Science.gov

Sample records for alkali metal silicate

  1. Alkali-metal silicate binders and methods of manufacture

    NASA Technical Reports Server (NTRS)

    Schutt, J. B. (Inventor)

    1979-01-01

    A paint binder is described which uses a potassium or sodium silicate dispersion having a silicon dioxide to alkali-metal oxide mol ratio of from 4.8:1 to 6.0:1. The binder exhibits stability during both manufacture and storage. The process of making the binder is predictable and repeatable and the binder may be made with inexpensive components. The high mol ratio is achieved with the inclusion of a silicon dioxide hydrogel. The binder, which also employs a silicone, is in the final form of a hydrogel sol.

  2. Alkali Silicate Vehicle Forms Durable, Fireproof Paint

    NASA Technical Reports Server (NTRS)

    Schutt, John B.; Seindenberg, Benjamin

    1964-01-01

    The problem: To develop a paint for use on satellites or space vehicles that exhibits high resistance to cracking, peeling, or flaking when subjected to a wide range of temperatures. Organic coatings will partially meet the required specifications but have the inherent disadvantage of combustibility. Alkali-silicate binders, used in some industrial coatings and adhesives, show evidence of forming a fireproof paint, but the problem of high surface-tension, a characteristic of alkali silicates, has not been resolved. The solution: Use of a suitable non-ionic wetting agent combined with a paint incorporating alkali silicate as the binder.

  3. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  4. High-temperature, high-pressure hydrothermal synthesis, characterization, and structural relationships of mixed-alkali metals uranyl silicates

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Hsin; Liu, Hsin-Kuan; Chang, Wen-Jung; Tzou, Der-Lii; Lii, Kwang-Hwa

    2016-04-01

    Three mixed-alkali metals uranyl silicates, Na3K3[(UO2)3(Si2O7)2]·2H2O (1), Na3Rb3[(UO2)3(Si2O7)2] (2), and Na6Rb4[(UO2)4Si12O33] (3), have been synthesized by high-temperature, high-pressure hydrothermal reactions at 550 °C and 1440 bar, and characterized by single-crystal X-ray diffraction, photoluminescence, and thermogravimetric analysis. Compound 1 and 2 are isostructural and contain layers of uranyl disilicate. The smaller cation, Na+, is located in the intralayer channels, whereas the larger cations, K+ and Rb+, and water molecule are located in the interlayer region. The absence of lattice water in 2 can be understood according to the valence-matching principle. The structure is related to that of a previously reported mixed-valence uranium(V,VI) silicate. Compound 3 adopts a 3D framework structure and contains a unique unbranched dreier fourfold silicate chain with the structural formula {uB,41∞}[3Si12O33] formed of Q2, Q3, and Q4 Si. The connectivity of the Si atoms in the Si12O3318- anion can be interpreted on the basis of Zintl-Klemm concept. Crystal data for compound 1: triclinic, P-1, a=5.7981(2) Å, b=7.5875(3) Å, c=12.8068(5) Å, α=103.593(2)°, β=102.879(2)°, γ=90.064(2)°, V=533.00(3) Å3, Z=1, R1=0.0278; compound 2: triclinic, P-1, a=5.7993(3) Å, b=7.5745(3) Å, c=12.9369(6) Å, α=78.265(2)°, β=79.137(2)°, γ=89.936(2)°, V=546.02(4) Å3, Z=1, R1=0.0287; compound 3: monoclinic, C2/m, a=23.748(1) Å, b=7.3301(3) Å, c=15.2556(7) Å, β=129.116(2)°, V=2060.4(2) Å3, Z=2, R1=0.0304.

  5. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  6. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  7. Alkali metal ion battery with bimetallic electrode

    SciTech Connect

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  8. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  9. Carbonation of metal silicates for long-term CO.sub.2 sequestration

    DOEpatents

    Blencoe, James G.; Palmer, Donald A.; Anovitz, Lawrence M.; Beard, James S.

    2012-02-14

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  10. Carbonation of metal silicates for long-term CO2 sequestration

    DOEpatents

    Blencoe, James G; Palmer, Donald A; Anovitz, Lawrence M; Beard, James S

    2014-03-18

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  11. Electric field-induced softening of alkali silicate glasses

    SciTech Connect

    McLaren, C.; Heffner, W.; Jain, H.; Tessarollo, R.; Raj, R.

    2015-11-02

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  12. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  13. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  14. Upgrading platform using alkali metals

    SciTech Connect

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  15. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  16. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  17. Hydrothermal alkali metal catalyst recovery process

    DOEpatents

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  18. Alkali and transition metal phospholides

    NASA Astrophysics Data System (ADS)

    Bezkishko, I. A.; Zagidullin, A. A.; Milyukov, V. A.; Sinyashin, O. G.

    2014-06-01

    Major tendencies in modern chemistry of alkali and transition metal phospholides (phosphacyclopentadienides) are systematized, analyzed and generalized. Basic methods of synthesis of these compounds are presented. Their chemical properties are considered with a special focus on their complexing ability. Potential applications of phospholides and their derivatives are discussed. The bibliography includes 184 references.

  19. Alkali metal/sulfur battery

    DOEpatents

    Anand, Joginder N.

    1978-01-01

    Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

  20. Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides

    DOEpatents

    Gordon, John Howard; Alvare, Javier

    2016-10-25

    Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte solution and may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.

  1. Alkali-Metal Spin Maser.

    PubMed

    Chalupczak, W; Josephs-Franks, P

    2015-07-17

    Quantum measurement is a combination of a read-out and a perturbation of the quantum system. We explore the nonlinear spin dynamics generated by a linearly polarized probe beam in a continuous measurement of the collective spin state in a thermal alkali-metal atomic sample. We demonstrate that the probe-beam-driven perturbation leads, in the presence of indirect pumping, to complete polarization of the sample and macroscopic coherent spin oscillations. As a consequence of the former we report observation of spectral profiles free from collisional broadening. Nonlinear dynamics is studied through exploring its effect on radio frequency as well as spin noise spectra. PMID:26230788

  2. Alkali-Metal Spin Maser

    NASA Astrophysics Data System (ADS)

    Chalupczak, W.; Josephs-Franks, P.

    2015-07-01

    Quantum measurement is a combination of a read-out and a perturbation of the quantum system. We explore the nonlinear spin dynamics generated by a linearly polarized probe beam in a continuous measurement of the collective spin state in a thermal alkali-metal atomic sample. We demonstrate that the probe-beam-driven perturbation leads, in the presence of indirect pumping, to complete polarization of the sample and macroscopic coherent spin oscillations. As a consequence of the former we report observation of spectral profiles free from collisional broadening. Nonlinear dynamics is studied through exploring its effect on radio frequency as well as spin noise spectra.

  3. The structure of alkali silicate gel by total scattering methods

    SciTech Connect

    Benmore, C.J.; Monteiro, Paulo J.M.

    2010-06-15

    The structure of the alkali silicate gel (ASR) collected from the galleries of Furnas Dam in Brazil was determined by a pair distribution function (PDF) analysis of high energy X-ray diffraction data. Since this method is relatively new to concrete structure analysis a detailed introduction on the PDF method is given for glassy SiO{sub 2}. The bulk amorphous structure of the dam material is confirmed as no Bragg peaks are observed in the scattered intensity. The real space results show that the local structure of the amorphous material is similar to kanemite (KHSi{sub 2}O{sub 5}:3H{sub 2}O) however the long range layer structure of the crystal is broken up in the amorphous state, so that ordering only persists of the length scale of a few polyhedra. The silicate layer structure is a much more disordered than predicted by molecular dynamics models. The X-ray results are consistent with the molecular dynamics model of Kirkpatrick et al. (2005) [1] which predicts that most of the water resides in pores within the amorphous network rather than in layers. The total scattering data provide a rigorous basis against which other models may also be tested.

  4. The structure of alkali silicate gel by total scattering methods.

    SciTech Connect

    Benmore, C. J.; Monteiro, P. J. M.; X-Ray Science Division; Univ. of California at Berkeley

    2010-01-01

    The structure of the alkali silicate gel (ASR) collected from the galleries of Furnas Dam in Brazil was determined by a pair distribution function (PDF) analysis of high energy X-ray diffraction data. Since this method is relatively new to concrete structure analysis a detailed introduction on the PDF method is given for glassy SiO{sub 2}. The bulk amorphous structure of the dam material is confirmed as no Bragg peaks are observed in the scattered intensity. The real space results show that the local structure of the amorphous material is similar to kanemite (KHSi{sub 2}O{sub 5}:3H{sub 2}O) however the long range layer structure of the crystal is broken up in the amorphous state, so that ordering only persists of the length scale of a few polyhedra. The silicate layer structure is a much more disordered than predicted by molecular dynamics models. The X-ray results are consistent with the molecular dynamics model of Kirkpatrick et al. (2005) [1] which predicts that most of the water resides in pores within the amorphous network rather than in layers. The total scattering data provide a rigorous basis against which other models may also be tested.

  5. The alkali metals: 200 years of surprises.

    PubMed

    Dye, James L

    2015-03-13

    Alkali metal compounds have been known since antiquity. In 1807, Sir Humphry Davy surprised everyone by electrolytically preparing (and naming) potassium and sodium metals. In 1808, he noted their interaction with ammonia, which, 100 years later, was attributed to solvated electrons. After 1960, pulse radiolysis of nearly any solvent produced solvated electrons, which became one of the most studied species in chemistry. In 1968, alkali metal solutions in amines and ethers were shown to contain alkali metal anions in addition to solvated electrons. The advent of crown ethers and cryptands as complexants for alkali cations greatly enhanced alkali metal solubilities. This permitted us to prepare a crystalline salt of Na(-) in 1974, followed by 30 other alkalides with Na(-), K(-), Rb(-) and Cs(-) anions. This firmly established the -1 oxidation state of alkali metals. The synthesis of alkalides led to the crystallization of electrides, with trapped electrons as the anions. Electrides have a variety of electronic and magnetic properties, depending on the geometries and connectivities of the trapping sites. In 2009, the final surprise was the experimental demonstration that alkali metals under high pressure lose their metallic character as the electrons are localized in voids between the alkali cations to become high-pressure electrides!

  6. The alkali metals: 200 years of surprises.

    PubMed

    Dye, James L

    2015-03-13

    Alkali metal compounds have been known since antiquity. In 1807, Sir Humphry Davy surprised everyone by electrolytically preparing (and naming) potassium and sodium metals. In 1808, he noted their interaction with ammonia, which, 100 years later, was attributed to solvated electrons. After 1960, pulse radiolysis of nearly any solvent produced solvated electrons, which became one of the most studied species in chemistry. In 1968, alkali metal solutions in amines and ethers were shown to contain alkali metal anions in addition to solvated electrons. The advent of crown ethers and cryptands as complexants for alkali cations greatly enhanced alkali metal solubilities. This permitted us to prepare a crystalline salt of Na(-) in 1974, followed by 30 other alkalides with Na(-), K(-), Rb(-) and Cs(-) anions. This firmly established the -1 oxidation state of alkali metals. The synthesis of alkalides led to the crystallization of electrides, with trapped electrons as the anions. Electrides have a variety of electronic and magnetic properties, depending on the geometries and connectivities of the trapping sites. In 2009, the final surprise was the experimental demonstration that alkali metals under high pressure lose their metallic character as the electrons are localized in voids between the alkali cations to become high-pressure electrides! PMID:25666067

  7. Process for the disposal of alkali metals

    DOEpatents

    Lewis, Leroy C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.

  8. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  9. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  10. Alkali metal for ultraviolet band-pass filter

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  11. Alkali Metal Handling Practices at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Salvail, Patrick G.; Carter, Robert R.

    2002-01-01

    NASA Marshall Space Flight Center (MSFC) is NASA s principle propulsion development center. Research and development is coordinated and carried out on not only the existing transportation systems, but also those that may be flown in the near future. Heat pipe cooled fast fission cores are among several concepts being considered for the Nuclear Systems Initiative. Marshall Space Flight Center has developed a capability to handle high-purity alkali metals for use in heat pipes or liquid metal heat transfer loops. This capability is a low budget prototype of an alkali metal handling system that would allow the production of flight qualified heat pipe modules or alkali metal loops. The processing approach used to introduce pure alkali metal into heat pipe modules and other test articles are described in this paper.

  12. Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags

    SciTech Connect

    Bernal, Susan A.; Mejia de Gutierrez, Ruby; Provis, John L.; Rose, Volker

    2010-06-15

    Accelerated carbonation is induced in pastes and mortars produced from alkali silicate-activated granulated blast furnace slag (GBFS)-metakaolin (MK) blends, by exposure to CO{sub 2}-rich gas atmospheres. Uncarbonated specimens show compressive strengths of up to 63 MPa after 28 days of curing when GBFS is used as the sole binder, and this decreases by 40-50% upon complete carbonation. The final strength of carbonated samples is largely independent of the extent of metakaolin incorporation up to 20%. Increasing the metakaolin content of the binder leads to a reduction in mechanical strength, more rapid carbonation, and an increase in capillary sorptivity. A higher susceptibility to carbonation is identified when activation is carried out with a lower solution modulus (SiO{sub 2}/Na{sub 2}O ratio) in metakaolin-free samples, but this trend is reversed when metakaolin is added due to the formation of secondary aluminosilicate phases. High-energy synchrotron X-ray diffractometry of uncarbonated paste samples shows that the main reaction products in alkali-activated GBFS/MK blends are C-S-H gels, and aluminosilicates with a zeolitic (gismondine) structure. The main crystalline carbonation products are calcite in all samples and trona only in samples containing no metakaolin, with carbonation taking place in the C-S-H gels of all samples, and involving the free Na{sup +} present in the pore solution of the metakaolin-free samples. Samples containing metakaolin do not appear to have the same availability of Na{sup +} for carbonation, indicating that this is more effectively bound in the presence of a secondary aluminosilicate gel phase. It is clear that claims of exceptional carbonation resistance in alkali-activated binders are not universally true, but by developing a fuller mechanistic understanding of this process, it will certainly be possible to improve performance in this area.

  13. Alkali Metal Salts with Designable Aryltrifluoroborate Anions.

    PubMed

    Iwasaki, Kazuki; Yoshii, Kazuki; Tsuzuki, Seiji; Matsumoto, Hajime; Tsuda, Tetsuya; Kuwabata, Susumu

    2016-09-01

    Aryltrifluoroborate ([ArBF3](-)) has a designable basic anion structure. Various [ArBF3](-)-based anions were synthesized to create novel alkali metal salts using a simple and safe process. Nearly 40 novel alkali metal salts were successfully obtained, and their physicochemical characteristics, particularly their thermal properties, were elucidated. These salts have lower melting points than those of simple inorganic alkali halide salts, such as KCl and LiCl, because of the weaker interactions between the alkali metal cations and the [ArBF3](-) anions and the anions' larger entropy. Moreover, interestingly, potassium cations were electrochemically reduced in the potassium (meta-ethoxyphenyl)trifluoroborate (K[m-OEtC6H4BF3]) molten salt at 433 K. These findings contribute substantially to furthering molten salt chemistry, ionic liquid chemistry, and electrochemistry. PMID:27510799

  14. A Calculation of Spatial Range of Colloidal Silicic Acid Deposited Downstream from the Alkali Front

    NASA Astrophysics Data System (ADS)

    Niibori, Yuichi; Iijima, Kazuki; Tamura, Naoyuki; Mimura, Hitoshi

    A high alkali domain spreads out due to the use of cement materials for the construction of the repository of radioactive wastes. Sudden change of pH at this alkali front produces colloidal silicic acid (polymeric silicic acid) in addition to the deposition of supersaturated monomeric silicic acid onto the fracture surface of flow-pathway. The colloidal silicic acid also deposits with relatively small rate-constant in the co-presence of solid phase. Once the flow-path surface is covered with the amorphous silica, the surface seriously degrades the sorption behavior of radionuclides (RNs). Therefore, so far, the authors have examined the deposition rates of supersaturated silicic acid. This study summarized the deposition rate-constants defined by the first-order reaction equation under various conditions of co-presence of amorphous silica powder. Then, using the smallest rate-constant (1.0×10-12 m/s in the co-presence of calcium ions of 1 mM) and a simulation code, COLFRAC-MRL, the spatial range of colloidal silicic acid deposited downstream from the alkali front was estimated. The results suggested the clogging caused by the deposition of colloidal silicic acid in flow-path. The altered spatial range in the flow-path was limited to around 30 m in fracture and to several centimeters in rock matrix.

  15. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  16. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  17. Salts of alkali metal anions and process of preparing same

    DOEpatents

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  18. Cohesive Energy of the Alkali Metals.

    ERIC Educational Resources Information Center

    Poole, R. T.

    1980-01-01

    Describes a method, considered appropriate for presentation to undergraduate students in materials science and related courses, for the calculation of cohesive energies of the alkali metals. Uses a description based on the free electron model and gives results to within 0.1 eV of the experimental values. (Author/GS)

  19. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  20. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  1. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  2. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  3. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  4. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  5. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  6. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  7. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  8. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  9. Removal of Retired Alkali Metal Test Systems

    SciTech Connect

    Brehm, W. F.; Church, W. R.; Biglin, J. W.

    2003-02-26

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  10. Alkali-Activated Aluminium-Silicate Composites as Insulation Materials for Industrial Application

    NASA Astrophysics Data System (ADS)

    Dembovska, L.; Bajare, D.; Pundiene, I.; Bumanis, G.

    2015-11-01

    The article reports on the study of thermal stability of alkali-activated aluminium- silicate composites (ASC) at temperature 800-1100°C. ASC were prepared by using calcined kaolinite clay, aluminium scrap recycling waste, lead-silicate glass waste and quartz sand. As alkali activator, commercial sodium silicate solution modified with an addition of sodium hydroxide was used. The obtained alkali activation solution had silica modulus Ms=1.67. Components of aluminium scrap recycling waste (aluminium nitride (AlN) and iron sulphite (FeSO3)) react in the alkali media and create gases - ammonia and sulphur dioxide, which provide the porous structure of the material [1]. Changes in the chemical composition of ASC during heating were identified and quantitatively analysed by using DTA/TG, dimension changes during the heating process were determined by using HTOM, pore microstructure was examined by SEM, and mineralogical composition of ASC was determined by XRD. The density of ASC was measured in accordance with EN 1097-7. ASC with density around 560 kg/m3 and heat resistance up to 1100°C with shrinkage less than 5% were obtained. The intended use of this material is the application as an insulation material for industrial purposes at elevated temperatures.

  11. Alkali metal recovery from carbonaceous material conversion process

    DOEpatents

    Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  12. Alkali Metal Heat Pipe Life Issues

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.

    2004-01-01

    One approach to space fission power system design is predicated on the use of alkali metal heat pipes, either as radiator elements, thermal management components, or as part of the core primary heat-transfer system. This synopsis characterizes long-life core heat pipes. References are included where more detailed information can be found. Specifics shown here are for demonstrational purposes and do not necessarily reflect current Project Prometheus point designs.

  13. Alkali Metal Heat Pipe Life Issues

    SciTech Connect

    Reid, Robert S.

    2004-07-01

    One approach to fission power system design uses alkali metal heat pipes for the core primary heat-transfer system. Heat pipes may also be used as radiator elements or auxiliary thermal control elements. This synopsis characterizes long-life core heat pipes. References are included where information that is more detailed can be found. Specifics shown here are for demonstration purposes and do not necessarily reflect current Nasa Project Prometheus point designs. (author)

  14. Method for the safe disposal of alkali metal

    DOEpatents

    Johnson, Terry R.

    1977-01-01

    Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam-CO.sub.2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps.

  15. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.

    1985-07-10

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  16. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, David C.; Mailhe, Catherine C.; De Jonghe, Lutgard C.

    1986-01-01

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  17. Water and magmas: insights about the water solution mechanisms in alkali silicate melts from infrared, Raman, and 29Si solid-state NMR spectroscopies

    NASA Astrophysics Data System (ADS)

    Le Losq, Charles; Mysen, Bjorn O.; Cody, George D.

    2015-12-01

    Degassing of water during the ascent of hydrous magma in a volcanic edifice produces dramatic changes in the magma density and viscosity. This can profoundly affect the dynamics of volcanic eruptions. The water exsolution history, in turn, is driven by the water solubility and solution mechanisms in the silicate melt. Previous studies pointed to dissolved water in silicate glasses and melts existing as molecules (H2Omol species) and hydroxyl groups, OH. These latter OH groups commonly are considered bonded to Si4+ but may form other bonds, such as with alkali or alkaline-earth cations, for instance. Those forms of bonding influence the structure of hydrous melts in different ways and, therefore, their properties. As a result, exsolution of water from magmas may have different eruptive consequences depending on the initial bonding mechanisms of the dissolved water. However, despite their importance, the solution mechanisms of water in silicate melts are not clear. In particular, how chemical composition of melts affects water solubility and solution mechanism is not well understood. In the present experimental study, components of such information are reported via determination of how water interacts with the cationic network of alkali (Li, Na, and K) silicate quenched melts. Results from 29Si single-pulse magic-angle spinning nuclear magnetic resonance (29Si SP MAS NMR), infrared, and Raman spectroscopies show that decreasing the ionic radius of alkali metal cation in silicate melts results in decreasing fraction of water dissolved as OH groups. The nature of OH bonding also changes as the alkali ionic radius changes. Therefore, as the speciation and bonding of water controls the degree of polymerization of melts, water will have different effects on the transport properties of silicate melts depending on their chemical composition. This conclusion, in turn, may affect volcanic phenomena related to the viscous relaxation of hydrous magmas, such as for instance the

  18. Metal induced gap states at alkali halide/metal interface

    NASA Astrophysics Data System (ADS)

    Kiguchi, Manabu; Yoshikawa, Genki; Ikeda, Susumu; Saiki, Koichiro

    2004-10-01

    The electronic state of a KCl/Cu(0 0 1) interface was investigated using the Cl K-edge near-edge X-ray absorption fine structure (NEXAFS). A pre-peak observed on the bulk edge onset of thin KCl films has a similar feature to the peak at a LiCl/Cu(0 0 1) interface, which originates from the metal induced gap state (MIGS). The present result indicates that the MIGS is formed universally at alkali halide/metal interfaces. The decay length of MIGS to an insulator differs from each other, mainly due to the difference in the band gap energy of alkali halide.

  19. 40 CFR 721.10495 - Metal silicate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Metal silicate (generic). 721.10495... Substances § 721.10495 Metal silicate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as metal silicate (PMN P-05-634) is subject...

  20. 40 CFR 721.10495 - Metal silicate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Metal silicate (generic). 721.10495... Substances § 721.10495 Metal silicate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as metal silicate (PMN P-05-634) is subject...

  1. Thermal history effects on electrical relaxation and conductivity for potassium silicate glass with low alkali concentrations

    NASA Technical Reports Server (NTRS)

    Angel, Paul W.; Hann, Raiford E.; Cooper, Alfred R.

    1993-01-01

    Electrical response measurements from 10 Hz to 100 kHz between 120 and 540 C were made on potassium-silicate glasses with alkali oxide contents of 2, 3, 5 and 10 mol percent. Low alkali content glasses were chosen in order to try to reduce the Coulombic interactions between alkali ions to the point that frozen structural effects from the glass could be observed. Conductivity and electrical relaxation responses for both annealed and quenched glasses of the same composition were compared. Lower DC conductivity (sigma(sub DC)) activation energies were measured for the quenched compared to the annealed glasses. The two glasses with the lowest alkali contents exhibited a non-Arrhenius concave up curvature in the log(sigma(sub DC)) against 1/T plots, which decreased upon quenching. A sharp decrease in sigma(sub DC) was observed for glasses containing K2O concentrations of 5 mol percent or less. The log modulus loss peak (M'') maximum frequency plots against 1/T all showed Arrhenius behavior for both annealed and quenched samples. The activation energies for these plots closely agreed with the sigma(sub DC) activation energies. A sharp increase in activation energy was observed for both series as the potassium oxide concentration decreased. Changes in the electrical response are attributed to structural effects due to different alkali concentrations. Differences between the annealed and quenched response are linked to a change in the distribution of activation energies (DAE).

  2. Packing transition in alkali metallic clusters

    NASA Astrophysics Data System (ADS)

    Kawai, R.; Sung, Ming Wen; Weare, John H.

    1996-03-01

    Small metallic clusters form a local geometric configuration quite different from the bulk crystals. As the cluster size increases, several transitions in the local coordination take place before the bulk structure appears. These transitions involve change in the nature of chemical bonds. We have systematically investigated the structural transition of various alkali metal clusters including binary compounds using an ab initio molecular dynamics simulation. Among them, Li clusters exhibit unusual transition in their packing pattern. Small lithium clusters (N <= 21) form open structures based on a ``solvation shell''.(M. Sung, R. Kawai, and J. Weare, Phys. Rev. Lett. 73) (1994) 3552., which is quite different from other alkali metal clusters. The bonding of these small clusters is partially ionic. Above N=25, a close-packed structure is established. However, the local configuration still differ from that of the bulk crystal. As the size further increases, the ionic nature decreases and the system reaches another close-packed structure based on the Mackay icosahedron, which is similar to the bulk crystal structure.

  3. Cathode architectures for alkali metal / oxygen batteries

    SciTech Connect

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  4. Electrodes For Alkali-Metal Thermoelectric Converters

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Wheeler, Bob L.; Jeffries-Nakamura, Barbara; Lamb, James L.; Bankston, C. Perry; Cole, Terry

    1989-01-01

    Combination of thin, porous electrode and overlying collector grid reduces internal resistance of alkali-metal thermoelectric converter cell. Low resistance of new electrode and grid boosts power density nearly to 1 W/cm2 of electrode area at typical operating temperatures of 1,000 to 1,300 K. Conductive grid encircles electrode film on alumina tube. Bus wire runs along tube to collect electrical current from grid. Such converters used to transform solar, nuclear, and waste heat into electric power.

  5. Superconductivity in alkali metal intercalated iron selenides.

    PubMed

    Krzton-Maziopa, A; Svitlyk, V; Pomjakushina, E; Puzniak, R; Conder, K

    2016-07-27

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations. PMID:27248118

  6. Superconductivity in alkali metal intercalated iron selenides.

    PubMed

    Krzton-Maziopa, A; Svitlyk, V; Pomjakushina, E; Puzniak, R; Conder, K

    2016-07-27

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  7. Superconductivity in alkali metal intercalated iron selenides

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  8. Superconductivity in alkali metal intercalated iron selenides

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2‑y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  9. Heat pipes containing alkali metal working fluid

    NASA Technical Reports Server (NTRS)

    Morris, J. F. (Inventor)

    1981-01-01

    A technique for improving high temperature evaporation-condensation heat-transfer devices which have important and unique advantage in terrestrial and space energy processing is described. The device is in the form of a heat pipe comprising a sealed container or envelope which contains a capillary wick. The temperature of one end of the heat pipe is raised by the input of heat from an external heat source which is extremely hot and corrosive. A working fluid of a corrosive alkali metal, such as lithium, sodium, or potassium transfers this heat to a heat receiver remote from the heat source. The container and wick are fabricated from a superalloy containing a small percentage of a corrosion inhibiting or gettering element. Lanthanum, scandium, yttrium, thorium, and hafnium are utilized as the alloying metal.

  10. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  11. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  12. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  13. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  14. Self-discharge in bimetallic cells containing alkali metal

    NASA Technical Reports Server (NTRS)

    Foster, M. S.; Hesson, J. C.; Shimotake, H.

    1969-01-01

    Theoretical analysis of thermally regenerative bimetallic cells with alkali metal anodes shows a relation between the current drawn and the rate of discharge under open-circuit conditions. The self-discharge rate of the cell is due to the dissolution and ionization of alkali metal atoms in the fused-salt electrolyte

  15. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    DOEpatents

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  16. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, Wen Y.

    1984-01-01

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them (46, 53, 61, 69) with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide (63) to precipitate silicon constituents, the pH of the resultant solution is increased (81), preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated (84) to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process (86, 18, 17) where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  17. Silicate species of water glass and insights for alkali-activated green cement

    SciTech Connect

    Jansson, Helén; Bernin, Diana; Ramser, Kerstin

    2015-06-15

    Despite that sodium silicate solutions of high pH are commonly used in industrial applications, most investigations are focused on low to medium values of pH. Therefore we have investigated such solutions in a broad modulus range and up to high pH values (∼14) by use of infrared (IR) spectroscopy and silicon nuclear magnetic resonance ({sup 29}Si-NMR). The results show that the modulus dependent pH value leads to more or less charged species, which affects the configurations of the silicate units. This in turn, influences the alkali-activation process of low CO{sub 2} footprint cements, i.e. materials based on industrial waste or by-products.

  18. Silicate species of water glass and insights for alkali-activated green cement

    NASA Astrophysics Data System (ADS)

    Jansson, Helén; Bernin, Diana; Ramser, Kerstin

    2015-06-01

    Despite that sodium silicate solutions of high pH are commonly used in industrial applications, most investigations are focused on low to medium values of pH. Therefore we have investigated such solutions in a broad modulus range and up to high pH values (˜14) by use of infrared (IR) spectroscopy and silicon nuclear magnetic resonance (29Si-NMR). The results show that the modulus dependent pH value leads to more or less charged species, which affects the configurations of the silicate units. This in turn, influences the alkali-activation process of low CO2 footprint cements, i.e. materials based on industrial waste or by-products.

  19. Metal-Silicate Segregation in Asteroidal Meteorites

    NASA Technical Reports Server (NTRS)

    Herrin, Jason S.; Mittlefehldt, D. W.

    2006-01-01

    A fundamental process of planetary differentiation is the segregation of metal-sulfide and silicate phases, leading eventually to the formation of a metallic core. Asteroidal meteorites provide a glimpse of this process frozen in time from the early solar system. While chondrites represent starting materials, iron meteorites provide an end product where metal has been completely concentrated in a region of the parent asteroid. A complimentary end product is seen in metal-poor achondrites that have undergone significant igneous processing, such as angrites, HED's and the majority of aubrites. Metal-rich achondrites such as acapulcoite/lodranites, winonaites, ureilites, and metal-rich aubrites may represent intermediate stages in the metal segregation process. Among these, acapulcoite-lodranites and ureilites are examples of primary metal-bearing mantle restites, and therefore provide an opportunity to observe the metal segregation process that was captured in progress. In this study we use bulk trace element compositions of acapulcoites-lodranites and ureilites for this purpose.

  20. Electrochemical cell utilizing molten alkali metal electrode-reactant

    DOEpatents

    Virkar, Anil V.; Miller, Gerald R.

    1983-11-04

    An improved electrochemical cell comprising an additive-modified molten alkali metal electrode-reactant and/or electrolyte is disclosed. Various electrochemical cells employing a molten alkali metal, e.g., sodium, electrode in contact with a cationically conductive ceramic membrane experience a lower resistance and a lower temperature coefficient of resistance whenever small amounts of selenium are present at the interface of the electrolyte and the molten alkali metal. Further, cells having small amounts of selenium present at the electrolyte-molten metal interface exhibit less degradation of the electrolyte under long term cycling conditions.

  1. Alkali metal-refractory metal biphase electrode for AMTEC

    NASA Technical Reports Server (NTRS)

    Williams, Roger M. (Inventor); Bankston, Clyde P. (Inventor); Cole, Terry (Inventor); Khanna, Satish K. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Wheeler, Bob L. (Inventor)

    1989-01-01

    An electrode having increased output with slower degradation is formed of a film applied to a beta-alumina solid electrolyte (BASE). The film comprises a refractory first metal M.sup.1 such as a platinum group metal, suitably platinum or rhodium, capable of forming a liquid or a strong surface adsorption phase with sodium at the operating temperature of an alkali metal thermoelectric converter (AMTEC) and a second refractory metal insoluble in sodium or the NaM.sup.1 liquid phase such as a Group IVB, VB or VIB metal, suitably tungsten, molybdenum, tantalum or niobium. The liquid phase or surface film provides fast transport through the electrode while the insoluble refractory metal provides a structural matrix for the electrode during operation. A trilayer structure that is stable and not subject to deadhesion comprises a first, thin layer of tungsten, an intermediate co-deposited layer of tungsten-platinum and a thin surface layer of platinum.

  2. Controlled in-situ dissolution of an alkali metal

    DOEpatents

    Jones, Jeffrey Donald; Dooley, Kirk John; Tolman, David Donald

    2012-09-11

    A method for the controllable dissolution of one or more alkali metals from a vessel containing a one or more alkali metals and/or one or more partially passivated alkali metals. The vessel preferably comprising a sodium, NaK or other alkali metal-cooled nuclear reactor that has been used. The alkali metal, preferably sodium, potassium or a combination thereof, in the vessel is exposed to a treatment liquid, preferably an acidic liquid, more preferably citric acid. Preferably, the treatment liquid is maintained in continuous motion relative to any surface of unreacted alkali metal with which the treatment liquid is in contact. The treatment liquid is preferably pumped into the vessel containing the one or more alkali metals and the resulting fluid is extracted and optionally further processed. Preferably, the resulting off-gases are processed by an off-gas treatment system and the resulting liquids are processed by a liquid disposal system. In one preferred embodiment, an inert gas is pumped into the vessel along with the treatment liquid.

  3. (abstract) Fundamental Mechanisms of Electrode Kinetics and Alkali Metal Atom Transport at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kisor, A.; Kikkert, S. K.

    1993-01-01

    The mechanisms of electrode kinetics and mass transport of alkali metal oxidation and alkali metal cation reduction at the solid electrolyte/porous electrode boundary as well as alkali metal transport through porous metal electrodes has important applications in optimizing device performance in alkali metal thermal to electric converter (AMTEC) cells which are high temperature, high current density electrochemical cells. Basic studies of these processes also affords the opportunity to investigate a very basic electrochemical reaction over a wide range of conditions; and a variety of mass transport modes at high temperatures via electrochemical techniques. The temperature range of these investigations covers 700K to 1240K; the alkali metal vapor pressures range from about 10(sup -2) to 10(sup 2) Pa; and electrodes studied have included Mo, W, Mo/Na(sub 2)MoO(sub 4), W/Na(sub 2)WO(sub 4), WPt(sub x), and WRh(sub x) (1.0 < x < 6.0 ) with Na at Na-beta'-alumina, and Mo with K at K-beta'-alumina. Both liquid metal/solid electrolyte/alkali metal vapor and alkali metal vapor/solid electrolyte/vapor cells have been used to characterize the reaction and transport processes. We have previously reported evidence of ionic, free molecular flow, and surface transport of sodium in several types of AMTEC electrodes.

  4. Alkali cation specific adsorption onto fcc(111) transition metal electrodes.

    PubMed

    Mills, J N; McCrum, I T; Janik, M J

    2014-07-21

    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  5. Influence of Silicate Melt Composition on Metal/Silicate Partitioning of W, Ge, Ga and Ni

    NASA Technical Reports Server (NTRS)

    Singletary, S. J.; Domanik, K.; Drake, M. J.

    2005-01-01

    The depletion of the siderophile elements in the Earth's upper mantle relative to the chondritic meteorites is a geochemical imprint of core segregation. Therefore, metal/silicate partition coefficients (Dm/s) for siderophile elements are essential to investigations of core formation when used in conjunction with the pattern of elemental abundances in the Earth's mantle. The partitioning of siderophile elements is controlled by temperature, pressure, oxygen fugacity, and by the compositions of the metal and silicate phases. Several recent studies have shown the importance of silicate melt composition on the partitioning of siderophile elements between silicate and metallic liquids. It has been demonstrated that many elements display increased solubility in less polymerized (mafic) melts. However, the importance of silicate melt composition was believed to be minor compared to the influence of oxygen fugacity until studies showed that melt composition is an important factor at high pressures and temperatures. It was found that melt composition is also important for partitioning of high valency siderophile elements. Atmospheric experiments were conducted, varying only silicate melt composition, to assess the importance of silicate melt composition for the partitioning of W, Co and Ga and found that the valence of the dissolving species plays an important role in determining the effect of composition on solubility. In this study, we extend the data set to higher pressures and investigate the role of silicate melt composition on the partitioning of the siderophile elements W, Ge, Ga and Ni between metallic and silicate liquid.

  6. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, M.M.; Ma, Y.; Visco, S.J.; DeJonghe, L.

    1995-08-22

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  7. Hall Determination of Atomic Radii of Alkali Metals

    ERIC Educational Resources Information Center

    Houari, Ahmed

    2008-01-01

    I will propose here an alternative method for determining atomic radii of alkali metals based on the Hall measurements of their free electron densities and the knowledge of their crystal structure. (Contains 2 figures.)

  8. The 4843 Alkali Metal Storage Facility Closure Plan

    SciTech Connect

    Not Available

    1991-06-01

    The 4843 AMSF has been used primarily to provide a centralized building to receive and store dangerous and mixed alkali metal waste, including sodium and lithium, which has been generated at the Fast Flux Test Facility and at various other Hanford Site operations that used alkali metals. Most of the dangerous and mixed alkali metal waste received consists of retired equipment from liquid sodium processes. The unit continues to store material. In general, only solid alkali metal waste that is water reactive is stored at the 4843 AMSF. The 4843 AMSF will be closed in a manner consistent with Ecology guidelines and regulations (WAC 173-303-610). The general closure procedure is detailed as follows.

  9. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1995-01-01

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  10. Bioinorganic Chemistry of the Alkali Metal Ions.

    PubMed

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced. PMID:26860297

  11. Bioinorganic Chemistry of the Alkali Metal Ions.

    PubMed

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced.

  12. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    SciTech Connect

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  13. Electrochemical cell having an alkali-metal-nitrate electrode

    DOEpatents

    Roche, M.F.; Preto, S.K.

    1982-06-04

    A power-producing secondary electrochemical cell includes a molten alkali metal as the negative-electrode material and a molten-nitrate salt as the positive-electrode material. The molten material in the respective electrodes are separated by a solid barrier of alkali-metal-ion conducting material. A typical cell includes active materials of molten sodium separated from molten sodium nitrate and other nitrates in mixture by a layer of sodium ..beta..'' alumina.

  14. Two-phase alkali-metal experiments in reduced gravity

    SciTech Connect

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity.

  15. Alkali metal yttrium neo-pentoxide double alkoxide precursors to alkali metal yttrium oxide nanomaterials

    DOE PAGES

    Boyle, Timothy J.; Neville, Michael L.; Sears, Jeremiah Matthew; Cramer, Roger

    2016-03-15

    In this study, a series of alkali metal yttrium neo-pentoxide ([AY(ONep)4]) compounds were developed as precursors to alkali yttrium oxide (AYO2) nanomaterials. The reaction of yttrium amide ([Y(NR2)3] where R=Si(CH3)3) with four equivalents of H-ONep followed by addition of [A(NR2)] (A=Li, Na, K) or Ao (Ao=Rb, Cs) led to the formation of a complex series of AnY(ONep)3+n species, crystallographically identified as [Y2Li3(μ3-ONep)(μ3-HONep)(μ-ONep)5(ONep)3(HONep)2] (1), [YNa2(μ3-ONep)4(ONep)]2 (2), {[Y2K3(μ3-ONep)3(μ-ONep)4(ONep)2(ηξ-tol)2][Y4K2(μ4-O)(μ3-ONep)8(ONep)4]•ηx-tol]} (3), [Y4K2(μ4-O)(μ3-ONep)8(ONep)4] (3a), [Y2Rb3(μ4-ONep)3(μ-ONep)6] (4), and [Y2Cs4(μ6-O)(μ3-ONep)6(μ3-HONep)2(ONep)2(ηx-tol)4]•tol (5). Compounds 1–5 were investigated as single source precursors to AYOx nanomaterials following solvothermal routes (pyridine, 185 °C for 24h). The final products after thermal processing weremore » found by powder X-ray diffraction experiments to be Y2O3 with variable sized particles based on transmission electron diffraction. Energy dispersive X-ray spectroscopy studies indicated that the heavier alkali metal species were present in the isolated nanomaterials.« less

  16. Tin-containing silicates: alkali salts improve methyl lactate yield from sugars.

    PubMed

    Tolborg, Søren; Sádaba, Irantzu; Osmundsen, Christian M; Fristrup, Peter; Holm, Martin S; Taarning, Esben

    2015-02-01

    This study focuses on increasing the selectivity to methyl lactate from sugars using stannosilicates as heterogeneous catalyst. All group I ions are found to have a promoting effect on the resulting methyl lactate yield. Besides, the alkali ions can be added both during the preparation of the catalyst or directly to the solvent mixture to achieve the highest reported yield of methyl lactate (ca. 75 %) from sucrose at 170 °C in methanol. The beneficial effect of adding alkali to the reaction media applies not only to highly defect-free Sn-Beta prepared through the fluoride route, but also to materials prepared by post-treatment of dealuminated commercial Beta zeolites, as well as ordered mesoporous stannosilicates, in this case Sn-MCM-41 and Sn-SBA-15. These findings open the door to the possibility of using other preparation methods or different Sn-containing silicates with equally high methyl lactate yields as Sn-Beta. PMID:25605624

  17. Tin-containing silicates: alkali salts improve methyl lactate yield from sugars.

    PubMed

    Tolborg, Søren; Sádaba, Irantzu; Osmundsen, Christian M; Fristrup, Peter; Holm, Martin S; Taarning, Esben

    2015-02-01

    This study focuses on increasing the selectivity to methyl lactate from sugars using stannosilicates as heterogeneous catalyst. All group I ions are found to have a promoting effect on the resulting methyl lactate yield. Besides, the alkali ions can be added both during the preparation of the catalyst or directly to the solvent mixture to achieve the highest reported yield of methyl lactate (ca. 75 %) from sucrose at 170 °C in methanol. The beneficial effect of adding alkali to the reaction media applies not only to highly defect-free Sn-Beta prepared through the fluoride route, but also to materials prepared by post-treatment of dealuminated commercial Beta zeolites, as well as ordered mesoporous stannosilicates, in this case Sn-MCM-41 and Sn-SBA-15. These findings open the door to the possibility of using other preparation methods or different Sn-containing silicates with equally high methyl lactate yields as Sn-Beta.

  18. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    NASA Astrophysics Data System (ADS)

    Verdolotti, Letizia; Liguori, Barbara; Capasso, Ilaria; Caputo, Domenico; Lavorgna, Marino; Iannace, Salvatore

    2014-05-01

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a "meringue" type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (˜500 Kg/m3) with good cellular structure and mechanical properties were obtained by combining the "meringue" approach with the use of the chemical blowing agent based on Si.

  19. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    SciTech Connect

    Verdolotti, Letizia; Capasso, Ilaria; Lavorgna, Marino; Liguori, Barbara; Caputo, Domenico; Iannace, Salvatore

    2014-05-15

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a “meringue” type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (∼500 Kg/m{sup 3}) with good cellular structure and mechanical properties were obtained by combining the “meringue” approach with the use of the chemical blowing agent based on Si.

  20. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: the effect of protective alumina coating on electrical stability in dual environment

    SciTech Connect

    Chou, Y. S.; Choi, Jung-Pyung; Stevenson, Jeffry W.

    2012-12-01

    An alkali-containing silicate glass was recently proposed as a potential sealant for solid oxide fuel cells (SOFC). The glass contains appreciable amount of alkalis and retains its glassy microstructure at elevated temperatures over time. It is more compliant as compared to conventional glass-ceramics sealants and could potentially heal cracks during thermal cycling. In previous papers the thermal cycle stability, thermal stability and chemical compatibility were reported with yttria-stabilized zirconia (YSZ) electrolyte and YSZ-coated ferritic stainless steel interconnect. In this paper, we report the electrical stability of the compliant glass with aluminized AISI441 interconnect material under DC load in dual environment at 700-800oC. Apparent electrical resistivity was measured with a 4-point method for the glass sealed between two aluminized AISI441 metal coupons as well as plain AISI441 substrates. The results showed good electrical stability with the aluminized AISI441 substrate, while unstable behavior was observed for un-coated substrates. In addition, interfacial microstructure was examined with scanning electron microscopy and correlated with the measured resistivity results. Overall, the alumina coating demonstrated good chemical stability with the alkali-containing silicate sealing glass under DC loading.

  1. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    DOEpatents

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  2. Intrinsic differences in atomic ordering of calcium (alumino)silicate hydrates in conventional and alkali-activated cements

    SciTech Connect

    White, Claire E.; Daemen, Luke L.; Hartl, Monika; Page, Katharine

    2015-01-15

    The atomic structures of calcium silicate hydrate (C–S–H) and calcium (–sodium) aluminosilicate hydrate (C–(N)–A–S–H) gels, and their presence in conventional and blended cement systems, have been the topic of significant debate over recent decades. Previous investigations have revealed that synthetic C–S–H gel is nanocrystalline and due to the chemical similarities between ordinary Portland cement (OPC)-based systems and low-CO{sub 2} alkali-activated slags, researchers have inferred that the atomic ordering in alkali-activated slag is the same as in OPC–slag cements. Here, X-ray total scattering is used to determine the local bonding environment and nanostructure of C(–A)–S–H gels present in hydrated tricalcium silicate (C{sub 3}S), blended C{sub 3}S–slag and alkali-activated slag, revealing the large intrinsic differences in the extent of nanoscale ordering between C–S–H derived from C{sub 3}S and alkali-activated slag systems, which may have a significant influence on thermodynamic stability, and material properties at higher length scales, including long term durability of alkali-activated cements.

  3. Alkali Metal/Salt Thermal-Energy-Storage Systems

    NASA Technical Reports Server (NTRS)

    Phillips, Wayne W.; Stearns, John W.

    1987-01-01

    Proposed thermal-energy-storage system based on mixture of alkali metal and one of its halide salts; metal and salt form slurry of two immiscible melts. Use of slurry expected to prevent incrustations of solidified salts on heat-transfer surfaces that occur where salts alone used. Since incrustations impede heat transfer, system performance improved. In system, charging heat-exchanger surface immersed in lower liquid, rich in halide-salt, phase-charge material. Discharging heat exchanger surface immersed in upper liquid, rich in alkali metal.

  4. Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal-organic ionic molten salts.

    PubMed

    Chen, Fangfang; Forsyth, Maria

    2016-07-28

    Mixed salts of Ionic Liquids (ILs) and alkali metal salts, developed as electrolytes for lithium and sodium batteries, have shown a remarkable ability to facilitate high rate capability for lithium and sodium electrochemical cycling. It has been suggested that this may be due to a high alkali metal ion transference number at concentrations approaching 50 mol% Li(+) or Na(+), relative to lower concentrations. Computational investigations for two IL systems illustrate the formation of extended alkali-anion aggregates as the alkali metal ion concentration increases. This tends to favor the diffusion of alkali metal ions compared with other ionic species in electrolyte solutions; behavior that has recently been reported for Li(+) in a phosphonium ionic liquid, thus an increasing alkali transference number. The mechanism of alkali metal ion diffusion via this extended coordination environment present at high concentrations is explained and compared to the dynamics at lower concentrations. Heterogeneous alkali metal ion dynamics are also evident and, somewhat counter-intuitively, it appears that the faster ions are those that are generally found clustered with the anions. Furthermore these fast alkali metal ions appear to correlate with fastest ionic liquid solvent ions. PMID:27375042

  5. Neuropsychiatric manifestations of alkali metal deficiency and excess.

    PubMed

    Yung, C Y

    1984-01-01

    The alkali metals from the Group IA of the periodic table (lithium, sodium, potassium, rubidium, cesium and francium) are reviewed. The neuropsychiatric aspects of alkali metal deficiencies and excesses (intoxications) are described. Emphasis was placed on lithium due to its clinical uses. The signs and symptoms of these conditions are characterized by features of an organic brain syndrome with delirium and encephalopathy prevailing. There are no clinically distinctive features that could be reliably used for diagnoses. Sodium and potassium are two essential alkali metals in man. Lithium is used as therapeutic agent in bipolar affective disorders. Rubidium has been investigated for its antidepressant effect in a group of psychiatric disorders. Cesium is under laboratory investigation for its role in carcinogenesis and in depressive illness. Very little is known of francium due to its great instability for experimental study. PMID:6395136

  6. C-CAMP, A closed cycle alkali metal power system

    SciTech Connect

    Wichner, R.P.; Hoffman, H.W.

    1988-01-01

    A concept is presented for a Closed-Cycle Alkali Metal (C-CAMP) power systems which utilizes the heat of reaction of an alkali metal and halogen compound to vaporize an alkali metal turbine fluid for a Rankine cycle. Unique features of the concept are (1) direct contact (heat exchange) between the reaction products and turbine fluid, and (2) a flow-through chemical reactor/boiler. The principal feasibility issues of the concept relate to the degree of cross-mixing of product and turbine fluid streams within the reactor-boiler. If proven feasible, the concept may be adapted to a range of fuel and turbine fluids and ultimately lead to thermal efficiencies in excess of 35%.

  7. Neuropsychiatric manifestations of alkali metal deficiency and excess

    SciTech Connect

    Yung, C.Y.

    1984-01-01

    The alkali metals from the Group IA of the periodic table (lithium, sodium, potassium, rubidium, cesium and francium) are reviewed. The neuropsychiatric aspects of alkali metal deficiencies and excesses (intoxications) are described. Emphasis was placed on lithium due to its clinical uses. The signs and symptoms of these conditions are characterized by features of an organic brain syndrome with delirium and encephalopathy prevailing. There are no clinically distinctive features that could be reliably used for diagnoses. Sodium and potassium are two essential alkali metals in man. Lithium is used as therapeutic agent in bipolar affective disorders. Rubidium has been investigated for its antidepressant effect in a group of psychiatric disorders. Cesium is under laboratory investigation for its role in carcinogenesis and in depressive illness. Very little is known of francium due to its great instability for experimental study.

  8. Spill-Resistant Alkali-Metal-Vapor Dispenser

    NASA Technical Reports Server (NTRS)

    Klipstein, William

    2005-01-01

    A spill-resistant vessel has been developed for dispensing an alkali-metal vapor. Vapors of alkali metals (most commonly, cesium or rubidium, both of which melt at temperatures slightly above room temperature) are needed for atomic frequency standards, experiments in spectroscopy, and experiments in laser cooling. Although the present spill-resistant alkali-metal dispenser was originally intended for use in the low-gravity environment of outer space, it can also be used in normal Earth gravitation: indeed, its utility as a vapor source was confirmed by use of cesium in a ground apparatus. The vessel is made of copper. It consists of an assembly of cylinders and flanges, shown in the figure. The uppermost cylinder is a fill tube. Initially, the vessel is evacuated, the alkali metal charge is distilled into the bottom of the vessel, and then the fill tube is pinched closed to form a vacuum seal. The innermost cylinder serves as the outlet for the vapor, yet prevents spilling by protruding above the surface of the alkali metal, no matter which way or how far the vessel is tilted. In the event (unlikely in normal Earth gravitation) that any drops of molten alkali metal have been shaken loose by vibration and are floating freely, a mesh cap on top of the inner cylinder prevents the drops from drifting out with the vapor. Liquid containment of the equivalent of 1.2 grams of cesium was confirmed for all orientations with rubbing alcohol in one of the prototypes later used with cesium.

  9. Transport properties of alkali metal doped fullerides

    SciTech Connect

    Yadav, Daluram Yadav, Nishchhal

    2015-07-31

    We have studied the intercage interactions between the adjacent C{sub 60} cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C{sub 60} phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, T{sub c}, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C{sub 60} phonons as 5 K, which is much lower as compared to reported T{sub c} (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  10. Alkali Silicate Glass Coatings for Mitigating the Risks of Tin Whiskers

    NASA Astrophysics Data System (ADS)

    Hillman, Dave; Wilcoxon, Ross; Lower, Nate; Grossman, Dan

    2015-12-01

    Alkali silicate glass (ASG) coatings were investigated as a possible method for inhibiting tin whisker initiation and growth. The aqueous-based ASG formulations used in this study were deposited with equipment and conditions that are typical of those used to apply conventional conformal coatings. Processes for controlling ASG coating properties were developed, and a number of ASG-based coating combinations were applied to test components with pure tin surfaces. Coatings were applied both in a laboratory environment at Rockwell Collins and in a manufacturing environment at Plasma Ruggedized Solutions. Testing in elevated humidity/temperature environments and subsequent inspection of the test articles identified coating combinations that inhibited tin whisker growth as well as other material combinations that actually accelerated tin whisker growth. None of the coatings evaluated in this study, including conventional acrylic and Parylene conformal coatings, completely prevented the formation of tin whiskers. Two of the coatings were particularly effective at reducing the risks of whisker growth, albeit through different mechanisms. Parylene conformal coating almost, but not completely, eliminated whisker formation, and only a few tin whiskers were found on these surfaces during the study. A composite of ASG and alumina nanoparticles inhibited whisker formation to a lesser degree than Parylene, but did disrupt whisker growth mechanisms so as to inhibit the formation of long, and more dangerous, tin whiskers. Additional testing also demonstrated that the conformal coatings had relatively little effect on the dielectric loss of a stripline test structure operating at frequencies over 30 GHz.

  11. Infrared Laser-Induced Breakdown Spectroscopy of Alkali Metal Halides

    NASA Astrophysics Data System (ADS)

    Brown, Ei; Hommerich, Uwe; Yang, Clayton; Trivedi, Sudhir; Samuels, Alan; Snyder, Peter

    2008-10-01

    Laser-induced breakdown spectroscopy (LIBS) is a powerful diagnostic tool for detection of trace elements by monitoring the atomic and ionic emission from laser-induced plasmas. LIBS is a relatively simple technique and has been successfully employed in applications such as environmental monitoring, materials analysis, medical diagnostics, industrial process control, and homeland security. Most LIBS applications are limited to emission features in the ultraviolet-visible-near infrared (UV-VIS-NIR) region arising from atoms and simple molecular fragments. In the present work, we report on the observation of mid- infrared emission lines from alkali metal halides due to laser-induced breakdown processes. The studied alkali metal halides included LiCl, NaCl, NaBr, KCl, KBr, KF, RbCl, and RbBr. The laser-induced plasma was produced by focusing a 16 mJ pulsed Nd:YAG laser (1064 nm) on the target. The LIBS infrared emission from alkali halides showed intense and narrow bands located in the region from 2-8 μm. The observed emission features were assigned to atomic transitions between higher-lying Rydberg states of neutral alkali atoms. More detailed results of the performed IR LIBS studies on alkali metal halides will be discussed at the conference.

  12. Maternal exposure to alkali, alkali earth, transition and other metals: Concentrations and predictors of exposure.

    PubMed

    Hinwood, A L; Stasinska, A; Callan, A C; Heyworth, J; Ramalingam, M; Boyce, M; McCafferty, P; Odland, J Ø

    2015-09-01

    Most studies of metals exposure focus on the heavy metals. There are many other metals (the transition, alkali and alkaline earth metals in particular) in common use in electronics, defense industries, emitted via combustion and which are naturally present in the environment, that have received limited attention in terms of human exposure. We analysed samples of whole blood (172), urine (173) and drinking water (172) for antimony, beryllium, bismuth, cesium, gallium, rubidium, silver, strontium, thallium, thorium and vanadium using ICPMS. In general most metals concentrations were low and below the analytical limit of detection with some high concentrations observed. Few factors examined in regression models were shown to influence biological metals concentrations and explained little of the variation. Further study is required to establish the source of metals exposures at the high end of the ranges of concentrations measured and the potential for any adverse health impacts in children. PMID:25984984

  13. Maternal exposure to alkali, alkali earth, transition and other metals: Concentrations and predictors of exposure.

    PubMed

    Hinwood, A L; Stasinska, A; Callan, A C; Heyworth, J; Ramalingam, M; Boyce, M; McCafferty, P; Odland, J Ø

    2015-09-01

    Most studies of metals exposure focus on the heavy metals. There are many other metals (the transition, alkali and alkaline earth metals in particular) in common use in electronics, defense industries, emitted via combustion and which are naturally present in the environment, that have received limited attention in terms of human exposure. We analysed samples of whole blood (172), urine (173) and drinking water (172) for antimony, beryllium, bismuth, cesium, gallium, rubidium, silver, strontium, thallium, thorium and vanadium using ICPMS. In general most metals concentrations were low and below the analytical limit of detection with some high concentrations observed. Few factors examined in regression models were shown to influence biological metals concentrations and explained little of the variation. Further study is required to establish the source of metals exposures at the high end of the ranges of concentrations measured and the potential for any adverse health impacts in children.

  14. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: the effect of protective YSZ coating on electrical stability in dual environment

    SciTech Connect

    Chou, Y. S.; Thomsen, Edwin C.; Choi, Jung-Pyung; Stevenson, Jeffry W.

    2012-03-15

    Recently, compliant sealing glass has been proposed as a potential candidate sealant for solid oxide fuel cell (SOFC) applications. In a previous paper, the thermal stability and chemical compatibility were reported for a compliant alkali-containing silicate glass sealed between anode supported YSZ bi-layer and YSZ-coated stainless steel interconnect. In this paper, we will report the electrical stability of the compliant glass under a DC load and dual environment at 700-800 degrees C. Apparent electrical resistivity was measured with a 4-point method for the glass sealed between two plain SS441 metal coupons or YSZ-coated aluminized substrates. The results showed instability with plain SS441 at 800 degrees C, but stable behavior of increasing resistivity with time was observed with the YSZ coated SS441. In addition, results of interfacial microstructure analysis with scanning electron microscopy will be correlated with the measured resistivity results. Overall, the YSZ coating demonstrated chemically stability with the alkali-containing compliant silicate sealing glass under electrical field and dual environments.

  15. Stabilized Alkali-Metal Ultraviolet-Band-Pass Filters

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick; Fraschetti, George A.; Mccann, Timothy; Mayall, Sherwood D.; Dunn, Donald E.; Trauger, John T.

    1995-01-01

    Layers of bismuth 5 to 10 angstrom thick incorporated into alkali-metal ultraviolet-band-pass optical filters by use of advanced fabrication techniques. In new filters layer of bismuth helps to reduce surface migration of sodium. Sodium layer made more stable and decreased tendency to form pinholes by migration.

  16. Aqueous alkali metal hydroxide insoluble cellulose ether membrane

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1969-01-01

    A membrane that is insoluble in an aqueous alkali metal hydroxide medium is described. The membrane is a resin which is a water-soluble C2-C4 hydroxyalkyl cellulose ether polymer and an insolubilizing agent for controlled water sorption, a dialytic and electrodialytic membrane. It is particularly useful as a separator between electrodes or plates in an alkaline storage battery.

  17. High capacity nickel battery material doped with alkali metal cations

    DOEpatents

    Jackovitz, John F.; Pantier, Earl A.

    1982-05-18

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  18. Method of assembling and sealing an alkali metal battery

    DOEpatents

    Elkins, Perry E.; Bell, Jerry E.; Harlow, Richard A.; Chase, Gordon G.

    1983-01-01

    A method of initially assembling and then subsequently hermetically sealing a container portion of an alkali metal battery to a ceramic portion of such a battery is disclosed. Sealing surfaces are formed respectively on a container portion and a ceramic portion of an alkali metal battery. These sealing surfaces are brought into juxtaposition and a material is interposed therebetween. This interposed material is one which will diffuse into sealing relationship with both the container portion and the ceramic portion of the alkali metal battery at operational temperatures of such a battery. A pressure is applied between these sealing surfaces to cause the interposed material to be brought into intimate physical contact with such juxtaposed surfaces. A temporary sealing material which will provide a seal against a flow of alkali metal battery reactants therethrough at room temperatures and is applied over the juxtaposed sealing surfaces and material interposed therebetween. The entire assembly is heated to an operational temperature so that the interposed material diffuses into the container portion and the ceramic portion to form a hermetic seal therebetween. The pressure applied to the juxtaposed sealing surfaces is maintained in order to ensure the continuation of the hermetic seal.

  19. Method of assembling and sealing an alkali metal battery

    DOEpatents

    Elkins, P.E.; Bell, J.E.; Harlow, R.A.; Chase, G.G.

    1983-03-01

    A method of initially assembling and then subsequently hermetically sealing a container portion of an alkali metal battery to a ceramic portion of such a battery is disclosed. Sealing surfaces are formed respectively on a container portion and a ceramic portion of an alkali metal battery. These sealing surfaces are brought into juxtaposition and a material is interposed there between. This interposed material is one which will diffuse into sealing relationship with both the container portion and the ceramic portion of the alkali metal battery at operational temperatures of such a battery. A pressure is applied between these sealing surfaces to cause the interposed material to be brought into intimate physical contact with such juxtaposed surfaces. A temporary sealing material which will provide a seal against a flow of alkali metal battery reactants there through at room temperatures and is applied over the juxtaposed sealing surfaces and material interposed there between. The entire assembly is heated to an operational temperature so that the interposed material diffuses into the container portion and the ceramic portion to form a hermetic seal there between. The pressure applied to the juxtaposed sealing surfaces is maintained in order to ensure the continuation of the hermetic seal. 4 figs.

  20. Alkali Metal Suboxometalates-Structural Chemistry between Salts and Metals.

    PubMed

    Wörsching, Matthias; Hoch, Constantin

    2015-07-20

    The crystal structures of the new cesium-poor alkali metal suboxometalates Cs10MO5 (M = Al, Ga, Fe) show both metallic and ionic bonding following the formal description (Cs(+))10(MO4(5-))(O(2-))·3e(-). Comparable to the cesium-rich suboxometalates Cs9MO4 (M = Al, Ga, In, Fe, Sc) with ionic subdivision (Cs(+))9(MO4(5-))·4e(-), they contain an oxometalate anion [M(III)O4](5-) embedded in a metallic matrix of cesium atoms. Columnlike building units form with prevalent ionic bonding inside and metallic bonding on the outer surface. In the cesium-rich suboxometalates Cs9MO4, additional cesium atoms with no contact to any anion are inserted between columns of the formal composition [Cs8MO4]. In the cesium-poor suboxometalates Cs10MO5, the same columns are extended by face-sharing [Cs6O] units, and no additional cesium atoms are present. The terms "cesium-rich" and "cesium-poor" here refer to the Cs:O ratio. The new suboxometalates Cs10MO5 crystallize in two modifications with new structure types. The orthorhombic modification adopts a structure with four formula units per unit cell in space group Pnnm with a = 11.158(3) Å, b = 23.693(15) Å, and c = 12.229(3) Å for Cs10AlO5. The monoclinic modification crystallizes with eight formula units per unit cell in space group C2/c with a = 21.195(3) Å, b = 12.480(1) Å, c = 24.120(4) Å, and β = 98.06(1)° for Cs10AlO5. Limits to phase formation are given by the restriction that the M atoms must be trivalent and by geometric size restrictions for the insertion of [Cs6O] blocks in Cs10MO5. All of the suboxometalate structures show similar structural details and form mixed crystal series with statistical occupation for the M elements following the patterns Cs9(M(1)xM(2)1-x)O4 and Cs10(M(1)xM(2)1-x)O5. The suboxometalates are a new example of ordered intergrowth of ionic and metallic structure elements, allowing for the combination of properties related to both ionic and metallic materials.

  1. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under...

  2. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under...

  3. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under...

  4. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under...

  5. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under...

  6. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  7. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  8. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  9. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  10. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  11. Valence bond cluster studies of alkali metal/semiconductor bonding

    NASA Astrophysics Data System (ADS)

    Tatar, Robert C.; Messmer, Richard P.

    1986-12-01

    We present results of cluster studies of alkali metal/semiconductor bonding. Using the Generalized Valence Bond (GVB) method, we find a remarkable consistency in the behavoir of bonding orbitals for a variety of systems, including: LiH, CLi4, LiH4 and several hypervalent systems, such as SiH3Li2, SiH4Li2. Our results show that the metal-semiconductor bonding in these systems can be understood in terms of a pairing between McAdon-Goddard type metallic bonding orbitals and a set of equivalent orbitals of the non-metallic species. We propose that the results are relevant to the initial stages of alkali overlayer growth on semiconductor surfaces and lead to a simple picture of the bonding including the transition from a non-conducting to a conducting layer. We have considered numerous proposed hypervalent structures in light of the above results and find that they can be understood.

  12. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    NASA Technical Reports Server (NTRS)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. <10 GPa, and in two cases at or near 20 GPa. According to those data, the stronger influences on the distribution coefficient of W are temperature, composition, and oxygen fugacity with a relatively slight influence in pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  13. Core thresholds and charge-density waves in alkali metals

    NASA Astrophysics Data System (ADS)

    Bruhwiler, P. A.; Schnatterly, S. E.

    1988-07-01

    We have determined experimental upper limits on any broadening which could be due to a charge-density wave in Na and K metal soft x-ray-absorption and emisssion spectra. The upper limit for absorption in Na is a factor of 4 below the expected theoretical value. These results contradict expectations based on the present theory of charge-density waves in alkali metals.

  14. Experiments on metal-silicate plumes and core formation.

    PubMed

    Olson, Peter; Weeraratne, Dayanthie

    2008-11-28

    Short-lived isotope systematics, mantle siderophile abundances and the power requirements of the geodynamo favour an early and high-temperature core-formation process, in which metals concentrate and partially equilibrate with silicates in a deep magma ocean before descending to the core. We report results of laboratory experiments on liquid metal dynamics in a two-layer stratified viscous fluid, using sucrose solutions to represent the magma ocean and the crystalline, more primitive mantle and liquid gallium to represent the core-forming metals. Single gallium drop experiments and experiments on Rayleigh-Taylor instabilities with gallium layers and gallium mixtures produce metal diapirs that entrain the less viscous upper layer fluid and produce trailing plume conduits in the high-viscosity lower layer. Calculations indicate that viscous dissipation in metal-silicate plumes in the early Earth would result in a large initial core superheat. Our experiments suggest that metal-silicate mantle plumes facilitate high-pressure metal-silicate interaction and may later evolve into buoyant thermal plumes, connecting core formation to ancient hotspot activity on the Earth and possibly on other terrestrial planets. PMID:18826918

  15. Experiments on metal-silicate plumes and core formation.

    PubMed

    Olson, Peter; Weeraratne, Dayanthie

    2008-11-28

    Short-lived isotope systematics, mantle siderophile abundances and the power requirements of the geodynamo favour an early and high-temperature core-formation process, in which metals concentrate and partially equilibrate with silicates in a deep magma ocean before descending to the core. We report results of laboratory experiments on liquid metal dynamics in a two-layer stratified viscous fluid, using sucrose solutions to represent the magma ocean and the crystalline, more primitive mantle and liquid gallium to represent the core-forming metals. Single gallium drop experiments and experiments on Rayleigh-Taylor instabilities with gallium layers and gallium mixtures produce metal diapirs that entrain the less viscous upper layer fluid and produce trailing plume conduits in the high-viscosity lower layer. Calculations indicate that viscous dissipation in metal-silicate plumes in the early Earth would result in a large initial core superheat. Our experiments suggest that metal-silicate mantle plumes facilitate high-pressure metal-silicate interaction and may later evolve into buoyant thermal plumes, connecting core formation to ancient hotspot activity on the Earth and possibly on other terrestrial planets.

  16. Chemical compatibility of structural materials in alkali metals

    SciTech Connect

    Natesan, K.; Rink, D.L.; Haglund, R.

    1995-04-01

    The objectives of this task are to (a) evaluate the chemical compatibility of structural alloys such as V-5 wt.%Cr-5 wt.%Ti alloy and Type 316 stainless steel for application in liquid alkali metals such as lithium and sodium-78 wt.% potassium (NaK) at temperatures in the range that are of interest for International Thermonuclear Experimental Reactor (ITER); (b) evaluate the transfer of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen between structural materials and liquid metals; and (c) evaluate the effects of such transfers on the mechanical and microstructural characteristics of the materials for long-term service in liquid-metal-environments.

  17. Wetting Transitions of Inert Gases on Alkali Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Bojan, M. J.; McDonald, I. A.; Cole, M. W.; Steele, W. A.

    1996-03-01

    Theoretical and experimental discoveries have been made recently of wetting and prewetting transitions of helium and hydrogen films on alkali metal surfaces [1,2]. New experiments show anomalous nonwetting behavior of Ne on Rb and Cs [3]. Building on earlier work [4], we have done and will describe results from the first Monte Carlo simulations showing wetting transitions for classical gases on alkali metal surfaces. * Research supported by an NSF Materials Research Group grant. 1. R. B.Hallock, J. Low Temp. Phys. 101, 31, 1995 2. M. W. Cole, J. Low Temp. Phys. 101, 25, 1995. 3. G. B. Hess, M. Sabatini, and M. H. W. Chan, unpublished 4. J. E. Finn and P. A. Monson, Phys. Rev. A 39, 6402, 1989.

  18. Alkali exchange equilibria between a silicate melt and coexisting magmatic volatile phase: an experimental study at 800°C and 100 MPa

    NASA Astrophysics Data System (ADS)

    Frank, Mark R.; Candela, Philip A.; Piccoli, Philip M.

    2003-04-01

    complex. fH 2Osys and the ASI are the main controls on model NaOH m/ΣNa m in the system, with model NaOH m/ΣNa m increasing with increasing fH 2Osys. This relationship can be used to estimate the C HClb in subaluminous systems, an improvement over previous models. Data for metal partitioning between a volatile phase and melt are commonly presented in the literature as metal-sodium exchange equilibria (i.e., K Cu,Na for the exchange of copper and sodium). However, the variation in K' meas (K, Na) observed in this study implies that the treatment of metal partitioning between a volatile phase and melt as metal-alkali exchange equilibria is complex because alkali partitioning is not constant and suggests that experimental partitioning studies need to carefully control the HCl/NaCl in experimental vapors and brines. This effect may explain discrepancies in metal-alkali exchange equilibria presented in the literature. Therefore, metal-alkali exchange cannot be described fully by a single metal-alkali equilibrium but must be examined by multiple equilibria.

  19. Radioisotope powered alkali metal thermoelectric converter design for space systems

    NASA Technical Reports Server (NTRS)

    Sievers, R. K.; Bankston, C. P.

    1988-01-01

    The design concept of an alkali-metal thermoelectric converter (AMTEC) for 15-30-percent-efficient conversion of heat from the General Purpose (radioisotope) Heat Source (GPHS) on spacecraft is presented. The basic physical principles of the conversion cycle are outlined; a theoretical model is derived; a modular design is described and illustrated with drawings; and the overall AMTEC/GPHS system design is characterized. Predicted performance data are presented in extensive tables and graphs and discussed in detail.

  20. Calculation of the Lamb shift in neutral alkali metals

    NASA Astrophysics Data System (ADS)

    Sapirstein, J.; Cheng, K. T.

    2002-10-01

    The one-loop Lamb shift is calculated for the ground state of the neutral alkali metals lithium through francium. The method used is Furry representation QED, defined in terms of a variety of local potentials. The method is exact in binding corrections, but is potential dependent. Significant differences with known Lamb shift results for lithium are found, and it is shown that large corrections result from a partial set of screening corrections. Comparison with other calculations is made.

  1. Neutron imaging of alkali metal heat pipes

    SciTech Connect

    Kihm, Ken; Kirchoff, Eric; Golden, Matt; Rosenfeld, J.; Rawal, S.; Pratt, D.; Bilheux, Hassina Z; Walker, Lakeisha MH; Voisin, Sophie; Hussey, Dan

    2013-01-01

    High-temperature heat pipes are two-phase, capillary driven heat transfer devices capable of passively providing high thermal fluxes. Such a device using a liquid-metal coolant can be used as a solution for successful thermal management on hypersonic flight vehicles. Imaging of the liquid-metal coolant inside will provide valuable information in characterizing the detailed heat and mass transport. Neutron imaging possesses an inherent advantage from the fact that neutrons penetrate the heat pipe metal walls with very little attenuation, but are significantly attenuated by the liquid metal contained inside. Using the BT-2 beam line at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, preliminary efforts have been conducted on a nickel-sodium heat pipe. The contrast between the attenuated beam and the background is calculated to be approximately 3%. This low contrast requires sacrifice in spatial or temporal resolution so efforts have since been concentrated on lithium (Li) which has a substantially larger neutron attenuation cross section. Using the CG-1D beam line at the High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, the first neutron images of high-temperature molybdenum (Mo)-Li heat pipes have been achieved. The relatively high neutron cross section of Li allows for the visualization of the Li working fluid inside the heat pipes. The evaporator region of a gravity assisted cylindrical heat pipe prototype 25 cm long was imaged from start-up to steady state operation up to approximately 900 C. In each corner of the square bore inside, the capillary action raises the Li meniscus above the bulk Li pool in the evaporator region. As the operational temperature changes, the meniscus shapes and the bulk meniscus height also changes. Furthermore, a three-dimensional tomographic image is also reconstructed from the total of 128 projection images taken 1.4o apart in which the Li had

  2. The unexpected properties of alkali metal iron selenide superconductors

    SciTech Connect

    Dagotto, Elbio R

    2013-01-01

    The iron-based superconductors that contain FeAs layers as the fundamental building block in the crystal structures have been rationalized in the past using ideas based on the Fermi surface nesting of hole and electron pockets when in the presence of weak Hubbard U interactions. This approach seemed appropriate considering the small values of the magnetic moments in the parent compounds and the clear evidence based on photoemission experiments of the required electron and hole pockets. However, recent results in the context of alkali metal iron selenides, with generic chemical composition AxFe2ySe2 (A alkali metal element), have challenged those previous ideas since at particular compositions y the low-temperature ground states are insulating and display antiferromagnetic order with large iron magnetic moments. Moreover, angle-resolved photoemission studies have revealed the absence of hole pockets at the Fermi level in these materials. The present status of this exciting area of research, with the potential to alter conceptually our understanding of the ironbased superconductors, is here reviewed, covering both experimental and theoretical investigations. Other recent related developments are also briefly reviewed, such as the study of selenide two-leg ladders and the discovery of superconductivity in a single layer of FeSe. The conceptual issues considered established for the alkali metal iron selenides, as well as several issues that still require further work, are discussed.

  3. Metal silicate mixtures - Spectral properties and applications to asteroid taxonomy

    NASA Technical Reports Server (NTRS)

    Cloutis, Edward A.; Smith, Dorian G. W.; Lambert, Richard St. J.; Gaffey, Michael J.

    1990-01-01

    The reflectance spectra of combinations of olivine, orthopyroxene, and iron meteorite metal are experimentally studied, and the obtained variations in spectral properties are used to constrain the physical and chemical properties of the assemblages. The presence of metal most noticeably affects band area ratios, peak-to-peak and peak-to-minimum reflectance ratios, and band widths. Band width and band areas are useful for determining metal abundance in olivine and metal and orthopyroxene and metal assemblages, respectively. Mafic silicate grain size variations are best determined using band depth criteria. Band centers are most useful for determining mafic silicate composition. An application of these parameters to the S-class asteroid Flora is presented.

  4. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    DOEpatents

    Sharp, David W.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  5. Estimation of high temperature metal-silicate partition coefficients

    NASA Technical Reports Server (NTRS)

    Jones, John H.; Capobianco, Christopher J.; Drake, Michael J.

    1992-01-01

    It has been known for some time that abundances of siderophile elements in the upper mantle of the Earth are far in excess of those expected from equilibrium between metal and silicate at low pressures and temperatures. Murthy (1991) has re-examined this excess of siderophile element problem by estimating liquid metal/liquid silicate partition coefficients reduces from their measured values at a lower temperature, implying that siderophile elements become much less siderophilic at high temperatures. Murthy then draws the important conclusion that metal/silicate equilibrium at high temperatures can account for the abundances of siderophile elements in the Earth's mantle. Of course, his conclusion is critically dependent on the small values of the partition coefficients he calculates. Because the numerical values of most experimentally-determined partition coefficients increase with increasing temperature at both constant oxygen fugacity and at constant redox buffer, we think it is important to try an alternative extrapolation for comparison. We have computed high temperature metal/silicate partition coefficients under a different set of assumptions and show that such long temperature extrapolations yield values which are critically dependent upon the presumed chemical behavior of the siderophile elements in the system.

  6. Alkali activation of recovered fuel-biofuel fly ash from fluidised-bed combustion: Stabilisation/solidification of heavy metals.

    PubMed

    Yliniemi, Juho; Pesonen, Janne; Tiainen, Minna; Illikainen, Mirja

    2015-09-01

    Recovered fuel-biofuel fly ash from a fluidized bed boiler was alkali-activated and granulated with a sodium-silicate solution in order to immobilise the heavy metals it contains. The effect of blast-furnace slag and metakaolin as co-binders were studied. Leaching standard EN 12457-3 was applied to evaluate the immobilisation potential. The results showed that Ba, Pb and Zn were effectively immobilised. However, there was increased leaching after alkali activation for As, Cu, Mo, Sb and V. The co-binders had minimal or even negative effect on the immobilisation. One exception was found for Cr, in which the slag decreased leaching, and one was found for Cu, in which the slag increased leaching. A sequential leaching procedure was utilized to gain a deeper understanding of the immobilisation mechanism. By using a sequential leaching procedure it is possible fractionate elements into watersoluble, acid-soluble, easily-reduced and oxidisable fractions, yielding a total 'bioavailable' amount that is potentially hazardous for the environment. It was found that the total bioavailable amount was lower following alkali activation for all heavy metals, although the water-soluble fraction was higher for some metals. Evidence from leaching tests suggests the immobilisation mechanism was chemical retention, or trapping inside the alkali activation reaction products, rather than physical retention, adsorption or precipitation as hydroxides. PMID:26054963

  7. Core Formation Timescale, Silicate-Metal Equilibration, and W Diffusivity

    NASA Astrophysics Data System (ADS)

    Yin, Q.; Jacobsen, B.; Tinker, D.; Lesher, C.

    2004-12-01

    The extent to which material accreted to the proto-Earth and segregated to form the core was chemically and isotopically equilibrated with the silicate mantle is an outstanding problem in planetary science. This is particularly important when attempting to assign a meaningful age for planetary accretion and core formation based on Hf-W isotope systematics. The Earth and other terrestrial planets likely formed by accretion of previously differentiated planetesimals. For the planetesimals themselves the most important energy source for metal-silicate differentiation is the combined radioactive heating due to decay of 26Al (half-life 0.7 Ma) and 60Fe (half-life 1.5 Ma). It is expected that the fractionation of Hf and W during planetesimal core formation will lead to a divergence in the W isotopic compositions of the core and silicate portions of these bodies. This expectation is supported by the enormously radiogenic 182W signatures reported for basaltic eucrites. The observation that the W isotopic compositions of the silicate portions of Earth, Moon and Mars are similar and markedly less radiogenic than eucrites suggests that during planet accretion the pre-differentiated metallic core material containing low 182W must have equilibrated extensively with the more radiogenic (high 182W) silicate material to subdue the ingrowth of 182W in the silicate mantle of the planets. The standard theory of planet formation predicts that after runaway and oligarchic growth, the late stage of planet formation is characterized by impact and merging of Mars-sized objects. This is a tremendously energetic process estimated to raise the temperature of the proto-Earth to about 7000K (a temperature equivalent to a mass spectrometer's plasma source, which indiscriminately ionizes all incoming elements). After the giant impacts, the proto-Earth had a luminosity and surface temperature close to a low mass star for a brief period of time. Stevenson (1990) argued that emulsification caused

  8. Solvent effects and alkali metal ion catalysis in phosphodiester hydrolysis.

    PubMed

    Gomez-Tagle, Paola; Vargas-Zúñiga, Idania; Taran, Olga; Yatsimirsky, Anatoly K

    2006-12-22

    The kinetics of the alkaline hydrolysis of bis(p-nitrophenyl) phosphate (BNPP) have been studied in aqueous DMSO, dioxane, and MeCN. In all solvent mixtures the reaction rate steadily decreases to half of its value in pure water in the range of 0-70 vol % of organic cosolvent and sharply increases in mixtures with lower water content. Correlations based on different scales of solvent empirical parameters failed to describe the solvent effect in this system, but it can be satisfactorily treated in terms of a simplified stepwise solvent-exchange model. Alkali metal ions catalyze the BNPP hydrolysis but do not affect the rate of hydrolysis of neutral phosphotriester p-nitrophenyl diphenyl phosphate in DMSO-rich mixtures. The catalytic activity decreases in the order Li+ > Na+ > K+ > Rb+ > Cs+. For all cations except Na+, the reaction rate is first-order in metal ion. With Na+, both first- and second-order kinetics in metal ions are observed. Binding constants of cations to the dianionic transition state of BNPP alkaline hydrolysis are of the same order of magnitude and show a similar trend as their binding constants to p-nitrophenyl phosphate dianion employed as a transition-state model. The appearance of alkali metal ion catalysis in a medium, which solvates metal ions stronger than water, is attributed to the increased affinity of cations to dianions, which undergo a strong destabilization in the presence of an aprotic dipolar cosolvent.

  9. Alkali metals conductivity at multistep dynamic compression

    NASA Astrophysics Data System (ADS)

    Postnov, Victor I.

    2005-07-01

    This work is devoted to studying of phase and structural transitions, in alkaline metals (lithium, sodium, potassium and calcium) at dynamic compression. Experiments were carried out at a room temperature and at temperature of liquid nitrogen with application of smooth shock wave technique. As a result for calcium almost tenfold increase in electrical resistance was observed at the maximal pressure 60GPa. Similar electrical resistance changing was fixed in sodium experiments. In experiments with lithium the range of pressure has been expanded up to 210GPa. The break on pressure-resistivity dependence at 160Gpa was found [1]. The fixed electrical resistance changing of samples at 120GPa makes about 70 times. Character of pressure-resistivity dependence for potassium samples qualitatively coincides with fixed for sodium and lithium. In unloading electrical resistance of all samples came back to the initial value. This phenomenon testified about convertibility of occurring processes. This work was supported by RFBR N03-02-16322, grant of the President of Russia N NS 1938.2003.2, program of basic researches of the Russian Academy of Science ``Thermophysics and mechanics of intensive energy influences'' and Russian Science Support Foundation. 1. V E Fortov, V V Yakushev, K l Kagan et al // J.Phys.: Condens Matter 14 (2002) 10809-10816

  10. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: Combined stability in isothermal ageing and thermal cycling with YSZ coated ferritic stainless steels

    NASA Astrophysics Data System (ADS)

    Chou, Yeong-Shyung; Thomsen, E. C.; Choi, J.-P.; Stevenson, J. W.

    2012-01-01

    An alkali silicate glass (SCN-1) is being evaluated as a candidate sealant for solid oxide fuel cell (SOFC) applications. The glass contains about 17 wt.% alkalis (K + Na) and has low glass transition and softening temperatures. It remains vitreous and compliant after sealing without substantial crystallization, as contrary to conventional glass-ceramic sealant. The glassy nature and low characteristic temperatures can reduce residual stresses and result in the potential for crack healing. In a previous study, the glass was found to have good thermal cycle stability and was chemically compatible with yttria stabilized zirconia (YSZ) coating during short term testing. In this study, the compliant glass was further evaluated in a more realistic way in that the sealed couples were first isothermally aged for 1000 h followed by thermal cycling. High temperature leakage was measured. Chemical compatibility was also investigated with powder mixtures to enhance potential interfacial reaction. In addition, interfacial microstructure was examined with scanning electron microscopy and evaluated with regard to the leakage and chemical compatibility results. Overall the compliant sealing glass showed desirable chemical compatibility with YSZ coated metallic interconnect of minimum reaction and hermetic behavior at 700-750 °C in dual environment.

  11. Metal/Silicate Partitioning at High Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Shofner, G.; Campbell, A.; Danielson, L.; Righter, K.; Rahman, Z.

    2010-01-01

    The behavior of siderophile elements during metal-silicate segregation, and their resulting distributions provide insight into core formation processes. Determination of partition coefficients allows the calculation of element distributions that can be compared to established values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Moderately siderophile elements, including W, are particularly useful in constraining core formation conditions because they are sensitive to variations in T, P, oxygen fugacity (fO2), and silicate composition. To constrain the effect of pressure on W metal/silicate partitioning, we performed experiments at high pressures and temperatures using a multi anvil press (MAP) at NASA Johnson Space Center and laser-heated diamond anvil cells (LHDAC) at the University of Maryland. Starting materials consisted of natural peridotite mixed with Fe and W metals. Pressure conditions in the MAP experiments ranged from 10 to 16 GPa at 2400 K. Pressures in the LHDAC experiments ranged from 26 to 58 GPa, and peak temperatures ranged up to 5000 K. LHDAC experimental run products were sectioned by focused ion beam (FIB) at NASA JSC. Run products were analyzed by electron microprobe using wavelength dispersive spectroscopy. Liquid metal/liquid silicate partition coefficients for W were calculated from element abundances determined by microprobe analyses, and corrected to a common fO2 condition of IW-2 assuming +4 valence for W. Within analytical uncertainties, W partitioning shows a flat trend with increasing pressure from 10 to 16 GPa. At higher pressures, W becomes more siderophile, with an increase in partition coefficient of approximately 0.5 log units.

  12. Laboratory studies of actinide metal-silicate fractionation

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Burnett, D. S.

    1980-01-01

    Actinide and Sm partition coefficients between silicate melt and several metallic phases have been measured. Under reducing conditions Si, Th, U and Pu can be reduced to metals from silicate melts and alloyed with a platinum-gold alloy. U and Pu enter a molten Pt-Si alloy with roughly equal affinity but U strongly partitions into the solid Pt. Th behaves qualitatively the same as Pu but is much less readily reduced than U, and Sm appears to remain unreduced. Experiments with Fe metal have shown that the partition coefficients of the actinides between Fe and silicate liquid are extremely low, suggesting a very low actinide concentration in planetary cores. Experiments show that platinum metals can efficiently fractionate actinides and fractionate actinides from lanthanides and this process may be relevant to the condensation behavior of these elements from the solar nebula. Pt-metal grains in Allende Ca-Al-rich inclusions appear to be U-poor, although the sub-class of Zr-bearing Pt metals may have high U contents.

  13. Dirac Node Lines in Pure Alkali Earth Metals.

    PubMed

    Li, Ronghan; Ma, Hui; Cheng, Xiyue; Wang, Shoulong; Li, Dianzhong; Zhang, Zhengyu; Li, Yiyi; Chen, Xing-Qiu

    2016-08-26

    Beryllium is a simple alkali earth metal, but has been the target of intensive studies for decades because of its unusual electron behavior at surfaces. The puzzling aspects include (i) severe deviations from the description of the nearly free-electron picture, (ii) an anomalously large electron-phonon coupling effect, and (iii) giant Friedel oscillations. The underlying origins for such anomalous surface electron behavior have been under active debate, but with no consensus. Here, by means of first-principles calculations, we discover that this pure metal system, surprisingly, harbors the Dirac node line (DNL) that in turn helps to rationalize many of the existing puzzles. The DNL is featured by a closed line consisting of linear band crossings, and its induced topological surface band agrees well with previous photoemission spectroscopy observations on the Be (0001) surface. We further reveal that each of the elemental alkali earth metals of Mg, Ca, and Sr also harbors the DNL and speculate that the fascinating topological property of the DNL might naturally exist in other elemental metals as well. PMID:27610865

  14. Dirac Node Lines in Pure Alkali Earth Metals.

    PubMed

    Li, Ronghan; Ma, Hui; Cheng, Xiyue; Wang, Shoulong; Li, Dianzhong; Zhang, Zhengyu; Li, Yiyi; Chen, Xing-Qiu

    2016-08-26

    Beryllium is a simple alkali earth metal, but has been the target of intensive studies for decades because of its unusual electron behavior at surfaces. The puzzling aspects include (i) severe deviations from the description of the nearly free-electron picture, (ii) an anomalously large electron-phonon coupling effect, and (iii) giant Friedel oscillations. The underlying origins for such anomalous surface electron behavior have been under active debate, but with no consensus. Here, by means of first-principles calculations, we discover that this pure metal system, surprisingly, harbors the Dirac node line (DNL) that in turn helps to rationalize many of the existing puzzles. The DNL is featured by a closed line consisting of linear band crossings, and its induced topological surface band agrees well with previous photoemission spectroscopy observations on the Be (0001) surface. We further reveal that each of the elemental alkali earth metals of Mg, Ca, and Sr also harbors the DNL and speculate that the fascinating topological property of the DNL might naturally exist in other elemental metals as well.

  15. Dirac Node Lines in Pure Alkali Earth Metals

    NASA Astrophysics Data System (ADS)

    Li, Ronghan; Ma, Hui; Cheng, Xiyue; Wang, Shoulong; Li, Dianzhong; Zhang, Zhengyu; Li, Yiyi; Chen, Xing-Qiu

    2016-08-01

    Beryllium is a simple alkali earth metal, but has been the target of intensive studies for decades because of its unusual electron behavior at surfaces. The puzzling aspects include (i) severe deviations from the description of the nearly free-electron picture, (ii) an anomalously large electron-phonon coupling effect, and (iii) giant Friedel oscillations. The underlying origins for such anomalous surface electron behavior have been under active debate, but with no consensus. Here, by means of first-principles calculations, we discover that this pure metal system, surprisingly, harbors the Dirac node line (DNL) that in turn helps to rationalize many of the existing puzzles. The DNL is featured by a closed line consisting of linear band crossings, and its induced topological surface band agrees well with previous photoemission spectroscopy observations on the Be (0001) surface. We further reveal that each of the elemental alkali earth metals of Mg, Ca, and Sr also harbors the DNL and speculate that the fascinating topological property of the DNL might naturally exist in other elemental metals as well.

  16. Efficient destruction of CF4 through in situ generation of alkali metals from heated alkali halide reducing mixtures.

    PubMed

    Lee, Myung Churl; Choi, Wonyong

    2002-03-15

    Perfluorocarbons (PFCs) are the most potent green house gases that are very recalcitrant at destruction. An effective way of converting PFCs using hot solid reagents into safe products has been recently introduced. By investigating the thermal reductive destruction of tetrafluoromethane (CF4) we provided new insight and more physicochemical consideration on this novel process. The complete destruction of CF4was successfully achieved by flowing the gas through a heated reagent bed (400-950 degrees C) that contained powder mixtures of alkali halides, CaO, and Si. The silicon acted as a reducing agent of alkali halides for the in-situ production of alkali metals, and the calcium oxide played the role of a halide ion acceptor. The absence of any single component in this ternary mixture drastically reduced the destruction efficiency of CF4. The CF4 destruction efficiencies with the solid reagent containing the alkali halide, MX, increased in the order of Li approximately Na < K < Cs for alkali cations and I < Br < Cl < F for halide anions. This trend agreed with the endothermicity of the alkali metal generation reaction: the higher the endothermicity, the lower the destruction efficiency. Alkali metal generation was indirectly detected by monitoring H2 production from its reaction with water. The production of alkali metals increased with NaF, KF, and CsF in this order. The CsF/CaO/Si system exhibited the complete destruction of CF4 at as low as 600 degrees C. The solid product analysis by X-ray diffraction (XRD) showed the formation of CaF2 and the depletion of Si with black carbon particles formed in the solid reagent residue. No CO/CO2 and toxic HF and SiF4 formation were detected in the exhaust gas.

  17. Metallic Rainfall Mechanism and Time Scale of Metal-Silicate Separation in a Magma Ocean

    NASA Astrophysics Data System (ADS)

    Höink, T.; Schmalzl, J.; Hansen, U.

    2006-12-01

    The metal-rainfall mechanism is thought to be responsible for the separation of metallic components from silicate components in a magma ocean on early Earth. This separation marks the first phase of core formation, which, besides delivering iron to the center of the Earth, may have produced today's abundances of siderophile elements. We have performed numerical studies to investigate the metallic rainfall mechanism, which we apply to the scenario of metal-silicate separation in a terrestrial magma ocean. Our results suggest that metallic rainfall is a possible mechanism based on dynamical arguments, which are founded on an extensive parameter study. We find additional support from the partitioning of Nickel between metal droplets and surrounding silicate. We furthermore show that the time scale of metal-silicate separation by metallic rainfall strongly depends on the viscosity of the liquid silicate. For reasonable viscosity assumptions, metal-silicate separation in a magma ocean could have occurred on the time scale of up to a hundred years. This implies that the initiation of core formation was very rapid.

  18. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject...

  19. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject...

  20. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN...

  1. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN...

  2. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject...

  3. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under...

  4. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under...

  5. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN...

  6. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under...

  7. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under...

  8. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under...

  9. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN...

  10. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject...

  11. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject...

  12. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN...

  13. Substitution mechanism of alkali metals for strontium in strontium hydroxyapatite

    SciTech Connect

    Naddari, Thouraya; Hamdi, Besma; Savariault, Jean Michel; El Feki, Hafed; Ben Salah, Abdelhamid

    2003-01-25

    Strontium hydroxyapatites substituted by alkali metals are synthesized by double decomposition method in basic medium. Structures of Sr{sub 9.50}Na{sub 0.30}(PO{sub 4}){sub 6}(OH){sub 1.30} (SrNaHAp) and Sr{sub 9.81}K{sub 0.12}(PO{sub 4}){sub 6}(OH){sub 1.74} (SrKHAp) are determined by X-ray powder diffraction. Both compounds are isotypic and crystallize in hexagonal system (space group P63/m) with the following cells: a=9.751(3) A and c=7.279(3) A for SrNaHAp and a=9.755(4) A and c=7.284(3) A for SrKHAp. Results are compared to those of Sr{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}. According to the site occupancy factors, in SrNaHAp sodium is localized in site (I) and in SrKHAp potassium in site (II). Both structures contain vacancies in hydroxyl and metal sites. The mechanism of alkali metals substitution for strontium proposed explains the vacancies formation.

  14. An Alkali Metal-Capped Cerium(IV) Imido Complex.

    PubMed

    Solola, Lukman A; Zabula, Alexander V; Dorfner, Walter L; Manor, Brian C; Carroll, Patrick J; Schelter, Eric J

    2016-06-01

    Structurally authenticated, terminal lanthanide-ligand multiple bonds are rare and expected to be highly reactive. Even capped with an alkali metal cation, poor orbital energy matching and overlap of metal and ligand valence orbitals should result in strong charge polarization within such bonds. We expand on a new strategy for isolating terminal lanthanide-ligand multiple bonds using cerium(IV) complexes. In the current case, our tailored tris(hydroxylaminato) ligand framework, TriNOx(3-), provides steric protection against ligand scrambling and metal complex oligomerization and electronic protection against reduction. This strategy culminates in isolation of the first formal Ce═N bonded moiety in the complex [K(DME)2][Ce═N(3,5-(CF3)2C6H3)(TriNOx)], whose Ce═N bond is the shortest known at 2.119(3) Å. PMID:27163651

  15. Alkali metal/halide thermal energy storage systems performance evaluation

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Stearns, J. W.

    1986-01-01

    A pseudoheat-pipe heat transfer mechanism has been demonstrated effective in terms of both total heat removal efficiency and rate, on the one hand, and system isothermal characteristics, on the other, for solar thermal energy storage systems of the kind being contemplated for spacecraft. The selection of appropriate salt and alkali metal substances for the system renders it applicable to a wide temperature range. The rapid heat transfer rate obtainable makes possible the placing of the thermal energy storage system around the solar receiver canister, and the immersing of heat transfer fluid tubes in the phase change salt to obtain an isothermal heat source.

  16. Nuclear alkali metal Rankine power systems for space applications

    SciTech Connect

    Moyers, J.C.; Holcomb, R.S.

    1986-08-01

    Nucler power systems utilizing alkali metal Rankine power conversion cycles offer the potential for high efficiency, lightweight space power plants. Conceptual design studies are being carried out for both direct and indirect cycle systems for steady state space power applications. A computational model has been developed for calculating the performance, size, and weight of these systems over a wide range of design parameters. The model is described briefly and results from parametric design studies, with descriptions of typical point designs, are presented in this paper.

  17. Integrated oil production and upgrading using molten alkali metal

    DOEpatents

    Gordon, John Howard

    2016-10-04

    A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.

  18. On strain energy and constitutive relations for alkali metals.

    NASA Technical Reports Server (NTRS)

    Eftis, J.; Arkilic, G. M.; Macdonald, D. E.

    1971-01-01

    An expression for the strain energy as a continuous differentiable function of the Green-Cauchy deformation tensor is obtained for the alkali metals at absolute zero temperature. The development is based on well established quantum and classical calculations of the various contributions to the crystal energy. Stress-deformation relations are next obtained. As a check on the accuracy of the strain energy, theoretical calculations of the values of the second-order elastic coefficients are obtained and compared to known experimental data. The predicted values are shown to compare quite well with the experimental values.

  19. Theoretical determination of the alkali-metal superoxide bond energies

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Sodupe, Mariona; Langhoff, Stephen R.

    1992-01-01

    The bond dissociation energies for the alkali-metal superoxides have been computed using extensive Gaussian basis sets and treating electron correlation at the modified coupled-pair functional level. Our computed D0 values are 61.4, 37.2, 40.6, and 38.4 kcal/mol for LiO2, NaO2, KO2, and RbO2, respectively. These values, which are expected to be lower bounds and accurate to 2 kcal/mol, agree well with some of the older flame data, but rule out several recent experimental measurements.

  20. Optical response of alkali metal atoms confined in nanoporous glass

    SciTech Connect

    Burchianti, A; Marinelli, C; Mariotti, E; Bogi, A; Marmugi, L; Giomi, S; Maccari, M; Veronesi, S; Moi, L

    2014-03-28

    We study the influence of optical radiation on adsorption and desorption processes of alkali metal atoms confined in nanoporous glass matrices. Exposure of the sample to near-IR or visible light changes the atomic distribution inside the glass nanopores, forcing the entire system to evolve towards a different state. This effect, due to both atomic photodesorption and confinement, causes the growth and evaporation of metastable nanoparticles. It is shown that, by a proper choice of light characteristics and pore size, these processes can be controlled and tailored, thus opening new perspectives for fabrication of nanostructured surfaces. (nanoobjects)

  1. Work function of alkali metal-adsorbed molybdenium dichalcogenides

    NASA Astrophysics Data System (ADS)

    Kim, Sol; Jhi, Seung-Hoon

    2015-03-01

    The lowest work function of materials, reported so far over the last few decades, is an order of 1eV experimentally and theoretically. Designing materials that has work-function less than 1eV is essential in the thermionic energy conversion. To explore new low work function materials, we study MoX2(X =S, Se, Te) adsorbed with alkali metals (Li, Na, K, Rb and Cs), and investigate the charge transfer, the formation of surface dipole, and the change in work function using first-principles calculations. It is found that the charge transfer from alkali metals to MoX2substrates decreases as the atomic number of adsorbates increases. Regardless of the amount of the charge transfer, K on MoTe2 exhibits the biggest surface dipole moment, which consequently makes the surface work function the lowest. We show that the formation of the surface dipole is a key in changing the work function. We find the trimerization of Mo atoms in the substrate with the lowest work-function, which may contribute to enhancement of the surface dipole.

  2. Band gap opening in bilayer silicene by alkali metal intercalation.

    PubMed

    Liu, Hongsheng; Han, Nannan; Zhao, Jijun

    2014-11-26

    Recently, bilayer and multilayer silicene have attracted increased attention following the boom of silicene, which holds great promise for future applications in microelectronic devices. Herein we systematically investigate all stacking configurations of bilayer silicene and the corresponding electronic properties. Strong coupling is found between two silicene layers, which destroys the Dirac cones in the band structures of pristine silicene and makes bilayer silicene sheets metallic. However, intercalation of alkali metal (especially potassium) can effectively decouple the interaction between two silicene layers. In the K-intercalated bilayer silicene (KSi4), the Dirac cones are recovered with a small band gap of 0.27 eV located about 0.55 eV below the Fermi level. Furthermore, intercalation of K(+) cations in bilayer silicene (K(+)Si4) results in a semiconductor with a moderate band gap of 0.43 eV, making it ideal for microelectronic applications.

  3. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: thermal cycle stability and chemical compatibility

    SciTech Connect

    Chou, Y. S.; Thomsen, Edwin C.; Williams, Riley T.; Choi, Jung-Pyung; Canfield, Nathan L.; Bonnett, Jeff F.; Stevenson, Jeffry W.; Shyam, Amit; Lara-Curzio, E.

    2011-03-01

    An alkali silicate glass (SCN-1) is currently being evaluated as a candidate sealing glass for solid oxide fuel (SOFC) applications. The glass containing ~17 mole% alkalis (K2O and Na2O) remains vitreous and compliant during SOFC operation, unlike conventional SOFC sealing glasses, which experience substantial devitrification after the sealing process. The non-crystallizing compliant sealing glass has lower glass transition and softening temperatures since the microstructure remains glassy without significant crystallite formation, and hence can relieve or reduce residual stresses and also has the potential for crack healing. Sealing approaches based on compliant glass will also need to satisfy all the mechanical, thermal, chemical, physical, and electrical requirements for SOFC applications, not only in bulk properties but also at sealing interfaces. In this first of a series of papers we will report the thermal cycle stability of the glass when sealed between two SOFC components, i.e., a NiO/YSZ anode supported YSZ bilayer and a coated ferritic stainless steel interconnect material. High temperature leak rates were monitored versus thermal cycles between 700-850oC using back pressures ranging from 0.2 psi to 1.0 psi. Isothermal stability was also evaluated in a dual environment consisting of flowing dilute H2 fuel versus ambient air. In addition, chemical compatibility at the alumina and YSZ interfaces was examined with scanning electron microscopy and energy dispersive spectroscopy. The results shed new light on the topic of SOFC glass seal development.

  4. Electron stimulated hydroxylation of a metal supported silicate film.

    PubMed

    Yu, Xin; Emmez, Emre; Pan, Qiushi; Yang, Bing; Pomp, Sascha; Kaden, William E; Sterrer, Martin; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Goikoetxea, Itziar; Wlodarczyk, Radoslaw; Sauer, Joachim

    2016-02-01

    Water adsorption on a double-layer silicate film was studied by using infrared reflection-absorption spectroscopy, thermal desorption spectroscopy and scanning tunneling microscopy. Under vacuum conditions, small amounts of silanols (Si-OH) could only be formed upon deposition of an ice-like (amorphous solid water, ASW) film and subsequent heating to room temperature. Silanol coverage is considerably enhanced by low-energy electron irradiation of an ASW pre-covered silicate film. The degree of hydroxylation can be tuned by the irradiation parameters (beam energy, exposure) and the ASW film thickness. The results are consistent with a generally accepted picture that hydroxylation occurs through hydrolysis of siloxane (Si-O-Si) bonds in the silica network. Calculations using density functional theory show that this may happen on Si-O-Si bonds, which are either parallel (i.e., in the topmost silicate layer) or vertical to the film surface (i.e., connecting two silicate layers). In the latter case, the mechanism may additionally involve the reaction with a metal support underneath. The observed vibrational spectra are dominated by terminal silanol groups (ν(OD) band at 2763 cm(-1)) formed by hydrolysis of vertical Si-O-Si linkages. Film dehydroxylation fully occurs only upon heating to very high temperatures (∼ 1200 K) and is accompanied by substantial film restructuring, and even film dewetting upon cycling hydroxylation/dehydroxylation treatment.

  5. Electronic properties of metal-induced gap states formed at alkali-halide/metal interfaces

    NASA Astrophysics Data System (ADS)

    Kiguchi, Manabu; Yoshikawa, Genki; Ikeda, Susumu; Saiki, Koichiro

    2005-04-01

    The spatial distribution and site distribution of metal-induced gap states (MIGS) are studied by thickness-dependent near-edge x-ray absorption fine structure (NEXAFS) and by comparing the cation and anion-edge NEXAFS. The thickness-dependent NEXAFS shows that the decay length of MIGS depends on an alkali-halide rather than a metal, and it is larger for alkali-halides with smaller band gap energies. By comparing the Cl-edge and K-edge NEXAFS for KCl/Cu (001) , MIGS are found to be states localizing at anion sites.

  6. Metal/Silicate Partitioning of W, Ge, Ga and Ni: Dependence on Silicate Melt Composition

    NASA Astrophysics Data System (ADS)

    Singletary, S.; Drake, M. J.

    2004-12-01

    Metal/silicate partition coefficients (Dm/s) for siderophile elements are essential to investigations of core formation when used in conjunction with the pattern of elemental abundances in the Earth's mantle (Drake and Righter, 2002; Jones and Drake, 1986; Righter et al. 1997). The partitioning of siderophile elements is controlled by temperature, pressure, oxygen fugacity, and by the compositions of the metal and silicate phases. In this work, we investigate the role of silicate melt composition on the partitioning of the siderophile elements W, Ge, Ga and Ni between metallic and silicate liquid. Experiments were performed in the Experimental Geochemistry Laboratory at the University of Arizona utilizing a non-end loaded piston cylinder apparatus with a barium carbonate pressure medium. Starting materials were created by combining the mafic and silicic compositions of Jaeger and Drake (2000) with Fe powder (~25 wt% of the total mixture) to achieve metal saturation. Small amounts of W, Ge, Ga2O3 and NiO powder (less than 2 wt% each) were also added to the starting compositions. The experiments were contained in a graphite capsule and performed with temperature and pressure fixed at 1400ºC and 1.5 GPa. Experimental run products were analyzed with the University of Arizona Cameca SX50 electron microprobe with four wavelength dispersive spectrometers and a PAP ZAF correction program. All experiments in our set are saturated with metal and silicate liquid, indicating that oxygen fugacity is below IW. Several of the runs also contain a gallium-rich spinel as an additional saturating phase. Quench phases are also present in the silicate liquid in all runs. The experimentally produced liquids have nbo/t values (calculated using the method of Mills, 1993) that range from 1.10 to 2.97. These values are higher than those calculated for the liquids in the Jaeger and Drake (2000) study. The higher nbo/t values are due to uptake of Fe by the melt. The initial silicate

  7. Difficulties in Interpreting Alkali Metal Trends at the Senior Chemistry Level.

    ERIC Educational Resources Information Center

    de Berg, Kevin

    2001-01-01

    Explores the reasons for the differences in alkali metal reactivity in water in terms of thermodynamics rather than ionization trends. Shows that differences in alkali metal reactivity with water are more appropriately explained in terms of the kinetics of the reactions. (MM)

  8. Ion-exchange behavior of alkali metals on treated carbons

    SciTech Connect

    Mohiuddin, G.; Hata, W.Y.; Tolan, J.S.

    1983-01-01

    The ion-exchange behavior of trace quantities of the alkali-metal ions sodium and cesium, on activated carbon impregnated with zirconium phosphate (referred to here as ZrP), was studied. Impregnated carbon had twice as much ion-exchange activity as unimpregnated, oxidized carbon, and 10 times as much as commercial activated carbons. The distribution coefficient of sodium increased with increasing pH; the distribution coefficient of cesium decreased with increasing pH. Sodium and cesium were separated with an electrolytic solution of 0.1 M HCl. Preliminary studies indicated that 0.2 M potassium and cesium can also be separated. Distribution coefficients of the supported ZrP were determined by the elution technique and agreed within 20% of the values for pure ZrP calculated from the literature.

  9. Mechanical stiffening and thermal softening of superionic alkali metal oxides

    NASA Astrophysics Data System (ADS)

    Chaudhary, S.; Shriya, S.; Kumar, J.; Ameri, M.; Varshney, Dinesh

    2015-06-01

    The mechanical (pressure) and thermal (temperature) dependent nature of superionic cubic M2O (M = Li, Na, K, and Rb) alkali metal oxides is studied. The model Hamiltonian in ab initio theory include long-range Coulomb, charge transfer, covalency, van der Waals interaction and the short-range repulsive interaction upto second-neighbor ions. The second order elastic constants as functions of pressure discern increasing trend, while to that they decreases with enhanced temperature. From the knowledge of elastic constants, Pugh ratio, Poisson's ratio, heat capacity and thermal expansion coefficient are calculated. It is noticed that cubic M2O is brittle on applied pressure and temperature and mechanically stiffened as a consequence of bond compression and bond strengthening and thermally softened due to bond expansion and bond weakening due to lattice vibrations.

  10. Alkali Metal Thermoelectric Conversion (AMTEC) for space nuclear power systems

    NASA Astrophysics Data System (ADS)

    Bankston, C. P.; Cole, T.; Khanna, S. K.; Thakoor, A. P.

    Performance parameters of the Alkali Metal Thermoelectric Converter (AMTEC) for a 100 kW electric power system have been calculated at four technological levels assuming a heat pipe-cooled nuclear reactor heat source. The most advanced level considered would operate between 1180 K converter temperature and 711 K radiator temperature at 16 percent efficiency, and would weigh 1850 kg with a radiator area of 43 sq m. In addition, electrode research studies for the AMTEC systems have been conducted utilizing an experimental test cell of Bankston et al. (1983) and Mo and several Mo-Ti electrodes. It was found that the Mo-Ti electrodes offered no improvement in lifetime characteristics over the pure Mo electrodes, however, oxygen treatment of a degraded Mo electrode restored its specific power output to 90 percent of its original specific power and maintained this level for 60 hr, thus offering a potential for lifetime stability.

  11. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    SciTech Connect

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

  12. Superconductivity in the alkali metal intercalates of molybdenum disulphide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.

    1972-01-01

    The complete series of alkali metals, lithium through cesium, have been intercalated into molybdenum disulphide, using both the liquid ammonia and vapor techniques. All the intercalates with the exception of lithium yielded full superconducting transitions with onset temperatures of 6 K for AxMoS2(Ax=K,Rb,Cs) and 4 K for BxMoS2(Bx=Li,Na). The superconducting transition for lithium was incomplete down to 1.5 K. Stoichiometries and unit cell parameters have been determined for the intercalation compounds. Both rhombohedral and hexagonal polymorphs of MoS2 have been intercalated and found to exhibit the same superconductivity behavior. The nature of the extraneous superconducting transition of some intercalated samples on exposure to air was elucidated.

  13. Observations of impact-induced molten metal-silicate partitioning

    NASA Technical Reports Server (NTRS)

    Rowan, Linda R.; Ahrens, Thomas J.

    1994-01-01

    Observations of molten mid-ocean ridge basalt (MORB)-molybdenum (Mo) interactions produced by shock experiments provide insight into impact and differentiation processes involving metal-silicate partitioning. Analysis of fragments recovered from experiments (achieving MORB liquid shock pressures from 0.8 to 6 GPa) revealed significant changes in the composition of the MORB and Mo due to reaction of the silicate and metal liquids on a short time scale (less than 13 s). The FeO concentration of the shocked liquid decreases systematically with increasing pressure. In fact, the most highly shocked liquid (6 GPa) contains only 0.1 wt% FeO compared to an initial concentration of 9 wt% in the MORB. We infer from the presence of micrometer-sized Fe-, Si- and Mo-rich metallic spheres in the shocked glass that the Fe and Si oxides in the MORB were reduced in an estimated oxygen fugacity of 10(exp -17) bar and subsequently alloyed with the Mo. The in-situ reduction of FeO in the shocked molten basalt implies that shock-induced reduction of impact melt should be considered a viable mechanism for the formation of metallic phases. Similar metallic phases may form during impact accretion of planets and in impacted material found on the lunar surface and near terrestrial impact craters. In particular, the minute, isolated Fe particles found in lunar soils may have formed by such a process. Furthermore, the metallic spheres within the shocked glass have a globular texture similar to the textures of metallic spheroids from lunar samples and the estimated, slow cooling rate of less than or equal to 140 C/s for our spheres is consistent with the interpretation that the lunar spheroids formed by slow cooling within a melted target.

  14. Alkali-Metal Atoms as Spin Labels on Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Koch, Markus; Ratschek, Martin; Callegari, Carlo; Ernst, Wolfgang E.

    2010-06-01

    We have recently achieved electron spin resonance (ESR) of single alkali-metal atoms isolated on helium (He) nanodroplets A two-laser pump/probe setup for optically detected magnetic resonance is applied, which is based on magnetic circular dichroism to selectively address spin states. The influence of the helium droplet on the alkali-metal valence-electron wave function is directly noticeable as a shift of the ESR transitions with respect to that of free atoms. This perturbation depends on the size of the droplets and can be modeled with an increase of the hyperfine constant, that is an increase of the Fermi contact interaction. After careful characterization of the Rb--He-droplet system the method is being developed into a more universal diagnostic tool to study spin dynamics. ESR silent species located inside the droplet can be investigated by utilizing the surface Rb atom as spin label, and the droplet size is a convenient handle to control the distance between the two. In case of species with a nuclear spin (e.g., 129Xe) spin exchange between the optically pumped Rb atom and the nuclear spin can be studied. We are also extending our method to study magnetically active materials of technological importance, such as Cr, Cu, and small clusters thereof, and we strive to present the first results at the meeting. M. Koch, G. Auböck, C. Callegari, and W.E. Ernst, Phys. Rev. Lett. 103, 035302 (2009) M. Koch, J. Lanzersdorfer, C. Callegari, J.S. Muenter, and W.E. Ernst, J. Phys. Chem. A 113, 13347 (2009) M. Koch, C. Callegari, and W.E. Ernst, Mol. Phys., in press.

  15. Assessment of alkali metal coolants for the ITER blanket

    SciTech Connect

    Natesan, K.; Reed, C.B.; Mattas, R.F.

    1994-06-01

    The blanket system is one of the most important components of a fusion reactor because it has a major impact on both the economics and safety of fusion energy. The primary functions of the blanket in a deuterium/tritium-fueled fusion reactor are to convert the fusion energy into sensible heat and to breed tritium for the fuel cycle. The Blanket Comparison and Selection Study, conducted earlier, described the overall comparative performance of different blanket concepts, including liquid metal, molten salt, water and helium. This paper will discuss the ITER requirements for a self-cooled blanket concept with liquid lithium and for indirectly cooled concepts that use other alkali metals such as NaK. The paper addresses the thermodynamics of interactions between the liquid metals (e.g., lithium and NaK) and structural materials (e.g., V-base alloys), together with associated corrosion/compatibility issues. Available experimental data are used to assess the long-term performance of the first wall in a liquid metal environment. Other key issues include development of electrical insulator coatings on the first-wall structural material to MHD pressure drop, and tritium permeation/inventory in self-cooled and indirectly cooled concepts. Acceptable types of coatings (based on their chemical compatibility and physical properties) are identified, and surface-modification avenues to achieve these coatings on the first wall are discussed. The assessment examines the extent of our knowledge on structural materials performance in liquid metals and identifies needed research and development in several of the areas in order to establish performance envelopes for the first wall in a liquid-metal environment.

  16. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process.

    PubMed

    Long, Jiang; Song, Hu; Jun, Xiang; Sheng, Su; Lun-Shi, Sun; Kai, Xu; Yao, Yao

    2012-07-01

    Investigating the release characteristics of alkali and alkaline earth metallic species (AAEMs) is of potential interest because of AAEM's possible useful service as catalysts in biomass thermal conversion. In this study, three kinds of typical Chinese biomass were selected to pyrolyse and their chars were subsequently steam gasified in a designed quartz fixed-bed reactor to investigate the release characteristics of alkali and alkaline earth metallic species (AAEMs). The results indicate that 53-76% of alkali metal and 27-40% of alkaline earth metal release in pyrolysis process, as well as 12-34% of alkali metal and 12-16% of alkaline earth metal evaporate in char gasification process, and temperature is not the only factor to impact AAEMs emission. The releasing characteristics of AAEMs during pyrolysis and char gasification process of three kinds of biomass were discussed in this paper. PMID:22525260

  17. Method of treating alkali metal sulfide and carbonate mixtures

    DOEpatents

    Kohl, Arthur L.; Rennick, Robert D.; Savinsky, Martin W.

    1978-01-01

    A method of removing and preferably recovering sulfur values from an alkali metal sulfide and carbonate mixture comprising the steps of (1) introducing the mixture in an aqueous medium into a first carbonation zone and reacting the mixture with a gas containing a major amount of CO.sub.2 and a minor amount of H.sub.2 S; (2) introducing the resultant product from step 1 into a stripping zone maintained at subatmospheric pressure, and contacting this product with steam to produce a gaseous mixture, comprising H.sub.2 S and water vapor, and a liquor of reduced sulfide content; (3) introducing the liquor of reduced sulfide content into a second carbonation zone, and reacting the liquor with substantially pure gaseous CO.sub.2 in an amount sufficient to precipitate bicarbonate crystals and produce an offgas containing CO.sub.2 and H.sub.2 S for use in step 1; (4) recovering the bicarbonate crystals from step 3, and thermally decomposing the crystals to produce an alkaline metal carbonate product and a substantially pure CO.sub.2 offgas for use in step 3.

  18. Metal/silicate fractionation in the solar system.

    NASA Technical Reports Server (NTRS)

    Lewis, J. S.

    1972-01-01

    Fractionation between the metal and silicate components of objects in the inner solar system has long been recognized as a necessity in order to explain the observed density variations of the terrestrial planets and the H-group, L-group dichotomy of the ordinary chondrites. This paper discusses the densities of the terrestrial planets in light of current physical and chemical models of processes in the solar nebula. It is shown that the observed density trends in the inner solar system need not be the result of special fractionation processes, and that the densities of the planets may be direct results of simultaneous application of both physical and chemical restraints on the structure of the nebula, most notably the variation of temperature with heliocentric distance. The density of Mercury is easily attributed to accretion at temperatures so high that MgSiO3 is only partially retained but Fe metal is condensed. The densities of the other terrestrial planet are shown to be due to different degrees of retention of S, O and H as FeS, FeO and hydrous silicates produced in chemical equilibrium between condensates and solar-composition gases.

  19. Calculation of radiative corrections to E1 matrix elements in the neutral alkali metals

    SciTech Connect

    Sapirstein, J.; Cheng, K.T.

    2005-02-01

    Radiative corrections to E1 matrix elements for ns-np transitions in the alkali-metal atoms lithium through francium are evaluated. They are found to be small for the lighter alkali metals but significantly larger for the heavier alkali metals, and in the case of cesium much larger than the experimental accuracy. The relation of the matrix element calculation to a recent decay rate calculation for hydrogenic ions is discussed, and application of the method to parity nonconservation in cesium is described.

  20. Nitrogen Partitioning Between Reduced Silicate Melts and Metallic Iron Alloys

    NASA Astrophysics Data System (ADS)

    Armstrong, L. S.; Falksen, E.; Von Der Handt, A.; Hirschmann, M. M.

    2014-12-01

    Solubility and partitioning of elements during early planetary history is critical in understanding element concentrations and distribution in the terrestrial planets. Nitrogen is the most depleted element in the bulk silicate Earth relative to CI chondrites [1], which may be explained by its high pressure behavior under reduced conditions relevant to planetary accretion and differentiation. Under oxidized conditions N dissolves in silicate melts as N2, but as fO2 decreases N-H species become the dominant form of dissolved N and the solubility increases [2-7]. DNmetal/melt (the N partition coefficient between metal and melt) is affected by pressure, fO2, fH2, and metal composition [3-5] but with less than 20 published experiments over a wide pressure range, these dependencies have been poorly constrained. Here we present new N-bearing experiments on graphite-saturated silicate melts in equilibrium with Fe-rich metallic melts. Experiments were performed at 1.2 GPa and 1400 ˚C in a piston cylinder apparatus, with N added as Si3N4, FexN, and urea [(NH2)2CO] to basaltic starting compositions. Glassy and metallic run products were gold coated and analyzed by EMPA. Detection limits and standard errors in N concentrations were improved (e.g. better than 1% for > 0.4 wt% N) relative to previous studies [2-5] by fitting non-linear backgrounds to wavelength-scans on standards and unknowns. Preliminary experiments with fO2 of IW-2 to IW-4 produced glasses with a maximum of 0.6 wt% N and metals with a maximum of 1.1 wt% N. DNmetal/melt are comparable to values at a similar pressure determined in the LH-DAC [5]. Further experiments will explore the effects of fO2 and H content on DN and N solubility. References: [1] Halliday (2013) GCA 105, 146-171. [2] Libourel et al. (2003) GCA 67, 4123-4135. [3] Kadik et al. (2011) Geochem. Int. 49, 429-438. [4] Kadik et al. (2013) PEPI 214, 14-24. [5] Roskosz et al. (2013) GCA 121, 15-28. [6] Stanley et al. (2014) GCA 129, 54-76. [7

  1. Method and composition for testing for the presence of an alkali metal

    DOEpatents

    Guon, Jerold

    1981-01-01

    A method and composition for detecting the presence of an alkali metal on the surface of a body such as a metal plate, tank, pipe or the like is provided. The method comprises contacting the surface with a thin film of a liquid composition comprising a light-colored pigment, an acid-base indicator, and a nonionic wetting agent dispersed in a liquid carrier comprising a minor amount of water and a major amount of an organic solvent selected from the group consisting of the lower aliphatic alcohols, ketones and ethers. Any alkali metal present on the surface in elemental form or as an alkali metal hydroxide or alkali metal carbonate will react with the acid-base indicator to produce a contrasting color change in the thin film, which is readily discernible by visual observation or automatic techniques.

  2. The alkali and alkaline earth metal doped ZnO nanotubes: DFT studies

    NASA Astrophysics Data System (ADS)

    Peyghan, Ali Ahmadi; Noei, Maziar

    2014-01-01

    Doping of several alkali and alkaline earth metals into sidewall of an armchair ZnO nanotube has been investigated by employing the density functional theory in terms of energetic, geometric, and electronic properties. It has been found that doping processes of the alkali and alkaline metals are endothermic and exothermic, respectively. Based on the results, contrary to the alkaline metal doping, the electronic properties of the tube are much more sensitive to alkali metal doping so that it is transformed from intrinsic semiconductor with HOMO-LUMO energy gap of 3.77 eV to an extrinsic semiconductor with the energy gap of ~1.11-1.95 eV. The doping of alkali and alkaline metals increases and decreases the work function of the tube, respectively, which may influence the electron emission from the tube surface.

  3. Activities and volatilities of trace components in silicate melts: a novel use of metal-silicate partitioning data

    NASA Astrophysics Data System (ADS)

    Wood, Bernard J.; Wade, Jon

    2013-09-01

    Ian Carmichael spent 45 years thinking about and working on the activities of components in silicate melts and their use to estimate physicochemical conditions at eruption and in the source regions of igneous rocks. These interests, principally in major components such as SiO2, led us to think about possible ways of determining the complementary activity coefficients of trace components in silicate melts. While investigating the conditions of accretion and differentiation of the Earth, a number of authors have determined the partitioning of trace elements such as Co, Ni, Mo and W between liquid Fe metal and liquid silicate. These data have the potential to provide activity information for a large number of trace components in silicate melts. In order to turn the partitioning measurements into activities, however, we need to know the activity coefficient of FeO, γFeO in the silicate. We obtained γFeO as a function of melt composition by fitting a simple model to 83 experimental data for which the authors had measured the FeO content of the silicate melt in equilibrium with metal (Fe-bearing alloy) at known fO2. The compositional dependence of γFeO is weak, but, when calculated in the system Diopside-Anorthite-Forsterite, it decreases towards the Forsterite apex. A similar approach for Ni, for which twice as many data are available, leads to similar composition dependence of activity coefficient and confirms the suggestion that γNiO/γFeO is almost constant over a wide range of silicate melt composition. The activity coefficients for FeO were used in conjunction with measured Mo and W partitioning between Fe-rich metal and silicate melt to estimate activity coefficients for trace MoO2 and WO3 dissolved in silicate melt. When combined with data on Mo- and W-saturated silicate melts a strong dependence of activity coefficient is observed. Calculated in the system Diopside-Anorthite-Forsterite, both MoO2 and WO3 exhibit similar behaviour to FeO and NiO in that

  4. Is electronegativity a useful descriptor for the pseudo-alkali metal NH4?

    PubMed

    Whiteside, Alexander; Xantheas, Sotiris S; Gutowski, Maciej

    2011-11-18

    Molecular ions in the form of "pseudo-atoms" are common structural motifs in chemistry, with properties that are transferrable between different compounds. We have determined one such property--the electronegativity--for the "pseudo-alkali metal" ammonium (NH(4)), and evaluated its reliability as a descriptor versus the electronegativities of the alkali metals. The computed properties of ammonium's binary complexes with astatine and of selected borohydrides confirm the similarity of NH(4) to the alkali metal atoms, although the electronegativity of NH(4) is relatively large in comparison to its cationic radius. We have paid particular attention to the molecular properties of ammonium (angular anisotropy, geometric relaxation and reactivity), which can cause deviations from the behaviour expected of a conceptual "true alkali metal" with this electronegativity. These deviations allow for the discrimination of effects associated with the molecular nature of NH(4). PMID:21928287

  5. Modification of alkali metals on silicon-based nanoclusters: An enhanced nonlinear optical response

    NASA Astrophysics Data System (ADS)

    Li, Xiaojun; Han, Quan; Yang, Xiaohui; Song, Ruijuan; Song, Limei

    2016-08-01

    Structures, chemical stabilities and nonlinear optical properties of alkali metals-adsorbed niobium-doped silicon (M@SinNb+) clusters are investigated using the DFT methods. The alkali metals prefer energetically to be attached as bridged bond rather than M-Si single bond in most of optimized structures. Adsorption of alkali metals on doped silicon clusters gradually enhances their chemical stabilities with increasing cluster size. Noteworthily, the first hyperpolarizabilities (βtot) of the M@SinNb+ clusters, obtained by using the long-range corrected CAM-B3LYP functional, are large enough to establish their strong nonlinear optical behavior, especially for M@Si9Nb+ (M = Li, Na, and K), and the enhanced βtot ordering by alkali metals is Na > K > Li.

  6. Is Electronegativity a Useful Descriptor for the "Pseudo-Alkali-Metal" NH4?

    SciTech Connect

    Whiteside, Alexander; Xantheas, Sotiris S.; Gutowski, Maciej S.

    2011-11-18

    Molecular ions in the form of "pseudo-atoms" are common structural motifs in chemistry, with properties that are transferrable between different compounds. We have determined the electronegativity of the "pseudo-alkali metal" ammonium (NH4) and evaluated its reliability as a descriptor in comparison to the electronegativities of the alkali metals. The computed properties of its binary complexes with astatine and of selected borohydrides confirm the similarity of NH4 to the alkali metal atoms, although the electronegativity of NH4 is relatively large in comparison to its cationic radius. We paid particular attention to the molecular properties of ammonium (angular anisotropy, geometric relaxation, and reactivity), which can cause deviations from the behaviour expected of a conceptual "true alkali metal" with this electronegativity. These deviations allow for the discrimination of effects associated with the polyatomic nature of NH4.

  7. Accretion and core formation: constraints from metal-silicate partitioning.

    PubMed

    Wood, Bernard J

    2008-11-28

    Experimental metal-silicate partitioning data for Ni, Co, V, Cr, Nb, Mn, Si and W were used to investigate the geochemical consequences of a range of models for accretion and core formation on Earth. The starting assumptions were chondritic ratios of refractory elements in the Earth and the segregation of metal at the bottom of a magma ocean, which deepened as the planet grew and which had, at its base, a temperature close to the liquidus of the silicate. The models examined were as follows. (i) Continuous segregation from a mantle which is chemically homogeneous and which has a fixed oxidation state, corresponding to 6.26 per cent oxidized Fe. Although Ni, Co and W partitioning is consistent with chondritic ratios, the current V content of the silicate Earth cannot be reconciled with core segregation under these conditions of fixed oxidation state. (ii) Continuous segregation from a mantle which is chemically homogeneous but in which the Earth became more oxidized as it grew. In this case, the Ni, Co, W, V, Cr and Nb contents of core and mantle are easily matched to those calculated from the chondritic ratios of refractory elements. The magma ocean is calculated to maintain a thickness approximately 35 per cent of the depth to the core-mantle boundary in the accreting Earth, yielding a maximum pressure of 44GPa. This model yields a Si content of the core of 5.7 per cent, in good agreement with cosmochemical estimates and with recent isotopic data. (iii) Continuous segregation from a mantle which is not homogeneous and in which the core equilibrates with a restricted volume of mantle at the base of the magma ocean. This is found to increase depth of the magma ocean by approximately 50 per cent. All of the other elements (except Mn) have partitioning consistent with chondritic abundances in the Earth, provided the Earth became, as before, progressively oxidized during accretion. (iv) Continuous segregation of metal from a crystal-melt mush. In this case, pressures

  8. Corrosion in alkali metal/molybdenum heat pipes

    SciTech Connect

    Lundberg, L.B.; Feber, R.C. Jr.

    1984-01-01

    Molybdenum/sodium (Mo/Na) and molybdenum/lithium (Mo/Li) heat pipes have been operated for long periods of time in a study of their resistance to failure by alkali metal corrosion. Some Mo/Na heat pipes have operated over 20,600 h at 1400 K without failure, while at least one similar heat pipe failed in less than 14 hours at 1435 K. Detailed post-mortem analyses which have been performed on three failed Mo/Na heat pipes all indicated impurity controlled corrosion of their evaporators. Impurities observed to be transported included carbon, oxygen, and silicon. A Mo/Li heat pipe that failed after 25,216 h of operation at 1700 K was also examined in detail. This failure was due to nickel impurities being transported to the evaporator resulting in perforation of the container tube by the formation of a low melting Mo-Ni alloy. Theoretical thermochemical calculations were conducted for these systems with the objective of corroborating the corrosion mechanisms in both types of heat pipes. The results of these calculations are in general agreement with the observed corrosion a phenomena.

  9. Observation of Raman self-focusing in an alkali-metal vapor cell

    NASA Astrophysics Data System (ADS)

    Proite, N. A.; Unks, B. E.; Green, J. T.; Yavuz, D. D.

    2008-02-01

    We report an experimental demonstration of Raman self-focusing and self-defocusing in a far-off resonant alkali-metal atomic system. The key idea is to drive a hyperfine transition in an alkali-metal atom to a maximally coherent state with two laser beams. In this regime, the two-photon detuning from the Raman resonance controls the nonlinear index of the medium.

  10. In situ formation of coal gasification catalysts from low cost alkali metal salts

    DOEpatents

    Wood, Bernard J.; Brittain, Robert D.; Sancier, Kenneth M.

    1985-01-01

    A carbonaceous material, such as crushed coal, is admixed or impregnated with an inexpensive alkali metal compound, such as sodium chloride, and then pretreated with a stream containing steam at a temperature of 350.degree. to 650.degree. C. to enhance the catalytic activity of the mixture in a subsequent gasification of the mixture. The treatment may result in the transformation of the alkali metal compound into another, more catalytically active, form.

  11. Process for preparing higher oxides of the alkali and alkaline earth metals

    NASA Technical Reports Server (NTRS)

    Sadhukhan, P.; Bell, A. (Inventor)

    1978-01-01

    High purity inorganic higher oxides of the alkali and alkaline earth metals are prepared by subjecting the hydroxide of the alkali and alkaline earth metal to a radio frequency discharge sustained in oxygen. The process is particulary adaptable to the production of high purity potassium superoxide by subjecting potassium hydroxide to glow discharge sustained in oxygen under the pressure of about 0.75 to 1.00 torr.

  12. Design of low work function materials using alkali metal-doped transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Kim, Sol; Lee, Man Young; Lee, Seong; Jhi, Seung-Hoon

    Engineering the work function is a key issue in surface science. Particularly, discovering the materials that have work functions less than 1eV is essential for efficient thermionic energy conversion. The lowest work function of materials, reported so far, is in a range of about 1eV. To design low work function materials, we chose MX2 (M =Mo and W; X =S, Se and Te) as substrates and alkali metals (Li, Na, K, Rb and Cs) as dopants, and studied their electronic structures, charge transfer, induced surface dipole moment, and work function using first-principles calculations. We found that the charge transfer from alkali metals to MX2 substrates decreases as the atomic radius of alkali metals increases. Regardless of the amount of the charge transfer, K on WTe2 exhibits the biggest surface dipole moment, which consequently makes the surface work function the lowest. Also, we found a correlation between the binding distance and the work function.

  13. On the origin of alkali metals in Europa exosphere

    NASA Astrophysics Data System (ADS)

    Ozgurel, Ozge; Pauzat, Françoise; Ellinger, Yves; Markovits, Alexis; Mousis, Olivier; LCT, LAM

    2016-10-01

    At a time when Europa is considered as a plausible habitat for the development of an early form of life, of particular concern is the origin of neutral sodium and potassium atoms already detected in its exosphere (together with magnesium though in smaller abundance), since these atoms are known to be crucial for building the necessary bricks of prebiotic species. However their origin and history are still poorly understood. The most likely sources could be exogenous and result from the contamination produced by Io's intense volcanism and/or by meteoritic bombardment. These sources could also be endogenous if these volatile elements originate directly from Europa's icy mantle. Here we explore the possibility that neutral sodium and potassium atoms were delivered to the satellite's surface via the upwelling of ices formed in contact with the hidden ocean. These metallic elements would have been transferred as ions to the ocean at early epochs after Europa's formation, by direct contact of water with the rocky core. During Europa's subsequent cooling, the icy layers formed at the top of the ocean would have kept trapped the sodium and potassium, allowing their future progression to the surface and final identification in the exosphere of the satellite. To support this scenario, we have used chemistry numerical models based on first principle periodic density functional theory (DFT). These models are shown to be well adapted to the description of compact ice and are capable to describe the trapping and neutralization of the initial ions in the ice matrix. The process is found relevant for all the elements considered, alkali metals like Na and K, as well as for Mg and probably for Ca, their respective abundances depending essentially of their solubility and chemical capabilities to blend with water ices.

  14. Alkali Metal Variation and Twisting of the FeNNFe Core in Bridging Diiron Dinitrogen Complexes.

    PubMed

    McWilliams, Sean F; Rodgers, Kenton R; Lukat-Rodgers, Gudrun; Mercado, Brandon Q; Grubel, Katarzyna; Holland, Patrick L

    2016-03-21

    Alkali metal cations can interact with Fe-N2 complexes, potentially enhancing back-bonding or influencing the geometry of the iron atom. These influences are relevant to large-scale N2 reduction by iron, such as in the FeMoco of nitrogenase and the alkali-promoted Haber-Bosch process. However, to our knowledge there have been no systematic studies of a large range of alkali metals regarding their influence on transition metal-dinitrogen complexes. In this work, we varied the alkali metal in [alkali cation]2[LFeNNFeL] complexes (L = bulky β-diketiminate ligand) through the size range from Na(+) to K(+), Rb(+), and Cs(+). The FeNNFe cores have similar Fe-N and N-N distances and N-N stretching frequencies despite the drastic change in alkali metal cation size. The two diketiminates twist relative to one another, with larger dihedral angles accommodating the larger cations. In order to explain why the twisting has so little influence on the core, we performed density functional theory calculations on a simplified LFeNNFeL model, which show that the two metals surprisingly do not compete for back-bonding to the same π* orbital of N2, even when the ligand planes are parallel. This diiron system can tolerate distortion of the ligand planes through compensating orbital energy changes, and thus, a range of ligand orientations can give very similar energies. PMID:26925968

  15. Removal of oxides from alkali metal melts by reductive titration to electrical resistance-change end points

    DOEpatents

    Tsang, Floris Y.

    1980-01-01

    Alkali metal oxides dissolved in alkali metal melts are reduced with soluble metals which are converted to insoluble oxides. The end points of the reduction is detected as an increase in electrical resistance across an alkali metal ion-conductive membrane interposed between the oxide-containing melt and a material capable of accepting the alkali metal ions from the membrane when a difference in electrical potential, of the appropriate polarity, is established across it. The resistance increase results from blocking of the membrane face by ions of the excess reductant metal, to which the membrane is essentially non-conductive.

  16. Half metallic ferromagnetism in alkali metal nitrides MN (M = Rb, Cs): A first principles study

    SciTech Connect

    Murugan, A. Rajeswarapalanichamy, R. Santhosh, M. Sudhapriyanga, G.; Kanagaprabha, S.

    2014-04-24

    The structural, electronic and elastic properties of two alkali metal nitrides (MN: M= Rb, Cs) are investigated by the first principles calculations based on density functional theory using the Vienna ab-initio simulation package. At ambient pressure the two nitrides are stable in ferromagnetic state with CsCl structure. The calculated lattice parameters are in good agreement with the available results. The electronic structure reveals that these materials are half metallic in nature. A pressure-induced structural phase transition from CsCl to ZB phase is observed in RbN and CsN.

  17. Coulomb explosion during the early stages of the reaction of alkali metals with water.

    PubMed

    Mason, Philip E; Uhlig, Frank; Vaněk, Václav; Buttersack, Tillmann; Bauerecker, Sigurd; Jungwirth, Pavel

    2015-03-01

    Alkali metals can react explosively with water and it is textbook knowledge that this vigorous behaviour results from heat release, steam formation and ignition of the hydrogen gas that is produced. Here we suggest that the initial process enabling the alkali metal explosion in water is, however, of a completely different nature. High-speed camera imaging of liquid drops of a sodium/potassium alloy in water reveals submillisecond formation of metal spikes that protrude from the surface of the drop. Molecular dynamics simulations demonstrate that on immersion in water there is an almost immediate release of electrons from the metal surface. The system thus quickly reaches the Rayleigh instability limit, which leads to a 'coulomb explosion' of the alkali metal drop. Consequently, a new metal surface in contact with water is formed, which explains why the reaction does not become self-quenched by its products, but can rather lead to explosive behaviour.

  18. Method for inhibiting alkali metal corrosion of nickel-containing alloys

    DOEpatents

    DeVan, Jackson H.; Selle, James E.

    1983-01-01

    Structural components of nickel-containing alloys within molten alkali metal systems are protected against corrosion during the course of service by dissolving therein sufficient aluminum, silicon, or manganese to cause the formation and maintenance of a corrosion-resistant intermetallic reaction layer created by the interaction of the molten metal, selected metal, and alloy.

  19. Note: An ion source for alkali metal implantation beneath graphene and hexagonal boron nitride monolayers on transition metals

    SciTech Connect

    Lima, L. H. de; Cun, H. Y.; Hemmi, A.; Kälin, T.; Greber, T.

    2013-12-15

    The construction of an alkali-metal ion source is presented. It allows the acceleration of rubidium ions to an energy that enables the penetration through monolayers of graphene and hexagonal boron nitride. Rb atoms are sublimated from an alkali-metal dispenser. The ionization is obtained by surface ionization and desorption from a hot high work function surface. The ion current is easily controlled by the temperature of ionizer. Scanning Tunneling Microscopy measurements confirm ion implantation.

  20. Bounds on metal-silicate equilibration conditions during core formation

    NASA Astrophysics Data System (ADS)

    Deguen, Renaud

    2016-04-01

    Much of the Earth was built by high-energy impacts of planetesimals and embryos, many of these impactors already differentiated, with metallic cores of their own. Geochemical data provide critical information on the timing of accretion and the prevailing physical conditions. The comparison between the inferred core/mantle partitioning with the experimentally determined partitioning behavior of a number of siderophile elements can be used to place constraints on the conditions (pressure, temperature, oxygen fugacity) under which the metal and silicates equilibrated before separating to form the core and mantle. The main limitation of this approach is that the interpretation of the geochemical data in terms of equilibration conditions is non-unique. This is an ill-posed inverse problem, and the inversion is usually carried out by making a number of assumptions to close the problem and make it (artificially) well-posed. Here, we take another approach and derive exact bounds on the distribution of conditions of equilibration during Earth's formation and core mantle differentiation.

  1. Multi-photon processes in alkali metal vapors

    NASA Astrophysics Data System (ADS)

    Gai, Baodong; Hu, Shu; Li, Hui; Shi, Zhe; Cai, Xianglong; Guo, Jingwei; Tan, Yannan; Liu, Wanfa; Jin, Yuqi; Sang, Fengting

    2015-02-01

    Achieving population inversion through multi-photon cascade pumping is almost always difficult, and most laser medium work under 1-photon excitation mechanism. But for alkali atoms such as cesium, relatively large absorption cross sections of several low, cascading energy levels enable them properties such as up conversion. Here we carried out research on two-photon excitation alkali fluorescence. Two photons of near infrared region are used to excite alkali atoms to n 2 D5/2, n 2 D3/2 or higher energy levels, then the blue fluorescence of (n+1) 2 P3/2,(n+1) 2 P1/2-->n 2 S1/2 are observed. Different pumping paths are tried and by the recorded spectra, transition routes of cesium are deducted and concluded. Finally the possibility of two-photon style DPALs (diode pumped alkali laser) are discussed, such alkali lasers can give output wavelengths in the shorter end of visual spectroscopy (400-460 nm) and are expected to get application in underwater communication and material laser processing.

  2. Experimental determination of the Si isotope fractionation factor between liquid metal and liquid silicate

    NASA Astrophysics Data System (ADS)

    Hin, Remco C.; Fitoussi, Caroline; Schmidt, Max W.; Bourdon, Bernard

    2014-02-01

    The conditions of core formation and the abundances of the light elements in Earth's core remain debated. Silicon isotope fractionation provides a tool contributing to this subject. We present experimentally determined Si isotope fractionation factors between liquid metal and liquid silicate at 1450 °C and 1750 °C, which allow calibrating the temperature dependence of Si isotope fractionation. Experiments were performed in a centrifuging piston cylinder at 1 GPa, employing both graphite and MgO capsules. Tin was used to lower the melting temperature of the metal alloys for experiments performed at 1450 °C. Tests reveal that neither Sn nor C significantly affects Si isotope fractionation. An alkaline fusion technique was employed to dissolve silicate as well as metal phases prior to ion exchange chemistry and mass spectrometric analysis. The results show that metal is consistently enriched in light isotopes relative to the silicate, yielding average metal-silicate fractionation factors of -1.48±0.08‰ and -1.11±0.14‰ at 1450 °C and 1750 °C, respectively. The temperature dependence of equilibrium Si isotope fractionation between metal and silicate can thus be described as Δ30SiMetal-Silicate=-4.42(±0.05)×106/T2. The Si isotope equilibrium fractionation is thus about 1.7 times smaller than previously proposed on the basis of experiments. A consequence of this smaller fractionation is that the calculated difference between the Si isotope composition of the bulk Earth and that of the bulk silicate Earth generated by core formation is smaller than previously thought. It is therefore increasingly difficult to match the Si isotope composition of the bulk silicate Earth with that of chondrites for metal-silicate equilibration temperatures above ∼2500 K. This suggests that Si isotopes were more sensitive to the early stages of core formation when low oxygen fugacities allowed significant incorporation of Si into metal.

  3. Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH.

    PubMed

    Yin, Jun; Hu, Ying; Yoon, Juyoung

    2015-07-21

    All living species and life forms have an absolute requirement for bio-functional metals and acid-base equilibrium chemistry owing to the critical roles they play in biological processes. Hence, a great need exists for efficient methods to detect and monitor biometals and acids. In the last few years, great attention has been paid to the development of organic molecule based fluorescent chemosensors. The availability of new synthetic fluorescent probes has made fluorescence microscopy an indispensable tool for tracing biologically important molecules and in the area of clinical diagnostics. This review highlights the recent advances that have been made in the design and bioimaging applications of fluorescent probes for alkali metals and alkaline earth metal cations, including lithium, sodium and potassium, magnesium and calcium, and for pH determination within biological systems. PMID:25317749

  4. Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH.

    PubMed

    Yin, Jun; Hu, Ying; Yoon, Juyoung

    2015-07-21

    All living species and life forms have an absolute requirement for bio-functional metals and acid-base equilibrium chemistry owing to the critical roles they play in biological processes. Hence, a great need exists for efficient methods to detect and monitor biometals and acids. In the last few years, great attention has been paid to the development of organic molecule based fluorescent chemosensors. The availability of new synthetic fluorescent probes has made fluorescence microscopy an indispensable tool for tracing biologically important molecules and in the area of clinical diagnostics. This review highlights the recent advances that have been made in the design and bioimaging applications of fluorescent probes for alkali metals and alkaline earth metal cations, including lithium, sodium and potassium, magnesium and calcium, and for pH determination within biological systems.

  5. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    NASA Technical Reports Server (NTRS)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 C temperature increase from the nominal vapor temperature. The 19 C temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  6. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    NASA Technical Reports Server (NTRS)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  7. Dissolution Process of Palladium in Hydrochloric Acid: A Route via Alkali Metal Palladates

    NASA Astrophysics Data System (ADS)

    Kasuya, Ryo; Miki, Takeshi; Morikawa, Hisashi; Tai, Yutaka

    2015-12-01

    To improve the safety of the Pd recovery processes that use toxic oxidizers, dissolution of Pd in hydrochloric acid with alkali metal palladates was investigated. Alkali metal palladates were prepared by calcining a mixture of Pd black and alkali metal (Li, Na, and K) carbonates in air. Almost the entire amount of Pd was converted into Li2PdO2 after calcination at 1073 K (800 °C) using Li2CO3. In contrast, PdO was obtained by calcination at 1073 K (800 °C) using Na and K carbonates. Our results indicated that Li2CO3 is the most active reagent among the examined alkali metal carbonates for the formation of palladates. In addition, dissolution of the resulting Li2PdO2 in HCl solutions was evaluated under various conditions. In particular, Li2PdO2 rapidly dissolved in diluted (0.1 M) HCl at ambient temperature. Solubility of Pd of Li2PdO2 was found to be 99 pct or larger after dissolution treatment at 353 K (80 °C) for 5 minutes; in contrast, PdO hardly dissolved in 0.1 M HCl. The dissolution mechanism of Li2PdO2 in HCl was also elucidated by analysis of crystal structures and particulate properties. Since our process is completely free from toxic oxidizers, the dissolution process via alkali metal palladates is much safer than currently employed methods.

  8. Dissociation of alkaliated alanine in the gas phase: the role of the metal cation.

    PubMed

    Abirami, Seduraman; Wong, Catherine Chiu Lan; Tsang, Chun Wai; Ma, Ngai Ling

    2005-09-01

    The dissociation of prototypical metal-cationized amino acid complexes, namely, alkaliated alanine ([Ala+M]+, M+ = Li+, Na+, K+), was studied by energy-resolved tandem mass spectrometry with an ion-trap mass analyzer and by density functional theory. Dissociation leads to formation of fragment ions arising from the loss of small neutrals, such as H2O, CO, NH3, (CO+NH3), and the formation of Na+/K+. The order of appearance threshold voltages for different dissociation pathways determined experimentally is consistent with the order of critical energies (energy barriers) obtained theoretically, and this provides the necessary confidence in both experimental and theoretical results. Although not explicitly involved in the reaction, the alkali metal cation plays novel and important roles in the dissociation of alkaliated alanine. The metal cation not only catalyzes the dissociation (via the formation of loosely bound ion-molecule complexes and by stabilizing the more polar intermediates and transition structures), but also affects the dissociation mechanisms, as the cation can alter the shape of the potential energy surfaces. This compression/expansion of the potential energy surface as a function of the alkali metal cation is discussed in detail, and how this affects the competitive loss of H2O versus CO/(CO+NH3) from [Ala+M]+ is illustrated. The present study provides new insights into the origin of the competition between various dissociation channels of alkaliated amino acid complexes.

  9. Associated Silicate-Metal-Sulfide Inclusions in Graphite of Ureilite FRO 95028

    NASA Astrophysics Data System (ADS)

    Fioretti, A. M.; Goodrich, C. A.; Molin, G.; Tribaudino, M.

    1999-03-01

    A new occurrence of a peculiar association of a silicate-rich phase, sulfide and metal, found to be widespread in the "book" graphite of low-shock ureilite FRO 95028, is described and chemically characterized (EMPA).

  10. Laboratory measurements of alkali metal containing vapors released during biomass combustion

    SciTech Connect

    Dayton, D.C.; Milne, T.A.

    1996-12-31

    Alkali metals, in particular potassium, have been implicated as key ingredients for enhancing fouling and slagging of heat transfer surfaces in power generating facilities that convert biomass to electricity. When biomass is used as a fuel in boilers, the deposits formed reduce efficiency, and in the worst case lead to unscheduled plant downtime. Blending biomass with other fuels is often used as a strategy to control fouling and slagging problems. Depending on the combustor, sorbents can be added to the fuel mixture to sequester alkali metals. Another possibility is to develop methods of hot gas cleanup that reduce the amount of alkali vapor to acceptable levels. These solutions to fouling and slagging, however, would greatly benefit from a detailed understanding of the mechanisms of alkali release during biomass combustion. Identifying these alkali vapor species and understanding how these vapors enhance deposit formation would also be beneficial. The approach is to directly sample the hot gases liberated from the combustion of small biomass samples in a variable-temperature quartz-tube reactor employing a molecular beam mass spectrometer (MBMS) system. The authors have successfully used this experimental technique to identify alkali species released during the combustion of selected biomass feedstocks used in larger scale combustion facilities. Fuels investigated include lodgepole pine, eucalyptus, poplar, corn stover, switchgrass, wheat straw, rice straw, pistachio shells, almond shells and hulls, wood wastes, waste paper, alfalfa stems, and willow tops.

  11. Electronic and nuclear dynamics in the frustrated photodesorption of alkali atoms from metals

    NASA Astrophysics Data System (ADS)

    Petek, Hrvoje

    2001-03-01

    Electronic and nuclear dynamics of alkali atom covered noble metal surfaces are investigated by the interferometric time-resolved two-photon photoemission technique [1]. Photoinduced charge transfer turns on the repulsive Coulomb force between the alkali atom and the metal surface thereby initiating the expulsion of alkali atoms from the surface. The resulting nuclear motion of alkali atoms is detected through changes in the surface electronic structure. In the extreme case of Cs/Cu(111), the alkali atom motion can be observed for up to 200 fs, which according to a Newton’s law model corresponds to the stretching of the Cu-Cs bond by 0.3 Å [2]. However, wave packet spreading due to the recoil-induced phonon generation retards the desorption process. Systematic dependence of the alkali atom lifetime on the crystal face, the substrate material, and the adsorbate polarizability provides insights into factors that stabilize adsorbates with respect to decay via the resonant charge transfer and inelastic electron-electron scattering [3]. 1 S. Ogawa, H. Nagano, and H. Petek, Phys. Rev. Lett. 82, 1931 (1999). 2 H. Petek, H. Nagano, M. J. Weida, and S. Ogawa, Science 288, 1402 (2000). 3 J. P. Gauyacq et al., Faraday Discuss. Chem. Soc. 117 (2000).

  12. Enhancing Skin Permeation of Biphenylacetic Acid (BPA) Using Salt Formation with Organic and Alkali Metal Bases.

    PubMed

    Pawar, Vijay; Naik, Prashant; Giridhar, Rajani; Yadav, Mange Ram

    2015-01-01

    In the present study, a series of organic and alkali metal salts of biphenylacetic acid (BPA) have been prepared and evaluated in vitro for percutaneous drug delivery. The physicochemical properties of BPA salts were determined using solubility measurements, DSC, and IR. The DSC thermogram and FTIR spectra confirmed the salt formation with organic and alkali metal bases. Among the series, salts with organic amines (ethanolamine, diethanolamine, triethanolamine, and diethylamine) had lowered melting points while the alkali metal salt (sodium) had a higher melting point than BPA. The in vitro study showed that salt formation improves the physicochemical properties of BPA, leading to improved permeability through the skin. Amongst all the prepared salts, ethanolamine salt (1b) showed 7.2- and 5.4-fold higher skin permeation than the parent drug at pH 7.4 and 5.0, respectively, using rat skin.

  13. A hetero-alkali-metal version of the utility amide LDA: lithium-potassium diisopropylamide.

    PubMed

    Armstrong, David R; Kennedy, Alan R; Mulvey, Robert E; Robertson, Stuart D

    2013-03-14

    Designed to extend the synthetically important alkali-metal diisopropylamide [N(i)Pr(2); DA] class of compounds, the first example of a hetero-alkali-metallic complex of DA has been prepared as a partial TMEDA solvate. Revealed by an X-ray crystallographic study, its structure exists as a discrete lithium-rich trinuclear Li(2)KN(3) heterocycle, with TMEDA only solvating the largest of the alkali-metals, with the two-coordinate lithium atoms being close to linearity [161.9(2)°]. A variety of NMR spectroscopic studies, including variable temperature and DOSY NMR experiments, suggests that this new form of LDA maintains its integrity in non-polar hydrocarbon solution. This complex thus represents a rare example of a KDA molecule which is soluble in non-polar medium without the need for excessive amounts of solubilizing Lewis donor being added.

  14. Magic wavelengths for the np-ns transitions in alkali-metal atoms

    SciTech Connect

    Arora, Bindiya; Safronova, M. S.; Clark, Charles W.

    2007-11-15

    Extensive calculations of the electric-dipole matrix elements in alkali-metal atoms are conducted using the relativistic all-order method. This approach is a linearized version of the coupled-cluster method, which sums infinite sets of many-body perturbation theory terms. All allowed transitions between the lowest ns, np{sub 1/2}, np{sub 3/2} states and a large number of excited states are considered in these calculations and their accuracy is evaluated. The resulting electric-dipole matrix elements are used for the high-precision calculation of frequency-dependent polarizabilities of the excited states of alkali-metal atoms. We find 'magic' wavelengths in alkali-metal atoms for which the ns and np{sub 1/2} and np{sub 3/2} atomic levels have the same ac Stark shifts, which facilitates state-insensitive optical cooling and trapping.

  15. Ternary Amides Containing Transition Metals for Hydrogen Storage: A Case Study with Alkali Metal Amidozincates.

    PubMed

    Cao, Hujun; Richter, Theresia M M; Pistidda, Claudio; Chaudhary, Anna-Lisa; Santoru, Antonio; Gizer, Gökhan; Niewa, Rainer; Chen, Ping; Klassen, Thomas; Dornheim, Martin

    2015-11-01

    The alkali metal amidozincates Li4 [Zn(NH2)4](NH2)2 and K2[Zn(NH2)4] were, to the best of our knowledge, studied for the first time as hydrogen storage media. Compared with the LiNH2-2 LiH system, both Li4 [Zn(NH2)4](NH2)2-12 LiH and K2[Zn(NH2)4]-8 LiH systems showed improved rehydrogenation performance, especially K2[Zn(NH2)4]-8 LiH, which can be fully hydrogenated within 30 s at approximately 230 °C. The absorption properties are stable upon cycling. This work shows that ternary amides containing transition metals have great potential as hydrogen storage materials.

  16. Advances in high temperature components for AMTEC (Alkali Metal Thermal-To-Electric Converter)

    NASA Astrophysics Data System (ADS)

    Williams, R. M.; Jeffries-Nakamura, B.; Underwood, M. L.; Ryan, M. A.; Oconnor, D.; Kikkert, S.

    1991-07-01

    Long lifetimes are required for AMTEC (or sodium heat engine) components for aerospace and terrestrial applications, and the high heat input temperature as well as the alkali metal liquid and vapor environment places unusual demands on the materials used to construct AMTEC devices. In addition, it is important to maximize device efficiency and power density, while maintaining a long life capability. In addition to the electrode, which must provide both efficient electrode kinetics, transport of the alkali metal, and low electrical resistance, other high temperature components of the cell face equally demanding requirements. The beta(double prime) alumina solid electrolyte (BASE), the seal between the BASE ceramic and its metallic transition to the hot alkali metal (liquid or vapor) source, and metallic components of the device are exposed to hot liquid alkali metal. Modification of AMTEC components may also be useful in optimizing the device for particular operating conditions. In particular, a potassium AMTEC may be expected to operate more efficiently at lower temperatures.

  17. Probing alkali metal-pi interactions with the side chain residue of tryptophan.

    PubMed

    Hu, Jiaxin; Barbour, Leonard J; Gokel, George W

    2002-04-16

    Feeble forces play a significant role in the organization of proteins. These include hydrogen bonding, hydrophobic interactions, salt bridge formation, and steric interactions. The alkali metal cation-pi interaction is a force of potentially profound importance but its consideration in biology has been limited by the lack of experimental evidence. Our previous studies of cation-pi interactions with Na(+) and K(+) involved the side arms of tryptophan (indole), tyrosine (phenol), and phenylalanine (benzene) as the arene donors. The receptor system possesses limiting steric constraints. In this report, we show that direct interactions between alkali metals and arenes occur at or within the van der Waals contact distance.

  18. Metal-Silicate Differentiation from a Metal Pond Emulsion during Core Formation

    NASA Astrophysics Data System (ADS)

    Fleck, J.; Weeraratne, D. S.

    2011-12-01

    The terrestrial planets demonstrate a heavy bombardment of impacts in their early formation history. Impacts are violent, energetic collisions that may melt the surface and/or cause segregation of impactor material including silicates and liquid metal iron. Although theoretical studies have been done with conceptual models for metal diapir descent to form terrestrial planetary cores, physical or computer modeling studies are scarce due to the strong variations in physical properties between liquid metals and solid silicates. We use laboratory fluid experiments to study core formation processes using liquid metal gallium and high viscosity glucose syrup which provide the buoyancy ratios expected for planetary interiors and low Reynolds number flow dynamics. Preliminary results indicate that the physical process of sinking metal diapirs form trailing conduits that may drag low density surface magmatic material to the base of the mantle. The low density material collects, grows at the base of the box, and rises back to the surface. We compare two cases of a pond made of 1) liquid metal emulsion and 2) a smooth coalesced metal pond. We find that emulsion experiments entrain greater amounts of low density fluid to the base of the box. Once the metal diapir reaches the base, conduit material exhibits flow reversal to return buoyantly to the surface. In the case of coalesced liquid metal diapirs, low density conduit material returns to the surface through the pre-established conduit. In the emulsion diapir case, we observe the formation of a new thermo-chemical buoyant plume that grows, exits the conduit, and travels along a new pathway to the surface. Metal plume descent and chemical plume rise velocities are consistent with Stokes velocity. Estimates of metal-silicate plume sinking time and thermo-chemical plume rise time for terrestrial planetary interiors are provided. We suggest the observation of a thermo-chemical plume as a source for orogeny at the surface of

  19. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene

    NASA Astrophysics Data System (ADS)

    Sahin, H.; Peeters, F. M.

    2013-02-01

    The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale.

  20. Metal-Silicate Segregation in Deforming Dunitic Rocks: Applications to Core Formation in Europa and Ganymede

    NASA Technical Reports Server (NTRS)

    Hustoft, J. W.; Kohlstedt, D. L.

    2004-01-01

    Core formation is an important event in the evolution of a planetary body, affecting both the geochemical and geophysical properties of the body. Metal-silicate segregation could have proceeded either by settling of liquid metal through a magma ocean or by percolation of liquid metal through a solid silicate mantle. Percolation of metallic melt had previously been excluded as a viable segregation mechanism because metallic melts do not form an interconnected network under hydrostatic conditions, except at high melt fraction (>5 vol%), due to the high dihedral angle between metals and silicates (>60 ). Without an interconnected network, porous flow of metallic melt is impossible, leaving the magma ocean scenario as the only mechanism to form the core. Moment-of-inertia measurements of Europa and Ganymede from the Galileo probe indicate that they are differentiated. This evidence suggests that a method for segregating metals and silicates at temperatures low enough to retain volatile compounds must exist. We have investigated the effect of deformation on the distribution of metallic melts in silicates. We have deformed samples of olivine + 5-9 vol% Fe-S to strains of 2.5 in simple shear and find that the metallic melt segregates into melt-rich planes oriented at 20 to the shear plane. These metallic melt-rich bands are similar in structure to the silicate melt-rich bands reported by Holtzman, indicating that deformation can interconnect isolated metallic melt pockets and allow porous flow of non-wetting melts. Such a core formation process could have occurred in the jovian satellites.

  1. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  2. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  3. Determining the Metal/Silicate Partition Coefficient of Germanium: Implications for Core and Mantle Differentiation.

    NASA Technical Reports Server (NTRS)

    King, C.; Righter, K.; Danielson, L.; Pando, K.; Lee, C.

    2010-01-01

    Currently there are several hypotheses for the thermal state of the early Earth. Some hypothesize a shallow magma ocean, or deep magma ocean, or heterogeneous accretion which requires no magma ocean at all. Previous models are unable to account for Ge depletion in Earth's mantle relative to CI chondrites. In this study, the element Ge is used to observe the way siderophile elements partition into the metallic core. The purpose of this research is to provide new data for Ge and to further test these models for Earth's early stages. The partition coefficients (D(sub Ge) = c(sub metal)/c(sub silicate), where D = partition coefficient of Ge and c = concentration of Ge in the metal and silicate, respectively) of siderophile elements were studied by performing series of high pressure, high temperature experiments. They are also dependent on oxygen fugacity, and metal and silicate composition. Ge is a moderately siderophile element found in both the mantle and core, and has yet to be studied systematically at high temperatures. Moreover, previous work has been limited by the low solubility of Ge in silicate melts (less than 100 ppm and close to detection limits for electron microprobe analysis). Reported here are results from 14 experiments studying the partitioning of Ge between silicate and metallic liquids. The Ge concentrations were then analyzed using Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICP-MS) which is sensitive enough to detect ppm levels of Ge in the silicate melt.

  4. Rare Gas - Alkali Metal Coadsorption on Ag(111): Using Rare Gases as 2D Manometers

    NASA Astrophysics Data System (ADS)

    Diehl, Renee D.; Leatherman, Gerald S.; Vidali, G.

    1996-03-01

    The adsorption of Ar, Kr or Xe onto Ag(111) results in incommensurate overlayers which are aligned with the substrate. However, by preadsorbing a small amount of alkali metal first, it is possible to form rotated islands of rare gases. The rotation angles of these islands do not agree with the predictions of the first-order Novaco-McTague theory for rotational epitaxy, nor do they exactly follow the predictions of geometrical theories. However, the other thermodynamic properties of these layers are essentially identical to those on the clean surface. With higher precoverages of potassium, the potassium-rare gas interaction remains repulsive and rare gases form island structures within the dispersed alkali layers. Since the rare gas overlayers are in equilibrium with the potassium and the thermodynamics of rare gases on clean Ag(111) have already been very well characterized( J. Unguris, L. W. Bruch, E. R. Moog and M. B. Webb, Surf. Sci. 87 (1979) 415; 109 (1981) 522.) it is possible to measure the spreading pressure of the alkali as a function of coverage and therefore to deduce information about the coverage- dependent alkali-alkali and alkali-substrate interactions.

  5. Theoretical study on the adsorption of carbon dioxide on individual and alkali-metal doped MOF-5s

    NASA Astrophysics Data System (ADS)

    Ha, Nguyen Thi Thu; Lefedova, O. V.; Ha, Nguyen Ngoc

    2016-01-01

    Density functional theory (DFT) calculations were performed to investigate the adsorption of carbon dioxide (CO2) on metal-organic framework (MOF-5) and alkali-metal (Li, K, Na) doped MOF-5s. The adsorption energy calculation showed that metal atom adsorption is exothermic in MOF-5 system. Moreover, alkali-metal doping can significantly improve the adsorption ability of carbon dioxide on MOF-5. The best influence is observed for Li-doping.

  6. Synthetic receptors as models for alkali metal cation- binding sites in proteins

    NASA Astrophysics Data System (ADS)

    de Wall, Stephen L.; Meadows, Eric S.; Barbour, Leonard J.; Gokel, George W.

    2000-06-01

    The alkali metal cations Na+ and K+ have several important physiological roles, including modulating enzyme activity. Recent work has suggested that alkali metal cations may be coordinated by systems, such as the aromatic amino acid side chains. The ability of K+ to interact with an aromatic ring has been assessed by preparing a family of synthetic receptors that incorporate the aromatic side chains of phenylalanine, tyrosine, and tryptophan. Thesereceptors are constructed around a diaza-18-crown-6 scaffold, which serves as the primary binding site for an alkali metal cation. The ability of the aromatic rings to coordinate a cation was determined by crystallizing each of the receptors in the presence of K+ and by solving the solid state structures. In all cases, complexation of K+ by the pi system was observed. When possible, the structures of the unbound receptors also were determined for comparison. Further proof that the aromatic ring makes an energetically favorable interaction with the cation was obtained by preparing a receptor in which the arene was perfluorinated. Fluorination of the arene reverses the electrostatics, but the aromaticity is maintained. The fluorinated arene rings do not coordinate the cation in the solid state structure of the K+ complex. Thus, the results of the predicted electrostatic reversal were confirmed. Finally, the biological implications of the alkali metal cation-pi interaction are addressed.

  7. Unidirectional thermal expansion in KZnB3O6: role of alkali metals.

    PubMed

    Lou, Yanfang; Li, Dandan; Li, Zhilin; Zhang, Han; Jin, Shifeng; Chen, Xiaolong

    2015-12-14

    The driving force of the unidirectional thermal expansion in KZnB3O6 has been studied experimentally and theoretically. Our results show that the low-energy vibrational modes of alkali metals play a crucial role in this unusual thermal behavior. PMID:26515521

  8. The Alkali Metal Thermal-To-Electric Converter for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Ryan, M.

    1999-01-01

    AMTEC, the Alkali Metal Thermal to Electric Converter, is a direct thermal to electric energy conversion device; it has been demostrated to perform at high power densities, with open circuit voltages in single electrochemical cells up to 1.6 V and current desities up to 2.0 A/cm(sup 2).

  9. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOEpatents

    Cassano, A.A.

    1985-07-02

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

  10. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOEpatents

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  11. Affinity Capillary Electrophoresis Applied to Investigation of Valinomycin Complexes with Ammonium and Alkali Metal Ions.

    PubMed

    Štěpánová, Sille; Kašička, Václav

    2016-01-01

    This chapter deals with the application of affinity capillary electrophoresis (ACE) to investigation of noncovalent interactions (complexes) of valinomycin, a macrocyclic dodecadepsipeptide antibiotic ionophore, with ammonium and alkali metal ions (lithium, sodium, potassium, rubidium, and cesium). The strength of these interactions was characterized by the apparent binding (stability, association) constants (K b) of the above valinomycin complexes using the mobility shift assay mode of ACE. The study involved measurements of effective electrophoretic mobility of valinomycin at variable concentrations of ammonium or alkali metal ions in the background electrolyte (BGE). The effective electrophoretic mobilities of valinomycin measured at ambient temperature and variable ionic strength were first corrected to the reference temperature 25 °C and constant ionic strength (10 or 25 mM). Then, from the dependence of the corrected valinomycin effective mobility on the ammonium or alkali metal ion concentration in the BGE, the apparent binding constants of the valinomycin-ammonium or valinomycin-alkali metal ion complexes were determined using a nonlinear regression analysis. Logarithmic form of the binding constants (log K b) were found to be in the range of 1.50-4.63, decreasing in the order Rb(+) > K(+) > Cs(+) > > Na(+) > NH4 (+) ~ Li(+). PMID:27473493

  12. Cation-network interactions in binary alkali metal borate glasses. A far-infrared study

    SciTech Connect

    Kamitsos, E.I.; Karakassides, M.A.; Chryssikos, G.D.

    1987-10-22

    The far-infrared spectra of compositions probing the glass-forming regions of all five binary alkali metal borate systems chi M/sub 2/O x (1 - chi)B/sub 2/O/sub 3/ (0 < chi less than or equal to 0.40, M = Na; and 0 < chi less than or equal to 0.35, M = K, Rb, Cs) have been measured and analyzed to systematically study the alkali metal cation-network interactions and their compositional dependence. Band deconvolution of the measured spectra showed the presence of two distinct distributions of alkali metal cation sites in Li, Na, and K glasses. Similar results have been obtained for rubidium and cesium borate glasses of compositions chi > 0.25. One distribution of cation sites has been observed for the lower alkali metal content Rb and Cs glasses. The fractions of cations in the two different network sites have also been evaluated. The squares of the frequencies of the cation-motion bands were found to vary linearly with composition, and exhibit kinks at chi similarly ordered 20, for all but the Cs glasses. This behavior was explained on the basis of the network structural changes known to occur at this composition.

  13. Croconic acid and alkali metal croconate salts: some new insights into an old story.

    PubMed

    Braga, Dario; Maini, Lucia; Grepioni, Fabrizia

    2002-04-15

    The solid-state structures of a series of alkali metal salts of the croconate dianion (C(5)O(5)(2-)) and of croconic acid (H(2)C(5)O(5)) have been determined. The alkali metal croconates were obtained by ring contraction of rhodizonic acid (H(2)C(6)O(6)), upon treatment with alkali metal hydroxides and recrystallisation from water. The novel species Na(2)C(5)O(5) x 2H(2)O, Rb(2)C(5)O(5) and Cs(2)C(5)O(5), as well as the mixed hydrogencroconate/croconate salt K(3)(HC(5)O(5))(C(5)O(5)) small middle dot2 H(2)O are described and compared with the Li(+), K(+) and NH(4)(+) salts. Single crystals of croconic acid were obtained by crystallisation of croconic acid in the presence of HCl. Crystal structure determinations showed that the C(5)O(5)(2-) ions tend to organize themselves in columns. The interplanar separations lie in the narrow range 3.12-3.42 A and do not necessarily reflect the presence of pi-stacking interactions. It is argued that the small interplanar separation is the result of a compromise between packing of flat croconate units and the spherical cations together with the water molecules that fill the coordination spheres of the alkali metal atoms. PMID:11933108

  14. a Theory of the Metallization of Semiconductor Surfaces by Alkali Atoms.

    NASA Astrophysics Data System (ADS)

    Te, Ronald Lim

    Experimental evidence suggest that alkali metal atoms adsorbed on a semiconductor substrate undergo a transition from insulating to metallic at low coverage. The electrons in the adlayer initially occupy isolated exponentially localized atomic orbitals, and become metallic with increasing coverage. Several investigations have shown that the onset of metallization occurs at less than a quarter of a monolayer. Interpretation of second-harmonic data, where the signal increases sharply at 1/6 monolayer, suggests a metallization transition due to the delocalization of surface electrons. This dissertation provides a theoretical framework for understanding the metallization of alkali overlayers. The adlayer is simulated using a rectangular lattice with more than 80,000 sites that are randomly occupied by atomic-like orbitals up to densities commensurate with the different coverages. A new computational technique called dynamic recursion was developed to handle calculations with large numbers of basis orbitals. Each alkali orbital is taken to have the same on-site energy; however, the orbital interactions involve several nearest neighbors and are an exponentially decreasing function of the orbitals' separation. This model gives a tight-binding Hamiltonian with random off-diagonal disorder. An investigation of states at the Fermi level shows a sharp transition between strongly and weakly localized states as a function of coverage. This numerically observed transition is indicative of an Anderson-type metal-insulator transition where disorder causes states of different degrees of localization to cross the Fermi level. The Hamiltonian studied exhibits a delocalization transition for states at the Fermi level, and is proposed as a model for the metallization of the alkali metal atoms adsorbed on a semiconductor substrate. These results are consistent with other work which show the existence of a mobility edge that separates exponentially localized from power-law localized

  15. The interactions of sorbates with gallosilicates and alkali-metal exchanged gallosilicates

    NASA Astrophysics Data System (ADS)

    Limtrakul, J.; Kuno, M.; Treesukol, P.

    1999-11-01

    Structures, energetics and vibrational frequencies of the interaction of adsorbates with H-aluminosilicates (H-AlZ), H-gallosilicates (H-GaZ), alkali-metal exchanged aluminosilicates (X-AlZ) and alkali-metal exchanged gallosilicates (X-GaZ), where X being Li, Na, or K, have been carried out at B3LYP and HF levels of theory with 6-31G(d) as the basis set. The charge compensating alkali-metal ions can affect the catalytically active site (Si-O-T where T=Al or Ga) by weakening the Si-O, Al-O, and Ga-O bonds as compared to their anionic frameworks. Comparing the net stabilization energies, Δ ENSE, of the naked alkali-metal/H 2O adducts with those of the alkali-metal exchanged zeolite/H 2O systems, the latter amounts only to about 50% of the former, which is partly due to the destabilizing role of the negative zeolitic oxygen frameworks surrounding the cations. The interaction of sorbates with the alkali-metal exchanged gallosilicates can be employed to probe the field strength inside the catalytic frameworks as indicated by the plot of the binding energy, Δ E, versus 1/ RX-O w2, with R(X-O w) being the distance between the cationic nucleus and the oxygen atom of the adsorbate. The IR spectra of H 2O adsorbed on Na-AlZ are calculated to be 3584, 3651, and 1686 cm -1. The obtained results are in excellent agreement with the very recent experimental IR spectra of water adsorbed on Na-ZSM-5 of Zecchina et al. (J. Phys. Chem., 100 (1996) 16 484). Other important features, i.e. the correlation between Δ νOH and, Δ E, R(X-O w) , and 1/ RX-O w2, cationic size, demonstrate that the interactions of sorbates with alkali-metal exchanged gallosilicates are well approximated by electrostatic contribution.

  16. Alkali Metal Carbenoids: A Case of Higher Stability of the Heavier Congeners.

    PubMed

    Molitor, Sebastian; Gessner, Viktoria H

    2016-06-27

    As a result of the increased polarity of the metal-carbon bond when going down the group of the periodic table, the heavier alkali metal organyl compounds are generally more reactive and less stable than their lithium congeners. We now report a reverse trend for alkali metal carbenoids. Simple substitution of lithium by the heavier metals (Na, K) results in a significant stabilization of these usually highly reactive compounds. This allows their isolation and handling at room temperature and the first structure elucidation of sodium and potassium carbenoids. The control of stability was used to control reactivity and selectivity. Hence, the Na and K carbenoids act as selective carbene-transfer reagents, whereas the more labile lithium systems give rise to product mixtures. Additional fine tuning of the M-C interaction by means of crown ether addition further allows for control of the stability and reactivity. PMID:27100278

  17. Theory of magic optical traps for Zeeman-insensitive clock transitions in alkali-metal atoms

    SciTech Connect

    Derevianko, Andrei

    2010-05-15

    Precision measurements and quantum-information processing with cold atoms may benefit from trapping atoms with specially engineered, 'magic' optical fields. At the magic trapping conditions, the relevant atomic properties remain immune to strong perturbations by the trapping fields. Here we develop a theoretical analysis of magic trapping for especially valuable Zeeman-insensitive clock transitions in alkali-metal atoms. The involved mechanism relies on applying a magic bias B field along a circularly polarized trapping laser field. We map out these B fields as a function of trapping laser wavelength for all commonly used alkalis. We also highlight a common error in evaluating Stark shifts of hyperfine manifolds.

  18. Characteristic thermoluminescence of gamma-irradiated alumina ceramics doped with some alkali metals

    NASA Astrophysics Data System (ADS)

    Henaish, B. A.; El-Agrami, A. M.; Abdel-Fattah, W. I.; Osiris, W. G.

    1994-07-01

    Thermoluminescence properties of pure Al2O3-ceramic discs doped with some oxides of alkali metals and B were investigated. Two groups of samples were studied: one with a low concentration of B and alkali oxides and the other with higher concentration. The first group shows a relatively higher stability and better reproducibility for γ-radiation and neutron-induced TL, which could be utilized in mixed radiation field dosimetry. The main disadvantage of these TL-materials is the relatively high rate of signal fading. A simple course of post irradiation heat annealing is proposed to overcome this drawback.

  19. Hollow Nanostructured Metal Silicates with Tunable Properties for Lithium Ion Battery Anodes.

    PubMed

    Yu, Seung-Ho; Quan, Bo; Jin, Aihua; Lee, Kug-Seung; Kang, Soon Hyung; Kang, Kisuk; Piao, Yuanzhe; Sung, Yung-Eun

    2015-11-25

    Hollow nanostructured materials have attracted considerable interest as lithium ion battery electrodes because of their good electrochemical properties. In this study, we developed a general procedure for the synthesis of hollow nanostructured metal silicates via a hydrothermal process using silica nanoparticles as templates. The morphology and composition of hollow nanostructured metal silicates could be controlled by changing the metal precursor. The as-prepared hierarchical hollow nanostructures with diameters of ∼100-200 nm were composed of variously shaped primary particles such as hollow nanospheres, solid nanoparticles, and thin nanosheets. Furthermore, different primary nanoparticles could be combined to form hybrid hierarchical hollow nanostructures. When hollow nanostructured metal silicates were applied as anode materials for lithium ion batteries, all samples exhibited good cyclic stability during 300 cycles, as well as tunable electrochemical properties.

  20. Depletion of Vandium in Planetary Mantles: Controlled by Metal, Oxide, or Silicate?

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2006-01-01

    Vanadium concentrations in planetary mantles can provide information about the conditions during early accretion and differentiation. Because V is a slightly siderophile element, it is usually assumed that any depletion would be due to core formation and metal-silicate equilibrium. However, V is typically more compatible in phases such as spinel, magnesiowuestite and garnet. Fractionation of all of these phases would cause depletions more marked than those from metal. In this paper consideration of depletions due to metal, oxide and silicate are critically evaluated.

  1. Potassium silicate-zinc oxide solution for metal finishes

    NASA Technical Reports Server (NTRS)

    Schutt, J. B.

    1970-01-01

    Examples of zinc dust formulations, which are not subject to cracking or crazing, are fire retardant, and have high adhesive qualities, are listed. The potassium silicate in these formulations has mol ratios of dissolved silica potassium oxide in the range 4.8 to 1 - 5.3 to 1.

  2. First-principles-based simulation of interlayer water and alkali metal ions in weathered biotite

    NASA Astrophysics Data System (ADS)

    Ikeda, Takashi

    2016-09-01

    We performed first-principles-based simulations of weathered biotites (WBs) including alkali metal ions to investigate the adsorption states of interlayer cations and the cation/water distribution in their interlayer. Our simulations suggest that the inclusion of Fe3+ ions in octahedral sheets of WBs alters significantly the vibrational states, the adsorption states of alkali ions, and the cation/water distribution in our WBs. The Al-O bond cleavage suggested to occur in Fe3+-rich regions of WBs upon the H2O adsorption on Al3+ in tetrahedral sheets enhances greatly the dipole moment of adsorbed H2O molecules, thus enhancing the preference for aggregating inner-sphere complexes of heavy alkali ions particularly Cs+.

  3. Device and method for upgrading petroleum feedstocks and petroleum refinery streams using an alkali metal conductive membrane

    DOEpatents

    Gordon, John Howard; Alvare, Javier

    2016-09-13

    A reactor has two chambers, namely an oil feedstock chamber and a source chamber. An ion separator separates the oil feedstock chamber from the source chamber, wherein the ion separator allows alkali metal ions to pass from the source chamber, through the ion separator, and into the oil feedstock chamber. A cathode is at least partially housed within the oil feedstock chamber and an anode is at least partially housed within the source chamber. A quantity of an oil feedstock is within the oil feedstock chamber, the oil feedstock comprising at least one carbon atom and a heteroatom and/or one or more heavy metals, the oil feedstock further comprising naphthenic acid. When the alkali metal ion enters the oil feedstock chamber, the alkali metal reacts with the heteroatom, the heavy metals and/or the naphthenic acid, wherein the reaction with the alkali metal forms inorganic products.

  4. Can Cyclen Bind Alkali Metal Azides? A DFT Study as a Precursor to Synthesis.

    PubMed

    Bhakhoa, Hanusha; Rhyman, Lydia; Lee, Edmond P F; Ramasami, Ponnadurai; Dyke, John M

    2016-03-18

    Can cyclen (1,4,7,10-tetraazacyclododecane) bind alkali metal azides? This question is addressed by studying the geometric and electronic structures of the alkali metal azide-cyclen [M(cyclen)N3] complexes using density functional theory (DFT). The effects of adding a second cyclen ring to form the sandwich alkali metal azide-cyclen [M(cyclen)2N3] complexes are also investigated. N3(-) is found to bind to a M(+) (cyclen) template to give both end-on and side-on structures. In the end-on structures, the terminal nitrogen atom of the azide group (N1) bonds to the metal as well as to a hydrogen atom of the cyclen ring through a hydrogen bond in an end-on configuration to the cyclen ring. In the side-on structures, the N3 unit is bonded (in a side-on configuration to the cyclen ring) to the metal through the terminal nitrogen atom of the azide group (N1), and through the other terminal nitrogen atom (N3) of the azide group by a hydrogen bond to a hydrogen atom of the cyclen ring. For all the alkali metals, the N3-side-on structure is lowest in energy. Addition of a second cyclen unit to [M(cyclen)N3] to form the sandwich compounds [M(cyclen)2N3] causes the bond strength between the metal and the N3 unit to decrease. It is hoped that this computational study will be a precursor to the synthesis and experimental study of these new macrocyclic compounds; structural parameters and infrared spectra were computed, which will assist future experimental work.

  5. Can Cyclen Bind Alkali Metal Azides? A DFT Study as a Precursor to Synthesis.

    PubMed

    Bhakhoa, Hanusha; Rhyman, Lydia; Lee, Edmond P F; Ramasami, Ponnadurai; Dyke, John M

    2016-03-18

    Can cyclen (1,4,7,10-tetraazacyclododecane) bind alkali metal azides? This question is addressed by studying the geometric and electronic structures of the alkali metal azide-cyclen [M(cyclen)N3] complexes using density functional theory (DFT). The effects of adding a second cyclen ring to form the sandwich alkali metal azide-cyclen [M(cyclen)2N3] complexes are also investigated. N3(-) is found to bind to a M(+) (cyclen) template to give both end-on and side-on structures. In the end-on structures, the terminal nitrogen atom of the azide group (N1) bonds to the metal as well as to a hydrogen atom of the cyclen ring through a hydrogen bond in an end-on configuration to the cyclen ring. In the side-on structures, the N3 unit is bonded (in a side-on configuration to the cyclen ring) to the metal through the terminal nitrogen atom of the azide group (N1), and through the other terminal nitrogen atom (N3) of the azide group by a hydrogen bond to a hydrogen atom of the cyclen ring. For all the alkali metals, the N3-side-on structure is lowest in energy. Addition of a second cyclen unit to [M(cyclen)N3] to form the sandwich compounds [M(cyclen)2N3] causes the bond strength between the metal and the N3 unit to decrease. It is hoped that this computational study will be a precursor to the synthesis and experimental study of these new macrocyclic compounds; structural parameters and infrared spectra were computed, which will assist future experimental work. PMID:26880648

  6. Pt, Au, Pd and Ru Partitioning Between Mineral and Silicate Melts: The Role of Metal Nanonuggets

    NASA Technical Reports Server (NTRS)

    Malavergne, V.; Charon, E.; Jones, J.; Agranier, A.; Campbell, A.

    2012-01-01

    The partition coefficients of Pt and other Pt Group Elements (PGE) between metal and silicate D(sub Metal-Silicate) and also between silicate minerals and silicate melts D(sub Metal-Silicate) are among the most challenging coefficients to obtain precisely. The PGE are highly siderophile elements (HSE) with D(sub Metal-Silicate) >10(exp 3) due to the fact that their concentrations in silicates are very low (ppb to ppt range). Therefore, the analytical difficulty is increased by the possible presence of HSE-rich-nuggets in reduced silicate melts during experiments). These tiny HSE nuggets complicate the interpretation of measured HSE concentrations. If the HSE micro-nuggets are just sample artifacts, then their contributions should be removed before calculations of the final concentration. On the other hand, if they are produced during the quench, then they should be included in the analysis. We still don't understand the mechanism of nugget formation well. Are they formed during the quench by precipitation from precursor species dissolved homogeneously in the melts, or are they precipitated in situ at high temperature due to oversaturation? As these elements are important tracers of early planetary processes such as core formation, it is important to take up this analytical and experimental challenge. In the case of the Earth for example, chondritic relative abundances of the HSE in some mantle xenoliths have led to the concept of the "late veneer" as a source of volatiles (such as water) and siderophiles in the silicate Earth. Silicate crystal/liquid fractionation is responsible for most, if not all, the HSE variation in the martian meteorite suites (SNC) and Pt is the element least affected by these fractionations. Therefore, in terms of reconstructing mantle HSE abundances for Mars, Pt becomes a very important player. In the present study, we have performed high temperature experiments under various redox conditions in order to determine the abundances of Pt, Au

  7. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures.

    PubMed

    Hu, Song; Jiang, Long; Wang, Yi; Su, Sheng; Sun, Lushi; Xu, Boyang; He, Limo; Xiang, Jun

    2015-09-01

    This work aimed to investigate effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass pyrolysis at different temperatures. The yield of CO, H2 and C2H4 was increased and that of CO2 was suppressed with increasing temperature. Increasing temperature could also promote depolymerization and aromatization reactions of active tars, forming heavier polycyclic aromatic hydrocarbons, leading to decrease of tar yields and species diversity. Diverse performance of inherent AAEMs at different temperatures significantly affected the distribution of pyrolysis products. The presence of inherent AAEMs promoted water-gas shift reaction, and enhanced the yield of H2 and CO2. Additionally, inherent AAEMs not only promoted breakage and decarboxylation/decarbonylation reaction of thermally labile hetero atoms of the tar but also enhanced thermal decomposing of heavier aromatics. Inherent AAEMs could also significantly enhance the decomposition of levoglucosan, and alkaline earth metals showed greater effect than alkali metals.

  8. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures.

    PubMed

    Hu, Song; Jiang, Long; Wang, Yi; Su, Sheng; Sun, Lushi; Xu, Boyang; He, Limo; Xiang, Jun

    2015-09-01

    This work aimed to investigate effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass pyrolysis at different temperatures. The yield of CO, H2 and C2H4 was increased and that of CO2 was suppressed with increasing temperature. Increasing temperature could also promote depolymerization and aromatization reactions of active tars, forming heavier polycyclic aromatic hydrocarbons, leading to decrease of tar yields and species diversity. Diverse performance of inherent AAEMs at different temperatures significantly affected the distribution of pyrolysis products. The presence of inherent AAEMs promoted water-gas shift reaction, and enhanced the yield of H2 and CO2. Additionally, inherent AAEMs not only promoted breakage and decarboxylation/decarbonylation reaction of thermally labile hetero atoms of the tar but also enhanced thermal decomposing of heavier aromatics. Inherent AAEMs could also significantly enhance the decomposition of levoglucosan, and alkaline earth metals showed greater effect than alkali metals. PMID:26005925

  9. Structure and properties of alizarin complex formed with alkali metal hydroxides in methanol solution.

    PubMed

    Jeliński, Tomasz; Cysewski, Piotr

    2016-06-01

    Quantum chemical computations were used for prediction of the structure and color of alizarin complex with alkali metal hydroxides in methanolic solutions. The color prediction relying on the single Gaussian-like band once again proved the usefulness of the PBE0 density functional due to the observed smallest color difference between computed and experimentally derived values. It was found that the alkali metal hydroxide molecules can bind to the two oxygen atoms of both hydroxyl groups of alizarin or to one of these atoms and the oxygen atom from the keto group in a complex with three methanol molecules. This means that two electronic transitions need to be taken into account when considering the spectra of the studied complexes. The resulting bond lengths and angles are correlated with the properties of the alkali metal atoms. The molar mass, the atomic radius, and the Pauling electronegativity of studied metals are quite accurate predictors of the geometric properties of hydroxide complexes with alizarin in methanol solution. Graphical abstract The spectra of the neutral and monoanionic form of alizarin together with color changes resulting from addition of different metal hydroxides and represented in CIE color space. PMID:27178415

  10. Structure and properties of alizarin complex formed with alkali metal hydroxides in methanol solution.

    PubMed

    Jeliński, Tomasz; Cysewski, Piotr

    2016-06-01

    Quantum chemical computations were used for prediction of the structure and color of alizarin complex with alkali metal hydroxides in methanolic solutions. The color prediction relying on the single Gaussian-like band once again proved the usefulness of the PBE0 density functional due to the observed smallest color difference between computed and experimentally derived values. It was found that the alkali metal hydroxide molecules can bind to the two oxygen atoms of both hydroxyl groups of alizarin or to one of these atoms and the oxygen atom from the keto group in a complex with three methanol molecules. This means that two electronic transitions need to be taken into account when considering the spectra of the studied complexes. The resulting bond lengths and angles are correlated with the properties of the alkali metal atoms. The molar mass, the atomic radius, and the Pauling electronegativity of studied metals are quite accurate predictors of the geometric properties of hydroxide complexes with alizarin in methanol solution. Graphical abstract The spectra of the neutral and monoanionic form of alizarin together with color changes resulting from addition of different metal hydroxides and represented in CIE color space.

  11. Calculation of Oxygen Fugacity in High Pressure Metal-Silicate Experiments and Comparison to Standard Approaches

    NASA Technical Reports Server (NTRS)

    Righter, K.; Ghiorso, M.

    2009-01-01

    Calculation of oxygen fugacity in high pressure and temperature experiments in metal-silicate systems is usually approximated by the ratio of Fe in the metal and FeO in the silicate melt: (Delta)IW=2*log(X(sub Fe)/X(sub FeO)), where IW is the iron-wustite reference oxygen buffer. Although this is a quick and easy calculation to make, it has been applied to a huge variety of metallic (Fe- Ni-S-C-O-Si systems) and silicate liquids (SiO2, Al2O3, TiO2, FeO, MgO, CaO, Na2O, K2O systems). This approach has surely led to values that have little meaning, yet are applied with great confidence, for example, to a terrestrial mantle at "IW-2". Although fO2 can be circumvented in some cases by consideration of Fe-M distribution coefficient, these do not eliminate the effects of alloy or silicate liquid compositional variation, or the specific chemical effects of S in the silicate liquid, for example. In order to address the issue of what the actual value of fO2 is in any given experiment, we have calculated fO2 from the equilibria 2Fe (metal) + SiO2 (liq) + O2 = Fe2SiO4 (liq).

  12. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: Combined stability in isothermal ageing and thermal cycling with YSZ coated ferritic stainless steels

    SciTech Connect

    Chou, Y. S.; Thomsen, Edwin C.; Choi, Jung-Pyung; Stevenson, Jeffry W.

    2012-01-01

    An alkali-containing silicate glass (SCN-1) is currently being evaluated as a candidate sealing glass for solid oxide fuel cell (SOFC) applications. The glass contains about 17 mole% alkalis (K+Na) and has low glass transition and softening temperatures. It remains vitreous and compliant around 750-800oC after sealing without substantial crystallization, as contrary to conventional glass-ceramic sealants, which experience rapid crystallization after the sealing process. The glassy nature and low characteristic temperatures can reduce residual stresses and result in the potential for crack healing. In a previous study, the glass was found to have good thermal cycle stability and was chemically compatible with YSZ coating during short term testing. In the current study, the compliant glass was further evaluated in a more realistic way in that the sealed glass couples were first isothermally aged for 1000h followed by thermal cycling. High temperature leakage was measured. The chemical compatibility was also investigated with powder mixtures at 700 and 800oC to enhance potential interfacial reaction. In addition, interfacial microstructure was examined with scanning electron microscopy and evaluated with regard to the leakage and chemical compatibility results.

  13. Metal-Silicate Partitioning of Tungsten from 10 to 50 GPa

    NASA Technical Reports Server (NTRS)

    Shofner, G. A.; Campbell, A. J.; Danielson, L.; Rahman, Z.; Righter, K.

    2014-01-01

    Geochemical models of core formation are commonly based on core and mantle abundances of siderophile elements that partitioned between silicate and metal in a magma ocean in the early Earth. Tungsten is a moderately siderophile element that may provide constraints on the pressure, temperature, composition, and oxygen fugacity conditions, and on the timing of core formation in the Earth. Previous experimental studies suggest that pressure exerts little to no influence over W metal-silicate partitioning up to 24 GPa, and indicate that the stronger influences are temperature, composition, and oxygen fugacity. However, core formation models based in part on W, predict metal-silicate equilibration pressures outside the available experimental pressure range, requiring extrapolation of parameterized models. Therefore, higher pressure experimental data on W were needed to constrain this important parameter.

  14. Calculation of radiative corrections to hyperfine splittings in the neutral alkali metals

    SciTech Connect

    Sapirstein, J.; Cheng, K.T.

    2003-02-01

    The radiative correction to hyperfine splitting in hydrogen is dominated by the Schwinger term, {alpha}/2{pi} E{sub F}, where E{sub F} is the lowest-order hyperfine splitting. Binding corrections to this term, which enter as powers and logarithms of Z{alpha}, can be expected to be increasingly important in atoms with higher nuclear charge Z. Methods that include all orders of Z{alpha}, developed first to study highly charged ions, are adapted to the study of the neutral alkali metals, lithium through francium. It is shown that the use of the Schwinger term alone to account for radiative corrections to hyperfine splittings becomes qualitatively incorrect for the heavier alkali metals.0.

  15. Reactions between cold methyl halide molecules and alkali-metal atoms

    SciTech Connect

    Lutz, Jesse J.; Hutson, Jeremy M.

    2014-01-07

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH{sub 3}X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH{sub 3}X + A → CH{sub 3} + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  16. An Aqueous Redox Flow Battery Based on Neutral Alkali Metal Ferri/ferrocyanide and Polysulfide Electrolytes

    SciTech Connect

    Wei, Xiaoliang; Xia, Gordon; Kirby, Brent W.; Thomsen, Edwin C.; Li, Bin; Nie, Zimin; Graff, Gordon L.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-11-13

    Aiming to explore low-cost redox flow battery systems, a novel iron-polysulfide (Fe/S) flow battery has been demonstrated in a laboratory cell. This system employs alkali metal ferri/ferrocyanide and alkali metal polysulfides as the redox electrolytes. When proper electrodes, such as pretreated graphite felts, are used, 78% energy efficiency and 99% columbic efficiency are achieved. The remarkable advantages of this system over current state-of-the-art redox flow batteries include: 1) less corrosive and relatively environmentally benign redox solutions used; 2) excellent energy and utilization efficiencies; 3) low cost for redox electrolytes and cell components. These attributes can lead to significantly reduced capital cost and make the Fe/S flow battery system a promising low-cost energy storage technology. The major drawbacks of the present cell design are relatively low power density and possible sulfur species crossover. Further work is underway to address these concerns.

  17. Electronic states of alkali metal-NTCDA complexes: A DFT study

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto; Kawabata, Hiroshi

    2015-10-01

    Structures and electronic states of organic-inorganic compound of 1,4,5,8-naphthalene-tetracarboxylic-dianhydride (NTCDA) with alkali metals, Mn(NTCDA) (Mdbnd Li and Na, n = 0-2), have been investigated by means of hybrid density functional theory (DFT) calculations. From the DFT calculations, it was found that the electronic state of the complex at the ground state is characterized by a charge-transfer state expressed by (M)+(NTCDA)-. The alkali metals were bound equivalently to the carbonyl oxygen and ether oxygen atoms of NTCDA. The Cdbnd O double bond character of NTCDA was changed to a C-O single bond like character by the strong interaction of M to the Cdbnd O and O sites. This change was the origin of the red-shift of the IR spectrum. The UV-vis absorption spectra of Mn(NTCDA) were theoretically predicted on the basis of theoretical results.

  18. An optically trapped mixture of alkali-metal and metastable helium atoms

    NASA Astrophysics Data System (ADS)

    Flores, Adonis; Mishra, Hari Prasad; Vassen, Wim; Knoop, Steven

    2016-05-01

    Ultracold collisions between alkali-metal and metastable triplet helium (He*) atoms provide the opportunity to study Feshbach resonances in the presence of a strong loss channel, namely Penning ionization, which strongly depends on the internal spin-states of the atoms. Recently we have realized the first optically trapped alkali-metal-metastable helium mixture. To prepare the ultracold 87 Rb+4 He* mixture in a single beam optical dipole trap (ODT), we apply evaporative cooling in a strong quadrupole magnetic trap (QMT) for both species and subsequent transfer to the ODT via a hybrid trap. We will present lifetime measurements of different spin-state mixtures, testing the application of the universal loss model to this interesting multichannel collision system.

  19. Theory of metal atom-water interactions and alkali halide dimers

    NASA Technical Reports Server (NTRS)

    Jordan, K. D.; Kurtz, H. A.

    1982-01-01

    Theoretical studies of the interactions of metal atoms with water and some of its isoelectronic analogs, and of the properties of alkali halides and their aggregates are discussed. Results are presented of ab initio calculations of the heats of reaction of the metal-water adducts and hydroxyhydrides of Li, Be, B, Na, Mg, and Al, and of the bond lengths and angles an; the heats of reaction for the insertion of Al into HF, H2O, NH3, H2S and CH3OH, and Be and Mg into H2O. Calculations of the electron affinities and dipole moments and polarizabilities of selected gas phase alkali halide monomers and dimers are discussed, with particular attention given to results of calculations of the polarizability of LiF taking into account electron correlation effects, and the polarizability of the dimer (LiF)2.

  20. 'Doubly Magic' Conditions in Magic-Wavelength Trapping of Ultracold Alkali-Metal Atoms

    SciTech Connect

    Derevianko, Andrei

    2010-07-16

    In experiments with trapped atoms, atomic energy levels are shifted by the trapping optical and magnetic fields. Regardless of this strong perturbation, precision spectroscopy may be still carried out using specially crafted, 'magic' trapping fields. Finding these conditions for particularly valuable microwave transitions in alkali-metal atoms has so far remained an open challenge. Here I demonstrate that the microwave transitions in alkali-metal atoms may be indeed made impervious to both trapping laser intensity and fluctuations of magnetic fields. I consider driving multiphoton transitions between the clock levels and show that these 'doubly magic' conditions are realized at special values of trapping laser wavelengths and fixed values of relatively weak magnetic fields. This finding has implications for precision measurements and quantum information processing with qubits stored in hyperfine manifolds.

  1. X-ray Compton scattering experiments for fluid alkali metals at high temperatures and pressures

    SciTech Connect

    Matsuda, K. Fukumaru, T.; Kimura, K.; Yao, M.; Tamura, K.; Katoh, M.; Kajihara, Y.; Inui, M.; Itou, M.; Sakurai, Y.

    2015-08-17

    We have developed a high-pressure vessel and a cell for x-ray Compton scattering measurements of fluid alkali metals. Measurements have been successfully carried out for alkali metal rubidium at elevated temperatures and pressures using synchrotron radiation at SPring-8. The width of Compton profiles (CPs) of fluid rubidium becomes narrow with decreasing fluid density, which indicates that the CPs sensitively detect the effect of reduction in the valence electron density. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 10 September 2015. The original article supplied to AIP Publishing was not the final version and contained PDF conversion errors in Formulas (1) and (2). The errors have been corrected in the updated and re-published article.

  2. Metal-silicate partitioning of lithophile elements at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Chidester, B.; Rahman, Z.; Righter, K.; Campbell, A. J.

    2015-12-01

    Trace element abundances in Earth's core were established during core-mantle differentiation and metal-silicate equilibration processes early in the planet's history. The core has been suggested as a possible reservoir in which the presence of nominally lithophile elements can explain the observance of non-chondritic ratios of some of these elements in surface rocks (e.g. Nb/Ta, Th/U and Mg/Si)[1-2]. Additionally, several of these elements (U, Th and K) are long-lived sources of radiogenic heat and could be important for explaining the geomagnetic field early in Earth's history. Based on their metal-silicate partitioning behavior at near ambient conditions, it is frequently assumed that uranium and other strongly lithophile elements are present in the core at only trivial abundances. However, core formation took place at a variety of conditions, reaching pressures and temperatures well above those in which most metal-silicate partitioning measurements were obtained[3]. Here we report metal-silicate partitioning data of lithophile elements such as U and Mg, as well as partially siderophile elements Si and S, at conditions more relevant to metal segregation and core formation in a magma ocean. Laser heated diamond anvil methods were used to obtain pressures of 30-70 GPa and temperatures up to 5200 K. FIB/EM methods were used to section the recovered samples and measure the quenched metal and silicate melt compositions. We find that even strongly lithophile elements such as U and Mg partition measurably into the metal phase under extreme P-T conditions. References: [1]Wade, J. and Wood, B. J., Nature, 109 (2001) [2]Allegre et al. EPSL, 134 (1995) [3]Rubie, et al. Icarus, 248 (2015)

  3. Hofmeister series and ionic effects of alkali metal ions on DNA conformation transition in normal and less polarised water solvent

    NASA Astrophysics Data System (ADS)

    Wen, Jing; Shen, Xin; Shen, Hao; Zhang, Feng-Shou

    2014-10-01

    Normal and less polarised water models are used as the solvent to investigate Hofmeister effects and alkali metal ionic effects on dodecamer d(CGCGAATTCGCG) B-DNA with atomic dynamics simulations. As normal water solvent is replaced by less polarised water, the Hofmeister series of alkali metal ions is changed from Li+ > Na+ ≃ K+ ≃ Cs+ ≃ Rb+ to Li+ > Na+ > K+ > Rb+ > Cs+. In less polarised water, DNA experiences the B→A conformational transition for the lighter alkali metal counterions (Li+, Na+ and K+). However, it keeps B form for the heavier ions (Rb+ and Cs+). We find that the underlying cause of the conformation transition for these alkali metal ions except K+ is the competition between water molecules and counterions coupling to the free oxygen atoms of the phosphate groups. For K+ ions, the 'economics' of phosphate hydration and 'spine of hydration' are both concerned with the DNA helixes changing.

  4. van der Waals coefficients for systems with ultracold polar alkali-metal molecules

    NASA Astrophysics Data System (ADS)

    Żuchowski, P. S.; Kosicki, M.; Kodrycka, M.; Soldán, P.

    2013-02-01

    A systematic study of the leading isotropic van der Waals coefficients for the alkali-metal atom+molecule and molecule+molecule systems is presented. Dipole moments and static and dynamic dipole polarizabilities are calculated employing high-level quantum chemistry calculations. The dispersion, induction, and rotational parts of the isotropic van der Waals coefficient are evaluated. The known van der Waals coefficients are then used to derive characteristics essential for simple models of the collisions involving the corresponding ultracold polar molecules.

  5. Polarized Alkali-Metal Vapor with Minute-Long Transverse Spin-Relaxation Time

    NASA Astrophysics Data System (ADS)

    Balabas, M. V.; Karaulanov, T.; Ledbetter, M. P.; Budker, D.

    2010-08-01

    We demonstrate lifetimes of Zeeman populations and coherences in excess of 60 sec in alkali-metal vapor cells with inner walls coated with an alkene material. This represents 2 orders of magnitude improvement over the best paraffin coatings. We explore the temperature dependence of cells coated with this material and investigate spin-exchange relaxation-free magnetometry in a room-temperature environment, a regime previously inaccessible with conventional coating materials.

  6. High field superconductivity in alkali metal intercalates of MoS2

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Flood, D. J.; Wagoner, D. E.; Somoano, R. B.; Rembaum, A.

    1973-01-01

    In the search for better high temperature, high critical field superconductors, a class of materials was found which have layered structures and can be intercalated with various elements and compounds. Since a large number of compounds can be formed, intercalation provides a method of control of superconducting properties. They also provide the possible medium for excitonic superconductivity. Results of magnetic field studies are presented on alkali metal (Na, K, Rb, and Cs) intercalated MoS2 (2H polymorph).

  7. Development of processes for the production of solar grade silicon from halides and alkali metals

    NASA Technical Reports Server (NTRS)

    Dickson, C. R.; Gould, R. K.

    1980-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon in volume at low cost were studied. Experiments were performed to evaluate product separation and collection processes, measure heat release parameters for scaling purposes, determine the effects of reactants and/or products on materials of reactor construction, and make preliminary engineering and economic analyses of a scaled-up process.

  8. Experimental determination of the Mo isotope fractionation factor between metal and silicate liquids

    NASA Astrophysics Data System (ADS)

    Hin, R. C.; Burkhardt, C.; Schmidt, M. W.; Bourdon, B.

    2011-12-01

    The conditions and chemical consequences of core formation have mainly been reconstructed from experimentally determined element partition coefficients between metal and silicate liquids. However, first order questions such as the mode of core formation or the nature of the light element(s) in the Earth's core are still debated [1]. In addition, the geocentric design of most experimental studies leaves the conditions of core formation on other terrestrial planets and asteroids even more uncertain than for Earth. Through mass spectrometry, records of mass-dependent stable isotope fractionation during high-temperature processes such as metal-silicate segregation are detectable. Stable isotope fractionation may thus yield additional constrains on core formation conditions and its consequences for the chemical evolution of planetary objects. Experimental investigations of equilibrium mass-dependent stable isotope fractionation have shown that Si isotopes fractionate between metal and silicate liquids at temperatures of 1800°C and pressures of 1 GPa, while Fe isotopes leave no resolvable traces of core formation processes [2,3]. Molybdenum is a refractory and siderophile trace element in the Earth, and thus much less prone to complications arising from mass balancing core and mantle and from potential volatile behaviour than other elements. To determine equilibrium mass-dependent Mo isotope fractionation during metal-silicate segregation, we have designed piston cylinder experiments with a basaltic silicate composition and an iron based metal with ~8 wt% Mo, using both graphite and MgO capsules. Metal and silicate phases are completely segregated by the use of a centrifuging piston cylinder at ETH Zurich, thus preventing analysis of mixed metal and silicate signatures. Molybdenum isotope compositions were measured using a Nu Instruments 1700 MC-ICP-MS at ETH Zurich. To ensure an accurate correction of analytical mass fractionation a 100Mo-97Mo double spike was admixed

  9. Isotopic fractionation of alkali earth metals during carbonate precipitation

    NASA Astrophysics Data System (ADS)

    Yotsuya, T.; Ohno, T.; Muramatsu, Y.; Shimoda, G.; Goto, K. T.

    2014-12-01

    The alkaline earth metals such as magnesium, calcium and strontium play an important role in a variety of geochemical and biological processes. The element ratios (Mg/Ca and Sr/Ca) in marine carbonates have been used as proxies for reconstruction of the past environment. Recently several studies suggested that the study for the isotopic fractionation of the alkaline earth metals in marine carbonates has a potentially significant influence in geochemical research fields (e.g. Eisenhauer et al., 2009). The aim of this study is to explore the influence of carbonate polymorphs (Calcite and Aragonite) and environmental factors (e.g., temperature, precipitation rate) on the level of isotopic fractionation of the alkaline earth metals. We also examined possible correlations between the level of isotopic fractionation of Ca and that of other alkaline earth metals during carbonate precipitation. In order to determine the isotope fractionation factor of Mg, Ca and Sr during carbonate precipitation, calcite and aragonite were synthesized from calcium bicarbonate solution in which the amount of magnesium was controlled based on Kitano method. Calcium carbonates were also prepared from the mixture of calcium chlorite and sodium hydrogen carbonate solutions. The isotope fractionation factors were measured by MC-ICPMS. Results suggested that the level of isotopic fractionation of Mg during carbonate precipitation was correlated with that of Sr and that the change of the carbonate crystal structure could make differences of isotopic fractionations of Mg and Ca, however no difference was found in the case of Sr. In this presentation, the possible mechanism will be discussed.

  10. Equation of state for solid rare gases and alkali metals under pressure

    NASA Astrophysics Data System (ADS)

    Bonnet, Pierre

    2016-07-01

    This investigation is based on an atomic equation of state which takes into account the excluded volume of the atom being considered. Study of solid rare gases allows following the packing factor of the solid in equilibrium with the gas at different temperatures and of the solid and the liquid in the case of solid-liquid equilibria. The application of a pressure to the solid up to 9800 MPa allows determining the decrease in atomic volume and thus the compressibility. Such a study leads to proposing a new expression through dividing the pressure derivative (as a function of the excluded volume) by the pressure. This new coefficient is a pressure-independent constant but varies with the atom considered. Multiplied by the initial atomic volume, this coefficient has a unique value for all the rare gases. Furthermore, this is also true for the series of alkali metals with however a lower value of the coefficient. The atomic configurations of the two series are very different with one free electron for the alkali metals but closed shells for the rare gases. The alkali metals are therefore more complex than the rare gases. It is worthwhile to note that study of the equilibrium has not required the use of the principles of thermodynamics.

  11. Metal-to-insulator crossover in alkali doped zeolite.

    PubMed

    Igarashi, Mutsuo; Jeglič, Peter; Krajnc, Andraž; Žitko, Rok; Nakano, Takehito; Nozue, Yasuo; Arčon, Denis

    2016-01-01

    We report a systematic nuclear magnetic resonance investigation of the (23)Na spin-lattice relaxation rate, 1/T1, in sodium loaded low-silica X (LSX) zeolite, Nan/Na12-LSX, for various loading levels of sodium atoms n across the metal-to-insulator crossover. For high loading levels of n ≥ 14.2, 1/T1T shows nearly temperature-independent behaviour between 10 K and 25 K consistent with the Korringa relaxation mechanism and the metallic ground state. As the loading levels decrease below n ≤ 11.6, the extracted density of states (DOS) at the Fermi level sharply decreases, although a residual DOS at Fermi level is still observed even in the samples that lack the metallic Drude-peak in the optical reflectance. The observed crossover is a result of a complex loading-level dependence of electric potential felt by the electrons confined to zeolite cages, where the electronic correlations and disorder both play an important role.

  12. Experimental evidence for Mo isotope fractionation between metal and silicate liquids

    NASA Astrophysics Data System (ADS)

    Hin, Remco C.; Burkhardt, Christoph; Schmidt, Max W.; Bourdon, Bernard; Kleine, Thorsten

    2013-10-01

    Stable isotope fractionation of siderophile elements may inform on the conditions and chemical consequences of core-mantle differentiation in planetary objects. The extent to which Mo isotopes fractionate during such metal-silicate segregation, however, is so far unexplored. We have therefore investigated equilibrium fractionation of Mo isotopes between liquid metal and liquid silicate to evaluate the potential of Mo isotopes as a new tool to study core formation. We have performed experiments at 1400 and 1600 °C in a centrifuging piston cylinder. Tin was used to lower the melting temperature of the Fe-based metal alloys to <1400 °C, while variable Fe-oxide contents were used to vary oxygen fugacity in graphite and MgO capsules. Isotopic analyses were performed using a double spike technique. In experiments performed at 1400 °C, the 98Mo/95Mo ratio of silicate is 0.19±0.03‰ (95% confidence interval) heavier than that of metal. This fractionation is not significantly affected by the presence or absence of carbon. Molybdenum isotope fractionation is furthermore independent of oxygen fugacity in the range IW -1.79 to IW +0.47, which are plausible values for core formation. Experiments at 1600 °C show that, at equilibrium, the 98Mo/95Mo ratio of silicate is 0.12±0.02‰ heavier than that of metal and that the presence or absence of Sn does not affect this fractionation. Equilibrium Mo isotope fractionation between liquid metal and liquid silicate as a function of temperature can therefore be described as ΔMoMetal-Silicate98/95=-4.70(±0.59)×105/T2. Our experiments show that Mo isotope fractionation may be resolvable up to metal-silicate equilibration temperatures of about 2500 °C, rendering Mo isotopes a novel tool to investigate the conditions of core formation in objects ranging from planetesimals to Earth sized bodies.

  13. The importance of the Maillard-metal complexes and their silicates in astrobiology

    NASA Astrophysics Data System (ADS)

    Liesch, Patrick J.; Kolb, Vera M.

    2007-09-01

    The Maillard reaction occurs when sugars and amino acids are mixed together in the solid state or in the aqueous solution. Since both amino acids and sugar-like compounds are found on meteorites, we hypothesized that they would also undergo the Maillard reaction. Our recent work supports this idea. We have shown previously that the water-insoluble Maillard products have substantial similarities with the insoluble organic materials from the meteorites. The Maillard organic materials are also part of the desert varnish on Earth, which is a dark, shiny, hard rock coating that contains iron and manganese and is glazed in silicate. Rocks that are similar in appearance to the desert varnish have been observed on the Martian surface. They may also contain the organic materials. We have undertaken study of the interactions between the Maillard products, iron and other metals, and silicates, to elucidate the role of the Maillard products in the chemistry of desert varnish and meteorites. Specifically, we have synthesized a series of the Maillard-metal complexes, and have tested their reactivity towards silicates. We have studied the properties of these Maillard-metal-silicate products by the IR spectroscopy. The astrobiological potential of the Maillard-metal complexes is assessed.

  14. Alkali metal mediated C-C bond coupling reaction

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto

    2015-02-01

    Metal catalyzed carbon-carbon (C-C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz)2, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz)2, the structure of [Li(Bz)2]- was drastically changed: Bz-Bz parallel form was rapidly fluctuated as a function of time, and a new C-C single bond was formed in the C1-C1' position of Bz-Bz interaction system. In the hole capture, the intermolecular vibration between Bz-Bz rings was only enhanced. The mechanism of C-C bond formation in the electron capture was discussed on the basis of theoretical results.

  15. Alkali metal mediated C–C bond coupling reaction

    SciTech Connect

    Tachikawa, Hiroto

    2015-02-14

    Metal catalyzed carbon-carbon (C–C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz){sub 2}, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz){sub 2}, the structure of [Li(Bz){sub 2}]{sup −} was drastically changed: Bz–Bz parallel form was rapidly fluctuated as a function of time, and a new C–C single bond was formed in the C{sub 1}–C{sub 1}′ position of Bz–Bz interaction system. In the hole capture, the intermolecular vibration between Bz–Bz rings was only enhanced. The mechanism of C–C bond formation in the electron capture was discussed on the basis of theoretical results.

  16. Nanotubes within transition metal silicate hollow spheres: Facile preparation and superior lithium storage performances

    SciTech Connect

    Zhang, Fan; An, Yongling; Zhai, Wei; Gao, Xueping; Feng, Jinkui; Ci, Lijie; Xiong, Shenglin

    2015-10-15

    Highlights: • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were successfully prepared by a facile hydrothermal method using SiO{sub 2} nanosphere. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were tested as anode materials for lithium batteries. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} delivered superior electrochemical performance. • The lithium storage mechanism is probe via cyclic voltammetry and XPS. - Abstract: A series of transition metal silicate hollow spheres, including cobalt silicate (Co{sub 2}SiO{sub 4}), manganese silicate (MnSiO{sub 3}) and copper silicate (CuSiO{sub 3}.2H{sub 2}O, CuSiO{sub 3} as abbreviation in the text) were prepared via a simple and economic hydrothermal method by using silica spheres as chemical template. Time-dependent experiments confirmed that the resultants formed a novel type of hierarchical structure, hollow spheres assembled by numerous one-dimensional (1D) nanotubes building blocks. For the first time, the transition metal silicate hollow spheres were characterized as novel anode materials of Li-ion battery, which presented superior lithium storage capacities, cycle performance and rate performance. The 1D nanotubes assembly and hollow interior endow this kind of material facilitate fast lithium ion and electron transport and accommodate the big volume change during the conversion reactions. Our study shows that low-cost transition metal silicate with rationally designed nanostructures can be promising anode materials for high capacity lithium-ion battery.

  17. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-31

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  18. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  19. Post-Harvest Processing Methods for Reduction of Silica and Alkali Metals in Wheat Straw

    SciTech Connect

    Thompson, David Neal; Lacey, Jeffrey Alan; Shaw, Peter Gordon

    2002-04-01

    Silica and alkali metals in wheat straw limit its use for bioenergy and gasification. Slag deposits occur via the eutectic melting of SiO2 with K2O, trapping chlorides at surfaces and causing corrosion. A minimum melting point of 950°C is desirable, corresponding to SiO2:K2O of about 3:1. Mild chemical treatments were used to reduce Si, K, and Cl, while varying temperature, concentration, %-solids, and time. Dilute acid was more effective at removing K and Cl, while dilute alkali was more effective for Si. Reduction of minerals in this manner may prove economical for increasing utilization of the straw for combustion or gasification.

  20. Energy transfer from PO excited states to alkali metal atoms in the phosphorus chemiluminescence flame

    PubMed Central

    Khan, Ahsan U.

    1980-01-01

    Phosphorus chemiluminescence under ambient conditions of a phosphorus oxidation flame is found to offer an efficient electronic energy transferring system to alkali metal atoms. The lowest resonance lines, 2P3 / 2,½→2S½, of potassium and sodium are excited by energy transfer when an argon stream at 80°C carrying potassium or sodium atoms intersects a phosphorus vapor stream, either at the flame or in the postflame region. The lowest electronically excited metastable 4IIi state of PO or the (PO[unk]PO)* excimer is considered to be the probable energy donor. The (PO[unk]PO)* excimer results from the interaction of the 4IIi state of one PO molecule with the ground 2IIr state of another. Metastability of the donor state is strongly indicated by the observation of intense sensitized alkali atom fluorescence in the postflame region. PMID:16592925

  1. Electrochemical storage cell or battery of the alkali metal and sulfur type

    SciTech Connect

    Weddigen, G.

    1980-09-09

    An electrochemical storage cell or battery is described that has at least one anode filled with a molten alkali metal as the anolyte and at least one cathode chamber filled with a sulfur-containing catholyte substance with the anode chamber and the cathode chamber separated from each other by an alkali-ion-conducting solid electrolyte. To the catholyte substance in the cathode chamber is added a chemical compound of the polar bond type which can charge the sulfur positively while absorbing electrons. This induces mobilization of the sulfur phase in the cathode chamber and prevents major accumulation of liquid sulfur as an insulator. As a result the cell can be repeatedly recharged with large currents to a greater capacity.

  2. Thermometry of the magma ocean: Controls on the metal-silicate partitioning of gold

    NASA Astrophysics Data System (ADS)

    Bennett, N. R.; Brenan, J. M.; Fei, Y.

    2016-07-01

    We have performed experiments to investigate the solubility and metal-silicate partitioning of gold as a function of metal sulphur content (XS), silicate melt polymerization (NBO/T) and pressure (P). These experiments show that Au becomes less siderophile both with increasing pressure and as the metal phase becomes more sulphur-rich. For the studied range of compositions, melt polymerization has no effect on the solubility of Au. The reduction in the siderophile tendency of gold with increasing metal sulphur content is greater than expected on the basis of activity-composition relationships in the metal phase. This suggests a significant role for complexing between Au and S in the silicate melt. Our new experimental results are combined with literature data to yield a parameterisation for the exchange coefficient of Au (KdAuMet/Sil) as a function of P, T and XS: Using this relationship, alongside similar parameterisations for Ni and Co selected from the literature, we performed continuous accretion models to delineate regions of parameter space in which Au and moderately siderophile element (MSE) abundances in the primitive upper mantle (PUM) could be reproduced. These models suggest that for metal-silicate equilibrium at very high pressures, Au will be overabundant in the PUM if equilibrium also occurs at extreme temperatures. Instead, most successful models are found when equilibrium occurs at high pressure but sub-liquidus temperatures. This result is in keeping with the physical conditions expected for a scenario where core-forming metal ponds and equilibrates at the rheological base of a magma ocean (e.g. Wade and Wood, 2005).

  3. Experimentally determined Si isotope fractionation between silicate and Fe metal and implications for Earth's core formation

    NASA Astrophysics Data System (ADS)

    Shahar, Anat; Ziegler, Karen; Young, Edward D.; Ricolleau, Angele; Schauble, Edwin A.; Fei, Yingwei

    2009-10-01

    Stable isotope fractionation amongst phases comprising terrestrial planets and asteroids can be used to elucidate planet-forming processes. To date, the composition of the Earth's core remains largely unknown though cosmochemical and geophysical evidence indicates that elements lighter than iron and nickel must reside there. Silicon is often cited as a light element that could explain the seismic properties of the core. The amount of silicon in the core, if any, can be deduced from the difference in 30Si/ 28Si between meteorites and terrestrial rocks if the Si isotope fractionation between silicate and Fe-rich metal is known. Recent studies (e.g., [Georg R.B., Halliday A.N., Schauble E.A., Reynolds B.C., 2007. Silicon in the Earth's core. Nature 447 (31), 1102-1106.]; [Fitoussi, C., Bourdon, B., Kleine, T., Oberli, F., Reynolds, B. C., 2009. Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth's core. Earth Planet. Sci. Lett. 287, 77-85.]) showing (sometimes subtle) differences between 30Si/ 28Si in meteorites and terrestrial rocks suggest that Si missing from terrestrial rocks might be in the core. However, any conclusion based on Earth-meteorite comparisons depends on the veracity of the 30Si/ 28Si fractionation factor between silicates and metals at appropriate conditions. Here we present the first direct experimental evidence that silicon isotopes are not distributed uniformly between iron metal and rock when equilibrated at high temperatures. High-precision measurements of the silicon isotope ratios in iron-silicon alloy and silicate equilibrated at 1 GPa and 1800 °C show that Si in silicate has higher 30Si/ 28Si than Si in metal, by at least 2.0‰. These findings provide an experimental foundation for using isotope ratios of silicon as indicators of terrestrial planet formation processes. They imply that if Si isotope equilibrium existed during segregation of Earth

  4. Influence of alkaline earth metals on molecular structure of 3-nitrobenzoic acid in comparison with alkali metals effect

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Regulska, E.; Lewandowski, W.

    2011-11-01

    The influence of beryllium, magnesium, calcium, strontium and barium cations on the electronic system of 3-nitrobenzoic acid was studied in comparison with studied earlier alkali metal ions [1]. The vibrational FT-IR (in KBr and ATR techniques) and 1H and 13C NMR spectra were recorded for 3-nitrobenzoic acid and its salts. Characteristic shifts in IR and NMR spectra along 3-nitrobenzoates of divalent metal series Mg → Ba were compared with series of univalent metal Li → Cs salts. Good correlations between the wavenumbers of the vibrational bands in the IR spectra for 3-nitrobenzoates and ionic potential, electronegativity, inverse of atomic mass, atomic radius and ionization energy of metals were found for alkaline earth metals as well as for alkali metals. The density functional (DFT) hybrid method B3LYP with two basis sets: 6-311++G** and LANL2DZ were used to calculate optimized geometrical structures of studied compounds. The theoretical wavenumbers and intensities of IR spectra as well as chemical shifts in NMR spectra were obtained. Geometric aromaticity indices, atomic charges, dipole moments and energies were also calculated. The calculated parameters were compared to experimental characteristic of studied compounds.

  5. Size distributions and aerodynamic equivalence of metal chondrules and silicate chondrules in Acfer 059

    NASA Technical Reports Server (NTRS)

    Skinner, William R.; Leenhouts, James M.

    1993-01-01

    The CR2 chondrite Acfer 059 is unusual in that the original droplet shapes of metal chondrules are well preserved. We determined separate size distributions for metal chondrules and silicate chondrules; the two types are well sorted and have similar size distributions about their respective mean diameters of 0.74 mm and 1.44 mm. These mean values are aerodynamically equivalent for the contrasting densities, as shown by calculated terminal settling velocities in a model solar nebula. Aerodynamic equivalence and similarity of size distributions suggest that metal and silicate fractions experienced the same sorting process before they were accreted onto the parent body. These characteristics, together with depletion of iron in Acfer 059 and essentially all other chondrites relative to primitive CI compositions, strongly suggest that sorting in the solar nebula involved a radial aerodynamic component and that sorting and siderophile depletion in chondrites are closely related.

  6. Dynamics of Metal-Silicate Separation in a Terrestrial Magma Ocean

    NASA Astrophysics Data System (ADS)

    Hoink, T.; Schmalzl, J.; Hansen, U.

    2005-12-01

    In a terrestrial magma ocean, the metal-silicate separation involved small metal droplets. Our goal is to better understand the dynamics of the metal droplet scenario. The mechanism of sedimentation in a vigorously convecting and strongly rotating magma ocean may differ significantly from settling droplets in still fluid. In order to systematically study the parameter dependence on the style of motion we utilize 2D and 3D convection models combined with a tracer-based sedimentation method. We investigate the characteristic flow patterns resulting from the competing effects of convection and droplet settling and find three styles of motion: a temperature-dominated style where most droplets remain suspended, a droplet-dominated style where the droplets separate from the fluid and a style of repetitive motion. The droplet dominated style is relevant to the magma ocean. In this scenario the droplets settle and form a dense bottom layer. We identify a time scale that is characteristic for the separation of metal droplets from the liquid silicate. Finally we study the chemical interaction of settling metal droplets and liquid silicate in a magma ocean. For a number of cases we compute the resulting Ni core-mantle partition coefficient.

  7. Building a Chemical Intuition Under Pressure: Prediction of Alkali Metal Polyhydrides and Subhydrides

    NASA Astrophysics Data System (ADS)

    Zurek, Eva

    2013-06-01

    Stabilization of solid phases with unusual combinations or stoichiometries, and unexpected electronic structures may be achieved by applying external pressure. The prediction of these structures using our chemical intuition (developed at 1 atmosphere) would be exceedingly difficult, making automated structure search techniques prudent. For this reason, we have written XtalOpt, an open-source evolutionary algorithm for crystal structure prediction. Whereas at 1 atmosphere the classic alkali hydrides combine in a one-to-one ratio, M+H-, under pressure non-classic stoichiometries MHn(n > 1) and MmH (m > 1) are preferred. For example, theoretical work has predicted that LiH6 and NaH9 become particularly stable phases at about 100 and 25 GPa, respectively. And the potassium, rubidium and cesium polyhydrides all contain the H3-anion, the simplest exaple of a three centered four electron bond. The alkaline-earth polyhydrides are considered as well. Chemical trends relating the stabilization pressure to the ionization potential, and the nature of the hydrogenic sublattice to the strength of the metal-hydride interaction can be made. These hydrogen-rich materials with nontraditional stoichiometries are computed to undergo an insulator to metal transition at pressures attainable in diamond anvil cells. It may be that these systems are superconductors at experimentally achievable pressures. The metal-rich region of the alkali/hydrogen phase diagram under pressure shows that alkali-metal subhydrides may also be stabilized under pressure. We acknowledge the NSF (DMR-1005413) for financial support.

  8. Subtask 12E1: Compatibility of structural materials in liquid alkali metals

    SciTech Connect

    Natesan, K.; Rink, D.L.; Haglund, R.; Clark, R.W.

    1995-03-01

    The objectives of this task are to (a) evaluate the chemical compatibility of structural alloys such as V-5 wt.%Cr-5 wt.%Ti alloy and Type 316 stainless steel for application in liquid alkali metals such as lithium and sodium-78 wt.% potassium (NaK) at temperatures that are in the range of interest for the International Thermonuclear Experimental Reactor (ITER); (b) evaluate the transfer of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen between structural materials and liquid metals; and (c) evaluate the effects of such transfers on the mechanical and microstructural characteristics of the materials for long-term service in liquid-metal environments. Candidate structural materials are being evaluated for their compatibility, interstitial-element transfer, and corrosion in liquid alkali-metal systems such as lithium and NaK. Type 316 stainless steel and V-5Cr-5Ti coupon specimens with and without prealuminizing treatment have been exposed to NaK and lithium environments of commercial purity for times up to 3768 h at temperatures between 300 and 400{degrees}C. 13 refs., 8 figs., 3 tabs.

  9. The role of alkalis in the solubility of H2O and CO2in silicate melts

    NASA Astrophysics Data System (ADS)

    Vetere, F.; Behrens, H.; Botcharnikov, R. E.; Holtz, F.; Fanara, S.

    2013-12-01

    In order to investigate the role of alkalis on the behavior of H2O and CO2 in magmatic systems, the solubility of volatiles in phonotephritic melts was investigated experimentally and compared to other melt compositions. The investigated compositions have Na2O/K2O ratios (in wt %) of 0.26 (Ab1, natural phonotephrite from Alban Hills, Italy), 0.98 (Ab2) and 3.82 (Ab3). Experiments were run at 1250°C and 500 MPa in an internally heated gas pressure vessel. The mole fraction of water (XH2O) in the fluid phase composed of H2O and CO2 varied in the range from 0 to 1. For the calibration of carbon-related IR bands in glasses, the total carbon content of synthesized glass standards was measured by combustion and subsequent IR spectroscopy using an ELTRA CS800 analyzer. Karl Fischer Titration method was used to quantify the H2O content of the glasses. Absorption spectra were recorded in the mid-infrared (MIR) using a Bruker IFS88 FTIR spectrometer coupled with an IR-ScopeII microscope. CO2 is bounded in the investigated glasses as CO32- exclusively and its concentration was quantified by the peak height of the 1430 cm-1 band. A drastic change was observed in the absorption coefficients, ɛ, with values of 294 × 35, 329 × 40 and 244 × 23 L/(mol cm) , for Ab1, Ab2, and Ab3, respectively, so that the highest ɛ value is related to the Na-rich composition. There is no evident effect of the Na/K ratio on the concentrations of dissolved H2O and CO2 in the melts. The solubility of CO2 and H2O in those melts at 500 MPa is 0.95 wt % CO2 and 10.07 wt% H2O for XH2O of 0 and 1, respectively. Results are compared with the existing literature data and models and confirm the very high solubility of CO2 in phonotephritic melts [1]. Our experimental data indicate that the melt composition in terms of alkali contents influences significantly the extinction coefficient values for CO2 and that appropriate coefficients must be selected to estimate accurately the amount of dissolved CO2 in

  10. Self consistent model of core formation and the effective metal-silicate partitioning

    NASA Astrophysics Data System (ADS)

    Ichikawa, H.; Labrosse, S.; Kameyama, M.

    2010-12-01

    It has been long known that the formation of the core transforms gravitational energy into heat and is able to heat up the whole Earth by about 2000 K. However, the distribution of this energy within the Earth is still debated and depends on the core formation process considered. Iron rain in the surface magma ocean is supposed to be the first mechanism of separation for large planets, iron then coalesces to form a pond at the base of the magma ocean [Stevenson 1990]. The time scale of the separation can be estimated from falling velocity of the iron phase, which is estimated by numerical simulation [Ichikawa et al., 2010] as ˜ 10cm/s with iron droplet of centimeter-scale. A simple estimate of the metal-silicate partition from the P-T condition of the base of the magma ocean, which must coincide with between peridotite liquidus and solidus by a single-stage model, is inconsistent with Earth's core-mantle partition. P-T conditions where silicate equilibrated with metal are far beyond the liquidus or solidus temperature for about ˜ 700K. For example, estimated P-T conditions are: 40GPa at 3750K for Wade and Wood, 2005, T ≧ 3600K for Chabot and Agee, 2003 and 35GPa at T ≧ 3300K for Gessmann and Rubie, 2000. Meanwhile, Rubie et al., 2003 shown that metal couldn't equilibrate with silicate on the base of the magma ocean before crystallization of silicate. On the other hand, metal-silicate equilibration is achieved only ˜ 5 s in the state of iron rain. Therefore metal and silicate simultaneously separate and equilibrate each other at the P-T condition during the course to the iron pond. Taking into account the release of gravitational energy, temperature of the middle of the magma ocean would be higher than the liquidus. Estimation of the thermal structure during the iron-silicate separation requires the development of a planetary-sized calculation model. However, because of the huge disparity of scales between the cm-sized drops and the magma ocean, a direct

  11. Gallium and germanium in the metal and silicates of L- and LL-chondrites.

    NASA Technical Reports Server (NTRS)

    Chou, C.-L.; Cohen, A. J.

    1973-01-01

    Concentrations of Ga and Ge in the metal of 31 L-, 8 LL- and 2 H-chondrites, and in the silicates of 12 L- and LL-chondrites have been determined by spectrophotometric methods. The ranges of Ga contents in the metal of L- and LL-chondrites are 1.1 to 36.9 ppm and 1.0 to 34.1 ppm, respectively. The Ge content in the metal is positively correlated with Ga and ranges from 89.1 to 160 ppm and from 126 to 308 ppm for L- and LL-chondrites, respectively. The Ga content in the silicates of L-chondrites varies from 4.0 to 8.9 ppm. The Ga and Ge contents in the metal are clearly lower in unequilibrated than in equilibrated L- and LL-group chondrites. Unequilibrated and equilibrated chondrites are well separated in the plots of Ga vs Ge in the metal, and the L- and LL-groups are also well resolved. The Ga and Ge in the metal are well correlated with petrologic grade. This suggests that Ga and Ge variations in the metal are related to thermal metamorphism. There is evidence of an enrichment of Ga in the metal due to shock reheating.

  12. Discriminating Properties of Alkali Metal Ions Towards the Constituents of Proteins and Nucleic Acids. Conclusions from Gas-Phase and Theoretical Studies.

    PubMed

    Rodgers, Mary T; Armentrout, Peter B

    2016-01-01

    Quantitative insight into the structures and thermodynamics of alkali metal cations interacting with biological molecules can be obtained from studies in the gas phase combined with theoretical work. In this chapter, the fundamentals of the experimental and theoretical techniques are first summarized and results for such work on complexes of alkali metal cations with amino acids, small peptides, and nucleobases are reviewed. Periodic trends in how these interactions vary as the alkali metal cations get heavier are highlighted.

  13. Thermochemical Ablation Therapy of VX2 Tumor Using a Permeable Oil-Packed Liquid Alkali Metal

    PubMed Central

    Guo, Ziyi; Zhang, Qiang

    2015-01-01

    Objective Alkali metal appears to be a promising tool in thermochemical ablation, but, it requires additional data on safety is required. The objective of this study was to explore the effectiveness of permeable oil-packed liquid alkali metal in the thermochemical ablation of tumors. Methods Permeable oil-packed sodium–potassium (NaK) was prepared using ultrasonic mixing of different ratios of metal to oil. The thermal effect of the mixture during ablation of muscle tissue ex vivo was evaluated using the Fluke Ti400 Thermal Imager. The thermochemical effect of the NaK-oil mixture on VX2 tumors was evaluated by performing perfusion CT scans both before and after treatment in 10 VX2 rabbit model tumors. VX2 tumors were harvested from two rabbits immediately after treatment to assess their viability using trypan blue and hematoxylin and eosin (H.E.) staining. Results The injection of the NaK–oil mixture resulted in significantly higher heat in the ablation areas. The permeable oil controlled the rate of heat released during the NaK reaction with water in the living tissue. Perfusion computed tomography and its parameter map confirmed that the NaK–oil mixture had curative effects on VX2 tumors. Both trypan blue and H.E. staining showed partial necrosis of the VX2 tumors. Conclusions The NaK–oil mixture may be used successfully to ablate tumor tissue in vivo. With reference to the controlled thermal and chemical lethal injury to tumors, using a liquid alkali in ablation is potentially an effective and safe method to treat malignant tumors. PMID:25885926

  14. Condensates from vapor made by impacts between metal-, silicate-rich bodies: Comparison with metal and chondrules in CB chondrites

    NASA Astrophysics Data System (ADS)

    Fedkin, Alexei V.; Grossman, Lawrence; Humayun, Munir; Simon, Steven B.; Campbell, Andrew J.

    2015-09-01

    The impact hypothesis for the origin of CB chondrites was tested by performing equilibrium condensation calculations in systems composed of vaporized mixtures of projectile and target materials. When one of the impacting bodies is composed of the metal from CR chondrites and the other is an H chondrite, good agreement can be found between calculated and observed compositions of unzoned metal grains in CB chondrites but the path of composition variation of the silicate condensate computed for the same conditions that reproduce the metal grain compositions does not pass through the measured compositions of barred olivine (BO) or cryptocrystalline (CC) chondrules in the CBs. The discrepancy between measured chondrule compositions and those of calculated silicates is not reduced when diogenite, eucrite or howardite compositions are substituted for H chondrite as the silicate-rich impacting body. If, however, a CR chondrite body is differentiated into core, a relatively CaO-, Al2O3-poor mantle and a CaO-, Al2O3-rich crust, and later accretes significant amounts of water, a collision between it and an identical body can produce the necessary chemical conditions for condensation of CB chondrules. If the resulting impact plume is spatially heterogeneous in its proportions of crust and mantle components, the composition paths calculated for silicate condensates at the same Ptot, Ni/H and Si/H ratios and water abundance that produce good matches to the unzoned metal grain compositions pass through the fields of BO and CC chondrules, especially if high-temperature condensates are fractionated in the case of the CCs. While equilibrium evaporation of an alloy containing solar proportions of siderophiles into a dense impact plume is an equally plausible hypothesis for explaining the compositions of the unzoned metal grains, equilibrium evaporation can explain CB chondrule compositions only if an implausibly large number of starting compositions is postulated. Kinetic models

  15. Thermal and chemical diffusion within conduits of sinking metal-silicate plumes during core formation events.

    NASA Astrophysics Data System (ADS)

    Weeraratne, D. S.; Olson, P. L.

    2008-12-01

    Early and rapid core formation is suggested by recent isotopic studies. Accumulation of a short lived liquid metal pond at the base of a magma ocean during early impacts may provide a model for chemical diffusion of silicates and liquid metal to produce the observed abundances of siderophile elements in the Earth's mantle. Here we present results from laboratory fluid experiments of liquid gallium in high viscosity stratified corn syrup solutions to model the physical dynamics of core formation processes in the early Earth. Experiments are designed to consider the instability of a dense liquid metal pond as single droplets, Rayleigh-Taylor instability, and evolution of a liquid metal emulsion layer. We find that in all cases, a wide trailing conduit develops behind rapidly descending metallic plumes which entrains low density fluid to the base of the fluid box. We propose a model where the conduit itself provides a vehicle for thermal and chemical equilibration between metals and silicates at high pressures and temperatures during its path through the lower mantle. Diffusion processes contribute to the formation of this new entrained fluid layer at the base of the fluid box which is buoyant and evolves into a new type of thermo-chemical plume which subsequently rises. Using a range of viscosity and buoyancy ratios, experimental results will constrain the time scales for instability of a liquid metal pond, descent and upwelling times of this unique type of plume, as well as the nature and dynamics of conduit formation. This model provides a high pressure/temperature environment for metal- silicate equilibration consistent with petrologic and isotopic studies, is consistent with rapid core formation, and may also connect core formation to ancient hotspot activity on terrestrial planets.

  16. Metal Hydride and Alkali Halide Opacities in Extrasolar Giant Planets and Cool Stellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Weck, Philippe F.; Stancil, Phillip C.; Kirby, Kate; Schweitzer, Andreas; Hauschildt, Peter H.

    2006-01-01

    The lack of accurate and complete molecular line and continuum opacity data has been a serious limitation to developing atmospheric models of cool stars and Extrasolar Giant Planets (EGPs). We report our recent calculations of molecular opacities resulting from the presence of metal hydrides and alkali halides. The resulting data have been included in the PHOENIX stellar atmosphere code (Hauschildt & Baron 1999). The new models, calculated using spherical geometry for all gravities considered, also incorporate our latest database of nearly 670 million molecular lines, and updated equations of state.

  17. Optical spectra of hot alkali-metal clusters from the random-matrix model

    SciTech Connect

    Akulin, V.M.; Brechignac, C.; Sarfati, A.

    1997-01-01

    We show that the experimentally observed spectra of optical absorption of sodium cluster ions can be explained in the framework of the same random-matrix model, that has been employed earlier [Phys. Rev. Lett. {bold 75}, 220 (1995)] for the ground-state properties of alkali-metal clusters. This approach reveals the effect of cluster symmetry {open_quotes}on average{close_quotes} on the optical-absorption profiles, describes their temperature dependence, and predicts the line shapes of two-photon absorption. {copyright} {ital 1996} {ital The American Physical Society}

  18. Threshold behavior of positronium formation in positron-alkali-metal scattering

    NASA Astrophysics Data System (ADS)

    Lugovskoy, A. V.; Utamuratov, R.; Kadyrov, A. S.; Stelbovics, A. T.; Bray, I.

    2013-04-01

    We consider positron scattering on the alkali-metal atoms of Li, Na, and K at very low energies, where only the elastic scattering and positronium formation in the ground state are the two open channels. Utilizing the recently developed two-center convergent close-coupling method [Lugovskoy, Kadyrov, Bray, and Stelbovics, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.062708 82, 062708 (2010)] we investigate the behavior of the cross sections as the impact energy goes to zero and demonstrate their convergence. The study sets quantitative benchmarks for any rigorous theoretical treatment of the collision problems.

  19. Synthesis, characterization and photocatalytic properties of alkali metals doped tin dioxide

    NASA Astrophysics Data System (ADS)

    Benhebal, Hadj; Chaib, Messaoud; Léonard, Angélique; Lambert, Stéphanie D.; Crine, Michel

    2011-10-01

    In order to improve the photocatalytic properties of tin dioxide, crystallized powders of SnO 2 photocatalysts doped by alkali metals (Li, Na and K) were synthesized by sol-gel process. The physical properties of these materials were characterized by X-ray diffraction, nitrogen adsorption-desorption, Scanning electron microscopy and Ultraviolet-visible diffuse reflection spectroscopy. The photocatalytic tests under UV radiation conducted on four aromatic compounds (phenol, paranitrophenol, pentachlorophenol and benzoic acid) showed that tin dioxide modified by sodium possesses good photocatalytic activity; The Li-doped SnO 2 is moderately active, while modification by potassium does not improve this activity.

  20. Shortcuts for understanding rovibronic spectroscopy of ultracold alkali metal diatomic molecules

    NASA Astrophysics Data System (ADS)

    Stwalley, William C.; Bellos, Michael; Carollo, Ryan; Banerjee, Jayita; Bermudez, Matthew

    2012-08-01

    The high-resolution rovibronic spectroscopies of cold and ultracold molecules (e.g. supersonic molecular beam excitation spectra (MB), photoassociation spectra of ultracold atoms (PA), resonance-enhanced multiphoton ionization spectra (REMPI), stimulated Raman transfer (SRT) spectra) are of major current interest. This manuscript summarizes the significant level of understanding of these various spectroscopies, enabled by using simple graphical and semiclassical ideas and shortcuts. Physical realizations of these spectroscopies will be illustrated using the alkali metal diatomic molecules, both homonuclear (e.g. Rb2) and heteronuclear (e.g. KRb).

  1. Electric dipole polarizabilities of Rydberg states of alkali-metal atoms

    NASA Astrophysics Data System (ADS)

    Yerokhin, V. A.; Buhmann, S. Y.; Fritzsche, S.; Surzhykov, A.

    2016-09-01

    Calculations of the static electric-dipole scalar and tensor polarizabilities are presented for two alkali-metal atoms, Rb and Cs, for the n S , n P½,3 /2 , and n D3 /2 ,5 /2 states with large principal quantum numbers up to n =50 . The calculations are performed within an effective one-electron approximation, based on the Dirac-Fock Hamiltonian with a semiempirical core-polarization potential. The obtained results are compared with those from a simpler semiempirical approach and with available experimental data.

  2. PHOTOPHORETIC SEPARATION OF METALS AND SILICATES: THE FORMATION OF MERCURY-LIKE PLANETS AND METAL DEPLETION IN CHONDRITES

    SciTech Connect

    Wurm, Gerhard; Trieloff, Mario; Rauer, Heike

    2013-05-20

    Mercury's high uncompressed mass density suggests that the planet is largely composed of iron, either bound within metal (mainly Fe-Ni) or iron sulfide. Recent results from the MESSENGER mission to Mercury imply a low temperature history of the planet which questions the standard formation models of impact mantle stripping or evaporation to explain the high metal content. Like Mercury, the two smallest extrasolar rocky planets with mass and size determination, CoRoT-7b and Kepler-10b, were found to be of high density. As they orbit close to their host stars, this indicates that iron-rich inner planets might not be a nuisance of the solar system but be part of a general scheme of planet formation. From undifferentiated chondrites, it is also known that the metal to silicate ratio is highly variable, which must be ascribed to preplanetary fractionation processes. Due to this fractionation, most chondritic parent bodies-most of them originated in the asteroid belt-are depleted in iron relative to average solar system abundances. The astrophysical processes leading to metal silicate fractionation in the solar nebula are essentially unknown. Here, we consider photophoretic forces. As these forces particularly act on irradiated solids, they might play a significant role in the composition of planetesimals forming at the inner edge of protoplanetary disks. Photophoresis can separate high thermal conductivity materials (iron) from lower thermal conductivity solids (silicate). We suggest that the silicates are preferentially pushed into the optically thick disk. Subsequent planetesimal formation at the edge moving outward leads to metal-rich planetesimals close to the star and metal depleted planetesimals farther out in the nebula.

  3. Accretion and core formation: The effects of sulfur on metal-silicate partition coefficients

    NASA Astrophysics Data System (ADS)

    Wood, Bernard J.; Kiseeva, Ekaterina S.; Mirolo, Francesca J.

    2014-11-01

    The accretion of the Earth was marked by the high-pressure segregation of the core, accompanied by dissolution of about 10% of one or more “light” elements into the metal. Cosmochemical data suggest that, of these 10% “light” elements, the core contains ∼1.7% S (Dreibus and Palme, 1996) and there is evidence that volatile elements such as S accreted to the Earth late in planetary growth, plausibly as a sulfide “matte” (O'Neill, 1991). Given that metallurgical data indicate that dissolution of even small amounts of sulfur in liquid Fe can have profound effects on the activities of some trace components, we have undertaken a study of the affect of S on the metal-silicate partitioning of a number of the most important chalcophile and siderophile elements. We performed experiments at 1.5 GPa and 1460-1650 °C on metal-silicate partitioning of W, Mo, Ni, Co, Cu, Ag, Mn, Cd, Tl, Cr, Sb, In, Pb, Ga, Ge, V and Zn under conditions where the S content of the metal was varied from 0 to 37 wt%. Mn and Ag were found to exhibit the highest ratio of chalcophile to siderophile behaviour while W, Ga and Sb are the most “chalcophobic” of the elements studied. In terms of the 1-parameter epsilon model (Wagner, 1962) we derived values for each element at 1600 °C as follows (negative values indicate chalcophile behaviour): εCuS = - 2.57; εMnS = - 6.41; εAgS = - 4.15; εSbS = 4.36; εCdS = - 3.78; εInS = - 0.24; εTlS = - 6.21; εGaS = 6.54; εPbS = - 3.73; εCrS = - 3.70; εGeS = 7.03; εVS = - 3.14; εZnS = - 1.68; εMoS = 2.27; εWS = 6.47; εNiS = 2.17; εCoS = 2.40. We use these new data in conjunction with published pressure-temperature dependences of metal-silicate partitioning to test the effects of accreted S on the calculated trace element concentrations in bulk silicate Earth. The approach employs a continuous accretion model in which the oxidation state of the Earth and pressure of core segregation both increase during accretion. We find that, without

  4. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals

    PubMed Central

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-01-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: [3]Li+, [3]Na+, [4]K+, [4]Rb+, [6]Cs+, [3]Be2+, [4]Mg2+, [6]Ca2+, [6]Sr2+ and [6]Ba2+, but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of [6]Na+, the ratio U eq(Na)/U eq(bonded anions) is partially correlated with 〈[6]Na+—O2−〉 (R 2 = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li+ in [4]- and [6]-coordination, Na+ in [4]- and [6

  5. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    PubMed

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  6. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    PubMed

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  7. Hf-W Chronometry of Ordinary Chondrites and the Timing of Solar Nebula Metal-Silicate Fractionation

    NASA Astrophysics Data System (ADS)

    Hellmann, J. L.; Kruijer, T. S.; Kleine, T.

    2016-08-01

    Precise internal Hf-W isochrons for equilibrated L and LL chondrites constrain the timing of metal-silicate fractionation among different ordinary chondrite parent bodies as well as the accretion and thermal history of these bodies.

  8. Metal-Silicate Equilibration at Super-Liquidus Temperatures During Core Formation

    NASA Astrophysics Data System (ADS)

    Hernlund, J. W.; Ichikawa, H.; Labrosse, S.; Kameyama, M.

    2014-12-01

    Experimental constraints on the partitioning of moderately siderophile elements between metal and silicates during core formation suggest equilibration temperatures significantly greater than the liquidus of the silicate Earth (e.g., Wade and Wood, 2005). However, because equilibration was considered to occur in a ponded metal at the silicate solidus, such high temperature equilibration was rejected as implausible. Instead, lower temperature equilibration with variable oxygen fugacity was proposed as an alternative, although the plausibility of the physical mechanisms invoked in this scenario is also questionable. We have re-visited the model of metal-silicate separation in large molten pockets following energetic accretion events, and find that silicate-metal equlibration is most rapid when the iron rains out of the magma, and the release of gravitational potential energy by this rain heats the mixture by as much as 1000 K above the liquidus. However, the first drops of iron rain to pond at the base of the molten pocket will equilibrate at lower temperatures, and only the final drops will be subject to the highest temperatures. We model rain fall and heating of the magma by viscous dissipation to calculate the effective pressure-temperature conditions for partitioning in this scenario, and find that effective pressure conditions are smaller than the pressure at the base of the molten pocket. The ponded metal itself is gravitationally stratified (both in composition and temperature), and is not expected to convect or mix until it undergoes subsequent downward transport into the Earth's core. We also suggest that such a process operating during the very largest giant impact events (extending into the deep mantle) may have given rise to a buoyant oxygen-enriched metal layer atop the outer core, as suggested by some seismological models of the present-day Earth (e.g., Helffrich and Kaneshima, 2010). References: Helffrich, G. and S. Kaneshima (2010), Outer

  9. Formation of Metal and Silicate Globules in Gujba: A New Bencubbin-like Meteorite Fall

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Kallemeyn, Gregory W.; Wasson, John T.; Clayton, Robert N.; Mayeda, Toshiko; Grady, Monica; Verchovsky, Alexander B.; Eugster, Otto; Lorenzetti, Silvio

    2006-01-01

    Gujba is a coarse-grained meteorite fall composed of 41 vol% large kamacite globules, 20 vol% large light-colored silicate globules with cryptocrystalline, barred pyroxene and barred olivine textures, 39 vol% dark-colored, silicate-rich matrix, and rare refractory inclusions. Gujba resembles Bencubbin and Weatherford in texture, oxygen-isotopic composition and in having high bulk delta N-15 values (approximately +685%0). The He-3 cosmic-ray exposure age of Gujba (26 +/- 7 Ma) is essentially identical to that of Bencubbin, suggesting that they were both reduced to meter-size fragments in the same parent-body collision. The Gujba metal globules exhibit metal-troilite quench textures and vary in their abundances of troilite and volatile siderophile elements. We suggest that the metal globules formed as liquid droplets either via condensation in an impact-generated vapor plume or by evaporation of preexisting metal particles in a plume. The lower the abundance of volatile elements in the metal globules, the higher the globule quench temperature. We infer that the large silicate globules also formed from completely molten droplets; their low volatile-element abundances indicate that they also formed at high temperatures, probably by processes analogous to those that formed the metal globules. The coarse-grained Bencubbin-Weatherford-Gujba meteorites may represent a depositional component from the vapor cloud enriched in coarse and dense particles. A second class of Bencubbin-like meteorites (represented by Hammadah a1 Hamra 237 and QUE 94411) may be a finer fraction derived from the same vapor cloud

  10. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Technical Reports Server (NTRS)

    Hagedorn, Norman H. (Inventor)

    1993-01-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  11. Coordination effect-regulated CO2 capture with an alkali metal onium salts/crown ether system

    SciTech Connect

    Yang, Zhen-Zhen; Jiang, Deen; Zhu, Xiang; Tian, Chengcheng; Brown, Suree; Do-Thanh, Chi-Linh; He, Liang-Nian; Dai, Sheng

    2014-01-01

    A coordination effect was employed to realize equimolar CO2 absorption, adopting easily synthesized amino group containing absorbents (alkali metal onium salts). The essence of our strategy was to increase the steric hindrance of cations so as to enhance a carbamic acid pathway for CO2 capture. Our easily synthesized alkali metal amino acid salts or phenolates were coordinated with crown ethers, in which highly sterically hindered cations were obtained through a strong coordination effect of crown ethers with alkali metal cations. For example, a CO2 capacity of 0.99 was attained by potassium prolinate/18-crown-6, being characterized by NMR, FT-IR, and quantum chemistry calculations to go through a carbamic acid formation pathway. The captured CO2 can be stripped under very mild conditions (50 degrees C, N-2). Thus, this protocol offers an alternative for the development of technological innovation towards efficient and low energy processes for carbon capture and sequestration.

  12. A study on optical properties of poly (ethylene oxide) based polymer electrolyte with different alkali metal iodides

    NASA Astrophysics Data System (ADS)

    Rao, B. Narasimha; Suvarna, R. Padma

    2016-05-01

    Polymer electrolytes were prepared by adding poly (ethylene glycol) dimethyl ether (PEGDME), TiO2 (nano filler), different alkali metal iodide salts RI (R+=Li+, Na+, K+, Rb+, Cs+) and I2 into Acetonitrile gelated with Poly (ethylene oxide) (PEO). Optical properties of poly (ethylene oxide) based polymer electrolytes were studied by FTIR, UV-Vis spectroscopic techniques. FTIR spectrum reveals that the alkali metal cations were coordinated to ether oxygen of PEO. The optical absorption studies were made in the wavelength range 200-800 nm. It is observed that the optical absorption increases with increase in the radius of alkali metal cation. The optical band gap for allowed direct transitions was evaluated using Urbach-edges method. The optical properties such as optical band gap, refractive index and extinction coefficient were determined. The studied polymer materials are useful for solar cells, super capacitors, fuel cells, gas sensors etc.

  13. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Astrophysics Data System (ADS)

    Hagedorn, Norman H.

    1993-05-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  14. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Astrophysics Data System (ADS)

    Hagedorn, Norman H.

    1991-09-01

    An alkali metal, such as lithium, is the anodic reactant, carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant, and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is therefore especially useful in extraterrestrial environments.

  15. [The Measuring Method of Atomic Polarization of Alkali Metal Vapor Based on Optical Rotation and the Analysis of the Influence Factors].

    PubMed

    Shang, Hui-ning; Quan, Wei; Chen, Yao; Li, Yang; Li, Hong

    2016-02-01

    High sensitivity measurements of inertia and magnetic field could be achieved by utilizing a category of devices, which manipulate the atomic spins in the spin-exchange-relaxation-free regime. The alkali cell which contains the alkali metal vapor is used to sense magnetic field and inertia. The atomic number density of alkali vapor and the polarization of alkali metal vapor are two of the most important parameters of the cell. They play an important role in the research on atomic spins in the spin-exchange-relaxation-free regime. Besides, optical polarization plays an important role in quantum computing and atomic physics. We propose a measurement of alkali vapor polarization and alkali number density by detecting the optical rotation in one system. This method simplifies existing experimental equipment and processes. A constant bias magnetic field is applied and the Faraday rotation angle is detected by a bunch of the probe beam to deduce alkali-metal density. Then the magnetic field is closed and a bunch of the pump laser is utilized to polarize alkali-metal. Again, the probe beam is utilized to obtain the polarization of alkali metal. The alkali density obtained at first is used to deduce the polarization. This paper applies a numerical method to analyze the Faraday rotation and the polarization rotation. According to the numerical method, the optimal wavelength for the experiment is given. Finally, the fluctuation of magnetic field and wavelength on signal analysis are analyzed. PMID:27209720

  16. Silicon halide-alkali metal flames as a source of solar grade silicon. Final report

    SciTech Connect

    Olson, D.B.; Miller, W.J.; Gould, R.K.

    1980-01-01

    The object of this program was to determine the feasibility of using continuous high-temperature reactions of alkali metals and silicon halides to produce silicon in large quantities and of suitable purity for use in the production of photovoltaic solar cells. Equilibrium calculations showed that a range of conditions were available where silicon was produced as a condensed phase but the byproduct alkali metal salt was a vapor. A process was proposed using the vapor phase reaction of Na with SiCl/sub 4/. Low pressure experiments were performed demonstrating that free silicon was produced and providing experience with the construction of reactant vapor generators. Further experiments at higher reagent flow rates were performed in a low temperature flow tube configuration with co-axial injection of reagents. Relatively pure silicon was produced in these experiments. A high temperature graphite flow tube was built and continuous separation of Si from NaCl was demonstrated. A larger-scaled well-stirred reactor was built. Experiments were performed to investigate the compatibility of graphite-based reactor materials of construction with sodium. At 1100 to 1200 K none of these materials were found to be suitable. At 1700 K the graphites performed well with little damage except to coatings of pyrolytic graphite and silicon carbide which were damaged.

  17. Higher-order C{sub n} dispersion coefficients for the alkali-metal atoms

    SciTech Connect

    Mitroy, J.; Bromley, M.W.J.

    2005-04-01

    The van der Waals coefficients, from C{sub 11} through to C{sub 16} resulting from second-, third-, and fourth-order perturbation theory are estimated for the alkali-metal (Li, Na, K, and Rb) atoms. The dispersion coefficients are also computed for all possible combinations of the alkali-metal atoms and hydrogen. The parameters are determined from sum rules after diagonalizing a semiempirical fixed core Hamiltonian in a large basis. Comparisons of the radial dependence of the C{sub n}/r{sup n} potentials give guidance as to the radial regions in which the various higher-order terms can be neglected. It is seen that including terms up to C{sub 10}/r{sup 10} results in a dispersion interaction that is accurate to better than 1% whenever the inter-nuclear spacing is larger than 20a{sub 0}. This level of accuracy is mainly achieved due to the fortuitous cancellation between the repulsive (C{sub 11},C{sub 13},C{sub 15}) and attractive (C{sub 12},C{sub 14},C{sub 16}) dispersion forces.

  18. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    SciTech Connect

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

  19. Alkali Metal Control over N–N Cleavage in Iron Complexes

    PubMed Central

    2015-01-01

    Though N2 cleavage on K-promoted Fe surfaces is important in the large-scale Haber–Bosch process, there is still ambiguity about the number of Fe atoms involved during the N–N cleaving step and the interactions responsible for the promoting ability of K. This work explores a molecular Fe system for N2 reduction, particularly focusing on the differences in the results obtained using different alkali metals as reductants (Na, K, Rb, Cs). The products of these reactions feature new types of Fe–N2 and Fe-nitride cores. Surprisingly, adding more equivalents of reductant to the system gives a product in which the N–N bond is not cleaved, indicating that the reducing power is not the most important factor that determines the extent of N2 activation. On the other hand, the results suggest that the size of the alkali metal cation can control the number of Fe atoms that can approach N2, which in turn controls the ability to achieve N2 cleavage. The accumulated results indicate that cleaving the triple N–N bond to nitrides is facilitated by simultaneous approach of least three low-valent Fe atoms to a single molecule of N2. PMID:25412468

  20. Understanding the insulating nature of alkali-metal/Si(111):B interfaces.

    PubMed

    Fagot-Revurat, Y; Tournier-Colletta, C; Chaput, L; Tejeda, A; Cardenas, L; Kierren, B; Malterre, D; Le Fèvre, P; Bertran, F; Taleb-Ibrahimi, A

    2013-03-01

    We have recently revisited the phase diagram of alkali-metal/Si(111):B semiconducting interfaces previously suggested as the possible realization of a Mott-Hubbard insulator on a triangular lattice. The insulating character of the 2√[3] × 2√[3]R30 surface reconstruction observed at the saturation coverage, i.e. 0.5 ML, has been shown to find its origin in a giant alkali-metal-induced vertical distortion. Low energy electron diffraction, photoemission spectroscopy and scanning tunneling microscopy and spectroscopy experiments coupled with linear augmented plane-wave density functional theory calculations allow a full understanding of the k-resolved band structure, explaining both the inhomogeneous charge transfers into an Si-B hybridized surface state and the opening of a band gap larger than 1 eV. Moreover, √[3] × √[3]R30, 3 × 3 and 2√[3] × 2√[3]R30 surface reconstructions observed as a function of coverage may reveal a filling-controlled transition from a half-filled correlated magnetic material to a strongly distorted band insulator at saturation. PMID:23400003

  1. Influence of addition of alkali metal compounds to calcium carbonate on desulfurization characteristics

    SciTech Connect

    Naruse, Ichiro; Saito, Katsuhiro; Murakami, Takahiro

    1999-07-01

    Limestone is currently supplied as a desulfurizer into bubbling and circulating fluidized bed coal combustors since both combustors are operated at the temperature ranged from 1,073 to 1,173 K, where limestone can be calcined and sulfurized optimally. In the practical boilers, however, the limestone particles are fed to the combustor excessively since the utilization efficiency of CaO produced by the calcination of limestone is low. On the other hand, many kinds of sea-shell are clarified as one of industrial wastes, and also consist of CaCO{sub 3} similar to limestone. Therefore it would be possible for wasted sea-shell to be applied to one of the desulfurizers. In this case the CO{sub 2} produced by calcination of the shell is fixed and recycled naturally in obedience to the ecological law. From this viewpoint, desulfurization characteristics of wasted sea shell have been already studied fundamentally by using a thermobalance as compared with the results obtained by limestone. The results obtained by this study are summarized as follows. (1) The desulfurization activity for wasted sea-shell is much higher than that for limestone. (2) Even if the alkali metal compounds are partially removed from the sea shell, the desulfurization efficiency does not change. (3) The desulfurization activity can be enhanced by adding alkali metal compounds to limestone. Sodium compounds are more effective on the desulfurization efficiency than potassium compounds. Sodium chloride is the best agent among them.

  2. Matrix diffusion of some alkali- and alkaline earth-metals in granitic rock

    SciTech Connect

    Johansson, H.; Byegaard, J.; Skarnemark, G.; Skaalberg, M.

    1997-12-31

    Static through-diffusion experiments were performed to study the diffusion of alkali- and alkaline earth-metals in fine-grained granite and medium-grained Aespoe-diorite. Tritiated water was used as an inert reference tracer. Radionuclides of the alkali- and alkaline earth-metals (mono- and divalent elements which are not influenced by hydrolysis in the pH-range studied) were used as tracers, i.e., {sup 22}Na{sup +}, {sup 45}Ca{sup 2+} and {sup 85}Sr{sup 2+}. The effective diffusivity and the rock capacity factor were calculated by fitting the breakthrough curve to the one-dimensional solution of the diffusion equation. Sorption coefficients, K{sub d}, that were derived from the rock capacity factor (diffusion experiments) were compared with K{sub d} determined in batch experiments using crushed material of different size fractions. The results show that the tracers were retarded in the same order as was expected from the measured batch K{sub d}. Furthermore, the largest size fraction was the most representative when comparing batch K{sub d} with K{sub d} evaluated from the diffusion experiments. The observed effective diffusivities tended to decrease with increasing cell lengths, indicating that the transport porosity decreases with increasing sample lengths used in the diffusion experiments.

  3. Alkali metal control over N-N cleavage in iron complexes.

    PubMed

    Grubel, Katarzyna; Brennessel, William W; Mercado, Brandon Q; Holland, Patrick L

    2014-12-01

    Though N2 cleavage on K-promoted Fe surfaces is important in the large-scale Haber-Bosch process, there is still ambiguity about the number of Fe atoms involved during the N-N cleaving step and the interactions responsible for the promoting ability of K. This work explores a molecular Fe system for N2 reduction, particularly focusing on the differences in the results obtained using different alkali metals as reductants (Na, K, Rb, Cs). The products of these reactions feature new types of Fe-N2 and Fe-nitride cores. Surprisingly, adding more equivalents of reductant to the system gives a product in which the N-N bond is not cleaved, indicating that the reducing power is not the most important factor that determines the extent of N2 activation. On the other hand, the results suggest that the size of the alkali metal cation can control the number of Fe atoms that can approach N2, which in turn controls the ability to achieve N2 cleavage. The accumulated results indicate that cleaving the triple N-N bond to nitrides is facilitated by simultaneous approach of least three low-valent Fe atoms to a single molecule of N2. PMID:25412468

  4. Silicate Inclusions in the Kodaikanal IIE Iron Meteorite

    NASA Technical Reports Server (NTRS)

    Kurat, G.; Varela, M. E.; Zinner, E.

    2005-01-01

    Silicate inclusions in iron meteorites display an astonishing chemical and mineralogical variety, ranging from chondritic to highly fractionated, silica- and alkali-rich assemblages. In spite of this, their origin is commonly considered to be a simple one: mixing of silicates, fractionated or unfractionated, with metal. The latter had to be liquid in order to accommodate the former in a pore-free way which all models accomplish by assuming shock melting. II-E iron meteorites are particularly interesting because they contain an exotic zoo of silicate inclusions, including some chemically strongly fractionated ones. They also pose a formidable conundrum: young silicates are enclosed by very old metal. This and many other incompatibilities between models and reality forced the formulation of an alternative genetic model for irons. Here we present preliminary findings in our study of Kodaikanal silicate inclusions.

  5. Environmentally stable flexible metal-insulator-metal capacitors using zirconium-silicate and hafnium-silicate thin film composite materials as gate dielectrics.

    PubMed

    Meena, Jagan Singh; Chu, Min-Ching; Wu, Chung-Shu; Ravipati, Srikanth; Ko, Fu-Hsiang

    2011-08-01

    Fully flexible metal-insulator-metal (MIM) capacitors fabricated on 25 microm thin polyimide (PI) substrates via the surface sol-gel process using 10-nm-thick zirconium-silicate (ZrSixOy) and hafnium-silicate (HfSimOn) films as gate dielectrics. The surface morphology of the ZrSixOy and HfSimOn films were investigated using atomic force microscopy and scanning electron microscopy, which confirmed that continuous and crack-free surface growth had occurred on the PI. Both the films treated with oxygen (O2) plasma and annealing (ca. 250 degrees C) consisted of amorphous phase; confirmed by X-ray diffraction. We employed X-ray photoelectron spectroscopy (XPS) at high resolution to examine the chemical composition of the films subjected to various treatment conditions. The shift of the XPS peaks towards higher binding energy revealed the O2 plasma-pretreatment followed by annealing was the most effective process to the surface oxidation at relatively low-temperature, for further passivate the grease traps and making dielectric films thermally stable. The ZrSixOy and HfSimOn films in sandwich-like MIM configuration on the PI substrates exhibited the low leakage current densities of 7.1 x 10(-9) and 8.4 x 10(-9) A/cm2 at applied electric field of 10 MV/cm and maximum capacitance densities of 7.5 and 5.3 fF/microm2 at 1 MHz, respectively. In addition, the ZrSixOy and HfSimOn films in MIM capacitors showed the estimated dielectric constants of 8.2 and 6.0, respectively. Prior to use of flexible MIM capacitors in advanced flexible electronic devices; the reliability test was studied by applying day-dependent leakage current density measurements up to 30 days. These films of silicate-surfactant mesostructured materials have special interest to be used as gate dielectrics in future for flexible metal-oxide-semiconductor devices.

  6. Researches of the electrotechnical laboratory. No. 973: Study on alkali metal thermoelectric converter

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Negishi, A.; Honda, T.; Fujii, T.; Masuda, T.; Nozaki, K.

    1995-03-01

    The alkali metal thermoelectric converter (AMTEC) utilizing the sodium ion conducting Beta' '- alumina solid electrolyte (BASE) is a device to convert heat energy to electric energy directly. It is characterized by high conversion efficiencies (20 to 40 percent), high power densities (1 W/sq cm), no moving parts, low maintenance requirements, high durability, and efficiency independent of size. Because of these merits, AMTEC is one of the most promising candidate for dispersed small scale power station, remote power station and aerospace power systems. In this paper, the theoretical and experimental studies on the thin film electrodes characteristics, power generating characteristics, cell efficiency, integral electrode with large current lead, porous metal current lead, series connected cells power generation, potassium AMTEC, wick return AMTEC and system analysis for space and grand use are reported.

  7. First-principles study of d0 ferromagnetism in alkali-metal doped GaN

    NASA Astrophysics Data System (ADS)

    Zhang, Yong

    2016-08-01

    The d0 ferromagnetism in GaN has been studied based on density functional theory. Our results show that GaN with sufficient hole become spin-polarized. Alkali-metal doping can introduce holes in GaN. Among them, both of Li- and Na-doping induce ferromagnetism in GaN and Na-doped GaN behaves as half-metallic ferromagnet. Moreover, at a growth temperature of 2000 K under N-rich condition, both concentrations can exceed 18%, which is sufficient to produce detectable macroscopic magnetism in GaN. The Curie temperature of Li- and Na-doped GaN is estimated to be 304 and 740 K, respectively, which are well above room temperature.

  8. The contents of alkali and alkaline earth metals in soils of the southern Cis-Ural region

    NASA Astrophysics Data System (ADS)

    Asylbaev, I. G.; Khabirov, I. K.

    2016-01-01

    The contents and distribution patterns of alkali and alkaline earth metals in soils and rocks of the southern Cis-Ural region were studied. A database on the contents of these metals was developed, the soils were classified with respect to their provision with these metals, and corresponding schematic maps showing their distribution in soils of the region were compiled. It was found that the contents of these metals decrease from east to west (from the Yuryuzan-Aisk Piedmont Plain to the Ufa Plateau and to the Belebeevsk Upland), and their distribution patterns change. Among alkali metals, the highest accumulation in the soils is typical of potassium, sodium, and cesium; among alkaline earth metals, of strontium and barium.

  9. Ab initio interaction potentials and scattering lengths for ultracold mixtures of metastable helium and alkali-metal atoms

    NASA Astrophysics Data System (ADS)

    Kedziera, Dariusz; Mentel, Łukasz; Żuchowski, Piotr S.; Knoop, Steven

    2015-06-01

    We have obtained accurate ab initio +4Σ quartet potentials for the diatomic metastable triplet helium+alkali-metal (Li, Na, K, Rb) systems, using all-electron restricted open-shell coupled cluster singles and doubles with noniterative triples corrections CCSD(T) calculations and accurate calculations of the long-range C6 coefficients. These potentials provide accurate ab initio quartet scattering lengths, which for these many-electron systems is possible, because of the small reduced masses and shallow potentials that result in a small amount of bound states. Our results are relevant for ultracold metastable triplet helium+alkali-metal mixture experiments.

  10. Theoretical analysis of oxygen diffusion at startup in an alkali metal heat pipe with gettered alloy walls

    NASA Technical Reports Server (NTRS)

    Tower, L. K.

    1973-01-01

    The diffusion of oxygen into, or out of, a gettered alloy exposed to oxygenated alkali liquid metal coolant, a situation arising in some high temperature heat transfer systems, was analyzed. The relation between the diffusion process and the thermochemistry of oxygen in the alloy and in the alkali metal was developed by making several simplifying assumptions. The treatment is therefore theoretical in nature. However, a practical example pertaining to the startup of a heat pipe with walls of T-111, a tantalum alloy, and lithium working fluid illustrates the use of the figures contained in the analysis.

  11. Thermally responsive aqueous silicate mixtures and use thereof

    SciTech Connect

    Smith, W.H.; Vinson, E.F.

    1987-02-03

    A method is described of plugging or sealing a zone in a subterranean formation comprising: (a) contacting the zone with an aqueous silicate composition consisting essentially of (i) an aqueous solution containing an alkali metal silicate; and, (ii) a thermally responsive gelation activator selected from the group consisting of lactose, dextrose, fructose, galactose, mannose, mantose, xylose and mixtures thereof; and (b) activating the gelation activator in response to a thermal change in the composition within the formation whereby the silicate composition is caused to form a gel in the zone.

  12. Siderophile elements and metal-silicate fractionation in the solar nebula

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.

    1994-01-01

    The most important nebular fractionation affecting the siderophile elements is the metal-silicate fractionation process and its relationship to the chondrule formation process is poorly understood. Understanding these processes is important in terms of understanding the expected compositional range for planetary building blocks. In a general way the composition of chondrites can be derived from the composition of the CI chondrites by addition or subtraction of a refractory component similar to CAI's (in some cases with a Mg2SiO4 component) and by addition or subtraction of Fe metal. Thus normalization to Fe produces the least spread in the normalized abundances of most siderophile elements relative to CI abundances. Detailed bulk chemical studies of chondrules have shown that their siderophile elements have refractory-element siderophile-element signatures (for example, Ir/Ni) that are similar to the bulk meteorites, but distinct among the different chondrite groups. This data suggests that the chondrules were not supplied to the chondrule groups from a single homogeneous source, and that each chondrite group's characteristic siderophile-element signature was established before chondrule formation. These authors make a further inference that all siderophile-lithophile-element fractionation occurred before chondrule formation, but recent discoveries and observations suggest this is not true. The discovery of the metal-rich CH meteorites, the recognition of the role of aerodynamic forces in the solar nebula, and the possible role of metal-silicate segregation during the chondrule formation process suggests that metal-silicate fractionation occurred before, during and after chondrule formation.

  13. Platinum partitioning between metal and silicate melts: Core formation, late veneer and the nanonuggets issue

    NASA Astrophysics Data System (ADS)

    Médard, Etienne; Schmidt, Max W.; Wälle, Markus; Keller, Nicole S.; Günther, Detlef

    2015-08-01

    High-pressure, high-temperature experiments have been performed at ∼1.2 GPa and 1360-2100 °C to investigate the partitioning of Pt between a silicate melt and a metallic melt. Our experiments indicate that nanonuggets encountered in previous experiments are experimental artifacts, formed at high temperature by oversaturation caused by high oxygen fugacity during the initial stages of an experiment. Experiments at high-acceleration using a centrifuging piston-cylinder show that nanonuggets can be removed by gravity during the experiment. Formation of nanonuggets can also be avoided by using initially reduced starting materials. The presence of iron is also a key element in reducing the formation of nanonuggets. Our nanonugget-free data are broadly consistent with previous nanonuggets-filtered data, and suggest that Pt partitioning becomes independent of oxygen fugacity below an oxygen fugacity of at least IW+2. Pt is thus possibly dissolved as a neutral species (or even an anionic species) at low fO2, instead of the more common Pt2+ species present at higher fO2. Due to low concentration, the nature of this species cannot be determined, but atomic Pt or Pt- are possible options. Under core-formation conditions, Pt partitioning between metal and silicate is mostly independent of oxygen fugacity, silicate melt composition, and pressure. Partition coefficient during core formation can be expressed by the following equation: log DPtMmetal/silicate = 1.0348 + 14698 / T (in weight units). Calculations indicate that the Pt content (and by extension the Highly Siderophile Elements content) of the Earth's mantle cannot be explained by equilibrium partitioning during core formation, requiring further addition of HSE to the mantle. The mass of this late veneer is approximately 0.4% of the total mass of the Earth (or 0.6% of the mass of the mantle).

  14. Extent of metal-silicate disequilibrium during accretion and early differentiation of the Earth

    NASA Astrophysics Data System (ADS)

    Rubie, D. C.; Nimmo, F.; Morbidelli, A.; Frost, D. J.

    2012-12-01

    Earth, Mars, Venus and Mercury accreted on a timescale of 10-100 My through a series of violent collisions with planetesimals and embryos. The high energy of such impacts was sufficient to cause deep magma ocean formation which facilitated the segregation of metal and silicate liquids. Planetary cores thus formed as a multistage process that was inseparable from the accretion process. In order to better understand the formation and early differentiation of the terrestrial planets, we are integrating a multistage core-formation model with N-body accretion simulations. Constraints on model parameters are the compositions of the Earth's primitive mantle and, to a lesser extent, the mantles of Mars and Mercury which may be FeO rich and FeO-poor respectively. We use a least-squares minimization to optimise 4 model parameters. Elements currently considered include Si, O, Ni, Co, W, Nb, Cr, Ta and V. We concentrate on recent N-body simulations that result in an approximately Earth-mass planet at ~1 AU. In order to satisfy the model constraints, accretion has to be heterogeneous, with embryos and planetesimals originating in the inner part of the solar system (e.g. <1.5 AU) being highly reduced and those from further out being more oxidised. Metal-silicate equilibration pressures are high (e.g. ~0.75 x evolving CMB pressures). The model enables estimations of (1) the extent to which the metallic cores of impactors emulsify and equilibrate in a magma ocean and (2) the fraction of magma oceans that are involved in the equilibration process for both impacting planetesimals and embryos. Both estimates are crucial for interpreting Hf-W age determinations. Best results are obtained when the fraction of silicate mantle/magma ocean that interacts chemically with the metallic cores of impactors is limited and lies in the range 0.003 to 0.1, depending on the size of the impactor and magma ocean depth. The degree of incomplete metal equilibration depends on the extent to which the

  15. Characterization of carbonated tricalcium silicate and its sorption capacity for heavy metals: a micron-scale composite adsorbent of active silicate gel and calcite.

    PubMed

    Chen, Quanyuan; Hills, Colin D; Yuan, Menghong; Liu, Huanhuan; Tyrer, Mark

    2008-05-01

    Adsorption-based processes are widely used in the treatment of dilute metal-bearing wastewaters. The development of versatile, low-cost adsorbents is the subject of continuing interest. This paper examines the preparation, characterization and performance of a micro-scale composite adsorbent composed of silica gel (15.9 w/w%), calcium silicate hydrate gel (8.2 w/w%) and calcite (75.9 w/w%), produced by the accelerated carbonation of tricalcium silicate (C(3)S, Ca(3)SiO(5)). The Ca/Si ratio of calcium silicate hydrate gel (C-S-H) was determined at 0.12 (DTA/TG), 0.17 ((29)Si solid-state MAS/NMR) and 0.18 (SEM/EDS). The metals-retention capacity for selected Cu(II), Pb(II), Zn(II) and Cr(III) was determined by batch and column sorption experiments utilizing nitrate solutions. The effects of metal ion concentration, pH and contact time on binding ability was investigated by kinetic and equilibrium adsorption isotherm studies. The adsorption capacity for Pb(II), Cr(III), Zn(II) and Cu(II) was found to be 94.4 mg/g, 83.0 mg/g, 52.1 mg/g and 31.4 mg/g, respectively. It is concluded that the composite adsorbent has considerable potential for the treatment of industrial wastewater containing heavy metals. PMID:17950999

  16. Heavy metal leaching from hydroxide, sulphide and silicate stabilized/solidified wastes

    SciTech Connect

    Cheeseman, C.R.; Butcher, E.J.; Sollars, C.J.; Perry, R. . Centre for Environmental Control and Waste Management)

    1993-01-01

    A synthetic, mixed-metal solution has been stabilized by treatment with sodium hydroxide, sodium sulphide, and sodium silicate, respectively. The three stabilized filter cakes have subsequently been solidified using additions of ordinary Portland cement and pulverized fuel ash (PFA) which are typically used in UK solidification operations. Both the stabilized filter cakes and the solidified wastes have been subjected to an equilibrium extraction test, a modified TCLP test, and a series of single-extraction, batch leach tests using an increasingly acidic leachant. Metal release was found to be primarily dependent on the pH of the leachate. Under mildly acidic conditions, the percentages leached from the stabilized and the stabilized/solidified wastes were comparable for most metals. A high-volume fraction of these solidified wastes is occupied by the stabilized filter cake. When they are broken up and tested in single-extraction leach tests, the primary effect of the cementitious additives is to increase the pH of the leachate so that most heavy metals remain insoluble. When tested under acidic leachate conditions, copper, lead, and mercury were found to be particularly well retained within sodium sulphide stabilized wastes. Under similar tests conditions, cadmium was leached at very low levels from the sodium silicate stabilized waste.

  17. Constraints on Core Formation From Systematic Study of Temperature Effect on Metal- Silicate Partitioning

    NASA Astrophysics Data System (ADS)

    Siebert, J.; Ryerson, F.; Watson, H.

    2007-12-01

    Models of core formation are currently established through metal-silicate partitioning results at high pressure and high temperature. Although a large effect of temperature on metal-silicate equilibrium is expected on thermodynamic grounds, very little experimental work has been dedicated to separate this effect from pressure and provide a systematic study of partitioning coefficients across a wide range of temperatures. Utilizing free energy of pure oxides formation data at atmospheric pressure to predict the temperature effect on metal-silicate partitioning might be a source of large uncertainties for some recent core formation models [1, 2]. The present study is aimed at constraining the temperature dependence of partition coefficients for a large number of elements and extending the existing database to extreme temperatures. Using a new piston-cylinder design assembly [3] allows us to determine a suite of isobaric partitioning experiments at 3 GPa within a temperature range from 1600 to 2700°C. Systematic partitioning behaviors between molten metal and peridotite or basaltic melts of elements normally regarded as moderately siderophile, slightly siderophile and refractory lithophile are presented. These include Ni, Co, W, Mo, Cr, Mn, V, P, Ga as well as elements that are usually poorly integrated with any accretion or core formation models (Ge, Nb, Ta, Te, Zn). Absolute measurements of partitioning coefficients combining EMP and LA-ICPMS analytical methods are provided. The individual effects of oxygen fugacity and pressure have also been studied through piston cylinder experiments (2200°C, 3 GPa) between IW- 1.5 to IW-4 and multi-anvil experiments to 15 GPa. These partitioning results are then combined with literature data to refine our understanding of core formation and place constraints on the highly debated Earth's accretion mechanism issue. [1] Wade and Wood, EPSL, 2005. [2] Corgne et al., GCA, in press. [3] Cottrell and Walker, GCA, 2006.

  18. Triuret as a Potential Hypokalemic Agent: Structure Characterization of Triuret and Triuret-Alkali Metal Adducts by Mass Spectrometric Techniques

    PubMed Central

    Palii, Sergiu P.; Contreras, Cesar S.; Steill, Jeffrey D.; Palii, Stela S.; Oomens, Jos; Eyler, John R.

    2013-01-01

    Triuret (also known as carbonyldiurea, dicarbamylurea, or 2,4-diimidotricarbonic diamide) is a byproduct of purine degradation in living organisms. An abundant triuret precursor is uric acid, whose level is altered in multiple metabolic pathologies. Triuret can be generated via urate oxidation by peroxynitrite, the latter being produced by the reaction of nitric oxide radical with superoxide radical anion. From this standpoint, an excess production of superoxide radical anions could indirectly favor triuret formation; however very little is known about the potential in vivo roles of this metabolite. Triuret’s structure is suggestive of its ability to adopt various conformations and act as a flexible ligand for metal ions. In the current study, HPLC-MS/MS, energy-resolved mass spectrometry, selected ion monitoring, collision-induced dissociation, IRMPD spectroscopy, Fourier transform-ion cyclotron resonance mass spectrometry and computational methods were employed to characterize the structure of triuret and its metal complexes, to determine the triuret-alkali metal binding motif, and to evaluate triuret affinity toward alkali metal ions, as well as its affinity for Na+ and K+ relative to other organic ligands. The most favored binding motif was determined to be a bidentate chelation of triuret with the alkali metal cation involving two carbonyl oxygens. Using the complexation selectivity method, it was observed that in solution triuret has an increased affinity for potassium ions, compared to sodium and other alkali metal ions. We propose that triuret may act as a potential hypokalemic agent under pathophysiological conditions conducive to its excessive formation and thus contribute to electrolyte disorders. The collision- or photo-induced fragmentation channels of deprotonated and protonated triuret, as well as its alkali metal adducts, are likely to mimic the triuret degradation pathways in vivo. PMID:20371222

  19. Silicon halide-alkali metal flames as a source of solar grade silicon

    NASA Technical Reports Server (NTRS)

    Olsen, D. B.; Miller, W. J.

    1979-01-01

    The feasibility of using alkali metal-silicon halide diffusion flames to produce solar-grade silicon in large quantities and at low cost is demonstrated. Prior work shows that these flames are stable and that relatively high purity silicon can be produced using Na + SiCl4 flames. Silicon of similar purity is obtained from Na + SiF4 flames although yields are lower and product separation and collection are less thermochemically favored. Continuous separation of silicon from the byproduct alkali salt was demonstrated in a heated graphite reactor. The process was scaled up to reduce heat losses and to produce larger samples of silicon. Reagent delivery systems, scaled by a factor of 25, were built and operated at a production rate of 0.5 kg Si/h. Very rapid reactor heating rates are observed with wall temperatures reaching greater than 2000 K. Heat release parameters were measured using a cooled stainless steel reactor tube. A new reactor was designed.

  20. Investigation of antirelaxation coatings for alkali-metal vapor cells using surface science techniques

    NASA Astrophysics Data System (ADS)

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Kimball, D. F. Jackson; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-01

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10 000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of CC double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  1. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    SciTech Connect

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Jackson Kimball, D. F.; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-11

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  2. Dispersion coefficients for H and He interactions with alkali-metal and alkaline-earth-metal atoms

    SciTech Connect

    Mitroy, J.; Bromley, M.W.J.

    2003-12-01

    The van der Waals coefficients C{sub 6}, C{sub 8}, and C{sub 10} for H and He interactions with the alkali-metal (Li, Na, K, and Rb) and alkaline-earth-metal (Be, Mg, Ca, and Sr) atoms are determined from oscillator strength sum rules. The oscillator strengths were computed using a combination of ab initio and semiempirical methods. The dispersion parameters generally agree with close to exact variational calculations for Li-H and Li-He at the 0.1% level of accuracy. For larger systems, there is agreement with relativistic many-body perturbation theory estimates of C{sub 6} at the 1% level. These validations for selected systems attest to the reliability of the present dispersion parameters. About half the present parameters lie within the recommended bounds of the Standard and Certain compilation [J. Chem. Phys. 83, 3002 (1985)].

  3. Highly sensitive sensors for alkali metal ions based on complementary-metal-oxide-semiconductor-compatible silicon nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Jun; Agarwal, Ajay; Buddharaju, Kavitha D.; Singh, Navab; Gao, Zhiqiang

    2007-06-01

    Highly sensitive sensors for alkali metal ions based on complementary-metal-oxide- semiconductor-compatible silicon nanowires (SiNWs) with crown ethers covalently immobilized on their surface are presented. A densely packed organic monolayer terminated with amine groups is introduced to the SiNW surface via hydrosilylation. Amine-modified crown ethers, acting as sensing elements, are then immobilized onto the SiNWs through a cross-linking reaction with the monolayer. The crown ether-functionalized SiNWs recognize Na+ and K+ according to their complexation ability to the crown ethers. The SiNW sensors are highly selective and capable of achieving an ultralow detection limit down to 50nM, over three orders of magnitude lower than that of conventional crown ether-based ion-selective electrodes.

  4. The Origin of Chondrites: Metal-Silicate Separation Experiments Under Microgravity Conditions, Experiment 2

    NASA Technical Reports Server (NTRS)

    Moore, S. R.; Franzen, M.; Benoit, P. H.; Sears, D. W. G.; Holley, A.; Myers, M.; Godsey, R.; Czlapinski, J.

    2003-01-01

    Chondrites are categorized into different groups by several properties, including the metal-to-silicate ratio. Various processes have been suggested to produce distinct metal/silicate ratios, some based on sorting in the early solar nebular and others occurring after accretion on the parent body. Huang et al. suggested that a weak gravitational field accompanied by degassing, could result in metal/silicate separation on parent bodies. We suggest that asteroids were volatile-rich, at least early in their histories. Spectroscopic evidence from asteroid surfaces indicates that one-third of all asteroids maybe rich in clays and hydrated minerals, similar to carbonaceous chondrites. Internal and/or external heating could have caused volatiles to evaporate and pass through a surface dust layer. Spacecraft images of asteroids show they have a thick regoliths. Housen, and Asphaug and Nolan proposed that even a 10 km diameter asteroid could potentially have a significant regolith. Grain size and grain density sorting could occur in the unconsolidated layer by the process known as fluidization. This process occurs when an upward stream of gas is passed through a bed of particles which are lifted against a gravitational force. Fluidization is commonly used commercially to sort particulates. This type of behavior is based upon the bed, as a whole, and differs from aerodynamic sorting. Two sets of reduced gravity experiments were conducted during parabolic flights aboard NASA's KC-135 aircraft. The first experiment employed 310 tubes of 2.5 cm diameter, containing mixtures of sand and metal grains. A gas source was used to fluidize the mixture at reduced gravity conditions and mixtures were analyzed after the flight. However, this experiment did not allow a description of the fluidization as a function of gravity. A second experiment was conducted on the KC-135 aircraft in the summer of 2001, consisting of two Plexiglas cylinders containing a metal/silicate mixture, and video

  5. Alkali metal compatibility testing of candidate heater head materials for a Stirling engine heat transport system

    NASA Technical Reports Server (NTRS)

    Noble, Jack E.; Hickman, Gary L.; Grobstein, Toni

    1991-01-01

    The authors describe work performed as part of the 25-kWe advanced Stirling conversion system project. Liquid alkali metal compatibility is being assessed in an ongoing test program to evaluate candidate heater head materials and fabrication processes at the temperatures and operating conditions required for Stirling engines. Specific materials under evaluation are alloy 713LC, alloy 713LC coated with nickel aluminide, and Udimet 720, each in combination with Waspaloy. The tests were run at a constant 700 C. A eutectic alloy of sodium and potassium (NaK) was the working fluid. Titanium sheet in the system was shown to be an effective oxygen getter. Metallographic and microchemical examination of material surfaces, joints, and their interfaces revealed little or no corrosion after 1000 h. Tests are in progress, with up to 10,000 h exposure.

  6. Sputtering and secondary ion emission properties of alkali metal films and adsorbed monolayers

    SciTech Connect

    Krauss, A R; Gruen, D M

    1980-01-01

    The secondary ion emission of alkali metal adsorbed monlayer and multilayer films has been studied. Profiling with sub-monolayer resolution has been performed by Auger, x-ray photoemission and secondary ion mass spectroscopy. Characteristic differences in the sputtering yields, and ion fraction have been observed which are associated with both the surface bonding properties and the mechanism leading to the formation of secondary ions. By sputtering with a negative bias applied to the sample, positive secondary ions are returned to the surface, resulting in a reduced sputter-induced erosion rate. Comparison with the results obtained with K and Li overlayers sputtered without sample bias provides an experimental value of both the total and secondary ion sputtering yields. The first and second monolayers can be readily identified and the first monolayer exhibits a lower sputtering yield and higher secondary ion fraction. This result is related to adsorption theory and measured values are compared with those obtained by thermal desorption measurements.

  7. The alkali metal thermoelectric converter /AMTEC/ - A new direct energy conversion technology for aerospace power

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Cole, T.; Jones, R.; Ewell, R.

    1982-01-01

    A thermally regenerative electrochemical device for the direct conversion of heat to electrical energy, the alkali metal thermoelectric converter (AMTEC), is characterized by potential efficiencies on the order of 15-40% and possesses no moving parts, making it a candidate for space power system applications. Device conversion efficiency is projected on the basis of experimental voltage vs current curves exhibiting power densities of 0.7 W/sq cm and measured electrode efficiencies of up to 40%. Preliminary radiative heat transfer measurements presented may be used in an investigation of methods for the reduction of AMTEC parasitic radiation losses. AMTEC assumes heat input and rejection temperatures of 900-1300 K and 400-800 K, respectively. The working fluid is liquid sodium, and the porous electrode employed is of molybdenum.

  8. Silicon Halide-alkali Metal Flames as a Source of Solar Grade Silicon

    NASA Technical Reports Server (NTRS)

    Olson, D. B.; Gould, R. K.

    1979-01-01

    A program is presented which was aimed at determining the feasibility of using high temperature reactions of alkali metals and silicon halides to produce low cost solar-grade silicon. Experiments are being conducted to evaluate product separation and collection processes, measure heat release parameters for scaling purposes, and determine the effects of the reactants and/or products on materials of reactor construction. During the current reporting period, the results of heat release experiments were used to design and construct a new type of thick-wall graphite reactor to produce larger quantities of silicon. A reactor test facility was constructed. Material compatibility tests were performed for Na in contact with graphite and several coated graphites. All samples were rapidly degraded at T = 1200K, while samples retained structural strength at 1700K. Pyrolytic graphite coatings cracked and separated from substances in all cases.

  9. Voltammetric studies of porous molybdenum electrodes for the alkali metal thermoelectric converter

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Bankston, C. P.; Khanna, S. K.; Cole, T.

    1986-01-01

    Voltammetry of partially oxidized porous molybdenum alkali metal thermoelectric converter (AMTEC) electrodes from about 600 to 1000 K revealed a series of redox processes within the AMTEC operational voltage range which can be used to establish the electronic and ionic conductivities of these electrodes. Improved estimates of the free energies of formation of Na2Mo3O6, NaMoO2, and Na3MoO4 are obtained. Evidence is provided for the slow corrosive attack by Na2MoO4 on molybdenum. The ionic conductivity of Na2MoO4 is found to be sufficiently large at temperatures of greater than 700 K to explain the observed electrochemical phenomena in addition to the enhanced sodium transport in AMTEC electrodes below the freezing point of Na2MoO4.

  10. s-wave elastic scattering of antihydrogen off atomic alkali-metal targets

    SciTech Connect

    Sinha, Prabal K.; Ghosh, A. S.

    2006-03-15

    We have investigated the s-wave elastic scattering of antihydrogen atoms off atomic alkali-metal targets (Li, Na, K, and Rb) at thermal energies (10{sup -16}-10{sup -4} a.u.) using an atomic orbital expansion technique. The elastic cross sections of these systems at thermal energies are found to be very high compared to H-H and H-He systems. The theoretical models employed in this study are so chosen to consider long-range forces dynamically in the calculation. The mechanism of cooling suggests that Li may be considered to be a good candidate as a buffer gas for enhanced cooling of antihydrogen atoms to ultracold temperature.

  11. Spin-exchange frequency shift in alkali-metal-vapor cell frequency standards

    SciTech Connect

    Micalizio, Salvatore; Godone, Aldo; Levi, Filippo; Vanier, Jacques

    2006-03-15

    In this paper we calculate the effect of spin-exchange collisions in alkali-metal vapors. In the framework of the high-energy approximation, we evaluate the spin-exchange cross sections related to the line broadening and to the frequency shift of the ground state hyperfine transition. We do the calculation for the four isotopes, {sup 23}Na, {sup 39}K, {sup 87}Rb, and {sup 133}Cs. The results are used in particular to evaluate the spin-exchange frequency shift in Rb vapor cell frequency standards used in many applications. It turns out that, due to possible fluctuations in the atomic density, spin exchange may affect significantly the medium and long term frequency stability of the frequency standard.

  12. Laboratory studies of alkali metal filter deposition, ultraviolet transmission, and visible blocking.

    PubMed

    Clarke, J T; Skinner, W R; Vincent, M B; Irgang, T; Suratkal, V; Grassl, H; Trauger, J T

    1999-03-20

    Far-ultraviolet alkali metal or Wood's filters have been produced and tested supporting the production of a flight filter for the Wide Field Planetary Camera 2 on the Hubble Space Telescope. Sodium layers 0.5-1-microm thick transmit up to 40% in the ultraviolet while efficiently blocking visible wavelengths. The prevention of visible pinholes is assisted by a clean, sleek-free surface and a cooled substrate during deposition. The coatings are stabilized efficiently by a bismuth overcoating whose transmission spectrum is presented. We also report for the first time, to our knowledge, the first demonstrated long-wavelength cutoff from a lithium filter, with a shorter cutoff wavelength than sodium and potentially higher stability for astronomical imaging. PMID:18305811

  13. Intracellular acidification-induced alkali metal cation/H+ exchange in human neutrophils

    PubMed Central

    1987-01-01

    Pretreatment of isolated human neutrophils (resting pHi congruent to 7.25 at pHo 7.40) with 30 mM NH4Cl for 30 min leads to an intracellular acidification (pHi congruen to 6.60) when the NH4Cl prepulse is removed. Thereafter, in 140 mM Na+ medium, pHi recovers exponentially with time (initial rate, approximately 0.12 pH/min) to reach the normal resting pHi by approximately 20 min, a process that is accomplished mainly, if not exclusively, though an exchange of internal H+ for external Na+. This Na+/H+ countertransport is stimulated by external Na+ (Km congruent to 21 mM) and by external Li+ (Km congruent to 14 mM), though the maximal transport rate for Na+ is about twice that for Li+. Both Na+ and Li+ compete as substrates for the same translocation sites on the exchange carrier. Other alkali metal cations, such as K+, Rb+, or Cs+, do not promote pHi recovery, owing to an apparent lack of affinity for the carrier. The exchange system is unaffected by ouabain or furosemide, but can be competitively inhibited by the diuretic amiloride (Ki congruent to 8 microM). The influx of Na+ or Li+ is accompanied by an equivalent counter-reflux of H+, indicating a 1:1 stoichiometry for the exchange reaction, a finding consistent with the lack of voltage sensitivity (i.e., electroneutrality) of pHi recovery. These studies indicate that the predominant mechanism in human neutrophils for pHi regulation after intracellular acidification is an amiloride-sensitive alkali metal cation/H+ exchange that shares a number of important features with similar recovery processes in a variety of other mammalian cell types. PMID:3694176

  14. PROCESS OF REMOVING PLUTONIUM VALUES FROM SOLUTION WITH GROUP IVB METAL PHOSPHO-SILICATE COMPOSITIONS

    DOEpatents

    Russell, E.R.; Adamson, A.W.; Schubert, J.; Boyd, G.E.

    1957-10-29

    A process for separating plutonium values from aqueous solutions which contain the plutonium in minute concentrations is described. These values can be removed from an aqueous solution by taking an aqueous solution containing a salt of zirconium, titanium, hafnium or thorium, adding an aqueous solution of silicate and phosphoric acid anions to the metal salt solution, and separating, washing and drying the precipitate which forms when the two solutions are mixed. The aqueous plutonium containing solution is then acidified and passed over the above described precipi-tate causing the plutonium values to be adsorbed by the precipitate.

  15. Synergistic capture mechanisms for alkali and sulphur species from combustion. Quarterly report No. 10, December 1992--February 1993

    SciTech Connect

    Peterson, T.W.; Shadman, F.; Wendt, J.O.L.; Wu, Baochun

    1993-07-26

    A number of sorbents with alumina-silicate base and sulfur capturing active sites have been developed for simultaneous removal of alkali metal compounds and sulfur dioxide. Current report will focus on bauxite sorbents, which includes experiments on sulfur dioxide absorption, alkali capturing and alkali/sulfur absorption simultaneously by bauxite-based sorbents. The alkali compound used here is sodium chloride. Experiments show an effective adsorption of sulfur or alkali separately, and the combined adsorption of alkali/sulfur. Atomic absorption analysis of reaction products shows that there is a much higher sodium content in the combined reaction products than that of the single reaction of alkali absorption by bauxite. Further X-ray diffraction analysis shows that there is sodium sulfate in the final products of simultaneous reaction, which indicates the formation and then condensation of sodium sulfate in the reaction system.

  16. High Pressure Metal-Silicate Partitioning of Molybdenum and Constraints on Core Formation

    NASA Astrophysics Data System (ADS)

    Burkemper, L. K.; Agee, C. B.; Garcia, K. A.

    2011-12-01

    Over 12 new high pressure Mo metal-silicate partitioning experiments were performed in the pressure (P) and temperature (T) range of 3-8 GPa and 2173-2373 K. Parameterization of our data and literature data, limited to experiments with an Fe-rich metal phase and no light elements, produces a PT solution set that is compatible with the magma ocean hypothesis, and can be used to further constrain core formation models. The goal of these models is to reproduce the siderophile element abundances observed in Earth's mantle. The mantle is depleted in siderophile elements relative to chondrites as a result of their affinity for the metal phase during core formation. Metal-silicate partitioning experiments on the siderophile elements Ni and Co have provided valuable constraints on the PT conditions of core formation. Li and Agee (1996) showed that at 2273 K and pressures above 28 GPa, equilibrium core formation, such as in a magma ocean, can explain the observed mantle depletion of Ni and Co. Compared to Ni and Co, there is a paucity of data on the siderophile element Mo, especially at high pressure. Only 15 partitioning experiments have been performed at pressures above 1.5 GPa, which leads to large errors when the results are extrapolated to the higher pressure conditions of core formation. Consequentially, Mo has been left out of most core formation models such as those proposed by Rubie et al. (2011) and Wade and Wood (2005). Increasing the number of Mo partitioning data points will provide much needed additional constraints on core formation. All of our experiments were performed on a Walker-type multi-anvil press at the Institute of Meteoritics. Run products were analyzed by EPMA with a 20 μm broad beam. Crushable MgO capsules were used in all experiments. With this capsule material there is significant MgO infiltration into the silicate; however, MgO is already part of the system so it is more ideal than graphite capsules which impart a significant carbon component

  17. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    NASA Astrophysics Data System (ADS)

    Patki, Gauri Dilip

    mole of Si. We compare our silicon nanoparticles (˜10nm diameter) with commercial silicon nanopowder (<100nm diameter) and ball-milled silicon powder (325 mesh). The increase in rate upon decreasing the particle size to 10 nm was even greater than would be expected based upon the increase in surface area. While specific surface area increased by a factor of 6 in going from <100 nm to ˜10 nm particles, the hydrogen production rate increased by a factor of 150. However, in all cases, silicon requires a base (e.g. NaOH, KOH, hydrazine) to catalyze its reaction with water. Metal hydrides are also promising hydrogen storage materials. The optimum metal hydride would possess high hydrogen storage density at moderate temperature and pressure, release hydrogen safely and controllably, and be stable in air. Alkali metal hydrides have high hydrogen storage density, but exhibit high uncontrollable reactivity with water. In an attempt to control this explosive nature while maintaining high storage capacity, we mixed our silicon nanoparticles with the hydrides. This has dual benefits: (1) the hydride- water reaction produces the alkali hydroxide needed for base-catalyzed silicon oxidation, and (2) dilution with 10nm coating by, the silicon may temper the reactivity of the hydride, making the process more controllable. Initially, we analyzed hydrolysis of pure alkali metal hydrides and alkaline earth metal hydrides. Lithium hydride has particularly high hydrogen gravimetric density, along with faster reaction kinetics than sodium hydride or magnesium hydride. On analysis of hydrogen production we found higher hydrogen yield from the silicon nanoparticle—metal hydride mixture than from pure hydride hydrolysis. The silicon-hydride mixtures using our 10nm silicon nanoparticles produced high hydrogen yield, exceeding the theoretical yield. Some evidence of slowing of the hydride reaction rate upon addition of silicon nanoparticles was observed.

  18. Metal-silicate Partitioning at High Pressure and Temperature: Experimental Methods and a Protocol to Suppress Highly Siderophile Element Inclusions.

    PubMed

    Bennett, Neil R; Brenan, James M; Fei, Yingwei

    2015-01-01

    Estimates of the primitive upper mantle (PUM) composition reveal a depletion in many of the siderophile (iron-loving) elements, thought to result from their extraction to the core during terrestrial accretion. Experiments to investigate the partitioning of these elements between metal and silicate melts suggest that the PUM composition is best matched if metal-silicate equilibrium occurred at high pressures and temperatures, in a deep magma ocean environment. The behavior of the most highly siderophile elements (HSEs) during this process however, has remained enigmatic. Silicate run-products from HSE solubility experiments are commonly contaminated by dispersed metal inclusions that hinder the measurement of element concentrations in the melt. The resulting uncertainty over the true solubility and metal-silicate partitioning of these elements has made it difficult to predict their expected depletion in PUM. Recently, several studies have employed changes to the experimental design used for high pressure and temperature solubility experiments in order to suppress the formation of metal inclusions. The addition of Au (Re, Os, Ir, Ru experiments) or elemental Si (Pt experiments) to the sample acts to alter either the geometry or rate of sample reduction respectively, in order to avoid transient metal oversaturation of the silicate melt. This contribution outlines procedures for using the piston-cylinder and multi-anvil apparatus to conduct solubility and metal-silicate partitioning experiments respectively. A protocol is also described for the synthesis of uncontaminated run-products from HSE solubility experiments in which the oxygen fugacity is similar to that during terrestrial core-formation. Time-resolved LA-ICP-MS spectra are presented as evidence for the absence of metal-inclusions in run-products from earlier studies, and also confirm that the technique may be extended to investigate Ru. Examples are also given of how these data may be applied. PMID:26132380

  19. Reduction experiment of FeO-bearing amorphous silicate: application to origin of metallic iron in GEMS

    SciTech Connect

    Matsuno, Junya; Tsuchiyama, Akira; Miyake, Akira; Noguchi, Ryo; Ichikawa, Satoshi

    2014-09-10

    Glass with embedded metal and sulfides (GEMS) are amorphous silicates included in anhydrous interplanetary dust particles (IDPs) and can provide information about material evolution in our early solar system. Several formation processes for GEMS have been proposed so far, but these theories are still being debated. To investigate a possible GEMS origin by reduction of interstellar silicates, we synthesized amorphous silicates with a mean GEMS composition and performed heating experiments in a reducing atmosphere. FeO-bearing amorphous silicates were heated at 923 K and 973 K for 3 hr, and at 1023 K for 1-48 hr at ambient pressure in a reducing atmosphere. Fe grains formed at the interface between the silicate and the reducing gas through a reduction. In contrast, TEM observations of natural GEMS show that metallic grains are uniformly embedded in amorphous silicates. Therefore, the present study suggests that metallic inclusions in GEMS could not form as reduction products and that other formation process such as condensation or irradiation are more likely.

  20. Argon Partitioning Between Metal and Silicate Liquids in the Laser-Heated DAC to 25 GPa

    NASA Astrophysics Data System (ADS)

    Bouhifd, M. A.; Jephcoat, A. P.

    2003-12-01

    The accretion of the Earth from primordial material and its subsequent segregation into core and mantle are fundamental problems in terrestrial and solar system science. Many of the questions about the process, although well developed as model scenarios over the last few decades, are still open and much debated, and include, for example, whether the core is, or was, a reservoir for the noble (rare) gases. In the present study we use for the first time the laser-heated diamond-anvil cell (LHDAC) to study the Ar partitioning at high-pressure and temperature between metal and silicate liquids. Little work has been reported on noble gas partitioning at pressure since a single multi-anvil experiment to 10 GPa (Matsuda et al., 1993). We used either compacted glass powders simulating that of a model C1 chondrite and iron metal, or pure metal alloys (pure Fe, FeNiCo alloy, FeSi). Thermal insulation from the diamonds was achieved with solid argon as pressure medium. The samples were heated by a multimode YAG laser for an average of 15 minutes and temperatures were determined spectro-radiometrically with a fit to a grey-body Planck function. Samples recovered after the runs were analysed by electron microprobe with spatial resolution near 1 μ m. The argon melts by conductive heating from the molten sample dissolving into the metal/silicate melt. Preliminary results on Ar solubility at lower pressures show good agreement with data reported by White et al. (1986) for Ar solubility in sanidine (KAlSi3O8). With sanidine melt, Ar solubility increases up to around 5-6 GPa where it reaches about 2.5 wt%, and remains roughly constant to higher pressures, suggesting that a threshold concentration is reached. Similar behavior is observed for a mix of C1-chondrite composition and iron and the results imply that the solubility of Ar is intimately related to liquid structure at high pressure. We also present results on Ar solubility into pure silicate liquids of varying composition in

  1. The effect of Si on metal-silicate partitioning of siderophile elements and implications for the conditions of core formation

    NASA Astrophysics Data System (ADS)

    Tuff, James; Wood, Bernard J.; Wade, Jon

    2011-01-01

    We have determined the liquid metal-liquid silicate partitioning of Ni, Co, Mo, W, V, Cr and Nb at 1.5 GPa/1923 K and 6 GPa/2123 K under conditions of constant silicate melt composition with variable amounts of Si in the Fe-rich metallic liquid. Partitioning of Ni, Co, Mo, W and V is sensitive to the Si content of the metal with, in all five cases, increasing Si tending to make the element more lithophile than for conditions where the metal is Si-free. In contrast, metal-silicate partitioning of Cr and Nb is, at constant silicate melt composition, insensitive to the Si content of the metal. The implications of our data are that if, as indicated by the Si isotopic composition of the silicate Earth ( Georg et al., 2007; Fitoussi et al., 2009), the core contains significant amounts of Si, the important siderophile elements Ni, Co, W and Mo were more lithophile during accretion and core formation than previously believed. We use our new data in conjunction with published metal-silicate partitioning results to develop a model of continuous accretion and core segregation taking explicit account of the partitioning of Si (this study) and O (from Ozawa et al., 2008) between metal and silicate and their effects on metal-silicate partitioning of siderophile elements. We find that the effect of Si on the siderophile characteristics of Ni, Co and W means that the pressures of core segregation estimated from these elements are ˜5 GPa lower than those derived from experiments in which the metal contained negligible Si (e.g., Wade and Wood, 2005). The core-mantle partitioning of Cr and Nb requires that most of Earth accretion took place under conditions which were much more reducing than those implied by the current FeO content of the mantle and that the oxidation took place late in the accretionary process. Paths of terrestrial accretion, oxidation state and partitioning which are consistent with the current mantle contents of Ni, Co, W, V, Cr and Nb lead to Si and O contents

  2. Characterisation of products of tricalcium silicate hydration in the presence of heavy metals.

    PubMed

    Chen, Q Y; Hills, C D; Tyrer, M; Slipper, I; Shen, H G; Brough, A

    2007-08-25

    The hydration of tricalcium silicate (C(3)S) in the presence of heavy metal is very important to cement-based solidification/stabilisation (s/s) of waste. In this work, tricalcium silicate pastes and aqueous suspensions doped with nitrate salts of Zn(2+), Pb(2+), Cu(2+) and Cr(3+) were examined at different ages by X-ray powder diffraction (XRD), thermal analysis (DTA/TG) and (29)Si solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). It was found that heavy metal doping accelerated C(3)S hydration, even though Zn(2+) doping exhibited a severe retardation effect at an early period of time of C(3)S hydration. Heavy metals retarded the precipitation of portlandite due to the reduction of pH resulted from the hydrolysis of heavy metal ions during C(3)S hydration. The contents of portlandite in the control, Cr(3+)-doped, Cu(2+)-doped, Pb(2+)-doped and Zn(2+)-doped C(3)S pastes aged 28 days were 16.7, 5.5, 5.5, 5.5, and <0.7%, respectively. Heavy metals co-precipitated with calcium as double hydroxides such as (Ca(2)Cr(OH)(7).3H(2)O, Ca(2)(OH)(4)4Cu(OH)(2).2H(2)O and CaZn(2)(OH)(6).2H(2)O). These compounds were identified as crystalline phases in heavy metal doping C(3)S suspensions and amorphous phases in heavy metal doping C(3)S pastes. (29)Si NMR data confirmed that heavy metals promoted the polymerisation of C-S-H gel in 1-year-old of C(3)S pastes. The average numbers of Si in C-S-H gel for the Zn(2+)-doped, Cu(2+)-doped, Cr(3+)-doped, control, and Pb(2+)-doped C(3)S pastes were 5.86, 5.11, 3.66, 3.62, and 3.52. And the corresponding Ca/Si ratios were 1.36, 1.41, 1.56, 1.57 and 1.56, respectively. This study also revealed that the presence of heavy metal facilitated the formation of calcium carbonate during C(3)S hydration process in the presence of carbon dioxide.

  3. Chemically bonded phospho-silicate ceramics

    DOEpatents

    Wagh, Arun S.; Jeong, Seung Y.; Lohan, Dirk; Elizabeth, Anne

    2003-01-01

    A chemically bonded phospho-silicate ceramic formed by chemically reacting a monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and a sparsely soluble oxide, with a sparsely soluble silicate in an aqueous solution. The monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and sparsely soluble oxide are both in powder form and combined in a stochiometric molar ratio range of (0.5-1.5):1 to form a binder powder. Similarly, the sparsely soluble silicate is also in powder form and mixed with the binder powder to form a mixture. Water is added to the mixture to form a slurry. The water comprises 50% by weight of the powder mixture in said slurry. The slurry is allowed to harden. The resulting chemically bonded phospho-silicate ceramic exhibits high flexural strength, high compression strength, low porosity and permeability to water, has a definable and bio-compatible chemical composition, and is readily and easily colored to almost any desired shade or hue.

  4. High pressure metal-silicate partitioning of Ni, Co, V, Cr, Si, and O

    NASA Astrophysics Data System (ADS)

    Fischer, Rebecca A.; Nakajima, Yoichi; Campbell, Andrew J.; Frost, Daniel J.; Harries, Dennis; Langenhorst, Falko; Miyajima, Nobuyoshi; Pollok, Kilian; Rubie, David C.

    2015-10-01

    The distributions of major and minor elements in Earth's core and mantle were primarily established by high pressure, high temperature metal-silicate partitioning during core segregation. The partitioning behaviors of moderately siderophile elements can be used to constrain the pressure-temperature conditions of core formation and the core's composition. We performed experiments to study the partitioning of Ni, Co, V, Cr, Si, and O between silicate melt and Fe-rich metallic melt in a multianvil press and diamond anvil cell, up to 100 GPa and 5700 K. Combining our new results with data from 18 previous studies, we parameterized the effects of pressure, temperature, and metallic melt composition on partitioning. Ni and Co partitioning are insensitive to composition. At low pressures, these elements become less siderophile with increasing temperature, with this trend reversing above ∼45 GPa. V and Cr partitioning are much more sensitive to metallic melt composition and less sensitive to pressure. Partitioning of Si and O are insensitive to pressure, but with strong and moderate temperature dependences, respectively. Our new parameterizations of Ni and Co partitioning suggest that the Earth's distributions of these elements can be matched by single-stage core-mantle equilibration at 54 ± 5 GPa and 3300-3400 K. These conditions would result in 8.5 ± 1.4 wt% Si and 1.6 ± 0.3 wt% O in the core, compatible with the core's measured density. However, this single-stage model matches the Earth's V and Cr distributions less well. We also incorporated our parameterizations into models of multi-stage core formation over evolving pressure-temperature-oxygen fugacity conditions, reproducing the Earth's Ni and Co distributions while simultaneously producing a core whose light element composition is consistent with its density.

  5. Room temperature inorganic ``quasi-molten salts`` as alkali-metal electrolytes

    SciTech Connect

    Xu, K.; Zhang, S.; Angell, C.A.

    1996-11-01

    Room temperature inorganic liquids of high ionic conductivity have been prepared by reacting Lewis acid AlCl with sulfonyl chlorides. The mechanism is not clear at this time since a crystal structure study of the 1:1 complex with CH{sub 3}SO{sub 2}Cl (T{sub m} = 30 C) is not consistent with a simple chloride transfer to create AlClO{sub 4}{sup {minus}} anions. The liquid is in a state somewhere between ionic and molecular. A new term quasi-molten salt is adopted to describe this state. A comparably conducting liquid can be made using BCL{sub 3} in place of AlCl{sub 3}. Unlike their organic counterparts based on ammonium cations (e.g., pyridinium or imidazolium) which reduce in the presence of alkali metals, this inorganic class of cation shows great stability against electrochemical reduction (ca. {minus}1.0 V vs. Li{sup +}/Li), with the useful consequence that reversible lithium and sodium metal deposition/stripping can be supported. The electrochemical window for these quasi-salts with AlCl{sub 3} ranges up to 5.0 V, and their room temperature conductivities exceed 10{sup {minus}4} S/cm. They dissolve lithium and sodium tetrachloroaluminates up to mole fraction {approximately} 0.6 at 100 C and intermediate compositions are permanently stable at ambient. The resultant lithium or sodium salt solutions exhibit electrochemical windows of 4.5--5.0 V vs. Li{sup +}/Li or Na{sup +}/Na and show room temperature conductivities of 10{sup {minus}3.0}--10{sup {minus}2.5} S/cm. In preliminary charge/discharge tests, the cell Li/``quasi-ionic liquid electrolyte``/Li{sub 1+x}Mn{sub 2}O{sub 4} showed a discharge capacity of ca. 110 mAh/(g of cathode) and sustained 80% of the initial capacity after 60 cycles, indicating that these quasi-molten salt-based electrolytes are promising candidates for alkali-metal batteries.

  6. Stability of alkali-metal hydrides: effects of n-type doping

    NASA Astrophysics Data System (ADS)

    Olea Amezcua, Monica Araceli; de La Peña Seaman, Omar; Rivas Silva, Juan Francisco; Heid, Rolf; Bohnen, Klaus-Peter

    Metal hydrides could be considered ideal solid-state hydrogen storage systems, they have light weight and high hydrogen volumetric densities, but the hydrogen desorption process requires excessively high temperatures due to their high stability. Efforts have been performed to improve their dehydrogenation properties, based on the introduction of defects, impurities and doping. We present a systematic study of the n-type (electronic) doping effects on the stability of two alkali-metal hydrides: Na1-xMgxH and Li1-xBexH. These systems have been studied within the framework of density functional perturbation theory, using a mixed-basis pseudopotential method and the self-consistent version of the virtual crystal approximation to model the doping. The full-phonon dispersions are analyzed for several doping content, paying special attention to the crystal stability. It is found a doping content threshold for each system, where they are close to dynamical instabilities, which are related to charge redistribution in interstitial zones. Applying the quasiharmonic approximation, the vibrational free energy, the linear thermal expansion and heat capacities are obtained for both hydrides systems and are analyzed as a function of the doping content. This work is partially supported by the VIEP-BUAP 2016 and CONACYT-México (No.221807) projects.

  7. Elucidating the magnetic and superconducting phases in the alkali metal intercalated iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Yi, Ming; Tian, Wei; Bourret-Courchesne, Edith; Birgeneau, Robert J.

    2016-02-01

    The complex interdigitated phases have greatly frustrated attempts to document the basic features of the superconductivity in the alkali metal intercalated iron chalcogenides. Here, using elastic neutron scattering, energy-dispersive x-ray spectroscopy, and resistivity measurements, we elucidate the relations of these phases in RbxFeySe2 -zSz . We find (i) the iron content is crucial in stabilizing the stripe antiferromagnetic (AF) phase with rhombic iron vacancy order (y ≈1.5 ) , the block AF phase with √{5 }×√{5 } iron vacancy order (y ≈1.6 ) , and the iron vacancy-free phase (y ≈2 ) ; and (ii) the iron vacancy-free superconducting phase (z =0 ) evolves into an iron vacancy-free metallic phase with sulfur substitution (z >1.5 ) due to the progressive decrease of the electronic correlation strength. Both the stripe AF phase and the block AF phase are Mott insulators. The iron-rich compounds (y >1.6 ) undergo a first order transition from an iron vacancy disordered phase at high temperatures into the √{5 }×√{5 } iron vacancy ordered phase and the iron vacancy-free phase below Ts. Our data demonstrate that there are miscibility gaps between these three phases. The existence of the miscibility gaps in the iron content is a key to understanding the relationship between these complicated phases.

  8. Alkali metal pool boiler life tests for a 25 kWe advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.

    1991-01-01

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding an alkali metal pool boiler heat transport system to supply heat more uniformly to the heater head tubes. One issue with liquid metal pool boilers is unstable boiling. Stable boiling is obtained with an enhanced boiling surface containing nucleation sites that promote continuous boiling. Over longer time periods, it is possible that the boiling behavior of the system will change. An 800-h life test was conducted to verify that pool boiling with the chosen fluid/surface combination remains stable as the system ages. The apparatus uses NaK boiling on a - 100 + 140 stainless steel sintered porous layer, with the addition of a small amount of xenon. Pool boiling remained stable to the end of life test. The pool boiler life test included a total of 82 cold starts, to simulate startup each morning, and 60 warm restarts, to simulate cloud cover transients. The behavior of the cold and warm starts showed no significant changes during the life test. In the experiments, the fluid/surface combination provided stable, high-performance boiling at the operating temperature of 700 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  9. Constraints on core formation in Vesta from metal-silicate partitioning of siderophile elements

    NASA Astrophysics Data System (ADS)

    Steenstra, E. S.; Knibbe, J. S.; Rai, N.; van Westrenen, W.

    2016-03-01

    It is now widely accepted that the asteroid 4-Vesta has an Fe-rich metallic core, but the composition of the core and the conditions prevailing during core-mantle differentiation are poorly constrained. In light of new constraints on Vesta's geophysical and geochemical properties obtained by the DAWN mission, we have re-examined the conditions at which core-mantle differentiation in Vesta may have occurred by linking the estimated mantle depletions of siderophile elements P, Co, Ni, Cu, Ga, Ge, Mo and W in the vestan mantle to newly derived predictive equations for core-mantle partitioning of these elements. We extend the number of elements previously considered in geochemical modeling of vestan core formation and use published metal-silicate partitioning data obtained at low pressures to characterize the dependence of metal/silicate partition coefficients (D) on pressure, temperature, oxygen fugacity and composition of the silicate and metallic melt. In our modeling we implement newly derived mantle depletions of P, Co, Ni and Ga through analysis of published HED meteorite analyses and assess two contrasting bulk compositional models for Vesta. Modeling results using Monte Carlo simulations constrain vestan core formation to have occurred at mildly reducing conditions of approximately 2 log units below the iron-wüstite (IW) buffer (ΔIW = -2.05 ± 0.20) if the two most likely bulk compositions (binary mixtures of H + CM or H + CV chondritic meteorites) are considered, assuming a temperature range between 1725 and 1850 K and a sulfur-free pure Fe core. If the core is assumed to be sulfur-rich (15 wt.% S) as predicted by the latter bulk compositional models, observed depletions for all eight siderophile elements can be simultaneously satisfied at ΔIW = -2.35 ± 0.10 and 1725-1850 K for the H + CV bulk composition and ΔIW = -2.30 ± 0.15 and 1725-1850 K for the H + CM bulk composition. More reducing conditions are not consistent with the observed siderophile

  10. Adsorption of alkali and alkaline-earth metal atoms on the reconstructed graphene-like BN single sheet

    NASA Astrophysics Data System (ADS)

    Hao, Jun-Hua; Wang, Zheng-Jia; Wang, Yu-Fang; Yin, Yu-Hua; Jiang, Run; Jin, Qing-Hua

    2015-12-01

    A graphene-like BN single sheet with absorbed alkali and alkaline-earth metal atoms have been investigated by using a first-principles method within the framework of density functional theory (DFT). The electronic structure of BN sheet with adsorbed metal atoms is mainly determined by the metal electronic state which is near to the Fermi level owing to the wide band gap of pure BN sheet. So, we calculated the adsorption energy, charge transfer and work function after the metal adsorbed on BN sheet. We found that the interaction between the metal atoms and BN surface was very strong, and the stable adsorption site for all the adsorbed atoms concluded was high-coordination surface site (H-center) rather than the surface dangling bond sites from the perspective of simple bond-counting arguments. Our results indicate that the interaction of BN sheet with metal atoms could help in the development of metallic nanoscale devices.

  11. Electronic properties of metal-induced gap states at insulator/metal interfaces: Dependence on the alkali halide and the possibility of excitonic mechanism of superconductivity

    NASA Astrophysics Data System (ADS)

    Arita, Ryotaro; Tanida, Yoshiaki; Kuroki, Kazuhiko; Aoki, Hideo

    2004-03-01

    Motivated from the experimental observation of metal-induced gap states (MIGS) at insulator/metal interfaces by Kiguchi et al. [Phys. Rev. Lett. 90, 196803 (2003)], we have theoretically investigated the electronic properties of MIGS at interfaces between various alkali halides and a metal represented by a jellium with the first-principles density-functional method. We have found that, on top of the usual evanescent state, MIGS generally have appreciable amplitudes on halogen sites with a pz-like character, whose penetration depth (λ) is as large as half the lattice constant of bulk alkali halides. This implies that λ, while little dependent on the carrier density in the jellium, is dominated by the energy gap of the alkali halide, and is scaled by the lattice constant, where λLiF<λLiCl<λLiI. We also propose a possibility of the MIGS working favorably for the exciton-mediated superconductivity, especially in a system where ˜10 Å of metal is sandwiched by alkali halide substrates.

  12. Metal-silicate partitioning and the light element in the core (Invited)

    NASA Astrophysics Data System (ADS)

    Wood, B. J.; Wade, J.; Tuff, J.

    2009-12-01

    Most attempts to constrain the concentrations of “light” elements in the Earth’s core rely either on cosmochemical arguments or on arguments based on the densities and equations of state of Fe-alloys containing the element of concern. Despite its utility, the latter approach yields a wide range of permissible compositions and hence weak constraints. The major problem with the cosmochemical approach is that the abundances in the bulk Earth of all the candidate “light” elements- H, C, O, Si and S are highly uncertain because of their volatile behavior during planetary accretion. In contrast, refractory elements appear to be in approximately CI chondritic relative abundances in the Earth. This leads to the potential for using the partitioning of refractory siderophile elements between the mantle and core to constrain the concentrations of light elements in the core. Recent experimental metal-silicate partitioning data, coupled with mantle abundances of refractory siderophile elements (e.g. Wade and Wood, EPSL v.236, 78—95,2005; Kegler et. al. EPSL v.268, 28-40,2008) have shown that the core segregated from the mantle under high pressure conditions (~40 GPa). If a wide range of elements, from very siderophile, (e.g. Mo) through moderately (Ni, Co, W) to weakly siderophile (V, Cr, Nb, Si) are considered, the Earth also appears to have become more oxidized during accretion. Metal-silicate partitioning of some elements is also sensitive to the light element content of the metal. For example, Nb and W partitioning depend strongly on carbon, Mo on silicon and Cr on sulfur. Given the measured mantle abundances of the refractory elements, these observations enable the Si and C contents of the core to be constrained at ~5% and <2% respectively while partitioning is consistent with a cosmochemically-estimated S content of ~2%.

  13. Effect of sorbed molecules on the resistivity of alkali metal-graphite intercalation compounds

    SciTech Connect

    Akuzawa, Noboru Kunihashi, Yoji; Sato, Yuki; Tsuchiya, Ken-ichi; Matsumoto, Rika

    2007-03-15

    Alkali metal-graphite intercalation compounds with the composition of MC{sub 24} (M=K, Rb, Cs) were prepared by heating a mixture of MC{sub 8} (saturated compound) and graphite sheet (Grafoil) at 350-450 deg. C. The resistivity perpendicular to the layer planes ({rho} {sub c}) of the resulting compounds was determined by the two-terminal method. The anisotropy factor of the resistivity, ({rho} {sub c}/{rho} {sub a}), of KC{sub 24} prepared from Grafoil was {approx}130, being about 1/6-1/10 in magnitude compared with that of KC{sub 24} prepared from highly oriented pyrolytic graphite. The resistivity change during sorption of hydrogen (at 90 K), ethylene (at 194 K) and acetylene (at 194 K) was determined. The resistivity of MC{sub 24} increased with increase of the sorbed amount of H{sub 2}. The magnitude of the increase was in the order KC{sub 24}>RbC{sub 24}>CsC{sub 24}. This resistivity increase was considered to be due to the expansion along c-direction which reduces the charge-transfer interaction between the carbon layers and potassium ions, resulting in the decrease of the density of the conduction electron. The resistivity of MC{sub 24} increased extensively during sorption of C{sub 2}H{sub 4} and C{sub 2}H{sub 2}. It was discussed in connection with the in-plane structural transition and chemical interaction between alkali metal ions and sorbed molecules. - Graphical abstract: The resistivity of MC{sub 24} increased with increase of the sorbed amount of H{sub 2}. The magnitude of the increase was in the order KC{sub 24}>RbC{sub 24}>CsC{sub 24}. This resistivity increase was considered to be due to the expansion along c-direction which reduces the charge-transfer interaction between the carbon layers and potassium ions.

  14. Metal-sulfide melt non-interconnectivity in silicates, even at high pressure, high temperature, and high melt fractions

    SciTech Connect

    Minarik, W.G.; Ryerson, F.J.

    1996-01-01

    The authors have investigated the textural microstructure of iron-nickel-sulfur melts in contact with olivine, pyroxene, and the modified-spinel polymorph of olivine. The experiments were conducted at 1,500 C and pressures ranging from 1 to 17 GPa. For compositions more metal-rich than the monosulfide, including the eutectic composition, the metal sulfide melt has a dihedral angle greater than 60{degree} and does not form an interconnected grain-edge fluid. Increasing pressure does not measurably alter the dihedral angles. Textural evolution results in coarsening of the sulfide melt pockets, resulting in large pockets surrounded by many silicate grains and separated from one another by melt-free grain edges. Chemical communication between these large pockets is limited to lattice and grain-boundary diffusion. Due to the large interfacial energy between sulfide melt and silicates, sulfide melts are unable to separate from solid silicate via grain-boundary percolation and remain stranded in isolated melt pockets. Sulfide melt in excess of the critical melt fraction (5--25%) will develop a transient interconnectivity as sulfide collects into larger melt pockets and interconnectivity is pinched off. Efficient separation of core-forming sulfide melts from silicate requires either melting of the silicate matrix or a very large fraction of metal-sulfide melt (perhaps as large as 40%).

  15. Preparation of decarboxylic-functionalized weak cation exchanger and application for simultaneous separation of alkali, alkaline earth and transition metals.

    PubMed

    Peng, Yahui; Gan, Yihui; He, Chengxia; Yang, Bingcheng; Guo, Zhimou; Liang, Xinmiao

    2016-06-01

    A novel weak cation exchanger (WCX) with dicarboxyl groups functionalized has been developed by clicking mercaptosuccinic acid onto silica gel. The simple synthesis starts with modification of silica gel with triethoxyvinylsilane, followed by efficient coupling vinyl-bonded silica with mercaptosuccinic acid via a "thiol-ene" click reaction. The obtained WCX demonstrated good separation and high selectivity towards common metals. Simultaneous separation of 10 alkali, alkaline earth and transition metals was achieved within 12min. Ion exchange and complex mechanism dominates the separation process. Its utility was demonstrated for determination of metals in tap water. PMID:27130093

  16. Solid State Structures of Alkali Metal Ion Complexes Formed by Low-Molecular-Weight Ligands of Biological Relevance.

    PubMed

    Aoki, Katsuyuki; Murayama, Kazutaka; Hu, Ning-Hai

    2016-01-01

    This chapter provides structural data, mainly metal binding sites/modes, observed in crystal structures of alkali metal ion complexes containing low-molecular-weight ligands of biological relevance, mostly obtained from the Cambridge Structural Database (the CSD version 5.35 updated to February 2014). These ligands include (i) amino acids and small peptides, (ii) nucleic acid constituents (excluding quadruplexes and other oligonucleotides), (iii) simple carbohydrates, and (iv) naturally occurring antibiotic ionophores. For some representative complexes of these ligands, some details on the environment of the metal coordination and structural characteristics are described. PMID:26860299

  17. Metal-Induced Gap States at Well Defined Alkali-Halide/Metal Interfaces

    NASA Astrophysics Data System (ADS)

    Kiguchi, Manabu; Arita, Ryotaro; Yoshikawa, Genki; Tanida, Yoshiaki; Katayama, Masao; Saiki, Koichiro; Koma, Atsushi; Aoki, Hideo

    2003-05-01

    In order to search for states specific to insulator/metal interfaces, we have studied epitaxially grown interfaces with element-selective near edge x-ray absorption fine structure. An extra peak is observed below the bulk edge onset for LiCl films on Cu and Ag substrates. The nature of chemical bonds as probed by x-ray photoemission spectroscopy and Auger electron spectroscopy remains unchanged, so we regard this as evidence for metal-induced gap states (MIGS) formed by the proximity to a metal, rather than local bonds at the interface. The dependence on the film thickness shows that the MIGS are as thin as one monolayer. An ab initio electronic structure calculation supports the existence of the MIGS that are strongly localized at the interface.

  18. Metal-induced gap states at well defined alkali-halide/metal interfaces.

    PubMed

    Kiguchi, Manabu; Arita, Ryotaro; Yoshikawa, Genki; Tanida, Yoshiaki; Katayama, Masao; Saiki, Koichiro; Koma, Atsushi; Aoki, Hideo

    2003-05-16

    In order to search for states specific to insulator/metal interfaces, we have studied epitaxially grown interfaces with element-selective near edge x-ray absorption fine structure. An extra peak is observed below the bulk edge onset for LiCl films on Cu and Ag substrates. The nature of chemical bonds as probed by x-ray photoemission spectroscopy and Auger electron spectroscopy remains unchanged, so we regard this as evidence for metal-induced gap states (MIGS) formed by the proximity to a metal, rather than local bonds at the interface. The dependence on the film thickness shows that the MIGS are as thin as one monolayer. An ab initio electronic structure calculation supports the existence of the MIGS that are strongly localized at the interface.

  19. The formation of silver metal nanoparticles by ion implantation in silicate glasses

    NASA Astrophysics Data System (ADS)

    Vytykacova, S.; Svecova, B.; Nekvindova, P.; Spirkova, J.; Mackova, A.; Miksova, R.; Böttger, R.

    2016-03-01

    It has been shown that glasses containing silver metal nanoparticles are promising photonics materials for the fabrication of all-optical components. The resulting optical properties of the nanocomposite glasses depend on the composition and structure of the glass, as well as on the type of metal ion implanted and the experimental procedures involved. The main aim of this article was to study the influence of the conditions of the ion implantation and the composition of the glass on the formation of metal nanoparticles in such glasses. Four various types of silicate glasses were implanted with Ag+ ions with different energy (330 keV, 1.2 MeV and 1.7 MeV), with the fluence being kept constant (1 × 1016 ions cm-2). The as-implanted samples were annealed at 600 °C for 1 h. The samples were characterised in terms of: the nucleation of metal nanoparticles (linear optical absorption), the migration of silver through the glass matrix during the implantation and post-implantation annealing (Rutherford backscattering spectroscopy), and the oxidation state of silver (photoluminescence in the visible region).

  20. Alkali metal vapor removal from pressurized fluidized-bed combustor flue gas. Annual report, October 1979-September 1980

    SciTech Connect

    Johnson, I.; Swift, W.M.; Lee, S.H.D.

    1980-10-01

    In the application of pressurized fluidized-bed combustion (PFBC) to the generation of electricity, hot corrosion of the gas turbine (downstream from the combustor) by alkali metal compounds is a potential problem. The objective of this investigation is to develop a method for the removal of gaseous alkali metal compounds from the high-pressure high-temperature gas from a PFBC before the gas enters the gas turbine. The use of a granular bed filter, with either diatomaceous earth or activated bauxite as the bed material, is under study. Breakthrough data are reported on the sorption of gaseous NaCl by activated bauxite. Results are reported for the regeneration of activated bauxite using water leaching and a thermal swing method.

  1. Ground state of the polar alkali-metal-atom-strontium molecules: Potential energy curve and permanent dipole moment

    SciTech Connect

    Guerout, R.; Aymar, M.; Dulieu, O.

    2010-10-15

    In this study, we investigate the structure of the polar alkali-metal-atom-strontium diatomic molecules as possible candidates for the realization of samples of ultracold polar molecular species not yet investigated experimentally. Using a quantum chemistry approach based on effective core potentials and core polarization potentials, we model these systems as effective three-valence-electron systems, allowing for calculation of electronic properties with full configuration interaction. The potential curve and the permanent dipole moment of the {sup 2}{Sigma}{sup +} ground state are determined as functions of the internuclear distance for LiSr, NaSr, KSr, RbSr, and CsSr molecules. These molecules are found to exhibit a significant permanent dipole moment, though smaller than those of the alkali-metal-atom-Rb molecules.

  2. Low-temperature fabrication of alkali metal-organic charge transfer complexes on cotton textile for optoelectronics and gas sensing.

    PubMed

    Ramanathan, Rajesh; Walia, Sumeet; Kandjani, Ahmad Esmaielzadeh; Balendran, Sivacarendran; Mohammadtaheri, Mahsa; Bhargava, Suresh Kumar; Kalantar-zadeh, Kourosh; Bansal, Vipul

    2015-02-01

    A generalized low-temperature approach for fabricating high aspect ratio nanorod arrays of alkali metal-TCNQ (7,7,8,8-tetracyanoquinodimethane) charge transfer complexes at 140 °C is demonstrated. This facile approach overcomes the current limitation associated with fabrication of alkali metal-TCNQ complexes that are based on physical vapor deposition processes and typically require an excess of 800 °C. The compatibility of soft substrates with the proposed low-temperature route allows direct fabrication of NaTCNQ and LiTCNQ nanoarrays on individual cotton threads interwoven within the 3D matrix of textiles. The applicability of these textile-supported TCNQ-based organic charge transfer complexes toward optoelectronics and gas sensing applications is established.

  3. The relationship between molecular structure and biological activity of alkali metal salts of vanillic acid: Spectroscopic, theoretical and microbiological studies

    NASA Astrophysics Data System (ADS)

    Świsłocka, Renata; Piekut, Jolanta; Lewandowski, Włodzimierz

    In this paper we investigate the relationship between molecular structure of alkali metal vanillate molecules and their antimicrobial activity. To this end FT-IR, FT-Raman, UV absorption and 1H, 13C NMR spectra for lithium, sodium, potassium, rubidium and caesium vanillates in solid state were registered, assigned and analyzed. Microbial activity of studied compounds was tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Proteus vulgaris, Bacillus subtilis and Candida albicans. In order to evaluate the dependence between chemical structure and biological activity of alkali metal vanillates the statistical analysis was performed for selected wavenumbers from FT-IR spectra and parameters describing microbial activity of vanillates. The geometrical structures of the compounds studied were optimized and the structural characteristics were determined by density functional theory (DFT) using at B3LYP method with 6-311++G** as basis set. The obtained statistical equations show the existence of correlation between molecular structure of vanillates and their biological properties.

  4. Characterization of Adsorbed Alkali Metal Ions in 2:1 Type Clay Minerals from First-Principles Metadynamics.

    PubMed

    Ikeda, Takashi; Suzuki, Shinichi; Yaita, Tsuyoshi

    2015-07-30

    Adsorption states of alkali metal ions in three kinds of 2:1 type clay minerals are systematically investigated via first-principles-based metadynamics. Our reconstructed free energy surfaces in a two-dimensional space of coordination numbers specifically employed as collective variables for describing the interlayer cations show that an inner-sphere (IS) complex is preferentially formed for Cs(+) in the 2:1 type trioctahedral clay minerals with saponite-like compositions, where lighter alkali metal ions show a tendency to form an outer-sphere one instead. The strong preference for an IS complex observed for Cs(+) is found to result partially from the capability of recognizing selectively Cs(+) ions at the basal O atoms with the Lewis basicity significantly enhanced by the isomorphic substitution in tetrahedral sheets.

  5. In situ alkali-silica reaction observed by x-ray microscopy

    SciTech Connect

    Kurtis, K.E.; Monteiro, P.J.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-04-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction.

  6. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. [atomic spectra and electronic structure of alkali metals

    NASA Technical Reports Server (NTRS)

    Hartmann, S. R.; Happer, W.

    1974-01-01

    The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.

  7. Alkali Metal Cation versus Proton and Methyl Cation Affinities: Structure and Bonding Mechanism

    PubMed Central

    Boughlala, Zakaria; Fonseca Guerra, Célia

    2016-01-01

    Abstract We have analyzed the structure and bonding of gas‐phase Cl−X and [HCl−X]+ complexes for X+= H+, CH3 +, Li+, and Na+, using relativistic density functional theory (DFT). We wish to establish a quantitative trend in affinities of the anionic and neutral Lewis bases Cl− and HCl for the various cations. The Cl−X bond becomes longer and weaker along X+ = H+, CH3 +, Li+, and Na+. Our main purpose is to understand the heterolytic bonding mechanism behind the intrinsic (i.e., in the absence of solvent) alkali metal cation affinities (AMCA) and how this compares with and differs from those of the proton affinity (PA) and methyl cation affinity (MCA). Our analyses are based on Kohn–Sham molecular orbital (KS‐MO) theory in combination with a quantitative energy decomposition analysis (EDA) that pinpoints the importance of the different features in the bonding mechanism. Orbital overlap appears to play an important role in determining the trend in cation affinities. PMID:27551660

  8. Alkali-vapor cell with metal coated windows for efficient application of an electric field

    NASA Astrophysics Data System (ADS)

    Sarkisyan, D.; Sarkisyan, A. S.; Guéna, J.; Lintz, M.; Bouchiat, M.-A.

    2005-05-01

    We describe the implementation of a cylindrical T-shaped alkali-vapor cell for laser spectroscopy in the presence of a longitudinal electric field. The two windows are used as two electrodes of the high-voltage assembly, which is made possible by a metallic coating which entirely covers the inner and outer sides of the windows except for a central area to let the laser beams in and out of the cell. This allows very efficient application of the electric field, up to 2kV/cm in a rather dense superheated vapor, even when significant photoemission takes place at the windows during pulsed laser irradiation. The body of the cell is made of sapphire or alumina ceramic to prevent large currents resulting from surface conduction observed in cesiated glass cells. The technique used to attach the monocrystalline sapphire windows to the cell body causes minimal stress birefringence in the windows. In addition, reflection losses at the windows can be made very small. The vapor cell operates with no buffer gas and has no magnetic part. The use of this kind of cell has resulted in an improvement of the signal-to-noise ratio in the measurement of parity violation in cesium vapor underway at ENS, Paris. The technique can be applied to other situations where a brazed assembly would give rise to unacceptably large birefringence in the windows.

  9. Silicon halide-alkali metal flames as a source of solar grade silicon

    NASA Technical Reports Server (NTRS)

    Olson, D. B.; Miller, W. J.; Gould, R. K.

    1980-01-01

    The feasibility of using continuous high-temperature reactions of alkali metals and silicon halides to produce silicon in large quantities and of suitable purity for use in the production of photovoltaic solar cells was demonstrated. Low pressure experiments were performed demonstrating the production of free silicon and providing experience with the construction of reactant vapor generators. Further experiments at higher reagent flow rates were performed in a low temperature flow tube configuration with co-axial injection of reagents and relatively pure silicon was produced. A high temperature graphite flow tube was built and continuous separation of Si from NaCl was demonstrated. A larger scaled well stirred reactor was built. Experiments were performed to investigate the compatability of graphite based reactor materials of construction with sodium. At 1100 to 1200 K none of these materials were found to be suitable. At 1700 K the graphites performed well with little damage except to coatings of pyrolytic graphite and silicon carbide which were damaged.

  10. Atomic many-body effects and Lamb shifts in alkali metals

    NASA Astrophysics Data System (ADS)

    Ginges, J. S. M.; Berengut, J. C.

    2016-05-01

    We present a detailed study of the radiative potential method [V. V. Flambaum and J. S. M. Ginges, Phys. Rev. A 72, 052115 (2005), 10.1103/PhysRevA.72.052115], which enables the accurate inclusion of quantum electrodynamics (QED) radiative corrections in a simple manner in atoms and ions over the range 10 ≤Z ≤120 , where Z is the nuclear charge. Calculations are performed for binding energy shifts to the lowest valence s , p , and d waves over the series of alkali-metal atoms Na to E119. The high accuracy of the radiative potential method is demonstrated by comparison with rigorous QED calculations in frozen atomic potentials, with deviations on the level of 1%. The many-body effects of core relaxation and second- and higher-order perturbation theory on the interaction of the valence electron with the core are calculated. The inclusion of many-body effects tends to increase the size of the shifts, with the enhancement particularly significant for d waves; for K to E119, the self-energy shifts for d waves are only an order of magnitude smaller than the s -wave shifts. It is shown that taking into account many-body effects is essential for an accurate description of the Lamb shift.

  11. Interaction of alkali metals with perylene-3,4,9,10- tetracarboxylic-dianhydride thin films

    SciTech Connect

    Wuesten, J.; Berger, S.; Heimer, K.; Lach, S.; Ziegler, Ch.

    2005-07-01

    n doping of the molecular organic semiconductor perylene-3,4,9,10-tetracarboxylic-dianhydride (PTCDA) is often achieved by use of alkali metals as dopants. This doping process is commonly performed in two steps. In the first the dopant is evaporated onto the surface of the PTCDA film. As it has been believed that the dopant shows an inhomogeneous diffusion profile through the layer with most of the dopant accumulated in the first few layers, a subsequent annealing step has been performed in order to reach a homogeneous distribution of the dopant in the whole layer. In this paper experimental results concerning chemical composition ((angle resolved) X-ray photoemission spectroscopy, secondary-ion-mass spectrometry, Fourier transform infrared spectroscopy), electronic structure (ultraviolet photoemission spectroscopy, inverse photoemission spectroscopy), as well as electrical properties (conductivity, Seebeck coefficient) are shown before and after doping and before and after annealing. These results suggest that the deposited dopant is redistributed and partially removed during the annealing step. A model for the dopant distribution is suggested.

  12. Application of alkali metal-doped carbons for hydrogen recovery and isotope separation.

    PubMed

    Akuzawa, N; Okano, Y; Iwashita, T; Matsumoto, R; Soneda, Y

    2011-10-01

    Hydrogen-sorption isotherms of alkali metal-doped carbons at 77 K were determined for promoting application of these materials as hydrogen-recovery and isotope-separation agent. The hydrogen-sorption behavior of rubidium-doped Grafoil, with composition of RbC24, showed high sorption ability against hydrogen at low pressure. Taking into account the fact that sorption-desorption was fast and reversible, and the equilibrium pressure at half coverage was very low, i.e., 40 Pa, RbC24 prepared from Grafoil is promising as a recovery agent for hydrogen gas at low pressure. The hydrogen (H2)/deuterium(D2)-sorption isotherms of potassium-doped carbons with composition of KC10, prepared from multi wall carbon nanotube (MWCNT) and carbons derived from petroleum cokes with heat-treatment temperatures of 1000 and 1500 degrees C, were also determined. Isotope separation coefficient was estimated from those isotherms. A very large isotope effect was found for KC10 prepared from MWCNT, comparable to those prepared from carbons with heat-treatment temperatures of 1000 or 1500 degrees C. However, a severe problem was found for KC10 (MWCNT) that repetition of the sorption-desorption cycles resulted in the decrease of the sorbed amount of H2 and D2.

  13. Alkali Metal Cation versus Proton and Methyl Cation Affinities: Structure and Bonding Mechanism.

    PubMed

    Boughlala, Zakaria; Fonseca Guerra, Célia; Bickelhaupt, F Matthias

    2016-06-01

    We have analyzed the structure and bonding of gas-phase Cl-X and [HCl-X](+) complexes for X(+)= H(+), CH3 (+), Li(+), and Na(+), using relativistic density functional theory (DFT). We wish to establish a quantitative trend in affinities of the anionic and neutral Lewis bases Cl(-) and HCl for the various cations. The Cl-X bond becomes longer and weaker along X(+) = H(+), CH3 (+), Li(+), and Na(+). Our main purpose is to understand the heterolytic bonding mechanism behind the intrinsic (i.e., in the absence of solvent) alkali metal cation affinities (AMCA) and how this compares with and differs from those of the proton affinity (PA) and methyl cation affinity (MCA). Our analyses are based on Kohn-Sham molecular orbital (KS-MO) theory in combination with a quantitative energy decomposition analysis (EDA) that pinpoints the importance of the different features in the bonding mechanism. Orbital overlap appears to play an important role in determining the trend in cation affinities. PMID:27551660

  14. Color-control of the persistent luminescence of cadmium silicate doped with transition metals

    SciTech Connect

    Abreu, Carolina M.; Silva, Ronaldo S.; Valerio, Mário E.G.; Macedo, Zélia S.

    2013-04-15

    The structural and optical characterization of cadmium silicate (CdSiO{sub 3}) doped with transition metals is reported. This crystalline system presents intrinsic luminescence and is usually studied as host matrix for rare earth ions. In this work, CdSiO{sub 3} was doped with Mn, Ni and Cr to produce multicolored luminescent materials. Single crystalline CdSiO{sub 3} was obtained via solid state synthesis at 1000 °C/8 h. The valence of the dopants inserted in the host matrix was determined via XANES as 3+ for Cr, 2+ for Ni and both 2+ and 3+ for Mn, according to XANES studies. The optical absorption spectra of the samples presented wide bands in the visible region that were associated with the internal transitions of the dopants. All the samples presented photoluminescent bands near 420 nm, 496 nm and 591 nm, with different relative intensities that yield characteristic luminescence colors ranging from blue to red. - Graphical abstract: Phosphorescence of cadmium silicate doped with transition metals: nature of defects and possible luminescent channels. Highlights: ► CdSiO{sub 3} was doped with Mn, Ni and Cr to produce multicolored phosphors. ► Valence of the dopants was determined as 3+ for Cr, 2+ for Ni and 2+ and 3+ for Mn. ► The presence of absorption bands in the visible region led to self-absorption. ► Self-absorption in some cases can decrease the light output. ► Luminescent channels were created and related to internal transitions of the dopants.

  15. The chemical imprint of silicate dust on the most metal-poor stars

    SciTech Connect

    Ji, Alexander P.; Frebel, Anna; Bromm, Volker E-mail: afrebel@mit.edu

    2014-02-20

    We investigate the impact of dust-induced gas fragmentation on the formation of the first low-mass, metal-poor stars (<1 M {sub ☉}) in the early universe. Previous work has shown the existence of a critical dust-to-gas ratio, below which dust thermal cooling cannot cause gas fragmentation. Assuming that the first dust is silicon-based, we compute critical dust-to-gas ratios and associated critical silicon abundances ([Si/H]{sub crit}). At the density and temperature associated with protostellar disks, we find that a standard Milky Way grain size distribution gives [Si/H]{sub crit} = –4.5 ± 0.1, while smaller grain sizes created in a supernova reverse shock give [Si/H]{sub crit} = –5.3 ± 0.1. Other environments are not dense enough to be influenced by dust cooling. We test the silicate dust cooling theory by comparing to silicon abundances observed in the most iron-poor stars ([Fe/H] < -4.0). Several stars have silicon abundances low enough to rule out dust-induced gas fragmentation with a standard grain size distribution. Moreover, two of these stars have such low silicon abundances that even dust with a shocked grain size distribution cannot explain their formation. Adding small amounts of carbon dust does not significantly change these conclusions. Additionally, we find that these stars exhibit either high carbon with low silicon abundances or the reverse. A silicate dust scenario thus suggests that the earliest low-mass star formation in the most metal-poor regime may have proceeded through two distinct cooling pathways: fine-structure line cooling and dust cooling. This naturally explains both the carbon-rich and carbon-normal stars at extremely low [Fe/H].

  16. Metal and Silicate Particles Including Nanoparticles Are Present in Electronic Cigarette Cartomizer Fluid and Aerosol

    PubMed Central

    Williams, Monique; Villarreal, Amanda; Bozhilov, Krassimir; Lin, Sabrina; Talbot, Prue

    2013-01-01

    Background Electronic cigarettes (EC) deliver aerosol by heating fluid containing nicotine. Cartomizer EC combine the fluid chamber and heating element in a single unit. Because EC do not burn tobacco, they may be safer than conventional cigarettes. Their use is rapidly increasing worldwide with little prior testing of their aerosol. Objectives We tested the hypothesis that EC aerosol contains metals derived from various components in EC. Methods Cartomizer contents and aerosols were analyzed using light and electron microscopy, cytotoxicity testing, x-ray microanalysis, particle counting, and inductively coupled plasma optical emission spectrometry. Results The filament, a nickel-chromium wire, was coupled to a thicker copper wire coated with silver. The silver coating was sometimes missing. Four tin solder joints attached the wires to each other and coupled the copper/silver wire to the air tube and mouthpiece. All cartomizers had evidence of use before packaging (burn spots on the fibers and electrophoretic movement of fluid in the fibers). Fibers in two cartomizers had green deposits that contained copper. Centrifugation of the fibers produced large pellets containing tin. Tin particles and tin whiskers were identified in cartridge fluid and outer fibers. Cartomizer fluid with tin particles was cytotoxic in assays using human pulmonary fibroblasts. The aerosol contained particles >1 µm comprised of tin, silver, iron, nickel, aluminum, and silicate and nanoparticles (<100 nm) of tin, chromium and nickel. The concentrations of nine of eleven elements in EC aerosol were higher than or equal to the corresponding concentrations in conventional cigarette smoke. Many of the elements identified in EC aerosol are known to cause respiratory distress and disease. Conclusions The presence of metal and silicate particles in cartomizer aerosol demonstrates the need for improved quality control in EC design and manufacture and studies on how EC aerosol impacts the health of

  17. Element specificity of ortho-positronium annihilation for alkali-metal loaded SiO{sub 2} glasses

    SciTech Connect

    Sato, K.; Hatta, T.

    2015-03-07

    Momentum distributions associated with ortho-positronium (o-Ps) pick-off annihilation photon are often influenced by light elements, as, e.g., carbon, oxygen, and fluorine. This phenomenon, so-called element specificity of o-Ps pick-off annihilation, has been utilized for studying the elemental environment around the open spaces. To gain an insight into the element specificity of o-Ps pick-off annihilation, the chemical shift of oxygen 1s binding energy and the momentum distributions associated with o-Ps pick-off annihilation were systematically investigated for alkali-metal loaded SiO{sub 2} glasses by means of X-ray photoelectron spectroscopy and positron-age-momentum correlation spectroscopy, respectively. Alkali metals introduced into the open spaces surrounded by oxygen atoms cause charge transfer from alkali metals to oxygen atoms, leading to the lower chemical shift for the oxygen 1s binding energy. The momentum distribution of o-Ps localized into the open spaces is found to be closely correlated with the oxygen 1s chemical shift. This correlation with the deepest 1s energy level evidences that the element specificity of o-Ps originates from pick-off annihilation with orbital electrons, i.e., dominantly with oxygen 2p valence electrons and s electrons with lower probability.

  18. The Effect of Core-Mantle Differentiation on V, Cr, and Mn: Experimental Metal/Silicate Partitioning Results

    NASA Technical Reports Server (NTRS)

    Chabot, N. L.; Agee, C. B.

    2001-01-01

    The abundances of V, Cr, and Mn are similarly depleted in the Earth and Moon. We present metal/silicate partitioning results which examine if the depletions can be explained by a core formation event. Additional information is contained in the original extended abstract.

  19. UV and IR spectroscopy of cold 1,2-dimethoxybenzene complexes with alkali metal ions.

    PubMed

    Inokuchi, Yoshiya; Boyarkin, Oleg V; Ebata, Takayuki; Rizzo, Thomas R

    2012-04-01

    We report UV photodissociation (UVPD) and IR-UV double-resonance spectra of 1,2-dimethoxybenzene (DMB) complexes with alkali metal ions, M(+)·DMB (M = Li, Na, K, Rb, and Cs), in a cold, 22-pole ion trap. The UVPD spectrum of the Li(+) complex shows a strong origin band. For the K(+)·DMB, Rb(+)·DMB, and Cs(+)·DMB complexes, the origin band is very weak and low-frequency progressions are much more extensive than that of the Li(+) ion. In the case of the Na(+)·DMB complex, spectral features are similar to those of the K(+), Rb(+), and Cs(+) complexes, but vibronic bands are not resolved. Geometry optimization with density functional theory indicates that the metal ions are bonded to the oxygen atoms in all the M(+)·DMB complexes. For the Li(+) complex in the S(0) state, the Li(+) ion is located in the same plane as the benzene ring, while the Na(+), K(+), Rb(+), and Cs(+) ions are located off the plane. In the S(1) state, the Li(+) complex has a structure similar to that in the S(0) state, providing the strong origin band in the UV spectrum. In contrast, the other complexes show a large structural change in the out-of-plane direction upon S(1)-S(0) excitation, which results in the extensive low-frequency progressions in the UVPD spectra. For the Na(+)·DMB complex, fast charge transfer occurs from Na(+) to DMB after the UV excitation, making the bandwidth of the UVPD spectrum much broader than that of the other complexes and producing the photofragment DMB(+) ion.

  20. Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator

    NASA Technical Reports Server (NTRS)

    Garber, Anne E.; Dickens, Ricky E.

    2011-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.

  1. Structure of glasses containing transition metal ions. Progress report, February 1, 1979-January 31, 1980

    SciTech Connect

    White, W B; Furukawa, T; Tsong, I S.T.; Fox, K; Herman, J S; Houser, C; Nelson, C

    1980-02-01

    New normal coordinate calculations were used to relate the vibrational frequencies of silicate glasses to Si-O force constants. These appear to account for the observed frequency shifts with degree of silica polymerization. Raman spectroscopy has been used to elucidate the structure of sodium borosilicate glasses and of sodium aluminosilicate glasses. Structures of compositionally complex glasses can be understood if spectra are measured on many glasses spaced at small compositional intervals. Optical absorption spectra were used to investigate the structural setting of iron in alkali silicate glasses. Research on the alkali-hydrogen exchange in alkali silicate glasses was completed and additional work on ternary glasses is under way. A series of appendices present completed work on the structural investigations of alkali borosilicate glasses, on the structural setting of transition metal ions in glasses, and on the diffusion of hydrogen in alkali silicate glasses.

  2. Lightning strike fusion: extreme reduction and metal-silicate liquid immiscibility.

    PubMed

    Essene, E J; Fisher, D C

    1986-10-10

    A glassy fulgurite, formed recently on a morainal ridge in southeastern Michigan, contains micrometer- to centimeter-sized metallic globules rich in native silicon, which unmixed from a silica-rich liquid. The unusual character of these globules and their potential for elucidating conditions of fulgurite formation prompted further study. Thermodynamic calculations indicate that temperatures in excess of 2000 K and reducing conditions approaching those of the SiO(2)-Si buffer were needed to form the coexisting metallic and silicate liquids. The phases produced are among the most highly reduced naturally occurring materials known. Some occurrences of other highly reduced minerals may also be due to lightning strike reduction. Extreme reduction and volatilization may also occur during high-temperature events such as lightning strikes in presolar nebulae and impacts of extraterrestrial bodies. As a result of scavenging of platinum-group elements by highly reduced metallic liquids, geochemical anomalies associated with the Cretaceous-Tertiary boundary may have a significant terrestrial component even if produced through bolide impact. PMID:17746479

  3. Highly polar bonds and the meaning of covalency and ionicity--structure and bonding of alkali metal hydride oligomers.

    PubMed

    Bickelhaupt, F Matthias; Solà, Miquel; Guerra, Célia Fonseca

    2007-01-01

    The hydrogen-alkali metal bond is simple and archetypal, and thus an ideal model for studying the nature of highly polar element-metal bonds. Thus, we have theoretically explored the alkali metal hydride monomers, HM, and (distorted) cubic tetramers, (HM)4, with M = Li, Na, K, and Rb, using density functional theory (DFT) at the BP86/TZ2P level. Our objective is to determine how the structure and thermochemistry (e.g., H-M bond lengths and strengths, oligomerization energies, etc.) of alkali metal hydrides depend on the metal atom, and to understand the emerging trends in terms of quantitative Kohn-Sham molecular orbital (KS-MO) theory. The H-M bond becomes longer and weaker, both in the monomers and tetramers, if one descends the periodic table from Li to Rb. Quantitative bonding analyses show that this trend is not determined by decreasing electrostatic attraction but, primarily, by the weakening in orbital interactions. The latter become less stabilizing along Li-Rb because the bond overlap between the singly occupied molecular orbitals (SOMOs) of H* and M* radicals decreases as the metal ns atomic orbital (AO) becomes larger and more diffuse. Thus, the H-M bond behaves as a text-book electron-pair bond and, in that respect, it is covalent, despite a high polarity. For the lithium and sodium hydride tetramers, the H4 tetrahedron is larger than and surrounds the M4 cluster (i.e., H-H > M-M). Interestingly, this is no longer the case in the potassium and rubidium hydride tetramers, in which the H4 tetrahedron is smaller than and inside the M4 cluster (i.e., H-H < M-M). PMID:17328442

  4. New class of scorpionate: tris(tetrazolyl)-iron complex and its different coordination modes for alkali metal ions.

    PubMed

    Park, Ka Hyun; Lee, Kang Mun; Go, Min Jeong; Choi, Sung Ho; Park, Hyoung-Ryun; Kim, Youngjo; Lee, Junseong

    2014-08-18

    We report formation of a new metallascorpionate ligand, [FeL3](3-) (IPtz), containing a Fe core and three 5-(2-hydroxyphenyl)-1H-tetrazole (LH2) ligands. It features two different binding sites, oxygen and nitrogen triangles, which consist of three oxygen or nitrogen donors from tetrazole. The binding affinities of the complex for three alkali metal ions were studied using UV spectrophotometry titrations. All three alkali metal ions show high affinities and binding constants (>3 × 10(6) M(-1)), based on the 1:1 binding isotherms to IPtz. The coordination modes of the alkali metals and IPtz in the solid were studied using X-ray crystallography; two different electron-donor sites show different coordination numbers for Li(+), Na(+), and K(+) ions. The oxygen triangles have the κ(2) coordination mode with Li(+) and κ(3) coordination mode with Na(+) and K(+) ions, whereas the nitrogen triangles show κ(3) coordination with K(+) only. The different binding affinities of IPtz in the solid were manipulated using multiple metal precursors. A Fe-K-Zn trimetallic complex was constructed by assembly of an IPtz ligand, K, and Zn precursors and characterized using X-ray crystallography. Oxygen donors are coordinated with the K ion via the κ(3) coordination mode, and nitrogen donors are coordinated with Zn metal by κ(3) coordination. The solid-state structure was confirmed to be a honeycomb coordination polymer with a one-dimensional infinite metallic array, i.e., -(K-K-Fe-Zn-Fe-K)n-.

  5. In situ insights to Se (S) partitioning between silicate and metallic melts at extreme conditions

    NASA Astrophysics Data System (ADS)

    Borchert, M.; Petitgirard, S.; Appel, K.; Watenphul, A.; Morgenroth, W.

    2012-12-01

    The Earth's core mainly consists of a metallic Fe-Ni mixture. However, seismic observations show that the density is about 5-10% lower than expected for an Fe-Ni alloy under similar pressure and temperature conditions (e.g., [1,2]). This discovery initiated numerous studies to identify and quantify light elements in the Earth0s core. Among others, sulphur has been suggested to be a promisingly candidate to alloy with the metallic core because of its depletion in the crust and the mantle relative to other volatile elements by several orders of magnitude (e.g., [3-5]). In the last decades, several experimental studies have aimed to quantify the sulphur content in the Earth's core and to determine its influence on the physical properties (e.g., [6]). However, experimental data on sulphur partitioning between silicate and metallic liquids at pressures and temperatures relevant for core-mantle boundary conditions are missing. This lack is due to pressure and temperature limitations of conventional experimental approaches (up to 25 GPa and 2200 K). New developments, like laser-heated diamond-anvil cells (LDAC), allow studies at core-mantle boundary conditions, but in-situ chemical analysis of sulphur in LDACs is impossible due to the high absorption of S fluorescence in the diamonds. Instead of sulphur, selenium can be used to model sulphur partitioning between silicate and metallic melts at elevated PT conditions. This is based on the fact that sulphur and selenium can be considered as geochemical twins ([7,8]). The main advantage of this approach is the much higher excitation energy of selenium compared to sulphur, which enables in-situ XRF analysis in LDACs. Here, we present preliminary data on Se partitioning between silicate and metallic melt at extreme conditions. The experiments have been performed in double-sided laser-heated LDACs at the high pressure beamlines P02.2 (DESY, Germany) and ID27 (ESRF, France) as described in [9]. Micro-XRF mappings are used to

  6. Experimental and Theoretical Studies of Pressure Broadened Alkali-Metal Atom Resonance Lines

    NASA Technical Reports Server (NTRS)

    Shindo, F.; Zhu, C.; Kirby, K.; Babb, J. F.

    2006-01-01

    We are carrying out a joint theoretical and experimental research program to study the broadening of alkali atom resonance lines due to collisions with helium and molecular hydrogen for applications to spectroscopic studies of brown dwarfs and extrasolar giant planets.

  7. Raman and nuclear magnetic resonance investigation of alkali metal vapor interaction with alkene-based anti-relaxation coating.

    PubMed

    Tretiak, O Yu; Blanchard, J W; Budker, D; Olshin, P K; Smirnov, S N; Balabas, M V

    2016-03-01

    The use of anti-relaxation coatings in alkali vapor cells yields substantial performance improvements compared to a bare glass surface by reducing the probability of spin relaxation in wall collisions by several orders of magnitude. Some of the most effective anti-relaxation coating materials are alpha-olefins, which (as in the case of more traditional paraffin coatings) must undergo a curing period after cell manufacturing in order to achieve the desired behavior. Until now, however, it has been unclear what physicochemical processes occur during cell curing, and how they may affect relevant cell properties. We present the results of nondestructive Raman-spectroscopy and magnetic-resonance investigations of the influence of alkali metal vapor (Cs or K) on an alpha-olefin, 1-nonadecene coating the inner surface of a glass cell. It was found that during the curing process, the alkali metal catalyzes migration of the carbon-carbon double bond, yielding a mixture of cis- and trans-2-nonadecene. PMID:26957176

  8. Raman and nuclear magnetic resonance investigation of alkali metal vapor interaction with alkene-based anti-relaxation coating

    NASA Astrophysics Data System (ADS)

    Tretiak, O. Yu.; Blanchard, J. W.; Budker, D.; Olshin, P. K.; Smirnov, S. N.; Balabas, M. V.

    2016-03-01

    The use of anti-relaxation coatings in alkali vapor cells yields substantial performance improvements compared to a bare glass surface by reducing the probability of spin relaxation in wall collisions by several orders of magnitude. Some of the most effective anti-relaxation coating materials are alpha-olefins, which (as in the case of more traditional paraffin coatings) must undergo a curing period after cell manufacturing in order to achieve the desired behavior. Until now, however, it has been unclear what physicochemical processes occur during cell curing, and how they may affect relevant cell properties. We present the results of nondestructive Raman-spectroscopy and magnetic-resonance investigations of the influence of alkali metal vapor (Cs or K) on an alpha-olefin, 1-nonadecene coating the inner surface of a glass cell. It was found that during the curing process, the alkali metal catalyzes migration of the carbon-carbon double bond, yielding a mixture of cis- and trans-2-nonadecene.

  9. Plasma assisted spectroscopic monitoring of alkali metals in pressurised combustion and gasification

    SciTech Connect

    Haeyrinen, V.T.; Hernberg, R.G.

    1995-07-01

    The paper describes an instrument for on-line concentration measurement of vaporised alkali compounds in pressurised industrial combustion and gasification processes. The measurement is based on Plasma Excited Alkali Resonance Line Spectroscopy (PEARLS) at the elevated pressure (1-3 MPa) of the process. Results are presented from laboratory calibration measurements and test measurements of sodium and potassium vapours resulting from the combustion of coal powder in a pressurised entrained flow reactor.

  10. Experimental Constraints on the Solubility and Partitioning of Carbon between Metallic and Silicate Melt in a Shallow Magma Ocean

    NASA Astrophysics Data System (ADS)

    Chi, Han

    The budget and origin of carbon in Earth and other terrestrial planets are debated and one of the key unknowns is the behavior and fate of carbon during early planetary processes including accretion, core formation, and magma ocean crystallization. Here we determine, experimentally, the solubility of carbon in coexisting Fe-Ni alloy melt and basaltic silicate melt in shallow magma ocean conditions, i.e., at 1-3 GPa, 1500-1800 °C. Oxygen fugacity of the experiments, estimated based on Fe (in metallic alloy melt)-FeO (in silicate melt) equilibrium, varied from IW-0.37 and IW-1.02, where IW refers to the oxygen fugacity imposed by the coexistence of iron and wustite. Four different starting mixes, each with 7:3 silicate:metal mass ratio, with silicate melt NBO/T (estimated proportion of non-bridging oxygen with respect to tetrahedral cations) ranging from 0.81 to 1.54 were studied. Concentrations of carbon in the alloy melt were determined using electron microprobe whereas carbon contents of quenched basaltic glasses were determined using secondary ionization mass spectrometry (SIMS). Identification of carbon and hydrogen-bearing species in silicate glasses was performed using Raman spectroscopy. Our results show that carbon in the metallic melt varies between 4.39 and 7.43 wt.% and increases with increasing temperature and modestly with increasing pressure. Carbon concentration in the silicate melts, on the other hand, varies from 11+/-1 ppm to 111+/-7 ppm and is negatively correlated with pressure but positively correlated with temperature, the NBO/T (non-bridging per tetrahydron, an index of the depolymerization of the silicate melt), the oxygen fugacity and the water content of the silicate melts. Raman and FT-IR results show that at our experimental conditions, carbon in silicate melt is dissolved as hydrogenated species, in addition to . The calculated carbon partition coefficient varies from 510+/-53 to 5369+/-217 and varies systematically as a function of P

  11. Selectivity and permeation in calcium release channel of cardiac muscle: alkali metal ions.

    PubMed Central

    Chen, D P; Xu, L; Tripathy, A; Meissner, G; Eisenberg, B

    1999-01-01

    Current was measured from single open channels of the calcium release channel (CRC) of cardiac sarcoplasmic reticulum (over the range +/-180 mV) in pure and mixed solutions (e.g., biionic conditions) of the alkali metal ions Li+, K+, Na+, Rb+, Cs+, ranging in concentration from 25 mM to 2 M. The current-voltage (I-V) relations were analyzed by an extension of the Poisson-Nernst-Planck (PNP) formulation of electrodiffusion, which includes local chemical interaction described by an offset in chemical potential, which likely reflects the difference in dehydration/solvation/rehydration energies in the entry/exit steps of permeation. The theory fits all of the data with few adjustable parameters: the diffusion coefficient of each ion species, the average effective charge distribution on the wall of the pore, and an offset in chemical potential for lithium and sodium ions. In particular, the theory explains the discrepancy between "selectivities" defined by conductance sequence and "selectivities" determined by the permeability ratios (i.e., reversal potentials) in biionic conditions. The extended PNP formulation seems to offer a successful combined treatment of selectivity and permeation. Conductance selectivity in this channel arises mostly from friction: different species of ions have different diffusion coefficients in the channel. Permeability selectivity of an ion is determined by its electrochemical potential gradient and local chemical interaction with the channel. Neither selectivity (in CRC) seems to involve different electrostatic interaction of different ions with the channel protein, even though the ions have widely varying diameters. PMID:10049318

  12. Study on the Characteristics of an Alkali-Metal Thermoelectric Power Generation System

    NASA Astrophysics Data System (ADS)

    Lee, Wook-Hyun; Hwang, Hyun-Chang; Lee, Ji-Su; Kim, Pan-Jo; Lim, Sang-Hyuk; Rhi, Seok-Ho; Lee, Kye-Bock; Lee, Ki-Woo

    2015-10-01

    In the present study, a numerical simulation and experimental studies of an alkali-metal thermoelectric energy converter (AMTEC) system were carried out. The present, unique AMTEC model consists of an evaporator, a β-alumina solid electrolyte (BASE) tube, a condenser, and an artery cable wick. The key points for operation of the present AMTEC were 1100 K in the evaporator and 600 K in the condenser. A numerical model based on sodium-saturated porous wicks was developed and shown to be able to simulate the AMTEC system. The simulation results show that the AMTEC system can generate up to 100 W with a given design. The AMTEC system developed in the present work and used in the practical investigations could generate an electromotive force of 7 V. Artery wick and evaporator wick structures were simulated for the optimum design. Both sodium-saturated wicks were affected by numerous variables, such as the input heat power, cooling temperature, sodium mass flow rate, and capillary-driven fluid flow. Based on an effective thermal conductivity model, the presented simulation could successfully predict the system performance. Based on the numerical simulation, the AMTEC system operates with efficiency near 10% to 15%. In the case of an improved BASE design, the system could reach efficiency of over 30%. The system was designed for 0.6 V power, 25 A current, and 100 W power input. In addition, in this study, the temperature effects in each part of the AMTEC system were analyzed using a heat transfer model in porous media to apply to the computational fluid dynamics at a predetermined temperature condition for the design of a 100-W AMTEC prototype. It was found that a current density of 0.5 A/cm2 to 0.9 A/cm2 for the BASE is suitable when the temperatures of the evaporator section and condenser section are 1100 K and 600 K, respectively.

  13. Valence and metal/silicate partitioning of Mo: Implications for conditions of Earth accretion and core formation

    NASA Astrophysics Data System (ADS)

    Righter, K.; Danielson, L. R.; Pando, K. M.; Shofner, G. A.; Sutton, S. R.; Newville, M.; Lee, C.-T.

    2016-03-01

    To better understand and predict the partition coefficient of Mo at the conditions of the deep interior of Earth and other terrestrial planets or bodies, we have undertaken new measurements of the valence and partitioning of Mo. X-ray absorption near edge structure (XANES) K-edge spectra for Mo have been measured in a series of Fe-bearing glasses produced at 1 bar and higher PT conditions. High pressure experiments have been carried out up to 19 GPa in order to better understand the effect of pressure on Mo partitioning. And, finally, a series of experiments at very low fO2 conditions and high Si content metallic liquids has been carried out to constrain the effect of Si on the partitioning of Mo between metallic liquids and silicate melt. The valence measurements demonstrate that Mo undergoes a transition from 4+ to 6+ near IW-1, in general agreement with previous 1 bar studies on FeO-free silicate melts. High pressure experiments demonstrate a modest pressure dependence of D (Mo) metal/silicate and, combined with previous results, show a significant decrease with pressure that must be quantified in any predictive expression. Finally, the effect of dissolved Si in Fe-rich metallic liquid is to decrease D (Mo) significantly, as suggested by previous work in metallurgical systems. The effect of pressure, temperature, oxygen fugacity, metallic liquid composition, and silicate melt composition can be quantified by using multiple linear regression of available experimental data for Mo. Our XANES results show that Mo will be 4+ at conditions of core formation, so only experiments carried out at fO2 of IW-1 and lower were used in the regressions. Application of predictive expressions to Earth accretion shows that D (Mo) decreases to values consistent with an equilibrium scenario for early Earth core-mantle. The Mo content of the primitive upper mantle (PUM) can be attained by metal-silicate equilibrium involving S-, C-, and Si-bearing metallic liquid, and peridotite

  14. Tandem mass spectrometric study of ciprofloxacin-poly(ethylene glycol) conjugate in the presence of alkali metal ions

    NASA Astrophysics Data System (ADS)

    Kéki, Sándor; Nagy, Lajos; Kuki, Ákos; Pintér, Gábor; Herczegh, Pál; Zsuga, Miklós

    2008-08-01

    The fragmentation and fragmentation behaviors of singly, doubly, and triply charged adducts of ciprofloxacin-poly(ethylene glycol) conjugate (P_Cf) with alkali metal ions, including Li+, Na+ and K+ ions, generated by electrospray (ESI) were studied as a function of collision energy. The product ion spectra of adducts with charge states +1, +2, and +3 are dominated by product ions arising from the loss-neutral moiety (ciprofloxacin) and CO2, and ions formed by dissociation of the precursor ion ([P_Cf + xM]x+) into product ions [P + (x - 1)M](x-1)+ and [Cf + M]+ (where P_Cf, P and Cf represent the ciprofloxacin-poly(ethylene glycol) conjugate, the poly(ethylene glycol) backbone without the endgroups, and the ciprofloxacin moiety, respectively; M is the alkali metal ion and x is the charge). It was found that the metal ions do not significantly alter the fragmentation pattern of ciprofloxacin-poly(ethylene glycol) conjugate. It is also interesting that the run and the shape of the survival yield curves for the singly and doubly charged adduct ions are independent of the cation. However, in the case of triply charged adducts, survival yield curves follow each other in the order K+, Na+, and Li+. Based on the experimental results, a fragmentation mechanism for the singly and multiply charged adducts of P_Cf with alkali metal ions is given. In addition, a tentative description of the signal intensity variations of the product ions with the lab frame collision energy is also reported.

  15. How alkali metal ion binding alters the conformation preferences of gramicidin A: a molecular dynamics and ion mobility study.

    PubMed

    Chen, Liuxi; Gao, Yi Qin; Russell, David H

    2012-01-12

    Here, we present a systematic study combing electrospray ionization-ion mobility experiments and an enhanced sampling molecular dynamics, specifically integrated tempering sampling molecular dynamics simulations (ITS-MDS), to explore the conformations of alkali metal ion (Na, K, and Cs) adducts of gramicidin A (GA) in vacuo. Folding simulation is performed to obtain inherent conformational preferences of neutral GA to provide insights about how the binding of metal ions influences the intrinsic conformations of GA. The comparison between conformations of neutral GA and alkali metal ion adducts reveals a high degree of structural similarity, especially between neutral GA and [GA + Na](+); however, the structural similarities decrease as ionic radius of the metal increases. Collision cross section (CCS) profiles for [GA + Na](+) and [GA + Cs](+) ions obtained from by ITS-MDS compare favorably with the experimental CCS, but there are significant differences from CCS profiles for [GA + K](+) ions. Such discrepancies between the calculated and measured CCS profiles for [GA + K](+) are discussed in terms of limitations in the simulation force field as well as possible size-dependent coordination of the [GA + K](+) ion complex.

  16. Metal-Silicate Partitioning of Various Siderophile Elements at High Pressure and High Temperatures: a Diamond Anvil Cell Study

    NASA Astrophysics Data System (ADS)

    Badro, J.; Blanchard, I.; Siebert, J.

    2015-12-01

    Core formation is the major chemical fractionation that occurred on Earth. This event is widely believed to have happened at pressures of at least 40 GPa and temperatures exceeding 3000 K. It has left a significant imprint on the chemistry of the mantle by removing most of the siderophile (iron-loving) elements from it. Abundances of most siderophile elements in the bulk silicate Earth are significantly different than those predicted from experiments at low P-T. Among them, vanadium, chromium, cobalt and gallium are four siderophile elements which abundances in the mantle have been marked by core formation processes. Thus, understand their respective abundance in the mantle can help bringing constraints on the conditions of Earth's differentiation. We performed high-pressure high-temperature experiments using laser heating diamond anvil cell to investigate the metal-silicate partitioning of those four elements. Homogeneous glasses doped in vanadium, chromium, cobalt and gallium were synthesized using a levitation furnace and load inside the diamond anvil cell along with metallic powder. Samples were recovered using a Focused Ion Beam and chemically analyzed using an electron microprobe. We investigate the effect of pressure, temperature and metal composition on the metal-silicate partitioning of V, Cr, Co and Ga. Three previous studies focused on V, Cr and Co partitioning at those conditions of pressure and temperature, but none explore gallium partitioning at the relevant extreme conditions of core formation. We will present the first measurements of gallium metal-silicate partitioning performed at the appropriate conditions of pressure and temperature of Earth's differentiation.

  17. Metal/Silicate Partitioning of Mo, W and V: Effects of T, P, X and fO2

    NASA Astrophysics Data System (ADS)

    Hill, E.; Domanik, K. J.; Drake, M. J.

    2009-12-01

    Existing studies have produced some confusion concerning the trends found for Mo and W metal/silicate partitioning. The behavior of V, however, is reasonably understood and hence allows for cross-laboratory comparisons. We are undertaking high-pressure, high-temperature experiments to study the metal/silicate partitioning behavior of all three elements as a consequence of varying intensive variables and XC. To date we have obtained values for the metal/silicate partitioning coefficients (Dm/s) of Mo, W and V from experiments at 5 and 7 GPa, 2173 K to 2573 K, ranging in ΔfO2 -0.3 IW to -1.6 IW, and melt polymerization (measured as NBO/T) 2.96 to 3.46. Trends for Dm/s versus T differ for the three elements. At 5 and 7 GPa, log DMo decreases with increasing T. For log DW, over the same P range, T effects are subtle and not easily separated from those of other variables (i.e., XC, fO2 and NBO/T), hence we are not at present able to state how T affects log DW (c.f. Cottrell et al., 2009 who may have found a small effect of T on DW). Values of log DV increase with increasing T, in agreement with Chabot and Agee (2003) who found the same effect in experiments from 1 to 3 GPa. Differences in fO2 and NBO/T, for experiments over our pressure range, mask the effect of P on partitioning. For all three elements, a reduction in ΔfO2 results in higher metal/silicate partition coefficients. In contrast, increasing NBO/T results in lower log Dm/s. Carbon saturation of the metal melt (7.6 to 10.7 wt%), caused by contamination due to the use of graphite capsules in our experiments, increases with P and has a measurable effect on the metal/silicate partitioning of elements. Removal of the effect of C by using the approach of Wade and Wood (2005) and Corgne et al., (2008) results in a reduction of ΔfO2 and log Dm/s values. In the case of V, the reduction in the activity of this element in the metal melt is so large as to effectively indicate it would not partition into the metal

  18. The Metal-Silicate Partitioning of Tungsten at Magma Ocean Conditions Using a Laser-Heated Diamond Anvil Cell

    NASA Astrophysics Data System (ADS)

    Bennett, N.; Jackson, C.; Fei, Y.; Bullock, E. S.; Armstrong, J. T.

    2015-12-01

    The primitive upper mantle (PUM) represents the silicate residue of terrestrial core formation and should reflect element partitioning between metal and silicate melts that equilibrated in a magma ocean. Laboratory experiments suggest that the W/Mo ratio of PUM is only reproduced if S is added to the Earth during the late stages of accretion (Wade et al. 2012). Core-segregation, however, is posited to occur at >35 GPa and >3000 K; above the pressure range explored by existing W partitioning experiments and conditions under which O may also enter core-forming metal. The effect of light element solutes on a metallic Fe liquid can be modeled using experimentally determined interaction parameters (ɛ). On the basis of ɛ values determined at ambient pressure, both O and S should interact strongly with W (ɛw-o = 4.1, ɛw-s = 6.1), possibly complicating the history of W distribution during accretion. We have performed experiments to assess the metal-silicate partitioning of W at conditions directly relevant to those expected for the base of a magma ocean, under which O enters the metal phase. Experiments were performed at 15-50 GPa in a diamond anvil cell, using Re gaskets and an MgO pressure medium. In several instances, cells were loaded with two sample mixtures, containing W in either oxidized or reduced form. Heating spots subject to the same temperature and heating duration but different initial W oxidation state will be used to assess if heating times were sufficient to approach equilibrium. Samples were laser-heated at sector 13 of the Advanced Photon Source then recovered for analysis using a focused ion beam, to reveal cross-sections through the heated spot. Samples comprise a Fe-rich metal bleb, surrounded by silicate glass. The quenched metal contains exsolved spherules of a Si+O-rich phase, indicating significant solution of these elements at high pressure and temperature. Work is ongoing to quantify the element distribution between metal and silicate phases.

  19. Potential Modulated Intercalation of Alkali Cations into Metal Hexacyanoferrate Coated Electrodes

    SciTech Connect

    Daniel T. Schwartz; Bekki Liu; Marlina Lukman; Kavita M. Jeerage; William A. Steen; Haixia Dai; Qiuming Yu; J. Antonio Medina

    2002-02-18

    Nickel hexacyanoferrate is a polynuclear inorganic ion intercalation material that loads (intercalates) and elutes (deintercalates) alkali cations from its structure when electrochemically reduced and oxidized, respectively. Nickel hexacyanoferrrate (NiHCF) is known to preferentially intercalate cesium over all other alkali cations, thus providing a basis for a separation scheme that can tackle DOE's radiocesium contamination problem. This program studied fundamental issues in alkalization intercalation and deintercalation in nickel hexacyanoferrate compounds, with the goal of (1) quantifying the ion exchange selectivity properties from cation mixtures, (2) enhancing ion exchange capacities, and (3) and understanding the electrochemically-switched ion exchange process (ESIX).

  20. Alkali-Metal-Ion-Functionalized Graphene Oxide as a Superior Anode Material for Sodium-Ion Batteries.

    PubMed

    Wan, Fang; Li, Yu-Han; Liu, Dai-Huo; Guo, Jin-Zhi; Sun, Hai-Zhu; Zhang, Jing-Ping; Wu, Xing-Long

    2016-06-01

    Although graphene oxide (GO) has large interlayer spacing, it is still inappropriate to use it as an anode for sodium-ion batteries (SIBs) because of the existence of H-bonding between the layers and ultralow electrical conductivity which impedes the Na(+) and e(-) transformation. To solve these issues, chemical, thermal, and electrochemical procedures are traditionally employed to reduce GO nanosheets. However, these strategies are still unscalable, consume high amounts of energy, and are expensive for practical application. Here, for the first time, we describe the superior Na storage of unreduced GO by a simple and scalable alkali-metal-ion (Li(+) , Na(+) , K(+) )-functionalized process. The various alkali metals ions, connecting with the oxygen on GO, have played different effects on morphology, porosity, degree of disorder, and electrical conductivity, which are crucial for Na-storage capabilities. Electrochemical tests demonstrated that sodium-ion-functionalized GO (GNa) has shown outstanding Na-storage performance in terms of excellent rate capability and long-term cycle life (110 mAh g(-1) after 600 cycles at 1 A g(-1) ) owing to its high BET area, appropriate mesopore, high degree of disorder, and improved electrical conductivity. Theoretical calculations were performed using the generalized gradient approximation (GGA) to further study the Na-storage capabilities of functionalized GO. These calculations have indicated that the Na-O bond has the lowest binding energy, which is beneficial to insertion/extraction of the sodium ion, hence the GNa has shown the best Na-storage properties among all comparatives functionalized by other alkali metal ions.

  1. Siderophile elements in the upper mantle of the Earth: New clues from metal-silicate partition coefficients

    NASA Technical Reports Server (NTRS)

    Holzheid, A.; Borisov, A.; Palme, H.

    1993-01-01

    New, precise data on the solubilities of Ni, Co, and Mo in silicate melts at 1400 C and fO2 from IW to IW-2 are presented. The results suggest NiO, CoO as stable species in the melt. No evidence for metallic Ni or Co was found. Equilibrium was ensured by reversals with initially high Ni and Co in the glass. Mo appears to change oxidation state at IW-1, from MoO3 to MoO2. Metal-silicate partition coefficients calculated from these data and recent data on Pd indicate similar partition coefficients for Pd and Mo at the conditions of core formation. This unexpected result constrains models of core formation in the Earth.

  2. Third order nonlinear optical properties and optical limiting behavior of alkali metal complexes of p-nitrophenol

    NASA Astrophysics Data System (ADS)

    Thangaraj, M.; Vinitha, G.; Sabari Girisun, T. C.; Anandan, P.; Ravi, G.

    2015-10-01

    Optical nonlinearity of metal complexes of p-nitrophenolate (M=Li, Na and K) in ethanol is studied by using a continuous wave (cw) diode pumped Nd:YAG laser (532 nm, 50 mW). The predominant mechanism of observed nonlinearity is thermal in origin. The nonlinear refractive index and the nonlinear absorption coefficient of the samples were found to be in the order of 10-8 cm2/W and 10-3 cm/W respectively. Magnitude of third-order optical parameters varies according to the choice of alkali metal chosen for metal complex formation of p-nitrophenolate. The third-order nonlinear susceptibility was found to be in the order of 10-6 esu. The observed saturable absorption and the self-defocusing effect were used to demonstrate the optical limiting action at 532 nm by using the same cw laser beam.

  3. Alkali metal salts of rutin - Synthesis, spectroscopic (FT-IR, FT-Raman, UV-VIS), antioxidant and antimicrobial studies.

    PubMed

    Samsonowicz, M; Kamińska, I; Kalinowska, M; Lewandowski, W

    2015-12-01

    In this work several metal salts of rutin with lithium, sodium, potassium, rubidium and cesium were synthesized. Their molecular structures were discussed on the basis of spectroscopic (FT-IR, FT-Raman, UV-VIS) studies. Optimized geometrical structure of rutin was calculated by B3LYP/6-311++G(∗∗) method and sodium salt of rutin were calculated by B3LYP/LanL2DZ method. Metal chelation change the biological properties of ligand therefore the antioxidant (FRAP and DPPH) and antimicrobial activities (toward Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Proteus vulgaris, Pseudomonas aeruginosa, Klebsiella pneumonia, Candida albicans and Saccharomyces cerevisiae) of alkali metal salts were evaluated and compared with the biological properties of rutin. PMID:26184478

  4. Formation and Reduction of Pollutants in CFBC: From Heavy Metals, Particulates, Alkali, NOx, N2O, SOx, HCl

    NASA Astrophysics Data System (ADS)

    Winter, Franz

    Due to the advantages of fluidized bed combustors a wide range of different fuels is utilized. The fuels range from anthracite, medium and low rank coals to peat, wood residues, biomass waste, sewage sludge and other sludges to plastics and municipal solid waste. Because of this wide range of fuels pollutants such as heavy metals, particulates, alkali, NO, NO2, N2O, SO2, SO3 and HCI may be formed during the fuel conversion process depending on the fuel and operating conditions.

  5. Sensitive determination of the spin polarization of optically pumped alkali-metal atoms using near-resonant light

    PubMed Central

    Ding, Zhichao; Long, Xingwu; Yuan, Jie; Fan, Zhenfang; Luo, Hui

    2016-01-01

    A new method to measure the spin polarization of optically pumped alkali-metal atoms is demonstrated. Unlike the conventional method using far-detuned probe light, the near-resonant light with two specific frequencies was chosen. Because the Faraday rotation angle of this approach can be two orders of magnitude greater than that with the conventional method, this approach is more sensitive to the spin polarization. Based on the results of the experimental scheme, the spin polarization measurements are found to be in good agreement with the theoretical predictions, thereby demonstrating the feasibility of this approach. PMID:27595707

  6. Structure of the alkali-metal-atom + strontium molecular ions: Towards photoassociation and formation of cold molecular ions

    SciTech Connect

    Aymar, M.; Dulieu, O.; Guerout, R.

    2011-08-14

    The potential energy curves, permanent and transition dipole moments, and the static dipolar polarizability, of molecular ions composed of one alkali-metal atom and a strontium ion are determined with a quantum chemistry approach. The molecular ions are treated as effective two-electron systems and are treated using effective core potentials including core polarization, large gaussian basis sets, and full configuration interaction. In the perspective of upcoming experiments aiming at merging cold atom and cold ion traps, possible paths for radiative charge exchange, photoassociation of a cold lithium or rubidium atom and a strontium ion are discussed, as well as the formation of stable molecular ions.

  7. Sensitive determination of the spin polarization of optically pumped alkali-metal atoms using near-resonant light.

    PubMed

    Ding, Zhichao; Long, Xingwu; Yuan, Jie; Fan, Zhenfang; Luo, Hui

    2016-01-01

    A new method to measure the spin polarization of optically pumped alkali-metal atoms is demonstrated. Unlike the conventional method using far-detuned probe light, the near-resonant light with two specific frequencies was chosen. Because the Faraday rotation angle of this approach can be two orders of magnitude greater than that with the conventional method, this approach is more sensitive to the spin polarization. Based on the results of the experimental scheme, the spin polarization measurements are found to be in good agreement with the theoretical predictions, thereby demonstrating the feasibility of this approach. PMID:27595707

  8. Leguminous plants nodulated by selected strains of Cupriavidus necator grow in heavy metal contaminated soils amended with calcium silicate.

    PubMed

    Avelar Ferreira, Paulo Ademar; Lopes, Guilherme; Bomfeti, Cleide Aparecida; de Oliveira Longatti, Silvia Maria; de Sousa Soares, Cláudio Roberto Fonseca; Guimarães Guilherme, Luiz Roberto; de Souza Moreira, Fatima Maria

    2013-11-01

    Increasing concern regarding mining area environmental contamination with heavy metals has resulted in an emphasis of current research on phytoremediation. The aim of the present study was to assess the efficiency of symbiotic Cupriavidus necator strains on different leguminous plants in soil contaminated with heavy metals following the application of inorganic materials. The application of limestone and calcium silicate induced a significant increase in soil pH, with reductions in zinc and cadmium availability of 99 and 94 %, respectively. In addition, improved nodulation of Mimosa caesalpiniaefolia, Leucaena leucocephala and Mimosa pudica in soil with different levels of contamination was observed. Significant increases in the nitrogen content of the aerial parts of the plant were observed upon nodulation of the root system of Leucaena leucocephala and Mimosa pudica by strain UFLA01-659 (36 and 40 g kg(-1)) and by strain UFLA02-71 in Mimosa caesalpiniaefolia (39 g kg(-1)). The alleviating effect of calcium silicate resulted in higher production of dry matter from the aerial part of the plant, an increase in nodule number and an increase in the nitrogen fixation rate. The results of the present study demonstrate that the combination of rhizobia, leguminous plants and calcium silicate may represent a key factor in the remediation of areas contaminated by heavy metals.

  9. Leguminous plants nodulated by selected strains of Cupriavidus necator grow in heavy metal contaminated soils amended with calcium silicate.

    PubMed

    Avelar Ferreira, Paulo Ademar; Lopes, Guilherme; Bomfeti, Cleide Aparecida; de Oliveira Longatti, Silvia Maria; de Sousa Soares, Cláudio Roberto Fonseca; Guimarães Guilherme, Luiz Roberto; de Souza Moreira, Fatima Maria

    2013-11-01

    Increasing concern regarding mining area environmental contamination with heavy metals has resulted in an emphasis of current research on phytoremediation. The aim of the present study was to assess the efficiency of symbiotic Cupriavidus necator strains on different leguminous plants in soil contaminated with heavy metals following the application of inorganic materials. The application of limestone and calcium silicate induced a significant increase in soil pH, with reductions in zinc and cadmium availability of 99 and 94 %, respectively. In addition, improved nodulation of Mimosa caesalpiniaefolia, Leucaena leucocephala and Mimosa pudica in soil with different levels of contamination was observed. Significant increases in the nitrogen content of the aerial parts of the plant were observed upon nodulation of the root system of Leucaena leucocephala and Mimosa pudica by strain UFLA01-659 (36 and 40 g kg(-1)) and by strain UFLA02-71 in Mimosa caesalpiniaefolia (39 g kg(-1)). The alleviating effect of calcium silicate resulted in higher production of dry matter from the aerial part of the plant, an increase in nodule number and an increase in the nitrogen fixation rate. The results of the present study demonstrate that the combination of rhizobia, leguminous plants and calcium silicate may represent a key factor in the remediation of areas contaminated by heavy metals. PMID:23670312

  10. Transition rates for lithium-like ions, sodium-like ions, and neutral alkali-metal atoms

    SciTech Connect

    Johnson, W.R.; Liu, Z.W.; Sapirstein, J.

    1996-11-01

    Third-order many-body perturbation theory is used to obtain E1 transition amplitudes for ions of the lithium and sodium isoelectronic sequences and for the neutral alkali-metal atoms potassium, rubidium, cesium, and francium. Complete angular reductions of the first, second, and third-order amplitudes are given. Tables of transition energies and rates are given for the 2p{sub {1/2}} {yields} 2s{sub {1/2}}, 2p{sub 3/2} {yields} 2s{sub {1/2}}, 3s{sub {1/2}} {yields} 2p{sub {1/2}}, and 3s{sub {1/2}} {yields} 2p{sub 3/2} transitions in the lithium isoelectronic sequence and for the corresponding 3p{sub 1/2} {yields} 3s{sub 1/2}, 3p{sub 3/2} {yields} 3s{sub {1/2}}, 4s{sub {1/2}} {yields} 3p{sub 1/2}, and 4s{sub {1/2}} {yields} 3p{sub 3/2} transitions in the sodium sequence. For neutral alkali atoms, amplitudes of np{sub {1/2}} {yields} ns{sub {1/2}}, np{sub 3/2} {yields} ns{sub {1/2}}, (n + 1)s{sub {1/2}} {yields} np{sub {1/2}}, and (n + 1)s{sub {1/2}} {yields} np{sub 3/2} transitions are evaluated, where n is the principal quantum number of the valence electron in the atomic ground state, Semi-empirical corrections for the omitted fourth- and higher-order terms in perturbation theory are given for the neutral alkali-metal atoms. Comparisons with previous high-precision calculations and with experiment are made. 42 refs., 1 fig., 12 tabs.

  11. Study of complexation between two 1,3-alternate calix[4]crown derivatives and alkali metal ions by electrospray ionization mass spectrometry and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Shamsipur, Mojtaba; Allahyari, Leila; Fasihi, Javad; Taherpour, Avat (Arman); Asfari, Zuhair; Valinejad, Azizollah

    2016-03-01

    Complexation of two 1,3-alternate calix[4]crown ligands with alkali metals (K+, Rb+ and Cs+) has been investigated by electrospray ionization mass spectrometry (ESI-MS) and density functional theory calculations. The binding selectivities of the ligands and the binding constants of their complexes in solution have been determined using the obtained mass spectra. Also the percentage of each formed complex species in the mixture of each ligand and alkali metal has been experimentally evaluated. For both calix[4]crown-5 and calix[4]crown-6 ligands the experimental and theoretical selectivity of their alkali metal complexes found to follow the trend K+ > Rb+ > Cs+. The structures of ligands were optimized by DFT-B3LYP/6-31G method and the structures of complexes were obtained by QM-SCF-MO/PM6 method and discussed in the text.

  12. Influence of alkali metal cations on the thermal, mechanical and morphological properties of rectorite/chitosan bio-nanocomposite films.

    PubMed

    Babul Reddy, A; Jayaramudu, J; Siva Mohan Reddy, G; Manjula, B; Sadiku, E R

    2015-05-20

    The main theme of this work is to study the influence of ion-exchangeable alkali metal cations, such as: Li(+), Na(+), K(+), and Cs(+) on the thermal, mechanical and morphological properties. In this regard, a set of rectorite/chitosan (REC-CS) bio-nanocomposite films (BNCFs) was prepared by facile reaction of chitosan with ion-exchanged REC clay. The microstructure and morphology of BNCFs were investigated with XRD, TEM, SEM and AFM. Thermal and tensile properties of BNCFs were also investigated. As revealed from TEM and XRD results, the BNCFs featured a mixed morphology. Some intercalated clay sheets, together with nano-sized clay tactoids were obtained in LiREC/CS, NaREC/CS and KREC/CS of the BNCFs. From fractured surface study, via SEM, it was observed that the dispersion of chitosan polymer attaches to (and covers) the clay platelets. FTIR confirmed strong hydrogen bonds between clay and chitosan polymer. In addition, the thermal stabilities significantly varied when alkali metal cations varied from Li(+) to Cs(+). The BNCFs featured high tensile strengths (up to 84 MPa) and tensile moduli (up to 45 GPa). After evaluating these properties of BNCFs, we came to conclusion that these bio-nano composites can be used for packaging applications. PMID:25817663

  13. Alkali metal cation complexation by 1,3-alternate, mono-ionisable calix[4]arene-benzocrown-6 compounds

    DOE PAGES

    Surowiec, Malgorzata A.; Custelcean, Radu; Surowiec, Kazimierz; Bartsch, Richard A.

    2014-04-23

    Alkali metal cation extraction behavior for two series of 1,3-alternate, mono-ionizable calix[4]arene-benzocrown-6 compounds is examined. In Series 1, the proton-ionizable group is a substituent on the benzo group of the polyether ring that directs it away from the crown ether cavity. In Series 2, the proton-ionizable group is attached to one para position in the calixarene framework, thus positioning it over the crown ether ring. Competitive solvent extraction of alkali metal cations from aqueous solutions into chloroform shows high Cs+ efficiency and selectivity. Single-species extraction pH profiles of Cs+ for Series 1 and 2 ligands with the same proton-ionizable groupmore » are very similar. Thus, association of Cs+ with the calixcrown ring is more important than the the proton-ionizable group’s position in relation to the crown ether cavity. Solid-state structures are presented for two unionized ligands from Series 2, as is a crystal containing two different ionized ligand–Cs+ complexes.« less

  14. Alkali metal cation complexation by 1,3-alternate, mono-ionisable calix[4]arene-benzocrown-6 compounds

    SciTech Connect

    Surowiec, Malgorzata A.; Custelcean, Radu; Surowiec, Kazimierz; Bartsch, Richard A.

    2014-04-23

    Alkali metal cation extraction behavior for two series of 1,3-alternate, mono-ionizable calix[4]arene-benzocrown-6 compounds is examined. In Series 1, the proton-ionizable group is a substituent on the benzo group of the polyether ring that directs it away from the crown ether cavity. In Series 2, the proton-ionizable group is attached to one para position in the calixarene framework, thus positioning it over the crown ether ring. Competitive solvent extraction of alkali metal cations from aqueous solutions into chloroform shows high Cs+ efficiency and selectivity. Single-species extraction pH profiles of Cs+ for Series 1 and 2 ligands with the same proton-ionizable group are very similar. Thus, association of Cs+ with the calixcrown ring is more important than the the proton-ionizable group’s position in relation to the crown ether cavity. Solid-state structures are presented for two unionized ligands from Series 2, as is a crystal containing two different ionized ligand–Cs+ complexes.

  15. Influence of alkali metal cations on the thermal, mechanical and morphological properties of rectorite/chitosan bio-nanocomposite films.

    PubMed

    Babul Reddy, A; Jayaramudu, J; Siva Mohan Reddy, G; Manjula, B; Sadiku, E R

    2015-05-20

    The main theme of this work is to study the influence of ion-exchangeable alkali metal cations, such as: Li(+), Na(+), K(+), and Cs(+) on the thermal, mechanical and morphological properties. In this regard, a set of rectorite/chitosan (REC-CS) bio-nanocomposite films (BNCFs) was prepared by facile reaction of chitosan with ion-exchanged REC clay. The microstructure and morphology of BNCFs were investigated with XRD, TEM, SEM and AFM. Thermal and tensile properties of BNCFs were also investigated. As revealed from TEM and XRD results, the BNCFs featured a mixed morphology. Some intercalated clay sheets, together with nano-sized clay tactoids were obtained in LiREC/CS, NaREC/CS and KREC/CS of the BNCFs. From fractured surface study, via SEM, it was observed that the dispersion of chitosan polymer attaches to (and covers) the clay platelets. FTIR confirmed strong hydrogen bonds between clay and chitosan polymer. In addition, the thermal stabilities significantly varied when alkali metal cations varied from Li(+) to Cs(+). The BNCFs featured high tensile strengths (up to 84 MPa) and tensile moduli (up to 45 GPa). After evaluating these properties of BNCFs, we came to conclusion that these bio-nano composites can be used for packaging applications.

  16. Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid-graphene electrode interfaces.

    PubMed

    Ivaništšev, Vladislav; Méndez-Morales, Trinidad; Lynden-Bell, Ruth M; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M; Fedorov, Maxim V

    2016-01-14

    In this work we study mechanisms of solvent-mediated ion interactions with charged surfaces in ionic liquids by molecular dynamics simulations, in an attempt to reveal the main trends that determine ion-electrode interactions in ionic liquids. We compare the interfacial behaviour of Li(+) and K(+) at a charged graphene sheet in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, and its mixtures with lithium and potassium tetrafluoroborate salts. Our results show that there are dense interfacial solvation structures in these electrolytes that lead to the formation of high free energy barriers for these alkali metal cations between the bulk and direct contact with the negatively charged surface. We show that the stronger solvation of Li(+) in the ionic liquid leads to the formation of significantly higher interfacial free energy barriers for Li(+) than for K(+). The high free energy barriers observed in our simulations can explain the generally high interfacial resistance in electrochemical storage devices that use ionic liquid-based electrolytes. Overcoming these barriers is the rate-limiting step in the interfacial transport of alkali metal ions and, hence, appears to be a major drawback for a generalised application of ionic liquids in electrochemistry. Some plausible strategies for future theoretical and experimental work for tuning them are suggested. PMID:26661060

  17. XPS studies and photocurrent applications of alkali-metals-doped ZnO nanoparticles under visible illumination conditions

    NASA Astrophysics Data System (ADS)

    Saáedi, Abdolhossein; Yousefi, Ramin; Jamali-Sheini, Farid; Zak, Ali Khorsand; Cheraghizade, Mohsen; Mahmoudian, M. R.; Baghchesara, Mohammad Amin; Dezaki, Abbas Shirmardi

    2016-05-01

    The present work is a study about a relationship between X-ray photoelectron spectrometer (XPS) results and photocurrent intensity of alkali-metals-elements doped ZnO nanoparticles, which is carried out under visible illumination conditions. The nanoparticles were synthesized by a simple sol-gel method. Structure and morphology studies of the NPs were carried out by X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). The effect of doping on the optical band-gap was investigated by using UV-visible spectrometer. The absorption peak of the doped ZnO NPs was red-shifted with respect to that of the undoped ZnO NPs. After that, the photocurrent application of the products was examined under a white light source at 2 V bias. The photocurrent results showed that, the current intensity of the ZnO NPs was increased by doping materials. However, K-doped ZnO NPs showed the highest photocurrent intensity. Finally, a discussion was carried out about the obtained photocurrent results by the O-1s spectra of the XPS of the samples. Our results suggest that the alkali-metals-doped ZnO NPs exhibit considerable promise for highly sensitive visible-light photodetectors.

  18. Structural and electronic engineering of 3DOM WO3 by alkali metal doping for improved NO2 sensing performance.

    PubMed

    Wang, Zhihua; Fan, Xiaoxiao; Han, Dongmei; Gu, Fubo

    2016-05-19

    Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and excellent selectivity. More importantly, the response of 3DOM WO3/Li to 500 ppb NO2 was up to 55 at room temperature (25 °C). The especially high response to ppb level NO2 at room temperature (25 °C) in this work has a very important practical significance. The best sensing performance of 3DOM WO3/Li could be ascribed to the most structure defects and the highest carrier mobility. And the possible gas sensing mechanism based on the model of the depletion layer was proposed to demonstrate that both structural and electronic properties are responsible for the NO2 sensing behavior.

  19. Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid-graphene electrode interfaces.

    PubMed

    Ivaništšev, Vladislav; Méndez-Morales, Trinidad; Lynden-Bell, Ruth M; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M; Fedorov, Maxim V

    2016-01-14

    In this work we study mechanisms of solvent-mediated ion interactions with charged surfaces in ionic liquids by molecular dynamics simulations, in an attempt to reveal the main trends that determine ion-electrode interactions in ionic liquids. We compare the interfacial behaviour of Li(+) and K(+) at a charged graphene sheet in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, and its mixtures with lithium and potassium tetrafluoroborate salts. Our results show that there are dense interfacial solvation structures in these electrolytes that lead to the formation of high free energy barriers for these alkali metal cations between the bulk and direct contact with the negatively charged surface. We show that the stronger solvation of Li(+) in the ionic liquid leads to the formation of significantly higher interfacial free energy barriers for Li(+) than for K(+). The high free energy barriers observed in our simulations can explain the generally high interfacial resistance in electrochemical storage devices that use ionic liquid-based electrolytes. Overcoming these barriers is the rate-limiting step in the interfacial transport of alkali metal ions and, hence, appears to be a major drawback for a generalised application of ionic liquids in electrochemistry. Some plausible strategies for future theoretical and experimental work for tuning them are suggested.

  20. Universal scaling of potential energy functions describing intermolecular interactions. II. The halide-water and alkali metal-water interactions

    SciTech Connect

    Werhahn, Jasper C.; Akase, Dai; Xantheas, Sotiris S.

    2014-08-14

    The scaled versions of the newly introduced [S. S. Xantheas and J. C. Werhahn, J. Chem. Phys.141, 064117 (2014)] generalized forms of some popular potential energy functions (PEFs) describing intermolecular interactions – Mie, Lennard-Jones, Morse, and Buckingham exponential-6 – have been used to fit the ab initio relaxed approach paths and fixed approach paths for the halide-water, X-(H2O), X = F, Cl, Br, I, and alkali metal-water, M+(H2O), M = Li, Na, K, Rb, Cs, interactions. The generalized forms of those PEFs have an additional parameter with respect to the original forms and produce fits to the ab initio data that are between one and two orders of magnitude better in the χ2 than the original PEFs. They were found to describe both the long-range, minimum and repulsive wall of the respective potential energy surfaces quite accurately. Overall the 4-parameter extended Morse (eM) and generalized Buckingham exponential-6 (gBe-6) potentials were found to best fit the ab initio data for these two classes of ion-water interactions. Finally, the fitted values of the parameter of the (eM) and (gBe-6) PEFs that control the repulsive wall of the potential correlate remarkably well with the ionic radii of the halide and alkali metal ions.

  1. Exchange Processes in Shibasaki's Rare Earth Alkali Metal BINOLate Frameworks and Their Relevance in Multifunctional Asymmetric Catalysis.

    PubMed

    Robinson, Jerome R; Gu, Jun; Carroll, Patrick J; Schelter, Eric J; Walsh, Patrick J

    2015-06-10

    Shibasaki's rare earth alkali metal BINOLate (REMB) catalysts (REMB; RE = Sc, Y, La - Lu; M = Li, Na, K; B = 1,1-bi-2-naphtholate; RE/M/B = 1/3/3) are among the most successful enantioselective catalysts and have been employed in a broad range of mechanistically diverse reactions. Despite the phenomenal success of these catalysts, several fundamental questions central to their reactivity remain unresolved. Combined reactivity and spectroscopic studies were undertaken to probe the identity of the active catalyst(s) in Lewis-acid (LA) and Lewis-acid/Brønsted-base (LA/BB) catalyzed reactions. Exchange spectroscopy provided a method to obtain rates of ligand and alkali metal self-exchange in the RE/Li frameworks, demonstrating the utility of this technique for probing solution dynamics of REMB catalysts. Isolation of the first crystallographically characterized REMB complex with substrate bound enabled stoichiometric and catalytic reactivity studies, wherein we observed that substrate deprotonation by the catalyst framework was necessary to achieve selectivity. Our spectroscopic observations in LA/BB catalysis are inconsistent with previous mechanistic proposals, which considered only tris(BINOLate) species as active catalysts. These findings significantly expand our understanding of the catalyst structure in these privileged multifunctional frameworks and identify new directions for development of new catalysts. PMID:25968561

  2. Oxidation behavior of Cr(III) during thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides.

    PubMed

    Mao, Linqiang; Gao, Bingying; Deng, Ning; Liu, Lu; Cui, Hao

    2016-02-01

    The oxidation behavior of Cr(III) during the thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides (NaCl, KCl, MgCl2, and CaCl2) was investigated. The amounts of Cr(III) oxidized at various temperatures and heating times were determined, and the Cr-containing species in the residues were characterized. During the transformation of chromium hydroxide to Cr2O3 at 300 °C approximately 5% of the Cr(III) was oxidized to form intermediate compounds containing Cr(VI) (i.e., CrO3), but these intermediates were reduced to Cr2O3 when the temperature was above 400 °C. Alkali and alkaline earth metals significantly promoted the oxidation of Cr(III) during the thermal drying process. Two pathways were involved in the influences the alkali and alkaline earth metals had on the formation of Cr(VI). In pathway I, the alkali and alkaline earth metals were found to act as electron transfer agents and to interfere with the dehydration process, causing more intermediate Cr(VI)-containing compounds (which were identified as being CrO3 and Cr5O12) to be formed. The reduction of intermediate compounds to Cr2O3 was also found to be hindered in pathway I. In pathway II, the alkali and alkaline earth metals were found to contribute to the oxidation of Cr(III) to form chromates. The results showed that the presence of alkali and alkaline earth metals significantly increases the degree to which Cr(III) is oxidized during the thermal drying of chromium-containing sludge.

  3. Evaluation of alkali metal sulfate dew point measurement for detection of hot corrosion conditions in PFBC flue gas

    SciTech Connect

    Helt, J.E.

    1980-11-01

    Hot corrosion in combustion systems is, in general, the accelerated oxidation of nickel, cobalt, and iron-base alloys which occurs in the presence of small amounts of impurities - notably, sodium, sulfur, chlorine, and vanadium. There is no real consensus on which mechanisms are primarily responsible for high-temperature corrosion. One point generally accepted, however, is that corrosion reactions take place at an appreciable rate only in the presence of a liquid phase. When coal is the fuel for combustion, hot corrosion may occur in the form of accelerated sulfidation. It is generally agreed by investigators that molten alkali metal sulfates (Na/sub 2/SO/sub 4/ and K/sub 2/SO/sub 4/) are the principal agents responsible for the occurrence of sulfidation. Although molten sodium sulfate by itself appears to have little or no effect on the corrosion of metal alloys, its presence may increase the accessibility of the bare metal surface to the external atmosphere. If this atmosphere contains either a reductant and/or an oxide such as SiO/sub 2/, SO/sub 3/, or NaOH(Na/sub 2/O), corrosion is likely to occur. Alkali metal sulfate dew point measurement was evaluated as a means of anticipating hot corrosion in the gas turbine of a pressurized fluidized-bed combustion system. The hot corrosion mechanism and deposition rate theory were reviewed. Two methods of dew point measurement, electrical conductivity and remote optical techniques, were identified as having a potential for this application. Both techniques are outlined; practical measurement systems are suggested; and potential problem areas are identified.

  4. Comparisons between adsorption and diffusion of alkali, alkaline earth metal atoms on silicene and those on silicane: Insight from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Bo, Xu; Huan-Sheng, Lu; Bo, Liu; Gang, Liu; Mu-Sheng, Wu; Chuying, Ouyang

    2016-06-01

    The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory. Silicane is staler against the metal adatoms than silicene. Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene. Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed. However, the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate. Combining the adsorption energy with the diffusion energy barriers, it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage. In order to avoid forming a metal cluster, we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane. Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials. Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20152ACB21014, 20151BAB202006, and 20142BAB212002) and the Fund from the Jiangxi Provincial Educational Committee, China (Grant No. GJJ14254). Bo Xu is also supported by the Oversea Returned Project from the Ministry of Education, China.

  5. Experimental determination of Fe isotope fractionation between liquid metal, silicate and sulfide at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Williams, H. M.; Wood, B. J.; Halliday, A. N.

    2007-12-01

    There is evidence for significant equilibrium Fe isotope fractionation (≤0.26‰/amu) between metal and troilite (FeS) in iron meteorites (Williams et al., EPSL (250) 2006) and a smaller fractionation (<0.1‰/amu) between metal and olivine in pallasites (Zhu et al., EPSL (200) 2002; Weyer et al., EPSL (240) 2005). Theory suggests that differences in iron oxidation state and coordination between metal, silicate and FeS will result in stable isotope fractionation (Polyakov and Mineev, GCA (64) 2000; Schauble et al., GCA (65) 2001). However, it is not yet clear if the apparent observed fractionations can be extrapolated to the pressure and temperature conditions of planetary core formation. We have investigated Fe isotope fractionation between silicate melt and liquid Fe-S alloys and between liquid iron and basaltic melt at pressure and temperature conditions of 2-2.5GPa and 1920-2150K using piston-cylinder partitioning experiments from previous studies (Kilburn and Wood EPSL (152) 1997; Gessmann and Wood, EPSL (200) 2002; Wood et al., EPSL (in revision) 2007). Metal, sulfide and silicate fractions were separated from mounted and sectioned experimental charges using a computer-controlled micromill (New Wave-Merchantek). Sample dissolution, Fe purification and isotopic analysis followed established procedures (Williams et al., EPSL (235) 2005). In agreement with another preliminary high-pressure experimental study (Poitrasson and Roskosz, LPSC XXXVIII 2007) we find no appreciable fractionation between liquid iron metal and basaltic melt. However, there is a resolvable Fe isotope fractionation between silicate melt and Fe-S alloy which ranges from 0.12±0.04 to 0.15±0.04‰/amu for separate experiments (errors are propagated based on the 2 SD errors of replicate analyses). The Fe isotope compositions of coexisting phases from these experiments define a positive linear relationship with a slope that is, within error, equal to unity, implying isotopic equilibrium. No

  6. Infrared multiple photon dissociation spectroscopy of cationized methionine: effects of alkali-metal cation size on gas-phase conformation.

    PubMed

    Carl, Damon R; Cooper, Theresa E; Oomens, Jos; Steill, Jeff D; Armentrout, P B

    2010-04-14

    The gas-phase structures of alkali-metal cation complexes of the amino acid methionine (Met) as well as protonated methionine are investigated using infrared multiple photon dissociation (IRMPD) spectroscopy utilizing light generated by a free electron laser. Spectra of Li(+)(Met) and Na(+)(Met) are similar and relatively simple, whereas the spectra of K(+)(Met), Rb(+)(Met), and Cs(+)(Met) include distinctive new bands. Measured IRMPD spectra are compared to spectra calculated at the B3LYP/6-311+G(d,p) level of theory to identify the conformations present in the experimental studies. For Li(+) and Na(+) complexes, the only conformation present is a charge-solvated, tridentate structure that binds the metal cation to the amine and carbonyl groups of the amino acid backbone and the sulfur atom of the side chain, [N,CO,S]. In addition to the [N,CO,S] conformer, bands corresponding to alkali-metal cation binding to a bidentate zwitterionic structure, [CO(2)(-)], are clearly present for the K(+), Rb(+), and Cs(+) complexes. Theoretical calculations of the lowest energy conformations of Rb(+) and Cs(+) complexes suggest that the experimental spectra could also include contributions from two additional charge-solvated structures, tridentate [COOH,S] and bidentate [COOH]. For H(+)(Met), the IRMPD action spectrum is reproduced by multiple low-energy [N,CO,S] conformers, in which the protonated amine group hydrogen bonds to the carbonyl oxygen atom and the sulfur atom of the amino acid side chain. These [N,CO,S] conformers only differ in their side-chain orientations.

  7. A curious interplay in the films of N-heterocyclic carbene PtII complexes upon deposition of alkali metals

    PubMed Central

    Makarova, Anna A.; Grachova, Elena V.; Niedzialek, Dorota; Solomatina, Anastasia I.; Sonntag, Simon; Fedorov, Alexander V.; Vilkov, Oleg Yu.; Neudachina, Vera S.; Laubschat, Clemens; Tunik, Sergey P.; Vyalikh, Denis V.

    2016-01-01

    The recently synthesized series of PtII complexes containing cyclometallating (phenylpyridine or benzoquinoline) and N-heterocyclic carbene ligands possess intriguing structures, topologies, and light emitting properties. Here, we report curious physicochemical interactions between in situ PVD-grown films of a typical representative of the aforementioned PtII complex compounds and Li, Na, K and Cs atoms. Based on a combination of detailed core-level photoelectron spectroscopy and quantum-chemical calculations at the density functional theory level, we found that the deposition of alkali atoms onto the molecular film leads to unusual redistribution of electron density: essential modification of nitrogen sites, reduction of the coordination PtII centre to Pt0 and decrease of electron density on the bromine atoms. A possible explanation for this is formation of a supramolecular system “Pt complex-alkali metal ion”; the latter is supported by restoration of the system to the initial state upon subsequent oxygen treatment. The discovered properties highlight a considerable potential of the PtII complexes for a variety of biomedical, sensing, chemical, and electronic applications. PMID:27151364

  8. A curious interplay in the films of N-heterocyclic carbene Pt(II) complexes upon deposition of alkali metals.

    PubMed

    Makarova, Anna A; Grachova, Elena V; Niedzialek, Dorota; Solomatina, Anastasia I; Sonntag, Simon; Fedorov, Alexander V; Vilkov, Oleg Yu; Neudachina, Vera S; Laubschat, Clemens; Tunik, Sergey P; Vyalikh, Denis V

    2016-01-01

    The recently synthesized series of Pt(II) complexes containing cyclometallating (phenylpyridine or benzoquinoline) and N-heterocyclic carbene ligands possess intriguing structures, topologies, and light emitting properties. Here, we report curious physicochemical interactions between in situ PVD-grown films of a typical representative of the aforementioned Pt(II) complex compounds and Li, Na, K and Cs atoms. Based on a combination of detailed core-level photoelectron spectroscopy and quantum-chemical calculations at the density functional theory level, we found that the deposition of alkali atoms onto the molecular film leads to unusual redistribution of electron density: essential modification of nitrogen sites, reduction of the coordination Pt(II) centre to Pt(0) and decrease of electron density on the bromine atoms. A possible explanation for this is formation of a supramolecular system "Pt complex-alkali metal ion"; the latter is supported by restoration of the system to the initial state upon subsequent oxygen treatment. The discovered properties highlight a considerable potential of the Pt(II) complexes for a variety of biomedical, sensing, chemical, and electronic applications. PMID:27151364

  9. A curious interplay in the films of N-heterocyclic carbene PtII complexes upon deposition of alkali metals

    NASA Astrophysics Data System (ADS)

    Makarova, Anna A.; Grachova, Elena V.; Niedzialek, Dorota; Solomatina, Anastasia I.; Sonntag, Simon; Fedorov, Alexander V.; Vilkov, Oleg Yu.; Neudachina, Vera S.; Laubschat, Clemens; Tunik, Sergey P.; Vyalikh, Denis V.

    2016-05-01

    The recently synthesized series of PtII complexes containing cyclometallating (phenylpyridine or benzoquinoline) and N-heterocyclic carbene ligands possess intriguing structures, topologies, and light emitting properties. Here, we report curious physicochemical interactions between in situ PVD-grown films of a typical representative of the aforementioned PtII complex compounds and Li, Na, K and Cs atoms. Based on a combination of detailed core-level photoelectron spectroscopy and quantum-chemical calculations at the density functional theory level, we found that the deposition of alkali atoms onto the molecular film leads to unusual redistribution of electron density: essential modification of nitrogen sites, reduction of the coordination PtII centre to Pt0 and decrease of electron density on the bromine atoms. A possible explanation for this is formation of a supramolecular system “Pt complex-alkali metal ion” the latter is supported by restoration of the system to the initial state upon subsequent oxygen treatment. The discovered properties highlight a considerable potential of the PtII complexes for a variety of biomedical, sensing, chemical, and electronic applications.

  10. Measurement method for the nuclear anapole moment of laser-trapped alkali-metal atoms

    SciTech Connect

    Gomez, E.; Aubin, S.; Sprouse, G. D.; Orozco, L. A.; DeMille, D. P.

    2007-03-15

    Weak interactions within a nucleus generate a nuclear spin dependent, parity-violating electromagnetic moment, the anapole moment. We analyze a method to measure the nuclear anapole moment through the electric dipole transition it induces between hyperfine states of the ground level. The method requires tight confinement of the atoms to position them at the antinode of a standing wave Fabry-Perot cavity driving the anapole-induced microwave E1 transition. We explore the necessary limits in the number of atoms, excitation fields, trap type, interrogation method, and systematic tests necessary for such measurements in francium, the heaviest alkali.

  11. Sub-Shot-Noise Magnetometry with a Correlated Spin-Relaxation Dominated Alkali-Metal Vapor

    SciTech Connect

    Kominis, I. K.

    2008-02-22

    Spin noise sets fundamental limits to the precision of measurements using spin-polarized atomic vapors, such as performed with sensitive atomic magnetometers. Spin squeezing offers the possibility to extend the measurement precision beyond the standard quantum limit of uncorrelated atoms. Contrary to current understanding, we show that, even in the presence of spin relaxation, spin squeezing can lead to a significant reduction of spin noise, and hence an increase in magnetometric sensitivity, for a long measurement time. This is the case when correlated spin relaxation due to binary alkali-atom collisions dominates independently acting decoherence processes, a situation realized in thermal high atom-density magnetometers and clocks.

  12. A Quantitative Tunneling/Desorption Model for the Exchange Current at the Porous Electrode/Beta - Alumina/Alkali Metal Gas Three Phase Zone at 700-1300K

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Ryan, M. A.; Saipetch, C.; LeDuc, H. G.

    1996-01-01

    The exchange current observed at porous metal electrodes on sodium or potassium beta -alumina solid electrolytes in alkali metal vapor is quantitatively modeled with a multi-step process with good agreement with experimental results.

  13. Selective removal of alkali metal cations from multiply-charged ions via gas-phase ion/ion reactions using weakly coordinating anions.

    PubMed

    Luongo, Carl A; Bu, Jiexun; Burke, Nicole L; Gilbert, Joshua D; Prentice, Boone M; Cummings, Steven; Reed, Christopher A; McLuckey, Scott A

    2015-03-01

    Selective removal of alkali metal cations from mixed cation multiply-charged peptide ions is demonstrated here using gas-phase ion/ion reactions with a series of weakly coordinating anions (WCAs), including hexafluorophosphate (PF6 (-)), tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BARF), tetrakis(pentafluorophenyl)borate (TPPB), and carborane (CHB11Cl11 (-)). In all cases, a long-lived complex is generated by dication/anion condensation followed by ion activation to compare proton transfer with alkali ion transfer from the peptide to the anion. The carborane anion was the only anion studied to undergo dissociation exclusively through loss of the metallated anion, regardless of the studied metal adduct. All other anions studied yield varying abundances of protonated and metallated peptide depending on the peptide sequence and the metal identity. Density functional theory calculations suggest that for the WCAs studied, metal ion transfer is most strongly favored thermodynamically, which is consistent with the experimental results. The carborane anion is demonstrated to be a robust reagent for the selective removal of alkali metal cations from peptide cations with mixtures of excess protons and metal cations. PMID:25560986

  14. Selective Removal of Alkali Metal Cations from Multiply-Charged Ions via Gas-Phase Ion/Ion Reactions Using Weakly Coordinating Anions

    NASA Astrophysics Data System (ADS)

    Luongo, Carl A.; Bu, Jiexun; Burke, Nicole L.; Gilbert, Joshua D.; Prentice, Boone M.; Cummings, Steven; Reed, Christopher A.; McLuckey, Scott A.

    2015-03-01

    Selective removal of alkali metal cations from mixed cation multiply-charged peptide ions is demonstrated here using gas-phase ion/ion reactions with a series of weakly coordinating anions (WCAs), including hexafluorophosphate (PF6 -), tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BARF), tetrakis(pentafluorophenyl)borate (TPPB), and carborane (CHB11Cl11 -). In all cases, a long-lived complex is generated by dication/anion condensation followed by ion activation to compare proton transfer with alkali ion transfer from the peptide to the anion. The carborane anion was the only anion studied to undergo dissociation exclusively through loss of the metallated anion, regardless of the studied metal adduct. All other anions studied yield varying abundances of protonated and metallated peptide depending on the peptide sequence and the metal identity. Density functional theory calculations suggest that for the WCAs studied, metal ion transfer is most strongly favored thermodynamically, which is consistent with the experimental results. The carborane anion is demonstrated to be a robust reagent for the selective removal of alkali metal cations from peptide cations with mixtures of excess protons and metal cations.

  15. Metal-Silicate Partitioning of Bi, In, and Cd as a Function of Temperature and Melt Composition

    NASA Technical Reports Server (NTRS)

    Marin, Nicole; Righter, K.; Danielson, L.; Pando, K.; Lee, C.

    2013-01-01

    The origin of volatile elements in the Earth, Moon and Mars is not known; however, several theories have been proposed based on volatile elements such as In, As, Se, Te and Zn which are in lower concentration in the Earth, Moon, and Mars than in chondrites. Explanations for these low concentrations are based on two contrasting theories for the origin of Earth: equilibrium core formation versus late accretion. One idea is that the volatiles were added during growth of the planets and Moon, and some mobilized into the metallic core while others stayed in the mantle (e.g., [1]). The competing idea is that they were added to the mantles after core formation had completed (e.g., [2]). Testing these ideas involves quantitative modeling which can only be performed after data is obtained on the systematic metal-silicate partitioning behavior of volatile elements with temperature, pressure and melt composition. Until now, such data for Bi, In, and Cd has been lacking. After conducting a series of high pressure, high temperature experiments, the metal-silicate partition coefficients of Bi, In, and Cd as a function of temperature and melt composition can be used to evaluate potential conditions under which terrestrial planets differentiated into core and mantle, and how they acquired volatiles.

  16. Alkali metal poisoning of a CeO2-WO3 catalyst used in the selective catalytic reduction of NOx with NH3: an experimental and theoretical study.

    PubMed

    Peng, Yue; Li, Junhua; Chen, Liang; Chen, Jinghuan; Han, Jian; Zhang, He; Han, Wei

    2012-03-01

    The alkali metal-induced deactivation of a novel CeO(2)-WO(3) (CeW) catalyst used for selective catalytic reduction (SCR) was investigated. The CeW catalyst could resist greater amounts of alkali metals than V(2)O(5)-WO(3)/TiO(2). At the same molar concentration, the K-poisoned catalyst exhibited a greater loss in activity compared with the Na-poisoned catalyst below 200 °C. A combination of experimental and theoretical methods, including NH(3)-TPD, DRIFTS, H(2)-TPR, and density functional theory (DFT) calculations, were used to elucidate the mechanism of the alkali metal deactivation of the CeW catalyst in SCR reaction. Experiments results indicated that decreases in the reduction activity and the quantity of Brønsted acid sites rather than the acid strength were responsible for the catalyst deactivation. The DFT calculations revealed that Na and K could easily adsorb on the CeW (110) surface and that the surface oxygen could migrate to cover the active tungsten, and then inhibit the SCR of NO(x) with ammonia. Hot water washing is a convenient and effective method to regenerate alkali metal-poisoned CeW catalysts, and the catalytic activity could be recovered 90% of the fresh catalyst.

  17. Structural and electronic engineering of 3DOM WO3 by alkali metal doping for improved NO2 sensing performance

    NASA Astrophysics Data System (ADS)

    Wang, Zhihua; Fan, Xiaoxiao; Han, Dongmei; Gu, Fubo

    2016-05-01

    Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and excellent selectivity. More importantly, the response of 3DOM WO3/Li to 500 ppb NO2 was up to 55 at room temperature (25 °C). The especially high response to ppb level NO2 at room temperature (25 °C) in this work has a very important practical significance. The best sensing performance of 3DOM WO3/Li could be ascribed to the most structure defects and the highest carrier mobility. And the possible gas sensing mechanism based on the model of the depletion layer was proposed to demonstrate that both structural and electronic properties are responsible for the NO2 sensing behavior.Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and

  18. Alkali Metal Halide Salts as Interface Additives to Fabricate Hysteresis-Free Hybrid Perovskite-Based Photovoltaic Devices.

    PubMed

    Wang, Lili; Moghe, Dhanashree; Hafezian, Soroush; Chen, Pei; Young, Margaret; Elinski, Mark; Martinu, Ludvik; Kéna-Cohen, Stéphane; Lunt, Richard R

    2016-09-01

    A new method was developed for doping and fabricating hysteresis-free hybrid perovskite-based photovoltaic devices by using alkali metal halide salts as interface layer additives. Such salt layers introduced at the perovskite interface can provide excessive halide ions to fill vacancies formed during the deposition and annealing process. A range of solution-processed halide salts were investigated. The highest performance of methylammonium lead mixed-halide perovskite device was achieved with a NaI interlayer and showed a power conversion efficiency of 12.6% and a hysteresis of less than 2%. This represents a 90% improvement compared to control devices without this salt layer. Through depth-resolved mass spectrometry, optical modeling, and photoluminescence spectroscopy, this enhancement is attributed to the reduction of iodide vacancies, passivation of grain boundaries, and improved hole extraction. Our approach ultimately provides an alternative and facile route to high-performance and hysteresis-free perovskite solar cells. PMID:27532662

  19. Synthesis and X-ray Characterization of Alkali Metal 2-Acyl-1,1,3,3-tetracyanopropenides.

    PubMed

    Karpov, Sergey V; Grigor'ev, Arthur A; Kayukov, Yakov S; Karpova, Irina V; Nasakin, Oleg E; Tafeenko, Victor A

    2016-08-01

    A novel route for synthesis of 2-acyl-1,1,3,3-tetracyanopropenides (ATCN) salts in high yields and excellent purities starting from readily available methyl ketones, malononitrile, bromine, and alkali metal acetates is reported. The starting aryl(heteroaryl) methyl ketones were oxidized to the corresponding α-ketoaldehydes by new a DMSO-NaBr-H2SO4 oxidation system in yields up to 90% within a short reaction time of 8-10 min. The subsequent stages of ATCN preparation are realized in aqueous media without use of any toxic solvents, in accordance with principle 5 of "green chemistry". Lithium, sodium, potassium, rubidium, and cesium 2-benzoyl-1,1,3,3-tetracyanopropenides were characterized by X-ray diffraction analysis. These salts show a good potential for synthesis of five- and six-membered heterocycles and may serve as potentially useful ligands in coordination and supramolecular chemistry. PMID:27384963

  20. One- and two-photon spectroscopy of highly excited states of alkali-metal atoms on helium nanodroplets

    SciTech Connect

    Pifrader, Alexandra; Allard, Olivier; Auboeck, Gerald; Callegari, Carlo; Ernst, Wolfgang E.; Huber, Robert; Ancilotto, Francesco

    2010-10-28

    Alkali-metal atoms captured on the surface of superfluid helium droplets are excited to high energies ({approx_equal}3 eV) by means of pulsed lasers, and their laser-induced-fluorescence spectra are recorded. We report on the one-photon excitation of the (n+1)p(leftarrow)ns transition of K, Rb, and Cs (n=4, 5, and 6, respectively) and on the two-photon one-color excitation of the 5d(leftarrow)5s transition of Rb. Gated-photon-counting measurements are consistent with the relaxation rates of the bare atoms, hence consistent with the reasonable expectation that atoms quickly desorb from the droplet and droplet-induced relaxation need not be invoked.

  1. Development of processes for the production of solar grade silicon from halides and alkali metals, phase 1 and phase 2

    NASA Astrophysics Data System (ADS)

    Dickson, C. R.; Gould, R. K.; Felder, W.

    1981-03-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon are described. Product separation and collection processes were evaluated, measure heat release parameters for scaling purposes and effects of reactants and/or products on materials of reactor construction were determined, and preliminary engineering and economic analysis of a scaled up process were made. The feasibility of the basic process to make and collect silicon was demonstrated. The jet impaction/separation process was demonstrated to be a purification process. The rate at which gas phase species from silicon particle precursors, the time required for silane decomposition to produce particles, and the competing rate of growth of silicon seed particles injected into a decomposing silane environment were determined. The extent of silane decomposition as a function of residence time, temperature, and pressure was measured by infrared absorption spectroscopy. A simplistic model is presented to explain the growth of silicon in a decomposing silane enviroment.

  2. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    SciTech Connect

    Liu, X. H.; Luo, H.; Qu, T. L. Yang, K. Y.; Ding, Z. C.

    2015-10-15

    We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of {sup 87}Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the {sup 87}Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the {sup 87}Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  3. Development of processes for the production of solar grade silicon from halides and alkali metals, phase 1 and phase 2

    NASA Technical Reports Server (NTRS)

    Dickson, C. R.; Gould, R. K.; Felder, W.

    1981-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon are described. Product separation and collection processes were evaluated, measure heat release parameters for scaling purposes and effects of reactants and/or products on materials of reactor construction were determined, and preliminary engineering and economic analysis of a scaled up process were made. The feasibility of the basic process to make and collect silicon was demonstrated. The jet impaction/separation process was demonstrated to be a purification process. The rate at which gas phase species from silicon particle precursors, the time required for silane decomposition to produce particles, and the competing rate of growth of silicon seed particles injected into a decomposing silane environment were determined. The extent of silane decomposition as a function of residence time, temperature, and pressure was measured by infrared absorption spectroscopy. A simplistic model is presented to explain the growth of silicon in a decomposing silane enviroment.

  4. Alkali Metal Halide Salts as Interface Additives to Fabricate Hysteresis-Free Hybrid Perovskite-Based Photovoltaic Devices.

    PubMed

    Wang, Lili; Moghe, Dhanashree; Hafezian, Soroush; Chen, Pei; Young, Margaret; Elinski, Mark; Martinu, Ludvik; Kéna-Cohen, Stéphane; Lunt, Richard R

    2016-09-01

    A new method was developed for doping and fabricating hysteresis-free hybrid perovskite-based photovoltaic devices by using alkali metal halide salts as interface layer additives. Such salt layers introduced at the perovskite interface can provide excessive halide ions to fill vacancies formed during the deposition and annealing process. A range of solution-processed halide salts were investigated. The highest performance of methylammonium lead mixed-halide perovskite device was achieved with a NaI interlayer and showed a power conversion efficiency of 12.6% and a hysteresis of less than 2%. This represents a 90% improvement compared to control devices without this salt layer. Through depth-resolved mass spectrometry, optical modeling, and photoluminescence spectroscopy, this enhancement is attributed to the reduction of iodide vacancies, passivation of grain boundaries, and improved hole extraction. Our approach ultimately provides an alternative and facile route to high-performance and hysteresis-free perovskite solar cells.

  5. Relativistic many-body investigation of hyperfine interactions in excited S states of alkali metals: Francium and potassium

    SciTech Connect

    Owusu, A.; Dougherty, R.W.; Gowri, G.; Das, T.P.; Andriessen, J.

    1997-07-01

    To enhance the current understanding of mechanisms contributing to magnetic hyperfine interactions in excited states of atomic systems, in particular, alkali-metal atom systems, the hyperfine fields in the excited 5{sup 2}S{sub 1/2}{endash}8{sup 2}S{sub 1/2} states of potassium and 8{sup 2}S{sub 1/2}{endash}12{sup 2}S{sub 1/2} states of francium atoms have been studied using the relativistic linked-cluster many-body perturbation procedure. The net theoretical values of the hyperfine fields for the excited states studied are in excellent agreement with available experimental data for both atoms. There is a significant decrease in importance of the correlation contribution in going from the ground state to the excited states, the correlation contributions as ratios of the direct contribution decreasing rapidly as one moves to the higher excited states. However, the contribution from the exchange core polarization (ECP) effect is nearly a constant fraction of the direct effect for all the excited states considered. Physical explanations are offered for the observed trends in the contributions from the different mechanisms. A comparison is made of the different contributing effects to the hyperfine fields in potassium and francium to those in the related system, rubidium, studied earlier. Extrapolating from our results to the highly excited states of alkali-metal atoms, referred to as the Rydberg states, it is concluded that in addition to the direct contribution from the excited valence electron to the hyperfine fields, a significant contribution is expected from the ECP effect arising from the influence of exchange interactions between electrons in the valence and core states. {copyright} {ital 1997} {ital The American Physical Society}

  6. Properties of alkali-metal atoms and alkaline-earth-metal ions for an accurate estimate of their long-range interactions

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmeet; Nandy, D. K.; Arora, Bindiya; Sahoo, B. K.

    2015-01-01

    Accurate knowledge of interaction potentials among the alkali-metal atoms and alkaline-earth ions is very useful in the studies of cold atom physics. Here we carry out theoretical studies of the long-range interactions among the Li, Na, K, and Rb alkali-metal atoms with the Ca+, Ba+, Sr+, and Ra+ alkaline-earth ions systematically, which are largely motivated by their importance in a number of applications. These interactions are expressed as a power series in the inverse of the internuclear separation R . Both the dispersion and induction components of these interactions are determined accurately from the algebraic coefficients corresponding to each power combination in the series. Ultimately, these coefficients are expressed in terms of the electric multipole polarizabilities of the above-mentioned systems, which are calculated using the matrix elements obtained from a relativistic coupled-cluster method and core contributions to these quantities from the random-phase approximation. We also compare our estimated polarizabilities with the other available theoretical and experimental results to verify accuracies in our calculations. In addition, we also evaluate the lifetimes of the first two low-lying states of the ions using the above matrix elements. Graphical representations of the dispersion coefficients versus R are given among all the alkaline ions with Rb.

  7. Experimental investigation of the partitioning of phosphorus between metal and silicate phases - Implications for the earth, moon and eucrite parent body

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; Drake, M. J.

    1983-01-01

    An experimental study is reported of the partitioning of Phosphorus between solid metal and basaltic silicate liquid as a function of temperature and oxygen fugacity and of the implications for the earth, moon and eucrite parent body (EPB). The relationship established between the partition coefficient and the fugacity is given at 1190 C by log D(P) = -1.12 log fO2 - 15.95 and by log D(P) = -1.53 log fO2 17.73 at 1300 C. The partition coefficient D(P) was determined, and it is found to be consistent with a valence state of 5 for P in the molten silicate. Using the determined coefficient the low P/La ratios of the earth, moon, and eucrites relative to C1 chondrites can be explained. The lowering of the P/La ratio in the eucrites relative to Cl chondrite by a factor of 40 can be explained by partitioning P into 20-25 wt% sulfur-bearing metallic liquid corresponding to 5-25% of the total metal plus silicate system. The low P/La and W/La ratios in the moon may be explained by the partitioning of P and W into metal during formation of a small core by separation of liquid metal from silicate at low degrees of partial melting of the silicates. These observations are consistent with independent formation of the moon and the earth.

  8. Constraints on core formation from systematic study of metal-silicate partitioning on a great number of siderophile elements

    NASA Astrophysics Data System (ADS)

    Siebert, J.; Ryerson, F. J.

    2008-12-01

    The abundances of siderophile elements in the Earth's mantle are the result of core formation in the early Earth. Many variables are involved in the prediction of metal/silicate siderophile partition coefficients during core segregation: pressure, temperature, oxygen fugacity, silicate and metal compositions. Despite publications of numerous results of metal-silicate experiments, the experimental database and predictive expressions for elements partitioning are hampered by a lack of systematic study to separate and evaluate the effects of each variable. Only a relatively complete experimental database that describes Ni and Co partitioning now exists but is not sufficient to unambiguously decide between the most popular model for core formation with a single stage core-mantle equilibration at the bottom of a deep magma ocean (e.g. Li and Agee, 2001) and more recent alternative models (e.g. Wade and Wood, 2005; Rubie et al., 2007). In this experimental work, systematic study of metal silicate partitioning is presented for elements normally regarded as moderately siderophile (Mo, As, Ge, W, P, Ni, Co), slightly siderophile (Zn, Ga, Mn, V, Cr) and refractory lithophile (Nb, Ta). Using a new piston-cylinder design assembly allows us to present a suite of isobaric partitioning experiments at 3 GPa within a temperature range from 1600 to 2600° C and over a range of relative oxygen fugacity from IW-1.5 to IW-3.5. Silicate melts range from basaltic to peridotite in composition. The individual effect of pressure is also investigated through a combination of piston cylinder and multi anvil isothermal experiments from 0.5 to 18 GPa at 1900° C. Absolute measurements of partitioning coefficients combining EMP and LA-ICPMS analytical methods are provided. New results are obtained for elements whose partitioning behavior is usually poorly constrained and not integrated into any accretion or core formation models. We find notably that Ge, As, Mo become less siderophile with

  9. Constraints on core formation from systematic study of metal-silicate partitioning on a great number of siderophile elements

    SciTech Connect

    Siebert, J; Ryerson, F J

    2008-10-27

    The abundances of siderophile elements in the Earth's mantle are the result of core formation in the early Earth. Many variables are involved in the prediction of metal/silicate siderophile partition coefficients during core segregation: pressure, temperature, oxygen fugacity, silicate and metal compositions. Despite publications of numerous results of metal-silicate experiments, the experimental database and predictive expressions for elements partitioning are hampered by a lack of systematic study to separate and evaluate the effects of each variable. Only a relatively complete experimental database that describes Ni and Co partitioning now exists but is not sufficient to unambiguously decide between the most popular model for core formation with a single stage core-mantle equilibration at the bottom of a deep magma ocean (e.g. Li and Agee, 2001) and more recent alternative models (e.g. Wade and Wood, 2005; Rubie et al., 2007). In this experimental work, systematic study of metal silicate partitioning is presented for elements normally regarded as moderately siderophile (Mo, As, Ge, W, P, Ni, Co), slightly siderophile (Zn, Ga, Mn, V, Cr) and refractory lithophile (Nb, Ta). Using a new piston-cylinder design assembly allows us to present a suite of isobaric partitioning experiments at 3 GPa within a temperature range from 1600 to 2600 C and over a range of relative oxygen fugacity from IW-1.5 to IW-3.5. Silicate melts range from basaltic to peridotite in composition. The individual effect of pressure is also investigated through a combination of piston cylinder and multi anvil isothermal experiments from 0.5 to 18 GPa at 1900 C. Absolute measurements of partitioning coefficients combining EMP and LA-ICPMS analytical methods are provided. New results are obtained for elements whose partitioning behavior is usually poorly constrained and not integrated into any accretion or core formation models. We find notably that Ge, As, Mo become less siderophile with

  10. CH 3Cl adsorption on a Si(100)2 × 1 surface modified by alkali metal overlayer studied by soft X-ray photoemission using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Gentle, T. M.; Soukiassian, P.; Schuette, K. P.; Bakshi, M. H.; Hurych, Z.

    1988-08-01

    We present the first study of the effect of an alkali metal overlayer on the adsorption of an organic molecule, methylchloride, on a Si(100)2 × 1 surface. In strong contrast to the behavior of molecular oxygen or nitrogen which were found to react with the silicon substrate, there was no significant interaction between methylchloride and silicon, rather, the formation of alkali-chlorine bonds was observed. Core level and valence band spectroscopies using synchrotron radiation were used to study these systems. Sodium was found to exhibit the strongest interaction with mehtylchloride which was dissociated, while the effects produced by K and Cs were weaker.

  11. Promotion by alkali metals: a theoretical analysis of the vibrational shift of CO coadsorbed with K on Cu(100)

    NASA Astrophysics Data System (ADS)

    Pacchioni, Gianfranco; Bagus, Paul S.

    1993-11-01

    By means of ab initio cluster model wavefunctions we have analyzed the electronic and electrostatic mechanisms which determine the very large negative shift of the CO vibrational frequency ω e, when CO is coadsorbed with alkali metal atoms on metal surfaces. The clusters considered, Cu 32/K 2/CO and Cu 12/K 2/CO, model K and CO coadsorption on Cu(100) at various KCO distances. In order to explain the observed large vibrational red-shifts, of the order of 600 cm -1 and more, short KCO distances, <3 Å, must be considered. For larger KCO distances the ω shift is small, <200 cm -1, and almost entirely due to electrostatic effects. In fact, on a metal surface the adsorbed K atoms become positively charged, a mechanism which is reinforced when the CO molecules are coadsorbed. The interaction between the resulting electric field and the CO dipole lowers the CO ω e. However, the large shift found for short KCO distances has a dominantly electronic origin. We show unambiguously that the chemical mechanism which determines the large negative shift is not the direct charge transfer from the K 4s orbital to the empty levels of CO, but rather the increased back donation from the Cu conduction band electrons. These latter are strongly polarized toward CO because of the presence of the K ions on the surface and can overlap more efficiently with the CO accepting orbitals.

  12. Estimation of trace element concentrations in the lunar magma ocean using mineral- and metal-silicate melt partition coefficients

    NASA Astrophysics Data System (ADS)

    Sharp, Miriam; Righter, Kevin; Walker, Richard J.

    2015-04-01

    This study uses experimentally determined plagioclase-melt D values to estimate the trace element concentrations of Sr, Hf, Ga, W, Mo, Ru, Pd, Au, Ni, and Co in a crystallizing lunar magma ocean at the point of plagioclase flotation. Similarly, experimentally determined metal-silicate partition experiments combined with a composition model for the Moon are used to constrain the concentrations of W, Mo, Ru, Pd, Au, Ni, and Co in the lunar magma ocean at the time of core formation. The metal-silicate derived lunar mantle estimates are generally consistent with previous estimates for the concentration of these elements in the lunar mantle. Plagioclase-melt derived concentrations for Sr, Ga, Ru, Pd, Au, Ni, and Co are also consistent with prior estimates. Estimates for Hf, W, and Mo, however, are higher. These elements may be concentrated in the residual liquid during fractional crystallization due to their incompatibility. Alternatively, the apparent enrichment could reflect the inappropriate use of bulk anorthosite data, rather than data for plagioclase separates.

  13. Heavy metal distribution in organic and siliceous marine sponge tissues measured by square wave anodic stripping voltammetry.

    PubMed

    Illuminati, S; Annibaldi, A; Truzzi, C; Scarponi, G

    2016-10-15

    May sponge spicules represent a "tank" to accumulate heavy metals? In this study we test this hypothesis determining the distribution of Cd, Pb and Cu concentrations between organic and siliceous tissues in Antarctic Demospongia (Sphaerotylus antarcticus, Kirkpatrikia coulmani and Haliclona sp.) and in the Mediterranean species Petrosia ficiformis. Results show that although, in these sponges, spicules represent about 80% of the mass content, the accumulation of pollutant is lower in the spicules than in the corresponding organic fraction. The contribution of tissues to the total sponge content of Cd, Pb and Cu is respectively 99%, 82% and 97% for Antarctic sponges and 96%, 95% and 96% for P. ficiformis, similar in polar and temperate organisms. These results pave the way to a better understanding of the role of marine sponges in uptaking heavy metals and to their possible use as monitor of marine ecosystems, recommend by the Water Framework Directive.

  14. Heavy metal distribution in organic and siliceous marine sponge tissues measured by square wave anodic stripping voltammetry.

    PubMed

    Illuminati, S; Annibaldi, A; Truzzi, C; Scarponi, G

    2016-10-15

    May sponge spicules represent a "tank" to accumulate heavy metals? In this study we test this hypothesis determining the distribution of Cd, Pb and Cu concentrations between organic and siliceous tissues in Antarctic Demospongia (Sphaerotylus antarcticus, Kirkpatrikia coulmani and Haliclona sp.) and in the Mediterranean species Petrosia ficiformis. Results show that although, in these sponges, spicules represent about 80% of the mass content, the accumulation of pollutant is lower in the spicules than in the corresponding organic fraction. The contribution of tissues to the total sponge content of Cd, Pb and Cu is respectively 99%, 82% and 97% for Antarctic sponges and 96%, 95% and 96% for P. ficiformis, similar in polar and temperate organisms. These results pave the way to a better understanding of the role of marine sponges in uptaking heavy metals and to their possible use as monitor of marine ecosystems, recommend by the Water Framework Directive. PMID:27389453

  15. The effect of oxygen fugacity on the partitioning of nickel and cobalt between olivine, silicate melt, and metal

    NASA Technical Reports Server (NTRS)

    Ehlers, Karin; Grove, Timothy L.; Sisson, Thomas W.; Recca, Steven I.; Zervas, Deborah A.

    1992-01-01

    The effect of oxygen fugacity, f(O2), on the partitioning behavior of Ni and Co between olivine, silicate melt, and metal was investigated in the CaO-MgO-Al2O3-SiO2-FeO-Na2O system, an analogue of a chondrule composition from an ordinary chondrite. The conditions were 1350 C and 1 atm, with values of f(O2) varying between 10 exp -5.5 and 10 exp -12.6 atm (i.e., the f(O2) range relevant for crystal/liquid processes in terrestrial planets and meteorite parent bodies). Results of chemical analysis showed that the values of the Ni and Co partitioning coefficients begin to decrease at values of f(O2) that are about 3.9 log units below the nickel-nickel oxide and cobalt-cobalt oxide buffers, respectively, near the metal saturation for the chondrule analogue composition.

  16. Multinuclear Alkali Metal Complexes of a Triphenylene-Based Hexamine and the Transmetalation to Tris(N-heterocyclic tetrylenes) (Ge, Sn, Pb).

    PubMed

    Zhong, Fei; Yang, Xiaodong; Shen, Lingyi; Zhao, Yanxia; Ma, Hongwei; Wu, Biao; Yang, Xiao-Juan

    2016-09-01

    A C3-symmetric hexamine (LH6) based on the triphenylene and ortho-phenylenediamine (PDAH2) skeletons has been synthesized, and was partially or fully deprotonated upon treatment with alkali metal agents to afford amino-amido or diamido coordination sites. Four alkali metal complexes, the dinuclear [Na2(LH4)(DME)5] (1) and [K2(LH4)(DME)4] (2), trinuclear [K3(LH3)(DME)6] (3), and hexanuclear [Li6(L)(DME)6] (4), were obtained and used in transmetalation/ligand exchange with other metals. The hexalithium salt of the fully deprotonated ligand, [Li6L], reacted with heavier group 14 element halides to yield three tris(N-heterocyclic tetrylenes), the germylene [Ge3(L)] (5), stannylene [Sn3(L)] (6), and plumbylene [Pb3(L)] (7). The synthesis and crystal and electronic structures of these compounds are reported. PMID:27525542

  17. Analysis of triacetone triperoxide complexes with alkali metal ions by electrospray and extractive electrospray ionisation combined with ion mobility spectrometry and mass spectrometry.

    PubMed

    Hill, Alex R; Edgar, Mark; Chatzigeorgiou, Maria; Reynolds, James C; Kelly, Paul F; Creaser, Colin S

    2015-01-01

    The complexation of triacetone triperoxide (TATP) with a range of alkali metals has been studied by electrospray ionisation-mass spectrometry yield [M+Cat](+) ions for all of the alkali metals. The formation of [2TATP+Li+LiX](+) (X = Br, Cl) sandwich complexes was also observed. Collision cross- sections for the lithium-containing complexes of TATP were measured by travelling wave ion mobility spectrometry mass spectrometry, and compared well with computationally determined structures. Extractive electrospray ionisation (EESI) using a lithium doped electrospray is demonstrated for the detection of TATP vapours desorbed from a metal surface. The limit of detection for EESI was shown to be 20 ng using the [TATP+Li](+) ion. PMID:26307706

  18. The electronic properties of bare and alkali metal adsorbed two-dimensional GeSi alloy sheet

    NASA Astrophysics Data System (ADS)

    Qiu, Wenhao; Ye, Han; Yu, Zhongyuan; Liu, Yumin

    2016-09-01

    In this paper, the structural and electronic properties of both bare and alkali metal (AM) atoms adsorbed two-dimensional GeSi alloy sheet (GeSiAS) are investigated by means of first-principles calculations. The band gaps of bare GeSiAS are shown slightly opened at Dirac point with the energy dispersion remain linear due to the spin-orbit coupling effect at all concentrations of Ge atoms. For metal adsorption, AM atoms (including Li, Na and K) prefer to occupy the hexagonal hollow site of GeSiAS and the primary chemical bond between AM adatom and GeSiAS is ionic. The adsorption energy has an increase tendency with the increase of the Ge concentration in supercell. Besides, single-side adsorption of AM atoms introduces band gap at Dirac point, which can be tuned by the Ge concentration and the species of AM atoms. The strong relation between the band gaps and the distribution of Si and Ge atoms inside GeSiAS are also demonstrated. The opened band gaps of AM covered GeSiAS range from 14.8 to 269.1 meV along with the effective masses of electrons ranging from 0.013 to 0.109 me, indicating the high tunability of band gap as well as high mobility of carriers. These results provide a development in two-dimensional alloys and show potential applications in novel micro/nano-electronic devices.

  19. Mixed alkali effect in nonconventional alkali gallotitanate glasses

    SciTech Connect

    Miyaji, Fumiaki; Hasegawa, Shinya; Yoko, Toshinobu; Sakka, Sumio . Inst. for Chemical Research)

    1993-02-01

    The mixed alkali effect on electrical conductivity, that is, the reduction of conductivity due to alkali mixing, was observed in Na[sub 2]O-K[sub 2]O-Ga[sub 2]O[sub 3]-TiO[sub 2] glasses, which are nonconventional in the sense that glass-forming oxides defined by Zachariasen are not involved. The magnitude of the reduction in conductivity of the present glasses due to alkali mixing was similar to that of corresponding mixed alkali silicate and phosphate glasses. The activation energy for electrical conduction showed a maximum around the composition Na/(Na + K) = 0.5, where the conductivity was at a minimum.

  20. Robust control in ultracold alkali metals using a single linearly chirped pulse

    NASA Astrophysics Data System (ADS)

    Collins, T. A.; Malinovskaya, S. A.

    2013-01-01

    We theoretically investigate the population dynamics of the valence electron of elements of the alkali series induced by nanosecond linearly chirped (LC) pulses having kW cm-2 beam intensity and examine two different shapes of the pulse envelope. We demonstrate the possibility of controllable population transfer between hyperfine (HpF) levels of the S orbital through Raman transitions. We assume that the atoms are in the state of an ultracold vapor and Doppler free. Detuning slightly below the one-photon resonance condition with the lowest of the HpF states of the corresponding P orbital avoids interaction of the pulse with the other HpF levels of the P orbital and allows us to enter the adiabatic region of population transfer at very low field intensities, such that the corresponding Rabi frequencies are on the order of the hyperfine splitting of the S orbital. This methodology provides a robust way to create a specially designed superposition state in such atoms in the basis of the HpF levels and perform state manipulation controllable on the picosecond-to-nanosecond timescale.