of NaCl or LiCl vapor into micropores of activated bauxite. Because LiCl vapor chemically reacts with alumina substrate of activated bauxite, resulting in pore enlargement, loss of pore surface area, and a decrease in the subsequent NaCl-vapor sorption capacity of the RABA, NaCl is a more suitable deactivation agent than LiCl vapor. In a simulated PFBC exhaust environment, the RABA behaves similarly to fresh activated bauxite in capturing NaCl vapor from the simulated PFBC exhaust. Based on results of this work, we recommend generating chemically and thermally stable RABA by deactivating clay impurities of commercial grade activated bauxite with NaCl or KCl vapor under simulated PFBC exhaust environment, that is, high-temperature, high-pressure, and high concentrations of NaCl or KCl vapor in simulated PFBC exhaust compositions.

  18. Rate of Hydrolysis of Tertiary Halogeno Alkanes

    ERIC Educational Resources Information Center

    Pritchard, D. R.

    1978-01-01

    Describes an experiment to measure the relative rate of hydrolysis of the 2-x-2 methylpropanes, where x is bromo, chloro or iodo. The results are plotted on a graph from which the relative rate of hydrolysis can be deduced. (Author/GA)

  19. Microwave Pretreatment For Hydrolysis Of Cellulose

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; George, Clifford E.; Lightsey, George R.

    1993-01-01

    Microwave pretreatment enhances enzymatic hydrolysis of cellulosic wastes into soluble saccharides used as feedstocks for foods, fuels, and other products. Low consumption of energy, high yield, and low risk of proposed hydrolysis process incorporating microwave pretreatment makes process viable alternative to composting.

  20. Synergistic effect between defect sites and functional groups on the hydrolysis of cellulose over activated carbon.

    PubMed

    Foo, Guo Shiou; Sievers, Carsten

    2015-02-01

    The chemical oxidation of activated carbon by H2 O2 and H2 SO4 is investigated, structural and chemical modifications are characterized, and the materials are used as catalysts for the hydrolysis of cellulose. Treatment with H2 O2 enlarges the pore size and imparts functional groups such as phenols, lactones, and carboxylic acids. H2 SO4 treatment targets the edges of carbon sheets primarily, and this effect is more pronounced with a higher temperature. Adsorption isotherms demonstrate that the adsorption of oligomers on functionalized carbon is dominated by van der Waals forces. The materials treated chemically are active for the hydrolysis of cellulose despite the relative weakness of most of their acid sites. It is proposed that a synergistic effect between defect sites and functional groups enhances the activity by inducing a conformational change in the glucan chains if they are adsorbed at defect sites. This activates the glycosidic bonds for hydrolysis by in-plane functional groups.

  1. Impurity detection in alkali-metal vapor cells via nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Patton, B.; Ishikawa, K.

    2016-11-01

    We use nuclear magnetic resonance spectroscopy of alkali metals sealed in glass vapor cells to perform in situ identification of chemical contaminants. The alkali Knight shift varies with the concentration of the impurity, which in turn varies with temperature as the alloy composition changes along the liquidus curve. Intentional addition of a known impurity validates this approach and reveals that sodium is often an intrinsic contaminant in cells filled with distilled, high-purity rubidium or cesium. Measurements of the Knight shift of the binary Rb-Na alloy confirm prior measurements of the shift's linear dependence on Na concentration, but similar measurements for the Cs-Na system demonstrate an unexpected nonlinear dependence of the Knight shift on the molar ratio. This non-destructive approach allows monitoring and quantification of ongoing chemical processes within the kind of vapor cells which form the basis for precise sensors and atomic frequency standards.

  2. Invited review: Mechanisms of GTP hydrolysis and conformational transitions in the dynamin superfamily

    PubMed Central

    2016-01-01

    ABSTRACT Dynamin superfamily proteins are multidomain mechano‐chemical GTPases which are implicated in nucleotide‐dependent membrane remodeling events. A prominent feature of these proteins is their assembly‐ stimulated mechanism of GTP hydrolysis. The molecular basis for this reaction has been initially clarified for the dynamin‐related guanylate binding protein 1 (GBP1) and involves the transient dimerization of the GTPase domains in a parallel head‐to‐head fashion. A catalytic arginine finger from the phosphate binding (P‐) loop is repositioned toward the nucleotide of the same molecule to stabilize the transition state of GTP hydrolysis. Dynamin uses a related dimerization‐dependent mechanism, but instead of the catalytic arginine, a monovalent cation is involved in catalysis. Still another variation of the GTP hydrolysis mechanism has been revealed for the dynamin‐like Irga6 which bears a glycine at the corresponding position in the P‐loop. Here, we highlight conserved and divergent features of GTP hydrolysis in dynamin superfamily proteins and show how nucleotide binding and hydrolysis are converted into mechano‐chemical movements. We also describe models how the energy of GTP hydrolysis can be harnessed for diverse membrane remodeling events, such as membrane fission or fusion. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 580–593, 2016. PMID:27062152

  3. Invited review: Mechanisms of GTP hydrolysis and conformational transitions in the dynamin superfamily.

    PubMed

    Daumke, Oliver; Praefcke, Gerrit J K

    2016-08-01

    Dynamin superfamily proteins are multidomain mechano-chemical GTPases which are implicated in nucleotide-dependent membrane remodeling events. A prominent feature of these proteins is their assembly- stimulated mechanism of GTP hydrolysis. The molecular basis for this reaction has been initially clarified for the dynamin-related guanylate binding protein 1 (GBP1) and involves the transient dimerization of the GTPase domains in a parallel head-to-head fashion. A catalytic arginine finger from the phosphate binding (P-) loop is repositioned toward the nucleotide of the same molecule to stabilize the transition state of GTP hydrolysis. Dynamin uses a related dimerization-dependent mechanism, but instead of the catalytic arginine, a monovalent cation is involved in catalysis. Still another variation of the GTP hydrolysis mechanism has been revealed for the dynamin-like Irga6 which bears a glycine at the corresponding position in the P-loop. Here, we highlight conserved and divergent features of GTP hydrolysis in dynamin superfamily proteins and show how nucleotide binding and hydrolysis are converted into mechano-chemical movements. We also describe models how the energy of GTP hydrolysis can be harnessed for diverse membrane remodeling events, such as membrane fission or fusion. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 580-593, 2016.

  4. Oxidative processes during enzymatic hydrolysis of cod protein and their influence on antioxidant and immunomodulating ability.

    PubMed

    Halldorsdottir, Sigrun M; Sveinsdottir, Holmfridur; Freysdottir, Jona; Kristinsson, Hordur G

    2014-01-01

    Fish protein hydrolysates (FPH) have many desirable properties, however heating and shifts in pH can cause oxidation during enzymatic hydrolysis. The objective was to investigate oxidative processes during enzymatic hydrolysis of fish protein and the impact of oxidation on the antioxidant and immunomodulating ability of FPH. Protease P "Amano" 6 was used to hydrolyze cod protein in the presence and absence of pro-oxidants at pH 8 and 36°C to achieve 20% degree of hydrolysis. Results from thiobarbituric acid reactive substances (TBARS) and sensory analysis indicate that oxidation can develop rapidly during hydrolysis. A cellular antioxidant assay using a HepG2 cell model indicated a negative impact of oxidation products on antioxidant properties of the FPH while results obtained in chemical assays showed a negligible impact. Results from a dendritic cell model indicating that oxidation products may affect anti-inflammatory activity in the body. This study provides important information regarding bioactive FPH.

  5. Comparison of multi-enzyme and thermophilic bacteria on the hydrolysis of mariculture organic waste (MOW).

    PubMed

    Guo, Liang; Sun, Mei; Zong, Yan; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2016-01-01

    Mariculture organic waste (MOW) is rich in organic matter, which is a potential energy resource for anaerobic digestion. In order to enhance the anaerobic fermentation, the MOW was hydrolyzed by multi-enzyme and thermophilic bacteria. It was advantageous for soluble chemical oxygen demand (SCOD) release at MOW concentrations of 6 and 10 g/L with multi-enzyme and thermophilic bacteria pretreatments. For multi-enzyme, the hydrolysis was not obvious at substrate concentrations of 1 and 3 g/L, and the protein and carbohydrate increased with hydrolysis time at substrate concentrations of 6 and 10 g/L. For thermophilic bacteria, the carbohydrate was first released at 2-4 h and then consumed, and the protein increased with hydrolysis time. The optimal enzyme hydrolysis for MOW was determined by measuring the changes of SCOD, protein, carbohydrate, ammonia and total phosphorus, and comparing with acid and alkaline pretreatments.

  6. Comparison of aqueous ammonia and dilute acid pretreatment of bamboo fractions: Structure properties and enzymatic hydrolysis.

    PubMed

    Xin, Donglin; Yang, Zhong; Liu, Feng; Xu, Xueru; Zhang, Junhua

    2015-01-01

    The effect of two pretreatments methods, aqueous ammonia (SAA) and dilute acid (DA), on the chemical compositions, cellulose crystallinity, morphologic change, and enzymatic hydrolysis of bamboo fractions (bamboo yellow, timber, green, and knot) was compared. Bamboo fractions with SAA pretreatment had better hydrolysability than those with DA pretreatment. High crystallinity index resulted in low hydrolysis yield in the conversion of SAA pretreated bamboo fractions, not DA pretreated fractions. The increase of cellulase loading had modestly positive effect in the hydrolysis of both SAA and DA pretreated bamboo fractions, while supplement of xylanase significantly increased the hydrolysis of the pretreated bamboo fractions, especially after SAA pretreatment. The results indicated that SAA pretreatment was more effective than DA pretreatment in conversion of bamboo fractions, and supplementation of xylanase was necessary in effective conversion of the SAA pretreated fractions into fermentable sugars.

  7. Isolation and characterization of nicotiflorin obtained by enzymatic hydrolysis of two precursors in tea seed extract.

    PubMed

    Lee, Hyang-Bok; Kim, Eun-Ki; Park, Sang-Jae; Bang, Sang-Gu; Kim, Tae Gil; Chung, Dae-Won

    2010-04-28

    Two flavonol triglycosides, camelliaside A (CamA) and camelliaside B (CamB), of tea seed extract (TSE) were subjected to enzymatic hydrolysis. Among five kinds of glycosidases investigated, beta-galactosidase (Gal) induced selective hydrolysis of CamA. On the other hand, pectinase (Pec) and cellulase (Cel) induced hydrolysis of CamB. For Gal and Pec, only kaempferol diglycoside (nicotiflorin, NF) was produced; on the other hand, significant amounts of kaempferol monoglycoside (astragalin, AS) and kaempferol (KR) were also detected for Cel. The combination of the use of Gal and Pec in the enzymatic hydrolysis of TSE afforded NF with high specificity. Crude NF with 22% purity was recovered from the enzymatic reaction mixture by extraction with organic solvent, and pure NF with >95% purity was obtained by crystallized in water. The chemical structure of NF was confirmed by (1)H and (13)C NMR analyses.

  8. Protonation, Hydrolysis, and Condensation of Mono- and Trifunctional Silanes at the Air/Water Interface

    PubMed Central

    Britt, David W.; Hlady, Vladimir

    2012-01-01

    The protonation, hydrolysis, and condensation kinetics of octadecyldimethylmethoxysilane (OMMS) and octadecyltrimethoxysilane (OTMS) at the air/water interface were investigated using a monolayer trough. OTMS chemical condensation within physically condensed phases was observed in transferred monolayers using fluorescence microscopy. Molecular area increases and decreases attributed to protonation and hydrolysis, respectively, of silane methoxy groups were measured by a surface balance. These area changes at constant surface pressure suggested a stepwise protonation and hydrolysis of the three OTMS methoxy groups. In contrast, only a single protonation and hydrolysis event was observed for monofunctional OMMS. The influences of monolayer spreading time, silane packing density, and subphase pH on the reaction kinetics are presented. PMID:25147424

  9. Alkali-Activated Aluminium-Silicate Composites as Insulation Materials for Industrial Application

    NASA Astrophysics Data System (ADS)

    Dembovska, L.; Bajare, D.; Pundiene, I.; Bumanis, G.

    2015-11-01

    The article reports on the study of thermal stability of alkali-activated aluminium- silicate composites (ASC) at temperature 800-1100°C. ASC were prepared by using calcined kaolinite clay, aluminium scrap recycling waste, lead-silicate glass waste and quartz sand. As alkali activator, commercial sodium silicate solution modified with an addition of sodium hydroxide was used. The obtained alkali activation solution had silica modulus Ms=1.67. Components of aluminium scrap recycling waste (aluminium nitride (AlN) and iron sulphite (FeSO3)) react in the alkali media and create gases - ammonia and sulphur dioxide, which provide the porous structure of the material [1]. Changes in the chemical composition of ASC during heating were identified and quantitatively analysed by using DTA/TG, dimension changes during the heating process were determined by using HTOM, pore microstructure was examined by SEM, and mineralogical composition of ASC was determined by XRD. The density of ASC was measured in accordance with EN 1097-7. ASC with density around 560 kg/m3 and heat resistance up to 1100°C with shrinkage less than 5% were obtained. The intended use of this material is the application as an insulation material for industrial purposes at elevated temperatures.

  10. Involvement of NADPH oxidases in alkali burn-induced corneal injury.

    PubMed

    Gu, Xue-Jun; Liu, Xian; Chen, Ying-Ying; Zhao, Yao; Xu, Man; Han, Xiao-Jian; Liu, Qiu-Ping; Yi, Jing-Lin; Li, Jing-Ming

    2016-07-01

    Chemical burns are a major cause of corneal injury. Oxidative stress, inflammatory responses and neovascularization after the chemical burn aggravate corneal damage, and lead to loss of vision. Although NADPH oxidases (Noxs) play a crucial role in the production of reactive oxygen species (ROS), the role of Noxs in chemical burn-induced corneal injury remains to be elucidated. In the present study, the transcription and expression of Noxs in corneas were examined by RT-qPCR, western blot analysis and immunofluorescence staining. It was found that alkali burns markedly upregulated the transcription and expression of Nox2 and Nox4 in human or mouse corneas. The inhibition of Noxs by diphenyleneiodonium (DPI) or apocynin (Apo) effectively attenuated alkali burn-induced ROS production and decreased 3-nitrotyrosine (3-NT) protein levels in the corneas. In addition, Noxs/CD11b double‑immunofluorescence staining indicated that Nox2 and Nox4 were partially co-localized with CD11b. DPI or Apo prevented the infiltration of CD11b-positive inflammatory cells, and inhibited the transcription of inflammatory cytokines following alkali burn-induced corneal injury. In our mouse model of alkali burn-induced corneal injury, corneal neovascularization (CNV) occurred on day 3, and it affected 50% of the whole area of the cornea on day 7, and on day 14, CNV coverage of the cornea reached maximum levels. DPI or Apo effectively attenuated alkali burn‑induced CNV and decreased the mRNA levels of angiogenic factors, including vascular endothelial growth factor (VEGF), VEGF receptors and matrix metalloproteinases (MMPs). Taken together, our data indicate that Noxs play a role in alkali burn-induced corneal injury by regulating oxidative stress, inflammatory responses and CNV, and we thus suggest that Noxs are a potential therapeutic target in the future treatment of chemical-induced corneal injury.

  11. Mitigation of Cellulose Recalcitrance to Enzymatic Hydrolysis by Ionic Liquid Pretreatment

    NASA Astrophysics Data System (ADS)

    Dadi, Anantharam P.; Schall, Constance A.; Varanasi, Sasidhar

    Efficient hydrolysis of cellulose-to-glucose is critically important in producing fuels and chemicals from renewable feedstocks. Cellulose hydrolysis in aqueous media suffers from slow reaction rates because cellulose is a water-insoluble crystalline biopolymer. The high-crystallinity of cellulose fibrils renders the internal surface of cellulose inaccesible to the hydrolyzing enzymes (cellulases) as well as water. Pretreatment methods, which increase the surface area accessible to water and cellulases are vital to improving the hydrolysis kinetics and conversion of cellulose to glucose. In a novel technique, the microcrystalline cellulose was first subjected to an ionic liquid (IL) treatment and then recovered as essentially amorphous or as a mixture of amorphous and partially crystalline cellulose by rapidly quenching the solution with an antisolvent. Because of their extremely low-volatility, ILs are expected to have minimal environmental impact. Two different ILs, 1-n-butyl-3-methylimidazolium chloride (BMIMCI) and 1-allyl-3-methylimidazolium chloride (AMIMC1) were investigated. Hydrolysis kinetics of the IL-treated cellulose is significantly enhanced. With appropriate selection of IL treatment conditions and enzymes, the intial hydrolysis rates for IL-treated cellulose were up to 90 times greater than those of untreated cellulose. We infer that this drastic improvement in the "overall hydrolysis rates" with IL-treated cellulose is mainly because of a significant enhancement in the kinetics of the "primary hydrolysis step" (conversion of solid cellulose to soluble oligomers), which is the rate-limiting step for untreated cellulose. Thus, with IL-treated cellulose, primary hydrolysis rates increase and become comparable with the rates of inherently faster "secondary hydrolysis" (conversion of soluble oligomers to glucose).

  12. Feed Preparation for Source of Alkali Melt Rate Tests

    SciTech Connect

    Stone, M. E.; Lambert, D. P.

    2005-02-26

    The purpose of the Source of Alkali testing was to prepare feed for melt rate testing in order to determine the maximum melt-rate for a series of batches where the alkali was increased from 0% Na{sub 2}O in the frit (low washed sludge) to 16% Na{sub 2}O in the frit (highly washed sludge). This document summarizes the feed preparation for the Source of Alkali melt rate testing. The Source of Alkali melt rate results will be issued in a separate report. Five batches of Sludge Receipt and Adjustment Tank (SRAT) product and four batches of Slurry Mix Evaporator (SME) product were produced to support Source of Alkali (SOA) melt rate testing. Sludge Batch 3 (SB3) simulant and frit 418 were used as targets for the 8% Na{sub 2}O baseline run. For the other four cases (0% Na{sub 2}O, 4% Na{sub 2}O, 12% Na{sub 2}O, and 16% Na{sub 2}O in frit), special sludge and frit preparations were necessary. The sludge preparations mimicked washing of the SB3 baseline composition, while frit adjustments consisted of increasing or decreasing Na and then re-normalizing the remaining frit components. For all batches, the target glass compositions were identical. The five SRAT products were prepared for testing in the dry fed melt-rate furnace and the four SME products were prepared for the Slurry-fed Melt-Rate Furnace (SMRF). At the same time, the impacts of washing on a baseline composition from a Chemical Process Cell (CPC) perspective could also be investigated. Five process simulations (0% Na{sub 2}O in frit, 4% Na{sub 2}O in frit, 8% Na{sub 2}O in frit or baseline, 12% Na{sub 2}O in frit, and 16% Na{sub 2}O in frit) were completed in three identical 4-L apparatus to produce the five SRAT products. The SRAT products were later dried and combined with the complementary frits to produce identical glass compositions. All five batches were produced with identical processing steps, including off-gas measurement using online gas chromatographs. Two slurry-fed melter feed batches, a 4% Na

  13. Removal of Retired Alkali Metal Test Systems

    SciTech Connect

    Brehm, W. F.; Church, W. R.; Biglin, J. W.

    2003-02-26

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  14. Transcriptome Analysis of Alkali Shock and Alkali Adaptation in Listeria monocytogenes 10403S

    PubMed Central

    Giotis, Efstathios S.; Muthaiyan, Arunachalam; Natesan, Senthil; Wilkinson, Brian J.; Blair, Ian S.

    2010-01-01

    Abstract Alkali stress is an important means of inactivating undesirable pathogens in a wide range of situations. Unfortunately, Listeria monocytogenes can launch an alkaline tolerance response, significantly increasing persistence of the pathogen in such environments. This study compared transcriptome patterns of alkali and nonalkali-stressed L. monocytogenes 10403S cells, to elucidate the mechanisms by which Listeria adapts and/or grows during short- or long-term alkali stress. Transcription profiles associated with alkali shock (AS) were obtained by DNA microarray analysis of midexponential cells suspended in pH 9 media for 15, 30, or 60 min. Transcription profiles associated with alkali adaptation (AA) were obtained similarly from cells grown to midexponential phase at pH 9. Comparison of AS and AA transcription profiles with control cell profiles identified a high number of differentially regulated open-reading frames in all tested conditions. Rapid (15 min) changes in expression included upregulation of genes encoding for multiple metabolic pathways (including those associated with Na+/H+ antiporters), ATP-binding cassette transporters of functional compatible solutes, motility, and virulence-associated genes as well as the σB controlled stress resistance network. Slower (30 min and more) responses to AS and adaptation during growth in alkaline conditions (AA) involved a different pattern of changes in mRNA concentrations, and genes involved in proton export. PMID:20677981

  15. Alkali metal protective garment and composite material

    DOEpatents

    Ballif, III, John L.; Yuan, Wei W.

    1980-01-01

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  16. Alkali Metal Heat Pipe Life Issues

    SciTech Connect

    Reid, Robert S.

    2004-07-01

    One approach to fission power system design uses alkali metal heat pipes for the core primary heat-transfer system. Heat pipes may also be used as radiator elements or auxiliary thermal control elements. This synopsis characterizes long-life core heat pipes. References are included where information that is more detailed can be found. Specifics shown here are for demonstration purposes and do not necessarily reflect current Nasa Project Prometheus point designs. (author)

  17. Thermal positron interactions with alkali covered tungsten

    NASA Astrophysics Data System (ADS)

    Yamashita, Takashi; Iida, Shimpei; Terabe, Hiroki; Nagashima, Yasuyuki

    2016-11-01

    The branching ratios of positron reemission, positronium emission, positronium negative ion emission and capture to the surface state for thermalized positrons at polycrystalline tungsten surfaces coated with Na, K and Cs have been measured. The data shows that the ratios depend on the coverage of the alkali-metal coating. The fraction of the emitted positronium increases with the coverage of the coating up to 90%.

  18. Alkali Metal Heat Pipe Life Issues

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.

    2004-01-01

    One approach to space fission power system design is predicated on the use of alkali metal heat pipes, either as radiator elements, thermal management components, or as part of the core primary heat-transfer system. This synopsis characterizes long-life core heat pipes. References are included where more detailed information can be found. Specifics shown here are for demonstrational purposes and do not necessarily reflect current Project Prometheus point designs.

  19. Petrology and geochemistry of alkali gabbronorites from Lunar Breccia 67975

    NASA Astrophysics Data System (ADS)

    James, Odette B.; Lindstrom, Marilyn M.; Flohr, Marta K.

    Clasts of an unusual type of lunar highlands igneous rock, alkali gabbronorite, have been found in Apollo 16 breccia 67975. The alkali gabbronorites form two distinct subgroups, magnesian and ferroan. Modes and bulk compositions are highly varied. The magnesian alkali gabbronorites are composed of bytownitic plagioclase (Or2-5An82-89), hypersthene (Wo3-5En49-62), augite (Wo39-42En36-44), a silica mineral, and trace Ba-rich K-feldspar. The ferroan alkali gabbronorites are composed of ternary plagioclase (Or11-22An65-74), pigeonite (Wo6-9En35-47), augite (Wo38-40En29-35), Ba-rich K-feldspar, and a silica mineral. Trace minerals in both subgroups are apatite, REE-rich whitlockite, and zircon. The magnesian and ferroan alkali gabbronorites appear to have formed by progressive differentiation of the same, or closely related, parent magmas; the compositional data indicate that these magmas were REE-rich. The ternary plagioclase is probably a high-temperature metastable phase formed during crystallization. In composition and mineralogy, the 67975 alkali gabbronorites show many similarities to Apollo 12 and 14 alkali norites, alkali gabbronorites, and alkali anorthosites, and all these rocks together constitute a distinctive alkali suite. In addition, the alkali gabbronorites show some similarities to KREEP basalts, Mg-norites, and some felsites. These data suggest genetic links between some or all of these types of pristine rocks. Two types of relationships are possible. The first is that alkali-suite rocks crystallized in plutons of KREEP basalt magma, and KREEP basalts are their extrusive equivalents. The second is that the alkali-suite rocks and some felsites all crystallized in plutons of Mg-norite parent magmas, and KREEP basalt magmas formed by remelting of these plutons. Additional studies are needed to resolve which of these hypotheses is correct.

  20. Petrology and geochemistry of alkali gabbronorites from lunar breccia 67975

    NASA Astrophysics Data System (ADS)

    James, Odette B.; Lindstrom, Marilyn M.; Flohr, Marta K.

    1987-09-01

    Clasts of an unusual type of lunar highlands igneous rock, alkali gabbronorite, have been found in Apollo 16 breccia 67975. The alkali gabbronorites form two distinct subgroups, magnesian and ferroan. Modes and bulk compositions are highly varied. The magnesian alkali gabbronorites are composed of bytownitic plagioclase (Or2-5An82-89), hypersthene (Wo3-5En49-62), augite (Wo39-42En36-44), a silica mineral, and trace Ba-rich K-feldspar. The ferroan alkali gabbronorites are composed of ternary plagioclase (Or11-22An65-74), pigeonite (Wo6-9En35-47), augite (Wo38-40En29-35), Ba-rich K-feldspar, and a silica mineral. Trace minerals in both subgroups are apatite, REE-rich whitlockite, and zircon. The magnesian and ferroan alkali gabbronorites appear to have formed by progressive differentiation of the same, or closely related, parent magmas; the compositional data indicate that these magmas were REE-rich. The ternary plagioclase is probably a high-temperature metastable phase formed during crystallization. In composition and mineralogy, the 67975 alkali gabbronorites show many similarities to Appllo 12 and 14 alkali norites, alkali gabbronorites, and alkali anorthosites, and all these rocks together constitute a distinctive alkali suite. In addition, the alkali gabbronorites, show some similarities to KREEP basalts, Mg-norites, and some felsites. These data suggest genetic links between some or all of these types of pristine rocks. Two types of relationships are possible. The first is that alkali-suite rocks crystallized in plutons of KREEP basalt magma, and KREEP basalts are their extrusive equivalents. The second is that the alkali-suite rocks and some felsites all crystallized in plutons of Mg-norite parent magmas, and KREEP basalt magmas formed by remelting of these plutons. Additional studies are needed to resolve which of these hypotheses is correct.

  1. Transport properties of alkali metal doped fullerides

    SciTech Connect

    Yadav, Daluram Yadav, Nishchhal

    2015-07-31

    We have studied the intercage interactions between the adjacent C{sub 60} cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C{sub 60} phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, T{sub c}, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C{sub 60} phonons as 5 K, which is much lower as compared to reported T{sub c} (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  2. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  3. Toward antibody-catalyzed hydrolysis of organophosphorus poisons

    PubMed Central

    Vayron, Philippe; Renard, Pierre-Yves; Taran, Frédéric; Créminon, Christophe; Frobert, Yveline; Grassi, Jacques; Mioskowski, Charles

    2000-01-01

    We report here our preliminary results on the use of catalytic antibodies as an approach to neutralizing organophosphorus chemical weapons. A first-generation hapten, methyl-α-hydroxyphosphinate Ha, was designed to mimic the approach of an incoming water molecule for the hydrolysis of exceedingly toxic methylphosphonothioate VX (1a). A moderate protective activity was first observed on polyclonal antibodies raised against Ha. The results were further confirmed by using a mAb PAR 15 raised against phenyl-α-hydroxyphosphinate Hb, which catalyzes the hydrolysis of PhX (1b), a less toxic phenylphosphonothioate analog of VX with a rate constant of 0.36 M−1⋅min−1 at pH 7.4 and 25°C, which corresponds to a catalytic proficiency of 14,400 M−1 toward the rate constant for the uncatalyzed hydrolysis of 1b. This is a demonstration on the organophosphorus poisons themselves that mAbs can catalytically hydrolyze nerve agents, and a significant step toward the production of therapeutically active abzymes to treat poisoning by warfare agents. PMID:10860971

  4. Enzymatic hydrolysis of defatted mackerel protein with low bitter taste

    NASA Astrophysics Data System (ADS)

    Hou, Hu; Li, Bafang; Zhao, Xue

    2011-03-01

    Ultrasound-assisted solvent extraction was confirmed as a novel, effective method for separating lipid from mackerel protein, resulting in a degreasing rate (DR) of 95% and a nitrogen recovery (NR) of 88.6%. To obtain protein hydrolysates with high nitrogen recovery and low bitter taste, enzymatic hydrolysis was performed using eight commercially available proteases. It turned out that the optimum enzyme was the `Mixed enzymes for animal proteolysis'. An enzyme dosage of 4%, a temperature of 50°, and a hydrolysis time of 300 min were found to be the optimum conditions to obtain high NR (84.28%) and degree of hydrolysis (DH, 16.18%) by orthogonal experiments. Glutamic acid was the most abundant amino acid of MDP (defatted mackerel protein) and MDPH (defatted mackerel protein hydrolysates). Compared with the FAO/WHO reference protein, the essential amino acid chemical scores (CS) were greater than 1.0 (1.0-1.7) in MDPH, which is reflective of high nutritional value. This, coupled with the light color and slight fishy odor, indicates that MDPH would potentially have a wide range of applications such as nutritional additives, functional ingredients, and so on.

  5. Surface-enhanced Raman spectral analysis of blister agents and their hydrolysis products

    NASA Astrophysics Data System (ADS)

    Inscore, Frank; Farquharson, Stuart

    2006-10-01

    Protection of military personnel and civilians from water supplies poisoned by chemical warfare agents requires an analyzer that has sufficient sensitivity (μg/L), selectivity (differentiate the warfare agents from its hydrolysis products), and speed (less than 10 minutes) to be of value. In an effort to meet these requirements, we have been investigating the ability of surface-enhanced Raman spectroscopy (SERS) to detect these chemicals in water. The expected success of SERS is based on reported detection of single molecules, the one-to-one relationship between a chemical and its Raman spectrum, and the minimal sample preparation requirements. It is equally important to detect and distinguish the hydrolysis products of these agents to eliminate false-positive responses and evaluate the extent of an attack. Previously, we reported the SER spectra of GA, GB, VX and most of their hydrolysis products, as well as a preliminary study of HD, and its principle hydrolysis product thiodiglycol. Here we expand this study to include half-mustard, its hydrolysis product, 2-hydroxyethyl ethylsulfide, and ethyl ethylsulfide to better characterize the observed SER spectra. We also report the measurement of 10 μg/L of thiodiglycol as we continue to improve sensitivity.

  6. Alteration of alkali reactive aggregates autoclaved in different alkali solutions and application to alkali-aggregate reaction in concrete (II) expansion and microstructure of concrete microbar

    SciTech Connect

    Lu Duyou . E-mail: duyoulu@njut.edu.cn; Mei Laibao; Xu Zhongzi; Tang Mingshu; Mo Xiangyin; Fournier, Benoit

    2006-06-15

    The effect of the type of alkalis on the expansion behavior of concrete microbars containing typical aggregate with alkali-silica reactivity and alkali-carbonate reactivity was studied. The results verified that: (1) at the same molar concentration, sodium has the strongest contribution to expansion due to both ASR and ACR, followed by potassium and lithium; (2) sufficient LiOH can completely suppress expansion due to ASR whereas it can induce expansion due to ACR. It is possible to use the duplex effect of LiOH on ASR and ACR to clarify the ACR contribution when ASR and ACR may coexist. It has been shown that a small amount of dolomite in the fine-grained siliceous Spratt limestone, which has always been used as a reference aggregate for high alkali-silica reactivity, might dedolomitize in alkaline environment and contribute to the expansion. That is to say, Spratt limestone may exhibit both alkali-silica and alkali-carbonate reactivity, although alkali-silica reactivity is predominant. Microstructural study suggested that the mechanism in which lithium controls ASR expansion is mainly due to the favorable formation of lithium-containing less-expansive product around aggregate particles and the protection of the reactive aggregate from further attack by alkalis by the lithium-containing product layer.

  7. Improvement in mechanical properties of jute fibres through mild alkali treatment as demonstrated by utilisation of the Weibull distribution model.

    PubMed

    Roy, Aparna; Chakraborty, Sumit; Kundu, Sarada Prasad; Basak, Ratan Kumar; Majumder, Subhasish Basu; Adhikari, Basudam

    2012-03-01

    Chemically modified jute fibres are potentially useful as natural reinforcement in composite materials. Jute fibres were treated with 0.25%-1.0% sodium hydroxide (NaOH) solution for 0.5-48 h. The hydrophilicity, surface morphology, crystallinity index, thermal and mechanical characteristics of untreated and alkali treated fibres were studied.The two-parameter Weibull distribution model was applied to deal with the variation in mechanical properties of the natural fibres. Alkali treatment enhanced the tensile strength and elongation at break by 82% and 45%, respectively but decreased the hydrophilicity by 50.5% and the diameter of the fibres by 37%.

  8. High pressure assist-alkali pretreatment of cotton stalk and physiochemical characterization of biomass.

    PubMed

    Du, Shuang-kui; Zhu, Xinna; Wang, Hua; Zhou, Dayun; Yang, Weihua; Xu, Hongxia

    2013-11-01

    Ground cotton stalks were pretreated with sodium hydroxide (NaOH) at concentrations of 1-4% (w/v), pressures of 30-130 kPa, durations of 15-75 min, and liquid/solid ratios of 10:1-30:1. Modeling of the high pressure assist-alkali pretreatment (HPAP) of cotton stalk was attempted. The levels of NaOH concentration, pressure, and duration were optimized using a Box-Behnken design to enhance the cellulose content of treated solid residue. The optimum pretreatment conditions were as follows: liquid/solid ratio, 20:1; pressure, 130 kPa; NaOH concentration, 3.0%; duration, 40 min. During the conditions, cellulose content of pretreated cotton stalk residue was 64.07%. The maximum cellulose conversion of 45.82% and reducing sugar yield of 0.293 g/g upon hydrolysis were obtained. Significant differences were observed in biomass composition and physiochemical characteristics between native and alkali-treated biomass. High NaOH concentration and pressure were conducive to lignin dissolution and resulted in increased cellulose content and conversion.

  9. Matrix diffusion of some alkali- and alkaline earth-metals in granitic rock

    SciTech Connect

    Johansson, H.; Byegaard, J.; Skarnemark, G.; Skaalberg, M.

    1997-12-31

    Static through-diffusion experiments were performed to study the diffusion of alkali- and alkaline earth-metals in fine-grained granite and medium-grained Aespoe-diorite. Tritiated water was used as an inert reference tracer. Radionuclides of the alkali- and alkaline earth-metals (mono- and divalent elements which are not influenced by hydrolysis in the pH-range studied) were used as tracers, i.e., {sup 22}Na{sup +}, {sup 45}Ca{sup 2+} and {sup 85}Sr{sup 2+}. The effective diffusivity and the rock capacity factor were calculated by fitting the breakthrough curve to the one-dimensional solution of the diffusion equation. Sorption coefficients, K{sub d}, that were derived from the rock capacity factor (diffusion experiments) were compared with K{sub d} determined in batch experiments using crushed material of different size fractions. The results show that the tracers were retarded in the same order as was expected from the measured batch K{sub d}. Furthermore, the largest size fraction was the most representative when comparing batch K{sub d} with K{sub d} evaluated from the diffusion experiments. The observed effective diffusivities tended to decrease with increasing cell lengths, indicating that the transport porosity decreases with increasing sample lengths used in the diffusion experiments.

  10. Comparing the catalytic strategy of ATP hydrolysis in biomolecular motors.

    PubMed

    Kiani, Farooq Ahmad; Fischer, Stefan

    2016-07-27

    ATP-driven biomolecular motors utilize the chemical energy obtained from the ATP hydrolysis to perform vital tasks in living cells. Understanding the mechanism of enzyme-catalyzed ATP hydrolysis reaction has substantially progressed lately thanks to combined quantum/classical molecular mechanics (QM/MM) simulations. Here, we present a comparative summary of the most recent QM/MM results for myosin, kinesin and F1-ATPase motors. These completely different motors achieve the acceleration of ATP hydrolysis through a very similar catalytic mechanism. ATP hydrolysis has high activation energy because it involves the breaking of two strong bonds, namely the Pγ-Oβγ bond of ATP and the H-O bond of lytic water. The key to the four-fold decrease in the activation barrier by the three enzymes is that the breaking of the Pγ-Oβγ bond precedes the deprotonation of the lytic water molecule, generating a metaphosphate hydrate complex. The resulting singly charged trigonal planar PγO3(-) metaphosphate is a better electrophilic target for attack by an OaH(-) hydroxyl group. The formation of this OaH(-) is promoted by a strong polarization of the lytic water: in all three proteins, this water is forming a hydrogen-bond with a backbone carbonyl group and interacts with the carboxylate group of glutamate (either directly or via an intercalated water molecule). This favors the shedding of one proton by the attacking water. The abstracted proton is transferred to the γ-phosphate via various proton wires, resulting in a H2PγO4(-)/ADP(3-) product state. This catalytic strategy is so effective that most other nucleotide hydrolyzing enzymes adopt a similar approach, as suggested by their very similar triphosphate binding sites.

  11. Influence of ion-associated water on the hydrolysis of Si-O bonded interactions.

    PubMed

    Wallace, Adam F; Gibbs, G V; Dove, Patricia M

    2010-02-25

    Previous studies show the demineralization of biogenic, amorphous, and crystalline forms of silica is enhanced in the presence of alkali and alkaline earth cations. The origins of this effect are difficult to explain in light of work suggesting predominantly weak outer-sphere type interactions between these ions and silica. Here we investigate the ability of M(II) aqua ions to promote the hydrolysis of Si-O bonded interactions relative to ion-free water using electronic structure methods. Reaction pathways for Si-O hydrolysis are calculated with the B3LYP and PBE1PBE density functionals at the 6-31G(d) and 6-311+G(d,p) levels in the presence of water, and both inner- and outer-sphere adsorption complexes of Mg(2+)(6H(2)O) and Ca(2+)(6H(2)O). All reaction trajectories involving hydrated ions are characterized by one or more surmountable barriers associated with the rearrangement of ion-associated water molecules, and a single formidable barrier corresponding to hydrolysis of the Si-O bonded interaction. The hydrolysis step for outer-sphere adsorption is slightly less favorable than the water-induced reaction. In contrast, the barrier opposing Si-O hydrolysis in the presence of inner-sphere species is generally reduced relative to the water-induced pathway, indicating that the formation of inner-sphere complexes may be prerequisite to the detachment of Si species from highly coordinated surface sites. The results suggest a two-part physical model for ion-promoted Si-O hydrolysis that is consistent with experimental rate measurements. First, a bond path is formed between the cation and a bridging oxygen site on the silica surface that weakens the surrounding Si-O interactions, making them more susceptible to attack by water. Second, Si-O hydrolysis occurs adjacent to these inner-sphere species in proportion to the frequency of ion-associated solvent reorganization events. Both processes are dependent upon the particular ion hydration environment, which suggests

  12. Cathodoluminescence characterization of experimentally shocked alkali feldspar

    NASA Astrophysics Data System (ADS)

    Kayama, M.; Nishido, H.; Sekine, T.; Ninagawa, K.

    2009-12-01

    Cathodoluminescence (CL) spectroscopy and microscopy provide important information to know the existence and distribution of defects and trace elements in materials. CL features of materials depend on varieties of luminescence centers, host chemical compositions and crystal fields, all of which are closely related to the genetic processes. Advanced investigations on CL of shock-induced silica minerals have been attempted to estimate their shock pressures, although very few studies have been reported for feldspars. In this study, CL and Raman spectra of experimentally shocked alkali feldspar were measured to evaluate the shock metamorphic effect. A single crystal of sanidine (Or81Ab19) from Eifel, Germany was selected as a starting material for shock recovery experiments at peak pressures of about 10, 20, 32 and 40 GPa by a propellant gun. Polished thin sections of recovered samples were used for CL and Raman measurements. CL was collected in the range from 300 to 800 nm by a secondary electron microscopy-cathodoluminescence (SEM-CL) system. CL spectra of unshocked sample consist of two emission bands at around 420 nm in blue region and 720 nm in red-IR region assigned to Al-O--Al defect and Fe3+ impurity center, respectively. There are three features between unshocked and shocked sanidine. (1) The blue emission is absent in the shocked samples. (2) The peak wavelength of the red-IR emission shifts to a short wavelength side with an increase in shock pressure up to 20 GPa, suggesting the alteration of the crystal field related to Fe3+ activator by shock metamorphic effect. The Raman spectrum of the unshocked sample exhibits pronounced peaks at around 180, 205, 290, 490 and 520 cm-1. The intensities of these peaks decrease with an increase in shock pressure. The shocked samples above 32 GPa show only two weak peaks at around 490 and 580 cm-1 which were also observed in maskelynite in Martian meteorites. Shock pressure causes partly breaking of the framework structure

  13. The different poisoning behaviors of various alkali metal containing compounds on SCR catalyst

    NASA Astrophysics Data System (ADS)

    Du, Xuesen; Yang, Guangpeng; Chen, Yanrong; Ran, Jingyu; Zhang, Li

    2017-01-01

    Alkali metals are poisonous to the metal oxide catalyst for NO removal. The chemical configuration of alkali containing substance and interacting temperature can affect the poisoning profile. A computational method based on Frontier Molecular Orbital analysis was proposed to determine the reacting behavior of various alkali-containing substances with SCR catalyst. The results reveal that the poisoning reactivities of various substances can be ranked as: E (MOH) > E (M2SO4) > E(MCl) > E(MNO3) > E(MHSO4). The experimental activity tests of the catalysts calcined at stepped temperatures show that NaOH can react with the catalyst below 200 °C. NaCl and NaNO3 start to react with the catalyst at a temperature between 300 and 400 °C. Unlike MOH, MCl and MNO3, which can produce volatile or decomposable species for the anions after reacting with the catalyst, M2SO4 and MHSO4 will leave both cations and anions on the catalyst surface. The sulfate ions left on the catalyst can generate active acid sites for NH3 adsorption. The experimental results also show that Na2SO4 and NaHSO4 will not lower the NO conversion. The after-reaction influences of various alkali metals were studied using theoretical and experimental methods. The theoretical results show that the acidity decreases with doping of alkali metal. Experiments show a consistent result that the NO conversion decreases as undoped >LiCl > NaCl > KCl.

  14. Influence of mixed alkalies on absorption and emission properties of Sm 3+ ions in borate glasses

    NASA Astrophysics Data System (ADS)

    Ratnakaram, Y. C.; Thirupathi Naidu, D.; Vijaya Kumar, A.; Gopal, N. O.

    2005-04-01

    The present work aims to study the variation of Judd-Ofelt intensity parameters, radiative transition probabilities, absorption and emission cross sections with alkali content in three different Sm 3+-doped mixed alkali borate glasses. Mixed alkali borate glasses in the composition 67H 3BO 3· xLi 2CO 3(32- x)Na 2CO 3·1Sm 2O 3, 67H 3BO 3· xLi 2CO 3(32- x)K 2CO 3·1Sm 2O 3 and 67H 3BO 3· xNa 2CO 3(32- x)K 2CO 3·1Sm 2O 3 with x=8, 12, 16, 20 and 24 mol% were prepared by quenching melts consisting of the above chemicals (850-950 °C, 1-2 h) between two brass plates. Judd-Ofelt theory is used to study the spectral properties and to calculate the radiative transition probabilities and branching ratios. The predicted radiative transition probabilities ( Aed), branching ratios ( β) and integrated absorption cross-sections ( Σ) for certain transitions are reported. From the emission spectra, emission cross-sections ( σ) are obtained for the four transitions, 4G 5/2→ 6H 5/2, 4G 5/2→ 6H 7/2, 4G 5/2→ 6H 9/2 and 4G 5/2→ 6H 11/2 of Sm 3+ ion in these mixed alkali borate glasses. Optical band gaps ( Eopt) and absorption edges are reported for the three Sm 3+-doped mixed alkali borate glasses.

  15. Method for the safe disposal of alkali metal

    DOEpatents

    Johnson, Terry R.

    1977-01-01

    Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam-CO.sub.2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps.

  16. Enhanced attrition bioreactor for enzyme hydrolysis or cellulosic materials

    DOEpatents

    Scott, T.C.; Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1996-04-16

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified. 1 fig.

  17. Enhanced attrition bioreactor for enzyme hydrolysis or cellulosic materials

    DOEpatents

    Scott, Timothy C.; Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1996-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified.

  18. Enhanced attrition bioreactor for enzyme hydrolysis of cellulosic materials

    DOEpatents

    Scott, Timothy C.; Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1997-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified.

  19. Enhanced attrition bioreactor for enzyme hydrolysis of cellulosic materials

    DOEpatents

    Scott, T.C.; Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1997-06-10

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified. 1 fig.

  20. A Modular Control Platform for a Diode Pumped Alkali Laser

    DTIC Science & Technology

    2008-09-01

    A Modular Control Platform for a Diode Pumped Alkali Laser Joshua Shapiro, Scott W. Teare New Mexico Institute of Mining and Technology, 801 Leroy...gain media, such as is done in diode pumped alkali lasers (DPALs), has been proposed and early experiments have shown promising results. However...REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE A Modular Control Platform for a Diode Pumped Alkali Laser 5a

  1. Determination of the common and rare alkalies in mineral analysis

    USGS Publications Warehouse

    Wells, R.C.; Stevens, R.E.

    1934-01-01

    Methods are described which afford a determination of each member of the alkali group and are successful in dealing with the quantities of the rare alkalies found in rocks and minerals. The procedures are relatively rapid and based chiefly on the use of chloroplatinic acid, absolute alcohol and ether, and ammonium sulfate. The percentages of all the alkalies found in a number of minerals are given.

  2. Direct surface charging and alkali-metal doping for tuning the interlayer magnetic order in planar nanostructures

    NASA Astrophysics Data System (ADS)

    Dasa, Tamene R.; Stepanyuk, Valeri S.

    2015-08-01

    The continuous reduction of magnetic units to ultrasmall length scales inspires efforts to look for a suitable means of controlling magnetic states. In this study, we show two surface charge alteration techniques for tuning the interlayer exchange coupling of ferromagnetic layers separated by paramagnetic spacers. Our ab initio study reveals that already a modest amount of extra charge can switch the mutual alignment of the magnetization from antiferromagnetic to ferromagnetic or vice versa. We also propose adsorption of alkali metals as an alternative way of varying the electronic and chemical properties of magnetic surfaces. Clear evidence is found that the interlayer magnetic order can be reversed by adsorbing alkali metals on the magnetic layer. Moreover, alkali-metal overlayers strongly enhance the perpendicular magnetic anisotropy in FePt thin films. These findings combined with atomistic spin model calculations suggest that the electronic or ionic way of surface charging can have a crucial role for magnetic hardening and spin state control.

  3. Study on alkali removal technology from coal gasification gas

    SciTech Connect

    Inai, Motoko; Kajibata, Yoshihiro; Takao, Shoichi; Suda, Masamitsu

    1999-07-01

    The authors have proposed a new coal based combined cycle power plant concept. However, there are certain technical problems that must be overcome to establish this system. Major technical problem of the system is hot corrosion of gas turbine blades caused by sulfur and alkali vapor, because of high temperature dust removal without sulfur removal from the coal gas. So the authors have conducted several fundamental studies on dry type alkali removal sorbents for the purposed of reducing the corrosion on gas turbine blades. Based on the fundamental studies the authors found preferable alkali removal sorbents, and made clear their alkali removal performance.

  4. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, David C.; Mailhe, Catherine C.; De Jonghe, Lutgard C.

    1986-01-01

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  5. Alkali cation specific adsorption onto fcc(111) transition metal electrodes.

    PubMed

    Mills, J N; McCrum, I T; Janik, M J

    2014-07-21

    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  6. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.

    1985-07-10

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  7. Intrinsic differences in atomic ordering of calcium (alumino)silicate hydrates in conventional and alkali-activated cements

    SciTech Connect

    White, Claire E.; Daemen, Luke L.; Hartl, Monika; Page, Katharine

    2015-01-15

    The atomic structures of calcium silicate hydrate (C–S–H) and calcium (–sodium) aluminosilicate hydrate (C–(N)–A–S–H) gels, and their presence in conventional and blended cement systems, have been the topic of significant debate over recent decades. Previous investigations have revealed that synthetic C–S–H gel is nanocrystalline and due to the chemical similarities between ordinary Portland cement (OPC)-based systems and low-CO{sub 2} alkali-activated slags, researchers have inferred that the atomic ordering in alkali-activated slag is the same as in OPC–slag cements. Here, X-ray total scattering is used to determine the local bonding environment and nanostructure of C(–A)–S–H gels present in hydrated tricalcium silicate (C{sub 3}S), blended C{sub 3}S–slag and alkali-activated slag, revealing the large intrinsic differences in the extent of nanoscale ordering between C–S–H derived from C{sub 3}S and alkali-activated slag systems, which may have a significant influence on thermodynamic stability, and material properties at higher length scales, including long term durability of alkali-activated cements.

  8. Cotton cellulose: enzyme adsorption and enzymic hydrolysis

    SciTech Connect

    Beltrame, P.L.; Carniti, P.; Focher, B.; Marzetti, A.; Cattaneo, M.

    1982-01-01

    The adsorption of a crude cellulase complex from Trichoderma viride on variously pretreated cotton cellulose samples was studied in the framework of the Langmuir approach at 2-8 degrees. The saturation amount of adsorbed enzyme was related to the susceptibility of the substrates to hydrolysis. In every case the adsorption process was faster by 2-3 orders of magnitude than the hydrolysis step to give end products. For ZnCl/sub 2/-treated cotton cellulose the Langmuir parameters correlated fairly well with the value of the Michaelis constant, measured for its enzymic hydrolysis, and the adsorptive complex was indistinguishable from the complex of the Michaelis-Menten model for the hydrolysis.

  9. Continuous steam hydrolysis of tulip poplar

    SciTech Connect

    Fieber, C.A.; Roberts, R.S.; Faass, G.S.; Muzzy, J.D.; Colcord, A.R.; Bery, M.K.

    1982-01-01

    The continuous hydrolysis of poplar chips by steam at 300-350 psi resulted in the separation of hemicellulose (I) cellulose and lignin components. The I fraction was readily depolymerised by steam to acetic acid, furfural, methanol, and xylose.

  10. Physicochemical structural changes of poplar and switchgrass during biomass pretreatment and enzymatic hydrolysis

    SciTech Connect

    Meng, Xianzhi; Sun, Qining; Kosa, Matyas; Huang, Fang; Pu, Yunqiao; Ragauskas, Arthur J.

    2016-07-27

    Converting lignocellulosics to simple sugars for second generation bioethanol is complicated due to biomass recalcitrance, and it requires a pretreatment stage prior to enzymatic hydrolysis. In this study, native, pretreated (acid and alkaline) and partially hydrolyzed poplar and switchgrass were characterized by using Simons’ staining for cellulose accessibility, GPC for degree of polymerization (DP), and FTIR for chemical structure of plant cell wall. The susceptibility of the pretreated biomass to enzymatic hydrolysis could not be easily predicted from differences in cellulose DP and accessibility. During hydrolysis, the most significant DP reduction occurred at the very beginning of hydrolysis, and the DP began to decrease at a significantly slower rate after this initial period, suggesting an existence of a synergistic action of endo- and exoglucanases that contribute to the occurrence of a “peeling off” mechanism. Cellulose accessibility was found to be increased at the beginning of hydrolysis, after reaching a maximum value then started to decrease. In conclusion, the fresh enzyme restart hydrolysis experiment along with the accessibility data indicated that the factors associated with the nature of enzyme such as irreversible nonspecific binding of cellulases by lignin and steric hindrance of enzymes should be responsible for the gradual slowing down of the reaction rate.

  11. Physicochemical structural changes of poplar and switchgrass during biomass pretreatment and enzymatic hydrolysis

    DOE PAGES

    Meng, Xianzhi; Sun, Qining; Kosa, Matyas; ...

    2016-07-27

    Converting lignocellulosics to simple sugars for second generation bioethanol is complicated due to biomass recalcitrance, and it requires a pretreatment stage prior to enzymatic hydrolysis. In this study, native, pretreated (acid and alkaline) and partially hydrolyzed poplar and switchgrass were characterized by using Simons’ staining for cellulose accessibility, GPC for degree of polymerization (DP), and FTIR for chemical structure of plant cell wall. The susceptibility of the pretreated biomass to enzymatic hydrolysis could not be easily predicted from differences in cellulose DP and accessibility. During hydrolysis, the most significant DP reduction occurred at the very beginning of hydrolysis, and themore » DP began to decrease at a significantly slower rate after this initial period, suggesting an existence of a synergistic action of endo- and exoglucanases that contribute to the occurrence of a “peeling off” mechanism. Cellulose accessibility was found to be increased at the beginning of hydrolysis, after reaching a maximum value then started to decrease. In conclusion, the fresh enzyme restart hydrolysis experiment along with the accessibility data indicated that the factors associated with the nature of enzyme such as irreversible nonspecific binding of cellulases by lignin and steric hindrance of enzymes should be responsible for the gradual slowing down of the reaction rate.« less

  12. 77 FR 75390 - Significant New Use Rules on Certain Chemical Substances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    ....10629. PMN Numbers P-11-619 and P-11-620 Chemical name: Amino acid, carboxyalkyl, alkylsulfonate, alkali... citation: 40 CFR 721.10632. PMN Number P-12-276 Chemical name: Aromatic sulfonic acid amino azo dye salts... subpart E to read as follows: Sec. 721.10630 Amino acid, carboxyalkyl, alkylsulfonate, alkali...

  13. Calcineurin hydrolysis of para-nitrophenyl phosphorothioate.

    PubMed

    Spannaus-Martin, Donna J; Martin, Bruce L

    2004-04-01

    para-Nitrophenyl phosphorothioate (pNPT) was hydrolyzed by calcineurin at initial rates slightly, but comparable to rates for para-nitrophenyl phosphate (pNPP). Kinetic characterization yielded higher estimates for both Km and Vmax compared to pNPP. Metal ion activation of phosphorothioate hydrolysis was more promiscuous. Unlike the hydrolysis of with pNPP, Ca2+, Mg2+, and Ba2+ activated calcineurin as well as Mn2+.

  14. Synergistic capture mechanisms for alkali and sulphur species from combustion. Quarterly report No. 11, March 1993--May 1993

    SciTech Connect

    Peterson, T.W.; Shadman, F.; Wendt, J.O.L.; Wu, Baochun

    1993-07-26

    Sulfur dioxide is one of the major pollutant from coal combustion application and gasification. The capture of sulfur from flue gas with lime has been investigated and proven to be effective. Previous work concluded that the overall conversion of lime is limited by the micro-structure of the particles and reaction temperature. Due to the larger specific volume of product of calcium sulfate than that of the raw sorbent of calcium carbonate, which may cause pore blockage at the pore mouth and increase the diffusion resistance of sulfur dioxide through the product layer, but this pore plugging will not apply to the particle less than 0.01 cm in diameter. The reaction temperature, which determined the chemical reaction kinetics, between 800{degrees}C to 850{degrees}C, is recommended to be the best chemical reaction temperature for sulfur removal by lime. The alkali vapor removal has been the subject of many studies due to the possible application of coal combustion and hot flue gas turbine combined cycle which requires alkali concentration in the flue gas phase of sub parts per billion (ppB) level. But this process will increase the coal utilization efficiency dramatically. Some clay materials such as kaolinite and alumina-silica mixture like bauxite are found to be a very good sorbent for the adsorption of alkali vapor. The main objective of this research is to develop sorbents with alumina-silica base for both as a carrier to calcium and sorbents to alkali. A number of sorbents, with bauxite based and calcium active sites, have been developed and tested in a series of experiments. The experimental results of adsorption of sulfur dioxide, alkali and combined adsorption of sulfur/alkali have been given in the previous report.

  15. The pattern of cell wall deterioration in lignocellulose fibers throughout enzymatic cellulose hydrolysis.

    PubMed

    Li, Xinping; Clarke, Kimberley; Li, Kecheng; Chen, Aicheng

    2012-01-01

    Cell wall deterioration throughout enzymatic hydrolysis of cellulosic biomass is greatly affected by the chemical composition and the ultrastructure of the fiber cell wall. The resulting pattern of cell wall deterioration will reveal information on cellulose activity throughout enzymatic hydrolysis. This study investigates the progression and morphological changes in lignocellulose fibers throughout enzymatic hydrolysis, using (transmission electron microscopy) TEM and field emission scanning electron microscopy (FE-SEM). Softwood thermo-mechanical pulp (STMP) and softwood bleached kraft pulp (SBKP), lignocellulose substrates containing almost all the original fiber composition, and with lignin and some hemicellulose removed, respectively, was compared for morphology changes throughout hydrolysis. The difference of conversion between STMP and SBKP after 48 h of enzymatic hydrolysis is 11 and 88%, respectively. TEM images revealed an even fiber cell wall cross section density, with uneven middle lamella coverage in STMP fibers. SKBP fibers exhibited some spaces between cell wall and lamella layers due to the removal of lignin and some hemicellulose. After 1 h hydrolysis in SBKP fibers, there were more changes in the fiber cross-sectional area than after 10 h hydrolysis in STMP fibers. Cell wall degradation was uneven, and originated in accessible cellulose throughout the fiber cell wall. FE-SEM images illustrated more morphology changes in SBKP fibers than STMP fibers. Enzymatic action of STMP fiber resulted in a smoother fiber surface, along with fiber peeling and the formation of ribbon-disjunction layers. SBKP fibers exhibited structural changes such as fiber erosion, fiber cutting, and fiber splitting throughout enzymatic hydrolysis.

  16. Combined alkali and acid pretreatment of spent mushroom substrate for reducing sugar and biofertilizer production.

    PubMed

    Zhu, Hong-Ji; Liu, Jia-Heng; Sun, Li-Fan; Hu, Zong-Fu; Qiao, Jian-Jun

    2013-05-01

    Spent mushroom substrate (SMS) was pretreated with alkaline reagents including potassium hydroxide, lime and ammonia to enhance enzymatic saccharification. Under the best pretreatment conditions (1M KOH, 80 °C, 90 min; 1M lime, 80 °C, 120 min; 10 M ammonia, 70 °C, 120 min), the total reducing sugar (TRS) yield reached 258.6, 204.2 and 251.2 mg/g raw SMS, which were respectively 6.15, 4.86, and 5.98 times of untreated SMS. The effects of pretreatment by above alkaline reagents and sulfuric acid on the composition and structure of SMS were evaluated to provide comparative performance data. A new process, combined alkali and acid (CAA) pretreatment followed by enzymatic hydrolysis, was innovatively proposed to improve the cost-effectiveness and avoid environmental problems. The SMS residue after CAA pretreatment-enzymatic hydrolysis process was converted to biofertilizer with Pichia farinose FL7 and a cell density of 3.0×10(8) cfu/g in biomass was attained.

  17. Petrography study on altered flint aggregate by alkali-silica reaction

    SciTech Connect

    Bulteel, D. . E-mail: bulteel@ensm-douai.fr; Rafai, N.; Degrugilliers, P.; Garcia-Diaz, E.

    2004-11-15

    The aim of our study is to improve our understanding of an alkali-silica reaction (ASR) via petrography. We used a chemical concrete subsystem: flint aggregate, portlandite and KOH. The altered flint aggregate is followed by optical microscopy and scanning electron microscopy (SEM) before and after acid treatment at different intervals. After acid treatment, the observations showed an increase in aggregate porosity and revealed internal degradation of the aggregate. This degradation created amorphous zones. Before acid treatment, the analyses on polished sections by scanning electron microscopy coupled with energy dispersive spectroscopy (EDS) enabled visualization of K{sup +} and Ca{sup 2+} penetration into the aggregate. The appearance of amorphous zones and penetration of positive ions into the aggregate are correlated with the increase in the molar fraction of silanol sites. This degradation is specific to the alkali-silica reaction.

  18. Post-Harvest Processing Methods for Reduction of Silica and Alkali Metals in Wheat Straw

    SciTech Connect

    Thompson, David Neal; Lacey, Jeffrey Alan; Shaw, Peter Gordon

    2002-04-01

    Silica and alkali metals in wheat straw limit its use for bioenergy and gasification. Slag deposits occur via the eutectic melting of SiO2 with K2O, trapping chlorides at surfaces and causing corrosion. A minimum melting point of 950°C is desirable, corresponding to SiO2:K2O of about 3:1. Mild chemical treatments were used to reduce Si, K, and Cl, while varying temperature, concentration, %-solids, and time. Dilute acid was more effective at removing K and Cl, while dilute alkali was more effective for Si. Reduction of minerals in this manner may prove economical for increasing utilization of the straw for combustion or gasification.

  19. Post-harvest processing methods for reduction of silica and alkali metals in wheat straw.

    PubMed

    Thompson, David N; Shaw, Peter G; Lacey, Jeffrey A

    2003-01-01

    Silica and alkali metals in wheat straw limit its use for bioenergy and gasification. Slag deposits occur via the eutectic melting of SiO2 with K2O, trapping chlorides at surfaces and causing corrosion. A minimum melting point of 950 degrees C is desirable, corresponding to an SiO2:K2O weight ratio of about 3:1. Mild chemical treatments were used to reduce Si, K, and Cl, while varying temperature, concentration, % solids, and time. Dilute acid was more effective at removing K and Cl, while dilute alkali was more effective for Si. Reduction of minerals in this manner may prove economical for increasing utilization of the straw for combustion or gasification.

  20. IUPAC-NIST Solubility Data Series. 79. Alkali and Alkaline Earth Metal Pseudohalides

    NASA Astrophysics Data System (ADS)

    Hála, Jiri

    2004-03-01

    This volume presents solubility data of azides, cyanides, cyanates, and thiocyanates of alkali metals, alkaline earth metals, and ammonium. Covered are binary and ternary systems in all solvents. No solubility data have been found for some of the compounds of alkali metals, alkaline metals, and ammonium. These include beryllium and magnesium azides, lithium, rubidium cesium, ammonium, and alkaline earth cyanates and cyanides, and beryllium thiocyanate. Likewise, no solubility data seem to exist for selenocyanates of the mentioned metals and ammonium. The literature has been covered up to the middle of 2001, and there was a great effort to have the literature survey as complete as possible. The few documents which remained unavailable to the editor, and could not be included in the volume, are listed in the Appendix. For some compounds it was not possible to show the Chemical Abstracts registry numbers since these have not been assigned. For this reason, the registry number index is incomplete.

  1. (abstract) Fundamental Mechanisms of Electrode Kinetics and Alkali Metal Atom Transport at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kisor, A.; Kikkert, S. K.

    1993-01-01

    The mechanisms of electrode kinetics and mass transport of alkali metal oxidation and alkali metal cation reduction at the solid electrolyte/porous electrode boundary as well as alkali metal transport through porous metal electrodes has important applications in optimizing device performance in alkali metal thermal to electric converter (AMTEC) cells which are high temperature, high current density electrochemical cells. Basic studies of these processes also affords the opportunity to investigate a very basic electrochemical reaction over a wide range of conditions; and a variety of mass transport modes at high temperatures via electrochemical techniques. The temperature range of these investigations covers 700K to 1240K; the alkali metal vapor pressures range from about 10(sup -2) to 10(sup 2) Pa; and electrodes studied have included Mo, W, Mo/Na(sub 2)MoO(sub 4), W/Na(sub 2)WO(sub 4), WPt(sub x), and WRh(sub x) (1.0 < x < 6.0 ) with Na at Na-beta'-alumina, and Mo with K at K-beta'-alumina. Both liquid metal/solid electrolyte/alkali metal vapor and alkali metal vapor/solid electrolyte/vapor cells have been used to characterize the reaction and transport processes. We have previously reported evidence of ionic, free molecular flow, and surface transport of sodium in several types of AMTEC electrodes.

  2. Alkali Halide Nanotubes: Structure and Stability

    PubMed Central

    Fernandez-Lima, Francisco A.; Henkes, Aline Verônica; da Silveira, Enio F.; Nascimento, Marco Antonio Chaer

    2013-01-01

    Accurate density functional theory (DFT) and coupled-cluster (CCSD) calculations on a series of (LiF)n=2,36 neutral clusters suggest that nanotube structures with hexagonal and octagonal transversal cross sections show stability equal to or greater than that of the typical cubic form of large LiF crystals. The nanotube stability was further corroborated by quantum dynamic calculations at room temperature. The fact that stable nanotube structures were also found for other alkali halides (e.g., NaCl and KBr) suggests that this geometry may be widely implemented in material sciences. PMID:24376901

  3. Cathode architectures for alkali metal / oxygen batteries

    DOEpatents

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  4. Intensity Scaling for Diode Pumped Alkali Lasers

    DTIC Science & Technology

    2012-01-01

    unphased diode lasers is absorbed in the near IR by atomic potassium, rubidium , or cesium. The gain cell for a DPAL system using a heat pipe design is...demonstrated linear scaling of a rubidium laser to 32 times threshold.3 In our present work, we explore scaling to pump in- tensities of >100kW/cm2. The...of output power. Each alkali atom in the laser medium may be required to cycle as many as 1010 pump photons per second. We demonstrated a rubidium

  5. High power diode pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.

    2008-05-01

    Diode pumped alkali lasers have developed rapidly since their first demonstration. These lasers offer a path to convert highly efficient, but relatively low brightness, laser diodes into a single high power, high brightness beam. General Atomics has been engaged in the development of DPALs with scalable architectures. We have examined different species and pump characteristics. We show that high absorption can be achieved even when the pump source bandwidth is several times the absorption bandwidth. In addition, we present experimental results for both potassium and rubidium systems pumped with a 0.2 nm bandwidth alexandrite laser. These data show slope efficiencies of 67% and 72% respectively.

  6. Electrodes For Alkali-Metal Thermoelectric Converters

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Wheeler, Bob L.; Jeffries-Nakamura, Barbara; Lamb, James L.; Bankston, C. Perry; Cole, Terry

    1989-01-01

    Combination of thin, porous electrode and overlying collector grid reduces internal resistance of alkali-metal thermoelectric converter cell. Low resistance of new electrode and grid boosts power density nearly to 1 W/cm2 of electrode area at typical operating temperatures of 1,000 to 1,300 K. Conductive grid encircles electrode film on alumina tube. Bus wire runs along tube to collect electrical current from grid. Such converters used to transform solar, nuclear, and waste heat into electric power.

  7. Synergy between cellulases and pectinases in the hydrolysis of hemp.

    PubMed

    Zhang, Junhua; Pakarinen, Annukka; Viikari, Liisa

    2013-02-01

    The impact of pectinases in the hydrolysis of fresh, steam-exploded and ensiled hemp was investigated and the synergy between cellulases, pectinases and xylanase in the hydrolysis was evaluated. About half; 59.3% and 46.1% of pectin in the steam-exploded and ensiled hemp, respectively, could be removed by a low dosage of pectinases used. Pectinases were more efficient than xylanase in the hydrolysis of fresh and ensiled hemp whereas xylanase showed higher hydrolytic efficiency than the pectinase preparation used in the hydrolysis of steam-exploded hemp. Clear synergistic action between cellulases and xylanase could be observed in the hydrolysis of steam-exploded hemp. Supplementation of pectinase resulted in clear synergism with cellulases in the hydrolysis of all hemp substrates. Highest hydrolysis yield of steam-exploded hemp was obtained in the hydrolysis with cellulases and xylanase. In the hydrolysis of ensiled hemp, the synergistic action between cellulases and pectinases was more obvious for efficient hydrolysis.

  8. Alkali sorber (RABSAM), September 1, 1990--August 30, 1991

    SciTech Connect

    Lee, S.H.D.; Swift, M.W.

    1991-01-01

    The objective of this work is to develop a regenerable activated-bauxite sorber alkali monitor that requires no high-temperature/high-pressure sampling line for the reliable in situ measurement of alkali-vapor concentration in the exhaust from the pressurized fluidized-bed combustion of coal. 11 refs., 2 figs., 1 tab.

  9. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    DOEpatents

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  10. Formation of lysinoalanine in egg white under alkali treatment.

    PubMed

    Zhao, Yan; Luo, Xuying; Li, Jianke; Xu, Mingsheng; Tu, Yonggang

    2016-03-01

    To investigate the formation mechanism of lysinoalanine (LAL) in eggs during the alkali treatment process, NaOH was used for the direct alkali treatment of egg white, ovalbumin, and amino acids; in addition, the amount of LAL formed during the alkali treatment process was measured. The results showed that the alkali treatment resulted in the formation of LAL in the egg white. The LAL content increased with increasing pH and temperature, with the LAL content first increasing and then leveling off with increasing time. The amount of LAL formed in the ovalbumin under the alkali treatment condition accounted for approximately 50.51% to 58.68% of the amount of LAL formed in the egg white. Thus, the LAL formed in the ovalbumin was the main source for the LAL in the egg white during the alkali treatment process. Under the alkali treatment condition, free L-serine, L-cysteine, and L-cystine reacted with L-lysine to form LAL; therefore, they are the precursor amino acids of LAL formed in eggs during the alkali treatment process.

  11. [Raman spectra of endospores of Bacillus subtilis by alkali stress].

    PubMed

    Dong, Rong; Lu, Ming-qian; Li, Feng; Shi, Gui-yu; Huang, Shu-shi

    2013-09-01

    To research the lethal mechanism of spores stressed by alkali, laser tweezers Raman spectroscopy (LTRS) combined with principal components analysis (PCA) was used to study the physiological process of single spore with alkali stress. The results showed that both spores and germinated spores had tolerance with alkali in a certain range, but the ability of spores was obviously lower than that of spores due to the release of their Ca2+ -DPA which plays a key role in spores resistance as well as spores resistance to many stresses; A small amount of Ca2+ -DPA of spores was observed to release after alkali stress, however, the behavior of release was different with the normal Ca2+ -DPA release behavior induced by L-alanine; The data before and after alkali stress of the spores and g. spores with PCA reflected that alkali mainly injured the membrane of spores, and alkali could be easily enter into the inner structure of spores to damage the structure of protein backbone and injure the nucleic acid of spores. We show that the alkali could result in the small amount of Ca2+ -DPA released by destroying the member channel of spores.

  12. Self-discharge in bimetallic cells containing alkali metal

    NASA Technical Reports Server (NTRS)

    Foster, M. S.; Hesson, J. C.; Shimotake, H.

    1969-01-01

    Theoretical analysis of thermally regenerative bimetallic cells with alkali metal anodes shows a relation between the current drawn and the rate of discharge under open-circuit conditions. The self-discharge rate of the cell is due to the dissolution and ionization of alkali metal atoms in the fused-salt electrolyte

  13. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, Wen Y.

    1984-01-01

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them (46, 53, 61, 69) with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide (63) to precipitate silicon constituents, the pH of the resultant solution is increased (81), preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated (84) to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process (86, 18, 17) where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  14. Superconductivity in alkali metal intercalated iron selenides

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  15. Durability of Alkali Activated Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  16. Anti-inflammatory and antioxidant effects of Tualang honey in alkali injury on the eyes of rabbits: Experimental animal study

    PubMed Central

    2011-01-01

    Background Alkali injury is one of the most devastating injuries to the eye. It results in permanent unilateral or bilateral visual impairment. Chemical eye injury is accompanied by an increase in the oxidative stress. Anti-inflammatory and antioxidant agents play a major role in the treatment of chemical eye injuries. The purpose of this study is to evaluate the anti-inflammatory (clinical and histopathological) and antioxidant effects of Tualang honey versus conventional treatment in alkali injury on the eyes of rabbits. Methods A preliminary study was carried out prior to the actual study to establish the alkali chemical injury on rabbit's cornea and we found that alkali chemical injury with 2 N NaOH showed severe clinical inflammatory features. In actual study, alkali injury with 2 N NaOH was induced in the right eye of 10 New Zealand White rabbits' cornea. The rabbits were divided into two groups, Group A was given conventional treatment and Group B was treated with both topical and oral Tualang honey. Clinical inflammatory features of the right eye were recorded at 12 hours, 24 hours, 72 hours, 5th day and 7th day post induction of alkali burn on the cornea. The histopathological inflammatory features of the right corneas of all rabbits were also evaluated on day-7. The level of total antioxidant status and lipid peroxidation products in the aqueous humour, vitreous humour and serum at day-7 were estimated biochemically. Fisher's Exact, Chi-Square and Mann-Whitney test were used to analyse the data. Results There was no statistically significant difference in clinical inflammatory features (p > 0.05) between honey treated and the conventional treated group at different times of examination. Histopathological examination of the cornea showed the number of polymorphonuclear leucocytes was below 50 for both groups (mild grade). There was also no significant difference in the level of total antioxidant status as well as lipid peroxidation products in aqueous

  17. Effects of alkali treatments on Ag nanowire transparent conductive films

    NASA Astrophysics Data System (ADS)

    Kim, Sunho; Kang, Jun-gu; Eom, Tae-yil; Moon, Bongjin; Lee, Hoo-Jeong

    2016-06-01

    In this study, we employ various alkali materials (alkali metals with different base strengths, and ammonia gas and solution) to improve the conductivity of silver nanowire (Ag NW)-networked films. The alkali treatment appears to remove the surface oxide and improve the conductivity. When applied with TiO2 nanoparticles, the treatment appears more effective as the alkalis gather around wire junctions and help them weld to each other via heat emitted from the reduction reaction. The ammonia solution treatment is found to be quick and aggressive, damaging the wires severely in the case of excessive treatment. On the other hand, the ammonia gas treatment seems much less aggressive and does not damage the wires even after a long exposure. The results of this study highlight the effectiveness of the alkali treatment in improving of the conductivity of Ag NW-networked transparent conductive films.

  18. Enzymatic saccharification of pretreated wheat straw: comparison of solids-recycling, sequential hydrolysis and batch hydrolysis.

    PubMed

    Pihlajaniemi, Ville; Sipponen, Satu; Sipponen, Mika H; Pastinen, Ossi; Laakso, Simo

    2014-02-01

    In the enzymatic hydrolysis of lignocellulose materials, the recycling of the solid residue has previously been considered within the context of enzyme recycling. In this study, a steady state investigation of a solids-recycling process was made with pretreated wheat straw and compared to sequential and batch hydrolysis at constant reaction times, substrate feed and liquid and enzyme consumption. Compared to batch hydrolysis, the recycling and sequential processes showed roughly equal hydrolysis yields, while the volumetric productivity was significantly increased. In the 72h process the improvement was 90% due to an increased reaction consistency, while the solids feed was 16% of the total process constituents. The improvement resulted primarily from product removal, which was equally efficient in solids-recycling and sequential hydrolysis processes. No evidence of accumulation of enzymes beyond the accumulation of the substrate was found in recycling. A mathematical model of solids-recycling was constructed, based on a geometrical series.

  19. Enzymatic accessibility of fiber hemp is enhanced by enzymatic or chemical removal of pectin.

    PubMed

    Pakarinen, A; Zhang, J; Brock, T; Maijala, P; Viikari, L

    2012-03-01

    Pectinolytic enzymes, steam explosion and alkaline treatment were used to assess the role of pectin for the accessibility of hydrolytic enzymes in the enzymatic hydrolysis of biomass. Hemp (Cannabis sativa L.), a potential energy crop especially in boreal climate with a low need of fertilizers, was used in the study either as untreated or anaerobically preserved raw material. Addition of pectinases increased the hydrolysis yield by 26%, 54%, and 64% from the theoretical carbohydrates of untreated, acid, and alkali-preserved materials, respectively. Steam explosion and hot alkali treatment increased the conversion of the total carbohydrates by 78% and 60%, respectively, compared to the untreated hemp. Elevated separation of cells within the hemp stalk tissues and an increased surface area was revealed after hot alkali or pectinase treatments, contributing to the increased conversion to sugars by commercial enzymes.

  20. Characterisation of water hyacinth with microwave-heated alkali pretreatment for enhanced enzymatic digestibility and hydrogen/methane fermentation.

    PubMed

    Lin, Richen; Cheng, Jun; Song, Wenlu; Ding, Lingkan; Xie, Binfei; Zhou, Junhu; Cen, Kefa

    2015-04-01

    Microwave-heated alkali pretreatment (MAP) was investigated to improve enzymatic digestibility and H2/CH4 production from water hyacinth. SEM revealed that MAP deconstructed the lignocellulose matrix and swelled the surfaces of water hyacinth. XRD indicated that MAP decreased the crystallinity index from 16.0 to 13.0 because of cellulose amorphisation. FTIR indicated that MAP effectively destroyed the lignin structure and disrupted the crystalline cellulose to reduce crystallinity. The reducing sugar yield of 0.296 g/gTVS was achieved at optimal hydrolysis conditions (microwave temperature = 190°C, time = 10 min, and cellulase dosage = 5 wt%). The sequentially fermentative hydrogen and methane yields from water hyacinth with MAP and enzymatic hydrolysis were increased to 63.9 and 172.5 mL/gTVS, respectively. The energy conversion efficiency (40.0%) in the two-stage hydrogen and methane cogeneration was lower than that (49.5%) in the one-stage methane production (237.4 mL/gTVS) from water hyacinth with MAP and enzymatic hydrolysis.

  1. 40 CFR 796.3500 - Hydrolysis as a function of pH at 25 °C.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., can undergo hydrolysis, which is one of the most common reactions controlling chemical stability and... under what conditions a substance will hydrolyze. Some of these reactions can occur so rapidly that... units. (i) “Hydrolysis” is defined as the reaction of an organic chemical with water, such that one...

  2. 40 CFR 796.3500 - Hydrolysis as a function of pH at 25 °C.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., can undergo hydrolysis, which is one of the most common reactions controlling chemical stability and... under what conditions a substance will hydrolyze. Some of these reactions can occur so rapidly that... units. (i) “Hydrolysis” is defined as the reaction of an organic chemical with water, such that one...

  3. 40 CFR 796.3500 - Hydrolysis as a function of pH at 25 °C.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., can undergo hydrolysis, which is one of the most common reactions controlling chemical stability and... under what conditions a substance will hydrolyze. Some of these reactions can occur so rapidly that... units. (i) “Hydrolysis” is defined as the reaction of an organic chemical with water, such that one...

  4. Biological pretreatment of corn stover with Phlebia brevispora NRRL-13108 for enhanced enzymatic hydrolysis and efficient ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological pretreatment of lignocellulosic biomass by white-rot fungus can represent a low-cost and eco-friendly alternative to harsh physical, chemical, or physico-chemical pretreatment methods to facilitate enzymatic hydrolysis. In this work, solid state cultivation of corn stover with Phlebia bre...

  5. Diverse, Alkali-Rich Igneous and Volcaniclastic Rocks Reflect a Metasomatised Mantle Beneath Gale Crater

    NASA Astrophysics Data System (ADS)

    Schmidt, M. E.; Baker, M. B.; Berger, J. A.; Fisk, M. R.; Gellert, R.; McLennan, S. M.; Newcombe, M. E.; Stolper, E. M.; Thompson, L. M.

    2014-12-01

    Although Curiosity landed in a sedimentary setting, geochemical compositions determined by Alpha Particle X-ray Spectrometer (APXS) and ChemCam suggest that major element concentrations of some rocks were little modified by chemical weathering, and in these cases, the bulk (>70%) of the crystalline components determined by ChemMin are igneous. Gale rocks can therefore largely preserve the composition of their igneous protoliths and provide insight into the crystalline basement exposed in the north crater rim. Four end-member compositions are recognized on the basis of APXS analyses. (1) The diverse, evolved Jake M class (n=12) of inferred igneous origin includes float blocks and cobbles. Jake M rocks are phonotephritic/mugearitic to trachyandesitic and characterized by low MgO contents (3.0-5.7 wt%) and high Al and alkalis, particularly Na2O (up to 7.35 wt%). (2) The Bathurst class of siltstones to coarse sandstones (n=13) occurs as dark-toned float and bedded outcrop and is basaltic to trachybasaltic, ranging to high K2O (up to 3.8 wt%). Alteration of the protolith(s) or during diagenesis may have affected this class. (3) The Darwin class of conglomerates to coarse sandstones (n=10) has high Na and Al, likely reflecting a sodic plagioclase-rich mineralogy, but with higher Fe than Jake M class (13.0-17.1 vs. 6.0-12.5 wt%). (4) The low alkali "normal" Mars basaltic composition is typified by the Portage soils (n=6) and the John Klein class (n=13; includes the Sheepbed mudstone). Some degree of mixing and/or contamination with this low alkali basaltic compositon has affected all APXS analyses. Overall, Gale rocks are strongly enriched in total alkalis (at the same MgO) relative to basaltic shergottites and many have higher K2O than igneous rocks analyzed by Spirit and Opportunity, suggesting that the mantle beneath Gale is alkali-rich (likely as a result of a metasomatic event) and that alkalis are heterogeneously distributed in the planet's interior.

  6. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  7. Oleuropein hydrolysis in natural green olives: Importance of the endogenous enzymes.

    PubMed

    Ramírez, Eva; Brenes, Manuel; García, Pedro; Medina, Eduardo; Romero, Concepción

    2016-09-01

    The bitter taste of olives is mainly caused by the phenolic compound named oleuropein and the mechanism of its hydrolysis during the processing of natural green olives was studied. First, a rapid chemical hydrolysis of oleuropein takes place at a high temperature of 40°C and at a low pH value of 2.8, but the chemical hydrolysis of the bitter compound is slow at the common range of pH for these olives (3.8-4.2). However, decarboxymethyl elenolic acid linked to hydroxytyrosol and hydroxytyrosol have been found in a high concentration during the elaboration of natural green olives. When olives were heated at 90°C for 10min before brining, these compounds are not formed. Hence, the debittering process in natural green olives is due to the activity of β-glucosidase and esterase during the first months of storage and then a slow chemical hydrolysis of oleuropein happens throughout storage time.

  8. Making War Work for Industry: The United Alkali Company's Central Laboratory During World War One.

    PubMed

    Reed, Peter

    2015-02-01

    The creation of the Central Laboratory immediately after the United Alkali Company (UAC) was formed in 1890, by amalgamating the Leblanc alkali works in Britain, brought high expectations of repositioning the company by replacing its obsolete Leblanc process plant and expanding its range of chemical products. By 1914, UAC had struggled with few exceptions to adopt new technologies and processes and was still reliant on the Leblanc process. From 1914, the Government would rely heavily on its contribution to the war effort. As a major heavy-chemical manufacturer, UAC produced chemicals for explosives and warfare gases, while also trying to maintain production of many essential chemicals including fertilisers for homeland consumption. UAC's wartime effort was led by the Central Laboratory, working closely with the recently established Engineer's Department to develop new process pathways, build new plant, adapt existing plant, and produce the contracted quantities, all as quickly as possible to meet the changing battlefield demands. This article explores how wartime conditions and demands provided the stimulus for the Central Laboratory's crucial R&D work during World War One.

  9. Chemically modified graphite for electrochemical cells

    DOEpatents

    Greinke, Ronald Alfred; Lewis, Irwin Charles

    1998-01-01

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (i) the electrode, (ii) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (iii) a counterelectrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes.

  10. Chemically modified graphite for electrochemical cells

    DOEpatents

    Greinke, R.A.; Lewis, I.C.

    1998-05-26

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (1) the electrode, (2) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (3) a counter electrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes. 3 figs.

  11. Electronic structure and stability of clusters, especially of alkali metals and carbon

    NASA Astrophysics Data System (ADS)

    March, N. H.

    1993-12-01

    The electronic structure of alkali metal atom clusters of various sizes is first discussed, using a spherically averaged pseudopotential model. The main technique employed is density functional theory, and a connection is established with predictions about dissociation energy from the theory of the inhomogeneous electron gas. This latter theory is then invoked explicitly to discuss the barrier to fission for doubly charged alkali metal atom clusters. In the case of asymmetric fission, comparison is made with experiment following the study of Garcias [F. Garcias, J.A. Alonso, J.M. Lopez and M. Barranco, Phys. Rev. B, 43 (1991) 9459], while for symmetric fission a connection is again made between fission barrier and concepts which follow from the general theory of the inhomogeneous electron gas. Finally, and more briefly, both density functional calculations and quantum-chemical studies of carbon clusters are referred to. After a summary of the work of Adamowicz on small linear C clusters [L. Adamowicz, J. Chem. Phys., 94 (1991) 1241], results on C 60 and its singly and doubly charged anions, and on (C 60) 2, are summarized, the potential relevance to alkali doped buckminsterfullerene superconductivity being emphasized as an important direction for future work.

  12. Alkali-aggregate reaction under the influence of deicing salts in the Hokuriku district, Japan

    SciTech Connect

    Katayama, Tetsuya . E-mail: katayamat@kge.co.jp; Tagami, Masahiko; Sarai, Yoshinori; Izumi, Satoshi; Hira, Toshikatsu

    2004-11-15

    Concrete cores taken from highway bridges and culverts undergoing alkali-silica reaction (ASR) were investigated petrographically by means of core scanning, point counting, polarizing microscopy, scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), electron-probe microanalysis with energy-dispersive spectrometry, in conjunction with wet chemical analyses and expansion tests. Field damage was roughly proportional to the content of andesite in the gravel aggregates due to the presence of highly reactive cristobalite and tridymite. Electron-probe microanalyzer analysis of unhydrated cement phases in the concrete revealed that the cement used had contained at least 0.5% to 1.0% alkali (Na{sub 2}Oeq) and that both the aggregates and the deicing salts had supplied part of the water-soluble alkali to concrete toward the threshold of producing ASR (Na{sub 2}O{sub eq} 3.0 kg/m{sup 3}). An accelerated concrete core expansion test (1 M NaOH, 80 deg. C) of the damaged structures mostly gave core expansions of >0.10% at 21 days (or >0.05% at 14 days), nearly comparable to those of a slow expansion test with saturated NaCl solution (50 deg. C, 91 days) which produced Cl-containing ASR gel.

  13. Bi-alkali antimonide photocathode growth: An X-ray diffraction study

    SciTech Connect

    Schubert, Susanne; Wong, Jared; Feng, Jun; Karkare, Siddharth; Padmore, Howard; Ruiz-Osés, Miguel; Smedley, John; Muller, Erik; Ding, Zihao; Gaowei, Mengjia; Attenkofer, Klaus; Liang, Xue; Xie, Junqi; Kühn, Julius

    2016-07-21

    Bi-alkali antimonide photocathodes are one of the best known sources of electrons for high current and/or high bunch charge applications like Energy Recovery Linacs or Free Electron Lasers. Despite their high quantum efficiency in visible light and low intrinsic emittance, the surface roughness of these photocathodes prohibits their use as low emittance cathodes in high accelerating gradient superconducting and normal conducting radio frequency photoguns and limits the minimum possible intrinsic emittance near the threshold. Also, the growth process for these materials is largely based on recipes obtained by trial and error and is very unreliable. In this paper, using X-ray diffraction, we investigate the different structural and chemical changes that take place during the growth process of the bi-alkali antimonide material K2CsSb. Our measurements give us a deeper understanding of the growth process of alkali-antimonide photocathodes allowing us to optimize it with the goal of minimizing the surface roughness to preserve the intrinsic emittance at high electric fields and increasing its reproducibility.

  14. Bi-alkali antimonide photocathode growth: An X-ray diffraction study

    SciTech Connect

    Schubert, Susanne; Wong, Jared; Feng, Jun; Karkare, Siddharth; Padmore, Howard; Ruiz-Osés, Miguel; Smedley, John; Muller, Erik; Ding, Zihao; Gaowei, Mengjia; Attenkofer, Klaus; Liang, Xue; Xie, Junqi; Kühn, Julius

    2016-07-21

    Bi-alkali antimonide photocathodes are one of the best known sources of electrons for high current and/or high bunch charge applications like Energy Recovery Linacs or Free Electron Lasers. Despite their high quantum efficiency in visible light and low intrinsic emittance, the surface roughness of these photocathodes prohibits their use as low emittance cathodes in high accelerating gradient superconducting and normal conducting radio frequency photoguns and limits the minimum possible intrinsic emittance near the threshold. Also, the growth process for these materials is largely based on recipes obtained by trial and error and is very unreliable. In this paper, using X-ray diffraction, we investigate the different structural and chemical changes that take place during the growth process of the bi-alkali antimonide material K2CsSb. Our measurements give us a deeper understanding of the growth process of alkali-antimonide photocathodes allowing us to optimize it with the goal of minimizing the surface roughness to preserve the intrinsic emittance at high electric fields and increasing its reproducibility.

  15. Subtask 6.6 - SiAION Coatings for Alkali-Resistant Silicon Nitride. Topical report

    SciTech Connect

    1997-02-25

    The efficiency of a gas turbine can be improved by increasing operating temperature. Construction materials should both meet high strength requirements and exhibit hot alkali corrosion resistance. Structural ceramics based on silicon nitride are promising candidates for high temperature engineering applications because of their high strength and good resistance to corrosion. Their performance varies significantly with the mechanical properties of boundary phases which, in turn, depend on their chemical composition, thickness of the amorphous phase, and the deformation process. To make silicon nitride ceramics tough, SiAlON ceramics were developed with controlled crystallization of the amorphous grain boundary phase. Crystallization of the grain boundary glass improves the high temperature mechanical properties of silicon nitride ceramics. Thus, the knowledge of silicon oxynitride ceramics corrosion behavior in Na{sub 2}SO{sub 4} becomes important for engineers in designing appropriate part for turbines working at high temperatures. So far there has been no report concerning alkali attack on SiAlON ceramics in the presence of SO{sub 2} and chlorine in flue gas. The goal of this project was to investigate alkali corrosion of SiAlON-Y structural ceramics under combustion conditions in the presence of sodium derived components.

  16. Alkali subhalides: high-pressure stability and interplay between metallic and ionic bonds.

    PubMed

    Saleh, G; Oganov, A R

    2016-01-28

    The application of high pressure (hundreds of gigapascals) to materials, besides modifying their properties, changes dramatically their reactivity. Consequently, new compounds are formed, which violate the chemical paradigms known to date. In fact, it was recently discovered (Zhang et al., Science, 2013) that sodium subchlorides (NaxCl, x > 1) become stable at high pressure. In this work, we carry out a thorough study of these compounds as well as of other alkali subhalides by means of evolutionary crystal structure prediction calculations combined with an in-depth analysis of their crystal and electronic structures. The results of our investigation are threefold. We present an updated phase diagram of NaxCl, including one new compound (Na4Cl3) and two previously undiscovered phases of Na3Cl. We demonstrate the appearance of remarkable features in the electronic structure of sodium subchlorides, such as chlorine atoms acquiring a -2 oxidation state. Most importantly, we derive a model which enables one to rationalize the stability of alkali subhalides at high pressure. The predictive ability of our model was validated by the results of crystal structure prediction calculations we carried out on alkali subhalides A3Y (A = Li, Na, K; Y = F, Cl, Br). Moreover, we show how the stability of recently reported high-pressure compounds can be rationalized on the basis of the insights gained in the present study.

  17. Alkali oxide-tantalum oxide and alkali oxide-niobium oxide ionic conductors

    NASA Technical Reports Server (NTRS)

    Roth, R. S.; Parker, H. S.; Brower, W. S.; Minor, D.

    1974-01-01

    A search was made for new cationic conducting phases in alkali-tantalate and niobate systems. The phase equilibrium diagrams were constructed for the six binary systems Nb2O5-LiNbO3, Nb2O5-NaNbO3, Nb2O5-KNbO3, Ta2O5-NaTaO3, Ta2O5-LiTaO3, and Ta2O5-KTaO3. Various other binary and ternary systems were also examined. Pellets of nineteen phases were evaluated (by the sponsoring agency) by dielectric loss measurements. Attempts were made to grow large crystals of eight different phases. The system Ta2O5-KTaO3 contains at least three phases which showed peaks in dielectric loss vs. temperature. All three contain structures related to the tungsten bronzes with alkali ions in non-stoichiometric crystallographic positions.

  18. Contribution of hydrolysis in the abiotic attenuation of RDX and HMX in coastal waters.

    PubMed

    Monteil-Rivera, Fanny; Paquet, Louise; Giroux, Romain; Hawari, Jalal

    2008-01-01

    Sinking of military ships, dumping of munitions during the two World Wars, and military training have resulted in the undersea deposition of numerous unexploded ordnances (UXOs). Leaching of energetic compounds such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from these UXOs may cause adverse ecological effects so that the long-term fate of these chemicals in the sea should be known. The present study assesses the contribution of alkaline hydrolysis into the natural attenuation of RDX and HMX in coastal waters. Alkaline hydrolysis rates were shown to be unaffected by the presence of sodium chloride, the most common component in marine waters. Kinetic parameters (E(a), ln A, k(2)) quantified for the alkaline hydrolysis of RDX and HMX in deionized water (30-50 degrees C, pH 10-12) agreed relatively well with abiotic degradation rates determined in sterilized natural coastal waters (50 and 60 degrees C, variable salinity) even if the latter were generally slightly faster than the former. Furthermore, similar products (HCHO, NO(2)(-), O(2)NNHCH(2)NHCHO) were obtained on alkaline hydrolysis in deionized water and abiotic degradation in coastal waters. These two findings suggested that degradation of nitramines in sterilized natural coastal waters, away from light, was mainly governed by alkaline hydrolysis. Kinetic calculations using the present parameters showed that alkaline hydrolysis of RDX and HMX in marine waters at 10 degrees C would respectively take 112 +/- 10 and 2408 +/- 217 yr to be completed (99.0%). We concluded that under natural conditions hydrolysis should not contribute significantly to the natural attenuation of HMX in coastal waters whereas it could play an active role in the natural attenuation of RDX.

  19. Hydrolysis of iodine: equilibria at high temperatures

    SciTech Connect

    Palmer, D.A.; Ramette, R.W.; Mesmer, R.E.

    1984-01-01

    The hydrolysis (or disproportionation) of molecular iodine to form iodate and iodide ions has been studied by emf measurements over the temperature range, 3.8/sup 0/ to 209.0/sup 0/C. The interpretation of these results required a knowledge of the formation constant for triiodide ion and the acid dissociation constant of iodic acid, both of which were measured as a function of temperature. The resulting thermodynamic data have been incorporated into a general computer model describing the hydrolysis equilibria of iodine as a function of initial concentration, pH and temperature.

  20. Enzymatic hydrolysis of organic phosphorus in swine manure and soil.

    PubMed

    He, Zhongqi; Griffin, Timothy S; Honeycutt, C Wayne

    2004-01-01

    Organic phosphorus (Po) exists in many chemical forms that differ in their susceptibility to hydrolysis and, therefore, bioavailability to plants and microorganisms. Identification and quantification of these forms may significantly contribute to effective agricultural P management. Phosphatases catalyze reactions that release orthophosphate (Pi) from Po compounds. Alkaline phosphatase in tris-HCl buffer (pH 9.0), wheat (Triticum aestivum L.) phytase in potassium acetate buffer (pH 5.0), and nuclease P1 in potassium acetate buffer (pH 5.0) can be used to classify and quantify Po in animal manure. Background error associated with different pH and buffer systems is observed. In this study, we improved the enzymatic hydrolysis approach and tested its applicability for investigating Po in soils, recognizing that soil and manure differ in numerous physicochemical properties. We applied (i) acid phosphatase from potato (Solanum tuberosum L.), (ii) acid phosphatases from both potato and wheat germ, and (iii) both enzymes plus nuclease P1 to identify and quantify simple labile monoester P, phytate (myo-inositol hexakis phosphate)-like P, and DNA-like P, respectively, in a single pH/buffer system (100 mM sodium acetate, pH 5.0). This hydrolysis procedure released Po in sequentially extracted H2O, NaHCO3, and NaOH fractions of swine (Sus scrofa) manure, and of three sandy loam soils. Further refinement of the approach may provide a universal tool for evaluating hydrolyzable Po from a wide range of sources.

  1. Ionic liquids-based hydrolysis of Chlorella biomass for fermentable sugars.

    PubMed

    Zhou, Na; Zhang, Yimin; Gong, Xiaowu; Wang, Qinhong; Ma, Yanhe

    2012-08-01

    An ionic liquids-based chemical hydrolysis strategy was developed to obtain high-yielding soluble sugars from Chlorella biomass. Initial ionic liquids dissolution and subsequently HCl catalyzed hydrolysis could dissolve 75.34% of Chlorella biomass and release 88.02% of total sugars from Chlorella biomass. The amount of HCl loading was 7 wt.% relative to Chlorella biomass weight, which was much lower (only 14.6%) than that in HCl/MgCl(2)-catalyzed system with similar sugars release (Zhou et al., 2011). Ionic liquids in the hydrolysates were recycled and fermentable sugars were evaluated by converting to bioethanol after separated by ion-exclusion chromatography. This ionic liquids-based hydrolysis strategy showed the great potential to produce fermentable sugars from algal biomass.

  2. Mutagenesis of organophosphorus hydrolase to enhance hydrolysis of the nerve agent VX.

    PubMed

    Gopal, S; Rastogi, V; Ashman, W; Mulbry, W

    2000-12-20

    Organophosphorus hydrolase (OPH) is capable of hydrolyzing a wide variety of organophosphorus pesticides and chemical warfare agents. However, the hydrolytic activity of OPH against the warfare agent VX is less than 0.1% relative to its activity against parathion and paraoxon. Based on the crystal structure of OPH and the similarities it shares with acetylcholinesterase, eight OPH mutants were constructed with the goal of increasing OPH activity toward VX. The activities of crude extracts from these mutants were measured using VX, demeton-S methyl, diisopropylfluoro-phosphate, ethyl parathion, paraoxon, and EPN as substrates. One mutant (L136Y) displayed a 33% increase in the relative VX hydrolysis rate compared to wild type enzyme. The other seven mutations resulted in 55-76% decreases in the relative rates of VX hydrolysis. There was no apparent relationship between the hydrolysis rates of VX and the rates of the other organophosphorus compounds tested.

  3. Processing of micro-nano bacterial cellulose with hydrolysis method as a reinforcing bioplastic

    NASA Astrophysics Data System (ADS)

    Maryam, Maryam; Dedy, Rahmad; Yunizurwan, Yunizurwan

    2017-01-01

    Nanotechnology is the ability to create and manipulate atoms and molecules on the smallest of scales. Their size allows them to exhibit novel and significantly improved physical, chemical, biological properties, phenomena, and processes because of their size. The purpose of this research is obtaining micro-nano bacterial cellulose as reinforcing bioplastics. Bacterial cellulose (BC) was made from coconut water for two weeks. BC was dried and grinded. Bacterial cellulose was given purification process with NaOH 5% for 6 hours. Making the micro-nano bacterial cellulose with hydrolysis method. Hydrolysis process with hydrochloric acid (HCl) at the conditions 3,5M, 55°C, 6 hours. Drying process used spray dryer. The hydrolysis process was obtained bacterial cellulose with ±7 μm. The addition 2% micro-nano bacterial cellulose as reinforcing in bioplastics composite can improve the physical characteristics.

  4. Brown algae hydrolysis in 1-n-butyl-3-methylimidazolium chloride with mineral acid catalyst system.

    PubMed

    Malihan, Lenny B; Nisola, Grace M; Chung, Wook-Jin

    2012-08-01

    The amenability of three brown algal species, Sargassum fulvellum, Laminaria japonica and Undaria pinnatifida, to hydrolysis were investigated using the ionic liquid (IL), 1-n-butyl-3-methylimidazolium chloride ([BMIM]Cl). Compositional analyses of the brown algae reveal that sufficient amounts of sugars (15.5-29.4 wt.%) can be recovered. Results from hydrolysis experiments show that careful selection of the type of mineral acid as catalyst and control of acid loading could maximize the recovery of sugars. Optimal reaction time and temperature were determined from the kinetic studies on the sequential reducing sugar (TRS) formation and degradation. Optimal reaction times were determined based on the extent of furfurals formation as TRS degradation products. X-ray diffraction and environmental scanning electron microscopy confirmed the suitability of [BMIM]Cl as solvent for the hydrolysis of the three brown algae. Overall results show the potential of brown algae as renewable energy resources for the production of valuable chemicals and biofuels.

  5. Phosphate monoester hydrolysis by trinuclear alkaline phosphatase; DFT study of transition States and reaction mechanism.

    PubMed

    Chen, Shi-Lu; Liao, Rong-Zhen

    2014-08-04

    Alkaline phosphatase (AP) is a trinuclear metalloenzyme that catalyzes the hydrolysis of a broad range of phosphate monoesters to form inorganic phosphate and alcohol (or phenol). In this paper, by using density functional theory with a model based on a crystal structure, the AP-catalyzed hydrolysis of phosphate monoesters is investigated by calculating two substrates, that is, methyl and p-nitrophenyl phosphates, which represent alkyl and aryl phosphates, respectively. The calculations confirm that the AP reaction employs a "ping-pong" mechanism involving two chemical displacement steps, that is, the displacement of the substrate leaving group by a Ser102 alkoxide and the hydrolysis of the phosphoseryl intermediate by a Zn2-bound hydroxide. Both displacement steps proceed via a concerted associative pathway no matter which substrate is used. Other mechanistic aspects are also studied. Comparison of our calculations with linear free energy relationships experiments shows good agreement.

  6. Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis.

    PubMed

    Wang, Lushan; Zhang, Yuzhong; Gao, Peiji; Shi, Dongxia; Liu, Hongwen; Gao, Hongjun

    2006-02-20

    An extended enzymatic hydrolysis of cotton fibers by crude cellulase from Trichoderma pseudokoningii S-38 is described with characterization of both the enzyme changes of activities and cellulose structure. The hydrolysis rates declined drastically during the early stage and then slowly and steadily throughout the whole hydrolysis process the same trend could be seen during the following re-hydrolysis process. Morphological and structural changes to the fibers, such as swelling, frequent surface erosion, and variation in the packing and orientation of microfibrils, were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Observation of X-ray diffraction and IR spectra suggests that the hydrolysis process results in a gradual increase in the relative intensity of the hydrogen bond network, and a gradual decrease in the apparent crystal size of cellulose. The I(alpha) crystal phase was hydrolyzed more easily than was the I(beta) crystal phase. Apart from the inactivation of CBHs activity, changes in the packing and arrangement of microfibrils and the structural heterogeneity of cellulose during hydrolysis could be responsible for the reduction in the rate of reaction, especially in its later stages. The results indicate that the enzymatic hydrolysis of cellulose occurs on the outer layer of the fiber surface and that, following this, the process continues in a sub-layer manner.

  7. Heat pipes containing alkali metal working fluid

    NASA Technical Reports Server (NTRS)

    Morris, J. F. (Inventor)

    1981-01-01

    A technique for improving high temperature evaporation-condensation heat-transfer devices which have important and unique advantage in terrestrial and space energy processing is described. The device is in the form of a heat pipe comprising a sealed container or envelope which contains a capillary wick. The temperature of one end of the heat pipe is raised by the input of heat from an external heat source which is extremely hot and corrosive. A working fluid of a corrosive alkali metal, such as lithium, sodium, or potassium transfers this heat to a heat receiver remote from the heat source. The container and wick are fabricated from a superalloy containing a small percentage of a corrosion inhibiting or gettering element. Lanthanum, scandium, yttrium, thorium, and hafnium are utilized as the alloying metal.

  8. Volcanic Origin of Alkali Halides on Io

    NASA Technical Reports Server (NTRS)

    Schaefer, L.; Fegley, B., Jr.

    2003-01-01

    The recent observation of NaCl (gas) on Io confirms our earlier prediction that NaCl is produced volcanically. Here we extend our calculations by modeling thermochemical equilibrium of O, S, Li, Na, K, Rb, Cs, F, Cl, Br, and I as a function of temperature and pressure in a Pele-like volcanic gas with O/S/Na/Cl/K = 1.518/1/0.05/0.04/0.005 and CI chondritic ratios of the other (as yet unobserved) alkalis and halogens. For reference, the nominal temperature and pressure for Pele is 1760 plus or minus 210 K and 0.01 bars based on Galileo data and modeling.

  9. Ionic alkali halide XUV laser feasibility study

    SciTech Connect

    Yang, T.T.; Gylys, V.T.; Bower, R.D.; Harris, D.G.; Blauer, J.A.; Turner, C.E.; Hindy, R.N.

    1989-11-10

    The objective of this work is to assess the feasibility of a select set of ionic alkali halide XUV laser concepts by obtaining the relevant kinetic and spectroscopic parameters required for a proof-of-principle and conceptual design. The proposed lasers operate in the 80--200 nm spectral region and do not require input from outside radiation sources for their operation. Frequency up-conversion and frequency mixing techniques and therefore not considered in the work to be described. An experimental and theoretical study of a new type of laser operating in the extreme ultraviolet wavelength region has been conducted. The lasing species are singly ionized alkali halide molecules such as Rb{sup 2+}F{sub {minus}}, Rb{sup 2+}Br{sup {minus}} and Cs{sup 2+}F{sup {minus}}. These species are similar in electronic structure to the rare gas halide excimers, such as XeF and Krf, except that the ionic molecules emit at wavelengths of 80--200 nm, much shorter than the conventional rare-gas halide excimer laser. The radiative lifetime of these molecules are typically near 1 ns, which is about an order of magnitude shorter than that for rare-gas halide systems. The values of the cross section for stimulated emission are on the order of 1 {times} 10{sup {minus}16}cm{sup 2}. Because of the fundamental similarity to existing UV lasers, these systems show promise as a high power, efficient XUV lasers. 55 refs., 50 figs., 5 tabs.

  10. Alkali elemental and potassium isotopic compositions of Semarkona chondrules

    USGS Publications Warehouse

    Alexander, C.M. O'D.; Grossman, J.N.

    2005-01-01

    We report measurements of K isotope ratios in 28 Semarkona chondrules with a wide range of petrologic types and bulk compositions as well as the compositions of CPX-mesostasis pairs in 17 type I Semarkona chondrules, including two chondrules with radial alkali zonation and 19 type II chondrules. Despite the wide range in K/Al ratios, no systematic variations in K isotopic compositions were found. Semarkona chondrules do not record a simple history of Rayleigh-type loss of K. Experimentally determined evaporation rates suggest that considerable alkali evaporation would have occurred during chondrule formation. Nevertheless, based on Na CPX-mesostasis distribution coefficients, the alkali contents of the cores of most chondrules in Semarkona were probably established at the time of final crystallization. However, Na CPX-mesostasis distribution coefficients also show that alkali zonation in type I Semarkona chondrules was produced by entry of alkalis after solidification, probably during parent body alteration. This alkali metasomatism may have gone to completion in some chondrules. Our preferred explanation for the lack of systematic isotopic enrichments, even in alkali depleted type I chondrule cores, is that they exchanged with the ambient gas as they cooled. ?? The Meteoritical Society, 2005.

  11. Controlled in-situ dissolution of an alkali metal

    DOEpatents

    Jones, Jeffrey Donald; Dooley, Kirk John; Tolman, David Donald

    2012-09-11

    A method for the controllable dissolution of one or more alkali metals from a vessel containing a one or more alkali metals and/or one or more partially passivated alkali metals. The vessel preferably comprising a sodium, NaK or other alkali metal-cooled nuclear reactor that has been used. The alkali metal, preferably sodium, potassium or a combination thereof, in the vessel is exposed to a treatment liquid, preferably an acidic liquid, more preferably citric acid. Preferably, the treatment liquid is maintained in continuous motion relative to any surface of unreacted alkali metal with which the treatment liquid is in contact. The treatment liquid is preferably pumped into the vessel containing the one or more alkali metals and the resulting fluid is extracted and optionally further processed. Preferably, the resulting off-gases are processed by an off-gas treatment system and the resulting liquids are processed by a liquid disposal system. In one preferred embodiment, an inert gas is pumped into the vessel along with the treatment liquid.

  12. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    DOE PAGES

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; ...

    2015-10-14

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlatemore » with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. Moreover, it was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.« less

  13. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    SciTech Connect

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; Park, Sunkyu; Kim, Seong H.

    2015-10-14

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlate with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. Moreover, it was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.

  14. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    PubMed Central

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; Park, Sunkyu; Kim, Seong H.

    2015-01-01

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlate with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. It was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component. PMID:26463274

  15. Modeling enzymatic hydrolysis of lignocellulosic substrates using confocal fluorescence microscopy I: filter paper cellulose.

    PubMed

    Luterbacher, Jeremy S; Moran-Mirabal, Jose M; Burkholder, Eric W; Walker, Larry P

    2015-01-01

    Enzymatic hydrolysis is one of the critical steps in depolymerizing lignocellulosic biomass into fermentable sugars for further upgrading into fuels and/or chemicals. However, many studies still rely on empirical trends to optimize enzymatic reactions. An improved understanding of enzymatic hydrolysis could allow research efforts to follow a rational design guided by an appropriate theoretical framework. In this study, we present a method to image cellulosic substrates with complex three-dimensional structure, such as filter paper, undergoing hydrolysis under conditions relevant to industrial saccharification processes (i.e., temperature of 50°C, using commercial cellulolytic cocktails). Fluorescence intensities resulting from confocal images were used to estimate parameters for a diffusion and reaction model. Furthermore, the observation of a relatively constant bound enzyme fluorescence signal throughout hydrolysis supported our modeling assumption regarding the structure of biomass during hydrolysis. The observed behavior suggests that pore evolution can be modeled as widening of infinitely long slits. The resulting model accurately predicts the concentrations of soluble carbohydrates obtained from independent saccharification experiments conducted in bulk, demonstrating its relevance to biomass conversion work.

  16. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    NASA Astrophysics Data System (ADS)

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; Park, Sunkyu; Kim, Seong H.

    2015-10-01

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlate with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. It was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.

  17. Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology.

    PubMed

    Canettieri, Eliana Vieira; de Moraes Rocha, George Jackson; de Carvalho, João Andrade; de Almeida e Silva, João Batista

    2007-01-01

    Biotechnological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide fraction into monomeric sugars. Hydrolysis can be performed enzymatically and with dilute or concentrate mineral acids. The present study used dilute sulfuric acid as a catalyst for hydrolysis of Eucalyptus grandis residue. The purpose of this paper was to optimize the hydrolysis process in a 1.4 l pilot-scale reactor and investigate the effects of the acid concentration, temperature and residue/acid solution ratio on the hemicellulose removal and consequently on the production of sugars (xylose, glucose and arabinose) as well as on the formation of by-products (furfural, 5-hydroxymethylfurfural and acetic acid). This study was based on a model composition corresponding to a 2(3) orthogonal factorial design and employed the response surface methodology (RSM) to optimize the hydrolysis conditions, aiming to attain maximum xylose extraction from hemicellulose of residue. The considered optimum conditions were: H(2)SO(4) concentration of 0.65%, temperature of 157 degrees C and residue/acid solution ratio of 1/8.6 with a reaction time of 20 min. Under these conditions, 79.6% of the total xylose was removed and the hydrolysate contained 1.65 g/l glucose, 13.65 g/l xylose, 1.55 g/l arabinose, 3.10 g/l acetic acid, 1.23 g/l furfural and 0.20 g/l 5-hydroxymethylfurfural.

  18. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis.

    PubMed

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M; Park, Sunkyu; Kim, Seong H

    2015-10-14

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples--Avicel, bleached softwood, and bacterial cellulose--to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlate with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. It was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.

  19. SO₃H-functionalized acidic ionic liquids as catalysts for the hydrolysis of cellulose.

    PubMed

    Liu, Yuanyuan; Xiao, Wenwen; Xia, Shuqian; Ma, Peisheng

    2013-01-30

    The conversion of cellulose into valuable chemicals to deal with the depletion of fossil fuel has got much attention. Completing the hydrolysis of cellulose under mild conditions is the key step. In this study, six kinds of SO(3)H-functionalized acidic ionic liquids were used as acid catalyst to promote the hydrolysis of cellulose in 1-butyl-3-methylimidazolium chloride ([BMIM]Cl). All of them were efficient for the hydrolysis of cellulose, with the maximum total reducing sugars (TRS) yields over 83% at 100 °C. Acidic ionic liquids with analogous structures showed similar catalytic activities. Triethyl-(3-sulfo-propyl)-ammonium hydrogen sulfate (IL-5 in this study) was the optimum ionic liquid for cellulose hydrolysis, with the maximum TRS yield at 100 °C up to 99% when the dosage used was 0.2g. In addition, the water in [BMIM]Cl had negative effect on cellulose hydrolysis. Therefore, controlling the content of water in a comparatively low level is quite necessary.

  20. Feasibility of reusing the black liquor for enzymatic hydrolysis and ethanol fermentation.

    PubMed

    Wang, Wen; Chen, Xiaoyan; Tan, Xuesong; Wang, Qiong; Liu, Yunyun; He, Minchao; Yu, Qiang; Qi, Wei; Luo, Yu; Zhuang, Xinshu; Yuan, Zhenhong

    2017-03-01

    The black liquor (BL) generated in the alkaline pretreatment process is usually thought as the environmental pollutant. This study found that the pure alkaline lignin hardly inhibited the enzymatic hydrolysis of cellulose (EHC), which led to the investigation on the feasibility of reusing BL as the buffer via pH adjustment for the subsequent enzymatic hydrolysis and fermentation. The pH value of BL was adjusted from 13.23 to 4.80 with acetic acid, and the alkaline lignin was partially precipitated. It deposited on the surface of cellulose and negatively influenced the EHC via blocking the access of cellulase to cellulose and adsorbing cellulase. The supernatant separated from the acidified BL scarcely affected the EHC, but inhibited the ethanol fermentation. The 4-times diluted supernatant and the last-time waste wash water of the alkali-treated sugarcane bagasse didn't inhibit the EHC and ethanol production. This work gives a clue of saving water for alkaline pretreatment.

  1. Near atomically smooth alkali antimonide photocathode thin films

    NASA Astrophysics Data System (ADS)

    Feng, Jun; Karkare, Siddharth; Nasiatka, James; Schubert, Susanne; Smedley, John; Padmore, Howard

    2017-01-01

    Nano-roughness is one of the major factors degrading the emittance of electron beams that can be generated by high efficiency photocathodes, such as the thermally reacted alkali antimonide thin films. In this paper, we demonstrate a co-deposition based method for producing alkali antimonide cathodes that produce near atomic smoothness with high reproducibility. We calculate the effect of the surface roughness on the emittance and show that such smooth cathode surfaces are essential for operation of alkali antimonide cathodes in high field, low emittance radio frequency electron guns and to obtain ultracold electrons for ultrafast electron diffraction applications.

  2. Increasing Class C fly ash reduces alkali silica reactivity

    SciTech Connect

    Hicks, J.K.

    2007-07-01

    Contrary to earlier studies, it has been found that incremental additions of Class C fly ash do reduce alkali silica reactivity (ASR), in highly reactive, high alkali concrete mixes. AST can be further reduced by substituting 5% metakaolin or silica fume for the aggregate in concrete mixes with high (more than 30%) Class C fly ash substitution. The paper reports results of studies using Class C fly ash from the Labadie Station plant in Missouri which typically has between 1.3 and 1.45% available alkalis by ASTM C311. 7 figs.

  3. Control of alkali species in gasification systems: Final report

    SciTech Connect

    Turn, S.; Kinoshita, C.; Ishimura, D. Zhou, J.; Hiraki, T.; Masutani, S.

    2000-07-13

    Gas-phase alkali metal compounds contribute to fouling, slagging, corrosion, and agglomeration problems in energy conversion facilities. One mitigation strategy applicable at high temperature is to pass the gas stream through a fixed bed sorbent or getter material, which preferentially absorbs alkali via physical adsorption or chemisorption. This report presents results of an experimental investigation of high-temperature alkali removal from a hot filtered gasifier product gas stream using a packed bed of sorbent material. Two getter materials, activated bauxite and emathlite, were tested at two levels of space time by using two interchangeable reactors of different internal diameters. The effect of getter particle size was also investigated.

  4. Electrochemical cell utilizing molten alkali metal electrode-reactant

    DOEpatents

    Virkar, Anil V.; Miller, Gerald R.

    1983-11-04

    An improved electrochemical cell comprising an additive-modified molten alkali metal electrode-reactant and/or electrolyte is disclosed. Various electrochemical cells employing a molten alkali metal, e.g., sodium, electrode in contact with a cationically conductive ceramic membrane experience a lower resistance and a lower temperature coefficient of resistance whenever small amounts of selenium are present at the interface of the electrolyte and the molten alkali metal. Further, cells having small amounts of selenium present at the electrolyte-molten metal interface exhibit less degradation of the electrolyte under long term cycling conditions.

  5. Experiments on chemically enhanced immiscible fluid displacements

    NASA Astrophysics Data System (ADS)

    Soori, Tejaswi; Ward, Thomas

    2016-11-01

    This talk focuses on experiments conducted by displacing a vegetable oil within a capillary tube (diameter < 1 mm) using an aqueous alkali solution. Estimates of the residual film were measured as a function of Reynolds (Re), viscous Atwood (At) and capillary (Ca) numbers. The pendant drop method was used to measure surface tension of the aqueous alkali solutions. We observed a decrease in surface tension for an increase in alkali concentration, which beyond a critical concentration forms a stable micro-emulsion. We estimate the shear viscosity of the emulsion as a function of alkali and aqueous/oil concentrations. Separately we attempt to measure the average bulk diffusion coefficient of the emulsion in both phases which is necessary to estimate the Péclet number (Pé) and subsequent mass transport phenomena. American Chemical Society Petroleum Research Fund.

  6. Monitoring enzymatic ATP hydrolysis by EPR spectroscopy.

    PubMed

    Hacker, Stephan M; Hintze, Christian; Marx, Andreas; Drescher, Malte

    2014-07-14

    An adenosine triphosphate (ATP) analogue modified with two nitroxide radicals is developed and employed to study its enzymatic hydrolysis by electron paramagnetic resonance spectroscopy. For this application, we demonstrate that EPR holds the potential to complement fluorogenic substrate analogues in monitoring enzymatic activity.

  7. Thioglycoside hydrolysis catalyzed by {beta}-glucosidase

    SciTech Connect

    Shen Hong; Byers, Larry D.

    2007-10-26

    Sweet almond {beta}-glucosidase (EC 3.2.1.21) has been shown to have significant thioglycohydrolase activity. While the K{sub m} values for the S- and O-glycosides are similar, the k{sub cat} values are about 1000-times lower for the S-glycosides. Remarkably, the pH-profile for k{sub cat}/K{sub m} for hydrolysis of p-nitrophenyl thioglucoside (pNPSG) shows the identical dependence on a deprotonated carboxylate (pK{sub a} 4.5) and a protonated group (pK{sub a} 6.7) as does the pH-profile for hydrolysis of the corresponding O-glycoside. Not surprisingly, in spite of the requirement for the presence of this protonated group in catalytically active {beta}-glucosidase, thioglucoside hydrolysis does not involve general acid catalysis. There is no solvent kinetic isotope effect on the enzyme-catalyzed hydrolysis of pNPSG.

  8. Phosphatase hydrolysis of organic phosphorus compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphatases are diverse groups of enzymes that deserve special attention because of the significant roles they play in mineralizing organic phosphorus (P) into inorganic available form. For getting more insight on the enzymatically hydrolysis of organic P, in this work, we compared the catalytic pa...

  9. Optimization of dilute acid hydrolysis of Enteromorpha

    NASA Astrophysics Data System (ADS)

    Feng, Dawei; Liu, Haiyan; Li, Fuchao; Jiang, Peng; Qin, Song

    2011-11-01

    Acid hydrolysis is a simple and direct way to hydrolyze polysaccharides in biomass into fermentable sugars. To produce fermentable sugars effectively and economically for fuel ethanol, we have investigated the hydrolysis of Enteromorpha using acids that are typically used to hydrolyze biomass: H2SO4, HCl, H3PO4 and C4H4O4 (maleic acid). 5%(w/w) Enteromorpha biomass was treated for different times (30, 60, and 90 min) and with different acid concentrations (0.6, 1.0, 1.4, 1.8, and 2.2%, w/w) at 121°C. H2SO4 was the most effective acid in this experiment. We then analyzed the hydrolysis process in H2SO4 in detail using high performance liquid chromatography. At a sulfuric acid concentration of 1.8% and treatment time of 60 min, the yield of ethanol fermentable sugars (glucose and xylose) was high, (230.5 mg/g dry biomass, comprising 175.2 mg/g glucose and 55.3 mg/g xylose), with 48.6% of total reducing sugars being ethanol fermentable. Therefore, Enteromorpha could be a good candidate for production of fuel ethanol. In future work, the effects of temperature and biomass concentration on hydrolysis, and also the fermentation of the hydrolysates to ethanol fuel should be focused on.

  10. Enzymatic hydrolysis of spent coffee ground.

    PubMed

    Jooste, T; García-Aparicio, M P; Brienzo, M; van Zyl, W H; Görgens, J F

    2013-04-01

    Spent coffee ground (SCG) is the main residue generated during the production of instant coffee by thermal water extraction from roasted coffee beans. This waste is composed mainly of polysaccharides such as cellulose and galactomannans that are not solubilised during the extraction process, thus remaining as unextractable, insoluble solids. In this context, the application of an enzyme cocktail (mannanase, endoglucanase, exoglucanase, xylanase and pectinase) with more than one component that acts synergistically with each other is regarded as a promising strategy to solubilise/hydrolyse remaining solids, either to increase the soluble solids yield of instant coffee or for use as raw material in the production of bioethanol and food additives (mannitol). Wild fungi were isolated from both SCG and coffee beans and screened for enzyme production. The enzymes produced from the selected wild fungi and recombinant fungi were then evaluated for enzymatic hydrolysis of SCG, in comparison to commercial enzyme preparations. Out of the enzymes evaluated on SCG, the application of mannanase enzymes gave better yields than when only cellulase or xylanase was utilised for hydrolysis. The recombinant mannanase (Man1) provided the highest increments in soluble solids yield (17 %), even when compared with commercial preparations at the same protein concentration (0.5 mg/g SCG). The combination of Man1 with other enzyme activities revealed an additive effect on the hydrolysis yield, but not synergistic interaction, suggesting that the highest soluble solid yields was mainly due to the hydrolysis action of mannanase.

  11. Hydrolysis of ionic cellulose to glucose.

    PubMed

    Vo, Huyen Thanh; Widyaya, Vania Tanda; Jae, Jungho; Kim, Hoon Sik; Lee, Hyunjoo

    2014-09-01

    Hydrolysis of ionic cellulose (IC), 1,3-dimethylimidazolium cellulose phosphite, which could be synthesized from cellulose and dimethylimidazolium methylphosphite ([Dmim][(OCH3)(H)PO2]) ionic liquid, was conducted for the synthesis of glucose. The reaction without catalysts at 150°C for 12h produced glucose with 14.6% yield. To increase the hydrolysis yield, various acid catalysts were used, in which the sulfonated active carbon (AC-SO3H) performed the best catalytic activity in the IC hydrolysis. In the presence of AC-SO3H, the yields of glucose reached 42.4% and 53.9% at the reaction condition of 150°C for 12h and 180°C for 1.5h, respectively; however the yield decreased with longer reaction time due to the degradation of glucose. Consecutive catalyst reuse experiments on the IC hydrolysis demonstrated the catalytic activity of AC-SO3H persisted at least through four successive uses.

  12. Enhanced enzymatic hydrolysis of cellulose in microgels.

    PubMed

    Chang, Aiping; Wu, Qingshi; Xu, Wenting; Xie, Jianda; Wu, Weitai

    2015-07-04

    A cellulose-based microgel, where an individual microgel contains approximately one cellulose chain on average, is synthesized via free radical polymerization of a difunctional small-molecule N,N'-methylenebisacrylamide in cellulose solution. This microgelation leads to a low-ordered cellulose, favoring enzymatic hydrolysis of cellulose to generate glucose.

  13. Molecular-scale investigations of cellulose microstructure during enzymatic hydrolysis.

    PubMed

    Santa-Maria, Monica; Jeoh, Tina

    2010-08-09

    Changes in cellulose microstructure have been proposed to occur throughout hydrolysis that impact enzyme access and hydrolysis rates. However, there are very few direct observations of such changes in ongoing reactions. In this study, changes in the microstructure of cellulose are measured by simultaneous confocal and atomic force microscopy and are correlated to hydrolysis extents and quantities of bound enzyme in the reaction. Minimally processed and never-dried cellulose I was hydrolyzed by a purified cellobiohydrolase, Trichoderma reesei Cel7A. Early in the reaction ( approximately 30% hydrolysis), at high hydrolysis rates and high bound cellulase quantities, untwisting of cellulose microfibrils was observed. As the hydrolysis reaction neared completion (>80% hydrolysis), extensively thinned microfibrils (diameters of 3-5 nm) and channels (0.3-0.6 nm deep) along the lengths of the microfibrils were observed. The prominent microstructural changes in cellulose due to cellobiohydrolase action are discussed in the context of the overall hydrolysis reaction.

  14. Alkali activation of recovered fuel-biofuel fly ash from fluidised-bed combustion: Stabilisation/solidification of heavy metals.

    PubMed

    Yliniemi, Juho; Pesonen, Janne; Tiainen, Minna; Illikainen, Mirja

    2015-09-01

    Recovered fuel-biofuel fly ash from a fluidized bed boiler was alkali-activated and granulated with a sodium-silicate solution in order to immobilise the heavy metals it contains. The effect of blast-furnace slag and metakaolin as co-binders were studied. Leaching standard EN 12457-3 was applied to evaluate the immobilisation potential. The results showed that Ba, Pb and Zn were effectively immobilised. However, there was increased leaching after alkali activation for As, Cu, Mo, Sb and V. The co-binders had minimal or even negative effect on the immobilisation. One exception was found for Cr, in which the slag decreased leaching, and one was found for Cu, in which the slag increased leaching. A sequential leaching procedure was utilized to gain a deeper understanding of the immobilisation mechanism. By using a sequential leaching procedure it is possible fractionate elements into watersoluble, acid-soluble, easily-reduced and oxidisable fractions, yielding a total 'bioavailable' amount that is potentially hazardous for the environment. It was found that the total bioavailable amount was lower following alkali activation for all heavy metals, although the water-soluble fraction was higher for some metals. Evidence from leaching tests suggests the immobilisation mechanism was chemical retention, or trapping inside the alkali activation reaction products, rather than physical retention, adsorption or precipitation as hydroxides.

  15. [Fluorescence enhancement of flavoxate hydrochloride in alkali solution and its application in pharmaceutical analysis].

    PubMed

    Li, Wen-hong; Sun, Chong-mei; Wei, Yong-ju

    2015-10-01

    Fluorescence enhancement reaction of flavoxate hydrochloride (FX) in strong alkali solution was studied, the mechanism of the reaction was investigated, and a novel fluorimetric method for analysis of FX in drug sample was established. FX has no intrinsic fluorescence, but it can slowly produce fluorescence in strong alkali solution. Heating can promote the fluorescence enhancement reaction. In 3D fluorescence spectra of the decomposition product of FX, two fluorescence peaks, located respectively at excitation wavelengths λex/ emission wavelength λem =223/410 nm, and 302/410 nm, were observed. Using quinine sulfate as a reference, fluorescence quantum yield of the decomposition product was measured to be 0.50. The structural characteriza- tion and spectral analysis of the decomposition product reveal that ester bond hydrolysis reaction of FX is firstly occurred during heating process, forming 3-methylflavone-8-carboxylic acid (MFA), then a cleavage reaction of the γ-pyrone ring of MFA occurred, producing α, β-unsaturated ketone. This product includes adjacent hydroxyl benzoic acid group in its molecule, which can form intramolecular hydrogen bond under alkaline condition, so that increase the conjugate degree and enhance the rigidity of the molecule, and thereby cause fluorescence enhancement. Based on this fluorescence enhancement reaction, a fluorimetric method was proposed for the determination of FX. A linear calibration curve covered the concentration range 0.020 3-0.487 µg · mL. The regression equation was I(F) = 23.9 + 5357.3 c, with correlation coefficient r = 0.999 7 (n = 8), detection limit D = 1.1 ng · mL(-1). The method was applied to the analysis of FX tablets, with a spiked recovery rate of 100.2%. The reliability of the method was verified by a UV-spectrophotometric method.

  16. Kinetics of Hydrolysis and Products of Hydrolysis and Photolysis of Tetryl.

    DTIC Science & Technology

    1984-10-22

    NSWC TR 84-88 Lfl KINETICS OF HYDROLYSIS AND PRODUCTS OF HYDROLYSIS AND PHOTOLYSIS OF TETRYL BY ELEONORE G. KAYSER NICHOLAS E. BURLINSON DAVID H...PHOTOLYSIS OF TETRYL Feb 1980 to Dec 1981 S.PERFORMING ORG. REPORT NUMBER 7. AU THOR(s) SCONTRACT OR GRANT NUMUER11110 Eleonore G. Kayser, NLchcolas E...Library 1 Monitoring Techniques Division Dr. Ron Spanggord I Attn: RD680 (Robert B. Medz) 1 333 Rcvenswood Avenue Washington, DC 20460 Menlo Park

  17. The 4843 Alkali Metal Storage Facility Closure Plan

    SciTech Connect

    Not Available

    1991-06-01

    The 4843 AMSF has been used primarily to provide a centralized building to receive and store dangerous and mixed alkali metal waste, including sodium and lithium, which has been generated at the Fast Flux Test Facility and at various other Hanford Site operations that used alkali metals. Most of the dangerous and mixed alkali metal waste received consists of retired equipment from liquid sodium processes. The unit continues to store material. In general, only solid alkali metal waste that is water reactive is stored at the 4843 AMSF. The 4843 AMSF will be closed in a manner consistent with Ecology guidelines and regulations (WAC 173-303-610). The general closure procedure is detailed as follows.

  18. Effect of cavitation on removal of alkali elements from coal

    NASA Astrophysics Data System (ADS)

    Srivalli, H.; Nirmal, L.; Nagarajan, R.

    2015-12-01

    The main impurities in coal are sulphur, ash and alkali. On combustion, the volatile forms of these impurities are either condensed on the boilers, or emitted in the form of potentially hazardous gases. The alkali elements present in coal help the fly ash particles adhere to boiler surfaces by providing a wet surface on which collection of these particles can take place. Use of ultrasonic techniques in cleaning of coal has stirred interest among researchers in recent times. Extraction of alkali elements by cavitation effect using low-frequency ultrasound, in the presence of reagents (HNO3 and H2O2) is reported in this paper. Powdered coal was dissolved with the reagent and exposed to ultrasonic fields of various frequencies at different time intervals. The treated solution is filtered and tested for alkali levels.

  19. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, M.M.; Ma, Y.; Visco, S.J.; DeJonghe, L.

    1995-08-22

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  20. Electric field-induced softening of alkali silicate glasses

    SciTech Connect

    McLaren, C.; Heffner, W.; Jain, H.; Tessarollo, R.; Raj, R.

    2015-11-02

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.